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Abstract
Due to the significant development of the intelligence industry worldwide, various initiatives have
increasingly recognized the value of the Internet of Things (IoT). IoT systems, however, are often hin-
dered by fundamental challenges, such as the need for a central server to manage them. Decentralizing
these systems can be achieved through the use of blockchains. Recently, there has been an increase
in the popularity of blockchain in various fields, such as banking, IoT, and the intelligence industry,
and human societies have taken notice of it. One of the main problems is with the scalability of such
systems as the network size grows.

This paper examines how to overcome this challenge in blockchain-based IoT systems. We
introduce a sharding-based blockchain that is lightweight and scalable. In the proposed method, the
nodes are assigned to a number of shards based on their history of activity. As part of this study, the
Improved Byzantine Fault Tolerance with Graceful performance Degradation (IGDBFT) consensus
algorithm is introduced within the proposed scheme for intra-shard consensus. A solution to storing
blocks and cross-shard transactions has been developed using a global chain containing parent blocks
in the cloud layer. Finally, we analyze the security and efficiency of our scheme and compare our
sharding-based protocol with previous protocols.

1. Introduction
The Internet of Things is an innovative architecture that

connects various smart devices such as sensors, vehicles,
smart home devices, and physical objects, allowing them
to gather and exchange data via the internet. IoT devices
may contain confidential and private information and pose
many security threats aimed at exploiting weaknesses in the
centralized infrastructure of these systems, which prevents
their scalability [1].

Over time, IoT edge devices become empowered to
mitigate issues related to centralized system vulnerabilities.
A decentralized approach can be used as a possible solution
to prevent existing faults and attacks from improving IoT
safety. Centralized methods for securing privacy and data
usage require robust servers controlled by third parties [2].

Blockchain is one of the technologies available to en-
hance the security and distribution of IoT. This technology
helps share data securely through the use of cryptographic
algorithms and a decentralized network. [3].

Switching from a centralized IoT to a blockchain-based
IoT (BIoT) increases fault tolerance and eliminates unique
failure points. The decentralized network architecture allows
IoT devices to be autonomous. Blockchain participants can
verify the authenticity of the data sent and the identity of
the sending participant. However, current blockchains have
limitations such as network overload and reduced scalability
when increasing the number of IoT nodes and exchanging
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large amounts of data simultaneously, which lead to in-
creased network traffic and additional processing costs [4].
Blockchain uses sophisticated computational and resource-
consuming algorithms that reduce the throughput of IoT and
cause latency inconsistent with IoT goals of responding to
the user. Designing a lightweight-scalable blockchain is the
perfect solution to these challenges. Adding a lightweight
blockchain can change the system topology in designing a
blockchain-based IoT.
1.1. Contribution

In this paper, we present a novel sharding-based method
that considers dynamic node behavior to improve the scal-
ability of blockchains at the IoT system’s edge. So, by con-
sidering nodes’ activity histories, our method outperforms
currently used sharding techniques and enables nodes to join
or leave shards without sacrificing performance. Moreover,
we propose an improved DBFT algorithm with Graceful
Performance Degradation (IGDBFT), which acts as an intra-
shard consensus for the blockchain-based IoTs. Indeed, our
method offers a solution that is specifically adapted to the
dynamic nature of IoT nodes, making it a more effective
and efficient method for managing this context than existing
sharding-based approaches.
1.2. Background summary

The related literature can be investigated in two direc-
tions: the works focusing on the usage of blockchain in IoT
systems, and the works toward the scalability of blockchain.



1.2.1. Blockchain-based IoTs
Blockchain is a digital transaction ledger that offers trust

and reliability in distributed, third-party-free contexts. Secu-
rity, scalability, storage capacity, and anonymity are the most
important issues with this design. Blockchain-based IoT is
proposed for usage in a variety of intricate application areas,
including crowdsourcing [5], smart cities [6], and healthcare
[7]. Reyna et al. [8] have analyzed the challenges and op-
portunities of blockchain and IoT integration. Devetsikiotin
and Christidis [9] believed that the operational power of the
IoT might be considerably increased by adopting blockchain.
They clarified how the combination of blockchain and IoT
could make it easier to share resources and create an en-
abled service market. The capacity of blockchain to produce,
store, and transmit digital assets in a decentralized and anti-
tamper distribution method was presented by Samaniego
and Deters [10], which has significant practical utility for
the Internet of Things. Danzi et al. [11, 12] argued that
although blockchain is suitable for IoT interaction, it is
impossible to maintain a local version of that for power-
limiting devices. So they designed lightweight protocols for
collecting blockchain data. Huh used blockchain to relax
the restrictions and resolve the problems with IoT client
synchronization [13]. Pan et al. [14] focused on the vul-
nerability of IoT devices against malicious hackers, and de-
signed "EdgeChain" to prevent possible network abuses us-
ing authorized blockchain and smart contracts to overcome
security vulnerabilities. A public blockchain architecture for
data authentication in the Internet of Things was created by
Pinto et al. [15]. In order to minimize user privacy leaks for
IoT devices in the blockchain network flexibly and securely,
Cha et al. [16] investigated the architecture of a blockchain-
connected gateway. Zhang and Wen [17] used blockchain
and smart contracts to realize digital asset transactions and
payment data in the IoT.
1.2.2. Blockchain Scalability

Scalability refers to maintaining throughput and con-
trolling transaction confirmation delays when the number
of transactions increases. With the dynamic of nodes and
transactions in the IoT, the scalability of the blockchain is
reduced.

This issue has been important enough to be considered in
many studies of blockchain. Eyal et al. [18] designed a new
blockchain protocol in Bitcoin-NG for scalability. Bitcoin-
NG is a highly robust, fault-tolerant blockchain protocol
with the same trust model as Bitcoin. Luu et al. at Elastico
[19] uniformly divide or parallelize the mining network into
smaller shards, each of which processes a set of transactions.
While sharding is common in non-Byzantine environments,
Elastico is the first proposal for a secure sharding protocol
with Byzantine adversaries. OmniLedger [20] optimizes
parallel, intra-shard transaction processing on the ledger via
collectively signed state blocks and low-latency "trust-but-
verify" validation for low-value transactions. Dorri et al.
[21] believed that blockchain could address IoT security and
privacy issues, and they proposed a small lightweight and

scalable blockchain. A similar classification scheme is pro-
vided in [22]. RapidChain [23] is the first public sharding-
based blockchain protocol which is Byzantine fault tolerant
up to 1∕3 participants. This scheme uses an optimal intra-
shard consensus algorithm to achieve a higher throughput
through block pipelining, which is a novel gossiping protocol
for large blocks, and a secure reconfiguration mechanism to
ensure robustness. ZyconChain [24], a scalable blockchain
system for broad uses, was suggested by Sohrabi et al. This
paper introduces three types of blocks forming three separate
chains: parent, side, and state chain in the blockchain system.
Different consensuses are used to create blocks because each
algorithm has unique characteristics that make it appropriate
for a particular form of block. A novel scalable public
blockchain called Groupchain [2] is presented by Lei et al. In
order to increase the efficacy of all transactions, Groupchain
uses the leader group to create blocks. It also adds incentives
and payments to the incentive system to track how well the
leader group members are performing.

2. System overview
IGD-ScoreChain is a blockchain-based IoT solution pro-

posed for the IoT’s edge that combines cloud-based stor-
age and blockchain technology. The blockchain nodes are
located at the edge of a partially synchronous peer-to-peer
network within the fog layer, as shown in Fig. 1. Various
forms of information such as sensor data, user data, device
status, and smart contract data that are saved, processed, and
sent between IoT devices, can be included in the data that is
handled in IGD-ScoreChain. Our approach aims to manage
various kinds of data of IoT networks in a flexible and
scalable way while overcoming the challenges of the cen-
tralized nature of IoT systems. Actually, IGD-ScoreChain
provides a secure and reliable platform for implementing
transactions, improving the scalability of blockchains at the
edge of IoT, and providing a more efficient and flexible
solution for managing data in an IoT environment.

Transactions, in our design, are assumed to be account-
based [25]. In account-based transactions, the transfer takes
place between two accounts and has a sender and a recipient.
The transactions connected to an account must be completed
one after the other since the outcome of a transaction de-
pends on the input state, which gives designs employing
dynamic nodes more flexibility.

In fact, our design aims to consider all nodes perfor-
mance in aspect of computational capacity in a fair man-
ner that does not based on randomness issues. The system
includes several main features:

• Sharding Based on Node’s Score: This paper intro-
duces the concept of "node’s score" based on which
the sharding of nodes is performed. The scores are
calculated according to the node’s activity history in
transaction processing.

