
Updates & Errata

April 2023
New version of Parmesan v0.1 has been released1. This version is rewritten on top of TFHE-rs2
(tfhe v0.2), replacing the dependency on Concrete-core (concrete-core-experimental v1.0).

Results of a preliminary comparison of Parmesan v0.1 and TFHE-rs v0.2 are given in table
below (intended to update Table 5):

Parmesan v0.1 TFHE-rs v0.2 Speed-Up

Operation n =
#bits

12-thr.
[ms]

128-thr.
[ms]

12-thr.
[ms]

128-thr.
[ms]

12-
thr.

128-
thr.

PBS – 24 25 – – – –

Add/Sub 32 217 124 137 198 0.63 1.6

Scalar Mul
#bits = 32,
val’s of k →

4 095 245 167 1 709 2 240 7.00 13.4

4 096 0.3 0.5 368 572 ≈ ∞ ≈ ∞
4 097 219 113 367 572 1.68 5.1

805 705 375 1 173 1 618 1.66 4.3

3 195 710 354 1 294 1 702 1.82 4.8

Mul∗ 32 8 477 3 046 2 708 2 160 0.32 0.7

Squ∗ 32 6 003 2 062 2 826 2 532 0.47 1.2

Max (amort.) 32 411 248 377 451 0.92 1.8

For further interpretation, we refer to Section 5.4 (∗similar to Concrete-core, for multiplication
and squaring of n-bit inputs, TFHE-rs trims the product to n bits, whereas Parmesan outputs the
full 2n-bit output; by little, this affects addition/substraction and scalar multiplication, too).

1https://crates.io/crates/parmesan/versions
2https://crates.io/crates/tfhe

https://crates.io/crates/parmesan/versions
https://crates.io/crates/tfhe
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Abstract

Fully Homomorphic Encryption enables the evaluation of an arbitrary computable function
over encrypted data. Among all such functions, particular interest goes for integer arithmetics.
In this paper, we present a bundle of methods for fast arithmetic operations over encrypted
data: addition/subtraction, multiplication, and some of their special cases. On top of that, we
propose techniques for signum, maximum, and rounding. All methods are specifically tailored
for computations with data encrypted with the TFHE scheme (Chillotti et al., Asiacrypt ’16)
and we mainly focus on parallelization of non-linear homomorphic operations, which are the
most expensive ones. This way, evaluation times can be reduced significantly, provided that
sufficient parallel resources are available. We implement all presented methods in the Parmesan
Library and we provide an experimental evaluation. Compared to integer arithmetics of the
Concrete Library, we achieve considerable speedups for all comparable operations. Major
speedups are achieved for the multiplication of an encrypted integer by a cleartext one, where
we employ special addition-subtraction chains, which save a vast amount of homomorphic
operations.

Index terms—Fully homomorphic encryption, Parallelization, Fast arithmetic, TFHE scheme,
Benchmarking

1 Introduction
The idea of Fully Homomorphic Encryption (FHE), which allows for arbitrary computations over
encrypted data, was first proposed by Rivest et al. [40] back in 1978. However, the question
of whether such a scheme exists remained open for more than 30 years until 2009 when Gentry
[25] gave a positive answer. Although resolved from the mathematical point of view, initial FHE
schemes suffered from fairly low efficiency. Since then, the performance of FHE is being constantly
improved, either through theoretical advances [26, 9, 13, 27, 23, 14] or with emerging attempts to
develop a dedicated hardware [24, 44].

FHE schemes typically allow the evaluation of addition and a non-linear operation over encrypted
data. For addition, this means that there exists operation ⊕ over ciphertexts, while for any pair of
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plaintexts x, y, it holds

FHE .Encr(x)⊕ FHE .Encr(y) ≈ FHE .Encr(x+ y), (1)

where≈means “with high probability, encrypts the same”. I.e., FHE .Encr is a plaintext→ ciphertext
space additive group homomorphism, up to a randomization of FHE .Encr and up to a certain (small)
probability of error. The other, non-linear operation can be, e.g., multiplication or Look-Up Table
(LUT) evaluation.

In principle, FHE enables evaluation of any computable function over encrypted data, e.g., by
its decomposition to boolean gates, which may not be very efficient though. For a smooth practical
deployment of FHE, we believe that it is important to develop optimized homomorphic variants
of most common operations, with basic integer arithmetic at the first place. Indeed, arithmetic is
a fundamental part of most CPUs’ instruction sets and integers are one of the primary data types.
Since current FHE schemes have a fairly limited plaintext space size, which can only be increased
at an unfavorable cost, we build operations upon smaller blocks of data.

In this paper, we put forward tailored and optimized methods for the homomorphic evaluation of
basic arithmetic. In addition, we propose homomorphic variants of some other common operations.
Our methods are built on top of a particular digit-based integer representation, encrypted with the
TFHE Scheme by Chillotti et al. [14]. The TFHE scheme enables a limited number of (very fast)
linear operations – these need to be interlaced with another operation referred to as bootstrapping,
which:

• takes much more time to evaluate (currently tens of milliseconds; depends on parameters),

• is inherently capable of evaluating a custom LUT homomorphically, and

• enables evaluation of circuits of arbitrary depth.

Compared to other FHE schemes, bootstrapping of TFHE is among the fastest, which is the main
reason why we choose TFHE. Nevertheless, in our algorithms, the underlying FHE scheme can be
easily replaced with another LUT-based FHE scheme, if that scheme shows to be more efficient.

Related Work

Many current use-cases of FHE1 focus on a single-purpose application, where FHE operations are
specifically optimized for this purpose. In particular, there is a lot of interest in cloud-assisted
neural network (NN) inference [28, 7, 15], which typically requires expert-level knowledge of both
FHE and NN’s.

On the other hand, there exists a line of research on homomorphic compilers, summarized in [43],
which aims at simplifying the homomorphization effort for ordinary developers. Contributions
range from a general-purpose transpiler [29] (translates arithmetic operations into many boolean
gates, “making them quite slow”), through an approximate-arithmetic-based compiler EVA [21, 18]
(whereas we aim at precise arithmetic), to higher-level code optimizations [42].

A scheme known as CKKS [13] (employed in the EVA compiler) enables approximate arithmetic,
which is particularly useful in machine learning tasks. However, due to its approximate nature,
only a limited precision can be considered correct, therefore, it does not compare directly to our

1An updated list of FHE applications can be found at https://fhe.org/fhe-use-cases.
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approach. Although there exists a bootstrapped variant of CKKS [12, 11], we are not aware of any
implementation of multi-precision arithmetic based on CKKS.

An approach that covers precise integer arithmetics with arbitrary bit-lengths is proposed in [16],
further developed in [3], and implemented as part of the Concrete Library [20]. Based on a multitude
of previous works on homomorphic integers, authors of [3] provide a thorough comparison of state-
of-the-art techniques, though mainly focusing on low-level optimizations of bootstrapping and also
on finding the best TFHE parameters for selected approaches. For homomorphic arithmetics, they
suggest extending the message space by a couple of bits to accommodate the (additive) carry, which
allows to evaluate a limited number of additions without the need for bootstrapping. As soon as the
carry bits need to propagate, they employ a standard (schoolbook) sequential approach. Authors
also propose a parallelizable approach based on the Chinese Remainder Theorem (CRT); however,
due to its specificities, we do not compare with it.

In our recent study [35], we compare selected sequential and parallel addition algorithms over
TFHE-encrypted data: among three sequential and six parallel approaches, we identify the fastest
parallel approach, which outperforms the fastest sequential approach starting from 5-bit addends.
Since the parallel approach requires a non-standard integer representation, we also demonstrate
that other operations like signum and maximum are possible.

Besides integer arithmetics, another important operation is indexing an (encrypted) array with
an encrypted index, i.e., evaluation of a big LUT. Two approaches are proposed by Guimarães et
al. [31], also studied in [3].

Our Contributions

We propose, implement and evaluate a digit-based integer arithmetic over TFHE-encrypted data,
with a particular focus on parallelization, so that the evaluation time is reduced as much as possible.
Our methods are based on an algorithm for parallel addition, which we select based on a thorough
comparison given in [35]. The list of arithmetic operations includes:

• Addition/Subtraction: a basic operation, upon which other operations are built (the under-
lying algorithm is determined based on the results of [35]). We further identify bootstrap
operations that can be saved.

• Scalar multiplication: a special case of multiplication, where one integer is unencrypted
(demonstrated in [35]). We define a new, presumably hard, computational problem, which is
tied with optimization of the number of additions that are called within scalar multiplication
(a special type of addition-subtraction chain). Inspired by an approach used in Elliptic Curve
Cryptography, we propose a heuristic solution, within which we evaluate small instances of the
computational problem, achieving an average improvement of about 20% compared to [35].

• Multiplication: the most demanding operation, for which we suggest employing the Karatsuba
algorithm to optimize the number of digit-by-digit multiplications, and where we also call the
parallel addition algorithm. We discuss and evaluate several aspects of this approach so that
the best performance is achieved.

• Squaring: a special case of multiplication, where the input is duplicated. We show that
a dedicated algorithm for squaring achieves about 30% improvements over multiplication. In
addition, we propose a very efficient squaring method for (up to) 3-bit inputs.

We also investigate and optimize other useful operations:

3



• Signum: a fundamental operation for number comparison and other operations (demonstrated
in [35]). Compared to [35], we reduce the circuit depth by one, which reduces the number of
bootstraps and threads significantly.

• Maximum: gives the greater of two encrypted integers (demonstrated in [35]). Not only
maximum is improved by the faster signum, but we also propose a new way of evaluation,
which only needs half of the threads.

• Rounding: rounds an encrypted integer at a given bit-position. The rounding algorithm is
non-trivial in the integer representation used by parallel addition.

We accompany each operation with a brief analysis, where we list its requirements (message space
size, the ideal number of threads, etc.).

In the experimental part, we present our implementation (in a form of a library) and we compare
it with the Concrete Library [20]. Our benchmarks show that for 32-bit encrypted integers, our
library achieves speed-ups over Concrete ranging from 1.9× for multiplication on an ordinary 12-
threaded server processor, through 7.0× for squaring on a 128-threaded supercomputer’s node, to
tens of times (and more) for scalar multiplication with selected inputs.

Paper Outline

In Section 2, we recall the TFHE scheme and its supported homomorphic operations: addition and
LUT evaluation. We also recall a particular algorithm for parallel addition and its specifics. Next,
in Section 3, we revisit and/or suggest new algorithms for basic arithmetic operations, which are
suitable for homomorphic evaluation with TFHE, with a particular focus on their parallelization.
In Section 4, we revisit and/or suggest other algorithms for comparison-based integer operations:
signum, maximum and, rounding. We introduce our implementation and we provide and discuss
the results of our benchmarks in Section 5. We conclude the paper in Section 6.

2 Preliminaries
For reference, we first provide a summary of symbols & notation that we use throughout this paper.
Then, we recall the TFHE scheme and its homomorphic operations, in particular, we focus on LUT
evaluation. Finally, we discuss integer representations and we recall a selected algorithm for parallel
addition.

