
Group Oblivious Message Retrieval

Zeyu Liu1, Eran Tromer2, Yunhao Wang2

1Yale University
2Columbia University

April 13, 2023

Abstract

Anonymous message delivery, as in private communication and privacy-preserving blockchain ap-
plications, ought to protect recipient metadata: a message should not be inadvertently linkable to its
destination. But in this case, how can messages be delivered to each recipient, without every recipient
scanning all the messages? Recent work constructed Oblivious Message Retrieval (OMR) protocols that
outsource this job to untrusted servers in a privacy-preserving manner.

We consider the case of group messaging, where each message may have multiple recipients (e.g., in a
group chat or blockchain transaction). A direct use of prior OMR protocols in the group setting increases
the servers’ work linearly in the group size, rendering it prohibitively costly for large groups.

We thus devise new protocols where the servers’ cost grows very slowly with the group size, while
recipients’ cost is low and independent of the group size. Our approach uses Fully Homomorphic Encryp-
tion and other lattice-based techniques, building on and improving on prior work. The efficient handling
of groups is attained by encoding multiple recipient-specific clues into a single polynomial or multilinear
function that can be efficiently evaluated under FHE, and via preprocessing and amortization techniques.

We formally study several variants of Group Oblivious Message Retrieval (GOMR), and describe
corresponding GOMR protocols. Our implementation and benchmarks show, for parameters of interest,
cost reductions of orders of magnitude compared to prior schemes. For example, the servers’ cost is
∼$3.36 per million messages scanned, where each message may address up to 15 recipients.

1

Contents

1 Introduction 4
1.1 Our Contribution . 5
1.2 Related Work . 6

1.2.1 Private Retrieval . 6
1.2.2 Multi-Recipient Encryption and Broadcast Encryption 6

2 Overview 6
2.1 Model Overview . 7
2.2 Summary and Comparisons . 7
2.3 Main Techniques . 9

3 Defining Group Oblivious Message Retrieval 10
3.1 Ad-hoc Group OMR . 10
3.2 Fixed Group OMR . 12

4 Preliminaries 14
4.1 Notation . 14
4.2 PVW Encryption . 15
4.3 Fully Homomorphic Encryption . 15

5 Optimization to Prior Work 16
5.1 The Original OMR Construction . 16
5.2 Optimizing PVUnpack . 17
5.3 Optimizing OMRp2 . 18

6 Ad-hoc Group OMR 19
6.1 Trivial Solution . 19
6.2 Improved Ad-hoc Group OMR . 21
6.3 Extension to Distinct Payloads . 25

7 Fixed Group OMR 26
7.1 Multi-Recipient Encryption . 26
7.2 Naive Solutions . 28
7.3 Efficient Key-private MRE . 28
7.4 Applying MRE to FGOMR . 31
7.5 Applying FGOMR to AGOMR . 32

8 DoS Resistance 34
8.1 Ad-hoc Group OMR . 34
8.2 Fixed Group OMR . 36

9 Performance Evaluation 38
9.1 Methodology . 38
9.2 Evaluation Results . 39

10 Applications 40
10.1 Secure Group Messaging . 40
10.2 Private Blockchains . 40

Acknowledgements 42

2

References 43

A Strengthed Privacy Definition of FGOMR 45

B Sparse Random Linear Coding (SRLC) 45

3

(a) Ad-hoc Group OMR. (b) Fixed Group OMR.

Figure 1: The high-level illustration of AGOMR and FGOMR. For AGOMR, the sender obtains the
individual clue keys to form a group message. For FGOMR, individuals form a group clue key that the
sender obtains.

1 Introduction

The protection of message contents in messaging applications is well studied, and end-to-end encryption is
nowadays widely practiced. Protecting the metadata, such as sender and recipient identity, is likewise crucial
in anonymous message delivery systems [WCGFJ12, CGBM15, Lun18, BEM+17, BLMG21], especially when
messages are posted on a publicly-visible blockchain [Noe15, BSCG+14, HBHW, BCG+20].

Recipient privacy is especially difficult to achieve at scale, because of seemingly contradictory require-
ments. On one hand, no one should be able to discern the intended recipient of a message (other than that
recipient, and the sender). On the other hand, each recipient wishes to retrieve just the messages addressed
to them, without scanning all messages in existence for potentially-pertinent ones. There is thus a need to
outsource the detection task to a server (or a detector) in a privacy-preserving way.

Fuzzy Message Detection [BLMG21] was the first to address this, proposing a decoy-based approach in
which the server sees the set of messages pertinent to the recipient buried among many additional randomly-
chosen messages (which is a weak security notion [SPB22]). Two follow-up works [MSS+22, LT22] improved
this to entirely hide the set of pertinent messages, and in [LT22], furthermore ensure unlinkability of keys
and resistance to Denial-of-Service or spamming attacks.

Those works focused on the case that a message is sent to a single recipient. What if the sender wants to
send a message to multiple recipients, as in group messaging, mailing lists, or blockchain transactions with
multiple parties?

Specifically, we consider the following Group Oblivious Message Retrieval (GOMR) setting, generalizing
[LT22]: A sender sends a message to (up to) G recipients, attaching a clue generated using the recipients’
clue keys. The clue indicates to which recipients this message is addressed. The sender then publishes the
message (along with the clue) onto a public bullet board. A detector, which is an untrusted third-party server,
is enlisted by a recipient: given the recipient’s detection key, the detector processes the bulletin board and
derives a digest that contains the pertinent messages, in encrypted form, by an oblivious computation that
checks clues against the detection key. The detector sends back the digest to the recipient, who can then
extract the messages via their secret key.

A trivial solution is to utilize prior OMR schemes [MSS+22, LT22], and have each message’s sender attach
a separate clue for each of the G recipients, inducing a corresponding linear increase in the detector’s work
— which is impractical for large groups.

In this paper, we show that much more efficient GOMR schemes exist. We study these in two models,
which differ in how groups are formed (see Fig. 1), motivated by different applications:

The first flavor is the Ad-hoc GOMR (AGOMR), which allows the senders to send messages to a group of

4

recipients chosen arbitrarily. This suits cases such as messaging protocols (e.g., WhatsApp Broadcast Lists)
that let a message be addressed to any set of recipients chosen on the fly, or blockchains where transactions
may have many recipients chosen arbitrarily.

The second flavor is Fixed GOMR (FGOMR), where groups are pre-formed by their members and then
addressed collectively. This suits applications with a notion of persistent groups, such as mailing lists or
group chats. It also suits blockchains applications in which transactions need to be visible to a set of parties
in addition to the recipient (e.g., auditors or jurisdictional law enforcement). The FGOMR setting is a
special case of AGOMR, where having pre-formed groups FGOMR allows for more efficient constructions,
and a stronger Denial-of-Service property (two honest recipients cannot be spammed jointly if they did not
agree to join the same group).

These two flavors can be further extended to include different payloads to different recipients. For
example, in the case of Zcash transactions [HBHW], a recipient of funds transaction could retrieve just the
output notes they can spend, instead of the whole transaction (which may include additional notes).

1.1 Our Contribution

Definitions of GOMR. We formally define the two aforementioned models of Group Oblivious Message
Retrieval, with fixed groups (FGOMR) and ad-hoc groups (AGOMR).

Our definitions capture natural notions of correctness and privacy for both notions. Moreover, our
definitions include the DoS Resistance and detection-key-unlinkability notions from prior work [LT22] and
extend them to the group setting.

Main GOMR constructions. We provide constructions of AGOMR and FGOMR that are far more
efficient than applying prior works. Both constructions achieve the strongest functionalities, including
the DoS-resistance and detection-key-unlinkability properties introduced in [LT22] (adapted to the group
setting).

Our schemes are based on (leveled) homomorphic encryption and achieve privacy guarantees proven under
a standard lattice hardness assumption. Our approach encodes multiple recipient-specific clues into a single
polynomial or multilinear function that can be efficiently evaluated under FHE. We utilize preprocessing
and amortization of several computational steps and tune homomorphic operation scheduling.

Additional GOMR constructions. In addition to our two main constructions above, we construct
four variants, serving as either a stepping stone to our main constructions or an extension of our main
constructions. Compared to our main constructions, most variants sacrifice some properties for efficiency;
thus may serve better for other applications. In more detail, if we only accept honestly selected groups
instead of arbitrarily formed ones, we can improve the runtime both asymptotically and concretely. Similarly,
if we do not require detection-key unlinkability, our schemes can achieve even better detector runtime.

Extension to multi-payload GOMR. We show how to extend our main AGOMR construction to take
different payloads each addressed to a different recipient at a small cost. A similar technique can be applied
to all other GOMR constructions.

Improving the original OMR scheme. We also improve the single-recipient OMR scheme [LT22] by
optimizing procedures and tightening the parameter analysis, resulting in 2.5x detector runtime speedup and
8x shrinkage in digest size.

Lattice-based Key-private Multi-Recipient Encryption scheme. As a component of independent
interest, we construct the first lattice-based key-private Multi-Recipient Encryption (KP-MRE) scheme. It
also serves as a building block for our main FGOMR construction.

Implementation and evaluation. We implemented our schemes as a open-source C++ library [? \NOTE\ERROR̸↷
GOMRimplementation

] and
measured their concrete performance for a variety of parameters in comparison to prior work. With param-
eters of interest, our schemes can be two to three orders of magnitude faster than the baseline scheme. The
FGOMR schemes show better efficiency and scalability than the AGOMR schemes.

Concretely, to retrieve half a million messages each addressing 15 recipients, the total cost of only about
∼$1.68, each message takes ∼0.018 second.

5

1.2 Related Work

1.2.1 Private Retrieval

Oblivious Message Retrieval. OMR [LT22] addresses the recipient-privacy problem for the case of a
single recipient. We extend this to the group setting. Our privacy, key-unlinkability, and DoS resistance
properties are all adapted and generalized from [LT22]. For the ciphertext compression component, an
alternative technique is introduced in [FLS22].

Fuzzy Message Detection. FMD [BLMG21] uses a decoy-based privacy notion for single recipients. This
is a weaker privacy guarantee [Lew21, SPB21], and does not provide DoS resistance and key unlinkability.

Private Signaling. PS [MSS+22] has the same base privacy guarantee as OMR (i.e., a message cannot
be linked to a recipient). However, their constructions rely upon strong environmental assumptions (trusted
hardware and two communicating but non-colluding servers, respectively), and their security notion does
not provide DoS resistance or key unlinkability. Furthermore, their work does not directly deal with retrieval
but just detection. Moreover, as in OMR, their definition is intended to have a message addressed to a single
recipient.

PIR. Other related problems are Private Information Retrieval (PIR) [CGKS95] and its variant Keyword
PIR [CGN98]; and in particular, since we retrieve multiple messages, the most related primitive is the variant
called multi-query (keyword) PIR or batch (keyword) PIR. As in OMR, our setting differs in that recipients
do not know the indices or labels of messages pertinent to them; rather, the clues are randomized (which is
necessary for unlinkability) and require nontrivial computation (rather than simple comparison) to detect.
Hence, we utilize general homomorphic encryption, and the resulting costs drive our schemes’ design.

Private Stream Search. In Private Stream Search (PSS) [OS05, DD07, BSW09, FR13], a client can
search a keyword over a database of documents and retrieve the ones with such a keyword without revealing
the keyword to the server. As for Keyword PIR, this cannot be directly used to solve OMR or GOMR. In
[LT22], the authors use similar techniques as in PSS works. Since our work is built on [LT22] constructions,
our schemes also involve those techniques to perform group OMR. However, since those parts are not the
main focus of this work, we refer the readers to the original OMR paper for more details.

1.2.2 Multi-Recipient Encryption and Broadcast Encryption

Multi-Recipient Encryption. Multi-Recipient Encryption (MRE) [Kur02, BBS02, BBKS07, PPS14]
focuses on efficiently encrypting a message (or multiple different messages) to different recipients. In these
works, they use the technique of randomness reuse, based on schemes like El Gamal, and achieve an efficiency
of 2x compared to the naive one-to-one encryption method.

Broadcast Encryption. In Broadcast Encryption (BE) [FN94], a central server controlling a master key
is required for distributing keys to clients/recipients. However, in the applications we are interested in, like
permissionless blockchain, it is hard to distribute a key from a central server. Moreover, we would also like
to protect users’ privacy against the central server. Therefore, the BE model is unsuitable for this paper’s
focus.

[BBKS07] claims that a single-message MRE can also be called broadcast encryption. In this paper, to
better distinguish the two different primitives, we only consider the model with a central server as BE, and
call the model without a central server MRE.

2 Overview

The following section gives an overview of the model, results, and the main techniques. Section 3 formally
defines Ad-hoc Group OMR and Fixed Group OMR. Section 4 covers preliminaries. Section 5 recalls the
main protocol of [LT22], and introduces several optimizations later used to build our GOMR constructions.
Section 6 and Section 7 introduce our main constructions for AGOMR and FGOMR respectively, and briefly

6

discuss different trade-offs between properties and efficiency which give birth to some variants of our main
constructions. Section 8 proposes stronger definitions of GOMR that take DoS attacks into consideration.
Section 9 reports on implementation benchmarks and comparisons for the optimized OMR, AGOMR, and
FGOMR protocols.

2.1 Model Overview

We first define the following components for GOMR.
A bulletin board (or board for short), denoted as BB, contains N messages (e.g., blockchain transactions).

Each message is sent from a sender, addressed to up to G recipients, whose identities are supposed to remain
private. (By contrast, OMR supports only a single recipient.) A message consists of a pair (xi, ci) where
xi is the message payload to convey, and ci is a clue string which helps notify the intended recipients (in a
privacy-preserving way) that the message is addressed to them.

To generate the clue, the sender uses the individual clue keys of the intended recipients, or alternatively,
a group clue key jointly generated by the intended group of recipients. Clue keys, or group clue keys, are
assumed to be published or otherwise communicated by some authenticated channels (whose details are
outside our scope).

The whole board BB (i.e., all payloads and clues) is public. Typically, payloads will be end-to-end
encrypted. We let P = {0, 1}ñ denote the payload space for some ñ ∈ Z+, and C denote the clue space
(which depends on the construction).

At any time, potential recipient p may retrieve the messages addressed to the group including p in BB.
We denote these messages as pertinent (to recipient p), and the rest as impertinent.

A server, called a detector, helps the recipient retrieve the payloads of those pertinent messages. The
retrieval is performed obliviously: even a malicious detector learns nothing about which messages are per-
tinent to the recipient. The recipient gives the detector its detection key and a bound k̄ on the number of
pertinent messages it expects to receive. The detector then aggregates all pertinent messages into a single
digest string M and sends it to the recipient p. The digest M should be much smaller than the board BB
(ideally, proportional to k̄).

Assuming the detector is semi-honest and the number of pertinent messages is less than k̄, the recipient
p should be able to recover all pertinent messages from M with high probability. We denote the probability
that a pertinent message is not recovered from the digest as false negative rate ϵn and the probability that
the recovery procedure outputs an impertinent message as false positive rate ϵp. We require both ϵn and ϵp
to be small (e.g., under 10−9 for ϵn and 10−6 for ϵp).

The board can be written incrementally, and the retrieval can be done by specifying which portion of the
messages is needed.

We discuss two variants of GOMR, in this model: in AGOMR the sender can arbitrarily address any
group of (up to G) recipients; whereas in FGOMR, any set of (up to G) recipients can jointly form a group
with a corresponding group clue key, and the sender can address any of the already-formed groups. These
notions are formally defined Section 3.

2.2 Summary and Comparisons

Table 1 summarizes the asymptotic performance and properties of all the schemes constructed in this paper
(see Section 9 for concrete benchmarks). The two main constructions, alongside OMR [LT22] as a baseline,
are shown first. additional variants are listed below. For reasonable group sizes, all of our schemes are
preferred over the baseline; yet they offer various tradeoffs between achieved properties and computation
cost, so the choice is application-dependent.

The detector shoulders the heaviest computation work in the original OMR scheme, and thus our schemes
aim to improve the performance of the detector. As seen in the “Detector homomorphic ops” columns of
Table 1, the main improvement lies in replacing the expensive homomorphic ciphertext decryption and ho-
momorphic digest coding with relatively cheaper homomorphic matrix multiplications. These multiplications

7

Scheme
Efficiency (per msg) Properties

Clue Size
Detector homomorphic ops

Sender time Functionality
Key
unlinkability

DoS
resistance

Matrix mul
size (cheap)

Decrypt
(expensive)

Digest
coding
(expensive)

OMRp2 [LT22] O(G(n+ ℓ)) 0 G G O(G(n+ ℓ)w) arbitrary ad-hoc groups Full Ad-hoc DoS
AGOMR3
Theorem 6.4

O(G(n+ ℓ))
O(G2 log(P)+
G(n+ ℓ))

1 1
O(G2(G+ n+ ℓ+ log(P))
+G(n+ ℓ)w)

arbitrary ad-hoc groups
Detection-key
unlinkability

Ad-hoc DoS

FGOMR1
Theorem 7.3

O(n+Gℓ) Õ(G log(P)ℓ) 1 1
O(G2(Gℓ+ log(P))
+w(n+ ℓG))

arbitrary fixed groups
and ad-hoc subgroup

Detection-key
unlinkability

Fixed DoS

Stepping-stone and variants
AGOMR1
Remark 6.1

O(G(n+ ℓ)) 0 1 1
O(G2(G+ n+ ℓ)
+G(n+ ℓ)w)

arbitrary ad-hoc groups No Ad-hoc DoS

AGOMR2
Remark 6.2

O(G(n+ ℓ)) O(Gn) 1 1
O(G2(G+ n+ ℓ)
+G(n+ ℓ)w)

ad-hoc groups
formed honestly

Detection-key
unlinkability

Ad-hoc DoS

FGOMR2
Remark 7.4

O(n+Gℓ) O(Gℓ) 1 1 O(G3ℓ+ w(n+ ℓG))
fixed groups formed
honestly, arbitrary
ad-hoc subgroup

Detection-key
unlinkability

Fixed DoS

FGOMR-based
AGOMR §7.5 O(n+Gℓ) O(Gℓ) 1 1 O(G3ℓ+ w(n+ ℓG))

ad-hoc groups
formed honestly

Detection-key
unlinkability

No

Table 1: The table shows the asymptotic efficiency of our different GOMR constructions in this paper
compared to directly using OMR from [LT22] for GOMR. n, ℓ, t, w are PVW encryption parameters. Group
size G is the number of recipients in a group. P denotes the total number of recipients in the system. ϵp
denotes the false positive rate when G = 1 (i.e., the false positive rate for plain OMR). “Fixed DoS” is
stronger than “Ad-hoc DoS”. See more details in Section 8. “Arbitrary groups” means that a group can be
any subset of recipients, while “groups formed honestly” means that honest senders choose groups with only
honest recipients.

consist of just a single layer of plaintext-by-ciphertext multiplications (or two layers for AGOMR3). By con-
trast, the homomorphic decryption and digest coding each require multiple levels of ciphertext-by-ciphertext
multiplications (each of which is orders of magnitude more expensive than plaintext-by-ciphertext multipli-
cation): homomorphic decryption of PVW encryption scheme [PVW08] involves a range check, which needs
to be done using a high-degree polynomial evaluation; and homomorphic digest coding limits the ability to
use the SIMD-like batching of the underlying BFV scheme (see details in [LT22]).1

Generally, FGOMR schemes have the smallest clue size, and and a better sender time than the main
AGOMR scheme. The sender time of all our schemes is worse than that of the baseline, since we have the
sender proactively performs more computation to alleviate the detector’s work (which is more important,
since it grows with the total number of messages).

