
Post-Quantum Public-key Authenticated Searchable
Encryption with Forward Security: General Construction,

and Applications

Shiyuan Xu1⋆, Yibo Cao2, Xue Chen1,3⋆, Yanmin Zhao1, and Siu-Ming Yiu1⋆

1 Department of Computer Science, The University of Hong Kong, Pok Fu Lam, Hong Kong
{syxu2, ymzhao, smyiu}@cs.hku.hk

2 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, China
yibocaobupt@gmail.com

3 Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
xue-serena.chen@connect.polyu.hk

Abstract. Public-key encryption with keyword search (PEKS) was first proposed by Boneh
et al. (EUROCRYPT 2004), achieving the ability to search for ciphertext files. Neverthe-
less, it is vulnerable to inside keyword guessing attacks (IKGA). Public-key authenticated
encryption with keyword search (PAEKS), introduced by Huang et al. (Inf. Sci. 2017), on
the other hand, is secure against IKGA. Nonetheless, it is susceptible to quantum computing
attacks. Liu et al. and Cheng et al. addressed this problem by reducing to the lattice hardness
(AsiaCCS 2022, ESORICS 2022). Furthermore, several scholars pointed out that the threat
of secret key exposure delegates a severe and realistic concern, potentially leading to privacy
disclosure (EUROCRYPT 2003, Compt. J. 2022). As a result, research focusing on mitigating
key exposure and resisting quantum attacks for the PAEKS primitive is far-reaching.
In this work, we present the first generic construction and instantiation of forward-secure
PAEKS primitive based on lattice hardness without trusted authorities, mitigating the secret
key exposure while ensuring quantum-safe properties. We extend the scheme of Liu et al. (Asi-
aCCS 2022), and formalize a novel post-quantum PAEKS construction, namely FS-PAEKS.
To begin with, we introduce the binary tree structure to represent the time periods, along
with a lattice basis extension algorithm, and SamplePre algorithm to obtain the post-quantum
one-way secret key evolution, allowing users to update their secret keys periodically. Further-
more, our scheme is proven to be IND-CKA and IND-IKGA secure in a quantum setting. In
addition, we also compare the security of our primitive in terms of computational complexity
and communication overhead with other top-tier schemes. Ultimately, we demonstrate two
potential applications of FS-PAEKS.

Keywords: Public-key authenticated encryption with keyword search · Lattice · Forward
security · Multi-ciphertext indistinguishability · Trapdoor privacy · Generic construction.

1 Introduction

Traditional PEKS primitive contains three entities, that is, data owner, data user, and cloud server
[1]. PEKS scheme realizes that encrypted data can easily be retrieved by the specific user through
a specific trapdoor, which not only protects the data privacy but also realizes the searchability [2].
⋆ Corresponding author

2 S. Xu et al.

A fundamental security criterion for PEKS is to against the chosen keyword attacks (CKA) [3].
Nevertheless, Byun et al. formalized the notation of trapdoor privacy (TP) for the PEKS scheme
since if it only considers the CKA, the protocol may be threatened by the inside keyword guessing
attacks (IKGA) [4]. To circumvent this problem, Huang et al. initialized a novel variant of PEKS,
namely, public-key authenticated encryption with keyword search (PAEKS), combining the message
authentication technique into a ciphertext generation algorithm [5]. In this way, the trapdoor can
merely be valid to the authenticated ciphertext for a specific sender. Numerous scholars commenced
their research works on the PAEKS primitive due to its high security [6–11].

However, the above-mentioned PAEKS protocols are totally on the basis of the discrete logarithm
assumption, which is vulnerable to quantum computing attacks. Liu et al. constructed a lattice-
based PAEKS primitive that offers both CKA and IKGA security while also being resistant to
quantum computing attacks [12]. Unfortunately, the security of ciphertext may be compromised if
the secret key of a receiver is leaked due to inadequate storage or malicious actions by adversaries. To
address this issue, several scholars introduced the notation of forward security in digital signatures
[13–15], which was later adapted by Canetti et al. for use in a forward secure public key encryption
scheme [16]. This protocol periodically updates the secret key, therefore even if it is compromised
in one period, the security of other periods remains intact.

1.1 Motivation

As inappropriate storage of secret keys may lead to their compromise by malicious attackers [17,18],
it is essential to update them within a certain period to ensure forward security. Zhang et al.
formalized the FS-PEKS scheme, achieving forward security, nevertheless, one disadvantage of this
scheme is that a malicious attacker may acquire the keyword from the trapdoor [19]. In contrast,
Jiang et al. presented a forward secure scheme for PAEKS, without considering quantum computing
attacks [20]. Among that, their constructions still need a trusted authority to calculate secret keys,
which will result in additional storage overhead.

Huang et al. subsequently presented a PAEKS primitive, which was reduced to be secure under
the discrete logarithm assumption [5]. However, with the advancement of quantum computers, Shor
generalized a quantum algorithm, demonstrating the feasibility of solving classical cryptographic
primitives in probabilistic polynomial times [21,22]. Consequently, classical PAEKS schemes are now
vulnerable. Hence, several scholars transformed the traditional PAEKS primitive into the quantum-
resistant PAEKS protocol and formalized the generic constructions based on lattice hardness [12,23].
Nevertheless, their schemes contain flaws due to the secret key leakage problem.

Therefore, the aforementioned issues motivate the following question:
Can we construct and instantiate a generic post-quantum forward-secure PAEKS satisfied
CI, TP, MCI security without trusted settings to mitigate the secret key leakage problem?

1.2 Our Contributions

We resolve the above question affirmatively and summarize our contributions as follows.

– We generalize the first PAEKS with forward security instantiation in lattice without trusted
authorities, mitigating the secret key exposure while enjoying quantum safety. Our primitive
extends Liu et al.’s scheme [12], and proposes a novel post-quantum forward secure PAEKS
construction, namely FS-PAEKS. In addition, we formalize the CI, TP, and MCI security of
the proposed FS-PAEKS primitive.

Title Suppressed Due to Excessive Length 3

– The proposed FS-PAEKS scheme enjoys quantum-safe forward security. We introduce a binary
tree structure to update the receiver’s secret key with different time periods. It ensures that
exposing the secret key corresponding to a specific time period does not enable an adversary to
"crack" the primitive for any previous time period due to its one-way nature. Additionally, we
further employ the minimal cover set to achieve secret key updating periodically for the receiver
based on the key evolution mechanism. Finally, we utilize the lattice basis extension technique
to maintain quantum-safe for updating secret keys.