• Mini-Block: The shards process transactions in paral-
lel and generate mini-blocks.
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Figure 1: Overview of Blockchain Architecture in IoT.

• Parent Shard: By solving the PoW puzzle in random
and uncertain rounds by fog nodes, we construct a
parent shard to manage shards and store mini-blocks
in the cloud layer.

• IGDBFT Consensus: The IGDBFT consensus based
on DBFT [26] is used to reach an agreement between
the nodes of the shards to process transactions and
generate a mini-block.

• Parent Block: Mini-blocks will be stored in the cloud
layer as a parent block by using the collective thresh-
old signature.

3. Sharding in Blockchain
Sharding is one of the solutions to improve scalability.

There are three types of sharding in the blockchain: 1)
network nodes sharding, 2) transactions sharding 3) state
sharding [27]. We focus on node sharding and its relevant
challenges in order to reduce overload and increase scalabil-
ity. A simple scheme of sharding is shown in Fig. 2. This
technology in blockchain refers to dividing existing nodes
into subnets called shards that can process transactions in
parallel. Each shard has its separate chain. In our model, each
shard chain consists of mini-blocks which are generated by
shard nodes by processing a certain number of transactions.
In a simple sharding protocol, there is a leader among each
shard’s members responsible for managing the shard. With
an intra-shard consensus, the nodes process the transactions
and confirm them.
3.1. Sharding Challenges

In the sharding method, we face some challenges that,
if not appropriately addressed, will lead to severe problems,
including various security attacks and throughput degrada-
tion.

1. Nodes Assignment to shards: One of the main chal-
lenges in sharding is to define a way for assigning
nodes to shards in each round. Usually, in blockchain,
it takes a certain amount of time for a specific pro-
cess, such as block generation or reconfiguring nodes,

Figure 2: The simple layout of a Sharding-Based Blockchain.

to occur in the network, which is called a "round."
Conventional methods for assigning nodes to differ-
ent shards are random methods of selecting nodes
through a random protocol like MBFT [4], Zycon-
chain [24], or solving puzzles in PoW like Groupchain
[2]. The remarkable thing about these methods is that
they ignore the performance differences between the
nodes. Sometimes, the difference in nodes’ throughput
causes a difference in the speed of block generation
or causes inconsistencies and delays in processing
transactions, leading to reduced throughput or vulner-
ability to attacks. As a result, the activity of honest
nodes in processing transactions remains ineffective.
In time-sensitive IoT systems, the critical factors are
the proper speed of transaction processing and reason-
able throughput.

2. Shard’s Reconfiguration : The ability to shards re-
configuration is the next challenge of a sharding-
based blockchain. With a fixed sharding structure, the
malicious node can penetrate the shard’s structure and
control the affairs of a shard based on this fixed back-
ground [27]. If a shard member remains constant in the
several rounds, the proportion of members controlled
by the attacker may exceed the predetermined safety
threshold, such as 1/3 in PBFT [28], so old members
must be replaced by new members in uncertain and
random rounds. The ratio of honest nodes in the shard
should be ensured according to the safety threshold.
The safety threshold is the ratio of honest nodes to
malicious nodes in a shard, which is defined by the
consensus to determine the level of fault tolerance in
a shard.

3. Intra-Shard Consensus: The selection of an appro-
priate intra-shard consensus algorithm, which in ad-
dition to a reasonable response time has less commu-
nication complexity, is another issue in blockchain-
based IoT. The choice of intra-Shard consensus al-
gorithm should be such that the minimum security
guarantee for the system is 50% to avoid 51% attack.
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4. Score-Based Sharding Method
In this section, we explain how the proposed nodes

sharding method works in the blockchain. We clarify the
score-based algorithm for node assignments to shards and
then propose the intra-shard consensus protocol. Note that
there is a parent shard in the system that is responsible for
managing shards and storing the mini-blocks in the cloud.
So, we first explain how the parent shard is constructed.
4.1. Parent shard construction

Algorithm 1 shows the process of constructing and then
updating a main shard in the system named the parent shard.
In this algorithm, a PoW puzzle is initially solved to identify
the powerful nodes to be members of the parent shard. We
assume that the attacker is a slowly adaptive adversary [27].
Then, the parent shard is reconfigured every few random
rounds so that any new node that can solve the puzzle is
added to the shard, and the oldest member is removed to
reduce the overload.
Algorithm 1 Constructing and updating the Parent Shard

Input: {Fog Nodes 𝑁 , parent shard size 𝑘}
Output:{Parent shard 𝑃 }

𝐴 = SHA256 (𝑇𝑥1𝑟𝑜𝑜𝑡, timestamp)
𝐵 = SHA256 (𝑇𝑥2𝑟𝑜𝑜𝑡, timestamp)

1: 𝑖 ← 1;
2: |𝑃 | ← ∅;
3: 𝑇 ← 𝑁 ;
4: while |𝑃 | ≤ 𝑘 do
5: if solve-crypto-puzzle(𝐴, 𝑇 ) then
6: 𝑎𝑖 ← solver of the puzzle;
7: 𝑃 ← 𝑃 ∪ {𝑎𝑖};
8: 𝑇 ← 𝑇 − {𝑎𝑖};
9: 𝑖 + +;

10: end if
11: end while
12: for each round do
13: if solve-crypto-puzzle(𝐵, 𝑇 ) then
14: 𝑎𝑖 ← solver of the puzzle;
15: 𝑃 ← 𝑃 ∪ {𝑎𝑖};
16: 𝑃 ← 𝑃 − {𝑎𝑖−𝑘};
17: 𝑇 ← 𝑇 − {𝑎𝑖};
18: 𝑇 ← 𝑇 ∪ {𝑎𝑖−𝑘};
19: 𝑖 + +;
20: end if
21: end for

4.2. Scoring nodes based on their activity history
By dividing the nodes into different shards based on their

activity history, we aim to have a homogeneous distribution
of nodes over the shards, such that the average throughput
of all shards remains almost the same. This method takes
the diversity of the nodes’ performance into account, which
would be proper for variable structure of IoT networks. We
can use a non-random method based on the score of nodes
to assign them to shards. Node’s score refers to their history

of them in the previous rounds. The history of each node
can include the duration of transaction confirmation and the
speed of mini-block generation by that node. In this method,
the nodes are evaluated during each transaction processing
and get the scores based on their performance, and the shard
leader sends these scores to the parent shard for updating the
configuration. The score of nodes is updated after a random
number of rounds for each reconfiguration.

Let 𝑇 𝑖
𝑗,𝑇 𝑥 = 𝑡𝑖𝑗(𝑐𝑜𝑛𝑓𝑖𝑟𝑚) − 𝑡𝑖(𝑠𝑒𝑛𝑑), where 𝑡𝑖(𝑠𝑒𝑛𝑑) is when

the client sends the request to the members of shard 𝑖, and
𝑡𝑖𝑗(𝑐𝑜𝑛𝑓𝑖𝑟𝑚) is when node 𝑗 in shard 𝑖 confirms the transaction
𝑇𝑥. After each transaction, we score the nodes based on
the processing time and the result of their confirmation.
(𝑠𝑐𝑜𝑟𝑒𝑖𝑗)𝑇𝑥 is the score of node 𝑗 in shard 𝑖 after confirming
transaction 𝑇𝑥, which is defined as follows.

(𝑠𝑐𝑜𝑟𝑒𝑖𝑗)𝑇𝑥 = (
𝑇 𝑖
𝑇 𝑥

𝑇 𝑖
𝑗,𝑇 𝑥

) ⋅ 𝜖 (1)

where 𝜖 is a coefficient indicating the consistency of the
result of the node transaction verification with the consensus
algorithm agreed upon by the nodes. This parameter will be
introduced more in the following. 𝑇 𝑖

𝑇 𝑥 is the average time
over all nodes in shard 𝑖 to confirm 𝑇𝑥 and is defined as
follows.

𝑇 𝑖
𝑇 𝑥 =

∑𝑛
𝑗=1 𝑇

𝑖
𝑗,𝑇 𝑥

𝑛
(2)

where 𝑛 is the number of nodes in each shard. Finally,
(𝑠𝑐𝑜𝑟𝑒𝑖𝑗)𝑐𝑜𝑛𝑓𝑖𝑟𝑚 is the total score of node 𝑗 in shard 𝑖 after
confirming 𝑡 transactions, defined as follows.