Functionality-wise, our major constructions achieve the strongest functionality defined for AGOMR and
FGOMR respectively: the groups can be formed arbitrarily. Some of the variants provide better detector
performance assuming groups are formed honestly.

For detection-key-unlinkability, since all our schemes require the recipients to include a unique identifier
in their clue keys, all clue keys of the same recipients are linkable. However, we achieve clue-key-to-detection-
key and detection-key-to-detection-key unlinkability for all schemes except AGOMR1.

DoS resistance for AGOMR is weaker than the one for FGOMR. In FGOMR, it requires that two honest
recipients should not be spammed (except with a small probability) as long as they are not in the same
group, which is inherently impossible for AGOMR schemes. Details are in Section 8.

For a single payload (i.e., all recipients receive the same payload), all schemes have a similar digest size
of Õλ(ñ · (k̄+N · ϵp)) (practically identical digest size for most parameters; see Section 9 for details), where
ñ is the payload size, k̄ is the upper bound on the number of pertinent messages, N is the totally number of
messages on the board, and ϵp is the input false positive rate. .

Moreover, all schemes in the table can be extended to take distinct payloads (see Section 6.3), without

1Within the additional schemes, AGOMR4 is a direct extension from our baseline scheme, and does not introduce addi-
tional matrix multiplication operations, but still requires G expensive decryptions compared to our main schemes. Conversely,
AGOMR1 utilizes an evaluation of a degree-G polynomial over some finite field (e.g., Z2127−1) in plaintext, which is very cheap,
to avoid homomorphic matrix multiplications; the drawback is that AGOMR1 does not provide any detection unlinkability. The
other schemes aims to capture detection-key unlinkability, at the cost of using homomorphic matrix multiplication.

8

any change in terms of asymptotic behaviors in the table. The digest size of all schemes also remains the
same as before, except for the baseline scheme, where the digest would be G times larger. Thus, our schemes
are all better off than the baseline scheme in terms of detector-recipient communication when extended to
having distinct payloads.

2.3 Main Techniques

We briefly summarize the main techniques used in our schemes.

Two optimizations to prior work. We propose two techniques to improve the overall efficiency of the
previous OMR constructions: 1) an optimization to PVUnpack procedure, previously accounting for a large
fraction of the detector’s runtime, which reduces the number of homomorphic operations from O(D log(D))
to O(D); 2) a tighter parameter analysis by better utilizing the SIMD property of BFV; 3) an approach of
compressing messages by concatenating G > 1 payloads together to reduce detector cost.

AGOMR using polynomial encoding. To send a message to G recipients, the sender first generates G
clues as in [LT22]. Then, the sender encodes multiple clues into a single polynomial function by interpolating
the polynomial at points representing the intended recipients’ identities. The detector evaluates this poly-
nomial at a specific point corresponding to a recipient’s ID, to recover that recipient’s clue. This polynomial
evaluation can be done using homomorphic encryption to protect the recipients’ identities. The detector
then only needs to perform a single homomorphic decryption and encoding, instead of G such operations for
G different clues (as in the baseline method).

Multilinear encoding and clue size compression. For more efficient homomorphic evaluation, we
replace the polynomial encoding by multilinear encoding. However, naively interpolating a multilinear
function suspects to attacks: an adversarially-formed group may cause the equation system to be unsolvable,
breaking completeness. This can be solved by making the ID space sufficiently large, but that increases
the clue size. To compress these large IDs, the sender applies a shrinking linear transformation to the IDs,
chosen pseudorandomly after the group is chosen, and solves the system induced by these compressed IDs.

FGOMR through LWE-based Multi-Recipient Encryption. We show how to construct FGOMR
given a key-private Multi-Recipient Encryption (KP-MRE), by instantiating the clues as MRE ciphertexts.

We thus construct such a KP-MRE based on Learning With Error (LWE), allowing for an FHE-friendly
instantiation. The key insight is that given G public keys from G recipients, the sender can construct a single
ciphertext (⃗a, b) such that for all the corresponding secret keys (ski)i∈[G], it holds that a⃗ · ski ≈ b+m , for a
bit m. To do so we divide a⃗ and all the secret keys ski into two parts, a⃗ = a⃗′||α and ski = sk′i||dki, where dk

is a public auxiliary key randomly sampled by the recipients. a⃗′ and b⃗ are shared among all recipients in the
group. The recipient-specific component αi is computed by the sender to bridge the gap between ⟨⃗a′, sk′i⟩
and b⃗, i.e., ⟨⃗a′||αi, ski⟩ ≈ b⃗+ m⃗.

This construction naturally extends to a multi-bit message m⃗ and moreover extends to allow each recipient
to have their own message (i.e., m⃗i for recipient i).

Generalized snake-eye conjecture. To prove the DoS resistance property of our AGOMR scheme, we
generalize the snake-eye conjecture proposed in [LT22]. For FGOMR, we prove it under the same snake-
eye conjecture in [LT22]. We also propose another general conjecture and prove it equivalent to the old
conjecture in [LT22].

GOMR with distinct payloads. The polynomial encoding technique extends to the case where the
recipients in a group each have a different payload. This allows our GOMR schemes to accommodate
different payloads for different recipients with a very small overhead.

Amortization and preprocessing. As our schemes highly depend on homomorphic matrix multiplica-
tions, we introduce additional techniques that encode the clues and detection keys in special forms (NTT
representations) to reduce the cost. The clue encoding and some other homomorphic operations can be
performed offline and amortized across multiple recipients.

9

3 Defining Group Oblivious Message Retrieval

In this section, we formally define the problem of Group Oblivious Message Retrieval, using the model and
notation of Section 2.1.

3.1 Ad-hoc Group OMR

Ad-hoc Group OMR addresses the case where senders arbitrarily choose up to G recipients, given the
recipients’ clue keys. No advance action or cooperation is necessary from the recipients other than publishing
their clue keys (as in standard OMR). For privacy, an adversary who corrupted the detector should not
tell which group a message is addressed to. Furthermore, even if it has corrupted some of the group
members (including maliciously generating their clue keys), the adversary should not learn who the remaining
recipients are.

This definition generalizes that of OMR [LT22, Section 4.3]; see Remark 3.1 for detail.

Definition 3.1 (Ad-hoc Group Oblivious Message Retrieval (AGOMR)). An AGOMR scheme has the
following PPT algorithms:

• pp← GenParams(1λ, ϵp, ϵn, G, P): takes a security parameter λ, a false positive rate ϵp, a false negative
rate ϵn, an upper bound of the number of recipients G per message, the total number of recipients P ;
outputs public parameters pp.

• (sk, pk = (pkclue, pkdetect))← KeyGen(pp) : takes a public parameters pp; outputs a secret key sk and a
public key pk consisting of a clue key pkclue and a detection key pkdetect.

• c← GenClue(pp, pkclue1, . . . , pkclueG, x): takes a public parameter pp, up to G clue keys and a payload
x ∈ P; outputs a clue c ∈ C.

• M ← Retrieve(pp,BB, pkdetect, k̄): takes a public parameter pp, a board BB = {(x1, c1), . . . , (xN , cN)}
of size N , a detection key pkdetect from the recipient, an upper bound k̄ on the number of pertinent
messages for that recipient; outputs a digest M .

• PL← Decode(pp,M, sk): takes a public parameter pp, the digest M , a secret key sk, and outputs either
a decoded payload list PL ∈ Pk or an overflow indication PL = overflow.

An AGOMR scheme should fulfill completeness, soundness, and computational privacy, as defined below.
These definitions use the notion of a board generation procedure:

Definition 3.2 (AGOMR board generation). Given the total number of messages N , the total number
of recipients P and a public parameter pp: for each recipient j ∈ [P] 2, generate keys (skj , pkj) ←
KeyGen(pp); for i ∈ [N], arbitrarily choose a set Yi ⊆ [P], 1 ≤ |Yi| ≤ G, representing the set of
recipients for the i-th message. Define sets S1, . . . , SP such that Sj = {i | j ∈ Yi} representing the
indices of messages addressed to recipient j. Arbitrarily choose unique payloads (x1, . . . , xN). Generate
clues ci ← GenClue(pp, {pkcluej}j∈Yi , xi) for i ∈ [N].3. Then, output the set S1, (sk1, pkdetect1), and the

board BB = {(x1, c1), . . . , (xN , cN)}.4

2[N] := {1, . . . , N}, as defined in Section 4.1.
3Payloads being unique is w.l.o.g. See more details in paragraph “Repeating Payloads” in [LT22, Section 4.3]
4S1 is the set containing indices of messages pertinent to the recipient holding keys sk1, pk1, which w.l.o.g is the first recipient.

All the properties defined below symmetrically applies to other recipients.

10

Figure 2: Computational Privacy game for Ad-hoc Group OMR

• (Completeness) Let pp← GenParams(1λ, ϵp, ϵn, G, P). For any N = poly(λ), and 0 < k̄ ≤ N , let the set
S of pertinent messages, the key pair (sk, pkdetect), and the board BB be generated as in Definition 3.2,
for any set choice and payloads therein. Let M ← Retrieve(pp,BB, pkdetect, k̄), PL← Decode(pp,M, sk),
and k = |S| (the number of pertinent messages in S), either k > k̄ and PL = overflow, or

Pr[xj ∈ PL | j ∈ S] ≥ 1− ϵn − negl(λ), for j ∈ [N].

The randomness is over the coins of KeyGen and GenClue.

• (Soundness) For the same quantifiers as in Completeness:

Pr[(xj ∈ PL | j ̸∈ S)] ≤ (ϵp + negl(λ)), for j ∈ [N].

• (Computational privacy) An AGOMR scheme is computationally private if there does not exist any
PPT adversary that can win the game in Fig. 2 with probability > 1/2 + negl(λ), where Z, Y0, Y1

represent groups with at most G recipients.

An AGOMR scheme is compact if it moreover satisfies the following:

• (Compactness) For pp ← GenParams(1λ, ϵp, ϵn, G, P), (sk, pk = (pkclue, pkdetect)) ← KeyGen(pp), for
any board BB = {(x1, c1), . . . , (xN , cN)}, for M ← Retrieve(pp,BB, pkdetect, k̄), it holds that:

|M | = poly(λ, logN, logG) · log ϵ−1
p · Õ(k̄ + ϵpN)

The compactness definition is the same as [LT22] (except for some minor interface changes). In particular,
the digest size is independent of the group size G.

Õ(k̄ + ϵpN) (where Õ(x) = xpolylog(x)) accounts for the number of messages detected as pertinent,
including false positives; and the remaining factors account for the cost of representing each such message,
taking the payload size as constant.

Remark 3.1 (Relation to OMR). When G = 1, this AGOMR definition implies OMR ([LT22, Definition
4.1]), with a minor difference in privacy. The adversary in AGOMR definition is given P honestly generated
recipient keys and can arbitrarily choose two of them as the challenge, where P represents the total number
of recipients in the system passed as a parameter in GenParams. In contrast, the adversary in [LT22] is given
two honestly generated keys as the challenge. Other parts are trivially identical.

11

Detection-key unlinkability. In addition to hiding the results of a retrieval query, we may wish to hide
which recipient is even doing the retrieval. Thus, essentially, we require the property that given a detection
key of a recipient, one cannot tell who the recipient is.

To satisfy this property, we need the recipient to be able to regenerate its detection key to do the retrieval,
while still having the correctness, soundness, privacy, and compactness hold, using the new detection key.
Furthermore, the new detection key should not be able to be linkable to the recipient even given the original
set of public keys.

We formally capture this property by the following definition, adapted from [LT22, Definition 9.2].

Definition 3.3. (AGOMR detection-key-unlinkability) An AGOMR scheme is said to be detection-key-
unlinkable if it further has an interface (sk′, pkdetect)← RegenDetectKey(pp, sk), such that:

1. Correctness, soundness, computational privacy, and compactness hold also after replacing
M ← Retrieve(pp,BB, pkdetect, k̄) with M ← Retrieve(pp,BB, pk′detect, k̄), and replacing
PL← Decode(pp,M, sk) with PL← Decode(pp,M, sk′), where (sk′, pk′detect)← RegenDetectKey(pp, sk).

2. Let pp ← GenParams(1λ, ϵp, ϵn, G, P), (sk, pk = (pkclue, pkdetect)) ← KeyGen(pp), (sk′, pk′ = (pk′clue,
pk′detect))← KeyGen(pp), then for any n = poly(λ), for all i ∈ [n], let (·, pkdetecti)← RegenDetectKey(pp,
sk), (·, pk′i = (·, pk′detecti)) ← KeyGen(pp), it holds that (pk, pkdetect1, . . . , pkdetectn) ≈c (pk′, pk′detect1,
. . . , pk′detectn)

Remark 3.2. This detection-key unlinkability directly implies detection-to-clue-key-unlinkablity [LT22, Def
9.1], but is weaker than full-key-unlinkablity [LT22, Def 9.2]. The difference from the latter is that detection-
key unlinkability does not achieve the clue-key-to-clue-key unlinkability, i.e., the ability for recipients to
generate multiple indistinguishable-but-functionally-identical clue keys, which is useful in some applications
for creating ephemeral/stealth addresses.

3.2 Fixed Group OMR

In some applications, groups are predetermined by their member recipients (e.g., for mailing lists). A
recipient joining multiple groups should be able to use a single secret key to detect all pertinent messages
addressed to the groups, which include that recipient as a group member. By sending to a fixed group,
we may further improve the efficiency, including the clue size, server computation time, and so on. (For
simplicity, a sending to a single recipient will be handled as sending to a a fixed group consisting of just that
recipient.)

Besides the difference in efficiency, FGOMR has a slightly weaker privacy notion. If an adversary corrupts
some members in a fixed group, it may distinguish messages addressed to that group from those addressed
to other groups (which in reality is often possible anyway by inspecting the payload’s plaintext). Thus, we
require for messages addressed to groups without corrupted recipients, the groups are indistinguishable.

Furthermore, we allow a sender to select an arbitrary subgroup Y ′ of some fixed group Y and send a
message only pertinent to this subgroup. The excluded recipients Y \Y ′ should not discover such an exclusion
(i.e., the clue generated for the subgroup is indistinguishable from a clue generated for a group that does
not include the excluded recipients at all).

We capture the notion of an FGOMR scheme as follows. We replace KeyGen in OMR with PersonalKeyGen,
which only generates secret and detection keys. A clue key for an entire group of up to G recipients will
be constructed by first invoking GroupKeyGenAux to generate a share with respect to that group, and then
invoking GroupKeyGen.

Definition 3.4 (Fixed Group Oblivious Message Retrieval (FGOMR)). An FGOMR scheme has the fol-
lowing PPT algorithms:

• pp← GenParams(1λ, ϵp, ϵn, G, P): takes a security parameter λ, a false positive rate ϵp, a false negative
rate ϵn, the upper bound of the number of recipients of each message G, and the total number of
recipient P ; outputs public parameters pp.

12

• (sk, pkdetect)← PersonalKeyGen(pp): takes public parameters pp; outputs a secret key sk and a detection
key pkdetect.

• gPKshare ← GroupKeyGenAux(pp, sk, Y): takes public parameters pp, a secret key sk, and a group of
recipients Y ; outputs a group key share gPKshare for a single recipient.

• pkclue ← GroupKeyGen(pp, gPKshare1, . . . , gPKshareG): takes public parameters pp, up to G public key
shares gPKsharei; outputs a clue key.

• c ← GenClue(pp, pkclue, Y, x): takes public parameters pp, a clue key pkclue, a group of recipients Y , a
payload x ∈ P; outputs a clue c ∈ C.

• M ← Retrieve(pp,BB, pkdetect, k̄): takes public parameters pp, a board BB = {(x1, c1), . . . , (xN , cN)} of
size N , a detection key pkdetect, and an upper bound k̄ on the number of pertinent messages addressed
to that recipient; outputs a digest M .

• PL← Decode(pp,M, sk): takes public parameters pp, a digest M and a secret key sk; outputs either a
decoded payload list PL ∈ Pk or an overflow indication PL = overflow.

A FGOMR scheme should fulfill completeness, soundness, and computational privacy, as defined below.
These definitions use a different notion of board generation:

Definition 3.5 (FGOMR board generation). Given the total number of messages N , the total number
of recipients P and public parameter pp: for each recipient j ∈ [P], generate keys (skj , pkdetectj) ←
PersonalKeyGen(pp); for i ∈ [N], arbitrarily choose Yi ⊆ [P], 1 ≤ |Yi| ≤ G, where Yi represents the group
of recipients for the i-th message, and Y ′

i ⊆ Yi, Y
′
i ̸= ϕ. Define sets S1, . . . , SP such that Sj = {i |

j ∈ Y ′
i }, representing the indices of messages addressed to recipient j. For all i ∈ [N], j ∈ Yi, generate

gPKsharei,j ← GroupKeyGenAux(pp, skj , Yi), and pkcluei ← GroupKeyGen(pp, {gPKsharei,j}j∈Yi). Arbi-
trarily choose unique payloads (x1, . . . , xN); generate clues ci ← GenClue(pp, pkcluei, Y

′
i , xi). Finally,

output S1, (sk1, pkdetect1), and the board BB = {(x1, c1), . . . , (xN , cN)}.

• (Completeness and Soundness) Same as AGOMR completeness and soundness in Definition 3.1, re-
placing Definition 3.2 with Definition 3.5.

• (Computational privacy) An FGOMR scheme is computationally private if there does not exist any
PPT adversary that can win the game in Fig. 3 with probability > 1/2+negl(λ), where Yj , Zj represent
groups of recipients.

A FGOMR scheme is compact if it further satisfies the compactness definition in Theorem 6.1 (w.r.t. the
interfaces defined above).

Detection-key unlinkability. Similarly, we can also define detection-key unlinkability for FGOMR.

Definition 3.6. (FGOMR detection-key-unlinkability) An FGOMR scheme is said to be detection-key-
unlinkable if it further has an interface (sk′, pk′detect)← RegenDetectKey(pp, sk), such that:

1. Correctness, soundness, computational privacy, and compactness hold also after replacing
M ← Retrieve(pp,BB, pkdetect, k̄) with M ← Retrieve(pp,BB, pk′detect, k̄), and replacing
PL← Decode(pp,M, sk) with PL← Decode(pp,M, sk′), where (sk′, pk′detect)← RegenDetectKey(pp, sk).

2. Let pp← GenParams(1λ, ϵp, ϵn, G, P), (sk, pkdetect)← PersonalKeyGen(pp), (sk′, pk′detect)← PersonalKeyGen(pp),
for all Y, Y ′ ⊆ [P], let gPKshare ← (pp, sk, Y), gPKshare′ ← (pp, sk, Y ′), for any n = poly(λ), for all
i ∈ [n], let (·, pkdetecti) ← RegenDetectKey(pp, sk), (·, pk′i = (·, pk′detecti)) ← KeyGen(pp), it holds that
(gPKshare, pkdetect, pkdetect1, . . . , pkdetectn) ≈c (gPKshare, pk

′
detect, pkdetect

′
1, . . . , pkdetect

′
n)

13

Figure 3: Computational Privacy game for Fixed Group OMR

Remark 3.3. A stronger notion of FGOMR computational privacy is possible, where privacy holds even
if the keys are chosen semi-maliciously (i.e., with malicious choice of randomness). This is captured by the
game of Fig. 10, which allows the adversary to rewrite some secret keys with its own maliciously-chosen
randomness.