– The proposed FS-PAEKS scheme can be proven secure in strong security models. Firstly, the
initial phase does not need a trusted setup assumption and the ciphertext can only be obtained
by a valid sender. In this way, the trapdoor is valid from a receiver, which avoids adversaries
adaptively accessing oracles to obtain the ciphertext for any keyword. Consequently, we in-
troduce a pseudo-random smooth projective hash function to achieve the above property and
forward-secure trapdoor privacy under IND-IKGA. In addition, our scheme has also proven to
be IND-CKA and IND-Multi-CKA secure in a quantum setting.

– Eventually, we give a security properties comparison with the other eight PEKS and PAEKS
primitives. Besides, we compare with Behnia et al.’s scheme [24], Zhang et al.’s scheme [19],
and Liu et al.’s scheme [12] in terms of computational complexity and communication overhead
theoretically.

1.3 Overview of Technique

Technical roadmap. Informally speaking, constructing a forward-secure PAEKS primitive in the
context of the lattice is a combination of PEKS, public key encryption, smooth projective hash
functions (SPHF), binary tree structure, and lattice basis extension algorithm. More concretely, we
begin by revisiting the post-quantum PAEKS primitive as the basic structure [12]. Next, we employ
the SPHF technique to transform the primitive into IND-CCA secure. We then take advantage of the
hierarchical structure of the binary tree to represent time periods and utilize node(t) to represent
the smallest minimal cover set for secret key update periodically, following the approach outlined
in Cash et al. [25]. To the best of our knowledge, it is the most efficient mechanism to realize key
updates and it serves as a stepping stone toward our goal. Finally, we introduce the ExtBasis and
SamplePre algorithms to facilitate the post-quantum one-way secret key evolution.
Smooth projective hash functions. Smooth projective hash functions, initially proposed by
Cramer et al. [26], are utilized to transform one encryption primitive from IND-CPA to IND-
CCA. Moreover, numerous scholars extended the SPHF tool to realize password-authenticated key
exchange protocols [27–32]. We use a variant kind of SPHF, say "word-independent" SPHF, pro-
posed by Katz et al. [33] for primitive construction. Generally speaking, the "word-independent"
SPHF scheme includes five algorithms defined for the NP language L over a domain X .
We define a language family (LParal,Trapl

) indexed by the language parameter Paral and language
trapdoor Trapl. Besides, we consider an NP language family (L̃Paral

) with witness relation K̃Paral
,

s.t. L̃Paral
:= {χ ∈ XParal

|∃ω, K̃Paral
(χ, ω) = 1} ⊆ LParal,Trapl

⊆ XParal
, where XParal

is a family
of sets. In addition, the membership in XParal

and K̃Paral
can be checked in polynomial time with

Paral, and LParal,Trapl
can be checked in polynomial time with Paral, T rapl. We describe the

approximate "word-independent" SPHF scheme below.

– Setup(λ): Given a security parameter λ, this PPT algorithm outputs a language parameter
Paral.

4 S. Xu et al.

– KeyGenHash(Paral): Given Paral, this PPT algorithm outputs outputs hk as the hashing key.
– KeyGenProj(hk, Paral): Given hk and Paral, this PPT algorithm outputs outputs the projection

key pk.
– Hash(hk, Paral, χ): Given hk, Paral and a word χ ∈ XParal

, this deterministic algorithm out-
puts Hash ∈ {0, 1}δ as a hash value, where δ ∈ N.

– ProjHash(pk, Paral, χ, ω): Given pk, Paral, χ ∈ L̃Paral
and a witness ω, this deterministic

algorithm outputs ProjHash ∈ {0, 1}δ as a projected hash value, where δ ∈ N.

Informally speaking, an approximate "word-independent" SPHF protocol satisfies two attributes:
(1) ϵ-approximate correctness: Given a word χ ∈ L̃Paral

, and the corresponding witness ω, the
SPHF scheme is ϵ-approximate correct when: Pr[HD(Hash(hk, Paral, χ),ProjHash(pk, Paral, χ, ω)) >
ϵ · δ] ≈ 0, where HD(a, b) means the hamming distance between two elements a and b.

(2) Pseudo-randomness: For some δ ∈ N, if a word χ ∈ L̃Paral
, its hash value Hash is indistin-

guishable from a random element in {0, 1}δ; Otherwise, Hash is statistically indistinguishable from
a random element chosen in {0, 1}δ.
Binary tree for representing time periods. We use binary tree encryption primitive for en-
rolling time periods [16]. Informally, we define numerous time periods t ∈ {0, 1, · · · , 2d − 1}, where
d is the depth of the binary from the root node to the deepest leaf. In this paper, the time period
t will be described in binary expression t = (t1t2 · · · td). For example, if the depth is four and the
last leaf can be described as t = (1111). On each time period, it only has one path from the root
node to the current leaf node and we define Θ(i) = (θ(1)θ(2) · · · θ(i)), i ∈ [1, d] as the path, where
θ(i) = 0 if the i-th level node is the left leaf and θ(i) = 1 if the i-th level node is the right leaf. We
also define node(t) to represent the smallest minimal cover set containing one ancestor of all leaves
on the time period t and after the time period t, say including {t, t+ 1, · · · , 2d − 1}.
For simple understanding, we give an example in Fig.1, describing a d = 4 binary tree with 16 time
periods in total. In this figure, we show the meaning of node(t) as: node(0000) = {root}, node(0001) =
{0001, 001, 01, 1}, node(0010) = {001, 01, 1}, node(0011) = {0011, 01, 1}, node(0100) = {01, 1}, node
(0101) = {0101, 011, 1}, node(0110) = {011, 1}, node(0111) = {0111, 1}, node(1000) = {1}, node(10
01) = {1001, 101, 11}, node(1010) = {101, 11}, node(1011) = {1011, 11}, node(1100) = {11}, node(11
01) = {1101, 111}, node(1110) = {111}, node(1111) = {1111}.

root

0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 111100010000

000 001 010 011 100 101 110 111

00 01 10 11

0 1 Level 1

Level 2

Level 3

Level 4

Fig. 1. Binary Tree of depth d = 4 with binary expression time period (node).

Title Suppressed Due to Excessive Length 5

Lattice basis extension. We use the lattice basis extension algorithm to construct a secret key
one-way evolutionary mechanism (See Lemma 5 in Section 2.3). More concretely, we discretize the
time period to 2d segments, where d means the total depth of a binary tree. The matrix MR is the
public key for receiver and the matrix SΘ(i) is the trapdoor, where Θ(i) := (θ1, θ2, · · · , θj , θj+1, · · · , θi).
Consequently, the updated trapdoor can be calculated by any ancestor’s trapdoor, and root node
is the trapdoor of the original ancestor.

We first define FΘ(i) := [MR ∥ A(θ1)
1 ∥ A(θ2)

2 ∥ · · · ∥ A(θi)
i] as the corresponding matrix of Θ(i).