(𝑠𝑐𝑜𝑟𝑒𝑖𝑗)𝑐𝑜𝑛𝑓𝑖𝑟𝑚 =
𝑇𝑥=𝑡
∑

𝑇𝑥=1
(𝑠𝑐𝑜𝑟𝑒𝑖𝑗)𝑇𝑥 (3)

It just remains to characterize 𝜖 in 1. The parameter 𝜖 reflects
the correctness or incorrectness of the transaction confirma-
tion of the node, or its passivity. Note that some nodes in
the blockchain, though being non-malicious, may confirm
some transactions in some rounds but do not contribute to
transaction confirmation in the other ones. These nodes are
called passive nodes. For passive nodes, or for nodes whose
transaction confirmation is not in line with the consensus, 𝜖
is set to 0.

Despite the malicious or passive nodes, an honest-active
node confirms the transactions, correctly. We consider two
situations for honest-active nodes. The first situation is when
the node delivers the correct transaction confirmation to the
client, on time. 𝜖 is set to its maximum value, i.e. 𝜖 = 1, in
this case. The second situation is when the node confirms
the transaction correctly but delivers it to the client with
some delay due to unexpected events in the IoT, such as a
sudden increase in traffic. The node confirmation score will
be reduced depending on the amount of delay as follows.
let 𝑑 = 𝑡𝑖𝑗(𝑟𝑒𝑐𝑒𝑖𝑣𝑒) − 𝑡𝑖𝑗(𝑐𝑜𝑛𝑓𝑖𝑟𝑚) be the delay of the delivering
a transaction confirmation to the client, and 𝑡𝑖𝑗(𝑟𝑒𝑐𝑒𝑖𝑣𝑒) is the
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time that the client receives the response from the node. The
node confirmation score is defined as 𝜖 = 𝜖𝑑 according to 4.

𝜖𝑑 = 1 − 𝑑
𝑀𝑎𝑥(𝐷)

(4)

where 𝑀𝑎𝑥(𝐷) is the maximum acceptable delay to de-
liver the transaction confirmation. For the nodes with 𝑑 >
𝑀𝑎𝑥(𝐷), 𝜖 will be set to zero.

All in all, the coefficient 𝜖 is defined as stated by 5.

𝜖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 not confirming or inconsistent confirming
1 correct confirmation and on time
𝜖𝑑 correct confirmation with 0 < 𝑑 < 𝑀𝑎𝑥(𝐷)
0 correct confirmation with 𝑑 > 𝑀𝑎𝑥(𝐷)

(5)

The final score of node 𝑗 in shard 𝑖 is obtained when it
successfully generates the mini-block. This score is calcu-
lated by 6.

(𝑠𝑐𝑜𝑟𝑒𝑖𝑗)𝑚𝑖𝑛𝑖−𝑏𝑙𝑜𝑐𝑘 = (𝑠𝑐𝑜𝑟𝑒𝑖𝑗)𝑐𝑜𝑛𝑓𝑖𝑟𝑚 ⋅
𝑇 ∗

𝑡𝑚𝑖𝑛𝑖−𝑏𝑙𝑜𝑐𝑘
(6)

where 𝑡𝑚𝑖𝑛𝑖−𝑏𝑙𝑜𝑐𝑘 is the time it takes for a node to generate
a mini-block. 𝑇 ∗ is the number of confirmed transactions
to generate a mini-block for the node.This required number
can be different in various rounds because the traffic patterns
in IoT systems are variable. Thus, the maximum mini-block
volume, which refers to the number of approved transactions
to finalize the mini-block, may not be considered the same
for all transactions processing rounds. However, it has a
fixed value in each round. If any mini-block accepts more
transactions than its capacity, it will be rejected by the
network. The pseudo-code for computing the node score is
summarized in Algorithm 2.
4.3. Intra-shard consensus

Blockchain-based systems require a suitable consensus
algorithm. A consensus with low energy consumption and
communication complexity is required due to the limited
computing power of IoT devices. An appropriate option for
sharding-based systems is Byzantine Fault Tolerance (BFT)
based algorithms. The main feature of such algorithms is
the certainty of block generation. As far as block generation
certainty is concerned, the main feature of these algorithms
is their liveness and safety. Liveness refers to the order in
which transactions are processed, and safety refers to the
certainty that a block will not be destroyed. BFT protocols
ideally perform in fault-free systems but their performance
degrades in normal faulty scenarios. In the fault-free sce-
nario, the replicas are honest, and there are no errors during
transaction processing. However, in the normal case, some
replicas may be faulty. Replicas are a set of backup nodes in a
shard. As the algorithms evolve, they are designed to ensure
no significant performance degradation in normal operating
conditions.

Algorithm 2 Score of node 𝑗 in shard 𝑖

Input:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Set of shard transactions 
Confirmation duration 𝑇 𝑖

𝑗,𝑇 𝑥, 𝑇 𝑥 ∈ 

Average confirmation duration 𝑇 𝑖
𝑇 𝑥, 𝑇 𝑥 ∈ 

Maximum number of 𝑇𝑥 to generate mini-block 𝑇 ∗

Duration to generate a mini-block 𝑡𝑚𝑖𝑛𝑖−𝑏𝑙𝑜𝑐𝑘
Output:{(𝑠𝑐𝑜𝑟𝑒𝑖𝑗)𝑚𝑖𝑛𝑖−𝑏𝑙𝑜𝑐𝑘}

1: for each 𝑇𝑥 ∈  do
2: if 𝑇𝑥𝑐𝑜𝑛𝑓𝑖𝑟𝑚 = 𝑇𝑥𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 and 0 ≤ 𝑑 < 𝑀𝑎𝑥(𝐷)

then
3: 𝜖𝑑 ← 1 − 𝑑

𝑀𝑎𝑥(𝐷)
4: else
5: 𝜖 ← 0
6: end if
7: (𝑠𝑐𝑜𝑟𝑒𝑖𝑗)𝑇𝑥 ← (

𝑇 𝑖
𝑇 𝑥

𝑇 𝑖
𝑗,𝑇 𝑥

) ⋅ 𝜖

8: end for
9: 𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑟𝑚 ←

∑𝑇𝑥=𝑡
𝑇 𝑥=1(𝑠𝑐𝑜𝑟𝑒

𝑖
𝑗)𝑇𝑥

10: 𝑠𝑜𝑐𝑟𝑒𝑖𝑗(𝑚𝑖𝑛𝑖−𝑏𝑙𝑜𝑐𝑘) ← 𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑟𝑚 ⋅ 𝑇 ∗

𝑡𝑚𝑖𝑛𝑖−𝑏𝑙𝑜𝑐𝑘
11: return 𝑠𝑜𝑐𝑟𝑒𝑖𝑗(𝑚𝑖𝑛𝑖−𝑏𝑙𝑜𝑐𝑘)

One of the most common BFT protocols is Practical
Byzantine Fault Tolerance (PBFT) [28], which reduced the
complexity of Byzantine fault tolerance from exponential to
polynomial [26], for the first time. This protocol is based
on the leader that 𝑛 ≤ 3𝑓 + 1 is the number of shard
nodes. 𝑓 is the number of byzantine or malicious nodes.
The system has a safety threshold when 𝑛 follows the above
relation. In PBFT, for the prepare and commit phase, replicas
require two rounds of all -to -all communication to agree on
executing a request that increases communication complex-
ity between the nodes. This requires high consumption of
computational resources and time. PBFT can perform best
in fault-free cases. However, in normal cases, it encounters
a considerable reduction in performance, which can lead to
a delayed or incorrect response to the client. In blockchain-
based IoT, we are looking for a consensus that, in addition
to responding at the desired speed, does not have a "Perfor-
mance Degradation" in normal cases. The system can trade-
off between fault tolerance and performance degradation for
graceful performance degradation.

DBFT [26] is a Byzantine Fault Tolerance protocol with
graceful performance degradation. This algorithm assumes
that the underlying cryptographic primitives, such as hash,
data encryption, and signature are computationally secure.
One of the main differences between DBFT and other BFT
protocols is the existence of a double response to requests
depending on the existing conditions, designed to achieve
lower latency and higher throughput. A replica responds
to the client twice. The first response is the speculative
execution of the request, and the second response is the
commitment to execute that request correctly by the replicas.
If the client receives a number of 3𝑓+1 consistent responses
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from the replicas in the speculative execution, the request is
completed and is considered the first response. If the client
receives the 2𝑓 + 1 or 3𝑓 first responses, the request must
be completed with the 2𝑓 + 1 second responses equal to
one message delay, so the overhead caused by the double
response mechanism is low. DBFT is based on three parts
the activity history of replicas. The speculative processing
history of requests that do not reach the quorum requires
a second response to complete the request. Commitment
history includes a certificate of commitment for the request.
The third part contains the history of collecting additional
information, the so-called garbage, which is checked in
the checkpoint protocol. To achieve a consensus with low
communication complexity between nodes, we designed a
new consensus algorithm based on DBFT. Actually, DBFT
has high communication complexity in commitment stage,
which cannot be suitable for time sensitive and limited
resources of IoT systems. So, in IGDBFT, we try to reduce
this complexity regarding to IoT network limitations.