An even stronger notion of privacy allows the keys to be crafted fully maliciously (as in AGOMR). This
reduces to the above semi-malicious notion, by adding a non-interactive zero-knowledge (NIZK) proof that
the keys were correctly generated from some randomness.

Neither strenghtening is essential for the envisioned application, so for readability we omit these from
subsequent discussion. Note, however, that all of our FGOMR constructions satisfy the semi-malicious
strenghtening, and thus can be made private even for fully-malicious key generation by addition of the NIZK
proof to the public keys.

4 Preliminaries

4.1 Notation

All logarithms are to base 2 and rounded up to an integer, unless otherwise specified. The notation v⃗ denotes
row vectors, and [n] denotes the set {1, . . . , n}. By D(x) we denote the distribution of a random variable x.

For a variable (e.g., PV) representing a BFV ciphertext encrypting a vector of D elements in Zt for some
D ∈ Z+, let PV[i] denote the i-th element in the vector. Similarly, when the encrypted vector is a flattened
matrix of size D × T for some D,T ∈ Z+, we let PV[i][j] denote the (i, j)-th element of the matrix.

We summarize the main symbols throughout this paper in Table 2.

14

N ∈ N Size of bulletin board, |BB|
P ∈ N Total number of recipients
k̄ ∈ N Upper bound of the number of messages each recipient has

k̂ ∈ N Upper bound of the number of messages each recipient has, including false positives
x ∈ P Payload
c ∈ C Clue
M Digest

0 < ϵp < 1 False positive rate
0 < ϵn < 1 False negative rate

n ∈ N Dimension of PVW secret key
w ∈ N Number of PVW instances in a PVW public key
ℓ ∈ N Number of bits encrypted in a PVW ciphertext

t ∈ N Ciphertext modulus of the underlying PVW scheme;
Plaintext modulus of the underlying BFV ciphertext

σ ∈ R Error standard deviation of the underlying PVW scheme
D ∈ N Ring dimension of the underlying BFV ciphertext
G ∈ N Maximum number of recipients for each message
Y ⊆ [P] A set of recipients, |Y | ≤ G
I ∈ N Size of ID for each recipient in AGOMR
id ∈ ZI

t ID of each recipient
L ∈ N Size of auxiliary key for each recipient in FGOMR
dk ∈ ZL

t Auxiliary key of each recipient

Table 2: A list of common parameters used in all the OMR/GOMR constructions.

4.2 PVW Encryption

Our constructions are based on lattice-based encryption schemes as in [LT22]. We use the Peikert-Vaikuntanathan-
Waters (PVW) [PVW08] variant of Regev’s LWE-based encryption [Reg09] defined as follows:

• ppLWE = (n, ℓ, w, q, σ) ← PVW.GenParams(1λ, ℓ, q, σ) : Choose a secret key dimension n, and w =
poly(λ, n, ℓ, q). Set ciphertext modulus q, number of bits of plaintext modulus ℓ, and standard deviation
for Gaussian distribution for ciphertext noise generation σ. n,w, q, σ are chosen as in [PVW08]. ppLWE

is assumed to be implicitly taken by the following algorithms.

• (sk, pk) ← PVW.KeyGen(ppLWE) : Choose a secret key sk ← Zn×ℓ
q uniformly at random. Randomdly

sample A ← Zn×w
q and a error matrix X ∈ Zℓ×w

q from some Gaussian distribution χσ, and compute
pk = (A,P = sk⊺A+X).

• ct = (⃗a, b⃗) ← PVW.Enc(ppLWE, pk, m⃗) : To encrypt a vector m⃗ ∈ Zℓ
2, define a vector t = q

2 · m⃗ ∈ Zℓ
q.

Choose a random vector e ← {0, 1}w ∈ Zw
2 uniformly at random. The ciphertext is the pair (⃗a, b⃗) =

(Ae,Pe+ t) ∈ Zn
q × Zℓ

q.

• m⃗← PVW.Dec(ppLWE, sk, ct = (⃗a, b⃗)) : d⃗ = b⃗− sk⊺a⃗ ∈ Zℓ
q, m⃗ = ⌊ d⃗+q/4

q/2 ⌋ ∈ Zℓ
2

The PVW scheme is unconditionally correct and sound. Under the LWE hardness assumption, it also
fulfills the standard definitions of semantic security (IND-CPA) and key privacy [Reg09, APS15]. Moreover,
it satisfies the property of wrong-key decryption defined in [LT22, Definition 5.1].

4.3 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE), introduced by Rivest et al. [RAD78] and first constructed by Gentry
[Gen09], enables evaluation of a circuit on encrypted data, such that the result is the encryption of the

15

Figure 4: Main components of the original OMR construction. Our main focus in this work is to adapt and
optimize the sender side and step 1 on the detector side to the group setting. Step 2 only has very minor
changes. Step 3 maintains exactly the same.

corresponding output.

BFV FHE scheme. We use the Brakerski/Fan-Vercauteran (BFV) homomorphic encryption scheme [Bra12,
FV12].

The BFV scheme consists of the following PPT algorithms: GenParams(1λ),KeyGen(ppBFV),Enc(ppBFV, pk,m),
Dec(ppBFV, sk, c) as normal PKE schemes. And an additional algorithm: Eval(ppBFV, pk, (ct1, . . . , ctk), C),
which takes k ciphertexts encrypting (mi∈[k]) and a circuit C, and outputs another ciphertext ct′ such that
Dec(ppBFV, sk, ct

′) = C(Dec(ppBFV, sk,mi)i∈[k]).
BFV is unconditionally correct and sound. Under the Ring-LWE (RLWE) [LPR13, Pla18] hardness

assumption, it also fulfills the standard definitions of semantic security (IND-CPA) for FHE schemes.
Given a polynomial from the cyclotomic ring Rt = Zt[X]/(XD + 1), the BFV scheme encrypts it into

a ciphertext consisting of two polynomials, where each polynomial is from a larger cyclotomic ring Rq =
Zq[X]/(XD+1) for some q > t. We refer to t, q, andD as the plaintext modulus, the ciphertext modulus, and
the ring dimension, respectively. Each ciphertext can pack D plaintext group elements (m1, . . . ,mD) ∈ ZD

t .
We often use “single instruction, multiple data” (SIMD) homomorphic evaluation to BFV ciphertexts.

5 Optimization to Prior Work

This section introduces two optimizations to the original OMR constructions[LT22]. Subsequent sections
are based on this optimized OMR construction. We first recall the OMRp2 of [LT22], with its high level
algorithms sketched in Fig. 4 and summarized as follows.

5.1 The Original OMR Construction

Setup and sending (OMR.GenClue). A bulletin board BB of size N , BB[i] = (xi, ci), contains messages,
each consisting of a payload xi and clue ci. Each clue ci is generated by the sender of that message by

16

producing a PVW ciphertext of ℓ 1’s encrypted under the PVW public key found in the clue key of the
intended (secret) recipient.

Retrieval (OMR.Retrieve). To request retrieval, recipient j sends its detection key pkdetectj = (BFV.pkj ,

BFV.Enc(BFV.pkj ,PVW.skj)) to detector. The detector then uses pkdetectj to homomorphically process all
messages and send back a digest containing payloads addressed to recipient j, via the following stages.

Fetch clues: The first step of the original construction is simply fetching all the clues (and payloads) from
the board.

Homomorphic decryption and unpacking: Then, the detector uses the clues on the board to obliviously
obtain N encrypted bits, each indicating whether a message is pertinent (0 for no and 1 for yes) (i.e., the
left half of Fig. 4), as follows. For each clue ci, the detector uses the PVW.skj encrypted under BFV.pkj
to homomorphically evaluate the decryption of ci, and then homomorphically computes the pertinency
indicator bi to be 1 if all ℓ decryption results are 1’s. Thus, bi is (with high probability) 1 iff the i-th message
is intended for recipient j.

For efficiency, the above is done in large batches of D clues at a time, using BFV’s SIMD evaluation. Let
PV denote the resulting vector of BFV-encrypted pertinency bits (b1, . . . , bD). The detector then decomposes

PV through function PVUnpack into D BFV ciphertexts
−→
PVi∈[D], where

−→
PVi = BFV.Enc(bi, . . . , bi).

Compression: The detector compresses the encrypted binary vector of length N , which is sparse (mostly 0),
to form a digest of size o(N), using coding techniques as follows.

Assuming at most k̄ messages are pertinent, the detector randomly assigns each message to one of m > k̄
buckets, each consisting of an accumulator and a counter. Suppose messages S ⊆ [N] are assigned to a
bucket. The detector then homomorphically sums up the indices of all the assigned pertinent messages in

the same bucket as the value of the accumulator (i.e., Acc←
∑

j∈X

−→
PVj · j), and records the number of the

pertinent messages in each bucket by using the counter (i.e., Ctr ←
∑

j∈X

−→
PVj · 1) (e.g., result = 2 if and

only if there are two pertinent messages assigned to the bucket). The compression succeeds only if there is
no more than one pertinent message assigned in one bucket (i.e., the counter value is 0 or 1). Otherwise,
it is a collision. To amplify the success probability, the detector will repeat this process several times. We
denote the number of such repetitions by C. [LT22] further uses partial information gathering (i.e., gather
the information from the buckets whose Ctr = 1 in each repeatition) to reduce C.

The payloads can also be compressed in the same way as the pertinent indices described above. However,
for better efficiency, [LT22] uses Sparse Random Linear Coding (SRLC). See details of the payload processing
there (we reuse this component verbatim).

Decryption (OMR.Decode). The recipient, given the digest, decrypts and decodes it and obtains the
correct payloads using the PVW secret key PVW.sk.

In this work, we focus on optimizing the detector’s cost in the aforementioned stage “Homomorphic
decryption and unpacking”, which dominates cost — in the case where a message is addressed to a group
of recipients. To this end, we also modify the sender’s algorithm in the first stage. The later stages are
essentially the same as [LT22], except for the optimization introduced in Section 5.3.

5.2 Optimizing PVUnpack

The construction in [LT22] expands a packed PV (i.e., a BFV ciphertext encrypting {0, 1}D) into D BFV
ciphertexts slot by slot (i.e., extract a single slot into a BFV ciphertext and replicate the result into all the
D slots), resulting in O(D log(D)) homomorphic operations. We improve this by batching the expansion
step, resulting in O(D) homomorphic operations.

The replication of the bits across all slots takes log(D) homomorphic rotations per slot, resulting in
D log(D) rotations and D multiplications (see [LT22, Alg. 6]). We observe that these rotations can be
amortized over multiple slots, as follows.

Instead of extracting one slot and rotate log(D) times, we instead extract half of the slots (thus resulting
into 2 ciphertexts) and rotate once, and then extract 1/4 of the slots (thus resulting into 4 ciphertexts) and

17

then rotate them once, and repeat this process totally log(D) levels. In the end, we obtain D ciphertexts
each encrypting a slot as expected. This is essentially a binary tree structure, with log(D) depth.

However, this also means that the multiplicative depth is log(D). Thus, instead of having a binary tree,
we can have a t-ary tree (i.e., a tree with a branching factor of t instead of 2), resulting in a depth of logt(D).
Even more generally, we do not need to have the same branching factor at each level. Instead, we can have
branching factors (b1, . . . , bL) ∈ ZL

D, where b1 × · · · × bL = D for the tree with L levels. For simplicity,
we only have branching factors that are power-of-two. This general tree structure thus gives us in total
D log(xL) +

D
xL−1

log(xL−1

xL
) + · · ·+ D

x1
log(x1

x2
) rotations, where xi =

∏i
j=1 bi.

We formalize the procedure in Algorithm 1. 5

Algorithm 1 Optimized PVUnpack

1: procedure PVUnpack(ppBFV, pkBFV, ct, L)
2: Initialize res← (ct) as a vector
3: Find power-of-two points (x1, . . . , xL) s.t. D log(xL) +

D
xL−1

log(xL−1

xL
) + · · ·+ D

x1
log(x1

x2
) is minimal

4: for i ∈ x do
5: tmp = (1, . . . , 0)
6: ▷ where (1 + k · xi−1, . . . , xi + k · xi−1) are 1’s for all k ∈ [D/xi−1], for i = 1, k ∈ {0}, x0 = 0
7: cur size← D

xi−1
▷ x0 = D

8: Initialize res′ as an empty vector
9: for u = 1 to cur size do

10: restmp ← res[u]
11: for j = 0 to xi−1

xi
− 1 do

12: tmp = (1, . . . , 0)
13: ▷ where (1 + k · xi−1 + j · xi−1

xi
, . . . , xi + k · xi−1 + j · xi−1

xi
) are 1’s for all k ∈ [D/xi−1]

14: ▷ for i = 1, k ∈ {0}, x0 = D
15: restmp1 ← BFV.Eval(pkBFV, restmp, tmp,×)
16: for β = log(xi) to log(xi−1) do ▷ x0 = D
17: restmp1 ← BFV.Rotate(pkBFV, restmp1 , 2

β)

18: Append restmp1 to res′

19: res← res′

20: return res

5.3 Optimizing OMRp2

Another optimization is tightening the parameter choice of m (the aforementioned number of buckets for
index retrieval) and C (the aforementioned number of repetitions to reduce failure probability) of OMRp2
in [LT22]. After our optimization, OMRp2 dominates OMRp1 for most practical parameters (including the
parameters set by [LT22, Section 10]) unless k̄ is huge and N is relatively small.

Originally, OMRp2 chooses a fixed m = D when k̄ ≪ D 6, and then chooses the smallest C such that the

error probability is achieved (i.e., 1−
∏k̄−1

i=1 (1− (i
m)C) ≤ ϵp/4). Instead, we let m vary and minimize m ·C

subject to the same constraint. Since each bucket takes logt(N)+ 1 BFV slots to store the accumulator and
the counter, this reduces the number of BFV ciphertexts from (logt(N) + 1) · C ·m/D = (logt(N) + 1) · C
to (logt(N) + 1) ·m · C/D ciphertexts; or concretely: from 15 to 1 for the parameters in [LT22].

Therefore, the optimized OMRp2 performance will dominate OMRp1 for most parameters.
This optimized OMRp2, dubbed OMR-OPT, is given in Algorithm 2.

5For simplicity and concrete performance, when invoking our new PVUnpack in our OMR/GOMR constructions, we always
invoke it with L = 2. Thus, the interface become the same as the old PVUnpack.

6When k̄ ̸≪ D, simply concatenate c multiple BFV ciphertexts together and view them as a single ciphertext, thus having
D ← c ·D.

18

Theorem 5.1. The scheme OMR-OPT in Algorithm 2 is an OMR scheme for N < D · t/2, assuming security
of LWE encryption and security of BFV leveled HE as in [LT22], when instantiated with PRF f and an SRLC
scheme SRLC defined in [LT22]. Moreover when instantiated with SRLC1 [LT22] Section 6.3.1, OMR-OPT is
also compact.

Proof sketch. Notice that the only difference between OMR-OPT defined in [LT22] and OMR-OPT is the
optimized accumulator and counter encoding described in Section 5.3. Thus, we only need to show that
the probability of the optimized accumulator/counter overflowing is ≤ ϵn/4, which will then satisfy the
completeness requirement defined in [LT22, Section 4.3]. The proof of soundness, privacy, and compactness
remain the same as in [LT22, Thm 7.2].

From the above analysis, we have d = ⌊ d̄D
⌈logt(N)⌉+1⌋ buckets, each expected to be assigned at most N/d

messages, as the number of messages that are detected as pertinent is trivially bounded by N . But bucket
counters may overflow, i.e., get incremented by more than t assigned messages detected as pertinent (whether
true positives or false positives). We bound this overflow probability as follows.

Pr[X ≥ t] < Pr[X ≥ 2N/D] (since N < Dt/2))

= Pr[X ≥ 2(N/D)]

= Pr

[
X ≥ 2

(
N

d · (⌈log(N)⌉+ 1)

)(
d · (⌈log(N)⌉+ 1)

D

)]
≤ exp

(
− δ2

2 + δ

N

d(⌈log(N)⌉+ 1)

)
(by Chernoff bound, where δ =

2d(⌈log(N)⌉+ 1)

D
− 1 = 2d̄− 1)

= exp

(
− δ2

2 + δ

N

d̄D

)
≤ exp(− (2d̄− 1)2

2d̄+ 1

t/2

d̄
)

By the union bound, the probability of none of the d buckets overflowing is d exp(− (2d̄−1)2

2d̄+1

t/2

d̄
) < ϵn/4,

where d = O(log(ϵ−1
n)). Therefore, for N < Dt/2, the condition at line 23 gives us a failure probability

< ϵn/4.
Therefore, all five conditions together have a failure probability of ϵn + negl(λ) for k ≤ k̄.

Due to these optimizations, our improved OMR-OPT is more efficient than OMRp2 in [LT22] for most
applications. Thus, our GOMR construction will be based on OMR-OPT.

6 Ad-hoc Group OMR

We proceed to construct Ad-hoc Group OMR (AGOMR), where a sender can send each message to any
arbitrary set of up to G recipients, as defined in Section 3.1.

6.1 Trivial Solution

AGOMR can be directly but inefficiently realized using any OMR scheme (such as those in [LT22]): for each
group message, and each of its G recipients, the sender sends a separate single-recipient OMR message with
a clue dedicated to that recipient (i.e., a PVW ciphertext in the case of [LT22]). The number of clues in the
board then increases by a factor of G, and therefore so does the detector’s work.

When the above construction is instantiated with OMR-OPT scheme described in Section 5, the detector
first performs G homomorphic PVW decryption to obtain G encrypted bits per message. If the message is
pertinent, one of these encrypted bits would be 1, otherwise the bits would be all 0’s (with high probability).