For any depth j < i, where j, i ∈ [1, d], given the trapdoor SΘ(j) on time j, we have: SΘ(i) ←
ExtBasis(FΘ(i) ,SΘ(j)). After that, we specify the secret key update process as below.

skR(t) := (hR, {rR,1}, {rR,2}, · · · , {rR,κ},SΘ(i)),

where Θ(i) ∈ node(t) as the receiver’s secret key on time t. Each node has the corresponding secret
key in a binary tree. Receiver will update skR(t) to skR(t+ 1) through processing

skR(t+ 1) := (hR, {rR,1}, {rR,2}, · · · , {rR,κ},SΘ(i)),where Θ(i) ∈ node(t + 1).

1.4 Related Works

Lattice-based PAEKS. Boneh et al. constructed the concept of PEKS in 2004 [1]. Zhang et al.
argued that its security model for keyword privacy is not complete and then defined a new security
model [34]. However, the basic PEKS primitive cannot resist the IKGA since an inside adversary
may deduce the keyword from a specific trapdoor. Huang et al. formalized a PAEKS protocol to
solve this problem by combining keyword authentication with PEKS [5]. Nevertheless, Liu et al. and
Cheng et al. introduced lattice-based PAEKS primitive to achieve quantum resistance [12,35]. Many
researchers utilized the PAEKS scheme to preserve privacy for the Internet of Things [9, 36,37].
Forward security. Forward security (FS) in the public-key cryptosystem was initialized by [16].
Zeng et al. introduced the FS notation into the PEKS scheme for cloud computing [38]. Zhang et
al. formalized the first lattice-based FS-PEKS primitive [19]. After that, Yang et al. extended the
FS-PEKS and constructed a lattice-based FS identity-based encryption with PEKS, namely, FS-
IBEKS [39]. Recently, Jiang et al. presented a forward secure public-key authenticated encryption
with conjunctive keyword search [20], but without considering the quantum attacks.

1.5 Outline

The rest of this paper is structured as follows. Section 2 covers the preliminary knowledge. In section
3, we present the syntax of forward-secure PAEKS primitive and its security models. The generic
construction will be elaborated in Section 4, while the security analysis will be specified in Section
5. In Section 6, we give the lattice-based instantiation. The parameters setting with correctness
and theoretical comparison are illustrated in Sections 7 and 8, respectively. Section 9 shows two
applications of FS-PAEKS. Finally, we conclude this paper in Section 10.

2 Preliminaries

2.1 Public-key Encryption with Keyword Search scheme

Public-key encryption with keyword search (abbr. PEKS) was initially proposed by Boneh et al. [1].
A standard PEKS scheme consists of four algorithms:

6 S. Xu et al.

– (pkPEKS, skPEKS)← KeyGen(λ): Given a security parameter λ, this probabilistic-polynomial time
(PPT) algorithm outputs pkPEKS and skPEKS as a public key and secret key, respectively.

– ctPEKS,kw ← PEKS(pkPEKS, kw): After inputting a public key pkPEKS and a keyword kw, this
PPT algorithm will output a ciphertext ctPEKS,kw.

– TrapPEKS,kw′ ← Trapdoor(skPEKS, kw
′): Given a secret key skPEKS and a keyword kw′, this PPT

algorithm outputs a trapdoor TrapPEKS,kw′ .
– (1 or 0) ← Test(ctPEKS,kw,TrapPEKS,kw′): After input a ciphertext ctPEKS,kw and a trapdoor

TrapPEKS,kw′ , this deterministic algorithm outputs 1 if kw = kw′; Otherwise, it outputs 0.

Security Models. A secure PEKS scheme must satisfy the following properties:
(1) Correctness: Given a security parameter λ, any valid public-secret key pairs (pkPEKS, skPEKS),

any keywords kw, kw′, any ciphertexts generated by PEKS(pkPEKS, kw), and any trapdoors gener-
ated by Trapdoor(skPEKS, kw

′), the PEKS scheme is correct if it satisfies:

If kw = kw’,Pr[Test(ct,Trap) = 1] ≈ 1; and if kw ̸= kw’,Pr[Test(ct,Trap) = 0] ≈ 1.

(2) Ciphertext Indistinguiability: If it does not exist an adversary A can obtain any keyword
information of the challenge ciphertext ctPEKS,kw, this PEKS scheme has ciphertext indistinguisha-
bility against chosen keyword attacks (IND-CKA).

2.2 Labelled Public-key Encryption scheme

Labelled public-key encryption (abbr. Labelled PKE) is one of the variants of public-key encryption
[40]. We employ the Labelled PKE scheme for our construction and refer to it as PKE for brevity.
A standard PKE scheme consists of three algorithms:

– (pkPKE, skPKE)← KeyExt(λ): Given a security parameter λ, this PPT algorithm outputs pkPKE
and skPKE as the public key and secret key for encryption and decryption, respectively.

– ctPKE ← Encrypt(pkPKE, label, ptPKE, ρ): Given a public key pkPKE, a label label, a plaintext ptPKE,
and a randomness ρ, this PPT algorithm outputs the ciphertext ctPKE.

– (ptPKE or ⊥) ← Decrypt(skPKE, label, ctPKE): Given a secret key skPKE, a label label, a ciphertext
ctPKE and a randomness ρ, this deterministic algorithm outputs the plaintext (ptPKE or ⊥).

Security Models. A secure PKE scheme must satisfy the following security properties:
(1) Correctness: Given a security parameter λ, a public key and secret key generated by (pkPKE,

skPKE) ← KeyExt(λ), a label label, a randomness ρ, a ciphertext generated by ctPKE ← Encrypt
(pkPKE, label, ptPKE, ρ), the PKE scheme is correct if Pr[Decrypt(skPKE, label, ctPKE) = ptPKE] ≈ 1.

(2) IND-CPA/IND-CCA security: A secure PKE protocol satisfies the indistinguishability against
chosen-plaintext attacks (IND-CPA) if it does not exist an adversary A can obtain any information
of a challenge plaintext ptPKE. In addition, it realizes indistinguishability against chosen-ciphertext
attacks (IND-CCA) if A is permitted to access the decryption query for any ciphertext ctPKE
excepting for querying the challenge ciphertext.

2.3 Basic Knowledge of Lattice and Trapdoors

Definition 1 (Lattice). [41] Suppose that b1,b2, · · · ,bn ∈ Rm are n linearly independent vectors.
The m-dimensional lattice Λ is generated by a set of linear combinations, denoted as Λ = Λ(B) =
{x1 · b1 + x2 · b2 + · · ·+ xn · bn|xi ∈ Z}, where B = {b1,b2, · · · ,bn} ∈ Rm×n is the basis of Λ.