5. Improvement Byzantine Fault Tolerance
with Graceful Performance Degradation
(IGDBFT)
In designing a new consensus algorithm based on DBFT

[26], we seek to reduce the communication complexity
between nodes for the commitment phase in the agreement
protocol. In normal cases, Algorithms 3, 4, and 5 show
the performance of the client, leader, and replicas in the
agreement protocol.

The other improvement on DBFT is related to one of
its main problems which is the rotation of the leader per
request to avoid the unpredictable destructive behavior of
a leader. In the following, we discuss the problems arising
from the random rotation and propose a non-random method
for selecting the leader.
5.1. View change protocol and Leader selection

Replicas will initiate a view change protocol in the event
of malicious behavior from the leader or the expiration of the
transaction processing timeout. When the view change pro-
tocol starts, nodes cease to send and receive messages, and
only messages related to changing the view are processed.
BFT algorithms generally have heavy and complex view
changes that can cause interruptions or loss of throughput. A
long delay in processing transactions is not suitable for time-
sensitive IoT systems. Moreover, as we said, in DBFT [26], a
leader rotation mechanism on the existing nodes is provided
per request to avoid byzantine leaders. Although this method
allows the system to change to ensure the processing is safe
but this rotation is random. The next leader in the rotation
may be faulty, so it must be re-rotated to eventually lead to an
honest node or enter the view change protocol, which means
the nodes will face computational and time overhead. Leader
rotation does not reduce the risk of the leader being attacked
but only prevents the leader from acting maliciously. Also,

due to the large number of requests in IoT, it is not cost-
effective to rotate the leader for each request. Therefore, it
is better to have a reliable, non-random method to select the
leader in each shard to reduce the probability of changing
the view. To as much as possible limit the possibility of the
view change protocol, we suggest a non-random method for
choosing the leader.

According to Algorithm 6, each shard has a leader to
guide the intra-shard consensus after dividing the nodes
according to their score. We select two nodes as leader and
vice-leader, inspired by GreenPoW [29]. The drawback of
GreenPoW is that it is more vulnerable to the selfish mining
or collusion of nodes. In our method, the leader and vice-
leader nodes are the two highest-scored nodes, respectively.
Given that the node with the highest score has proven its
correct activity over the rounds, it would be considered hon-
est, so it has a very low probability of becoming byzantine,
compared to other nodes. Choosing a vice-leader node that
is a sure alternative option instead of a leader can avoid the
costly view change protocol when the leader is compromised
by a powerful attacker.
5.2. Agreement protocol

In IGDBFT, one of the 3𝑓 +1 replicas plays the leader’s
role, and the remaining 3𝑓 ones are backup replicas, where 𝑓
is the number of faulty nodes. As shown in epoch 1 of figures
3 and 4 in fault-free and normal cases, the client sends its
request to the replicas and the leader, simultaneously. The
IGDBFT Agreement sub-protocol includes the following
four epochs for executing a request:

1. First, the client sends (𝗋𝖾𝗊𝗎𝖾𝗌𝗍(𝑚, 𝑜, 𝑡, 𝑐) to the leader
and backup replicas, where 𝑜 is the operation during
which the request must be processed, and 𝑡 is an
incremental timestamp. According to Algorithm 3, 𝑐
is the client who activates a timer for a request and
then sends it to all replicas.

2. Suppose the timestamp of 𝗋𝖾𝗊𝗎𝖾𝗌𝗍(𝑚) is greater than
the last request accepted. In that case, regarding Al-
gorithm 4, the leader accepts 𝑚 from 𝑐 and assigns a
sequence number 𝑛𝑠 to request. Then, it sends a mes-
sage in the form (𝗉𝗋𝖾𝗉𝖺𝗋𝖾, 𝑑, 𝑣, 𝑛𝑠, ℎ𝑛𝑠 ) to the replicas.
𝑑 is the digest of the request 𝑚, 𝑣 is the current view in
which the request for processing is ordered, and ℎ𝑛𝑠 is
a summary of the ordered requests history. Similarly,
the backup replicas accept a request from the leader if
the timestamp is greater than the last timestamp of the
accepted request.

3. As shown in Algorithm 5, when the replicas receive
the prepared message from the leader, they confirm its
integrity and validity, then accept the prepared mes-
sage. The steps for checking the message confirmation
are similar to [26], which are detailed, as follows:

• The request signature is correct, and the digest 𝑑
of message 𝑚 is checked.

• The request view number must match the current
system view number.

Page 6 of 15



Figure 3: IGDBFT in Fault-free cases.

• 𝑛𝑠 = 𝑛𝑠𝑙+1, where 𝑛𝑠𝑙 is the last request accepted
by a replica.

• ℎ𝑛𝑠 = (ℎ𝑛𝑠−1, 𝑑).
• The replica does not accept two requests with the

same sequence numbers and different contents in
the same view.

once the 𝗉𝗋𝖾𝗉𝖺𝗋𝖾 message is accepted, replica 𝑖 puts
the request in its log. Replica 𝑖 executes the request
with the assigned sequence number and sends mes-
sage (𝖿 𝗂𝗋𝗌𝗍 − 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾, 𝑣, 𝑠, ℎ𝑛𝑠 , 𝑟, 𝑡, 𝑐, 𝑖) to the client. 𝑟
is the reply for the client. Suppose the client receives
3𝑓+1 𝖿 𝗂𝗋𝗌𝗍 − 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾messages from distinct replicas
with the same 𝑣, 𝑠, ℎ𝑛𝑠 , 𝑐, 𝑡, and 𝑟. In this case, they are
compatible, so as shown in Fig. 3, the request is com-
plete, and the client announces the completion of the
request before the deadline. Suppose the client does
not receive the 3𝑓 + 1 first response after executing
the request. It waits until the timer of the first response
expires; refer to Algorithm 5.

4. As shown in epoch 3 of Fig. 4, in addition to sending
the first response, the replicas must commit to exe-
cuting the request correctly. The replicas, as stated
in Algorithm 5, commit to the correct executing of
the request in the form of a (𝖼𝗈𝗆𝗆𝗂𝗍, 𝑑, 𝑣, 𝑠, ℎ𝑛𝑠 , 𝑖)message and send it to the shard’s leader.

5. After receiving a number of 2𝑓 compatible commit-
ment messages from the replicas, the leader according
to Algorithm 4, sends it along with his commitment
to the client in a (𝗌𝖾𝖼𝗈𝗇𝖽 − 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾, 𝑣, 𝑑, 𝑛𝑠, ℎ𝑛𝑠 , 𝑐, 𝑙)message. It also sends the 𝗌𝖾𝖼𝗈𝗇𝖽 − 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾 to other
replicas in the shard in epoch 4 to update their logs as
shown in Fig. 4.

5.3. Checkpoint protocol
Replicas store the request history in log storage. In the

IGDBFT, like DBFT [26], the replicas use the checkpoint
protocol to discard additional messages in their log storage.

Figure 4: IGDBFT in Normal-cases.