After the bits are obtained, the detector performs the remaining procedure G times per message. This is
wasteful, since there is at most one 1 in G bits. Ideally, the detector can sum up all G bits and performs the

19

Algorithm 2 OMR-OPT: Improved Practical Compact Oblivious Message Retrieval

1: procedure OMR-OPT.GenParams(1λ, ϵp, ϵn)
2: Choose ppBFV = (D, t, . . .), ppPVW = (n,w, ℓ, q, σ), and range r with one change:
3: Replace item 3 with ℓ · (1− erf(r/(

√
2wσ))) < ϵn/4 ▷ See Setting parameters

4: return pp = (1λ, ϵn, ϵp, ppBFV, ppPVW, r) ▷ Provided implicitly below
5: procedure OMR-OPT.KeyGen
6: (skpvw, pkpvw)← LWE.KeyGen()
7: (skBFV, pkBFV)← BFV.KeyGen()
8: ctpvwSK ← BFV.Enc(pkBFV, skpvw)
9: return (sk = (skBFV), pk = (pkclue = pkpvw, pkdetect = (pkBFV, ctpvwSK)))

10: procedure OMR-OPT.GenClue(pkclue, x)
11: m⃗← (0, . . . , 0) ∈ Zℓ

t

12: c← LWE.Enc(pkclue, m⃗) ▷ Recall: clue c ∈ Zn×ℓ
t

13: return c
14: procedure OMR-OPT.Retrieve(BB, pkdetect, k̄)
15: ▷ Phase 1: Initialization
16: Draw a random seed s = (sf , sh)
17: Parse BB = {(x1, c1), . . . , (xN , cN)} and pkdetect = (pkBFV, ctpvwSK)
18: Let C ← N/(D · log(t))
19: Initialize (Acci = BFV.Enc(pkBFV, (0, . . . , 0)))i∈[C] ▷ D zeros
20: ▷ Phase 2: detection in batches of D messages
21: Find the smallest d′, d̄ and let d = ⌈ d̄D

⌈log(N)⌉+1
⌉ such that:

22: (1) 1−
∏k̄−1

i=1 (1− (i
d
)d

′d) < ϵn/4

23: (2) d · exp(−N(2d̄−1)2

(2d̄+1)d̄D
) ≤ ϵn/4

24: Initialize (Clhs,z ← (BFV.Enc(pkBFV, (0, . . . , 0))w)w∈[d′]

25: ▷ encrypted d′d̄D zeros as a single concatenated BFV ciphertext, to avoid detailed mod
calculation

26: for i = 1 to N/D do ▷ Assume wlog that D divides N
27: Parse each clue as ciD+i′ = ((ci′,κ))κ∈[n+ℓ] ∈ Zn+ℓ

q for i′ ∈ [D]
28: c̄κ ← (ci′,κ)i′∈[D] for κ ∈ [n+ ℓ]
29: ▷ c̄κ lists the κ-th element of every PVW clue in this batch
30:

31: α1 ← InnerProd(ppBFV, pkBFV, ctpvwSK, (c̄κ)κ∈[n+ℓ])
32: α2 ← RangeCheck(ppBFV, pkBFV, α1, r)

33: α3 =
∏ℓ−1

i=0(1− α2[i])
34: (PVi′)i′∈((i−1)D,iD] ← PVUnpack(ppBFV, pkBFV, α3)

35: for i = 1 to N do
36: j, k ← fsf (i) ▷ j ∈ [C], k ∈ [d]
37: a← (k − 1) · ⌈log(N) + 1⌉
38: b← k · ⌈log(N) + 1⌉
39: ▷ We need to update slot [a, b− 1]; first b− a− 2 slots are for accumulator and last one is for

counter
40: Clhs,j[a, b− 2] = Clhs,j[a, b− 2] + i · PVi ▷ t-ary addition
41: Clhs,j[b− 1] = Clhs,j[b− 1] + 1 · PVi ▷ Slot-wise addition, done homomorphically
42: ▷ Phase 3: Finalization
43: k̂ ← k̄ +N log(N)ϵp
44: (ppSRLC,m)← SRLC.GenParams(1λ, k̂, ϵn/4, t)
45: ▷ In practice (ppSRLC,m) is preprocessed and tabulated and therefore becomes O(1)
46: Initialize combinations {Cmb = BFV.Enc(pk, 0)}k∈[m]

47: for i = 1 to N do
48: S ← SRLC.GenWeights(ppSRLC)
49: for (j, wj) ∈ S do
50: Cmbj = Cmbj + PVi · xi · wj ▷ by homomorphic addition and scalar multiplication
51: return M = (s, (Acclhs,i)i∈[C·d/D], (Ctrlhs,i)i∈[C·d/D], (Cmbk)k∈[m], ppSRLC)

52: procedure OMR-OPT.Decode(pp,M, sk)
53: As in [LT22], details omitted.

20

following procedures once per message. However, with a non-negligible false positive rate and the possibility
that the clues may be maliciously formed, there are potentially multiple 1’s, which would cause retrieval
failure. This can be solved by additional changes (omitted for brevity), but the cost remains dominated by
the aforementioned blowup in the number of homomorphic PVW decryptions.

6.2 Improved Ad-hoc Group OMR

The main detection cost, in the trivial scheme above, lies in the G-fold increase in expensive homomorphic
operations: homomorphic decryption of PVW ciphertexts and the digest compression process. In this
section, we use a different technique to construct AGOMR scheme so that the decryption process and digest
compression only need to be performed once for each message. (We generalize this to the case of multiple
payloads in Section 6.3.)

Polynomial interpolation encoding. Let D be a finite field (to be fixed later). Each recipient randomly
draws id ←$ D as its unique public identity and includes the id as part of its pkclue. To send a payload
to a group of G recipients, the sender first generates G PVW ciphertexts: (ci ∈ Zn+ℓ

t)i∈[G] all encrypting
1’s using the corresponding PVW public keys included in the pkclue of those G recipients. But instead of
directly sending these G PVW ciphertexts as clues (as in the trivial solution), the sender encodes them
into a polynomial to be used as the clue. Specifically, the sender interpolates a degree-(G − 1) polynomial
f : D → Zn+ℓ

t such that f(idi) = ci for i ∈ [G], and publishes the coefficients of this polynomial as the clue.
To guarantee all the id’s are unique, we need D to be large enough (e.g., D = Z2127−1).

During retrieval, the detector takes the recipient’s id included in the detection key. For each message
(xi, fi)i∈[N], it evaluates fi(id) (in plaintext form), to obtain a PVW ciphertext. Thus, if id is one of the

points over which f is interpolated, then f(id) is a PVW ciphertext encrypting 1ℓ. Otherwise, f(id) is an
independently and pseudorandomly sampled vector of size Zn+ℓ

t w.r.t to this recipient’s decryption key and
will be decrypted to 1ℓ with probability ≤ ϵp. Hence, after obtaining the PVW ciphertext (i.e., f(id)), we
are in the same situation as in the detection procedure of OMR-OPT, and can proceed likewise, performing
a single homomorphic decryption of a PVW ciphertext .

Since the PVW ciphertexts are computationally indistinguishable from uniformly-drawn vectors in Zn+ℓ
t ,

the interpolated polynomial is thus indistinguishable from a random polynomial, in the absence of recipients’
secret keys. Even to an intended recipient, other intended recipients’ identities are unknown. Computational
privacy follows.

Remark 6.1. The above yields an AGOMR scheme, AGOMR1, which achieves computational privacy and in
whose detection is particularly efficient — since the extra computation to handle groups is a mere polynomial
evaluation in plaintext. The drawback of this construction is that each retrieval query reveals the querying
recipient (but not their pertinent messages) by including the identity id in the detection key, so it does not
achieve detection key unlinkability (Definition 3.3). The following constructions address this and achieve
key-unlinkability.

Detection-key-unlinkability for the poly-interpolation-based method. To acheive detection-key
unlinkability, the biggest challenge is that now the detection key includes an id. The other parts of the
detection key simply containts the BFV public key, and an encryption of the PVW secret key. Thus, instead
of evaluating f(id) in plaintext, we can encrypt id using BFV and evaluate f(id) homomorphically.

Thus, RegenDetectKey is also simple: freshly generate new BFV public keys, encrypt the PVW secret
key and the id.

However, in this case, the function f is also evaluated under FHE, so it needs to be FHE-friendly.

FHE-friendly multilinear encoding. As our schemes are based on BFV leveled-HE scheme, we need the
multiplicative depth to be small (e.g., ≤ 30 levels) and the plaintext modulus to be reasonable (normally,
16–50 bits, and preferably ≤ 20 bits given our detector circuit). However, homomorphically evaluating
the polynomial above requires a multiplicative depth to be log(G), and requires the FHE plaintext space
to be a large finite field (e.g., Z2127−1). While the multiplicative depth can be reduced to 1 by sending
Enc(id),Enc(id2), . . . ,Enc(idG), the large plaintext modulus remains to be an issue. Therefore, we change

21

Figure 5: Main components of our Ad-hoc Group OMR construction.

the identities to be vectors id ∈ ZI
t for some much smaller t (with some large enough I to be fixed later),

and then interpolate a multilinear function f : ZI
t → Zn+ℓ

t instead. In this case, the function f can be

represented by a matrix M ∈ ZI×(n+ℓ)
t . To recover the clue, the detector just needs to compute ci = idi×M,

which is a homomorphic matrix multiplication of multiplicative depth 1.

Remark 6.2. The above yields an AGOMR scheme, AGOMR2, which is fully secure, efficient, but slightly
weaker AGOMR scheme. By encrypting the id vectors, this scheme satisfies the detection-key unlinkability.
However, completeness of this scheme requires the groups to be honestly formed; specifically, that the groups
are formed independent of the participant id values (details below). Whether assumption is apt depends
on the underlying applications, and at worst, a group that cannot form a clue due to maliciously chosen ids
can be separated into multiple subgroups to avoid the issue. A better solution is discussed next.

Dealing with a maliciously formed group of ID. For such a matrix M as above to exist, we need all
the G id’s used to generate the clue to be linearly independent. Since all id’s are randomly generated, for an
honestly formed group, the probability that those randomly chosen G id’s are linearly independent is roughly
1− t(G−I) for I > G by [SGGC14b, Lemma 1]. However, the groups may be formed maliciously after seeing
the id’s. To mitigate this we can increase the length I of the id’s. Let ϵDI denote the probability that given P
randomly drawn id’s, there exists a combination of G of those id’s are linearly dependent. By union bound,
ϵDI =

(
P
G

)∏I
I−G+1(1− 1/ti). Setting I = O(G log(P)) suffices to achieve ϵDI ≤ negl(λ), mitigating the issue

of maliciously formed groups. Then, to send to G recipients, the sender then solves for M ∈ ZI×(n+ℓ)
t as

before.

Compressing the clue. With the enlarged I, publishing the whole matrix M as clue results in a
O(G log(P)) clue size, which is costly (concretely and asymptotically) when the number P of system partic-
ipants is large. To reduce its size, we use pseudorandomness derived from a succinct seed, as follows. The

sender draws a random seed s, and uses it to generate a pseudorandom matrix Z ∈ ZI×G′

t (where G′ ≥ G is

set below). The sender computes C ←W ×Z ∈ ZG×G′

t , which is indistinguishable from uniform random as

shown in Lemma 6.3, where W =

(
id1
...

idG

)
. Let ϵDS denote the probability that C is not full rank given that

22

W is full rank. Since C is computationally indistinguishable from random, again, by [SGGC14b, Lemma 1],

ϵDS =
∏G′

G′−G+1(1−1/ti). Thus, to make ϵDS = negl(λ), we have G′ = G+O(λ). Then, the sender computes

the matrix Ms ∈ ZG′×(n+ℓ)
t such that C×Ms = (c1, . . . , cG)

⊺. The clue is of the form (Ms, s), which is of size
O(G).

Lemma 6.3. For any 0 < G ≤ Ḡ, given any matrix A ∈ ZG×Ḡ
t with rank G, the distribution D = {Y : Y =

A× Z,Z ←$ ZḠ×G′

t } is equivalent to the uniform distribution DU = {Y : Y ←$ ZG×G′

t }.

Proof sketch. As A has full row rank, dim(kernel(A)) = tḠ×G′
/tG×G′

= tG
′(Ḡ−G′). Therefore, for any

Y ∈ ZG×G′
, |{Z | Y = A × Z}| = dim(kernel(A)). Therefore, if we sample an Z ∈ ZḠ×G′

t uniformly at
random, for any Y ∈ ZG×G′

, Pr[A× Z = Y] = 1
tG×G′ .

Detector operations. The detector uses s to recover Z and homomorphically computes (id× Z)×Ms to
recover the PVW ciphertext c, where id is encrypted under the recipient’s BFV public key included in pkdetect.
It then homomorphically decrypts the PVW ciphertext and processes digest encodings, as in OMR-OPT.

Efficiency analysis. With this technique against maliciously chosen groups, the computation cost of
recovering the clue grows to Õ(G · (G log(P) + n+ ℓ)). However, compared to the baseline scheme OMRp2,
which requires G expensive PVW ciphertext decryption, involving expensive range checks, and another G
expensive digest compression, those Õ(G · (G log(P)+n+ℓ)) computations are all relatively cheap plaintext-
by-ciphertext multiplications. The resulting scheme is thus much lighter.

Combining all of the above, we obtain our main AGOMR construction AGOMR3 given in Algorithm 3.
Fig. 5 portrays the high-level components of the resulting scheme. Compared to Fig. 4, the major changes
are the clues and step 1. Steps 2 and 3 are unchanged.

Theorem 6.4. The scheme AGOMR3 in Algorithm 3 is an AGOMR scheme for N < D · t/2, P = poly(λ),
and G = poly(λ), assuming hardness of LWE and security of BFV leveled HE; when instantiated with PRF
f and an SRLC scheme SRLC (Definition B.1). Moreover when instantiated with SRLC1 (Algorithm 6),
AGOMR3 is also compact.

Above, SRLC (Sparse Random Linear Code) refers to schemes for encoding values as linear combinations
drawn from certain distributions, as defined in [LT22, Section 6.3]. SRLC1 refers to a specific such scheme,
defined in [LT22, Section 6.3.1]. These are internal components inherited from [LT22], used in parts of
compression phase of OMR that we inherit unaltered.

Proof sketch. Completeness: Most part of the completeness is the same as the completeness proof of Theo-
rem 5.1. The only additional argument needed is that we now need the clue for the pertinent message can
be successfully generated given any subset of recipients, by solving the matrix M with compressed id matrix
ĩd defined at Algorithm 3 line 22.

Based on Lemma 6.3 and the parameter choice at line 4, the matrix ĩd is of full rank with probability

(1 − negl(λ)) ·
∏G′

i=G′−G−1(1 − 1/ti) [SGGC14a, Lemma 1]. Thus, by line 5, ĩd is full rank with probability
1−negl. Therefore, AGOMR3.GenClue can successfully compute M via a solvable linear equation system with
1− negl probability.

The remainder of the completeness argument is as in [LT22, Theorem 7.2].
Soundness: For some j ∈ [N], for 1 ̸∈ Xj

7, given the random id1 independently generated from Mi,

id1 × Mi results in a vector (⃗a, b⃗) that is indistinguishable from a vector sampled uniformly at random
∈ Zn+ℓ

t . In this case, false positives occur when the inner products of all ℓ parts of this PVW ciphertext
with skPVW1

fall into range ±r. This has probability ((2r + 1)/t)ℓ ≤ ϵp.
Computational privacy: We first argue that the ciphertexts (ci)i∈Y0

generated in line 18 are indistin-
guishable from (c′i)i∈Y1

, where Y0, Y1 represent groups of recipients. Based on the hardness of LWE, all
the honestly generated public keys pkPVW ∈ Zw×n+ℓ

t are computationally indistinguishable from a matrix

7Recall that in Definition 3.2, the board generation process output the corresponding ground truth for recipient 1 and thus
our soundness argument is with respect to recipient 1 as well.

23

Algorithm 3 AGOMR3: Compact Ad-hoc Group Oblivious Message Retrieval

1: procedure AGOMR3.GenParams(1λ, ϵp, ϵn, G, P)
2: Generate ppBFV, ppPVW as in OMR-OPT
3: If t ≤ G2, choose t = G2 and ppPVW accordingly.

4: Choose the smallest I such that
(
P
G

)
·
∏I

j=I−G−1(1− 1/tj) ≤ 2−λ.

5: Choose the smallest G′ ≥ G such that
∏G′

i=G′−G−1(1− 1/ti) ≤ 2−λ.
6: return pp = (1λ, ϵp, ϵn, G, ppBFV, ppPVW, G

′, I)
7: procedure AGOMR3.KeyGen(pp)
8: id←$ ZI

t

9: (skPVW, pkPVW)← PVW.KeyGen(ppPVW)
10: (skBFV, pkBFV)← BFV.KeyGen(ppBFV)
11: ctSWK ← BFV.Enc(pkBFV, skPVW)
12: ctID ← BFV.Enc(pkBFV, id)
13: return (sk = (skBFV, skPVW, id), pk = (pkclue = (id, pkPVW)), pkdetect = (pkBFV, ctID, ctSWK))
14: procedure AGOMR3.GenClue(pp, {pkcluei = (idi, pkPVWi)}i∈[G], x)
15: ▷ If in the amount of input pkclue is less than G, run AGOMR3.KeyGen to generate new pkclue’s

until there are G of pkclue’s
16: for i = 1 · · ·G do
17: m⃗← (0, . . . , 0) ∈ Zℓ

t

18: ci ← LWE.Enc(ppPVW, pkPVWi, m⃗) ▷ All encryptions are done with distinct randomness
19: ▷ Recall: clue ci ∈ Zn×ℓ

t

20: Draw a random seed s
21: Use s to sample Z from ZI×G′

t

22: ĩd =

 id1
...

idG

× Z ▷ ĩd ∈ ZG×G′

t

23: Solve for a matrix M ∈ ZG′×(n+ℓ)
t such that ĩd×M =

c1
...
cG

24: return (M, s)
25: procedure AGOMR3.Retrieve(pp,BB, pkdetect(pkbfv, ctID, ctSWK), k̄)
26: For all i ∈ [|BB|], load (Mi, si)

27: Use si to sample Zi from ZI×G′

t
28: Compute ci ← (ctID × Zi)×Mi

29: Proceed as OMR-OPT.Retrieve with (ci)i∈N from line 17
30: procedure AGOMR3.Decode(pp,M, sk)
31: Same as OMR-OPT.Decode
32: procedure AGOMR3.RegenDetectKey(pp, sk = (skBFV, skPVW, id))
33: (sk′BFV, pk

′
BFV)← BFV.KeyGen(ppBFV)

34: ctSWK
′ ← BFV.Enc(pk′BFV, skPVW)

35: ctID
′ ← BFV.Enc(pk′BFV, id)

36: return (sk′ = (sk′BFV, skPVW, id), pkdetect = (pk′BFV, ctID
′, ctSWK

′)

24

U ←$ Zw×n+ℓ
t sampled uniformly at random. Thus, by leftover hash lemma, given that all the Enc calls use

distinct randomness, D((ci)i∈Y0\Z) ≈c D((c′i)i∈Y1\Z). Thus, D((ci)i∈Y0
) ≈c D((c′i)i∈Y1

)

If one can distinguish (M, Z) generated from (ci)i∈Y0
and (M′, Z ′) generated from (c′i)i∈Y1

, one can
distinguish (ci)i∈Y0 from (c′i)i∈Y1 , as the entire generation process can be simulated by anyone given the
public keys, which contradicts to the claim that the distribution of (ci)i∈Y0 and (c′i)i∈Y1 are computationally
indistinguishable. Hence, computational privacy holds.

Compactness: The digest size is identical to that of OMR-OPT.
Detection-key-unlinkability: pkBFV is simply a fresh BFV public key. ctID, ctSWK are both BFV ciphertexts.

Thus, by the security of BFV, all these are computationally indistinguishable from other detection keys
generated freshly using KeyGen with different sk.

Amortization and preprocessing. To further reduce the concrete cost, we take some of the computation
offline. A plaintext-by-ciphertext multiplication in BFV contains three components: (1) NTT transformation
of the BFV ciphertext (resulting in the “NTT form” of the ciphertext); (2) NTT transformation of the
plaintext8; (3) multiplication between the two NTT form components. Costs are in descending order. We
try to reduce the number the first two operations, and amortize the costs over different recipients in the
following way:

• Notice that when performing the linear function evaluation (i.e., matrix multiplication), multiple plain-
texts generated based on Ms’s are multiplied with the same ciphertext (i.e., encrypted id). Thus, we
cache the NTT form of the encrypted id to reduce the number of the first type of operation.

• The plaintext NTT transformations for all published M’s are shared by all recipients; therefore, the
runtime of this part can be amortized over all recipients registered under the same detector.

6.3 Extension to Distinct Payloads

In some applications, a sender addresses a group of recipients with different payloads in a single message
(e.g., a Zcash transaction may have multiple recipients, each of which cares only about the data describing
the output note they can spend). Our AGOMR definition (Definition 3.1) can be extended to fit this multiple
payload setting, where the correctness, privacy, and compactness definitions remain exactly the same, and the
soundness extends in the most natural way (i.e., payloads not intended for the recipient should be excluded
w.h.p.).

First, notice that this can be trivially implemented through our AGOMR (or OMR) scheme by concate-
nating all the payloads to a giant payload. However, this (1) increases the digest size from PL to G · PL
(which would break the compactness), (2) the soundness guarantee is violated, as impertinent payloads that
are concatenated with the pertinent ones.