Symbols & Notation

N,N0 . . . positive and non-negative integers, i.e., {1, 2, 3, . . .} and {0, 1, 2, . . .},

Z . . . the ring of integers,

R, R+
0 . . . real numbers and non-negative real numbers,

T . . . the real torus: R/Z, i.e., reals modulo 1,

[a, b) . . . interval of reals or integers, which contains a and does not contain b,

x ⋛ ±b . . . comparison of x with ±b, b ∈ N, it outputs {−1, 0,+1} as per (6),
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x ≡ ±b . . . comparison of x with ±b, b ∈ N, it outputs {−1, 0,+1} as per (7),

LUT . . . Look-Up Table,

(a, b, ◦, c ∥ d) . . . notation for a custom negacyclic LUT (cf. Section 2.2.2),

π . . . bit-length of the TFHE message space,

22∆ . . . the sum of squared weights (aka. quadratic weight; cf. Section 2.2.1),

x = (xn−1 . . . x1x0•)β . . . base-β representation of X =
∑n−1

i=0 βixi, where xi ∈ Z and β ∈ N,
β > 1 (cf. Section 2.3.1),

X = evalβ(x) . . . evaluation of representation x in base β as X =
∑n−1

i=0 βixi,

x̄ . . . negative digit, x̄ = −x, x ∈ N; used in redundant number representations, e.g., (11̄•)2 ∼
2− 1 = 1,

Aβ . . . alphabet of the standard base-β representation, Aβ = {0, 1, . . . , β − 1},

Ā2 . . . signed binary alphabet, Ā2 = {1̄, 0, 1},

MSB/LSB . . . Most/Least Significant Bit,

eval(ACk, X) . . . evaluation of addition chain ACk for integer k and additive group element X into
k ·X (cf. Section 3.2.1),

ASC∗ . . . free-doubling addition-subtraction chain (cf. Section 3.2.2).

2.1 The TFHE Scheme
The TFHE scheme, proposed by Chillotti et al. [14] and recently revisited by Joye [32], is based
on a particular variant of the famous Learning With Errors (LWE) scheme, first introduced by
Regev [39]. The variant, named TLWE, operates over a torus plaintext space: denoted by T, the
torus refers to R/Z, i.e., the fractional part of real numbers or reals modulo 1. In a nutshell, TLWE
encrypts plaintext µ ∈ T into ciphertext c = (a, b) ∈ Tn ×T (also referred to as the TLWE sample)
with secret key s ∈ {0, 1}n as follows: (i) draw uniformly random mask a

$← Tn, (ii) draw error
term e

N← T (also referred to as noise) with zero-centered normal distribution N with standard
deviation α ∈ R+

0 , and (iii) set b as
b = s · a+ µ+ e. (2)

In turn, given TLWE sample (a, b) ∈ Tn × T, decryption evaluates

φs(a, b) = b− s · a = µ+ e, (3)

referred to as the phase function. Note that it returns the original plaintext including the error –
we discuss error-free decryption later.

One may observe that additive homomorphism, i.e.,

Encr(µ1)⊕ Encr(µ2) ≈ Encr(µ1 + µ2), (4)
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can be achieved by simple vector addition of TLWE samples. The most important feature of TFHE
is so-called bootstrapping. The original purpose of bootstrapping is to refresh the magnitude of
noise, which must be present in a TLWE ciphertext for security reasons, and which grows with
each homomorphic addition. As a convenient byproduct, bootstrapping is inherently capable of
homomorphic evaluation of a negacyclic function, i.e., a function, for which it holds f(x + 1/2) =
−f(x), x ∈ T. Using certain message representations in the torus, bootstrapping can either be used
for the evaluation of logical gates [14], or for the evaluation of multi-value Look-Up Tables (LUTs)
and/or their compositions [7, 8, 10, 31]. We refer to these variants as the Binary TFHE and the
Multi-Value TFHE, respectively, and we only employ the multi-value variant in this paper2. For
other practical details on TFHE, we refer to [32].

2.1.1 Multi-Value TFHE

Let Z2π be the desired message space – each message m ∈ Z2π can be represented with π bits. Then,
multi-value TFHE encodes message m ∈ Z2π into the TLWE plaintext space as µ = m/2π ∈ T. The
other way around, decoding handles the error from (3) by rounding, i.e., m′ = ⌊(m/2π+e)·2π⌉ ∈ Z2π .
Note that if |e| < 1/2π+1, then m′ = m.

2.2 Homomorphic Operations in Multi-Value TFHE

Combining the encoding of multi-value TFHE and the two homomorphic operations of plain TFHE
(i.e., addition and negacyclic LUT evaluation), we obtain a set of homomorphic operations for the
Z2π message space, denoted by M:

• Addition/Subtraction: M+M→M via vector addition/subtraction of TLWE samples;

• Scalar multiplication: Z · M → M via scalar-vector multiplication of a TLWE sample by an
integer (equivalent to repeated additions/subtractions; sometimes we refer to both operations
simply as addition); and

• Negacyclic LUT evaluation: LUT(M)→M via TFHE bootstrapping.

2.2.1 Noise Growth during Addition

As outlined in Section 2.1, in the TLWE scheme, a certain amount of noise (error) must be added to
the message, and the error term is additive with respect to homomorphic addition. Let us assume
a set of fresh(ly bootstrapped) independent samples {ci}, with equal error variance V0. Then, since
error variance is additive with squares of weights, we quantify the error growth after additions using
the sum of squared weights:

Var
(∑

wi · ci
)
=

∑
w2

i

22∆

·Var(ci)
V0

, (5)

where wi’s are integer weights. We refer to
∑

w2
i as the quadratic weights and we denote it by 22∆.

E.g., for independent samples x, y, z with equal error variance, we have the quadratic weights of the
2In terms of “multi-value bootstrapping” of [10], we consider their first method, for which authors claim: “the

output noise is independent of the test polynomial and is the lowest possible” and “only one function can be computed
per bootstrapping procedure”.
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sum 1 · x− 3 · y + 2 · z equal to 22∆ = 12 + 32 + 22 = 14. Note that ∆ itself is intended to express
the additional bit-length of the noise’s standard deviation.

2.2.2 (Negacyclic) LUT Evaluation

First, we define a class of functions to make further notation concise and we propose an encoding
of these functions into negacyclic LUTs. Then, we outline how additions can be used to evaluate
some other, non-negacyclic LUTs. Finally, we introduce a notation for negacyclic LUTs, without
explicitly stating them in full.

Threshold Functions & Their Encoding into LUTs Let b ∈ N. We introduce the following
functions:

fb(x) =


−1 . . . x ≤ −b,
0 . . . − b < x < +b,

+1 . . . + b ≤ x,

(6)

gb(x) =


−1 . . . x = −b,
0 . . . x ̸= ±b,

+1 . . . x = +b.

(7)

We use the notations x ⋛ ±b and x ≡ ±b for fb(x) and gb(x), respectively.
Recall that LUTs in TFHE are inherently negacyclic, therefore, we need to deal with this limita-

tion. As a usual workaround, an additional bit of padding is added. However, this effectively bloats
the message space twice, which in turn induces less efficient TFHE parameters, hence we prefer
to avoid that. Instead—as outlined in [34]—we exploit any possible overlap as much as possible,
which may lead to message space savings, hence better bootstrapping times. Note that this kind
of “overlap optimization” is specific to TFHE – it is also reflected in many of our algorithms, which
are—in certain sense—tailored for TFHE.

To encode x ⋛ ±b or x ≡ ±b on a desired domain [−a,+a] (with a ≥ b > 0) into a negacyclic
LUT, the range [−a− b, a+ b) shows to be the minimal range for x ⋛ ±b and a sufficient range for
x ≡ ±b [35]. For x ⋛ ±b, we define negacyclic function f , f : [−a − b, a + b) → {−1, 0, 1}, on the
non-negative part of the domain as

f(x) =


0 x ∈ [0, b− 1],

1 x ∈ [b, a],

0 x ∈ [a+ 1, a+ b− 1].

(8)

Such function f contains the function x ⋛ ±b on the domain [−a,+a] and the non-negative part of
f also serves as a prescription for respective LUT. An analogous approach applies to x ≡ ±b. For
more details, we refer to [35].

Evaluating Some Other LUTs Thanks to the cheap additive homomorphism, one may also
shift the function by a constant, if this helps to find a negacyclic extension in a smaller domain; an
example follows.
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Example 1. The function f : Z4 → Z4, f(0) = 1, f(1) = 2, f(2) = 1, f(3) = 0, is not negacyclic,
but f(x)− 1 is. Therefore, it is not needed to extend the domain to Z8 – it is sufficient to evaluate
the negacyclic f(x)− 1 over Z4 and add +1 to the result.

Moreover, in the plaintext domain of TFHE, i.e., in the torus T, we are not limited to encoding
integers – we may also encode fractions. This allows us to evaluate some other non-negacyclic
functions; an example follows.

Example 2. f : Z4 → Z4, f(0) = 0, f(1) = 0, f(2) = 1, f(3) = 1 can be evaluated using a shift by
−1/2, as outlined in Example 1.

In case we consider the first half of Z2π as positive and the rest as negative (i.e., the stan-
dard signed integer representation in computer arithmetics), we may perceive the function from
Example 2 as a non-negativity function over Z4. I.e., a function that outputs 1 or 0 if the input is
non-negative or negative, respectively.

Notation for Negacyclic LUTs Let f : (Z2π )→ Z2π be a negacyclic LUT and let f ∈ Z2π−1

2π be
the list of its values in [0, 2π−1); the rest of f is given by its negacyclicity. For x ∈ Z2π , referred
to as the selector, we denote f(x) by f [x], meaning that x may exceed the index set of f , i.e., the
negacyclic extension is considered. In case there are some unused function values (i.e., outside of
the domain of f), we use the symbol ◦, which can be set to, e.g., zeros in f . Finally, in case the
value of π is not explicitly given, we use (at most once) the symbol ∥ to denote the place to be
filled with an appropriate number of ◦’s. In this case, we do consider the negacyclic extension in
the suffix; an example follows.

Example 3. Let π = 3, i.e., we have the message space M = Z8. The list (1, 2, ◦,−3) represents
the negacyclic LUT given by (1, 2, ◦,−3,−1,−2, ◦, 3), whereas the list (1, 2 ∥−3) represents (1, 2, ◦,
3,−1,−2, ◦,−3). With a selector −1 = 7 in Z8, they evaluate respectively as (1, 2, ◦,−3)[−1] = 3
and (1, 2 ∥−3)[−1] = −3.

2.3 Parallel Arithmetics
The main focus of this paper is the parallelization of arithmetic (and other) operations over en-
crypted integers. Many of these operations are based on an algorithm for parallel integer addition,
which requires a non-standard integer representation. We recall one particular parallel addition
algorithm, which we choose based on the results of [35].

