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Abstract. POSEIDON is a hash function proposed by Grassi et al. in the USENIX
Security ’21 conference. Due to its impressive efficiency and low arithmetic complexity
it has garnered the attention of designers of integrity-proof systems such as SNARKS,
STARKS, and Bulletproofs. In this work, we show some caveats in Poseidon’s security
argument. Most notably, we extend on previous work by Sauer and quantify the rate
at which the degree of regularity increases as a function of full and partial rounds. We
observe that this degree grows slower than originally assumed, suggesting that there
are cases where the recommended number of rounds is insufficient to meet claimed
security.
The findings presented in this paper are asymptotic in nature and do not affect all
parameter sets equally. As a proof of concept, we present a full attack for an instance
at the 1024-bit security level. We present two more parameter sets at the 512- and
384-bit security levels where the original security argument does not hold, but for
which we were not able to demonstrate a full attack due to other aspects of the
design. We were not able to find parameter sets in the 128- and 256-bit levels that
are vulnerable.
Keywords: POSEIDON · Hash functions · Zero-Knowledge proof systems · Gröbner
basis attacks

1 Introduction
Arithmetization-oriented primitives are highly favored for use in advanced cryptographic
protocols, such as Zero-Knowledge (ZK) proofs, Multiparty Computation (MPC) proto-
cols, and Fully Homomorphic Encryption (FHE) protocols. Among these primitives is
POSEIDON[GKK+19], an efficient hash function constructed by employing the POSEIDONπ

permutation in a sponge construction. POSEIDONπ is an SP-network based on the HADES
design strategy[GLR+20] and operates over the finite field Fp for a prime p.

POSEIDON is claimed to resist statistical and algebraic attacks in the literature. In
most cases, statistical attacks do not pose a significant threat to arithmetic-oriented hash
functions due to the large finite fields they operate on. Therefore, designers and attackers
focus on algebraic attacks when analyzing the security of these designs. The security of
POSEIDON is analyzed against four different types of algebraic attacks: Interpolations
attacks [JK97], Gröbner basis attacks [CLO07], Higher-Order differential attacks [Knu95],
and Zero-Sum partitions attacks [BCC10], and Gröbner basis attacks are considered
to be among the most promising algebraic attacks against arithmetic-oriented designs
[ACG+19]. The primary objective of our research is to conduct a thorough security analysis
of POSEIDON in the context of Gröber basis attacks, specifically with regard to preimages
resistance.

We present a Gröbner basis attack and show that the required number of rounds to en-
sure preimage resistance is underestimated. Two reasons contribute to this underestimation.

mailto:tomer@cryptomeria.tech
mailto:t.buschman@student.tue.nl
mailto:m.mahzoun@tue.nl


2 Algebraic cryptanalysis of POSEIDON

Firstly, the degree of regularity was assumed to be the same as Macaulay bound[Mac02],
which we show to be inaccurate. Secondly, it was believed that partial rounds provide the
same security resistance against algebraic attacks as full rounds. Partial rounds were used
in previous attacks against POSEIDON [BCD+20, KR20] and the security argument of
POSEIDON was updated accordingly. We demonstrate that in cases where the state size
is larger than two, partial rounds offer significantly less security against Gröbner basis
attacks than full rounds.

In addition to the proposed Gröbner basis attack against POSEIDON, we conducted
a comprehensive study to analyze the security argument presented for POSEIDON’s
resistance to algebraic attacks. Our rigorous analysis revealed three distinct flaws in these
arguments, each of which has implications for the required number of rounds needed
to ensure POSEIDON’s security against algebraic attacks. First, we show that is a
transcription error in the security argument against Gröbner basis attack in the full round
setting. Second, the logical reasoning of the security argument against the Gröbner basis
attack is not sound. Third, there exists an error in the symbolic computation of bounds in
the security argument that undermines the resistance of POSEIODN.

Structure of the paper. In Section 2, the notations used throughout the paper
are introduced and an overview of POSEIDON’s design is provided. In Section 3, the
security claims against statistical and algebraic attacks are presented, and the number of
required rounds for arbitrary parameters to ensure security is discussed. In Section 4, a
Gröbner basis attack is proposed and vulnerable instances are demonstrated which shows
the efficacy of the proposed attack by breaking instances of the POSEIDON hash function.
In Section 5, flaws in the security argument of [GKK+19] are investigated, and their impact
on the security of POSEIDON is discussed. Finally, in Section 6, the concluding remarks
on our findings and their implications for the security of POSEIDON in addition t the
limitations of our work and suggested future research directions are discussed.

2 Preliminaries
2.1 Notations
POSEIDON hash function operates on the prime field Fp = GF (p). We define λ as the
security parameter, and [a, b] = {a, . . . , b}. Vectors are denoted by bold capital letters
such as X, Y, Z, . . . and the elements of the vector X are denoted by (x1, . . . , xn). The
MDS matrix used in POSEIDON is denoted by M where Mi,j is the jth element in the
ith row.