The following modification to AGOMR3 resolves this issues and achieves compact multi-payload AGOMR.

• Similarly to the multi-linear interpolation performed for different clues, with G distinct payloads
(x1, . . . , xG) ∈ PG intended for G recipients with id’s (id1, . . . , idG) ∈ DG, the sender interpolates
a function h : D → P, such that h(idi) = xi for i ∈ [G]. We represent function h as a matrix for the
linear transformation from idi to payload xi.

• The detector uses the encrypted id in the detection key to evaluate h(id) homomorphically, and obtains
a BFV ciphertext encrypting the payload 9. Then, the rest almost follows exactly what [LT22] has,
except that the payload is now a BFV ciphertext, and thus needs to perform ciphertext multiplications
when applying Sparse Random Linear Coding (SRLC, [LT22, Section 6.3]). (Alternatively, one can
also view the BFV ciphertext as a plaintext payload and proceed exactly as in [LT22].)

8BFV first encode messages into a polynomial by embedding the messages ∈ ZD
t in the polynomial coefficients, and the

polynomial is called a plaintext
9If the payload is larger than the plaintext space of a BFV ciphertext, we simply use multiple BFV ciphertexts, and for

simplicity, we omit the details of this case.

25

Analysis.

• Correctness and soundness: As long as the function h can be successfully interpolated (guaranteed by
the linear independency of the compressed IDs), the correctness of our scheme is guaranteed by the
correctness of BFV, which follows the same as in the proof of Theorem 6.4. Soundness also naturally
follows from the same analysis.

• Privacy: We now also require that h does not reveal the identity of the recipients. W.l.o.g., we assume
all the payloads are drawn from the uniformly random distribution over some payload space P (if
not, we first encrypt the payload through a key-private CPA-secure encryption scheme to make them
indistinguishable from random). Privacy is thus guaranteed the same way as the current AGOMR
privacy.

• Detector runtime: Asymptotically, the runtime does not change much with such a modification. Con-
cretely speaking, the evaluation of h is just a single level and can be done at a very low BFV multi-
plicative level (as it is only followed by some linear encoding), its cost is very small compared to the
rest of the computation. Although the SRLC part will become slower as it requires ciphertext-by-
ciphertext multiplication instead of plaintext-by-ciphertext multiplication, it does not contribute much
to the overall detector runtime. Thus the total runtime is only slightly affected. (One could also view
the BFV encryption of the payload as a BFV plaintext, and proceed exactly at before, at the cost of
payload being enlarged.)

• Digest size: By homomorphically evaluating h(id), the detector will receive a BFV ciphertext encrypting
a single payload. Therefore, the digest size remains the same and is independent of G.

• Payload size: The sender publishes the matrix representation of function h as payload, which is of size
∼ (G + log(λ)) · |P| (concretely, for a statistical security parameter of ∼ 48, we have (G + 4) · |P|).
This is slightly larger than the naive solution, which is of size G · |P|.

7 Fixed Group OMR

We proceed to construct Fixed Group OMR (FGOMR), where recipients form groups in advance, and the
senders can subsequently send messages to these fixed groups (or subsets thereof), as defined in Section 3.2.
This allows reduced detection cost compared to AGOMR.

7.1 Multi-Recipient Encryption

We achieve FGOMR via Multi-Recipient Encryption (MRE), defined below. At a high level, MRE enables
the sender to encrypt multiple messages to multiple recipients at the same time. FGOMR can leverage the
encryption function in MRE to generate a single clue for multiple recipients, and the detector then uses the
decryption function in MRE to evaluate all clues on the board.

Our MRE definition is adapted from [BBKS07]. We extend it with a key-privacy property, since the
adversary should not learn which group the message is addressed to unless a (fully malicious) adversary
corrupts the recipients in the group. We also make a couple of minor relaxations compared to [BBKS07]
(see Remark 7.1).

Definition 7.1. (Multi-Recipient Encryption). A Multi-Recipient Encryption scheme has the following
PPT algorithms:

• pp ← GenParams(1λ, G, P): takes a security parameter λ, the number of recipients G in a group, and
the total number of recipients P in the system; outputs a public parameter pp.

• sk← SKGen(pp): takes a public parameter pp and outputs a secret key sk.

• pk← PKGen(pp, sk): takes a public parameter pp, a secret key sk; outputs a public key pk.

26

Figure 6: CPA Security game for Multi-Recipient Encryption.

• ct ← Enc(pp, p⃗k, m⃗): takes a public parameter pp, a vector of up to G public keys p⃗k, a vector of

messages m⃗, |m⃗| = |p⃗k|; outputs a ciphertext ct ∈ C

• m ← Dec(pp, sk, ct): takes a public parameter pp, a secret key sk, a ciphertext ct; outputs a message
m

The scheme must satisfy the following properties:

• (Correctness) Let pp← GenParams(1λ, G, P), for j ∈ [P], let skj ← SKGen(pp), pkj ← PKGen(pp, skj).

For any set of recipients Y ⊆ [P], |Y | ≤ G, and any plaintext vector (mj)j∈[|Y |] ∈M|Y |, for all i ∈ [|Y |],
it holds that:

Pr[Dec(pp, ski,Enc(pp, (pkj)j∈Y , (mj)j∈[|Y |])) = mi] ≥ 1− negl(λ)

.

• (CPA security) An MRE scheme is CPA secure if for any PPT adversary A, it wins the game in Fig. 6
with probability ≤ 1/2 + negl(λ), where Y, Y ′Z represent groups of recipients.

• (Key Privacy) An MRE scheme is key private if for any PPT adversary A, it wins the game in Fig. 7
with probability ≤ 1/2 + negl(λ), where Y0, Y1, Z represent groups of recipients.

Remark 7.1. We adapted this primitive and its CPA security definition from [BBKS07], with the following
changes: 1) we introduce key privacy; 2) unlike in [BBKS07], we require G and P to be known when
GenParams is invoked (G can be equal to P as in [BBKS07]); 3) we relax correctness probability to 1 -
negl(λ), rather than 1 as in [BBKS07]; 4) we separate KeyGen into SKGen and PKGen, since they are invoked
separately in our case; 5) in [BBKS07], the adversary needs to first send the number of key pairs that it
wants to maliciously overwrite before receiving all honestly generated public keys. Regarding the last point,
notice that if there exists an adversary that breaks the CPA security in [BBKS07], then it trivially breaks
ours. Therefore, our definition implies the one in [BBKS07].

27

Figure 7: Key Privacy game for Multi-Recipient Encryption.

7.2 Naive Solutions

As a stepping stone, we discuss two naive approaches to constructing MRE schemes based on PVW encryp-
tion, and explain why they are inapplicable to our application.

A non-key-private solution. A trivial solution is to use the standard PVW encryption scheme as an
MRE scheme. To encrypt to G recipients, simply generate G PVW ciphertexts (⃗ai, b⃗i)i∈[G]. Furthermore,
all recipients can share the same a⃗ (i.e., a⃗i = a⃗j for all i, j ∈ [G]), and thus the MRE ciphertext is of the

form (⃗a, b⃗1, . . . , b⃗G).

However, for correctness, the recipient needs to know which b⃗i (i ∈ [G]) to use during decryption. To
guarantee this, one way to do this is that the sender can simply attach a hash function h that hashes a public
key pk into a specific b⃗i (the sender can manually avoid collisions). The recipient then computes h(pk) and

finds out the correct b⃗i. However, this construction does not satisfy the key privacy requirement, as that the
intended recipients do not have collision already leaks information.

An inefficient solution. An alternative way is to let the encryption algorithm encrypts the same message
λ times (i.e., the new ciphertext includes λ copies of the ciphertext above without h(pk)), where λ is the
security parameter. Only if the recipient uses the correct key to decrypt, all the λ copies decrypt into the
same message, except with O(exp(−λ)) probability, by the wrong-key decryption property of PVW [LT22,
Def 5.1]. The drawback is that all costs grow with λ.

Moreover, both solutions are not FHE friendly (the first one needs indexing, and the second one requires
an equality check), and thus are hard to incorporate into our application.

If an application does not require key unlinkability for its FGOMR, the hash function can be evaluated
directly in plaintext, in which case the first solution above is sufficient and more efficient than the key-private
MRE below.

7.3 Efficient Key-private MRE

We now introduce our main Multi-Recipient Encryption construction, which will be used to construct our
main FGOMR scheme in Section 7.4.

High-level Idea. Our starting point is PVW encryption as in [PVW08], and we use the same parameters
(n, t, w, ℓ, σ). For simplicity, we start with ℓ = 1, i.e., given a group of G recipients, the plaintext is
represented by m⃗ ∈ ZG

2 , one bit per recipient. Our goal is to generate a public key pk = (A, η⃗) such that
Aski ≈ η⃗ for all i ∈ [G], where ski is the secret key for recipient i.

28

GenParams: The scheme sets up the public parameters pp according to the PVW security and other
probability analysis similar to Section 6.2. The public parameters pp also include a random seed s, from
which each recipient in the group can generate a matrix A ∈ Zw×n

t and a vector b⃗ ∈ Zw
t .

SKGen: Each recipient generates their secret keys as a random vector sk = ck||dk ∈ Zn+L
t , where ck←$ Zn

t

and dk←$ ZL
t . L = G+O(λ) is chosen by a similar procedure as G′ in Section 6.2.

PKGen: The recipient then computes b⃗′ ← ckA⊺ + e⃗, where e⃗ is a Gaussian noise vector, and publishes
pk = (⃗b′, dk).

Enc: A sender first draws e⃗←$ {0, 1}w and computes a⃗← e⃗A ∈ Zn
t , β ← ⟨e⃗, b⃗⟩ ∈ Zt and β′

i = ⟨e⃗, b⃗′i⟩ ∈ Zt,
for all i ∈ [G]. The sender then finds γ⃗ ∈ ZL

t such that ⟨γ⃗, dki⟩ = β−β′
i for all i ∈ [G]. This is done by solving

γ⃗dkall
⊺ = β⃗′′, where dkall =

(
dk1...
dkG

)
∈ ZG×L

t , β⃗′′ = (β − β′
1 +m[1] · ⌈t/2⌉)|| . . . ||(β − β′

G +m[G] · ⌈t/2⌉) ∈ ZG
t .

The equation system is solvable as long as dkall has full row rank. The ciphertext is (⃗a, γ⃗, β).
Dec: The recipient uses its own secret key sk = ck∥dk to check |β − ⟨⃗a||γ⃗, sk⟩| ≥ ⌈t/4⌉.
To make the process above resistant to maliciously chosen recipients, we again extends the size of dk to

be long enough. Similarly to Section 6.2, we let ϵDI denote that the probability that dkall is not full row rank,

where dkall ←

(
dk1...
dkG

)
∈ ZG×L

t , and let ϵDS denote the probability that dkall × Z is not full row rank given

that dkall is full row rank, where Z ←s′ ZL×G′

t is generated from a random seed s′. We can efficiently achieve
ϵDI, ϵDS ≤ negl(λ) as shown in the lemmas in Section 6.2. As before, the sender then solves for α⃗ ∈ ZG′

t ,

such that α⃗(dkall × Z)⊺ = β⃗′′. The seed s′ is appended to the ciphertext.
To extend this idea to ℓ > 1, we simply repeat the above procedure with ℓ different secret keys sk as in the

PVW encryption [PVW08]. We use a single dk instead of having ℓ different dk for better efficiency (also using
the same (⃗a, β)). The resulting ciphertext is of form (⃗a, α1, . . . , αℓ, β, s

′) ∈ Zn
t × ZG′

t × ...× ZG′

t × Zt × Z2λ ,

such that for each intended recipient with (ckj , dk)j∈[ℓ], ⟨⃗a||αj , ckj ||(dk× Z)⟩ ≈ β, where Z ←s ZGL×G′

t , for
all j ∈ [ℓ].

Security follows from the following. In the ciphertext, the distribution of a⃗, β, s′ are all statistically indis-
tinguishable from uniform and independent. Then, the distribution of b⃗′ is computationally indistinguishable
from uniform by the hardness of LWE, and β⃗′ is computationally indistinguishable from uniform by leftover
hash lemma. Thus, the distribution of α⃗ is computationally indistinguishable from uniform.

Algorithm 4 provides the full construction of our MRE construction, including some details omitted above
for simplicity.

Theorem 7.2. For any P = poly(λ), G = poly(λ), assuming hardness of LWE, the scheme MRE in Algo-
rithm 4 is a key-private MRE scheme.

Proof sketch. Correctness: Similarly to the proof of correctness in Theorem 6.4, the probability that the
equation system is unsolvable has probability negl(λ). Therefore, we have Ask ≈ b⃗ and the correctness
trivially follows.

CPA security: We prove CPA security by showing that given pp for all Y ∈ [P] and |Y | = G, given

(pki)i∈Y , for all m⃗ ∈M|Y |, it holds that ct = (⃗a, α1, . . . , αℓ, β, s
′)← Enc(pp, (pki)i∈Y , m⃗) is computationally

indisinguishable from a uniformly-drawn tuple u←$ Zn
t × ZG′

t × ...× ZG′

t × Zt × Z2λ . First, s
′ is a random

seed, and a⃗, β are statistically indistinguishable from random vectors trivially. The only thing to prove is
that (αi)i∈[ℓ] is computationally indistinguishable from random vectors.

Notice that for each αi∈[ℓ], it is generated by solving equation α⃗XK⊺ = β′′ on line 24 in Algorithm 4.
Thus, (αi)i∈[ℓ] is indistinguishable from a random vector following from the fact that β′′ is indistinguishable
from a random vector by the hardness of LWE assumption.

Since the adversary can only choose the randomness used to generate the malicious keys, the analysis
remains the same for those corrupted keys (as the indistinguishability result for other keys remain).

Such indistinguishability implies CPA security, as if there exists a PPT adversary who can break the
CPA game, it can be used to break such indistinguishability.

29

Algorithm 4 MRE : Group Encryption

1: procedure MRE.GenParams(λ,G, p)
2: Choose (n,w, ℓ, t, σ) according to PVW security and let ppPVW ← (n,w, ℓ, t, σ)
3: If t ≤ G2, choose t = G2 and ppPVW accordingly.

4: Choose the smallest L such that
(
P
G

)
·
∏L

j=L−G−1(1− 1/tj) ≤ 2−λ.

5: Choose the smallest G′ ≥ G such that
∏G′

i=G′−G−1(1− 1/ti) ≤ 2−λ.
6: Generate a random seed s.
7: return pp = (λ, ppPVW, L,G,G′, s)

8: procedure MRE.SKGen(pp = (λ, ppPVW = (n,w, ℓ, t, σ), L,G,G′, s))
9: Choose a secret key ck = (ck1, . . . , ckℓ)← Zn×ℓ

t uniformly at random.
10: Choose an auxiliary key dk← ZL

t uniformly at random.
11: return (ck, dk)

12: procedure MRE.PKGen(pp = (λ, ppPVW = (n,w, ℓ, t, σ), L,G,G′, s), (ck, dk))
13: Use s to randomly generate w vectors A = {a⃗i ∈ Zn

t }i∈[w]

14: Use s to randomly generate w vectors b⃗ = {b⃗i ∈ Zℓ
t}i∈[w]

15: for i = 1→ w do
16: for l = 1→ ℓ do
17: b′i,l ← bi,l − ⟨ai, ckl⟩ − e⃗ where e⃗ is from some Gaussian distribution χσ.

18: return pk = ((b′i,l)i∈[w],l∈[ℓ], dk)

19: procedure EncAux(pp = (λ, ppPVW, L,G,G′, s), (⃗a, β), (β′
j , dkj)j∈[G], s

′)

20: dkall ←

(
dk1...
dkG

)
∈ ZG×L

t

21: Z ←s′ ZL×G′

t

22: XK = dkall × Z,XK ∈ ZG×G′

t

23: β′′ = (β − β′
1)∥ · · · ∥(β − β′

G) ∈ ZG
t

24: Solve the linear equation system αXK⊺ = β⃗′′ and let α←$ ZG′

t if the equation system is underdeter-
mined

25: return α
26: procedure MRE.Enc(pp = (λ, ppPVW, L,G,G′, s), {pkj = ((b′i,l,j)i∈[w],l∈[ℓ], dkj)}j∈[G], m⃗ ∈ Zℓ

t)
27: ▷ If the amount of input pk is less than G, run MRE.PKGen to generate new pk’s until there are G of

pk’s with the same seed s provided in the input
28: Use s to generate w vectors A = {a⃗i ∈ Zn

t }i∈[w] ▷ Same A as generated by each party

29: Use s to generate w vectors b⃗ = {b⃗i ∈ Zℓ
t}i∈[w] ▷ Same B as generated by each party

30: Define a vector t⃗ = t
2 · m⃗ ∈ Zℓ

t

31: Sample vector e⃗← {0, 1}w ∈ Zw
2 uniformly at random.

32: (⃗a, β)← (e⃗A, e⃗⃗b+ t⃗) ∈ Zn
t × Zℓ

t

33: for j = 1 to G do
34: β′

l,j ← e⃗(b′·,l,j) ∈ Zℓ
t, for l ∈ [ℓ]

35: Generate some randomness s′

36: for l = 1 to ℓ do
37: αl ← EncAux(pp, (⃗a, β), (β′

l,j , dkj)j∈[G], s
′)

38: ct← (⃗a, α1, . . . αℓ, β, s
′)

39: return ct
40: procedure MRE.Dec(pp = (λ, ppPVW, L,G,G′, s), (ck, dk), ct = (⃗a, α1, . . . αℓ, β, s

′))

41: Z ←s′ ZL×G′

t ▷ Same Z as generated during encryption
42: dk′ ← dk× Z
43: d⃗ = b⃗− (⟨⃗a||α1, ck1||dk′⟩, . . . , ⟨⃗a||αℓ, ckℓ||dk′⟩) ∈ Zℓ

t

44: m⃗ = ⌊ d⃗+t/4
t/2 ⌋ ∈ Zℓ

2

30

Figure 8: Main components of our Fixed Group OMR construction.

Key Privacy: Key privacy is guaranteed as long as the ciphertexts generated by two keys are from (com-
putationally) indistinguishable distributions. This follows the same way argument above for CPA security.

7.4 Applying MRE to FGOMR

Building FGOMR using our MRE construction MRE is straightforward: given the OMR scheme in Section 5,
we replace the PVW secret keys with the keys generated by MRE.SKGen. The group clue key can simply
be a vector of all the members’ public keys generated by MRE.PKGen (r ← h(Y) is used as the shared
randomness, where h is a random oracle and Y is the set of all the members). During the clue generation,
instead of using PVW encryption, we use the MRE scheme to encrypt ℓ ones and proceed with the rest as the
original OMR scheme. The detector now homomorphically decrypts a MRE ciphertext, instead of a PVW
ciphertext, using (sk, dk) sent in the detection key.

Detection-key-unlinkability. Similarly to the id-based AGOMR construction in Section 6.2, we need
to encrypt dk using BFV. RegenDetectKey is again very easy: simply generate fresh BFV public keys and
encrypt sk and dk accordingly.

The full algorithm is given in Algorithm 5. A high-level overview is given in Fig. 8. Compared to Fig. 4,
the clues remain to be encryptions of zeros, but instead of PVW encryption, we have MRE encryption.
Thus, step 2 also has small changes.