Title Suppressed Due to Excessive Length 7

Definition 2 (q-ary Lattices). [42] Given n,m, q ∈ Z, and A ∈ Zn×m
q , we define the following

q-ary Lattices and a coset: Λq(A) := {e ∈ Zm|∃s ∈ Zn
q ,A

⊤s = e mod q}, Λ⊥
q (A) := {e ∈ Zm|Ae =

0 mod q}, and Λq(A
u) := {e ∈ Zm|Ae = u mod q}.

Definition 3 (Gaussian Distribution). Given one positive parameter σ ∈ R+, one center c ∈ Zm

and any x ∈ Zm, we define Dσ,c =
ρσ,c(x)

ρσ,c(Λ)
for ∀x ∈ Λ as the Discrete Gaussian Distribution over Λ

with a center c, where ρσ,c(x) = exp(−π ∥x−c∥2

σ2) and ρσ,c(Λ) = Σx∈Λρσ,c(x). Specially, we say Dσ,0

abbreviated as Dσ when c = 0.

Definition 4. [43] We define Ψα as the probability distribution over Zq for the random variable
⌊qx⌉ by selecting x ∈ R from the normal distribution with mean 0 and the standard deviation α√

2π
.

Lemma 1 (TrapGen(n,m, q)). [44] Taking n,m, q ∈ Z as input, this PPT algorithm returns
A ∈ Zn×m

q and TA ∈ Zm×m
q , where TA is a basis of Λ⊥

q (A) s.t. {A : (A,TA)← TrapGen(n,m, q)}
is statistically close to {A : A

$← Zn×m
q }. In this way, we say TA is a trapdoor of A.

Lemma 2 (SamplePre(A,TA,u, σ)). [45] Given a matrix A ∈ Zn×m
q and its trapdoor TA ∈

Zm×m
q , a vector u ∈ Zn

q , and the parameter σ ≤ ∥T̃A∥ · ω(
√

log(m)), where m ≥ 2n⌈log q⌉, this
PPT algorithm publishes a sample e ∈ Zm

q statistically distributed in DΛu
q (A),σ s.t. Ae = u mod q.

Lemma 3 (NewBasisDel(A,R,TA, σ)). [43] Taking a parameter σ ∈ R, a matrix A ∈ Zn×m
q , a

Zq-invertible matrix R sampled from the distribution Dm×m, and trapdoor TA as input, this PPT
algorithm will output a short lattice basis TB of Λ⊥

q (B), where B = AR−1.

Lemma 4 (SampleLeft(A,M,TA,u, σ)). [46] After input a matrix A ∈ Zn×m
q and its cor-

responding trapdoor TA ∈ Zm×m
q , a matrix M ∈ Zn×m1

q , a vector u ∈ Zn
q , and a parameter

σ ≤ ∥T̃A∥ · ω(
√
log(m+m1)), this PPT algorithm will output a sample t ∈ Zm+m1 from the

distribution statistically close to DΛu
q ([A|M]),σ s.t. [A|M] · t = u mod q.

Lemma 5 (ExtBasis(A′′,S)). [25] For an input matrix A ∈ Zn×m
q , a basis S ∈ Zm×m

q of Λ⊥(A),
and a matrix A′ ∈ Zn×m′

q , this deterministic algorithm outputs a basis S′′ of Λ⊥(A′′) ⊆ Zm×m′′

q

s.t. ∥S̃∥ = ∥S̃′′∥, and A′′ = A||A′, m′′ = m+m′.

3 Syntax and Security Models of FS-PAEKS

This sector presents syntax and security models of FS-PAEKS. Our scheme prohibits the use of a
token to search for ciphertexts generated after the time period in which the token was generated.

3.1 Syntax of FS-PAEKS scheme

We formalize the syntax of FS-PAEKS primitive (including seven algorithms), Π = (Setup,KeyGenS ,
KeyGenR,KeyUpdate,FS-PAEKS,Trapdoor,Test).

– pp← Setup(λ, d): Given a security parameter λ and a depth d, this algorithm returns a public
parameter pp.

– (pkS , skS) ← KeyGenS(pp): Given a public parameter pp, this algorithm publishes a public-
secret key pair for a sender (pkS , skS).

– (pkR, skR)← KeyGenR(pp): Given a public parameter pp, this algorithm outputs a public-secret
key pair for a receiver (pkR, skR).

8 S. Xu et al.

– skR(t + 1) ← KeyUpdate(pp, pkR, skR, t, d): Given a public parameter pp, a public key of a
receiver pkR, a secret key of a sender skR(t) at time period t, and the depth of binary tree d
as input, this algorithm outputs a new secret key of the sender skR(t+ 1) at time period t+ 1.
Moreover, the former secret key of the receiver skR(t) has been deleted.

– ct← FS-PAEKS(pp, pkS , skS , pkR, kw, t, d): Given a public parameter pp, a public key pkS and
a secret key skS of a sender, a public key pkR, any keyword kw at time period t, and the depth
of binary tree d, this algorithm returns a ciphertext ct of kw with time t as output.

– Trap ← Trapdoor(pp, pkS , pkR, skR(t), kw
′): Given a public parameter pp, a public key of a

sender pkS , a public key and a secret key of a receiver skR with time t, and a keyword kw′, this
algorithm outputs a trapdoor Trap of kw′.

– (1 or 0)← Test(pp, ct,Trap): Given a public parameter pp, a ciphertext ct and a trapdoor Trap,
this algorithm returns 1 if the ct and Trap is related to a same keyword, that is, kw = kw′

holds; Otherwise, it returns 0.

3.2 Security Models

The security criteria are that any probabilistic polynomial-time (PPT) adversary cannot obtain
any keyword information from the ciphertext [1] and any (inside) PPT attacker cannot acquire
any keyword information from the trapdoor [4, 47]. We define ciphertext indistinguishability (CI)
of forward-secure PAEKS under indistinguishability against chosen keywords attack (IND-CKA),
the trapdoor privacy of forward-secure PAEKS under indistinguishability against inside keyword
guessing attack (IND-IKGA), and the multi-ciphertext indistinguishability (MCI) of forward-secure
PAEKS under indistinguishability against chosen multi-keywords attack (IND-Multi-CKA).

IND-CKA Game of Forward-Secure PAEKS

– Setup: After input a security parameter λ, the challenger C calls the Setup algorithm to obtain
the public parameter pp. After that, C processes the KeyGenS and KeyGenR algorithms to
compute the sender’s and receiver’s public-secret key pair (pkS , skS) and (pkR, skR). Ultimately,
C sends pp, pkS and pkR to the adversary A and keeps the initial secret key skR secret.