2.3.1 Integer Representations

For base β ∈ N, β ≥ 2, and alphabet Aβ = {0, 1, . . . , β − 1}, we call x ∈ An
β , x = (xn−1 . . . x1x0•)β ,

the standard base-β representation of X ∈ N iff

X =

n−1∑
i=0

βixi =: evalβ(x). (9)

For i out of the range [0, n), we assume xi = 0.
For (finite) alphabet A, other than the standard one, with A ⊂ Z, we talk about the (β,A)-

representation. In particular, parallel addition algorithms typically employ an alphabet that:
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1. contains negative digits, represented with bars (i.e., for d ∈ N, d̄ := −d),

2. is symmetric around zero (e.g., Ā = {2̄, 1̄, 0, 1, 2}), and

3. yields a redundant representation.

Point 3 actually states a necessary condition for a parallel addition algorithm to exist, as shown by
Kornerup [36].

Example 4. Let us illustrate redundancy on two different representations of 2, using base β = 4
and the aforementioned alphabet Ā, as follows: (12̄•)4 = 1 · 41 + (−2) · 40 = 0 · 41 + 2 · 40 = (02•)4.

We refer to the (2, Ā2)-representation, where Ā2 = {1̄, 0, 1}, as the signed binary representation.
For any alphabet, this kind of representation is also referred to as the radix-based representation.

2.3.2 Parallel Addition Algorithm(s)

A family of parameterizable algorithms for parallel addition of multi-digit integers was introduced
by Avizienis [2] in 1961. Later in 1978, Chow et al. [17] further improved the meta-algorithm so
that it can work with smaller alphabets and even with the minimum integer base β = 2.

In [35], we compare sequential and parallel algorithms for the addition of TFHE-encrypted
integers. We implement three sequential approaches, and two algorithms for parallel addition,
namely those using:

• β = 2, Ā2 = {1̄, 0, 1} (i.e., signed binary), and

• β = 4, Ā4 = {2̄, 1̄, 0, 1, 2}, respectively.

For both parallel algorithms, we develop three strategies, how each algorithm can be turned into the
TFHE-encrypted domain; hence altogether, we compare three + six variants. Based on our exper-
iments, we observe that although parallel approaches introduce a certain computational overhead,
the fastest parallel approach outperforms the fastest sequential approach starting from as short
as 5-bit integers; for 31-bit integers, it is already more than 6× faster, provided that a sufficient
number of threads is available.

For the development of other arithmetic operations to be presented in this paper, we choose the
fastest parallel strategy, which uses the signed binary representation; in [35] referred to as Strategy
IIa-F. We recall this parallel addition method in Algorithm 1. Note that in this paper, we do not
further develop nor compare with any sequential approach.

Algorithm 1 Parallel addition with β = 2 and Ā2 = {1̄, 0, 1}.
Input: (2, Ā2)-representations x,y ∈ Ā2

n of X,Y ∈ Z, for some n ∈ N,
Output: (2, Ā2)-representation z ∈ Ā2

n+1 of Z = X + Y .
1: for i ∈ {0, 1, . . . , n} in parallel do
2: wi ← xi + yi
3: qi ← wi ⋛ ±2 ∨ (wi ≡ ±1 ∧ wi−1 ⋛ ±1)
4: zi ← wi − 2qi + qi−1 ▷ (refresh)
5: end for
6: return z
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Note 1. In Algorithm 1 on line 3, we abuse notation and we combine the functions x ⋛ ±b and/or
x ≡ ±b′ with logical operations. Unless +1 meets −1 in such an expression, we treat +1’s or −1’s
as logical 1’s and we keep their positive or negative signs, respectively. In case −1 does meet +1
(e.g., −1∧+1), we evaluate the expression as 0. E.g., for wi = +1 and wi−1 = −2 in Algorithm 1,
we have 0 ∨ (+1 ∧ −1) = 0 ∨ 0 = 0.

2.3.3 Conversions & Other Operations in Signed Binary

The conversion from the standard to the signed binary representation is trivial, since A2 ⊂ Ā2.
Note that this does not hold in general for other signed representations that are used for parallel
addition (e.g., A4 ̸⊂ Ā4), where however parallel addition might be employed. For the opposite
direction, a conversion is needed; in addition, from the impossibility result of Kornerup [36], it
follows that this conversion cannot be parallelized; find more details in Appendix A.

In the signed binary representation, some operations can be implemented fairly straightfor-
wardly: e.g., multiplication, which will be discussed in Section 3.3. Other operations require a more
careful approach: e.g., rounding, which will be discussed in Section 4.3. Yet other operations—in
particular bit-wise operations—require a conversion to the standard binary, which we leave as future
work.

3 Parallel Arithmetics over TFHE-Encrypted Data
In this section, we propose approaches and algorithms for the evaluation of basic arithmetic op-
erations over TFHE-encrypted multi-digit integers, with particular respect to parallelization. In
contrast to other works, e.g., [31, 8], we provide our algorithms in the cleartext domain, which
simplifies their reading and understanding. To turn an algorithm into the encrypted domain, oper-
ations are simply replaced with their homomorphic counterparts. Indeed, in our algorithms, either
we use basic homomorphic operations of multi-value TFHE (i.e., /weighted/ summation and LUT
evaluation), or we rely on algorithms defined previously. Note that this allows us/others to replace
the underlying TFHE scheme with another compatible scheme if needed.

Bootstrapping Strategy First, let us commit to a bootstrapping strategy: we demand to always
return freshly bootstrapped samples from all arithmetic operations. I.e., these samples are required
to be a direct output of the bootstrapping algorithm, without any further homomorphic additions.
Although this is not always needed—in particular in the last step before decryption—we make this
guarantee so that the results’ correctness is ensured, independent of the operation flow.

Complexity Measure Let us assume:

1. bootstrapping is the dominant operation and others are negligible,

2. we have an unlimited number of bootstrapping threads,

3. parallelization is ideal, i.e., there is no additional orchestration cost.

As the primary complexity measure, we consider the total running time, expressed in terms of
bootstraps, i.e., the minimal number of consecutive bootstraps in case of ideal parallelization.
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Remark 1. In some extreme cases, we may resort to a different measure, e.g., the total number
of bootstraps. Note that the total number of bootstraps is equal to the total running time in the
sequential setting (expressed as the number of bootstraps). In practice, it is proportional to the
evaluation costs in terms of processor time or electricity consumption.

3.1 Parallel Addition
First, we focus on the cornerstone arithmetic operation, which is multi-digit integer addition. We
recall how the parallel addition algorithm (Algorithm 1) can be turned into the TFHE-encrypted do-
main. Based on this algorithm, we build other arithmetic operations in the following (sub)sections.
We also outline how some non-necessary operations can be avoided in parallel addition.

3.1.1 Parallel Addition in the TFHE-Encrypted Domain

Let us revisit how the selected parallel addition algorithm (Algorithm 1) can be turned into the
TFHE-encrypted domain (firstly proposed in [35]). To evaluate wi and zi (lines 2 and 4, respec-
tively), additive homomorphism does the job. The value of qi (line 3) is non-linear in the inputs
wi−1 and wi; we illustrate qi = qi(wi−1, wi) in a table in the left-hand side of Figure 1. We suggest
to “linearize” the table into a one-dimensional LUT, using wi−1 + 3wi as a selector; we provide an
illustration in the right-hand side of Figure 1 (there is indeed a single value in each column). It
follows that qi(wi−1, wi) can be rewritten as

qi =
(
wi−1 + 3wi ⋛ ±4

)
, (10)

which allows to construct respective negacyclic LUT, associated to a threshold function (cf. Sec-
tion 2.2.2). Note that in accordance with our bootstrapping strategy, we apply an additional identity
bootstrap on line 4 so that the output consists of freshly bootstrapped samples.

2

1

0

−1

−2

1

0

−1

0 1 2−1−2

wi−1

wi

1 1 1

1 1

1

0

0 0 0

000

0

00

−1

−1 −1 −1 −1 −1

−1

0 1 2−1−2

wi−1 + 3wi

−→

000−1

−1 −1 −1 −1 −1

−3−5 −4 . . .−6−7−8

0 0 000

0 . . .0

Figure 1: Left-hand side: values of qi = qi(wi−1, wi) as per Algorithm 1. Right-hand side: “lin-
earization” of the table into a one-dimensional LUT, using the selector wi−1 + 3wi.

Analysis As shown in [35], we need a message space with π ≥ 5 bits, and we demand quadratic
weights 22∆ ≥ 20. The algorithm further requires 1 bootstrapping thread per instance (usually per
bit of input; a discussion on its optimization follows). It runs in 2 bootstrapping steps, totaling 2
bootstraps per instance.
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3.1.2 Avoiding Non-Necessary Operations

In case the encrypted digits of two addends x and y are not aligned and/or some are unencrypted3,
there may occur non-necessary operations, including bootstraps. Let us discuss these situations
with respect to their position, either at the Least Significant Bit (LSB) or at the Most Significant
Bit (MSB).

• LSB Part: Suffixes of LSBs of x and y, where it is guaranteed that all wi = xi + yi ∈ Ā2

(e.g., 0 + x with x encrypted, or 1 + 1̄, . . . ), can be separated from both addends before the
calculation and then simply appended back. Note that the “missing” separated digits must
be considered to be zero for the rest of the calculation.

• MSB Part: At the MSB side, the parallel addition algorithm must be performed until the very
end due to the left-propagating local carry. On top of that, an additional bit (say of index n)
must be prepended: we have qn = 0 and zn = xn + yn − 2qn + qn−1 = 0 + 0 − 2 · 0 + qn−1,
which is a fresh sample. I.e., there is no need for the refreshal bootstrap of zn (unlike other
zi’s; cf. comment on line 4 of Algorithm 1).

We provide an example in Figure 2. We refer to bits that need to be bootstrapped as active bits.

x

y

1̄x4

0 1̄

x5

y5 1 0

0 1̄ x0

1

wi ∈ {1̄, 0, 1}

0

q

0

0 0

0 q5 q4 1̄

z 01 x0

append

LSB’s where

fresh sample

z5 z4 0

calc’ed with
w2 = w1 = 0

. . . encrypted digit

1

y6y7

x8

q6q7q8

q8 z6z8 z7

Figure 2: Example of avoiding non-necessary operations (bootstraps) during the addition of integers
that are not aligned and/or contain unencrypted digits.

3.2 Scalar Multiplication
By scalar multiplication we mean (homomorphic) multiplication of encrypted integer X by known
integer k:

k ⊙ Encr(X) ≈ Encr(k ·X). (11)

By definition, scalar multiplication can be evaluated as (k−1)× repeated additions of Encr(X) to
itself (later simplified to X). However, we can do better and decrease the number of additions. Let
us give a simple example: 4 ·X can be calculated either as ((X +X) +X) +X in three additions,
or as (X + X) + (X + X) in just two additions, since X + X can be reused. Hence, our goal is
to minimize the number of additions needed to evaluate scalar multiplication – in our case, in the
radix-based, TFHE-encrypted domain.