Usually, replica 𝑖 sends a checkpoint protocol by sending a
(𝖼𝗁𝖾𝖼𝗄𝗉𝗈𝗂𝗇𝗍, 𝑠𝑛, ℎ𝑑 , 𝑖) message after a certain number of re-
quests. 𝑠𝑛 is the highest sequence number relevant to the last
checkpoint, and ℎ𝑑 is a summary of the history and current
status of the network. Checkpoint protocol completes when
replica 𝑖 receives 2𝑓 + 1 consistent (𝖼𝗁𝖾𝖼𝗄𝗉𝗈𝗂𝗇𝗍, 𝑠𝑛, ℎ𝑑 , 𝑖)messages from other replicas.
Algorithm 3 IGDBFT Agreement Protocol for Client

Initialization:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Replicas 𝑅
Client 𝐶
Set of first responses 𝐹
Timestamp of last request sent by client 𝑡𝑎
Timer for first and second response 𝛿1, 𝛿2
Leader 𝐿

1: for each request do
2: 𝐶 ∶ (request, 𝑜, 𝑡, 𝑐) ⟼ 𝑅,𝐿
3: 𝑡𝑎 ← 𝑡
4: Set 𝛿1 , 𝛿2
5: 𝑅 ∶ (𝖿 𝗂𝗋𝗌𝗍 − 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾, 𝑣, 𝑠, ℎ𝑛𝑠 , 𝑟, 𝑡, 𝑐, 𝑖) ⟼ 𝐶
6: Active 𝛿1
7: if |𝐹 | = 3𝑓 + 1 then
8: Cancel 𝛿1 and complete request
9: else

10: if |𝐹 | = 2𝑓 + 1 then
11: Cancel 𝛿1
12: Active 𝛿2
13: 𝐿 ∶ (𝗌𝖾𝖼𝗈𝗇𝖽 − 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾, 𝑣, 𝑑, 𝑛𝑠, ℎ𝑛𝑠 , 𝑐, 𝑙) ⟼

𝐶
14: cancel 𝛿2 and complete request
15: end if
16: end if
17: end for
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Algorithm 4 IGDBFT Agreement Protocol for Leader

Initialization:
⎧

⎪

⎨

⎪

⎩

Replicas 𝑅
Client 𝐶
Timestamp of last request sent by client 𝑡𝑎

1: if 𝑡 > 𝑡𝑎 then
2: Leader accepts the request and assigns 𝑛𝑠 to request
3: 𝐿 ∶ (𝗉𝗋𝖾𝗉𝖺𝗋𝖾, 𝑑, 𝑣, 𝑛𝑠, ℎ𝑛𝑠 ) ⟼ 𝑅
4: end if
5: In the first response phase
6: 𝐿 ∶ (𝖿 𝗂𝗋𝗌𝗍 − 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾, 𝑣, 𝑠, ℎ𝑛𝑠 , 𝑟, 𝑡, 𝑐, 𝑖) ⟼ 𝐶
7: In the commitment phase
8: if #𝑅 = 2𝑓 replicas ∶ (𝖼𝗈𝗆𝗆𝗂𝗍, 𝑑, 𝑣, 𝑠, ℎ𝑛𝑠 , 𝑖) ⟼ 𝐿

then
9: 𝐿 ∶ (𝗌𝖾𝖼𝗈𝗇𝖽 − 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾, 𝑣, 𝑑, 𝑛𝑠, ℎ𝑛𝑠 , 𝑐, 𝑙) ⟼ 𝐶

10: Update log of 𝑅 with the second response
11: end if

Algorithm 5 IGDBFT Agreement Protocol for Replicas

Initialization:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Replicas 𝑅
Leader 𝐿
Client 𝐶
Timestamp of last request sent by client 𝑡𝑎
Timeouts for first and second response 𝛿1, 𝛿2
Number of last executed request 𝑛𝑎
Number of received request 𝑛𝑠

1: In prepare phase
2: 𝐶 ∶ (𝗋𝖾𝗊𝗎𝖾𝗌𝗍, 𝑜, 𝑡, 𝑐) ⟼ 𝐿,𝑅
3: if 𝑡 > 𝑡𝑎 and 𝑛𝑠 > 𝑛𝑎 then
4: 𝑅 and 𝐿 accept the request and assigns 𝑛𝑠 to request
5: 𝐿 ∶ (𝗉𝗋𝖾𝗉𝖺𝗋𝖾, 𝑑, 𝑣, 𝑛𝑠, ℎ𝑛𝑠 ) ⟼ 𝑅
6: end if
7: In the first response phase
8: Active 𝛿1
9: 𝐿, #𝑅 = 2𝑓 ∶ (𝖿 𝗂𝗋𝗌𝗍 − 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾, 𝑣, 𝑠, ℎ𝑛𝑠 , 𝑟, 𝑡, 𝑐, 𝑖) ⟼

𝐶
10: In the commitment phase
11: Cancel 𝛿1
12: Active 𝛿2
13: #𝑅 = 2𝑓 ∶ (𝖼𝗈𝗆𝗆𝗂𝗍, 𝑑, 𝑣, 𝑠, ℎ𝑛𝑠 , 𝑖) ⟼ 𝐿
14: In second response phase
15: 𝐿 ∶ (𝗌𝖾𝖼𝗈𝗇𝖽 − 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾, 𝑣, 𝑑, 𝑛𝑠, ℎ𝑛𝑠 , 𝑐, 𝑙) ⟼ 𝐶
16: 𝐿→ Update log of 𝑅
17: Cancel 𝛿2

6. The Lightweight-scalable Blockchain for
IoT
This section describes how the proposed sharding-based

blockchain works in the Internet of Things.

6.1. Assigning nodes to shards and Mini-Block
generation

In the setup of the blockchain-based IoT, the nodes do not
have a history of the transaction processing activity. So they
can use a safe random method such as a verifiable random
function (VRF) [4, 30] to divide the nodes into different
shards.VRF is a Pseudo-random function with a public key
that provides non-interactive proof of correctness [30, 31].
This random function is run off-chain and blue works as
follows:

1. Generate a secret key 𝑠𝑘 and a public key 𝑝𝑘:
• Choose a random number 𝑠 ∈ ℤ∗

𝑝 from the set
of integers modulo 𝑝 where 𝑝 is a large prime.

• Set the secret key to 𝑠𝑘 = 𝑠 and the public key to
𝑝𝑘 = 𝑔𝑠 where 𝑔 is a generator of the group of
integers modulo 𝑝.

2. Prove 𝑠𝑘(𝑥): compute the VRF output 𝐹𝑠𝑘 (𝑥) and the
proof of correctness 𝜏𝑠𝑘 (𝑥) for input 𝑥 and secret key
𝑠𝑘.

• compute the VRF output that is 𝐹𝑠𝑘 (𝑥) as fol-
lows. 𝑒 is a bilinear pairing function; refer to
[30].

𝐹𝑠𝑘 (𝑥) = 𝑒(𝑔, 𝑔)1∕(𝑥+𝑠𝑘) (7)
• Compute the proof of correctness as 𝜏𝑠𝑘 (𝑥)

𝜏𝑠𝑘 (𝑥, 𝑠𝑘) = 𝑔1∕(𝑥+𝑠𝑘) (8)
• Output:

𝑉 𝑅𝐹𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑠𝑘) = (𝐹𝑠𝑘 (𝑥), 𝜏𝑠𝑘 (𝑥)) (9)
3. Verification of the correctness of an output 𝑦 and

proof 𝜏 by using the 𝑝𝑘: 𝑉 𝑒𝑟𝑝𝑘 (𝑥, 𝑦, 𝜏).
• If both checks for input 𝑥 pass according to 10

and 11, the output will be 1; otherwise it will be
0.

𝑒(𝑔𝑥 ⋅ 𝑝𝑘, 𝜏) = 𝑒(𝑔, 𝑔) (10)

𝑦 = 𝑒(𝑔, 𝜏) (11)
Therefore, each node computes its VRF output for a

predetermined input ( such as its IP address, public key, or
an arbitary input ) by using its secret key. The VRF outputs
are used to determine that each node is assigned to which
shard. The correctness of these assignments can be verified
by anyone with access to the public keys and proofs of
correctness.
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After setup, when processing transactions is started,
nodes are scored according to their activity history . At the
end of a round, the shard’s leader announces the scores to the
parent shard. This shard sorts the scores in descending order.
Parent shard assigns them to shards based on the node’s
number. Each shard must contain nodes with the highest and
lowest scores in descending order to maintain the balance
in computing power. According to the IGDBFT consensus,
the transaction confirmation time to give score as shown in
Equation 1 is when the client receives the first response from
the replicas.

If a new node wants to be added to the shards, it has
no activity history. This node can be randomly entered into
one of the shards. Suppose it works appropriately after
several rounds. In that case, it will be scored and used for
configuration in later rounds. A node without a score does
not upset the balance in the shard load.