– Query 1: In this query, A is permitted to adaptively access three oracles in polynomial times.
• KeyUpdate Oracle OKU : If the time period t < T − 1, C will update the time period

from t to t + 1. If the time period t = T − 1, which means the current period is the last
period, C will return an empty string skT .
• Ciphertext Oracle OC : A requires that the time period t is larger than the target time

period t∗ selected by an adversary. Given any keyword kw, C calls FS-PAEKS(pp, pkS , skS ,
pkR , kw, t, d) algorithm to obtain the ciphertext ct at time period t and returns it to A.
• Trapdoor Oracle OT : A requires that the time period t is larger than the target time

period t∗. Given any keyword kw, C calls the Trapdoor(pp, pkS , pkR, skR(t), kw
′) algorithm

to obtain the trapdoor Trap in time period t and transmits it to A. When A accesses OKU ,
A is forbidden to issue OT for the past time periods.

– Challenge: In time period t∗, which has not been queried the OT , A selects two challenge
keywords kw∗

0 and kw∗
1 and sends them to C. This phase restricts that A never accesses the

three oracles (OKU ,OC and OT) for the challenge keywords kw∗
0 and kw∗

1 . After that, C selects a
bit b ∈ {0, 1} at random and calls FS-PAEKS(pp, pkS , skS , pkR, kw∗

b , t
∗, d) algorithm to calculate

the challenge ciphertext ct∗. Finally, C sends ct∗ to A.
– Query 2: A has the ability to continue those queries as similar as Query 1 with a limitation

that A is not allowed to query the challenge keywords (kw∗
0 , kw

∗
1).

Title Suppressed Due to Excessive Length 9

– Guess: After finished the above phases, A will output a guess bit b′ ∈ {0, 1}. Therefore, we say
that A wins the game if and only if b = b′.

We hereby define the advantage of A wins the above game as AdvIND-CKA
A (λ) := |Pr[b = b′]− 1

2 |.

Definition 5 (IND-CKA secure of FS-PAEKS). We say that an FS-PAEKS scheme satisfies
forward-secure ciphertext indistinguishability (CI) under IND-CKA, if for any PPT adversary A,
the advantage AdvIND-CKA

A (λ) is negligible.

IND-IKGA Game of Forward Secure PAEKS

– Setup: This process is the same as the IND-CKA Game.
– Query 1: In this query, A is permitted to adaptively access three oracles (OKU ,OC and OT ,

are same as the IND-CKA Game) in some polynomial times.
– Challenge: In time period t∗, which has not been querried the OT , A selects two challenge

keywords kw∗
0 and kw∗

1 and transmits them to C. This phase restricts that A never accesses the
three oracles (OKU ,OC and OT) for the challenge keywords kw∗

0 and kw∗
1 . After that, C selects

a bit b ∈ {0, 1} at random and calls Trapdoor(pp, pkS , pkR, skR(t
′), kw′

b) algorithm to calculate
the challenge trapdoor Trap∗. Finally, C sends Trap∗ to A.

– Query 2: A has the ability to continue those queries as similar as Query 1 with the limitation
that A is not allowed to query the challenge keywords (kw∗

0 , kw
∗
1).

– Guess: After finished the above phases, A publishes a guess bit b′ ∈ {0, 1}. Thus, we say that
A wins the game if and only if b = b′.

We define the advantage of A wins the above game as AdvIND−IKGA
A (λ) := |Pr[b = b′]− 1

2 |.

Definition 6 (IND-IKGA secure of FS-PAEKS). We say that an FS-PAEKS scheme satisfies
forward-secure trapdoor privacy (TP) under IND-IKGA, if for any PPT adversary A, the advantage
AdvIND−IKGA

A (λ) is negligible.

IND-Multi-CKA Game of Forward Secure PAEKS

– Setup: This process is the same as the IND-CKA Game.
– Query 1: In this query, A is permitted to adaptively access three oracles (OKU ,OC and OT ,

same as the IND-CKA Game) in some polynomial times.
– Challenge: Given two tuples of challenge keywords (kw∗

0,1, · · · , kw∗
0,n), C firstly selects a tuple

(kw∗
0,i, kw

∗
1,i) for some i s.t. kw∗

0,i ̸= kw∗
1,i. After that, C selects a bit b ∈ {0, 1} randomly and

calls FS-PAEKS(pp, pkS , skS , pkR, kw∗
b , t

∗, d) algorithm to calculate the challenge ciphertext ct∗.
Moreover, C selects n − 1 ciphertexts from the output space of FS-PAEKS algorithm, namely
as, (ct1, ct2, · · · , cti−1, cti+1, cti+2, · · · , ctn).

– Query 2: A can continue the queries as in the Query 1 with the restriction that A is not
allowed to query the challenge keywords kw∗

i,j , where i ∈ {0, 1} and j ∈ {1, 2, · · · , n}.
– Guess: After finished the above phases, A outputs a guess bit b′ ∈ {0, 1} and C uses it as its

output. We say that A wins the game if and only if b = b′.

Definition 7 (IND-Multi-CKA secure of FS-PAEKS). We say that an FS-PAEKS scheme
satisfies forward-secure multi-ciphertext under IND-Multi-CKA, if it satisfies CI under IND-CKA
and it is a probabilistic algorithm.

10 S. Xu et al.

4 Our Proposed Construction

In this part, we illustrate the first generic construction of post-quantum FS-PAEKS based on the
prototype of PEKS primitive, labelled PKE scheme, SPHF protocol, and binary tree architecture.
Specifically, we define KSPEKS as the keyword space and a standard PEKS scheme icnludes four
algorithms (PEKS.KeyGen, PEKS.PEKS, PEKS.Trapdoor,PEKS.Test). Moreover, we define PKSPKE
and PSPKE as the public key and plaintext space, respectively. Finally, we utilize a binary tree
structure and the smallest minimal cover set to realize a secret key update for a receiver and we
also employ ExtBasis algorithm to fulfill one-way secret key evolution.
A labelled PKE scheme consists of three algorithms (PKE.KeyGen, PKE.Encrypt, PKE.Decrypt). A
SPHF protocol incorporates four algorithms (SPHF.KeyGenHash,SPHF.KeyGenProjHash,SPHF.Hash,
SPHF.ProjHash). We first define the language of ciphertext as (Paral, T rapl) = (pkPKE, skPKE),
where pkPKE ∈ PKSPKE, L̃ := {(label, ctPKE,mPKE)|∃ρ, ctPKE ← Encrypt(pkPKE, label,mPKE, ρ)}, and
L := {(label, ctPKE,mPKE)|Decrypt(skPKE, label, ctPKE) = mPKE}. Besides, we also define the witness
relation K̃((label, ctPKE,mPKE), ρ) = 1 if and only if we have ctPKE ← Encrypt(pkPKE, label,mPKE, ρ)}.