Theorem 7.3. The scheme FGOMR1 in Algorithm 5 is a FGOMR scheme for N < D · t/2, P = poly(λ), T =
poly(λ) assuming security of MRE encryption and security of BFV leveled HE and that h is a random oracle,
when instantiated with PRF f and an SRLC scheme SRLC (Definition B.1). Moreover when instantiated
with SRLC1 (Algorithm 6), FGOMR1 is also compact.

Proof sketch. Completeness: Follows from the correctness of OMR-OPT and the correctness of the underlying
MRE scheme.

Soundness: Similarly to Theorem 6.4 soundness proof.
Computational privacy: Fllows from the key-privacy property of the underlying MRE scheme.

31

Compactness: Exactly the same as OMR-OPT digest size.

Detection-key-unlinkability: Same argument as the detection-key-unlinkability argument in the proof of
Theorem 6.4.

Alternating the order of the matrix multiplications. For better performance, we introduce another
optimization. Since the entire decryption is under FHE, we would have a homomorphic matrix multiplication
to calculate dk × Z at Algorithm 4 line 42 , which is of size O(G2 log(P)). Instead, we first perform
α⃗i

′ ← α⃗i × Z⊺ for all i ∈ [ℓ], and then compute ⟨⃗a||α⃗i
′, cki||dk⟩ under FHE. The latter operation is an

inner product evaluated homomorphically, which is only of size O(G log(P)ℓ). Since ℓ is asymptotically
∼ log(λ) and practically with a very small constant (e.g., 4 as in [LT22, Section 10]), the runtime will be
both asymptotically and concretely faster. 10.

Remark 7.4. As in remark 6.2, by restricting the groups to be honestly formed, we do not need to consider
the union bound in ϵDI, which is the probability of existing a combination of G id’s among P recipients
to be linearly dependent, but instead, only evaluate the probability of a random group of size G to be
linearly independent. Thus, the size of L will be reduced from O(G logP) to G + O(λ). The number of
homomorphic operations in the resulting scheme is then reduced from O(G log(P)ℓ) to O(Gℓ), which gives
a better asymptotic detector runtime. We call this variant FGOMR2.

7.5 Applying FGOMR to AGOMR

An interesting observation is that we can extend our FGOMR scheme to AGOMR by forcing all recipients
to share the same A, b⃗ in their public key and treat this pk as the gPKshare in FGOMR Definition 3.4. Then,
everything follows: senders can arbitrarily choose up to G recipients as a subgroup of all P recipients to
send a message.

Since we treat all P recipients as a whole group, the recipients do not need to generate different gPKshare
for each different group, and thus the efficiency will match our FGOMR scheme without the requirement.
However, this comes with two caveats: (1) DoS resistance is almost fully broken, and (2) the privacy guarantee
becomes weaker.

Broken DoS resistance. We provide a high-level idea here before formally defining DoS resistance in
Section 8: δ-DoS-resistance means that a clue should not be detected as pertinent by more than δ−1 honest
recipients.

When generalizing FGOMR to AGOMR, because all of the honest recipients are sharing the same A,
a malicious sender is able to send a single spam message to a large number of recipients ≫ G with high
probability. In other words, recipient i is publishing some A,Bi such that A ·ski ≈ Bi. Therefore, by crafting
some vector e, the adversary can generate eA and check eBi for all recipients. To spam more than δ − 1
recipients, the adversaries need to find some b⃗ ≈ Bie for more than δ recipients. This can be done easily
by using reject sampling when δ is O(1), which becomes a huge issue for some applications, as discussed in
[LT22].

Weaker privacy guarantee than the AGOMR definition. On the other hand, the privacy guarantee
of the original AGOMR definition cannot be satisfied. Recall that in Section 3, in AGOMR, for a message
sent to G recipients, even if some of the intended recipients have maliciously crafted keys, the identities of
other recipients still remain private; while in FGOMR, privacy requires that the intended group does not
contain any malicious recipient. Otherwise, that malicious recipient might be able to recover who are the
rest of the group. This weaker privacy definition does make sense in the fixed group setting. For example, if
a recipient has only joined a single group, it knows that the message must be addressed to that group even
though the FGOMR scheme leaks no extra information. Besides, for a recipient joining different groups, it

10A similar technique can be applied for our AGOMR construction. However, that only changes the matrix multiplication
size from O(G2 log(P) + G(n + ℓ)) to O(G log(P)(n + ℓ)), which is not necessarily an improvement both asymptotically and
concretely

32

Algorithm 5 FGOMR1: Compact Fixed Group Oblivious Message Retrieval

1: procedure FGOMR1.GenParams(1λ, ϵp, ϵn, G, P)
2: Find some secure MRE parameter ppMRE accordingly to MRE.GenParams in Algorithm 4.
3: Find some secure BFV parameter ppBFV as in [LT22]
4: return pp = (1λ, ϵp, ϵn, G, ppMRE, ppBFV)

5: procedure FGOMR1.PersonalKeyGen(pp = (1λ, ϵp, ϵn, G, ppMRE, ppBFV))
6: (ckMRE, dk)← MRE.SKGen(ppMRE)
7: (skBFV, pkBFV)← BFV.KeyGen(ppBFV)
8: ctsk ← BFV.Enc(pkBFV, ckMRE)
9: ctdk ← BFV.Enc(pkBFV, dk)

10: return (sk = (skBFV, ckMRE, dk), pkdetect = (pkBFV, ctsk, ctdk)))

11: procedure FGOMR1.GroupKeyGenAux(pp = (1λ, ϵp, ϵn, G, ppMRE, ppBFV), sk, Y)
12: r← h(Y) ▷ Hashing Y to get some random seed
13: Replace the r in ppPVW with this new s
14: ((b′i)i∈[w], dk)← MRE.PKGen(ppMRE, sk)
15: gPKshare = (r, (b′i)i∈[w], dk)
16: return gPKshare

17: procedure FGOMR1.GroupKeyGen(pp,
(
gPKsharej = (r, (b′i,j)i∈[w], dkj)

)
j∈[G]

)

18: ▷ If the amount of input gPKshare is less than G, run FGOMR1.PersonalKeyGen and
FGOMR1.GroupKeyGenAux to generate new gPKshare’s until there are G of gPKshare’s

19: return pkclue =
(
r, (b′i,j)i∈[w], dkj

)
j∈[G]

20: procedure FGOMR1.GenClue(pp = (1λ, ϵp, ϵn, G, ppMRE, ppBFV), pkclue =
(
r, (b′i,j)i∈[w], dkj

)
j∈[G]

, Y ′, x)

21: pkclue
′ ←

(
r, (b′i,j)i∈[w], dkj

)
j∈Y ′

22: c← MRE.Enc(ppMRE, pkclue
′, 1ℓ)

23: return (x, c)

24: procedure FGOMR1.Retrieve(pp,BB, pkdetect = (pkBFV, ctsk, ctdk), k̄)
25: for i ∈ [|BB|] do
26: Homomorphically perform MRE.Dec(ppMRE, (ckMRE, dk),BB.ci) using BFV
27: ▷ The decryption process is almost the same, so the techniques in OMR-OPT can be reused.

28: Proceed as line 35 in OMR-OPT.
29: procedure FGOMR1.Decode(pp,M, sk)
30: Same as OMR-OPT.Decode
31: procedure FGOMR1.RegenDetectKey(pp, sk = (skBFV, ckMRE, dk))
32: (sk′BFV, pk

′
BFV)← BFV.KeyGen(ppBFV)

33: ct′sk ← BFV.Enc(pk′BFV, ckMRE)
34: ct′dk ← BFV.Enc(pk′BFV, dk)
35: return (sk′ = (sk′BFV, ckMRE, dk), pkdetect = (pk′BFV, ct

′
sk, ct

′
dk)

33

might even become an essential functionality for the recipient to know which group (or, for example, emailing
list) this message is addressed to. However, in the ad-hoc setting, this is impractical.

The stronger definition cannot be satisfied because the PVW ciphertexts in our FGOMR construction
share the same randomness. By controlling some of the keys, the adversary might be able to recover some or
all of the randomness used and thus makes it insecure. However, this has a minor effect as G is usually small,
and thus the randomness the adversary can recover is limited. Therefore, it is still possible that with certain
parameters, our FGOMR construction can achieve the same level of privacy as our AGOMR construction.
We leave the formal argument to future work. A simpler way to resolve this, as we have mentioned in Remark
3.3, is to use a zk-proof to show that the keys are indeed generated from PersonalKeyGen, as the keys that
are semi-maliciously generated cannot break the privacy.

In general, for applications that only require a weaker privacy guarantee or accept the zk-based solution,
and do not need DoS resistance, applying the FGOMR scheme to AGOMR is a great way to boost the
overall performance.

8 DoS Resistance

Motivation. In a messaging system, an attacker may conduct a Denial of Service (DoS) attack on recipients
by simply sending numerous of messages to them, increasing the cost of retrieval and processing. Further-
more, in the case where the number of pertinent messages retrieved is bounded to hide traffic patterns, an
excessive number of new messages eventually causes overflows and prevents access to other messages (as in
[MSS+22, LT22]) unless the bound k̄ is increased.

Inevitably, an attacker may spam individual recipients with messages, and pay a corresponding linear cost.
However, something worse can happen: perhaps the attacker can send a message that is seen as pertinent
by more than one recipient? In this case, the attacker can simply cause overflows in many recipients by
sending just a small amount of messages. This problem is studied and mitigated in [LT22], for the case of
(single-recipient) OMR.

In the group setting, the attacker may inevitable spams groups of up to G recipients, but we want to
prevent attacks that are worse than that (e.g., spamming all users with “wildcard clues”). In this section,
we adapt and generalize the DoS resistance definition from [LT22] to define this stronger security notion for
GOMR. Intuitively, for a message with its corresponding clue maliciously crafted, no more than δ honest
recipients should detect it as pertinent. Since by definition, GOMR allows G recipients to be addressed by
a single message, by default, δ ≥ G, and we want δ to be as close as possible to G. For FGOMR, we define
a stronger, saying that (honest) recipients inside different groups cannot be spammed together.

We then show how to achieve these notions of DoS-resistant AGOMR and FGOMR, under suitable
assumptions.

8.1 Ad-hoc Group OMR

To formalize these properties, as in [LT22], we define an indicator predicate I(pp, x, c, pkclue, sk) as a ground
truth for whether a given message (x, c) is pertinent to a given user specified by one’s keys. This predicate,
which may not be efficiently computable, should give the natural answer for honestly generated clues. The
indicator may answer arbitrarily for otherwise-generated clues, under the restriction that it should claim
no more than δ honest recipients as the intended recipients except with a small probability. We define
collision resistance property for the indicator such that it should be difficult for δ recipients to detect the
same message as pertinent. In AGOMR, this property prevents a malicious sender from crafting a message
to spam more than δ recipients.

Soundness and completeness are then redefined w.r.t the indicator I. As in [LT22], to facilitate tight
analysis, the completeness bound ϵn (false negative rate) in the definition is broken up into two components:
the rate ϵin at which the indicator fails to detect truly pertinent messages (which may be non-negligible
because an indicator with high thresholds may help achieve collision resistance), and the rate ϵn − ϵin at

34

which the scheme fails to retrieve messages flagged by the indicator (which may be non-negligible because
of error sources in the concrete scheme).

Definition 8.1 (DoS-resistant AGOMR). Let AGOMR be an Ad-hoc GOMR scheme with error rates ϵn, ϵp
(as in Definition 3.1) and group size upper bound G. An indicator for AGOMR, with an indicator false
negative rate ϵin (where ϵin ≤ ϵn) and collision resistance level δ, is a function b ← I(pp, x, c, pkclue, sk)
on public parameter pp, message (x, c), clue key pkclue, and the corresponding secret key sk that outputs
b ∈ {0, 1}, such that:

• (Indicator completeness) For pp ← AGOMR.GenParams(1λ, ϵp, ϵn, G, P), for any τ ∈ [G], honestly-
generated key pairs: (ski, pki = (pkcluei, ·)) ← AGOMR.KeyGen(pp), i ∈ [τ], for any payload x, and
honestly-generated clue c← AGOMR.GenClue(pp, pkclue1, . . . , pkclueτ , x), it holds that for i ∈ [τ]:

Pr[I(pp, x, c, pkcluei, ski) = 1] ≥ 1− ϵin − negl(λ) .

• (δ-Collision resistance)For any PPT adversary A, let pp ← GenParams(1λ, ϵp, ϵn, G, P), for any δ
honestly-generated key pairs: (ski, pki = (pkcluei, ·) ← AGOMR.KeyGen(pp), i ∈ [δ], and adversarially-
generated (x, c)← A(pk1, . . . , pkδ), for bi ← I(pp, x, c, pkcluei, ski), it holds that for i ∈ [δ]:

Pr[b1 = 1 ∧ · · · ∧ bδ = 1] ≤ ϵp + negl(λ) .

An Ad-hoc GOMR scheme AGOMR is δ-DoS-resistant for ϵn, ϵp, if there exists an indicator I with
indicator false negative rate ϵin, DoS resistance level δ, such that for any G = poly(λ), P = poly(λ) and
for any PPT adversary A, for pp ← AGOMR.GenParams(1λ, ϵp, ϵn, G, P), (sk, pk = (pkclue,pkdetect)) ←
AGOMR.KeyGen(pp), and adversarially-generated board BB← A(pp, pk) where BB = ((x1, c1), . . . , (xN , cN))
and (xi)i∈[N] are unique, for any 0 < k̄ ≤ N , let M ← AGOMR.Retrieve(BB, pkdetect, k̄), PL ← AGOMR.
Decode(M, sk):

• (DoS-completeness) Let k =
∑N

j=1 I(pp, xj , cj , pkclue, sk). Then either k > k̄ and PL = overflow, or
Pr[xj ∈ PL | I(pp, xj , cj , pkclue, sk) = 1] ≥ 1− (ϵn − ϵin)− negl(λ) for all j ∈ [N].

• (DoS-soundness) Pr[xj ∈ PL | I(pp, xj , cj , pkclue, sk) = 0] ≤ negl(λ) for all j ∈ [N].

Note that this implies the Completeness and Soundness definition in Definition 3.1 analogously to the
discussion in [LT22, Section 8.3] and [LT22, Lemma 8.2].

To show our AGOMR scheme is DoS resistant, we need to rely on a generalization of the snake-eye
conjecture proposed in [LT22] as formalized below.

Conjecture 8.1 (Regev05 is generalized-snake-eye resistant). For any PPT algorithm A, for Regev05 en-
cryption with modulus q and remaining parameters for which semantic security holds, for any δ = poly(λ),
for any 1 ≤ r < q/4, for key pairs (ski, pki) ← KeyGen(1λ), i ∈ [δ + 1], for ciphertexts (⃗ai, bi)i∈[δ+1] ←
A((pk)i∈[δ+1], r), for some coefficients (c1, . . . , cδ) ∈ Zδ

q, it holds that:

Pr

 |⟨⃗a1, sk1 ⟩+ b1| ≤ r
∧ . . .
∧ |⟨⃗aδ+1, skδ+1⟩+ bδ+1| ≤ r

∧ ∃i ∈ [δ + 1], cia⃗i ̸= 0⃗ ∧ (⃗aδ+1, bδ+1) =

δ∑
i=1

ci(⃗ai, bi)

 ≤ 2r + 1

q
+negl(λ) .

This generalized snake-eye conjecture is a stronger assumption than the original snake-eye conjecture
[LT22, Conj 8.4].

This conjecture can be further generalized form Regev05 encryption to PVW encryption using reject
sampling, analogous to [LT22, Lemma 8.5], reducing the snake-eye probability from 2r+1

q above to (2r+1
q)ℓ

for ℓ = log(λ) as shown in Lemma 8.2.

35

Lemma 8.2 (PVW is generalized-snake-eye resistant). Under Conjecture 8.1, for any PPT adversary A, for
PVW encryption with modulus q and plaintext space Zℓ

2, and r such that (2r+1
q)ℓ = poly(λ) and remaining pa-

rameters for which semantic security hold; for any δ = poly(λ), i ∈ [δ+1], key pairs (ski, pki)← KeyGen(1λ),

and ciphertexts (⃗ai, b⃗i)i∈[δ+1] ← A((pk)i∈[δ+1], r), let m⃗j ← sk⊺jA+ b⃗j , for some coefficients (c1, . . . , cδ) ∈ Zδ
q,

it holds that:

Pr

[
∀k ∈ [ℓ] : |mj [k]| ≤ r

∧ (∃i ∈ [δ + 1], a⃗i ̸= 0⃗)
∧ (⃗aδ+1, b⃗δ+1) =

δ∑
i=1

ci(⃗ai, b⃗i)

]
≤ (

2r + 1

q
)ℓ + negl(λ).

Patched AGOMR3. Analogously to [LT22], to prevent trivial DoS attacks, we want to avoid Ms×(id×Z) =

(⃗0, b⃗) for more than δ − 1 id’s, where (Ms, s) is the clue in Algorithm 3, and the pseudorandom matrix Z is
sampled using randomness s. Thus, the detector rejects the clue when M = 0.

Theorem 8.3. For any ϵp > 0, ϵn > 0, P = poly(λ), G = poly(λ), AGOMR3 in Algorithm 3 (patched as
above) is a (G′ +1)-DoS-resistant Ad-hoc Group Oblivious Message Retrieval scheme where G′ is as defined
in line 5, when instantiated with any PRF f , assuming the hardness of Ring-LWE and Conjecture 8.1.

Proof sketch. The indicator completeness, DoS-completeness, and DoS-soundness are all straightforward
since we perform the homomorphic PVW decryption process as in [LT22]. The only exception is when
M = 0 for honestly generated clues (M, Z). Notice that M = 0 only if Z × [idi|| . . . , idGi]×M = cti = 0⃗ for all
i ∈ [G]. Thus, the probability of rejecting an honestly generate clue is Pr[M = 0] ≤ Pr [∀i ∈ [G], cti = 0] =
t−nG = negl(λ).

We then prove for (G′ + 1)-collision resistance based on Conjecture 8.1.

Let G′′ = G′ + 1. Recall that a clue is of the form (M, Z) ∈ ZG′×(n+ℓ)
t × ZI×G′

t . If a clue is detected
as pertinent by G′′ honestly recipients, then there exist G′′ id’s (id1, . . . , idG′′), such that for all i ∈ [G′′],

(⃗ai, b⃗i)← (idi × Z)×M, it holds that Pr[∀ i ∈ [G′′], PVW.Dec(ski, (⃗ai, b⃗i)) = 1ℓ] ≥ (2r+1
q)ℓ + p(λ) for some

non-neglgible function p(λ). Furthermore, this also means that there exists (c1, . . . , cG′) ∈ Zδ
q such that

(⃗aG′′ , b⃗G′′) =
∑G′

i=1 ci(⃗ai, b⃗i). At least one of the a⃗i’s is non-zero, since otherwise M = 0, which, due to the
aforementioned patch, would make Algorithm 3 reject this clue. Therefore, it breaks Lemma 8.2 and thus
Algorithm 3 is (G′ + 1)-collision resistance.

Remark 8.4. Conjecture 8.1 is actually stronger than what we need, as in our AGOMR scheme, the
adversary cannot output δ+1 clues that are linearly dependent with arbitrary coefficients. Instead, the linear
dependency is predetermined by all the ids and the random matrix Z. Although Z is randomly chosen, it is a
seed, and thus it works like a random oracle that the adversary needs to call. Therefore, a weaker conjecture
would claim that given certain id’s and a random oracle determining the linear dependency, the adversary
cannot generate pertinent clues according to that certain linear dependency with Pr > 2r+1

q + negl(λ).