2.2 Sponge construction
Sponge construction [BDPVA08] is a mode of operation used to create sponge functions
with variable-length inputs and outputs using a fixed-length permutation and padding
rule. Sponge functions are widely used in cryptography and can be utilized for many
cryptographic primitives, including hash functions and stream ciphers. Let f : K → K
be a fixed-length transformation and let P be a padding function that transforms an
arbitrary-length input message M ∈ F∗

p into a sequence of χ blocks of length r, where r is
the rate of the sponge function. The sponge function F with the input M, generates the
output H = H1, . . . , Hχ′ , where for all 1 ≤ i ≤ χ′ , Hi ∈ Fr

p. The sponge function works
as follows:

1. Let S be the state of the sponge function of length t = r + c, where r is the rate of
the sponge and c is the capacity of the sponge.

2. The state S is initialized to (0, . . . , 0).
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Figure 1: A sponge function with rate r, capacity c, and internal permutation f .

3. Absorbing phase: The padded message M is split into χ blocks M1, M2, . . . , Mχ of
length r. For each i ∈ 1, 2, . . . , χ, the Mi is added to the first r blocks of S and the
function f is applied on S.

S = f(S + Mi)

4. Squeezing phase: once all blocks of the padded message have been absorbed, the
sponge function enters the squeezing phase. In this phase, the function outputs
blocks H1, . . . , Hχ′ of length r and update internal state S by applying the function
f until enough output are produced.

In Figure 1, the construction of the sponge function is illustrated.
Assuming that f is computationally indistinguishable from a random permutation, a

sponge function with capacity c offers 2c/2 bits of collision and preimage resistance[BDPVA08].

2.3 POSEIDON hash function description
POSEIDON: F∗

p → (Fr
p)χ′ is a hash function operating over Fp with output of χ′ blocks of

length r. It is constructed using the POSEIDONπ permutation in the sponge construction
with rate r and capacity c. POSEIDONπ is an SP-Network with state size of t and consists
of R = RF + RP rounds, where RF = Rf + Rf rounds are full rounds with t S-boxes,
and RP rounds are partial rounds with only one S-box applied to the first element. The
POSEIDONπ permutation is illustrated in Figure 2 and works as follows:

1. Add round constants: ARCC : Ft
p → Ft

p, ARCC(X) = X + C.
2. Substitution layer: Sα : Fp → Fp, Sα(x) = xα, where the sbox is applied to the first

element (in partial rounds), or all elements of the state (in full rounds).
3. Linear layer: LM : Fp → Fp, LM(X) = M · X⊺ where M is a MDS matrix.

POSEIDON offers two types of sboxes:

1. S(x) = xα, where α is an odd integer,

2. S(x) = x−1.

We study the case where S(x) = xα in this paper.
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Figure 2: Construction of POSEIDONπ permutation.

3 Security claim
The analysis of POSEIDON’s security involves evaluating the system’s vulnerability to
two categories of attacks, namely statistical attacks and algebraic attacks. The authors
established a constraint on the secure number of rounds R = RF + RP and the desired
security level λ by ensuring that none of the attacks can be executed with a complexity of
less than λ steps, thereby ensuring the system’s resilience against potential attacks. In
addition to this, the authors incorporated a security margin to minimize the risk of any
unpredicted weaknesses in the system. The security margins are:

1. Two additional full rounds (+2RF ), and

2. 7.5% of more partial rounds (+7.5%RP ).

3.1 Generic security
The sponge construction provides a generic security level of 2c/2 bits. In addition, an ideal
hash function with security parameter λ is expected to provide 2λ bits of security against
preimage attacks. To ensure resistance against generic attacks to the hash functions,
POSEIDON design ensures that λ ≤ c

2 and λ ≤ r.

3.2 Statistical attacks
In [GKK+19, Equation. 2], the minimum number of rounds to ensure security against
statistical attacks for sboxes of the form S(x) = xα is described as:{

6 if λ ≤ (⌊log2 p⌋ − log2(α − 1)) · (t + 1)
10 otherwise.

(1)

3.3 Algebraic attacks
Evaluating the security of POSEIDON against algebraic attacks suggests that Interpolation
attacks and Gröbner basis attacks have the lowest complexity. Therefore, the constraints
on the number of rounds derived from these attacks are sufficient to provide resistance to
other types of algebraic attacks.
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3.3.1 Interpolation attacks

In [GKK+19, Equation. 3], it is asserted that for security level of λ bits, the maximum
number of rounds vulnerable to the interpolation attack is:

R ≤ ⌈logα(2). min{λ, log2(p)}⌉ + ⌈logα(t)⌉ (2)

3.3.2 Gröbner basis attacks

In [GKK+19, Equation. 5, 6], it is asserted that for the security level of λ bits, the number
of rounds vulnerable to Gröbner basis is:R ≤ logα(2). min

{
λ
3 , log2(p)

2

}
R ≤ t − 1 + min

{
logα(2)·λ

t+1 , logα(2) log2(p)
2

} (3)

3.4 Sufficient number of rounds
By applying the constraints specified in Equations (1)–(3) and the security margin, the
total number of rounds to ensure the resistance of POSEIODN to studied attacks can
be computed. A Python script is provided to facilitate the computation of the number
of rounds1. In our analysis, we utilized this script to calculate the necessary number of
rounds required to ensure the security of our chosen parameters.