– Setup(λ, d): Given a security parameter λ and a depth d, this algorithm processes:
• Calculates (pkPKE, skPKE)← PKE.KeyExt(λ).
• Selects a plaintext mPKE

$← PKSPKE and a label label $← {0, 1}∗ randomly.
• Selects two hash functions:

H1 : PKSPKE × PSPKE × {0, 1}∗ → PKSPKE; H2 : KSPEKS × {0, 1}∗ → KSPEKS.

• Selects 2d matrices from Zn×m
q as Matrices.

• Outputs pp := (λ,mpk, pkPKE,mPKE, label, H1, H2,Matrices) as a public parameter.
– KeyGenS(pp): Given a public parameter pp, this algorithm processes these operations:
• Calculates hS ← SPHF.KeyGenHash(mpk) and pS ← SPHF.KeyGenProj(hS,mpk).
• Calculates ctPKE,S ← PKE.Encrypt(mpk, label,mPKE, ρS), where ρS is a randomly selected

witness s.t. K̃((label, ctPKE,S ,mPKE), ρS) = 1.
• Outputs pkS := (pS , ctPKE,S) and skS := (hS , ρS) as the public key and secret key of a

sender, respectively.
– KeyGenR(pp): Given a public parameter pp, this algorithm processes the following operations:
• Calculates hR ← SPHF.KeyGenHash(mpk) and pR ← SPHF.KeyGenProj(hR,mpk).
• Calculates ctPKE,R ← PKE.Encrypt(mpk, label,mPKE, ρR), where ρR is a randomly selected

witness s.t. K̃((label, ctPKE,R,mPKE), ρR) = 1.
• Calculates (pkPEKS, skPEKS)← PEKS.KeyGen(λ).
• Outputs pkR := (pR, ctPKE,R, pkPEKS) and skR := (hR, ρR, skPEKS) as the public key and

secret key of the receiver, respectively.
– KeyUpdate(pp, pkR, skR, t, d): Given a public parameter pp, a public key pkR and a secret key

skR of the initial receiver, a time period t, and a depth d, this algorithm processes as below:
• Defines FΘ(i) as the corresponding matrix of Θ(i).
• For any j < i where j, i ∈ [1, d], calculates SΘ(i) ← ExtBasis(FΘ(i) ,SΘ(j)), where SΘ(j) is

the trapdoor on time period j.
• Defines skR(t) := (skR,SΘ(i)), where Θ(i) ∈ node(t).
• Defines and outputs skR(t+ 1) := (skR,SΘ(i)), where Θ(i) ∈ node(t+ 1).

– FS-PAEKS(pp, pkS , skS , pkR, kw, t, d): Given a public parameter pp, a public key pkS and a secret
key skS of a sender, a public key pkR of a receiver, a keyword kw ∈ KSFS-PAEKS the time period
t, and the depth d, this algorithm processes the following operations:

Title Suppressed Due to Excessive Length 11

• Calculates HashS ← SPHF.Hash(hS ,mpk, (ctPKE,R,mPKE)).
• Calculates ProjHashS ← SPHF.ProjHash(pR,mpk, (ctPKE,S ,mPKE), ρS).
• Calculates kwS ← H2(kw,HashS ⊕ ProjHashS)
• Calculates and outputs ct← PEKS.PEKS(pkPEKS, kwS).

– Trapdoor(pp, pkS , pkR, skR(t), kw
′): Given a public parameter pp, a public key pkS of a sender, a

public key pkR and a secret key skR(t) of a receiver, a keyword kw′ ∈ KSFS-PAEKS, this algorithm
processes the following operations:
• Calculates HashR ← SPHF.Hash(hR,mpk, (ctPKE,S ,mPKE)).
• Calculates ProjHashR ← SPHF.ProjHash(pR,mpk, (ctPKE,R,mPKE), ρR).
• Calculates kw′

R ← H2(kw
′,HashR ⊕ ProjHashR).

• Calculates Trap1 ← PEKS.Trapdoor(skPEKS, kw
′
R), Trap2 ← SamplePre(SΘ(t) , H3(kw

′), σ3).
• Defines and outputs Trap := (Trap1,Trap2).

– Test(pp, ct,Trap): Given a public parameter pp, a ciphertext ct, and a trapdoor Trap, this
algorithm outputs PEKS.Test(ct,Trap).

5 Security Analysis
This section illustrates that the proposed FS-PAEKS construction satisfies CI under IND-CKA,
TP under IND-IKGA, and MCI under IND-Multi-CKA. We specify the proofs of two theorems and
give the analysis of a corollary.

Theorem 1. The proposed FS-PAEKS scheme satisfies CI under IND-CKA if the SPHF protocol
satisfies pseudo-randomness and the hash function H2 is a random oracle.

Proof. We finished the security analysis through four games as below.
̂Game 0: We simulate a real security game for the adversary A and define Adv

̂Game 0
A (λ) := ϵ.

A has the ability to perform three oracle queries and the challenger C will reply to the following
responses after receiving some keyword kw from A.

– OKU : If the time period t < T − 1, C updates skR(t + 1) ← KeyUpdate(pp, pkR, skR, t, d) and
returns skR(t+ 1) to A. If the time period t = T − 1, C returns an empty string skT to A.

– OC : Given a keyword kw, C calculates ct ← FS-PAEKS(pp, pkS , skS , pkR, kw, t, d) and returns
ct to A.

– OT : Given a keyword kw, C calculates Trap← Trapdoor(pp, pkS , pkR, skR(t), kw
′) and returns

Trap to A.

̂Game 1: This game is identical to ̂Game 0, except changing the calculation method of ct∗ in the
Challenge query. To be more specific, C selects HashS

$← OSHashS randomly (OSHashS is the output
space of HashS) instead of calculating HashS ← SPHF.Hash(hS ,mpk, (ctPKE,R,mPKE)). For the view
of A, ̂Game 1 and ̂Game 0 are statistically indistinguishable due to the fact that the output of
HashS satisfies pseudo-randomness. Hence, we acquire: |Adv

̂Game 1
A (λ)−Adv

̂Game 0
A (λ)| ≤ negl(λ).

̂Game 2: This game is identical to ̂Game 1, except changing one more time of the calculation
method for ct∗ in the Challenge query. In detail, A sends kw∗

0 and kw∗
1 to C, C then selects a

bit b ∈ {0, 1} randomly and samples kwS
$← KSPEKS randomly (KSPEKS is the keyword space

of PEKS(pkPEKS, kw) algorithm), instead of calculating kwS ← H2(kwb,HashS ⊕ ProjHashS). In
this way, the output of H2(kwb,HashS ⊕ ProjHashS) is random since HashS is randomly selected
and H2 is also a random oracle. Accordingly, in A’s view, ̂Game 2 and ̂Game 1 are statistically
indistinguishable. Thus, we can say: |Adv

̂Game 2
A (λ)−Adv

̂Game 1
A (λ)| ≤ negl(λ).