3E.g., multiplication of encrypted 3-bit number x = (x2x1x0•)2 by unencrypted 17 = (10001•)2 may result in
(x2x1x00x2x1x0•), which holds unencrypted zero at the position of 23.
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Towards Our Method First, we recall an approach adopted in Elliptic Curve Cryptography
(ECC), namely the so-called addition(-subtraction) chains, which aim at minimizing the number of
additions (and subtractions) during scalar multiplication over an elliptic curve. Next, we extend
the definition of these chains by an assumption that doubling goes for free: unlike ECC, our
setup employs a radix-based representation, where the cost of doubling is negligible compared to
addition/subtraction. Finally, due to the anticipated intractability of finding the optimal chain of
our type, we suggest applying the so-called window method. This method splits a particular (signed
binary) representation of the actual scalar into a minimum number of sub-scalars of a short, fixed
length. For those short scalars, it is feasible to pre-compute the (nearly) optimal chains of our type.
Then, we evaluate them and combine the intermediate results with our parallel addition, obtaining
the final result of scalar multiplication.

3.2.1 Addition (Subtraction) Chains

As outlined, the number of additions needed for scalar multiplication may differ from approach to
approach. Hence, given k, our goal is to find a prescription that evaluates scalar multiplication,
while calling the lowest number of additions. In ECC, this problem is formulated in terms of
Addition Chains, which represent the decomposition of scalar multiplication into additions; let us
recall a simplified definition.

Definition 1 (Addition Chain (simplified)). Let k ∈ N, k > 1. We call the tuple (1, k1 . . . ,
kl−1, kl = k), l, ki ∈ N, an Addition Chain for k if ∀i ∈ [1, l] there ∃r, s ∈ [0, i − 1] such that
ki = kr + ks. I.e., every element ki is a sum of some two preceding elements.

To obtain k · X using an addition chain for k, denoted ACk, we evaluate ACk using the same
series of additions, but starting from X, instead of 1. We denote the result by eval(ACk, X) = k ·X.

Many variants of this problem have been proposed and many approaches have been suggested
– for a comprehensive overview of these methods, we recommend Chapter 9 of [19]. Here we point
out two of them:

• if subtractions are allowed (i.e., ki = kr ± ks as per Definition 1), we refer to Addition-
Subtraction Chains (ASC),

• if multiple integers k(0), . . . , k(t−1) are to be present in the chain (i.e., there is not only one
final k), we refer to Addition Sequences.

Downey et al. [22] show that the set of all tuples of the form (k(0), . . . , k(t−1); l), such that there
exists an addition sequence of length l for {k(0), . . . , k(t−1)}, is NP-complete (as a decision problem).
It is hence widely believed that also finding the optimal/shortest addition(-subtraction) chain is an
intractable task.

3.2.2 Chains with Free Doubling

Between our problem of scalar multiplication and that of ECC, there is a substantial difference: in
our case, doubling goes at a negligible cost, unlike ECC, where doubling is considered as expensive
as addition. Indeed, in our base-2 representation with encrypted digits, doubling melts down to
appending an unencrypted zero to the LSB (equivalent to left bit-shift). For this reason, we define
another class of ASCs.
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Definition 2 (Free-Doubling Addition-Subtraction Chain (ASC∗)). Let k ∈ N, k is not a power of
2. We call the tuple ([1], [k1], . . . , [kl]), with l, ki ∈ N, ki odd, a Free-Doubling Addition-Subtraction
Chain for k if the following holds:

• ∃t ∈ N such that k = 2t · kl,

• ∀i ∈ [1, l] there ∃r, s ∈ [0, i− 1], t ∈ N0, such that ki = ±kr ± 2t · ks.

We consider [ki] as a class of numbers of the form 2t · ki.

Example 5. An interesting example of ASC∗ goes for 805 = 0b1100100101 – we encourage the
reader to try herself before checking the solution4.

Hence, the problem of finding the order of additions/subtractions and shifts that lead to k⊙Encr(X)
– with the lowest number of additions/subtractions – melts down to finding the shortest ASC∗, which
we assume to be intractable (more research is needed). For this reason, we resort to a heuristic
approach.

3.2.3 Rewriting Scalars & Window Method

Due to the anticipated hardness of finding the optimal ASC∗ for scalar k, we suggest applying the
following approach, inspired by methods of ECC:

1. pre-compute (ideally optimal) ASC∗s for all odd integers of small, fixed bit-length wl,

2. rewrite the binary representation of k into a signed binary representation, such that there are
as long sequences of zeros as possible,

3. apply the sliding window method.

Let us explain each step in detail.

Step 1: Pre-computation of Short ASC∗s We pre-compute ASC∗s for all odd 12-bit integers5.
The description of our approach is out of the scope of this paper: we leave this for future work
and at this moment, we provide the pre-computed ASC∗s “as is”. Although we use a brute-force
approach, we do not guarantee the optimality, which is rather tricky to show, mainly due to the
unlimited power of two within [ki]’s.

Step 2: Rewriting the Scalar To decrease the number of windows in the subsequent window
method, it is worth using a signed binary representation for k that not only minimizes the Hamming
weight but also maximizes the length of sequences of zeros. For this purpose, we employ the Koyama-
Tsuruoka recoding [37]. This recoding minimizes the resulting Hamming weight and on average, it
achieves 1.42-bit long sequences of zeros, compared to 1.29-bit for the “traditional” Non-Adjacent
Form (NAF; [6]).

4 ([1],[5=1+1·22],[25=5+5·22],[805=5+25·25]) .
Other similar examples are 1 173, 1 209, 1 305, 1 353, 1 377, 1 595, 1 605, 1 695, 1 743, 2 585, 3 129, 3 143, 3 195, 3 205,
3 633, 3 717 and 3 813; some include subtraction, which makes them even more tricky to discover by a pen and paper.

5Find our ASC∗s for all odd 12-bit integers in our library [38] in the assets/asc-12.yaml file.
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950048719935
KoyamaTsuruokaRecoding−−−−−−−−−−−−−−−−−−→

1001̄0001̄01̄1̄
885

00 1̄1̄001̄01̄1̄0001
−3 247

00000 10001000001̄
1 087

WindowValues&Shifts12−−−−−−−−−−−−−−−−−→

(885, 30), (−3 247, 16), (1 087, 0), for which it holds

885 · 230 − 3 247 · 216 + 1087 · 20 = 950048719935.

Figure 3: Illustration of the window method on top of the Koyama-Tsuruoka recoding.

Step 3: Sliding Window Method Finally, we apply the sliding window method of length
12, which we illustrate in Figure 3 together with the Koyama-Tsuruoka recoding; find a rigorous
description of the sliding window method in [19], Chapter 9.1.3.

The Overall Algorithm We provide the overall scalar multiplication method in Algorithm 2.
As outlined in the algorithm, any repeated window value can be re-used and also the ASC∗s can be
evaluated in parallel. We comment on the final aggregation on line 8 later in Section 3.3.3.

Algorithm 2 Scalar Multiplication.
Input: k,X ∈ Z (k to be cleartext, X to be encrypted)
Input: ASC∗s of length l
Output: Z = k ·X.
1: k← KoyamaTsuruokaRecoding(|k|)
2: (wi, si)

nw
i=1 ←WindowValues&Shiftsl(k)

▷ i.e., |k| = ∑nw

i=1 wi · 2si , |wi| < 2l

3: for i ∈ {1, . . . , nw} in parallel do
4: W

(X)
i ← eval(ASC∗

|wi|, X) ▷ do not calc. twice for the same |wi|
5: end for
6: Z ← 0
7: for i = 1 . . . nw do
8: Z ← Z + sgn(wi) ·W (X)

i · 2si ▷ W
(X)
i shifted, (negated)

9: end for
10: return sgn(k) · Z

Average Numbers of Additions For 12-bit windows in the Koyama-Tsuruoka recoding, we
observe that the average number of additions is 3.10 for ASC∗s, as opposed to 3.88 for the standard
double-and-add/sub method, which is suggested in [35] (i.e., about 20% fewer additions). More
details are given in Appendix B.

3.3 Multiplication
There exist several (cleartext) algorithms for integer multiplication, most of them extend to al-
gebraic rings, too; for a comprehensive overview, we refer to a thorough survey by Bernstein [4].
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Sorted by their asymptotic complexity, below we provide the most famous ones:

• the schoolbook algorithm, where every pair of digits gets multiplied, followed by a summation,
and which runs in O(n2),

• the Karatsuba algorithm [33], which is based on the Divide-and-Conquer strategy and which
runs in O(nlog 3), and

• the Schönhage-Strassen algorithm [41], which is based on a number-theoretic transform and
which runs in O(n · log n · log log n).

Although the last one achieves the best asymptotic complexity, it is only worth for huge numbers:
e.g., in the GMP Library [30], the threshold MUL_FFT_THRESHOLD6 switches multiplication to the
Schönhage-Strassen algorithm for integers longer than high thousands of bits.

Therefore, for the encrypted domain, we do not consider Schönhage-Strassen – instead, we find
threshold tM , starting from which Karatsuba outperforms the schoolbook algorithm.

In the following subsections, we recall the Karatsuba algorithm in the clear, we propose a method
for the multiplication of individual encrypted signed bits, and we comment on the final summation
in both the schoolbook and Karatsuba algorithm, which also applies to scalar multiplication.

3.3.1 Karatsuba Algorithm

First, let us recall the cleartext version of the Karatsuba algorithm for balanced inputs as Algo-
rithm 3. It follows the Divide and Conquer strategy (cf. line 5) and it switches to the schoolbook
algorithm if the input length is lower than the threshold tM (cf. line 2). Indeed, with short inputs,
the schoolbook algorithm outperforms Karatsuba; find more details in Appendix C. Note that we
do not explicitly recall the schoolbook multiplication algorithm MulSchoolbookβ , which melts
down to pairwise multiplication of individual (signed) digits, followed by a summation.

3.3.2 Multiplication of Individual Encrypted Signed Bits

In our integer representation, digits hold signed bits. Let us outline an algorithm that calculates
a product of two encrypted signed bits, using a single LUT evaluation; see Algorithm 4. An
illustration of the LUT together with its selector is given in Figure 4. Due to the size of the LUT,
we need π ≥ 5.

1

0

−1

0 1−1

y

x

10

0 0

−10

−1

0

1

0 1−1

43

0 1

−2−3

2

−1

−4

3x+ yx · y

Figure 4: Values of x · y and those of selector 3x+ y. Find respective LUT in Algorithm 4.