4 Gröbner basis attacks
In this section, we provide an overview of Gröbner basis attacks and analyze the security
of POSEIDON against such attacks. To find a secret used in a cryptographic primitive,
the attacker first needs to write the primitive as a system of multivariate polynomials,
with the secrets being the variables and solve the system to find the secrets. In case of
preimage attack to a hash function, the input can be considered as the secret.

4.1 The methodology of the Gröbner basis attacks
To efficiently solve a polynomial system using the Gröbner basis algorithms, the following
steps are taken:

1. Compute the Gröbner basis with respect to degrevlex term order.

2. Convert the Gröbner basis to lex term order.

3. Find the roots of the polynomial system by factoring univariate polynomials and
extending the partial solutions.

The primary motivation to compute the Gröbner basis in the degrevlex order is its low
complexity cost compared to other term orderings. The complexity of computing a Gröbner
basis in degrevlex term order is [BFP12]:

O

((
n + dsol

dsol

)ω)
, (4)

where n is the number of unknows in the multivariate polynomial system, 2 < ω ≤ 2.3727
[Wil14] is the linear algebra constant, and dsol is the degree of the regularity of the
polynomial system [DS13].

1https://extgit.iaik.tugraz.at/krypto/hadeshash

https://extgit.iaik.tugraz.at/krypto/hadeshash
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There are multiple notions of degrees in the literature that aim to capture the complexity
of the Gröbner basis computation[CG21]. In this work, we use the solving degree, which
is defined as the largest degree of the polynomials in the extended Macaulay matrix
involved in the computation of the Gröbner basis. The complexity analysis of the Gröbner
basis algorithm suggests that the linear algebra operations on the Macaulay matrix are
the dominant step in the complexity of the algorithm. Therefore, the dimensions of the
Macaulay matrix are widely used as a measurement for the complexity of the Gröbner
basis algorithms[BFS13].

To determine the solving degree of the polynomial system used to model POSEI-
DON, we analyzed the solving degrees of round-reduced versions of the system, and
performed linear regression on the resulting data to establish bounds for real-world pa-
rameters. We opted for linear regression over polynomial regression because empirical
observations[GKK+19, AAB+20, ACG+19], along with known theoretical bounds in the
literature like the Macaulay bound, show a linear growth of solving degree with respect to
the number of polynomials in the system.

The computed Gröbner basis in degrevlex order needs to be converted to a Gröbner
basis in lex order. Using FGLM [FGLM93] algorithm, the complexity of converting the
degrevlex order to lex order is:

O
(
nD3) ,

where D is the degree of the zero-dimensional ideal. The second step can be done more
efficiently using the sparse FGLM [FM17], which has the asymptotic complexity of:

O(
√

6
nπ

D2+ n−1
n ). (5)

After computing the Gröbner basis in lex order, the univariate polynomials need to
be factored in order to compute partial solutions and extend them to the solutions of the
system. The complexity of factoring a univariate polynomial over a finite field is [HSK12]:

O (
∑

i dω
i ) ,

where each di is the degree of the univariate polynomial appearing at the ith elimination
step. To factor a polynomial with degree D over the finite field GF (P ), we use the
Cantor/Zassenhaus [CZ81] algorithm with the complexity [Sho93]:

O(D2(log D log log D)(log p + log D)).

4.2 Polynomial modeling
In the analysis of POSEIDON against Gröbner basis attacks, the authors considered
the input size χ to be equal to the rate r of the sponge function. In the polynomial
representation of POSEIDON, the first χ inputs are considered unknown variables, while
the last c inputs and the output are considered known constants. The resulting polynomial
system is determined and is assumed it is a regular system. Therefore, he Macaulay bound
is to estimate the degree of regularity used in the complexity estimation of the Gröbner
basis computation[GKK+19, Section C.2.2].

Cryptographic primitives can be modeled in various ways using algebraic relations
describing them but the polynomial system that minimizes the complexity of the Gröbner
basis attack is the preferred one. For the instances of POSEIDON with S(x) = xα,
two approaches are used to model the sponge function. The first approach is called the
full-permutation equation and involves using one equation for each output element based
on the input variables which results in a small number of equations with high degrees.
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The second approach, called round-level equations, uses new variables in each round to
form a system of polynomials with small degrees.

After a thorough analysis of various methods for polynomial modeling, we identified
two approaches that we consider to be the most efficient ways to model POSEIDON in a
round-level configuration.

The first approach2, aims to minimize the solving degree of the system which is
described in Section 4.2.1. Our results demonstrate that a reduction in the solving degree of
the polynomial system can result in a significant decrease in its computational complexity
when a limited number of additional variables are introduced.

The second approach objective is to use the minimum number of variables in the
polynomial system and is described in Section 4.2.2. Despite the higher theoretical com-
plexity associated with reducing the number of variables, our empirical results demonstrate
that this approach is more efficient in practice. Specifically, we found that the running
time of this approach is significantly lower than the alternative method, and is also much
lower than the complexity suggested by prior research [BFP12]. Evidence supporting this
assertion is presented in Appendix A.