12 S. Xu et al.

̂Game 3: Till now, the keyword is generated by kwS
$← KSPEKS at random, the challenge ciphertext

ct∗ = ctPEKS,kw is obtained from PEKS.PEKS(pkPEKS, kwS) and kwS
$← KSPEKS. Therefore, ct∗ does

not divulge any information regarding to the challenge keywords (kw∗
0 , kw

∗
1). As for A, the only way

to acquire the keyword is by guessing absolutely. Consequently, we obtain: |Adv
̂Game 3

A (λ)| = 0.

Theorem 2. The proposed FS-PAEKS scheme satisfies TP under IND-IKGA if the SPHF protocol
satisfies pseudo-randomness and the hash function H2 is a random oracle.

Proof. We finished the security analysis through four games as below.
̂Game 0: We simulate a real security game for the adversary A and define Adv

̂Game 0
A (λ) := ϵ.

A has the ability to perform three oracle queries and the challenger C will reply to the responses
(same as the proof of the former theorem) after receiving some keyword kw from A.
̂Game 1: This game is identical to ̂Game 0, except changing the calculation method of Trap∗

in the Challenge query. To be more specific, C selects HashR
$← OSHashR randomly (OSHashR is

the output space of HashR) instead of calculating HashR ← SPHF.Hash(hR,mpk, (ctPKE,S ,mPKE)).
For A, ̂Game 1 and ̂Game 0 are statistically indistinguishable due to the fact that the output of
HashR satisfies pseudo-randomness. Hence, we acquire: |Adv

̂Game 1
A (λ)−Adv

̂Game 0
A (λ)| ≤ negl(λ).

̂Game 2: This game is identical to ̂Game 1, except changing one more time of the calculation
method for Trap∗ in the Challenge query. In detail, A sends kw∗

0 and kw∗
1 to C, C then selects a bit

b ∈ {0, 1} and samples kw′
R

$← KSPEKS randomly, instead of calculating kw′
R ← H2(kw

′
b,HashR ⊕

ProjHashR). In this way, the output of H2(kw
′
b,HashR ⊕ ProjHashR) is random since HashR is

randomly selected and H2 is a random oracle. Accordingly, in A’s view, ̂Game 2 and ̂Game 1 are
statistically indistinguishable. Thus, we can say: |Adv

̂Game 2
A (λ)−Adv

̂Game 1
A (λ)| ≤ negl(λ).

̂Game 3: Till now, the keyword is generated by kw′
R

$← KSPEKS at random, the challenge trapdoor
Trap∗ = (Trap1

∗,Trap2
∗) is generated from Trapdoor(pp, pkS , pkR, skR(t), kw

′). Therefore, Trap∗

does not divulge any information regarding to the challenge keywords (kw∗
0 , kw

∗
1). As for A, the only

way to acquire the keyword is by guessing absolutely. Consequently, we obtain: |Adv
̂Game 3

A (λ)| = 0.

Corollary 1. The proposed FS-PAEKS scheme satisfies MCI under IND-Multi-CKA if it satisfies CI
under IND-CKA and the PEKS.PEKS algorithm in our FS-PAEKS algorithm is probabilistic.

Analysis. Our FS-PAEKS algorithm involves PEKS.PEKS algorithm. To the best of our knowledge,
the existing PEKS.PEKS algorithm satisfies probabilistic [1,24]. Thus, our FS-PAEKS scheme is also
probabilistic. In addition, we have proved that our scheme satisfies CI under IND-CKA. Consequently,
the proposed FS-PAEKS scheme satisfies MCI under IND-Multi-CKA.

6 Lattice-based Instantiation of FS-PAEKS

In this section, we construct the first post-quantum PAEKS with forward security instantiation
based on the lattice hardness, namely FS-PAEKS, including seven algorithms.

– Setup(λ, d): Given a security parameter λ, the depth d of a binary tree, system parameters
q, n,m, σ1, σ2, α, σ3, T , where q is a prime, σ1, σ2 and σ3 are preimage sample parameters, α is
a gaussian distribution parameter and T = 2d is the total number of time periods, this algorithm
executes the following operations.

Title Suppressed Due to Excessive Length 13

• Calls κ, ρ, ℓ← poly(n) and selects m = m1m2 · · ·mκ
$← {0, 1}κ randomly.

• Selects matrices A
(0)
1 , A

(1)
1 , A

(0)
2 , A

(1)
2 , · · · , A(0)

d , A
(1)
d ∈ Zn×m

q .
• Calls TrapGen(n,m, q) algorithm to generate a matrix A0 and the basis TA0 of Λ⊥(A0).
• Sets A0 as a public key of PKE and TA0 as a secret key of PKE.
• Selects an element u

$← U randomly as the label of PKE.
• Selects three Hash functions

H1 : Zn×m × {0, 1}κ × U → Zn×m
q ;H2 : {1,−1}ℓ × {0, 1}κ → {1,−1}ℓ;H3 : {1,−1}ℓ → Zn

q .

• Selects an Injective function H4 : R → Zn×n
q .

• Calculates the master public key of PKE: A← H1(TA0 ,m, u) ∈ Zn×m
q .

• Ultimately, this algorithm returns a public parameter as pp := (λ, q, n,m, σ1, σ2, σ3, κ, ρ, ℓ,

TA0 , A
(0)
1 , A

(1)
1 , A

(0)
2 , A

(1)
2 , · · · , A(0)

d , A
(1)
d ,A,m, u,H1, H2, H3, H4).

– KeyGenS(pp): Taking a public parameter pp as input, this algorithm will execute the following
steps to generate the public key and secret key of the sender.
• Sets gadget matrix G := In ⊗ g⊤, g⊤ = [1, 2, · · · , 2k], k = ⌈logq⌉ − 1.

• Defines and calculates Alabel = A+

[
0

GH4(u)

]
= A+

[
0

(In ⊗ g⊤)H4(u)

]
.

• Selects a matrix hS
$← Dm

Z,s at random, and calculates the matrix pS = Alabel · hS ∈ Zn
q .

• For i = 1, 2, · · · , κ, selects vectors si
$← Zq and vectors eS,i

$← Dm
Z,t randomly s.t. ∥eS,i∥ ≤

2t
√
m and then calculates cS,i = A⊤

label · si + eS,i +mi[0, 0, · · · , 0, ⌈ q2⌉]
⊤
mod q.