6https://gmplib.org/manual/Multiplication-Algorithms, accessed Sep 2022.
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Algorithm 3 Karatsuba Multiplication.
Input: (β,A)-representations x,y ∈ An of X,Y ∈ Z, for some n ∈ N,
Input: threshold tM ≥ 4,
Output: X · Y .
1: function MulKaratsubaβ(r, s)
2: if len(r) = len(s) < tM then
3: return MulSchoolbookβ(r, s)
4: end if
5: split r, s equally into two parts, s.t. (r1, r0) = r and (s1, s0) = s

▷ little-endian representation
6: n0 ← len(r0) = len(s0)
7: in parallel do
8: A← MulKaratsubaβ(r1, s1)
9: B ← MulKaratsubaβ(r0, s0)

10: C ← MulKaratsubaβ(r1 + r0, s1 + s0)
11: end parallel
12: return A · β2n0 + (C −A−B) · βn0 +B

▷ calc. using additions & base-β shifts
13: end function
14: return MulKaratsubaβ(x,y)

Algorithm 4 1×1-bit Multiplication in one LUT.
Input: x, y ∈ Ā2,
Output: x · y.
1: return (0, 0,−1, 0, 1∥ 1, 0,−1, 0)[3x+ y]
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3.3.3 Summation of Intermediate Results

Both schoolbook and Karatsuba algorithms are followed by a summation of their intermediate
results.

For the schoolbook, we illustrate the summation in Figure 5. With each addition, the interme-
diate value grows one bit to the left (MSB; cf. Figure 2). Therefore, this way, the final result is
exactly twice as long as the inputs. However, if we decide for some parallelization of the summation,
it is worth leaving the last line for the very last step, otherwise, the result gets longer.

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

. . . . . .

.

.

.

Figure 5: Summation within schoolbook multiplication.

For Karatsuba over n-bit inputs, there are several aspects of the final summation step (cf. line
12 of Algorithm 3) to comment:

1. The result of Karatsuba is longer than 2n – indeed, the last addition step extends the final
result by at least one bit. Note that it also depends on the length of the nested products –
these might be already longer than twice their input due to a nested Karatsuba.

2. The value of −A−B can be pre-computed in parallel to the calculation of C, which is more
demanding due to the additions r1 + r0 and s1 + s0. Then the value of C + (−A − B) is
calculated in the first place.

3. Depending on the length of B, different approaches may apply to minimize the result’s length
as well as the number of steps:

• if |B| = 2n0, A and B can be simply concatenated to obtain A · β2n0 + B, then shifted
C −A−B is added;

• otherwise, B is first added to shifted C −A−B, only then shifted A is added.

4. For the first-level Karatsuba (i.e., with all nested schoolbooks), it is worth splitting inputs of
odd length such that the LSB part is one bit longer – this approach leads to a shorter addition
in the final step. However, for a nested Karatsuba, different approaches may achieve lower
bootstrapping complexity; cf. Example 6. Finding the optimal approach for every scenario is
out of the scope of this paper.

Example 6. For a nested Karatsuba, there might be worth another way of splitting odd numbers
than the one described in point 4: Let us say we have tM = 16. Then, splitting 31→ (16|15)—which
is not proposed by point 4 and which calls schoolbook at the LSB part—leads to the concatenation
(cf. point 3), and in total, multiplication this way requires 2 497 bootstraps. Whereas the proposed
way of splitting, i.e., 31→ (15|16), which calls Karatsuba at the LSB part, requires 2 531 bootstraps
– mainly due to the additional cost of the A · 22n0 +B addition, instead of their concatenation as in
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the previous case. This gives a counter-example to the odd-number splitting argument, which might
not hold in case recursive calls of Karatsuba occur.

We provide more details on other complexity measures of multiplication (and squaring) later in
Section 5.4.1 and (in particular) in Appendix D.

3.4 Squaring
For integer squaring, which is a special case of multiplication, we implement a dedicated algorithm.
Similarly to Karatsuba multiplication, we employ the divide and conquer strategy; find our method
for squaring in Algorithm 5. For the threshold tS (line 2), we obtain the value tS = 4 for our setup,
using an approach analogical to multiplication (cf. Appendix C). We comment on the schoolbook
squaring algorithm (line 3) later.

Algorithm 5 Squaring via Divide-and-Conquer.
Input: (β,A)-representation x ∈ An of X ∈ Z, for some n ∈ N,
Input: threshold tS ≥ 4,
Output: X2.
1: function SquDivNConqβ(r)
2: if len(r) < tS then
3: return SquSchoolbookβ(r)
4: end if
5: split r equally into two parts, s.t. (r1, r0) = r

▷ little-endian representation
6: n0 ← len(r0)
7: in parallel do
8: A← SquDivNConqβ(r1)
9: B ← SquDivNConqβ(r0)

10: C ← MulKaratsubaβ(r1, r0)
11: end parallel
12: return A · β2n0 + C · βn0+1 +B ▷ additions & base-β shifts
13: end function
14: return SquDivNConqβ(x)

Compared to multiplication on a duplicated input, our squaring algorithm evaluates fewer boot-
straps in fewer steps, which is mainly achieved thanks to:

• fewer terms to be evaluated:

– two additions on line 10 of Algorithm 3 are not evaluated on line 10 of Algorithm 5,

– instead of C−A−B on line 12 of Algorithm 3, there is only C on line 12 of Algorithm 5;
and

• more efficient squaring of short inputs in case of signed binary representation.
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Squaring of Short, Signed Binary Inputs For short, signed binary input x (namely 2- or
3-bit with π = 5), we suggest to calculate individual bits of the resulting square directly and in
parallel. The idea is to evaluate homomorphically X = eval2(x) as per (9), which melts down to
scalar multiplications and additions of TFHE samples (i.e., no bootstrap is needed). To evaluate
a bit of Y = X2, we use X as a selector into a dedicated LUT; find an illustration in Table 1, where
columns represent these LUTs. For the full algorithm, we refer to Appendix E, Algorithm 10.

Table 1: Bits of Y = X2 and respective selector X. Columns yi are intended to be encoded into
LUTs.

X
bits of Y = X2

X2

y5 y4 y3 y2 y1 y0
0 0 0 0 0 0 0 0
±1 0 0 0 0 0 1 1
±2 0 0 0 1 0 0 4
...

...
...

...
...

...
...

...
±7 1 1 0 0 0 1 49

Note that in the signed binary, 3 bits may encode X ∈ [−7, 7], and the output is up to 6-bit.
For 2-bit inputs, we only calculate the output bits up to y3. Also note that the bit at 21 position
(i.e., y1) is always zero, which stems from the fact a2 mod 4 ∈ {0, 1}. Hence, for 2- and 3-bit inputs,
we evaluate 3 and 5 LUTs, respectively, and we obtain the result in a single bootstrapping step.
We provide more details on other complexity measures of squaring (and multiplication) later in
Section 5.4.1 and (in particular) in Appendix D.

Recall that we have tS = 4 and we use the signed binary, i.e., SquSchoolbookβ (on line 3 of
Algorithm 5) is fully implemented via this method for squaring of short inputs.

4 Signum-Based Operations over TFHE-Encrypted Data
In this section, we put forward some other, frequently used, signum-based operations in the signed
binary representation, while bearing in mind the limited set of available homomorphic operations
over the encrypted digits. Namely, we present parallel algorithms for signum and maximum (im-
proved versions of [35]), and we introduce a new algorithm for rounding at a selected digit position.

In principle, these algorithms are based on number comparison. However, in the signed binary
representation, the lexicographic comparison may fail7. Therefore, we suggest reducing the problem
of number comparison to signum: we subtract the numbers (in parallel) and we compare the result
with zero. This works in the signed binary as expected, i.e., the sign of the leading bit determines
the sign of the result.

4.1 Signum
A method for comparison of two integers, given as a series of encrypted digits, was firstly proposed
by Bourse et al. [8]. Later, we adjusted this method to signed integer representations in [35]; we
recall it in Algorithm 6.

7As an example, (011•)2 = 3 > 2 = (11̄0•)2, although 0 < 1 at the leading position of each number.
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Algorithm 6 Signum over (β,Aβ −Aβ)-representation ([8]; modified).
Input: (β,Aβ −Aβ)-representation z ∈ (Aβ −Aβ)

n of Z ∈ Z, for some n ∈ N,
Input: message space with bit-length π ≥ 3, such that 2π−1 ≥ β,
Output: sgn(Z).
1: γ ← π − 1
2: function SgnParalReduceγ(a)
3: k ← len(a)
4: if k = 1 then
5: return a0 ⋛ ±1
6: end if
7: for j ∈ {0, 1, . . . , ⌈k/γ⌉ − 1} in parallel do
8: for i ∈ {0, 1, . . . , γ − 1} in parallel do
9: sγj+i ← 2i ·

(
aγj+i ⋛ ±1

)
▷ scale f1 by 2i

10: end for
11: bj ←

∑γ−1
i=0 sγj+i

12: end for
13: return SgnParalReduceγ(b)
14: end function
15: return SgnParalReduceγ(z)

We propose an improvement, which only works in the signed binary representation: we suggest
skipping the bootstrapped (and scaled) comparison aγj+i ⋛ ±1 on line 9 of Algorithm 6 in the
first level of recursion since we have already aγj+i ∈ {1̄, 0, 1}. Instead, aγj+i’s get directly scalar-
multiplied by 2i’s and aggregated into bj , which—compared to [35]—saves one level of bootstrapping
and reduces the number of threads by a factor of about four.

Next, note that the comparison function on line 5 can be replaced with another function if
needed – n.b., the value of a0 is only guaranteed to have the same sign as the top-level input. E.g.,
one may compute the non-negativity function as outlined in Example 2, which is useful for number
comparison.

Analysis The evaluation of a ⋛ ±1 on lines 5 and 9 (i.e., signum of a) requires no extra plaintext
space (over what is needed for the representation of a’s) since signum is already negacyclic. Indeed,
we need the range [−2γ + 1, 2γ − 1], which perfectly fits within π = γ + 1 bits.

The aforementioned optimization (line 9 in the first level of recursion) mandates 22∆ ≥ (20)2 +
. . .+(2γ−1)2, which equals 85 for π = 5. Note that this is the largest value of 22∆ within Parmesan.

For the full parallelization, we need ⌈n/γ⌉ threads (bootstrapping starts from the second level
of recursion; as opposed to [35], which therefore requires n threads), and the algorithm runs in
⌈logγ(n)⌉ bootstrapping steps. The total number of bootstraps can be expressed as

Sγ(n) :=
⌈n
γ

⌉
+
⌈ n

γ2

⌉
+ . . .+

⌈ n

γ⌈logγ(n)⌉

⌉
. (12)
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4.2 Maximum
We present an improved version of the method [35] for maximum of two integers X and Y , repre-
sented in the signed binary representation and encrypted with π ≥ 5; find it in Algorithm 7. The
function SgnParalReduce+

γ on line 3 customizes line 5 of Algorithm 6, so that it evaluates the
non-negativity function (cf. Example 2). Recall the notation introduced in Section 2.2.2, which is
now used on line 5 of the algorithm. We illustrate the LUT creation in Figure 6.
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Figure 6: Values of i-th bit of max{x, y} for both cases x < y and x ≥ y, and those of respective
selector s+ 2xi + 6yi, where s = (x ≥ y), i.e., the non-negativity function.