Although there are exponentially many possible linear dependencies there (i.e., P choose G possibilities), a
PPT adversary may only be able to go through a polynomial amount of them. This weaker conjecture is
sufficient for us to prove the collision resistance for Algorithm 3. However, for the readability and simplicity
of the paper, we use this stronger conjecture. A possible clean change of underlying conjecture is left to
future work.

8.2 Fixed Group OMR

As mentioned, for FGOMR, we capture an even stronger security notion. Essentially, we require that as long
as two honest recipients are not in the same group, they should not be spammed at the same time except
with a small probability. Since there are at most G honest recipients in each group, this property is strictly
stronger than the property defined in Definition 8.1 even when δ = G+1 (which is the best security property
that can be achieved for AGOMR).

36

Definition 8.2 (DoS-resistant FGOMR). Let FGOMR be a Fixed GOMR scheme with error rates ϵn, ϵp and
group size upper bound G (as in Definition 3.4). An indicator with an indicator false negative rate ϵin ≤ ϵn
for FGOMR is a function b ← I(pp, x, c, {pkclue}, sk) on public parameter pp, message (x, c), the recipient’s
secret key sk, clue keys {pkclue} for all groups that include that recipient, that outputs b ∈ {0, 1}, such that:

• (Indicator completeness) For pp ← FGOMR.GenParams(1λ, ϵp, ϵn, G, P), any g ≤ G and any set Y ⊆
[P], |Y | = g, and any subset Y ′ ⊆ Y ; for honestly generated keys (ski, ·)← FGOMR.PersonalKeyGen(pp),
gPKsharei ← FGOMR.GroupKeyGenAux(pp, ski,Y), i ∈ Y , pkclue ← FGOMR.GroupKeyGen(pp, {gPKsharei}i∈Y),
for any payload x, and honestly generated clue c← FGOMR.GenClue(pp, pkclue,Y

′, x), it holds that for
i ∈ Y ′:

Pr[I(pp, x, c, {pkclue}, ski) = 1] ≥ 1− ϵin − negl(λ) .

• (Collision resistance) For any PPT adversary A, let pp ← GenParams(1λ, ϵp, ϵn, G, P), P = poly(λ);
with g, g′ ∈ [G], and any two subsets Y, Y ′ ⊆ [P] with |Y | = g, |Y ′| = g′; for honestly generated keys
(ski, ·)← FGOMR.PersonalKeyGen(pp),(sk′j , ·)← FGOMR.PersonalKeyGen(pp),
gPKsharei ← FGOMR.GroupKeyGenAux(pp, ski,Y) (i ∈ [g]),
gPKshare′j ← FGOMR.GroupKeyGenAux(pp, sk′j , Y

′) (j ∈ [g′]),
pkclue ← FGOMR.GroupKeyGen(pp, gPKshare1, . . . , gPKshareg),

pkclue
′ ← FGOMR.GroupKeyGen(pp, gPKshare′1, . . . , gPKshare

′
g′),

and for adversarially-generated (x, c) ← A(pp, {gPKsharei}i∈[g], {gPKshare′j}j∈[g′], pkclue, pkclue
′); for

any i ∈ [g], j ∈ [g′], let b ← I(pp, x, c, pkcluei, ski) and b′ ← I(pp, x, c, pk′cluej , sk
′
j), it holds that:

Pr[b = 1 ∧ b′ = 1] ≤ ϵp + negl(λ).

A Fixed GOMR scheme FGOMR is DoS-resistant for ϵn, ϵp, and G if there exists an indicator I with
an indicator false negative rate ϵin for FGOMR such that for any P = poly(λ), and any PPT adversary
A = (A1,A2), for pp ← FGOMR.GenParams(1λ, ϵp, ϵn, G, P), (ski, pkdetecti) ← FGOMR.PersonalKeyGen(pp)
for i ∈ [P]; adversarially generate state and groups (st, {Yj}j∈[W])← A1(pp) where Yj ⊂ [P], |Yj | ≤ G, for any
W = poly(λ); for all j ∈ [W], i ∈ Yj , gPKsharei,j ← FGOMR.GroupKeyGenAux(pp, ski, Yj), pkcluej ← FGOMR.

GroupKeyGen(pp, {gPKsharei}i∈Yj), and adversarially-generated board BB← A2(pp, {gPKsharei,j}j∈[W],i∈Yj
,

{pkcluej}j∈[W], st) where BB = ((x1, c1), . . . , (xN , cN)) with unique xi, for any 0 < k̄ ≤ N , for i ∈ [P], let

M ← Retrieve(D, pkdetectu, k̄), PL← Decode(M, sk):

• (DoS-completeness) Let k =
∑N

j=0 I(pp, xj , cj , {pkcluej}j∈[W],i∈Yj
, ski). Then either k > k̄ and PL =

overflow, or Pr[xj ∈ PL | I(pp, xj , cj , {pkcluej}j∈[W],i∈Yj
, ski) = 1] ≥ 1 − (ϵn − ϵin) − negl(λ) for all

j ∈ [N].

• (DoS-soundness) Pr[xj ∈ PL | I(pp, xj , cj , {pkcluej}j∈[W],i∈Yj
, ski) = 0] ≤ negl(λ) for all j ∈ [N].

Patched FGOMR1. Analogously to AGOMR3, to prevent trivial DoS attacks, we modify our FGOMR1.Retrieve
in Algorithm 5 to reject clues c = (⃗a∥α1∥ . . . ∥αℓ, b⃗, s) where a⃗ = 0⃗.

To prove the DoS-resistance of our FGOMR scheme, we first prove the following lemma:

Lemma 8.5. For any PPT adversary A, for Regev05 encryption with modulus q and plaintext space
Z2, and any 1 ≤ r ≤ q/4 and remaining parameters for which the semantic security holds, for i ∈ [2],

(ski, pki)← KeyGen(1λ), for ciphertexts (⃗a, b⃗i)i∈[2] ← A(pk1, pk2, r), it holds that:

Pr

[
|⟨⃗a, sk1⟩+ b1| ≤ r
∧ |⟨⃗a, sk2⟩+ b2| ≤ r

∧ a⃗ ̸= 0⃗

]
≤ 2r + 1

q
+ negl(λ)

assuming [LT22, Conj 8.4] holds when replacing n there with n− 1.

Proof sketch. Suppose that we have an adversary A that breaks this lemma, we construct an adversary A′

that breaks [LT22, Conj 8.4] as follows:

37

Given pk = (A, b⃗) ∈ Zw×(n−1)
q ×Zw×1

q and pk′ = (A′, b⃗′) ∈ Zw×(n−1)
q ×Zw×1

q and r, A′ generates α1, α2 ←$

Zw×1
q , s1, s2 ←$ Zq, and computes b⃗← b⃗+α1×s1 and b⃗′ ← b⃗′+α2×s2. A′ then randomly selects i ∈ [n−1],

and inserts αj∈{1,2} to the i-th column, i.e., A← A[0 : i]||α1||A[i : n− 1] and A′ ← A′[0 : i]||α2||A′[i : n− 1].

Then, A′ sends pk1 = (A, b⃗), pk2 = (A′, b⃗′), r to A. After getting (⃗a, b1, b2) back, check whether b1 +
a⃗[i]s1 = b2+ a⃗[i]s2. If so, let a⃗

′ = a⃗[0 : i−1]||⃗a[i+1 : n], output (⃗a, b1+ a⃗[i]s1). Otherwise, output Enc(pk, 0).
Note that trivially, pk1, pk2 are indistinguishable from two honestly generated PVW public keys, and it

holds that |⟨⃗a′, sk1⟩+ b1+ a⃗[i]s1| ≤ r and |⟨⃗a′, sk1⟩+ b2+ a⃗[i]s2| ≤ r with probability ≥ 2r+1
q + f(λ) for some

non-negligible function f . Since s1, s2 are all chosen randomly and independently and are masked by α1, α2

before given to A to calculate a⃗, we have Pr[b1 + a⃗[i]s1 = b2 + a⃗[i]s2] ≥ 1/q − negl(λ).
For the case where b1+a⃗[i]s1 ̸= b2+a⃗[i]s2 and (⃗a, b)← Enc(pk, 0), the probability that |⟨⃗a, sk⟩+b| ≤ r and

|⟨⃗a, sk⟩+ b| ≤ r is ≥ 2r+1
q − negl(λ). Therefore, we have that this A′ breaks the conjecture with probability

≥ 2r+1
q + f(λ)/q − negl(λ), where f(λ)/q is non-negligible.

This lemma can be generalized from Regev05 encryption to PVW encryption using reject sampling,
analogous to [LT22, lemma 8.5] as follows, which is then used to prove Theorem 8.7.

Lemma 8.6. For any PPT adversary A, for PVW encryption with modulus q and plaintext space Zℓ
2, and

r such that (2r+1
q)ℓ = poly(λ) and remaining parameters for which the semantic security holds, for i ∈ [2],

(ski, pki)← KeyGen(1λ), for ciphertext (⃗a, (⃗bi)i∈[2])← A(pk1, pk2, r), let m⃗i∈[2] ← sk⊺i a⃗+ b⃗i, it holds that

Pr
[
(∀k ∈ [ℓ] : |m1[k]| ≤ r ∧ |m2[k]| ≤ r) ∧ a⃗ ̸= 0⃗

]
≤
(
2r + 1

q

)ℓ

+ negl(λ) (1)

assuming [LT22, Conj 8.4] holds when replacing n there with n− 1.

Theorem 8.7. For any ϵp > 0, ϵn > 0, P = poly(λ), G = poly(λ), FGOMR1 in Algorithm 5 (patched as
above) is a DoS-resistant Fixed Group Oblivious Message Retrieval scheme, when instantiated with any
PRF f and random oracle h, assuming the hardness of Ring-LWE and [LT22, Conj 8.4]. Moreover when
instantiated with SRLC1 defined in [LT22, Section 6.3.1], FGOMR1 is also compact.

Proof sketch. The completeness, soundness, and compactness all follow in a straightforward way. We prove
the DoS resistant by contradiction.

Notice that since a group only contains up to G recipients, if the adversary wants the clue (⃗a, α1, . . . , αℓ, β,
s) to be detected as pertinent to G+ 1 honest recipients, it should be detected as pertinent by recipients in
two different groups. Therefore, for two different honest recipients with auxiliary keys dk, dk′ in two different

groups, let Z ←s ZL×G′

t , we can generate ciphertext (⃗a, b⃗1 ← b⃗ − ⟨dk × Z,α1⟩|| . . . ||⟨dk × Z,αℓ⟩, b⃗2 ←
b⃗− ⟨dk′ × Z,α1⟩|| . . . ||⟨dk′ × Z,αℓ⟩. This breaks Lemma 8.6 and thus FGOMR1 is DoS resistant.

9 Performance Evaluation

9.1 Methodology

We implemented our optized OMR scheme OMR-OPT in Section 5.3, our AGOMR schemes AGOMR1,
AGOMR2, AGOMR3 in Section 6, and our FGOMR schemes FGOMR1, FGOMR2 in Section 7, in a C++ library
(released as open source). We used the OMR library [LT22] as our base implementation, the PALISADE
library [PAL21] for PVW encryption, and the SEAL library [Mic20] with Intel-HEXL acceleration [BKS+21]
for the BFV scheme. We benchmarked these schemes on several parameter settings on a Google Compute
Cloud e2-standard-2 instance type, 8GB RAM (unless otherwise noted).

Parameters. For comparison to prior works, we reuse all the parameters from [LT22] (except for N): k̄ =
50, ϵp = 2−21, ϵn = 2−30, PVW.(n,w, ℓ, q, σ) = (450, 16000, 4, 65537, 1.3) and BFV.(D,Q, t) = (215,∼ 2850,

38

Ad-hoc GOMR Fixed GOMR
OMRp2

§6.1 + [LT22]
OMR-OPT

§6.1 +Thm 5.1
AGOMR1
Remark 6.1

AGOMR2
Remark 6.2

AGOMR3
Thm 6.4

FGOMR1
Thm 7.3

FGOMR2
Remark 7.4

Detector preprocessing
time (sec/msg)

N/A N/A N/A 0.0066 0.0232 0.0041 N/A

Detector computation
time (sec/msg)

5.205 1.844 0.117 0.168 0.181 0.123 0.119

Sender computation time (sec/msg) 0.131 0.131 0.136 0.132 0.136 0.020 0.020
Clue size (bytes/msg) 11472 11472 11472 15312 15312 1108 1092

Clue key size (bytes)
133K per
recipient

133K per
recipient

133K per
recipient

133K per
recipient

133K per
recipient

1.56M per
group

1.56M per
group

Detection key size (bytes) 137M 139M 139M 143M 143M 142M 139M
Digest size (bytes/msg) 35
Recipient time (sec) 0.026

Table 3: Comparison of cost metrics, given N = 215, k = k̄ = 50, G = 15, G′ = 19, I = L = 81. Costs are
per message, per recipient, except for the preprocessing time, which can be shared by ≥ 1 recipients. For
the functionality differences, see Table 1 for details.

65537)11 ; payload size is 612 bytes. We change N from 500000 to 32768 as for any N > 32768, all the
benchmarked constructions (including the prior work) simply repeat the scheme ⌈ N

32768⌉ times.

Application parameters. We fix P = 260, G′ = G + 4, 12 ϵDI ≤ 2−128 (defined in Section 6.2 13). For
AGOMR3,AGOMR2,FGOMR1,FGOMR2, we set I = L = max(G′, 8), such that id and dk are unique with
overwhelming probability. For AGOMR1, we set D = Z2127−1 for the same reason and for that 2127 − 1 is a
prime number (such that an inverse exists for any field element).

9.2 Evaluation Results

Representative costs. Table 3 summarizes the main cost metrics of all our schemes and the baseline, for
the parameters above for functionality and asymptotic costs, see Table 1. .

We see that for all our GOMR schemes, the detector online time is at least an order of magnitude faster
than the baseline scheme (OMRp2[LT22] + §6.1). FGOMR schemes have better sender time and clue size,
though the clue key size is larger (since it represents the entire group rather than a single recipient). AGOMR
has a comparable sender time and clue size to the baseline. The detection key size, digest size, and recipient
runtime are all relatively similar across all schemes.

Furthermore, our OMR-OPT shows an improvement of ∼ 2.5x faster detector time standalone as an OMR
scheme.

Costs vs. group size G. Fig. 9 shows how the detector runtime, sender time, and clue size scale with the
number of recipients per group. (Other metrics are independent of G, and thus given by Table 3.) OMR-OPT
has roughly the same behavior as OMRp2, so we leave it out of the comparison for better visualization. For
readability, we merge the schemes that have very minor differences (< 5%).

We benchmarked group sizes {2, 4, 6, 8, 10, 12, 15, 25, 45, 65, 85, 105, 125, 150, 175, 200, 225, 250, 275, 300,
325, 350, 375, 400}. The corresponding id sizes for AGOMR, or the dk size for FGOMR, are {19, 28, 38, 47, 57,
66, 81, 128, 223, 318, 413, 508, 603, 722, 841, 959, 1078, 1197, 1316, 1434, 1553, 1672, 1791, 1909}. Due to mem-
ory constraints (simply because every clue is already too large to store in memory for a large group size),

11We set BFV.Q according to the homomorphic multiplicative depth in each scheme, for 128-bit security: log(Q)≈789
in OMRp2, log(Q)≈810 in OMR-OPT,AGOMR4,AGOMR1,FGOMR1,FGOMR2, log(Q)≈838 in AGOMR2, and log(Q)≈868 in
AGOMR3.

12This G′ guarantees that for any G, we have ϵDS ≈ 2−48 (defined in Section 6.2 which is the probability that the matrix
calculated by multiplying a full-rank matrix and a random matrix is not full rank). In the case that all the extended id’s (or
dk’s) are linearly independent, the probability that our GOMR schemes fail to send a message is ϵDS ≈ 2−48. However, this
can be fixed by performing reject sampling (i.e., resample a Z until a full rank Z is found), at the cost of a minor leakage: given
Z, there might exist some combination of recipients that the message cannot be sent.

13ϵDI is the probability for there to exist any combination of G id’s such that their extended version forms a matrix with
rank < G.

39

OMR, AGOMR2, and AGOMR3 with group size ≥ 45 use a GCP e8-highmem-64 instance, 64GB RAM (with
a 128GB balanced disk). Other schemes and other group sizes still use the e2-standard-2 instance type,
8GB RAM. Note that the runtime of the instance e8-highmem-64 is roughly the same as e2-standard-2
(about 2.5% faster) for the same schemes with the same group sizes, and thus it is still very continuous in
the plot and hard to spot the difference.

As BFV uses power-of-two cyclotomic rings, the underlying ring dimension is a power-of-two. Thus,
when doing matrix multiplication between matrices of sizes (a× b) and (b× c), for better efficiency, we first
round up a, b, c to the nearest power of two. The round-ups in our schemes cause the jumps in Fig. 9.

All schemes have two to three orders of magnitude faster detector runtime compared to the baseline.
The detector time of our main schemes AGOMR3,AGOMR2 increases most rapidly among all, because of the
large amount of matrix multiplications they need to perform as shown in Table 1. Note that the runtime of
our GOMR schemes are calculated as Tp/10 + To where Tp is the detector preprocessing time, and To is the
detector online computation time listed in Table 3. In other words, the runtime is computed based on ten
recipients sharing the preprocessing time. If the preprocessing time is not amortized over multiple recipients
(as in Table 3), for most of our schemes and parameters, the preprocessing will only take < 5% of the total
time, and in the worst case (AGOMR, G = 400) the total runtime of the detector will be only less than two
times larger. On the other hand, to further reduce the amortized cost, preprocessing can of course be shared
by more recipients.

The clue size for our FGOMR scheme is smaller and grows more gently compared to AGOMR and the
baseline. The sender time, in our schemes, grows super-linearly with the group size (due to solving a linear
system of equations), compared to linear growth for the baseline; but is still less than a second.

10 Applications

10.1 Secure Group Messaging

The most direct motivation for GOMR is secure group messaging. As discussed in Section 1, Ad-hoc GOMR
suits groups of arbitrary recipients chosen on the fly, whereas Fixed GOMR suits applications with well-
defined groups such as group chats and mailing lists.

Concrete costs. We use the same parameters as benchmarked in Section 9 (in the absence of detailed data
about deployed systems). For a GCP e2-standard-2 instance (with a 32GB balanced disk), the average
cost is ∼ $1.89 · 10−5/sec 14. Thus, for 32768 messages, and group size G = 15, our GOMR schemes schemes
cost range from $0.07 to $0.11, while if the baseline OMR-OPT from [LT22] costs ∼ $3.2.

Varying group size. Group size varies between messages. The group size parameter G can be adaptively
changed between messages (at a cost of leaking the group size), or groups can be padded to some standard
sizes or randomized sizes (to minimize information leakage but (at a cost in efficiency). This tradeoff is
information-theoretically inherent.

10.2 Private Blockchains

Transaction Batching. In many blockchain protocols, it is cost-effective to aggregate multiple transactions
into a single one with multiple recipients. This is a natural application for AGOMR, especially with the
multi-payload extension of Section 6.3 that allows each recipient to retrieve just the pertinent portion.

Private Bitcoin. Concretely, in Bitcoin, transactions with 2 recipients consist of ∼74% of all transactions,
and transactions with more than 2 recipients take ∼10% of all transactions. If Bitcoin became privacy-
preserving, using our AGOMR scheme AGOMR4 instead of directly using OMR scheme instantiated with
our optimized OMR scheme OMR-OPT results in a ∼1.5x speedup overall (∼ 4x speedup if instantiated with
OMRp2 in [LT22]), at the cost of clue size grown by ∼3x. Note that in the estimation, we do not hide the
group size (i.e., group size of each transaction is still public and vary by transactions).