To define the polynomial system that models the POSEIDON hash function, we use
Ci = {ci,1, . . . , ci,t} to denote the round constants for the round i ∈ {1, . . . , R}. Xi =
{xi,1, . . . , xi,t} are the variables that are describing the state in the round i ∈ {0, . . . , R},
where X0 = (x1, . . . , xr, 0, . . . , 0) is the input and XR = (H1, . . . , Hr, xR,r+1, . . . , xR,t) is
the output.

4.2.1 Minimizing the solving degree

To minimize the solving degree, we experimented with different approaches to observe the
impact of the polynomial system on the solving degree. While it is challenging to suggest a
general method for minimizing the solving degree, our analysis suggests that reducing the
number of variables and excluding linear equations from the system are effective strategies
in our case. The first round before multiplication by M is:

x1,j − (x0,j + c1,j)α = 0 j ∈ [1, r],

which adds 2r new variables and r polynomials to the system. The relation of the state
after the first and second Sbox layer is modeled as:

x2,j −

((
r∑

k=1
Mj,k · x1,k +

t∑
k=r+1

Mj,k · cα
1,k

)
+ c2,j

)α

= 0 j ∈ [1, t],

which adds t new variables and t new polynomials to the system. The next Rf full rounds
(i.e., 3 ≤ i ≤ Rf ) are modeled as:

xi,j −

((
t∑

k=1
Mj,k · xi−1,k

)
+ ci,j

)α

= 0 j ∈ [1, t],

which add (Rf − 2)t new variables and (Rf − 2) new polynomials to the system. We
introduce a variable Y to simplify the equations for partial rounds and it is initialized as:

Y⊺ = M · (xRf ,1, . . . , xRf ,t)⊺.

2This approach is inspired by https://asdm.gmbh/2021/06/28/gb_experiment_summary/

https://asdm.gmbh/2021/06/28/gb_experiment_summary/
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The partial rounds Rf < i ≤ Rf + RP are modeled as:

xi,1 − (y1 + ci,1)α = 0

yj = Mj,1 · xi,1 +
t∑

k=2
Mj,k · (yk + ci,k) j ∈ [1, t],

which add RP new variables and RP new polynomials to the system. The last Rf rounds
Rf + Rp < i ≤ R − 1 are modeled as:

xi,j − (yj + ci,j)α = 0 j ∈ [1, t]

yj =
t∑

k=1
Mj,k · xi,k j ∈ [1, t],

that add (Rf − 1)t variables in (Rf − 1)t polynomials to the system. Finally, the last
round is modeled as:

t∑
k=1

M−1
j,k · xR,k − (yj + cR,j)α = 0 j ∈ [1, t].

The last round adds c new variables and t polynomial to the system. The final system
has r + (RF − 1)t + RP polynomials of degree α in r + (RF − 1)t + RP variables.

Considering the t and r as constants, the linear regression of dsol on number of rounds
RF , RP based on the experimental data is:

dsol = r
RF

2 + 0.8RP + α

In Table 2, the details of our experiments to solve the polynomial system for the system
are described.

4.2.2 Minimizing the number of variables

To reduce the number of variables in the round-level setting, the variables corresponding
to the output capacity in Section 4.2.1 are removed while the polynomials for the first
R − 1 rounds remain unchanged. The last round is modeled as:

Hj −
t∑

k=1
Mj,k · (yk + cR,k)α = 0 j ∈ [1, r].

The system has (RF − 2)t + RP + 2r polynoamis of degree α in (RF − 2)t + RP + 2r
variables. In the Table 3, the details of our experiments to solve the polynomial system
for the system are described. Considering the t and r as constants, the linear regression of
dsol on number of rounds RF , RP based on the experimental data is:

dsol = r
RF

2 + (α − 1)RP + α

4.3 Complexity of the attack and broken parameters
We conducted experiments to compute the Gröbner basis for different instances of POSEI-
DON and determined the solving degrees, degree of the ideal, and degree of polynomials
in the final Gröbner basis. The results of these computations are presented in detail in
Appendix A.
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Our first observation is that none of the systems we analyzed were regular, and the
solving degree did not reach the Macaulay bound used in the analysis of POSEIDON in
[GKK+19]. Therefore, the complexity of a Gröbner basis attack suggested by designers is
overestimated.

Our second observation is that partial rounds do not provide the same level of resistance
against algebraic attacks as full rounds. The addition of partial rounds increases the solving
degree by at most one in each round, and there are cases where partial rounds do not
increase the solving degree at all.

Minimizing the solving degree theoretically minimizes the theoretical complexity of
the attack. However, computing the Gröbner basis for the system with fewer variables is
more efficient in practice and has a noticeably lower running time than suggested by the
theoretical complexity. In some cases, the system of Section 4.2.2 was approximately 200
times faster than the system of Section 4.2.1.