Algorithm 7 Maximum over (2, Ā2)-representation with π ≥ 5 bits of plaintext space.
Input: (2, Ā2)-representations x,y ∈ Ā2

n of X,Y ∈ Z, for some n ∈ N,
Output: max{X,Y }.
1: r← x− y ▷ use favorite parallel alg.
2: γ ← π − 1
3: s← SgnParalReduce+

γ (r)
4: for i ∈ {0, 1, . . . , n− 1} in parallel do
5: mi ←

(
0, 0, 0, 1, 1, 1̄, 1, 0, 1, 1∥ (1̄, 1̄), 1̄, 0, 1̄, 1, 0, 1̄

)
[s+ 2xi + 6yi]

6: end for
7: return m

Implementation Remark Note that for π = 5, there is a negacyclic overlap of two values
within the LUT on line 5: 1, 1 before ∥ is directly followed by its own negacyclic image 1̄, 1̄, which
is therefore given in parentheses.

Analysis In addition to the requirements of subtraction and those of SgnParalReduce+
γ (n.b.,

r is one bit longer than x and y), we have: one bootstrap per bit (as opposed to three bootstraps
in [35]), 22∆ ≥ 12 + 22 + 62 = 41 due to the selector on line 5, and we need n threads for the full
parallelization (vs. 2n threads in [35]). In total, maximum runs in 2+⌈logγ(n+1)⌉+1 bootstrapping
steps with the total number of 2n+ Sγ(n+ 1) + n bootstraps; cf. (12) for the definition of Sγ(·).
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4.3 Rounding
Integer rounding operation at a given position (within its binary representation) can be expressed
as function R of two inputs: integer X ∈ Z to be rounded, and position i ∈ N to hold the last
non-zero bit. The function can be written as

R(X, i) :=
⌊X
2i

⌉
· 2i = . . . , (13)

for X = (xn−1 . . . xixi−1 . . . x0•)2 also as

. . . = (xn−1 . . . xi0 . . . 0•)2 + ⌊(•xi−1 . . . x0)2
r

⌉ · 2i. (14)

With the standard binary alphabet, the value of ⌊r⌉ = ⌊(•xi−1 . . . x0)2⌉ equals to xi−1. Indeed,
if xi−1 = 0, then the remainder r = (•0xi−2 . . . x0)2 is always lower than 1/2, conversely for xi−1 = 1,
r = (•1xi−2 . . . x0)2 ≥ 1/2.

However, with the signed binary alphabet, the leading bit xi−1 does not determine how r
compares to 1/2. In addition, such r ranges in the interval (−1, 1), unlike [0, 1) for the standard
binary alphabet, therefore, we need to compare with both ±1/2. Altogether nine combinations occur
for xi−1 ∈ Ā2 and for signum of the rest of r, denoted s := sgn

(
(•xi−2 . . . x0)2

)
. The resulting value

of ⌊r⌉ as well as that of respective selector 2xi−1 + s are depicted in Figure 7. Find our method in
Algorithm 8.
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Figure 7: Values of ⌊r⌉ = ⌊(•xi−1 . . . x0)2⌉ and those of respective selector 2xi−1 + s, where s =
sgn

(
(•xi−2 . . . x0)2

)
.

Analysis Rounding calls signum, evaluates a LUT, and runs parallel addition, while the LUT
evaluation requires neither larger π nor 22∆ than any of those operations. Altogether, for i > 1,
rounding requires max{⌈i−1/γ⌉, n− i} threads, it runs in ⌈logγ(i− 1)⌉+ 1+ 2 bootstrapping steps,
and in total Sγ(i− 1) + 1 + 2 · (n− i) bootstraps are called; cf. (12).

5 Implementation & Experimental Results
In this section, we introduce our library for parallel arithmetics over TFHE-encrypted data. Then,
we comment on its dependency on the Concrete Library and we also compare the abilities of these
libraries in their current versions. Next, we outline an experiment design, covering the choice of
parameters, inputs, and hardware. Finally, we put forward the results of our benchmarks and we
conclude with a brief discussion.
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Algorithm 8 Rounding over (2, Ā2)-representation.
Input: (2, Ā2)-representation x ∈ Ā2

n of X ∈ Z, for some n ∈ N,
Input: rounding position i ∈ N,
Output: R(X, i) as per (13).
1: if i > n then
2: return 0
3: end if
4: if i = 1 then
5: t← x0

6: go to line 11
7: end if
8: γ ← π − 1
9: s← SgnParalReduceγ((xi−2, . . . , x0)) ▷ (xi−2, . . .) might be empty

10: t← (0, 0, 1, 1∥ 1̄, 0, 0)[2xi−1 + s]
11: u← (xn−1 . . . xi•)2 + (t•)2 ▷ use favorite parallel alg.
12: return u≪ i

5.1 The PARMESAN Library
We implement all operations, presented in the previous sections, in the PARMESAN Library [38].
Parmesan is an experimental library based on an existing implementation of TFHE – the Concrete
Library [20], which we discuss later. Parmesan, as well as Concrete, are written in Rust8 and they
are compatible with the Rust’s ecosystem, i.e., they can be easily added to a custom project via
a standard Rust dependency.

To make the starting point smooth, our library goes with a simple demo (in the README file),
which includes:

• TFHE parameter initialization, which loads a hard-coded parameter set;

• creation of User’s and Cloud’s scopes, which also generates respective keys;

• digit-by-digit encryption of integers a and b, given in a (signed) base-2 representation;

• homomorphic addition Encr(a)⊕ Encr(b);

• decryption of the result; and

• final check if Decr
(
Encr(a)⊕ Encr(b)

)
= a+ b.

All supported operations can be found in the ParmArithmetics trait, which is implemented for
both Parmesan ciphertexts and for signed 64-bit integers (Rust type i64).

5.2 The Concrete Library
Among existing implementations of TFHE, we choose the Concrete Library [20] by Zama9: Concrete
is open-source10, is actively developed, implements state-of-the-art techniques, and also long-lasting

8https://rust-lang.org
9https://zama.ai

10Under the BSD 3-Clause Clear License.
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support can be expected. At the time of writing, the latest release of Concrete is the beta-2 version
of v0.2.0, which we later denote as v0.2β . In the beta version, many features are not stabilized
yet and further improvements are expected to come with the full version (including a certain level
of parallelization).

The Concrete library is written in Rust, where bundles of code are referred to as “crates”. The
concrete crate covers more than the implementation of TFHE (in the concrete-core sub-crate) –
it consists of other three sub-crates: concrete-boolean, concrete-shortint and concrete-int,
which respectively implements booleans, 2- to 7-bit unsigned integers and multi-precision unsigned
integers, including various homomorphic operations for each type.

5.2.1 Relation to Parmesan

Internally, Parmesan’s TFHE ciphertexts and respective homomorphic operations employ structures
and functions of concrete-core. On top of these TFHE-level operations, integer arithmetic is built
from the scratch: starting from the signed, radix-based representation, until the implementation of
various arithmetic operations and their parallelization.

5.2.2 Concrete’s Arithmetics

In concrete-int, various arithmetic as well as bit-level operations are implemented over radix-
based integer representations with selected power-of-two bases. Currently, a limited set of operations
is implemented also for the CRT-based11 representation (addition and multiplication; appears to be
under development). In our experiments, we focus solely on the radix-based representation, which
is by its nature closer to Parmesan. In addition, CRT-based representation cannot be used to
mimic standard computer arithmetics, which operate mod 2n, unlike CRT, which operates modulo
a product of coprime integers; for more details on CRT-based arithmetics, we refer to [3].

Remark 2. Given base β = 2k and digit-length l, the radix-based arithmetic of Concrete is equiv-
alent to the standard unsigned kl-bit integer arithmetic. For each of the l digits, encrypted with
TFHE, the cleartext space actually consists of two parts: a k-bit message part, which covers the
standard base-β alphabet, and a carry part, which effectively extends the standard alphabet by a cou-
ple of additional bits. This allows performing a certain number of additions without the need for
bootstrapping. In our experiments with Concrete, we run multiple additions until we reach the first
bootstrap and in the results, we amortize the cost.

Multiplication is implemented using the standard schoolbook algorithm without any paralleliza-
tion and for squaring, there is no special function. For scalar multiplication, there is no optimization
in terms of free doubling (we verify this by calling multiplication by 4 096 = 212), nor in terms of
addition-subtraction chains.

5.2.3 Parmesan’s vs. Concrete’s Arithmetics

We provide a comparison of Parmesan’s and Concrete’s operations in Table 2. Usage-wise, the
biggest difference is that Concrete mimics the behavior of native unsigned integer types (i.e., that
of the ring Z2kl), whereas Parmesan natively supports negative integers. Regarding the precision
bound, this is rather a matter of implementation and both libraries could be easily extended.

11Chinese Remainder Theorem.
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Table 2: The current state of implementation of arithmetics in Parmesan (experimental library)
and in Concrete v0.2β (some features not yet fully implemented in beta).

Feature Parmesan Concrete v0.2β

Radix-based representation ✓ (signed,
unlimited)

✓ (unsigned,
mod 2kl)

CRT-based representation ✗ (✓)

Addition/subtraction, multiplication ✓(parallel) ✓(sequential)
ASC∗s for scalar multiplication ✓ ✗
Karatsuba multiplication ✓ ✗
Dedicated squaring ✓ ✗

Bit operators ✗ ✓
Signum, maximum, rounding ✓ ✗

5.3 Experiment Setup
Let us discuss particular choices of parameters, inputs, and hardware.

5.3.1 Choice of Parameters

In Parmesan, we need 5 bits of message space and we do not need any padding. For this purpose, we
choose Concrete’s parameters named PARAM_MESSAGE_2_CARRY_3: there are 2 bits for the message
and 3 extra bits for the carry, altogether 5 bits. Although there is no parameter corresponding to
22∆ in Concrete, we did not encounter any error during any of our experiments or tests of Parmesan
with this parameter choice, therefore, we consider our choice adequate. All parameters in Concrete
are claimed to be chosen with the (expected) level of 128-bit security, which we verify with the
lattice-estimator12 [1].

In Concrete, we use the default builder for 2-bit unsigned integers, upon which we build longer
integers. Regarding the digit’s bit-length, there is no clear recommendation, however, our experi-
ments with parallel addition algorithms [35] as well as an example implementation of the Game of
Life13 tend to prefer shorter message space.

5.3.2 Choice of Inputs

We choose to benchmark 4-, 8-, 16-, and 32-bit values with Addition/Subtraction, Multiplication,
and Squaring. For Signum, Maximum, and Rounding, we only benchmark 32-bit numbers to spot
the effect of recursion.

For Scalar Multiplication, we choose to verify the following scalars: 4 095, 4 096, 4 097, 805, and
3 195. For 4 096, there shall be no operation needed in any of the bases: 2 (Parmesan), 4 (our setup
of Concrete), 8, or 16. For 4 095 and 4 097, we aim at observing, whether one operation is used
in both cases, i.e., whether both ways 4 095 = 212 − 1 and 4 097 = 212 + 1 are used. If this is not
the case, we would observe a big gap for 4 095, since its Hamming weight is 12, as opposed to 2 for

12https://github.com/malb/lattice-estimator
13https://www.zama.ai/post/the-game-of-life-rebooted-with-concrete-v0-2, accessed Sep 2022.
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4 097. As outlined in Example 5, 805 has a very efficient addition chain of just 3 additions, a similar
property goes also for 3 195.