14Estimate from https://cloud.google.com/products/calculator. Communication cost is negligible: < $10−9/msg egress.

40

https://cloud.google.com/products/calculator

(a) Clue size vs. #recipients/group (b) Sender runtime vs. #recipients/group

(c) Detector runtime vs. #recipients/group

Figure 9: Figures show how clue size, sender time, and detector time scale with G the number of recipients
in a group. Other parameters are as in Table 3.

Blockchain Auditing. In privacy-preserving cryptocurrencies (like Zcash or Monero), a user may want
to share the transaction information with service providers such accountants or auditors, or with pertinent
authorities. Currently, privacy-preserving cryptocurrencies use a viewing key to allow other users to view
the transactions. This entails extra detection costs: every viewing-key holder needs to separately look for
transactions in every account they can view. For example, using OMR, an accountant would need to perform
a separate for OMR retrieval for each of their hundreds of client.

This can be improved using FGOMR, with groups corresponding to account owners plus their authorized
viewers. Each such group is represented by a single FGOMR group clue key, and senders are instructed (at
the protocol level) to use this clue key when transacting with this account. Subsequently, each party needs
to perform retrievals only for their own key, yet will receive all messages addressed to all the groups (e.g.,
accounting clients) of which they are members.

A limitation of this approach is that to grant or revoke view keys, the group clue key needs to be
regenerated and republished.

41

Acknowledgements

We are grateful to Xifan Yu for discussing the probability bound on id length for maliciously crafted groups
in Section 6.

This material is based upon work supported by Algorand Centres of Excellence programme managed
by Algorand Foundation; DARPA under Contract No. HR001120C0085; the U.S. Department of Energy
(DOE), Office of Science, Office of Advanced Scientific Computing Research under award number DE-SC-
0001234; JPMorgan Chase & Co; LexisNexis Risk Solutions; and Mastercard Center for Inclusive Growth.
Any opinions, views, findings and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of Algorand Foundation, the United States Government,
DARPA, DOE, JPMorgan Chase & Co. or its affiliates, or other sponsors.

42

References

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, pages 169–203, 2015.

[BBKS07] Mihir Bellare, Alexandra Boldyreva, Kaoru Kurosawa, and Jessica Staddon. Multirecipient
encryption schemes: How to save on bandwidth and computation without sacrificing security.
IEEE Transactions on Information Theory, 53(11):3927–3943, 2007. doi:10.1109/TIT.2007.
907471.

[BBS02] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in multi-recipient
encryption schemeas. In Yvo G. Desmedt, editor, Public Key Cryptography — PKC 2003, pages
85–99, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[BCG+20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
Zexe: Enabling decentralized private computation. In 2020 IEEE S&P (SP), pages 947–964,
2020.

[BEM+17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David
Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. Prochlo: Strong
privacy for analytics in the crowd. In SOSP, pages 441–459, 2017.

[BJT18] Suzie Brown, Oliver Johnson, and Andrea Tassi. Reliability of broadcast communications under
sparse random linear network coding. IEEE Transactions on Vehicular Technology, 67(5):4677–
4682, 2018.

[BKS+21] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, Vinodh Gopal, et al. Intel HEXL
(release 1.2). https://github.com/intel/hexl, September 2021.

[BLMG21] Gabrielle Beck, Julia Len, Ian Miers, and Matthew Green. Fuzzy message detection. The ACM
Conference on Computer and Communications Security (CCS) 2021, 2021.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In CRYPTO 2012, LNCS. Springer, August 19–23, 2012.

[BSCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE S&P, pages 459–474, 2014.

[BSW09] John Bethencourt, Dawn Xiaodong Song, and Brent Waters. New techniques for private stream
searching. ACM Trans. Inf. Syst. Secur., 12:16:1–16:32, 2009.

[CGBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging
system handling millions of users. In 2015 IEEE S&P, pages 321–338, 2015.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information re-
trieval. In 36th FOCS, pages 41–50, Milwaukee, Wisconsin, October 23–25, 1995. IEEE Com-
puter Society Press. doi:10.1109/SFCS.1995.492461.

[CGN98] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords, 1998.
Appeared in the THEORY OF CRYPTOGRAPHY LIBRARY and has been included in the
ePrint Archive. benny@cs.technion.ac.il 10500 received February 3rd, 1998. URL: http://
eprint.iacr.org/1998/003.

[DD07] George Danezis and Claudia Diaz. Space-efficient private search with applications to rateless
codes. In FC’07, page 148–162. Springer, 2007.

43

https://doi.org/10.1109/TIT.2007.907471
https://doi.org/10.1109/TIT.2007.907471
https://github.com/intel/hexl
https://doi.org/10.1109/SFCS.1995.492461
http://eprint.iacr.org/1998/003
http://eprint.iacr.org/1998/003

[FLS22] Nils Fleischhacker, Kasper Green Larsen, and Mark Simkin. How to compress encrypted data.
Cryptology ePrint Archive, Paper 2022/1413, 2022. https://eprint.iacr.org/2022/1413.
URL: https://eprint.iacr.org/2022/1413.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor, Advances in
Cryptology — CRYPTO’ 93, pages 480–491, Berlin, Heidelberg, 1994. Springer Berlin Heidel-
berg.

[FR13] Matthieu Finiasz and Kannan Ramchandran. Private stream search at almost the same com-
munication cost as a regular search. In Lars R. Knudsen and Huapeng Wu, editors, Selected
Areas in Cryptography, pages 372–389, Berlin, Heidelberg, 2013. Springer.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144, 2012. https://ia.cr/2012/144.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium on
Theory of Computing, STOC ’09, page 169–178. ACM, 2009.

[HBHW] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash Protocol Specification
Version 2021.2.14. https://github.com/zcash/zips/blob/master/protocol/protocol.

pdf.

[KC16] Amjad Saeed Khan and Ioannis Chatzigeorgiou. Improved bounds on the decoding failure
probability of network coding over multi-source multi-relay networks. IEEE Communications
Letters, 20(10):2035–2038, 2016.

[KS07] Tali Kaufman and Madhu Sudan. Sparse random linear codes are locally decodable and testable.
In FOCS’07, 2007.

[Kur02] Kaoru Kurosawa. Multi-recipient public-key encryption with shortened ciphertext. In David
Naccache and Pascal Paillier, editors, Public Key Cryptography, pages 48–63, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

[Lew21] Sarah Jamie Lewis. Discreet log #1: Anonymity, bandwidth and Fuzzytags, Feb 2021. URL:
https://openprivacy.ca/discreet-log/01-anonymity-bandwidth-and-fuzzytags/.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. J. ACM, 2013.

[LT22] Zeyu Liu and Eran Tromer. Oblivious message retrieval. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, pages 753–783, Cham, 2022.
Springer Nature Switzerland. Full version: Cryptology ePrint Archive https://ia.cr/2021/

1256, 2021; internal citations follow the latter’s numbering.

[Lun18] Joshua Lund. Technology preview: Sealed sender for signal. https://signal.org/blog/

sealed-sender/, Oct. 2018.

[Mic20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020. Mi-
crosoft Research, Redmond, WA.

[MSS+22] Varun Madathil, Alessandra Scafuro, István András Seres, Omer Shlomovits, and Denis Var-
lakov. Private signaling. USENIX Security 2022, 2022.

[Noe15] Shen Noether. Ring signature confidential transactions for monero. IACR Cryptology ePrint
Archive, 2015:1098, 2015.

[OS05] Rafail Ostrovsky and William E. Skeith. Private searching on streaming data. In CRYPTO,
2005.

44

https://eprint.iacr.org/2022/1413
https://eprint.iacr.org/2022/1413
https://ia.cr/2012/144
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://openprivacy.ca/discreet-log/01-anonymity-bandwidth-and-fuzzytags/
https://ia.cr/2021/1256
https://ia.cr/2021/1256
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://github.com/Microsoft/SEAL

[PAL21] PALISADE lattice cryptography library (release 11.2). https://palisade-crypto.org/, June
2021.

[Pla18] Rachel Player. Parameter selection in lattice-based cryptography. PhD thesis, Royal Holloway,
University of London, 2018.

[PPS14] Alexandre Pinto, Bertram Poettering, and Jacob C.N. Schuldt. Multi-recipient encryption,
revisited. In Proceedings of the 9th ACM Symposium on Information, Computer and Commu-
nications Security, ASIA CCS ’14, page 229–238, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2590296.2590329.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In CRYPTO 2008, pages 554–571. Springer, 2008.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, pages 169–179, 1978.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, September 2009.

[SGGC14a] Daniel Salmond, Alex Grant, Ian Grivell, and Terence Chan. On the rank of random matrices
over finite fields. arXiv preprint arXiv:1404.3250, 2014.

[SGGC14b] Daniel Salmond, Alex J. Grant, Ian Grivell, and Terence Chan. On the rank of random matrices
over finite fields. CoRR, 2014. URL: http://arxiv.org/abs/1404.3250, arXiv:1404.3250.

[SPB21] István András Seres, Balázs Pejó, and Péter Burcsi. The effect of false positives: Why fuzzy
message detection leads to fuzzy privacy guarantees? Cryptology ePrint Archive, Report
2021/1180, 2021. https://ia.cr/2021/1180.

[SPB22] István András Seres, Balázs Pejó, and Péter Burcsi. The effect of false positives: Why fuzzy
message detection leads to fuzzy privacy guarantees? In Ittay Eyal and Juan Garay, editors,
Financial Cryptography and Data Security, pages 123–148, Cham, 2022. Springer International
Publishing.

[WCGFJ12] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent in
numbers: Making strong anonymity scale. In OSDI 12, pages 179–182. USENIX, October
2012.

A Strengthed Privacy Definition of FGOMR

We give the strengthed privacy definition of FGOMR in Fig. 10 as discussed in Theorem 3.3.

B Sparse Random Linear Coding (SRLC)

Everything below is from [LT22, Section 6.3.1]. We copy it here for easier reference in our construction.
Tightly analyzing SRLC parameters is a longstanding, much-studied open problem [KS07, KC16, BJT18].

We proceed to define a notion of SRLC scheme, which can be used as a black box in our construction, and then
specify two concrete schemes. SRLC1 has clean analysis using known bounds, and suffices for our asymptotic
results. SRLC2 is simpler, faster, and smaller, but relies on empirical estimation for completeness; it is only
used in the compression step on the detector side in all (G)OMR schemes.

Definition B.1. An SRLC scheme consists of two algorithms

45

https://palisade-crypto.org/
https://doi.org/10.1145/2590296.2590329
http://arxiv.org/abs/1404.3250
http://arxiv.org/abs/1404.3250
https://ia.cr/2021/1180

Figure 10: Computational Privacy game for Fixed Group OMR with semi-maliciously chosen secret keys

• (ppSRLC,m)← GenParams(1λ, κ, ϵF, t): takes as input a security parameter λ, κ (number of columns),
ϵF (defective rate), and a prime number t, and outputs an SRLC public parameter ppSRLC.

• {(j, wj)} ← GenWeights(ppSRLC): takes as input an SRLC public parameter ppSRLC, and outputs a set
of indices and weights {(j, wj)} where j ∈ [m], wj ∈ Zt \ {0}, representing a sparse vector of length m.

that satisfy the following:

• (Completeness) For any κ ∈ Z+, and 0 < ϵF < 1, let (ppSRLC,m) ← GenParams(1λ, κ, ϵF, t), and
(Si ← GenWeights(ppSRLC))i∈[κ]. Then the matrix A ∈ Zm×κ

t defined by

Ai,j =

{
wj if (j, wj) ∈ Si

0 otherwise

fulfills (over the randomness of the algorithms):

Pr[rank(A) = κ] ≥ 1− ϵF − negl(λ) .

We construct two different SRLC algorithms as follows. The first SRLC algorithm SRLC1, given in Algo-
rithm 6, is meant for ease of analysis. GenWeights outputs set of indices and weights such that the resulting
matrix has independently-drawn entries, with a density of nonzeros set by GenParams.

Lemma B.1. SRLC1 in Algorithm 6 is an SRLC scheme for any κ and ϵF.

46

Algorithm 6 SRLC1: Analytically-Bounded SRLC

1: procedure SRLC1.GenParams(1λ, κ, ϵF, t)
2: Find the smallest m such that 1−

∏κ
i=1(1− (1− 3

κ)
m−i+1) ≤ ϵF and m ≥ 6

3: return (m, ppSRLC = (γ = 3m/κ, κ, ϵF, t, λ)) ▷ γ is the expected number of nonzeros

4: procedure SRLC1.GenWeights(ppSRLC = (γ = 3m/κ, κ, ϵF, t, λ))
5: γ′ ← B(m, γ/m) ▷ binomially-distributed number of nonzeros
6: S ← {}, J ← {}
7: for i = 1 to γ′ do
8: j ←$ [m] \ J ▷ draw a new index
9: wj ←$ Zt \ {0} ▷ draw a nonzero weight

10: S ← S ∪ {(j, wj)}
11: return S

Algorithm 7 SRLC2: Empirically Bounded SRLC

1: procedure TestRank(γ,m, λ, ϵF, κ, t)
2: Ctr← 0
3: for i = 1 to log(λ) log log(λ)ϵ−1

F do
4: Sample (Si)i∈[κ] where Si ← SRLC2.GenWeights(γ, ppSRLC = (γ,m, ϵF, t, λ))

5: Let A ∈ Zm×κ
t be

Ai,j =

{
wj if (j, wj) ∈ Si

0 otherwise

6: If rank(A) < κ: return False

7: return True
8: procedure SRLC2.GenParams(1λ, κ, ϵF, t)
9: γ ← 3

10: while True do
11: for m = κ, . . . , κ · γ/2 do
12: if TestRank(γ,m, λ, ϵF, κ, t) = True then
13: return (m, ppSRLC = (γ, κ, ϵF, t, λ))

14: γ ← γ + 1

15: procedure SRLC2.GenWeights(ppSRLC = (γ, κ, ϵF, t, λ))
16: S ← {}, J ← {}
17: for i = 1 to γ do
18: j ←$ [m] \ J ▷ draw a new index
19: wj ←$ Zt \ {0} ▷ draw a nonzero weight
20: S ← S ∪ {(j, wj)}
21: return S

Proof. A matrix A ∈ Zm×κ
t , constructed as in Definition B.1 using SRLC1, has i.i.d. entries that are nonzero

with probability γ/m, and uniform when nonzero. The probability that such A has less than full rank κ is
upper bounded by 1−

∏κ
i=1(1−βm−i+1) as shown in [KC16, Lemma 1], where β = max(1−γ/m, γ/(m(t−1))),

and since we fix γ/m = 3/κ, β is always 1 − γ/m for m ≥ 6 because t ≥ 2. Line 2 thus bounds the failure
probability by ϵF. Therefore, SRLC1 satisfies the completeness requirement of SRLC.

Complexity. SRLC1 generates sparse vectors of length m = O(κ log2 κ log(ϵF)), as shown by the following
lemma.

47

Lemma B.2. The value m in SRLC1 chosen by line 2 in Algorithm 6 is m = O(κ log2(κ) log(ϵ−1
F)), and the

value γ chosen by line 3 in Algorithm 6 is m = O(log2(κ) log(ϵ−1
F))

Proof. The expression used to choose m can be bounded as follows (using 0 < ϵF < 1 and 1 < κ):

1−
κ∏

i=1

(1− (1− 3

κ
)m−i+1)

≤ 1−
κ∏

i=1

(1− (1− 3

κ
)m−κ+1)

≤ 1− (1− (1− 3

κ
)m−κ+1)κ

≤ 1− (1− κ(1− 3

κ
)m−κ+1)

≤ κ(1− 3

κ
)m−κ

Therefore, κ(1− 3
κ)

m−κ ≤ ϵ suffices for the expression in 2 to be fulfilled.
Furthermore:

κ(1− 3

κ
)m−κ ≤ ϵF

⇔ log(κ(1− 3

κ
)m−κ) ≤ log(ϵF)

⇔ log(κ) + (m− κ) log(1− 3

κ
) ≤ log(ϵF)

⇔ (m− κ) log(1− 3

κ
) ≤ log(ϵF/κ)

⇔ m− κ ≥ log(ϵF/κ)

log(1− 3
κ)

⇔ m ≥ log(ϵF/κ)

log(1− 3
κ)

+ κ =
log(ϵ−1κ)

− log(1− 3
κ)

+ κ

Since
log(ϵ−1

F κ)

− log(1− 3
κ)

= O(κ log2(κ) log(ϵ−1
F)) and we choose the smallest m in line 2, we indeed get m =

O(κ log2(κ) log(ϵ−1
F)). By line 3, γ = 3m/κ = O(log2(κ) log(ϵ−1

F)).

The second SRLC algorithm SRLC2, given in Algorithm 7, has simpler GenWeights which just outputs a
fixed number γ of nonzero elements (with uniformly-random nonzero weight each). However, its completeness
relies γ and m being chosen by an empirical estimate (encapsulated within GenParams), since adequately
tight analytical bounds are not known.

Lemma B.3. SRLC2 in Algorithm 7 is an SRLC scheme for any κ and ϵF.

Proof. Let pγ,m denote the probability that a matrix generated as in Definition B.1 is not full-rank, for
given γ,m. For SRLC completeness, it suffices to prove that if pγ,m > ϵF, then with probability 1− negl(λ),
TestRank will output False and thus GenParams will not use output these γ,m.

The probability of passing TestRank is the probability that ϵF log(λ) log log(λ) independent pγ,m-biased
Bernoulli tests are 0. Thus, if pγ,m > ϵF then the probability of passing is negligible: (1−pγ,m)n < (1−ϵF)n =

((1− ϵF)
ϵ−1
F)log(λ) log log(λ) = O(e− log(λ) log log(λ)) = O(λ− log log(λ)) = negl(λ).

It follows that the output of GenParams fulfills pγ,m ≤ ϵF + negl(λ).15

15Assuming GenParams runs in time poly(λ). We do not prove this directly, but GenParams.SRLC2 will be empirically executed
honestly, and the security model assumes that it is infeasible even for the adversary to run for longer than poly(λ)).

48

	Abstract
	Contents
	Introduction
	Our Contribution
	Related Work
	Private Retrieval
	Multi-Recipient Encryption and Broadcast Encryption

	Overview
	Model Overview
	Summary and Comparisons
	Main Techniques

	Defining Group Oblivious Message Retrieval
	Ad-hoc Group OMR
	Fixed Group OMR

	Preliminaries
	Notation
	PVW Encryption
	Fully Homomorphic Encryption

	Optimization to Prior Work
	The Original OMR Construction
	Optimizing PVUnpack
	Optimizing OMRp2

	Ad-hoc Group OMR
	Trivial Solution
	Improved Ad-hoc Group OMR
	Extension to Distinct Payloads

	Fixed Group OMR
	Multi-Recipient Encryption
	Naive Solutions
	Efficient Key-private MRE
	Applying MRE to FGOMR
	Applying FGOMR to AGOMR

	DoS Resistance
	Ad-hoc Group OMR
	Fixed Group OMR

	Performance Evaluation
	Methodology
	Evaluation Results

	Applications
	Secure Group Messaging
	Private Blockchains

	Acknowledgements
	References
	Strengthed Privacy Definition of FGOMR
	Sparse Random Linear Coding (SRLC)