The complexity of the Gröbner basis attack can be summarized as:
1. Computing the Gröbner basis in degrevlex order. The solving degree computed

by linear regression of experimental data is:

dsol = r
RF

2 + RP + α,

and by substituting the values for dsol and number of variables in Equation (4), we
obtain the complexity as:((RF − 1) t + RP + r + r RF

2 + RP + α

r RF

2 + RP + α

)2.3727

2. Changing the term order from degrevlex to lex order. The degree of the
corresponding zero-dimensional ideal is:

dI = αr·RF +RP ,

and the asymptotic complexity of the sparse FGLM is:

O

(√
6

((RF − 1)t + RP + r)π (α)
(

2+ (RF −1)t+RP +r−1
(RF −1)t+RP +r

)
·(r·RF +RP )

)
.

3. Complexity of finding the variety. The largest degree of polynomials in the final
Gröbner basis with respect to lex order is:

dGB = αr·(RF −1)+RP ,

and the complexity of finding the variety is:

O

((
3r·(RF −1)+RP

)2 (
log
(

3r·(RF −1)+RP

)
log log

(
3r·(RF −1)+RP

))(
log p + log

(
3r·(RF −1)+RP

)))
In Table 1, an example of parameters for POSEIDON that is susceptible to our attack is
described.

Table 1: Examples of POSEIDON hash function with security parameter λ. CGB is the
complexity of computing the Gröbner basis in degrevles order, CSFGLM is the asymptotic
complexity of sparse FGLM, CFGLM is the complexity of FGLM and CElim is the complexity
factoring univariate polynomials and recovering their roots.

λ log2(p) α t r RF RP CGB CSFGLM CFGLM CElim
1024 128 3 24 8 8 85 731.77 705.67 716.5 466.18
512 128 5 12 4 8 57 435.10 615.40 627.13 413.62
384 128 7 9 3 8 47 361.81 593.25 604.78 400.61
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5 Other flaws in the security analysis of POSEIDON
During our analysis of the security proof provided by the designers of POSEIDON, we
identified three flaws that led to an overestimation of the security against Gröbner basis
attacks. In Section 5.1, we demonstrate that using loose bounds in security arguments leads
to incorrect conclusions. In Section 5.2, we analyze the security argument of POSEIDON
against Gröbner basis attacks when χ = 1, where the system is already a Gröbner basis in
the full-permutation setting. We show a transcription error that resulted in underestimating
the required number of rounds. Finally, in Section 5.3, we identify a flaw in the symbolic
computations of round-level Gröbner basis analysis that led to an overestimation of the
number of rounds.

5.1 Improper logic
The logical reasoning of resistance against Gröbner basis attack can be summarized as
follow:

1. Compute the complexity of the attack as a function of the POSEIDON parameters
α, RF , RP , t, r, χ, λ.

2. Optionally, derive an upper bound for the computed complexity that is easier to
manipulate.

3. Calculate the maximum number of rounds R∗
F and R∗

P that can be attacked given
the parameters of POSEIDON.

4. Assume that all values for RF , RP higher than R∗
F , R∗

P cannot be attacked and are
secure.

While each step in the security argument can be sound on its own, combining steps 2
and 4 can lead to erroneous conclusions, particularly if the upper bound used in step 2 is
not tight. In such cases, the resistance to attack will be overestimated in step 3, resulting
in values for the number of rounds R∗

F and R∗
P that are lower than what is necessary

for security. Thus, step 4 will be unsuccessful in guaranteeing security, as there may be
intermediate values for RF , RP between the underestimated number of rounds R∗

F , R∗
P ,

and the correct number of rounds to ensure the security, R′
F , R′

P .
Consider a simple example: let us assume that a sponge construction with rate r uses

an N -round permutation, and there is an attack with complexity 23Nr. However, this
expression may be challenging to work with, so we attempt to simplify it by noting that
23Nr ≤ 24Nr, although this is not a tight upper bound. Using the argumentation shown
above, we find N∗ from:

24N∗r = 2λ.

Solving for N∗ yields

N∗ = λ

4r
.

This means for all 0 ≤ N ≤ N∗, the sponge function using the N -round permutation
can be attacked. This is still a true statement. Using the above argumentation, it is then
conjectured that the sponge function is safe from attacks for all N ≥ N∗ = λ

4r . This is not
a true statement. We now use the proper expression to find the correct safety threshold,
Ns. We solve:

23Nsr = 2λ,
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and find:

Ns = λ

3r
.

Therefore, for all 0 ≤ N ≤ Ns, the sponge function can be attacked, and for all
N > Ns, the sponge function is safe for the given security level. The problem is that for
N∗ ≤ N ≤ Ns, we argued that the sponge construction with N rounds is safe, while it is
not the case. When using steps 3 and 4 outlined earlier, it is advisable to avoid using an
upper bound in step 2, as it may result in an overestimation of the resistance of the sponge
function against attacks. Instead, we should find a lower bound that is easier to work with
and use it in step 2 to avoid possible underestimations for the number of rounds in step 3.