5.3.3 Choice of Hardware

For our experiments, we choose two machines:

• an experimental server with a 12-threaded Intel Core i7-7800X processor (EURECOM’s in-
ternal machine), and

• a supercomputer’s node with two 64-threaded AMD EPYC 7543 processors (operated by
e-INFRA CZ14).

Note that the 128-threaded machine has a sufficient number of threads to achieve the full paral-
lelization for most of the operations (unlike, in particular, the multiplication of long integers).

5.4 Results & Discussion
With chosen parameters, inputs, and hardware, we benchmark Parmesan using our dedicated ex-
perimental tool15. Since our main aim is to benchmark Parmesan on a highly multi-threaded pro-
cessor, we accompany the code with scripts tailored for the Portable Batch System (PBS), which is
a queuing system of many super-computing infrastructures, including e-INFRA CZ.

5.4.1 Observed Quantities

In our experiments, we primarily focus on the total running time (as per our Complexity Measure;
cf. Section 3), and we also approximately measure the processor load. Besides that, we analytically
evaluate other quantities:

• (bootstrapping) circuit depth: the minimal number of consecutive bootstraps in case of ideal
parallelization,

• total number of bootstraps (aka. #PBS),

• ideal number of threads: the minimum number of threads required for ideal parallelization,
and

• efficiency of CPU/thread usage: the total number of available bootstrapping slots (i.e., the
ideal number of threads multiplied by the circuit depth) divided by the total number of
bootstraps called.

Example 7. Let us evaluate these analytical quantities on an example of 16-bit multiplication (cf.
Algorithm 3). The calculation spreads into three pools of threads to calculate the values of A, B,
and C (cf. lines 8–10), using two instances of 8-bit schoolbook multiplication for A and B, and two
8-bit additions followed by a 9-bit schoolbook multiplication for C. For each 8-bit multiplication, we
need 64 threads for pairwise multiplications, then we call 7× addition (cf. Figure 5), each with 8
active bits (i.e., 8 threads in 14 steps). For 9-bit multiplication, we need 81 threads (multiplication)
followed by 16×9 threads (summation).

14https://e-infra.cz/en
15https://github.com/fakub/bench-parmesan
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The calculation of A and B is followed by their addition (2×16 threads), then A+B is subtracted
from C (2×18 threads) and finally C − (A + B) is added to concatenated A∥B (n.b., their length
allows that; 2×24 threads). In total, we have 725 bootstraps in 23 steps and it shows that 81 threads
are necessary & sufficient for the full parallelization; see Table 3, where columns A, B and C are
later re-used for other calculations. Efficiency evaluates to 725/81·23 ≈ 38.9%. Find other bit-lengths,
also for squaring, in Appendix D.

Table 3: A suggestion of thread scheduling for the calculation of intermediate values A, B, and C,
followed by their aggregation, in 16-bit Karatsuba multiplication, which splits each input into two
8-bit parts. Using 81 threads in 23 steps, totalling 725 bootstraps.

A B C Total #thr’s Comment

64 − 8|8 80
C: r1 + r0 | s1 + s0− 64 8|8 80

− − 81 81 C: 9-bit pairwise mul.
8 8 9 25

A,B: 8-bit schoolbook
summation (14 rows);

C: 9-bit scb. Σ (+2 rows)

8 8 9 25
...

...
...

...
8 8 9 25
− 16 9 25

B: A+B− 16 9 25

− − 18 18
C: C − (A+B)− − 18 18

− − 24 24
C: A∥B + (C−A−B)∥0− − 24 24

Total #PBS 725

Remark 3. In terms of circuit depth, Karatsuba shows to be worth starting from less than 16 bits,
provided that a sufficient number of threads is available (cf. Remark 4 in Appendix C) and a careful
thread scheduling is applied (similar to that of Table 3). Recall that the threshold for Karatsuba
(given in Table 6 in Appendix C) is calculated with respect to the total number of bootstraps, not
to the circuit depth. Let us provide an example for 10-bit inputs: we compare the parameters of
Karatsuba and schoolbook in Table 4 (more details on 10-bit Karatsuba in Table 7 in Appendix D).

Table 4: Parameters of 10-bit multiplication. For 8-bit, the depths become equal to 15.

Algorithm Depth #PBS #thr’s

Karatsuba 17 320 36
Schoolbook 19 280 100

Although Karatsuba has a lower bootstrapping depth as well as requires a lower number of threads,
such an approach requires careful parallelization (as per Table 7), which is currently out of the scope.
Therefore, we implement the multiplication threshold tM as per Table 6. Also, a little experiment on
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a 12-threaded machine shows that 20-bit multiplication is faster with tM as proposed (i.e., 10- and
11-bit multiplications via schoolbook), compared to calling Karatsuba starting from 10-bit inputs,
achieving 18.0 s and 20.8 s, respectively.

5.4.2 Experimental Results

We summarize the results of our benchmarks in Table 5, where one can find a performance com-
parison of Parmesan and Concrete v0.2β as well as the analytical quantities for Parmesan.

In Figure 8, we display approximate, per-thread processor load measured during a calculation
of the maximum of 32-bit (encrypted) inputs. In that figure, one may spot the expected behavior
of operations called within maximum (cf. Algorithm 7); one may observe high loads of:

1. 32 threads, 2 steps ∼ 32-bit subtraction (line 1 of that algorithm),

2. 9 threads, 1 step ∼ first step of signum’s recursion (line 3; calls Algorithm 6 with a 33-bit
input),

3. 3 threads, 1 step ∼ second step of signum’s recursion,

4. 1 thread, 1 step ∼ the non-negativity function at the end of signum,

5. 32 threads, 1 step ∼ maximum selector (line 5).
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5.4.3 Discussion

In our benchmarks, we compare two different approaches for basic integer arithmetic over TFHE-
encrypted data, implemented in our Parmesan Library and in the Concrete Library, respectively.

Parmesan’s arithmetic is based on an algorithm for parallel addition, which uses a redundant
integer representation, and in the encrypted domain, it employs a 5-bit message space to hold one
bit of an encrypted integer. Parallel addition takes constant time (independent of input length),
provided that a sufficient number of threads is available. On top of parallel addition, other arith-
metic algorithms are implemented with particular respect to parallelization, including additional
optimizations: ASC∗s and the window method for scalar multiplication, Karatsuba algorithm for
multiplication, divide-and-conquer strategy for squaring, etc.

On the other hand, Concrete’s arithmetics employ the standard sequential algorithm for ad-
dition. In certain sense, its integer representations are also redundant, as it allows buffering the
carry for a limited number of additions, without bootstrapping. However, in the latest beta version
of Concrete, there is neither parallelization nor any other optimization of basic arithmetic imple-
mented yet. E.g., for scalar multiplication, this we can easily spot if we compare the results with
our particular choices of inputs (cf. Section 5.3.2): namely for k = 4096 = 46, no bootstrapping
would be needed in the base-4 representation (our setup of Concrete), however, the timing reveals
that many bootstraps occur.

Although there are substantial differences between these two libraries, they are both built upon
the same TFHE implementation (that of concrete-core crate), and they both use TFHE parameters
provided in the concrete-int crate (i.e., we may expect the same “quality”). Hence, in certain
sense, our benchmarks provide an insight into the direct comparison of these two approaches. E.g.,
for 16-bit squaring on the 12-threaded processor, Parmesan on the one hand achieves a speed-up by
a factor of 2.3, on the other hand, it employs all of the 12 threads, as opposed to Concrete, which
runs on a single thread only. However, as stated in Sections 5.1 and 5.2, neither of these libraries
is in a production version, therefore, our results shall not be perceived as definitive.

Generally speaking, the redundant representation, required by parallel addition, introduces a cer-
tain computational overhead, which can be mitigated by a sufficient number of threads. Therefore,
the choice of approach depends on the optimization goal: if minimizing the actual execution time
is the priority, we recommend a parallel approach, if minimizing the computational cost (in terms
of total CPU time) is the priority, we recommend a sequential approach.

6 Conclusion
We propose and implement parallel algorithms for a fast integer arithmetic over TFHE-encrypted
data. We compare our library – the Parmesan Library – with the Concrete Library: for 32-bit
inputs on an ordinary 12-threaded server processor, we observe speed-ups by a factor of 2.3 for
addition, 1.9 for multiplication, and 2.6 for squaring. On a supercomputer’s node with 128 threads,
the speed-ups are even higher.

Particular speed-ups are achieved for scalar multiplication, for which we propose a new technique
based on the window method and a special kind of addition chains denoted ASC∗. E.g., the
calculation of 4 095 times an encrypted 16-bit integer achieves a 28× speed-up over Concrete on
the 12-threaded machine. The advantage of our technique is a combination of multiple factors that
our method employs:

• subtraction, which goes at the same cost as addition,
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• free doubling in the radix-based representation, and

• pre-computed ASC∗s for up to 12-bit windows.

Besides integer arithmetic, we implement three signum-based operations: signum (also used for
number comparison) and maximum, which go with significant optimizations compared to previous
work [35], and rounding. These operations aim at completing the most common integer operations.

Thanks to the generic form of our algorithms, the underlying TFHE scheme might be easily
replaced with another, LUT-based FHE scheme in the future.

Future Directions & Open Problems

For the Parmesan Library, there are several aspects to be considered:

• finalize the standard computer arithmetic by implementing:

– bit operations (&, |, !, . . . ) and integer division,
– conversions between the standard and the signed binary representation (if needed, e.g.,

for bit operations),
– support for (u)intXY-like types, etc.

• algorithms for other common non-atomic operations (like maximum),

• other optimizations taking TFHE batching [14] into account,

• proper thread scheduling (cf. Remark 3) and dedicated optimizations with respect to a fixed
number of threads,

• check how the (very recent) FINAL Scheme [5] compares to TFHE as the underlying FHE
scheme.

From the theoretical point of view, the most interesting open problem is the possible NP-
completeness of ASC∗s. For the moment, we also do not provide any argument of optimality for
our ASC∗s, which we generated by a brute-force method for only up to 12-bit integers.
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A Conversions Between Binary Representations
Recall that since A2 ⊂ Ā2, no conversion is needed from the standard to the signed binary rep-
resentation. Let us discuss the opposite conversion in more detail. First, note that in the signed
binary, the leading bit determines the sign of the represented integer. Therefore, we outline this
conversion only for positive integers; find it in Algorithm 9.