In the reconfiguration of the subsequent rounds, it is not
necessary to reshuffle all the nodes. According to the scores
that the parent shard receives and the status of the shards as
shown in Algorithm 6, only necessary nodes are reshuffled
to maintain balance. By selecting the leader and vice leader,
the leader in each shard receives the client’s request and
executes the transactions using IGDBFT. After processing
and confirming a certain number of transactions by replicas
based on their computing capacity, they inform the leader
to generate the mini-block. By the leader confirming the
authenticity of the mini-block, they add their mini-block to
the shard chain.
6.2. Global Chain and Parent Block

As shown in Fig. 5, the mini-blocks are temporarily
placed in the mini-block memory pool to maintain order.
The parent shard nodes confirm the authenticity of the mini-
blocks by using the collective threshold signature and its
hash. When the latest node 𝑝𝑖, which has solved the puzzle
in the parent shard, receives a new mini-block, it sends that
to other nodes to check its validity. Suppose 2∕3 nodes
in the parent shard send the compatible (𝗋𝖾𝖼𝖾𝗂𝗏𝖾(𝑚𝑖𝑛𝑖 −
𝑏𝑙𝑜𝑐𝑘),𝐻𝑎𝑠ℎ(𝑀𝑖𝑘))𝜎𝑗 message to 𝑝𝑖. 𝑀𝑖𝑘 is mini-block
𝑘𝑡ℎ belonging to shard 𝑖. 𝐻𝑎𝑠ℎ(𝑀𝑖𝑘) is the hash of the
mini-block calculated by the parent shard nodes, and 𝜎𝑗 is
the signature of node 𝑗 in the parent shard on the mini-
block. According to the threshold signature algorithm, 𝑝𝑖collects them in a final signature. Then, by the message
(𝖠𝖦𝖱𝖤𝖤,𝐻𝑎𝑠ℎ(𝑀𝑖𝑘))𝜎𝑛 , 𝑝𝑖 informs the nodes in the shard
that it has received enough signatures. 𝜎𝑛 is the collective
signature on the mini-block. Finally, 𝑝𝑖 packs the mini-block
in the parent block 𝐵. Refer to Algorithm 7. The size of the
final signature collected by the threshold signature protocol
will be about that of a single signature, so it will not have
a significant storage overhead. Parent blocks are sent to the
cloud layer’s global chain for storage.

As displayed in Fig. 7, the parent block contains the
hash of the mini-blocks, the collective signature of the
agreement, the timestamp, and the hash of the previous
mini-blocks to maintain integrity. The existence of a global

Algorithm 6 Node assignment to the shards
Input: { Scores of 𝑁 nodes : 𝑆}

Output:
⎧

⎪

⎨

⎪

⎩

shards 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑖}
leaders 𝐿 = {𝑙1, 𝑙2,… , 𝑙𝑖}
vice leaders 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑖}

1: 𝑆ℎ ← the set of 𝑖 highest scores of 𝑆
2: 𝑆𝑣 ← the set of scores of 𝑖 selected vice leaders
3: 𝑆𝑜 ← 𝑆 − 𝑆ℎ ∪ 𝑆𝑣
4: Round 𝑟:
5: 𝑆 ← sort 𝑆 in descending order
6: 𝑆ℎ ← top 𝑖 elements of 𝑆
7: 𝐿 ← 𝑆ℎ
8: Assign each 𝑙𝑗 ∈ 𝐿 to a unique shard 𝑐𝑗 ∈ 𝐶
9: for 𝑗 = 1 to 𝑖 do

10: 𝑣𝑗 ← select the next highest scoring node from 𝑆𝑜
11: 𝑆𝑣 ← 𝑆𝑣 ∪ {𝑣𝑗}
12: Assign 𝑣𝑗 to the same shard as its leader 𝑙𝑗
13: 𝑆𝑜 ← 𝑆𝑜 ⧵ {𝑣𝑗}
14: end for
15: 𝑆𝑜 ← sort 𝑆𝑜 in descending order
16: Assign each remaining node in 𝑆𝑜 to shards in descend-

ing order
17: Round 𝑟 + 𝑘:
18: 𝑆 ← Sort 𝑆 in descending order
19: function FINDLEADER(𝑆, 𝑖)
20: Let 𝑆ℎ be the top 𝑖 elements of 𝑆
21: return 𝐿 ← 𝑆ℎ
22: end function
23: 𝑐𝑚𝑖𝑛 ← Shards that have the least total scores
24: Assign proper 𝑙𝑗 ∈ 𝐿 to 𝑐𝑚𝑖𝑛 (reshuffle)
25: function FINDVICELEADER(𝑆, 𝐿, 𝑐𝑗)
26: Let 𝑣𝑗 be the next highest scoring node in 𝑆𝑜
27: Let 𝑆𝑜 be the set of scores of nodes not in 𝐿 or 𝑉
28: 𝑆𝑣 ← 𝑆𝑣 ∪ {𝑣𝑗}
29: return 𝑣𝑗
30: end function
31: Assign 𝑣𝑗 to 𝑐𝑗
32: 𝑆 ← 𝑆ℎ ∪𝑆𝑣 ∪𝑆𝑜 ⊳ update 𝑆 with the new assignment
33: Round 𝑟 + 𝑘 + 1 ;

chain in the cloud layer can, in addition to reducing the
storage overload, provide access control to the information
of all shards to perform cross-shard transactions. In order to
perform cross-shard transactions, we need the coordination
of several shards simultaneously [24, 23, 27]. The inputs
and outputs in these transactions are not in a single shard.
Because it is cheaper to transfer assets in a shard, we assume
that the number of cross-shard transactions is limited, and
their processing is the responsibility of cloud nodes. So, if
the number of these transactions is high, it indicates a wrong
configuration, and the nodes of the shards must be reshuffled.
As a result, With the structure in Fig. 5 , we will have two
types of transactions: intra-shard transactions carried out in
the fog layer by shards and cross-shard transactions carried
out by the nodes in the cloud layer.
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Figure 5: The scheme of global chain and parent block.

Figure 6: The steps of Adding the Mini-Block in the parent
block 𝖡.

Figure 7: Parent block structure

So, to overcome conflicting transactions between shards,
IGD-ScoreChain uses the IGDBFT consensus algorithm to
reach an agreement between nodes on which transaction to
include in the global chain. Also, the Parent shard stores
mini-blocks in the cloud layer using a collective threshold
signature, ensuring that the global chain is tamper-proof
and immutable. As shown in Algorithm 7, 5 and Fig. 6,
the parent shard nodes confirm the authenticity of mini-
blocks and collect a final signature to pack the mini-block
in the Parent Block. This approach helps prevent conflicts
and ensures that the global chain is secure and reliable for
executing transactions. .

Algorithm 7 Generating parent block
Input {mini-blocks 𝑀𝑖𝑘}
Output {Parent block𝐵}

1: Insert mini-blocks in the memory pool to maintain
order

2: Let 𝑝𝑖 be the current parent shard node.
3: 𝑃 ← {𝑝1, 𝑝2,… , 𝑝𝑗 ,… , 𝑝𝑖−1}
4: private key of 𝑝𝑗 , 𝑝𝑖 ← 𝑠𝑘𝑗 , 𝑠𝑘𝑖
5: 𝑝𝑖 receives 𝑀𝑖𝑘
6: 𝑝𝑖 send 𝑀𝑖𝑘 to 𝑃
7: if 𝑝𝑗 receives 𝑀𝑖𝑘 then
8: ℎ ← Hash(𝑀𝑖𝑘)
9: 𝑝𝑗 ∶ (𝗋𝖾𝖼𝖾𝗂𝗏𝖾𝗆𝗂𝗇𝗂 − 𝖻𝗅𝗈𝖼𝗄, ℎ)𝜎𝑗 ⟼ 𝑝𝑖

10: end if
11: for each 𝑃 ∈ {𝑝1, 𝑝2,… , 𝑝𝑖−1} do
12: if #(𝗋𝖾𝖼𝖾𝗂𝗏𝖾𝗆𝗂𝗇𝗂 − 𝖻𝗅𝗈𝖼𝗄, ℎ)𝜎𝑗 ≥ ⌈

2
3 (𝑖 − 1)⌉ then

13: Let 𝜎1, 𝜎2,… , 𝜎𝑖−1 be the valid 𝜎
14: if valid 𝜎 ⟼ 𝑝𝑖 then
15: (𝜎1, 𝜎2,… , 𝜎𝑖−1)𝑠𝑘𝑖 → 𝑇𝑆𝑆
16: 𝜎𝑛 ← TSS
17: end if
18: Return (𝖠𝖦𝖱𝖤𝖤, ℎ, 𝜎𝑛) ⟼ 𝑃
19: end if
20: end for
21: 𝑝𝑖 Add (Hash(Hash(𝑀𝑖(𝑘−1))), ℎ, 𝜎𝑛, 𝑡) to 𝖡

7. Security analysis
It is crucial that blockchain is secure for its users. Three

types of attacks are possible in these systems. The first one
involves mathematical techniques used in blockchains, such
as forking. The second one is the category of attacks related
to the architecture of the peer-to-peer network, like the 51% ,
selfish mining, Sybil, and DDoS attack. The third one is the
attacks on the blockchain platform, like replay attacks and
double-spending attacks [32].
7.1. Join-leave Attack

Our approach uses scored nodes to address shard re-
configuration issues like Sybil and join-leave attacks. An
attacker may be trying to take over a shard completely with
random methods. For example, in a join-leave attack [23],
the attacker enters the shard randomly to learn the structure
of the shard, and if it fails, exits and tries again to enter the
shard structure and take control of its affairs. By dividing
the nodes into shards based on their scores, the possibility
of the attacker succeeding without having an activity history
will be decreased dramatically.