Similarly, the resistance of POSEIDON against a round-level Gröbner basis attack is
found to be (up to reasonable approximation) [GKK+19]:

CGB = 2Cq−C′
,

with

C = 2 log2

(
αα

(α − 1)α−1

)
C ′ = log2

(
2π(α − 1)q

α

)
q = (t − 1)RF + RP + χ

That concludes step 1. For step 2, the resistance is upper-bounded by:

CGB = 2C·q−C′
≤ 2C·q,

which is not a tight bound. Ultimately, resistance against the round-level attack is
assumed as long as:

(t − 1)RF + RP ≥ C−1 min{λ, log2(p)} − 1, (6)

after which t − 1 extra S-boxes are added to account for the possibility of a subspace
attack.

5.2 Transcription error
Full-Permutation Equation. In the full round equation setting, a system of equations
for the entire R rounds is derived by considering each input as a variable and applying
round functions to the input variable. When the number of input variables χ and the
number of output variables are equal, the resulting system will consist of χ equations in χ
variables, and the degree of each polynomial is upper-bounded by Dα(R) = αR.

In the case that number of input variables is χ = 1, the system is one polynomial
of degree at most αR in one variable, which is already a Gröbner basis in lex order.
Therefore, the only step required to complete the attack is the factorization of the
univariate polynomial. As the security argument provided in [GKK+19, Section C.2.2],
one should have:

log2
(
αωR

)
≥ log2

(
α2R

)
≥ min{λ, log2(p)},

which implies:

R ≥
⌈

min{λ, log2(p)}
2 log2 α

⌉
= logα(2) · min{λ

2 ,
log2(p)

2 },
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where R = RF +RP . Later, the designers in [GKK+19, Equation. 11], write the constraint
for the full round attack as:

RF + RP ≥ logα(2) · min{λ

3 ,
log2(p)

2 }, (7)

where the denominator of the fraction λ
3 is 3 instead of 2. This mistake results in an

overestimation of the security that the POSEIDON permutation provides against Gröbner
basis attacks in the case where χ = 1.

As an example of how the mistake influences the number of rounds, the constraint in
[GKK+19, Equation. 5] would imply that 6 full rounds and 22 partial rounds are sufficient
for α = 3, t = 2, p ≈ 21024, and the desired security level of 128 bits, whereas to gain that
security level for these parameters, at least 35 partial rounds are required.

5.3 Symbolic computation error

In [GKK+19, Section. C.2.2]is shown that for the security level of λ, the maximum number
of rounds that can be attacked is using Gröbner basis is:

(t − 1)RF + RP + χ ≤ C−1 · min{λ, log2(p)χ}, (8)

with

C = 2 log2

(
αα

(α − 1)α−1

)
.

The designers argued that the maximal number of rounds that can be attacked is when
χ = 1[GKK+19, Section C.2.2]. However, Equation 8 can be rewritten to

(t − 1)RF + RP ≤ C−1 · min{λ − χC, χ(log2(p) − C)}.

Here, the first argument of the minimum function is indeed maximized for χ = 1, but
the last argument is maximized for χ = t − 1 because λ − C is positive for the suggested
parameters of POSEIDON. Ultimately, security is conjectured if:

(t − 1)RF + RP ≥ C−1 · min{λ, log2(p)} + t − 2,

but if we address the algebra error, we obtain:

(t − 1)RF + RP ≥ C−1 · min{λ + C(t − 2), log2(p)(t − 1)}.

Previously, the constraint for this kind of Gröbner basis attack appeared to be less
restrictive than the other attacks, as it was subsumed by the constraints for the other
kinds of Gröbner basis attacks [GKK+19, Equation 11.]. However, once the error is
addressed, this is no longer true. More importantly, there are parameter sets for which
this constraint would require the highest number of partial rounds to be secure. For
example, for α = 3, log2(p) ≈ 256, λ = 1536, RF = 8, t = 8, an interpolation attack would
be thwarted if RP ≥ 158, a Subspace attack would fail if RP ≥ 80, and a full-permutation
attack requires RP ≥ 73, but a round-level Gröbner basis attack require RP ≥ 230 to
achieve required resistance. Therefore, [GKK+19, Equation. 5] requires 3 constraints,
instead of 2.
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6 Conclusion
In this paper we demonstrated that POSEIDON is vulnerable to Gröbner basis attacks,
which stems from the inaccurate security analysis and the use of incorrect bounds to
estimate the attack complexity. While some parameters remain unaffected by the attack,
some parameters are indeed compromised. Notably, we find that POSEIDON cannot offer
high-security levels such as 1024 bits.

We presented two polynomial modelings with distinct objectives: one aimed at minimiz-
ing the solving degree, and another aimed at minimizing the number of variables. While
the former method boasts a smaller theoretical complexity, the latter is found to terminate
more expeditiously in practice. We posit that the efficiency of the latter approach is
attributable to the smaller number of variables in the polynomial system. Hence, we
recommend increasing the security margins or augmenting the number of rounds in future
designs, as the theoretical complexity may not be a definitive metric for security evaluation.