Algorithm 9 Conversion from the signed to the standard binary representation (assuming a pos-
itive input).
Input: (2, Ā2)-representation x̄ ∈ Ā2

n of X ∈ N, for some n ∈ N (x̄ has a positive leading bit),
Output: (2,A2)-representation x ∈ A2

n of X.
1: x← x̄
2: for i = 0 . . . n− 1 do
3: if xi < 0 then
4: xi ← xi + 2
5: xi+1 ← xi+1 − 1
6: end if
7: end for
8: return x

For negative integers, we suggest two options:

1. We remember the negative sign, we flip all signs and we proceed with Algorithm 9 normally.

2. We extend the (negative) input by zeros to a pre-determined length n̄ ≥ n and we run
Algorithm 9. This gives us a representation with leading 1̄ at the n̄-th position, which we
trim and we obtain x′ ∈ A2

n̄. Such an x′ is a standard complement code of length n̄ for
X < 0. E.g., for an n̄ = 8-bit representation, we have (1̄01̄01̄0•)2 Alg. 9−−−−→ (1̄11010110•)2 ∼
(int8_t)(0b11'01'01'10) = −42.

Also, recall that for the “opposite” conversion, there does not exist a parallel algorithm. Indeed,
the existence of such a parallel algorithm would allow the following scenario: one may convert
(trivially) from the standard to the signed binary, perform addition, and convert back, all in parallel.
This contradicts the impossibility of parallel addition over a non-redundant integer representation
(in this example the standard binary), as shown by Kornerup [36].

B Average Number of Additions in Scalar Multiplication
We evaluate the average number of additions over 12-bit windows in the Koyama-Tsuruoka recoding
(recall that the Koyama-Tsuruoka recoding achieves minimal Hamming weight) using:

1. our 12-bit ASC∗s, and

2. the standard double-and-add/sub method.

E.g., for k = 885, Koyama-Tsuruoka recoded as 0b1001̄0001̄01̄1̄: the ASC∗ is (1, 7 = −1 + 1 · 23,
223 = −1 + 7 · 25, 885 = −7 + 223 · 22), which requires 3 additions, whereas the standard approach
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Table 6: Bootstrapping complexity of the schoolbook (Scb.) and the Karatsuba (Kar.) multipli-
cation algorithms with different input bit-lengths (Bits). In Karatsuba, we consider splitting odd
numbers such that the longer part is at LSB (cf. Section 3.3.3, item 4).

Bits . . . 8 . . . 14 15 16 17 18 19 . . . 32 . . .

Scb. . . . 176 . . . 560 645 736 833 936 1 045 . . . 3 008 . . .
Kar. . . . 221 . . . 572 678 725 843 896 1026 . . . 2617 . . .

gives (1, 7 = −1 + 1 · 23, 111 = −1 + 7 · 24, 443 = −1 + 111 · 22, 885 = −1 + 443 · 21), which requires
4 additions.

First, we evaluate the Koyama-Tsuruoka recoding for all odd integers in the interval [1, 4 095],
we trim them to 12 LSBs and we take the absolute value, obtaining 1 792 unique values. Then, we
evaluate both ASC∗s and double-and-add/sub, totalling 5 558 and 6 956 additions, respectively. For
simplicity, we assume that those 1 792 values are uniformly distributed. This gives us an average
of 3.10 additions for ASC∗s and 3.88 additions for double-and-add/sub.

C Threshold for Karatsuba Algorithm
Karatsuba algorithm has a lower asymptotic complexity than the schoolbook algorithm (O(nlog 3)
vs. O(n2)), however, for short inputs, schoolbook is better. Hence, the aim is to derive threshold
tM , under which the schoolbook algorithm outperforms Karatsuba. In the clear as well as in the
encrypted domain, the threshold tM needs to be evaluated with respect to the complexity of all
involved operations in that domain.

Remark 4. As outlined in Remark 1, it is important to choose a complexity measure. For al-
gorithms like parallel addition/subtraction, we aim at achieving the lowest bootstrapping depth –
they require as many threads as the number of bits, which makes this choice reasonable with existing
(highly) multi-threaded CPUs.

However, for multiplication, parallelization is enormous in the first couple of steps and then
it drops down rapidly. With a limited number of threads, we are closer to the “single-threaded”
scenario, where we aim at minimizing the total number of bootstraps, which we suggest to apply
for multiplication.

Both schoolbook and Karatsuba multiplication can be constructed using just addition (cf. Al-
gorithm 1) and single-bit multiplication (cf. Algorithm 4), while addition requires A = 2 bootstraps
(per bit), whereas single-bit multiplication requires M = 1 bootstrap. We evaluate the bootstrap-
ping complexity of the schoolbook algorithm for n-bit inputs as

B
(s)
× (n) = M · n2 +A · n · (n− 1) = 3n2 − 2n. (15)

We use this result to evaluate the complexity of a first-level Karatsuba, which is sufficient to find
the threshold tM – indeed, recursion emerges for longer inputs, where also the halved input is longer
than tM . We observe that Karatsuba outperforms the schoolbook algorithm starting from around
n = 16-bit inputs; find the concrete bootstrapping complexities in Table 6. It shows that there is
no single threshold tM , instead, there is a slight overlap.
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D Thread Scheduling
We suggest thread scheduling for a potential 10-bit Karatsuba multiplication in Table 7. Next, we
suggest thread scheduling for 32-bit multiplication and for 4-, 8-, 16- and 32-bit squarings in Tables
8, 9, 10, 11 and 12, respectively. Note that 16-bit multiplication is covered in Table 3.

Table 7: A suggestion of thread scheduling for the calculation of intermediate values A, B, and
C, followed by their aggregation, in potential 10-bit Karatsuba multiplication (intentionally under
the threshold tM to compare with schoolbook), splitting the input into two 5-bit parts. Using 36
threads in 17 steps, totalling 320 bootstraps.

A B C Total #thr’s Comment

25 − 5|5 35
C: r1 + r0 | s1 + s0− 25 5|5 35

− − 36 36 C: 6-bit pairwise mul.
5 5 6 16

A,B: 5-bit schoolbook
summation (8 rows);

C: 6-bit scb. Σ (+2 rows)

5 5 6 16
...

...
...

...
5 5 6 16
− 10 6 16

B: A+B− 10 6 16

− − 12 12
C: C − (A+B)− − 12 12

− − 15 15
C: A∥B + (C−A−B)∥0− − 15 15

Total #PBS 320

E Algorithm for Squaring of Short Inputs
We provide the full algorithm for squaring of short inputs as Algorithm 10. Note that columns of
LUTs in that algorithm hold squares of respective selector in binary: e.g., the 5th column contains
100110, which is a (reversed) binary representation of 52 = 25. The bit at 21 position (i.e., y1) is
always zero thanks to the fact a2 mod 4 ∈ {0, 1}. Due to line 1, we need 22∆ ≥ (22)2+(21)2+(20)2 =
21.
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Table 8: A suggestion of thread scheduling for the calculation of intermediate values A, B, and C,
followed by their aggregation, in 32-bit Karatsuba multiplication, splitting the input into two 16-bit
parts. Note that C is calculated via 17-bit schoolbook algorithm; cf. Table 6. Using 289 threads in
41 steps, totalling 2 617 bootstraps.

A B C Total #thr’s Comment

− − 16|16 32
C: r1 + r0 | s1 + s0− − 16|16 32

− − 289 289 C: 17-bit pairwise mul.
80 80 17 177

A,B: 16-bit Karatsuba
(23 rows);

C: 17-bit scb. Σ (+9 rows)

80 80 17 177
...

...
...

...
24 24 17 65
− 33 17 50

B: A+B− 33 17 50
− − 17 17
...

...
...

...
− − 17 17

− − 34 34
C: C − (A+B)− − 34 34

− − 35 35
C: (C−A−B)∥0 +B− − 35 35

− − 33 33
C: . . .+A∥0− − 33 33

Total #PBS 2 617

Table 9: A suggestion of thread scheduling for the calculation of intermediate values A, B, and
C, followed by their aggregation, in 4-bit Divide & Conquer squaring. Using 5 threads in 5 steps,
totalling 24 bootstraps.

A B C Total #thr’s Comment

− − 4 4 C: 2-bit pairwise mul.
3 − 2 5 A,B: 2-bit squ. (direct);

C: 2-bit scb. Σ− 3 2 5

− − 5 5
C: A∥B + C∥0− − 5 5

Total #PBS 24
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Table 10: A suggestion of thread scheduling for the calculation of intermediate values A, B, and C,
followed by their aggregation, in 8-bit Divide & Conquer squaring. Using 16 threads in 11 steps,
totalling 122 bootstraps.

A B C Total #thr’s Comment

− − 16 16 C: 4-bit pairwise mul.
4 4 4 12

A,B: 4-bit D’n’Q
(5 rows);

C: 4-bit scb. Σ (+1 row)

5 5 4 14
...

...
...

...
5 5 4 14
− − 4 4

− − 8 8
C: C∥0 +B− − 8 8

− − 9 9
C: . . .+A∥0− − 9 9

Total #PBS 122

Table 11: A suggestion of thread scheduling for the calculation of intermediate values A, B, and C,
followed by their aggregation, in 16-bit Divide & Conquer squaring. Using 64 threads in 19 steps,
totalling 488 bootstraps.

A B C Total #thr’s Comment

− − 64 64 C: 8-bit pairwise mul.
16 16 8 40

A,B: 8-bit D’n’Q
(11 rows);

C: 8-bit scb. Σ

...
...

...
...

9 9 8 26
− − 8 8
− − 8 8
− − 8 8

− − 16 16
C: C∥0 +B− − 16 16

− − 18 18
C: . . .+A∥0− − 18 18

Total #PBS 488

40



Table 12: A suggestion of thread scheduling for the calculation of intermediate values A, B, and C,
followed by their aggregation, in 32-bit Divide & Conquer squaring. Using 129 threads in 27 steps,
totalling 1 837 bootstraps.

A B C Total #thr’s Comment

− − 80 80

A,B: 16-bit D’n’Q
(19 rows);

C: 16-bit Karatsuba
(23 rows)

− − 80 80
− − 81 81
− 64 25 89
64 40 25 129
...

...
...

...
18 18 24 60
18 − 24 42

− − 33 33
C: C∥0 +B− − 33 33

− − 35 35
C: . . .+A∥0− − 35 35

Total #PBS 1 837

Algorithm 10 Short-Input Squaring.
Input: 3-bit representation (x2x1x0•)2 ∈ (Ā2)

3 of X ∈ Z,
Output: 6-bit representation (y5 . . . y0•)2 ∈ (Ā2)

6 of X2.
1: X ← eval2(x2x1x0•) ▷ no bootstrap needed; cf. (9)
2: in parallel do
3: y0 ← (0, 1, 0, 1, 0, 1, 0, 1∥ 1, 0, 1, 0, 1, 0, 1)[X]
4: y1 ← 0 ▷ always 0
5: y2 ← (0, 0, 1, 0, 0, 0, 1, 0∥ 0, 1, 0, 0, 0, 1, 0)[X]
6: y3 ← (0, 0, 0, 1, 0, 1, 0, 0∥ 0, 0, 1, 0, 1, 0, 0)[X]
7: y4 ← (0, 0, 0, 0, 1, 1, 0, 1∥ 1, 0, 1, 1, 0, 0, 0)[X]
8: y5 ← (0, 0, 0, 0, 0, 0, 1, 1∥ 1, 1, 0, 0, 0, 0, 0)[X]
9: end parallel

10: return (y5 . . . y0•)2
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