In the Sybil attack, the attacker, as a fake node tries to
take over the shard by repeatedly joining and leaving the
shard randomly. In this attack [25], the attacker disrupts the
operation of the network using multiple fake identities. In
random sharding methods, the possibility of this attack is
high. However, by using the scoring method, penetrating a
malicious node into a shard is avoided, and by controlling
the shard’s reconfiguration by the parent shard, the number

Page 10 of 15



of faulty nodes in a shard cannot be more than the safety
threshold.

As we said, if a new node wants to join the shard and
has no activity history, it can randomly enter one of them.
This node can gain some score if it works according to the
agreed consensus of the shard. If this node is malicious, it
will not necessarily perform according to the common goal
of the shard, and as a result, it will be given a zero score
and recognized as malicious. If the number of these nodes
exceeds the safety threshold during the rounds, the shard
leader will remove it from the shard to maintain balance.
7.2. 1% Attack

A puzzle that divides the dataset into shards will expose
it to a 51% attack in the PoW-based sharding method. The
network can be stabilized by taking control of 50% of the
hash rate, and it can be used to mount an attack. A 51% attack
can provide long delays, selfish mining, DDoS attacks, or
invalidating blocks. An attacker may assign malicious nodes
to a shard through PoW to collect and control all malicious
nodes within the shard. It takes only 51% of an attacker’s
total computing power to take over a shard when they use
all of their computing power. As long as 𝑚 is large enough,
51% is almost reduced to 1%. There are 𝑚 shards in the
database. Consequently, an attacker needs only 51

𝑚 ≃ 1%
of its computing power to take control of a shard. In large
blockchain networks such as Bitcoin, 51% attacks are usually
not cost-effective due to the enormous computing power
required and the randomness of whether an attacker can
solve the computing puzzle. It is usually more common in
smaller sharding-based blockchains than in larger networks
with powerful attackers. When nodes are assigned to shards
at random, it is possible for an attacker with high computing
power to penetrate one of the shards and control its affairs.
This is called the 1% attack [27]. In our method, PoW will
only be used to select parent committee nodes to evaluate
the computational power of the nodes by solving a crypto-
graphic puzzle. It will not include block generation, so the
system is not exposed to the fork and 51% attack. Using
this approach, the shards are guided by the nodes capable
of solving the puzzle.
7.3. Selfish mining and Block losing

In the general review of the comparison of BFT with
Nakamoto consensus algorithms, BFTs have certainty in
their results, and there will be no possibility of losing a
block. In these algorithms, the network can tolerate a certain
number of faulty nodes without disrupting the performance.
In Nakamoto-based algorithms, the valid block may be re-
moved from the chain in two ways; The first case is the stale
block that has been successfully mined but is not accepted
in the current best chain. Selfish mining [25] is an attack
where a node mines a new block but does not publish it to
other nodes to be added to the end of the chain. The mining
node creates a private chain in the existing public chain
and, after reaching a longer chain than the existing public
chain, publishes its chain and leads to a fork. In this way, the

Figure 8: General overview of orphan blocks.

attacker produces a stale block and deprives the honest node
of the reward for its honest activity.

The second form of block loss in Nakamoto is the orphan
block [25]. As shown in Fig. 8, block 5 refers to invalid
block 4, which is separated from the chain and cannot be
verified. This inconsistency can be caused by an attacker’s
operation or a race condition to solve the puzzle among the
nodes. Therefore, using byzantine fault tolerance, in addition
to creating safety in the production of the block in a definitive
manner and not destroying it, eliminates the possibility of
attacks such as selfish mining. Safety means that if the nodes
complete request 𝑛 with a history of ℎ𝑛 (history of ordered
requests) and each request is ordered with a higher sequence
number ℎ𝑘, it will contain the history of ℎ𝑘 in which ℎ𝑛 is
prefixed.
7.4. DDoS Attack

BFTs will also resist DDoS attacks that lead to forks,
delays, and injecting fake blocks to prevent consensus [25].
In injecting fake blocks, the process allows malicious nodes
to confuse the system by wasting time because accepting
or rejecting them can be time-consuming. This issue will
be problematic for time-sensitive IoT systems. In a DDoS,
the goal is not to destroy the target service but to make
the target server unable to provide service. These attacks
are carried out by sending data packets to the target, which
overwhelms the network’s processing capacity by them and
prevents users from accessing the service [27]. For example,
a 51% attack on Bitcoin can lead to this attack. In particular,
if a group of nodes acquires significant hash power, they
can prevent adding mined blocks to the chain or invalidate
current transactions. Also, this attack is due to the limited
and fixed number of transactions that each block can process.
For example, it takes 10 minutes for the Bitcoin network to
generate a block whose maximum size is 1 MB. We proposed
that the number of transactions per mini-block or mini-
block size in different rounds could change depending on the
network traffic pattern due to the IoT’s dynamic structure but
this size should not exceed the global capacity.

The IGDBFT is not client-oriented, unlike hBFT [33],
in which, in addition to sending and receiving messages,
the client also directs some consensus sub-protocols. In
IGDBFT, the client is only responsible for sending and
receiving messages. In a scenario such as DDoS, if a faulty
client tries to send messages with the same or malicious con-
tent at the same time and beyond the capacity of the node, or
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if valid data transmission is repeated fraudulently, the system
will be exposed to a replay attack [25]. In the replay attack,
the attacker tries to disrupt the system by sending repeated
messages continuously. In the structure of the IGDBFT, to
accept the request, the leader must accept a request with
an incremental timestamp, and the simultaneous requests
with different content or from different verified users will be
batched. As a result, the faulty client will be disabled and
unable to disrupt the system. This incremental timestamp
will also prevent double-spending attacks [25]. The attacker
uses the input twice simultaneously in this attack. So in
IGDBFT, replicas do not act on client feedback and use pre-
defined processing, reducing the impact of a faulty client.
7.5. Leader corruption

One of the notable cases in BFTs security is the corrup-
tion of the leader by the attacker or a byzantine operation
of the leader during rounds. In our method, the leader is the
node with the highest score, unlike the conventional methods
that choose the leader randomly or through rotation, such
as [24, 26, 33, 34]. The high score of a node in the shard
shows the node’s excellent activity, honesty, and strength
during the processing transactions. On the other hand, no
attacker would take the risk of attacking a strong node. As a
result, the possibility of attacking a leader that has proven its
superior performance in processing power is low unless the
attacker’s computing power is much higher than the leader’s.
Also, sending the client’s request to other replicas besides
the leader at the beginning will quickly detect the malicious
behavior of the leader, such as sending the request with delay
or changing the content of the message by the replicas.

8. Performance Analysis
In this section, we discuss different aspects of the ef-

ficiency and performance of the proposed IGDBFT and
compare it with the other schemes.
8.1. Efficiency analysis of Score-Based sharding

An important aspect of sharding is that dividing the
nodes into shards should balance the computational load
and operational throughput across all shards. For example,
the sharding algorithm should not assign the high-power
nodes to a certain number of shards, and weak nodes to
others.In the random sharding methods, it is more likely
that powerful nodes will be placed in specific shards, and
the rest of the shards will include nodes that do not have
powerful nodes. so, it would lead to outbalancing in aspect
of throughput among shards. Due to this imbalancement,
transactions are not coordinated between the shards. So,
there are consequently delays, resulting in reduced through-
put. However, in the proposed sharding method, all delays
in responding to clients, even partial, have been taken into
account for calculating the scores to provide a more accurate
load balance across the shards. As a consequence, each
shard contains both strong and weak nodes. All shards are
functionally balanced, with nearly uniform computation and

time overhead. This will result in an improvement in the
system’s throughput.
8.2. Efficiency analysis of IGDBFT

Due to the high resource consumption of Nakamoto-
based consensus algorithms like PoW or PoS, are usually
not recommended for IoT with limited resources. Unlike
Nakamoto’s algorithms, byzantine fault tolerance consen-
suses have a better speed for reaching consensus and do not
require high energy consumption and computing power. It
is essential to consider the complexity of communication
between nodes to choose the appropriate BFT for IoT.