In the pursuit of designing more secure ciphers, further investigation into the behavior
of symmetric primitives with regard to Gröbner basis attacks, as well as the analysis of
the interplay between theoretical complexities and actual running time of such attacks,
would be highly valuable. Within the scope of our work, we employed a conservative linear
regression technique for determining the solving degree, but we chose to neglect instances
in which the solving degree remains static during some rounds. Hence, we posit that by
adopting a less restrictive approach, we may improve the efficacy of the attack and be able
to successfully break a larger set of parameters.
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A Experiments data
In this section, the raw data obtained from the experiments are presented. In the Table 2,
the data for the modeling described in Section 4.2.1 is described and in the Table 3, the
data for the modeling described in Section 4.2.2 is described.

Table 2: The result of computing the Gröbner basis for the polyno-
mial system described in Section 4.2.1

t r (RF , RP ) n dsol dI GBLEX degree time(s) mem(GB)

2 1

(2, 0) 3 4 32 3 1 0.14
(4, 0) 7 5 34 33 1 0.14
(6, 0) 11 6 36 35 1 0.14
(8, 0) 15 7 38 37 80 1.4
(10, 0) 19 8 310 39 152371 66.2
(2, 1) 4 5 33 32 1 0.14
(2, 2) 5 5 34 33 1 0.14
(2, 3) 6 6 35 34 1 0.14
(2, 4) 7 7 36 35 1 0.14
(2, 5) 8 8 37 36 5.3 0.63
(2, 6) 9 9 38 37 65 0.91
(2, 7) 10 10 39 38 937 3.3
(2, 8) 11 11 310 39 31550 25.2
(2, 9) 12 12 311 310 76714 96.2
(4, 1) 8 6 35 34 1 0.14
(4, 2) 9 7 36 35 7.6 0.62
(4, 3) 10 7 37 36 7.3 0.68
(4, 4) 11 8 38 37 90 1.2
(4, 5) 12 9 39 38 2042 6
(4, 6) 13 10 310 39 103376 48
(6, 1) 12 6 37 36 4 0.65
(6, 2) 13 7 38 37 55 0.9
(6, 3) 14 8 39 38 3649 7
(6, 4) 15 9 310 39 161080 66
(6, 5) 16 9 311 310 115239 72
(6, 6) 17 10 312 311 54981 109
(8, 1) 16 7 39 38 3239 7
(8, 2) 17 8 310 39 174948 66
(8, 3) 18 9 311 310 310977 159
(10, 2) 21 8 312 311 162441 206

3 1

(2, 0) 4 3 32 3 1 0.14
(4, 0) 10 4 34 33 3.3 0.61
(6, 0) 16 5 36 35 86 1.34
(8, 0) 22 5 38 37 55759 67.9
(2, 1) 5 4 33 32 1 0.14
(2, 2) 6 5 34 33 1 0.14
(2, 3) 7 6 35 34 1 0.17
(2, 4) 8 6 36 35 1 0.17
(2, 5) 9 7 37 36 3.94 0.93
(2, 6) 10 8 38 37 112 7.16
(2, 7) 11 9 39 38 3655 67.21
(4, 1) 11 8 35 34 1 0.17



Tomer Ashur, Thomas Buschman and Mohammad Mahzoun 17

(6, 1) 17 8 37 36 11 0.82

3 2

(2, 0) 5 5 34 32 1 0.14
(4, 0) 11 7 38 36 6.73 0.64
(6, 0) 17 x 38 36 x x
(2, 1) 6 5 35 33 1 0.14
(2, 2) 7 6 36 34 1 0.16
(2, 3) 8 7 37 35 1 0.21
(2, 4) 9 8 38 36 1.98 0.65
(2, 5) 10 9 39 37 43.67 4.5
(4, 1) 17 8 39 37 53 1.17

4 1

(2, 0) 5 3 32 3 3.2 0.61
(4, 0) 13 4 34 33 2.2 0.61
(6, 0) 21 5 36 35 18.4 0.63
(8, 0) 29 5 38 37 904 3.9
(2, 1) 6 4 33 32 1 0.14
(2, 2) 7 4 34 33 1 0.14
(2, 3) 8 5 35 34 1 0.17
(2, 4) 9 6 36 35 1 0.29
(2, 5) 10 7 37 36 5.21 1.65
(2, 6) 11 7 38 37 122.28 13.32
(4, 1) 14 5 35 34 1 0.17
(4, 2) 15 5 36 35 3.26 0.63
(6, 1) 22 5 37 36 25.4 86
(6, 2) 23 6 38 37 419 3.07
(8, 2) 31 6 310 39 155505 288.24

4 2

(2, 0) 6 4 34 32 1.6 0.14
(4, 0) 14 6 38 36 30 2.5
(6, 0) 22 8 312 310 84953 119
(2, 1) 7 5 35 33 1 0.14
(2, 2) 8 6 36 34 1 0.17
(2, 3) 9 6 37 35 1 0.27
(2, 4) 10 7 38 36 3.59 0.99
(2, 5) 11 8 39 37 93.41 7.77
(4, 1) 15 7 39 38 83 1.6

5 1

(2, 0) 6 3 32 3 1.6 0.14
(4, 0) 16 4 34 33 1.04 0.14
(6, 0) 36 5 36 35 3 0.6
(8, 0) 36 5 38 37 933 3.7
(2, 1) 7 4 33 32 1 0.14
(2, 2) 8 4 34 33 1 0.14
(2, 3) 9 5 35 34 1 0.17
(2, 4) 10 6 36 35 1 0.43
(2, 5) 11 6 37 36 11 1.96
(2, 6) 12 7 38 37 219 13.8
(4, 1) 17 4 35 34 6.7 0.62
(6, 1) 27 5 37 36 170 0.89

5 2
(2, 0) 7 4 34 32 1.11 0.14
(4, 0) 17 6 38 36 67 6.6
(2, 1) 8 4 35 33 1.11 0.14

5 3
(2, 0) 8 5 36 33 1.11 0.14
(4, 0) 18 x 312 39 1.04 0.14
(2, 1) 9 6 37 34 1.11 0.14
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5 4

(2, 0) 9 6 38 34 82 0.14
(4, 0) 19 10 312 38 50877 79.85
(2, 1) 10 7 39 35 5.68 0.42
(4, 1) 20 10 313 39 x x

Table 3: The result of computing the Gröbner basis for the polyno-
mial system described in Section 4.2.1

t r (RF , RP ) n dsol dI GBLEX degree time(ms) mem(GB)

2 1

(2, 0) 2 Already GB 32 3 1 0.14
(4, 0) 6 6 34 33 1 0.14
(6, 0) 10 7 36 35 1 0.61
(8, 0) 14 8 38 37 84 1.032
(10, 0) 18 8 310 39 31813 37.78
(2, 1) 3 6 33 32 1 0.14
(2, 2) 4 8 34 33 1 0.14
(2, 3) 5 10 35 34 1 0.14
(2, 4) 6 12 36 35 1 0.14
(2, 5) 7 14 37 36 1 0.28
(2, 6) 8 16 38 37 5.66 0.67
(2, 7) 9 18 39 38 198 1.2
(2, 8) 10 20 310 39 2725 5.61
(2, 9) 11 22 311 310 62139 44.87
(4, 1) 7 7 35 34 1 0.14
(4, 2) 8 8 36 35 1 0.14
(4, 3) 9 9 37 36 1 0.21
(4, 4) 10 10 38 37 16 0.82
(4, 5) 11 10 39 38 1494 2.65
(4, 6) 12 11 310 39 33642 17.94
(6, 1) 11 7 37 36 20 0.62
(6, 2) 12 8 38 37 96 0.96
(6, 3) 13 9 39 38 605 3.93
(6, 4) 14 10 310 39 24342 32
(8, 1) 15 8 39 38 1159 4
(8, 2) 16 9 310 39 38418 36

3 1

(2, 0) 2 Already GB 32 3 1 0.14
(4, 0) 8 5 34 33 1 0.15
(6, 0) 14 6 36 35 1 0.15
(8, 0) 20 7 38 37 282 1.34
(10, 0) 26 8 38 37 193678 69.1
(2, 1) 3 6 33 32 1 0.14
(2, 2) 4 8 35 34 1 0.14
(2, 3) 5 10 37 36 1 0.14
(2, 4) 6 12 38 37 1 0.14
(2, 5) 7 14 39 38 1 0.14
(2, 6) 8 16 310 39 10 0.71
(2, 7) 9 18 311 310 253 1.49
(2, 8) 10 20 312 311 6912 8.3
(2, 9) 11 22 313 313 102725 69.43

3 2 (2, 0) 4 6 34 32 1 0.14
(4, 0) 10 9 38 36 2.4 0.62
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(2, 1) 5 8 35 33 1 0.14
(2, 2) 6 10 36 35 1 0.14
(2, 3) 7 12 37 36 1 0.14
(2, 4) 8 14 38 37 1 0.14
(2, 5) 9 16 39 38 12 0.69
(2, 6) 10 18 310 39 280 1.36
(2, 7) 11 20 311 310 280 1.36
(2, 8) 12 22 312 311 280 1.36
(4, 1) 11 9 39 37 28 0.8
(6, 1) 17 10 39 37 147881 116

4 1

(2, 0) 2 Already GB 32 3 1 0.14
(4, 0) 10 5 34 33 1 0.24
(6, 0) 18 6 36 35 1 0.16
(8, 0) 26 6 38 37 106 1.7

4 2
(2, 0) 4 6 34 32 1.6 0.14
(4, 0) 12 8 38 36 2.27 0.62
(2, 1) 5 8 35 33 1 0.14
(4, 1) 13 9 39 37 1 0.14

4 3
(2, 0) 6 8 36 33 1.6 0.14
(4, 0) 14 11 312 39 18223 13.5
(2, 1) 7 10 37 34 1 0.14

5 1

(2, 0) 2 Already GB 32 3 1.6 0.14
(4, 0) 12 5 34 33 1.04 0.2
(6, 0) 22 6 36 35 1.05 0.2
(8, 0) 32 6 38 37 94 1.83
(10, 0) 42 7 310 39 60714 130

5 2 (2, 0) 4 6 34 32 1 0.14
(4, 0) 14 8 38 36 4 0.61

5 4 (2, 0) 8 10 38 34 1.11 0.24
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