In IGDBFT terms of cost, which refers to the number
of cryptographic operations used in the algorithm, is in the
same category as DBFT, PBFT [28], and HBFT [33] algo-
rithms ; can offer good flexibility against server failures with
3𝑓+1 replica to tolerate 𝑓 faulty node . As we can see in Ta-
ble 1, the communication complexity in IGDBFT compared
to all three previous cases has been reduced from 𝑂(𝑛2)
to 𝑂(𝑛). IGDBFT and DBFT have four one-way message
delays, while PBFT requires five one-way message delays.
The one-way latency of HBFT is less than IGDBFT and
DBFT. However, one of the main problems of this protocol is
being client-centric in some sub-protocols [33]. The goal of
IGDBFT is to reach a consensus with graceful performance
degradation in the face of unpredictable events so that this
reduction does not damage the network performance.

DBFT, as we mentioned, rotates the leader per request,
which may cause interruptions and time overhead in the sys-
tem’s performance. Our method selects the two nodes with
the highest scores as the leader and vice leader for IGDBFT,
respectively, with a high level of computing power.

Consequently, if the leader is corrupted by a powerful
attacker, the vice leader will be immediately replaced, and
the system will continue to operate as usual. As a result
of this approach, it is possible to reduce the probability of
the view change protocol and allow the network to continue
operating uninterrupted.
8.3. Comparing the number of communication

messages in IGDBFT with previous BFTs
The number of IGDBFT communication messages in the

number of faulty nodes is calculated as follows:
• Epoch 1: the client sends the request for all replicas:

3𝑓 + 1 message.
• Epoch 2: leader forwards request to 3𝑓 replicas : 3𝑓

message.
• Epoch 3: replicas send 2𝑓 + 1 first response to client

and 2𝑓 commit message to leader : (2𝑓 + 1) + 2𝑓
message.

• Epoch 4: leader sends Second response to client and
3𝑓 replicas: 1 + 3𝑓

So, the total communication messages in IGDBFT would be
(3𝑓 + 1) + (3𝑓 ) + (2𝑓 + 1) + 2𝑓 + (1 + 3𝑓 ) = 13𝑓 + 3
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Table 1
Comparing IGDBFT with previous BFTs.

PBFT HBFT DBFT IGDBFT

Cost 3f+1 3f+1 3f+1 3f+1
Latency (one-way) 5 3 4 4
Communication complexity O(𝑛2) O(𝑛2) O(𝑛2) O(𝑛)
Reference [28] [33] [26] This paper

Table 2
Consensus Complexities

Protocol Resiliency Complexity Sharding method Reference

Elastico 1/4 𝑂(𝑛2 +𝑁) Random [19]
Omniledger 1/4 𝑂(𝑛2 +𝑁) Random [20]
Rapidchain 1/3 𝑂(𝑛2 + 𝑛 log(𝑁)) Simple- active/inactive [23]
ZyConchain 1/3 𝑂(𝑛 log(𝑁) + log(𝑛) + 𝑛) Random [24]
Repchain 1/3 𝑂(𝑛2 +𝑁) Based on Reputation [35]
IGD-ScoreChain 1/3 𝑂(𝑛 log(𝑁) + 𝑛) Based on Score This paper

Figure 9: Comparing the number of communication messages
in IGDBFT with previous BFTs with N = 1000.

which is linear in 𝑓 . This parameter for the other BFT
protocols are as follows:

• PBFT [28]:
1+3𝑓+3𝑓 ⋅3𝑓+(1+3𝑓 )⋅3𝑓+3𝑓+1 = 18𝑓 2+9𝑓+2

• HBFT [33]:
1 + 3𝑓 + 3𝑓 ⋅ 3𝑓 + 1 + 3𝑓 = 9𝑓 2 + 6𝑓 + 2

• DBFT [26]:
3𝑓+1+3𝑓+2𝑓+1+2𝑓 ⋅2𝑓+2𝑓+1 = 4𝑓 2+10𝑓+3

all of which are quadratic in 𝑓 . A schematic comparison
of the number of communication messages for the BFT
algorithms in terms of the number of faulty nodes is given
in Fig. 9. In IGDBFT, the growth rate of the number of
communication messages is significantly lower than that of
the other three ones, which is in favor of the throughput of
this protocol.

8.4. Total communication overhead per
transaction process

We calculate the consensus and communication com-
plexity of the system for each 𝑇𝑥, which finally adds to the
parent block. It is supposed that the network has 𝐶 shards
that 𝐶 = 𝑁 /𝑛. 𝑁 is the total number of blockchain network
nodes and 𝑛 is the size of each shard. We assume that the
number of shards is fixed in the rounds. The number of
network nodes is dynamic and up to 1000. First, the user
sends the 𝑇𝑥 to a fixed number of client nodes at the edge
of the IoT, which will send it to the desired shard, which
has a 𝑛 log(𝑁∕𝑛) = 𝑂(𝑛 log(𝑁)) communication overhead.
Once 𝑇𝑥 is sent to the shardhas been received by the shard,
the computational overhead of running IGDBFT intra-shard
consensus would be of𝑂(𝑛). Finally, according to Algorithm
7, a mini block is added to the parent block, which has a
complexity of 𝑂(𝑛). So, the total communication complexity
is 𝑂(𝑛 log(𝑁)) + 𝑂(𝑛) + 𝑂(𝑛) = 𝑂(𝑛 log(𝑁) + 𝑛).

In Table 2, we describe a summary of the evaluation
of the communication complexity of our scheme and other
previous methods based on sharding . We can also see this
comparison in Figs. 10 and 11.

As shown in Fig. 10, we can see that the proposed
method has a significant improvement in complexity and
communication overhead compared to Elastico [19], Om-
niledger [20], Rapidchian [23], and Repchain [35]. As shown
in Fig. 11, the communication complexity of our protocol is
improved with a slight difference compared to Zyconchain
[24]. In general, by increasing the network nodes, IGD-
ScoreChain performs better in communication complexity,
which can improve the system’s performance.
8.5. Storage Complexity

The nodes of shards in the fog layer keep only the
necessary information of the ledger, and the checkpoint
protocol removes the additional information. Let the size
of the ledger be |𝐿|, then each node in the shard stores an
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Figure 10: Comparison of the total communication complexity
overhead per transaction

amount of data of order 𝑂( |𝐿|𝐶 ). The mini-block memory
pool temporarily stores mini-blocks. In one mining round,
the maximum number of mini-blocks held by this pool is
𝑘⋅𝐶 = 𝑘⋅𝑁𝑛 , where 𝑘 is the number of mini-blocks produced
by each shard.

We divided the ultimate storage layer into the computa-
tion and consensus layers. The cloud layer stores the parent
shards located at global chain. The nodes of the cloud layer
have access to all the information of the blocks that include
the fog layer nodes’ performance history. Because mini-
blocks place temporarily in the memory pool, we can ignore
their storage complexity. Therefore, the storage complexity
in the fog layer is 𝑂( ∣𝐿∣𝐶 ).

9. Conclusions
This paper proposes a novel scalable blockchain for IoT.

A new sharding method has been developed to balance the
operational capacity of the system based on the performance
of nodes during transaction processing. As a result of system
problems and errors, the proposed IGDBFT algorithm will
ensure graceful performance. In normal circumstances, there
will be no significant reduction in network performance.

As part of this development, a new block storage method
has been added to the cloud layer as a parent block. There-
fore, we reduce the high computational load related to cross-
shard transactions in the fog layer through routing algo-
rithms by entrusting the processing of these transactions
to cloud nodes. As a result of analyzing the security and
efficiency of the proposed scheme, we concluded that the
blockchain in our scheme would resist various common
attacks. Thus, the possibility of system efficiency disruption
will be reduced. Also, by analyzing the complexity of com-
munication overhead and storage overheads, we showed that
the performance of our protocol is significantly better than
the other ones, as the number of nodes grows.

(a) Comparison of IGDBFT total communication com-
plexity overhead per transaction with Zyconchain.

(b) Close up of Comparison of IGDBFT total com-
munication complexity overhead per transaction with
Zyconchain.

Figure 11: Comparison of IGDBFT total communication com-
plexity overhead per transaction with Zyconchain.
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