• Outputs pkS := (pS , {cS,1}, {cS,2}, · · · , {cS,κ}) and skS := (hS , {s1}, {s2}, · · · , {sκ)}as a
public key and a secret key of a sender, respectively.

– KeyGenR(pp): Taking a public parameter pp as input, it executes the following steps to compute
the initial public key and initial secret key for a receiver.
• Calls TrapGen(n,m, q) algorithm to generate a matrix MR and the basis SR of Λ⊥(MR).
• For i = 1, 2, · · · , ℓ, selects matrices MR,i

$← Zn×m
q randomly.

• Selects a matrix CR
$← Zn×m

q and a vector rR
$← Zn

q at random.
• Sets gadget matrix G := In ⊗ g⊤, g⊤ = [1, 2, · · · , 2k], k = ⌈logq⌉ − 1.

• Defines and calculates Alabel = A+

[
0

GH4(u)

]
= A+

[
0

(In ⊗ g⊤)H4(u)

]
.

• Selects a matrix hR
$← Dm

Z,s at random, and calculates the matrix pR = Alabel · hR ∈ Zn
q .

• For i = 1, 2, · · · , κ, selects vectors ri
$← Zq and vectors eR,i

$← Dm
Z,t randomly s.t. ∥eR,i∥ ≤

2t
√
m and then calculates cR,i = A⊤

label · ri + eR,i +mi[0, 0, · · · , 0, ⌈ q2⌉]
⊤
mod q.

• Outputs pkR := (pR, {cR,1}, {cR,2}, · · · , {cR,κ},MR,MR,1,MR,2, · · · ,MR,ℓ,CR, rR) and
skR := (hR, {r1}, {r2}, · · · , {rκ}) as the initial (root node) public key and secret key of the
receiver, respectively.

– KeyUpdate(pp, pkR, skR, t, d): Given a public parameter pp, time t, initial public key pkR, and
initial secret key skR, this algorithm processes the following steps.
• Defines t := (t1t2 · · · ti), where t means the binary representation of time and i ∈ [1, d],
ti ∈ {0, 1}, d is the depth of the binary tree.

• Defines Θ(i) := (θ1, θ2, · · · , θi) ∈ node(t), where i ∈ [1, d], θi ∈ {0, 1} as the path from the
root to the current node.

14 S. Xu et al.

• Defines FΘ(i) := [MR ∥ A(θ1)
1 ∥ A(θ2)

2 ∥ · · · ∥ A(θi)
i] as the corresponding matrix of Θ(i). For

example, F0100 = [MR ∥ A0
1 ∥ A1

2 ∥ A0
3 ∥ A0

4], F101 = [MR ∥ A1
1 ∥ A0

2 ∥ A1
3].

• For any j < i, where j, i ∈ [1, d], given the trapdoor SΘ(j) on time j, calls ExtBasis(FΘ(i) ,SΘ(j))
to generate SΘ(i) , where Θ(i) := (θ1, θ2, · · · , θj , θj+1, · · · , θi). Thus, the updated trapdoor
can be calculated by its any ancestor’s trapdoor.
• Define skR(t) := (hR, {rR,1}, {rR,2}, · · · , {rR,κ},SΘ(i)), where Θ(i) ∈ node(t) as the re-

ceiver’s secret key on time t. Each node has the corresponding secret key in a binary tree.
• Receiver updates skR(t) to skR(t+1) through calculating skR(t+1) := (hR, {rR,1}, {rR,2},
· · · , {rR,κ},SΘ(i)), where Θ(i) ∈ node(t+ 1). We show an example here, supposing that re-
ceiver updates skR(1010) to skR(1011). Given skR(1010) = (hR, {rR,1}, {rR,2}, · · · , {rR,κ},
S101,S11), the updated secret key is skR(1011) = (hR, {rR,1}, {rR,2}, · · · , {rR,κ},S1011,S11).

– FS-PAEKS(pp, pkS , skS , pkR, kw, t, d): Given a public parameter pp, the sender’s public key and
secret key pkS , skS , the receiver’s public key pkR, a keyword kw ∈ {1,−1}ℓ, the time period t,
and the depth of the binary tree d, this algorithm executes the following procedures.
• For i = 1, 2, · · · , κ, calculates

hS,i ← ⌊
2(c⊤R,i · hS(modq))

q
⌉, pS,i ← ⌊

2(s⊤i · pR(modq))

q
⌉.

• Defines yS,i = hS,i · pS,i, and yS = yS,1yS,2 · · · yS,κ ∈ {0, 1}κ.
• Defines and calculates dkS = dkS,1dkS,2 · · · dkS,ℓ ← H2(kw,yS) ∈ {1,−1}ℓ.
• Defines and calculates Mdk = CR +

∑ℓ
i=1 dkS,iMR,i.

• Calculates Fdk = [MR ∥Mdk] = [MR ∥ CR +
∑ℓ

i=1 dkS,iMR,i].
• Defines Ft := [MR ∥ At1

1 ∥ A
t2
2 ∥ · · · ∥ A

td
d].

• For j = 1, 2, · · · , ρ, processes the following operations as below:
∗ Selects bj

$← {0, 1} and sj
$← Zn

q randomly;

∗ For i = 1, 2, · · · , ℓ, selects Rij
$← {1,−1}

(d+3)m
2 × (d+3)m

2 ;
∗ Defines and calculates R̄j =

∑ℓ
i=1 dkS,iRij ∈ {−ℓ,−ℓ+ 1, · · · , ℓ}

(d+3)m
2 × (d+3)m

2 ;

∗ Selects xj ← Ψα ∈ Zq and yj ← Ψ
(d+3)m

2
α ∈ Z

(d+3)m
2

q as noise vectors;

∗ Calculates zj ← R̄⊤
j yj ∈ Z

(d+3)m
2

q , and c0j = (r⊤R +H3(kw)
⊤)sj + xj + bj⌊ q2⌋ ∈ Zq.

∗ Calculates c1j
= (Fdk ∥ Ft)

⊤sj +

[
yj

zj

]
∈ Z(d+3)m

q .

• Outputs a forward-secure searchable ciphertext ct := ({c0j , c1j
, bj}ρj=1).

– Trapdoor(pp, pkS , pkR, skR(t), kw
′): After input a public parameter pp, the public key of the

sender pkS , the public key of the receiver pkR, the secret key of the receiver skR(t) with time t
and a keyword kw′ ∈ {1,−1}ℓ, this algorithm will process the following steps.
• For i = 1, 2, · · · , κ, calculates

hR,i ← ⌊
2(c⊤S,i · hR(modq))

q
⌉, pR,i ← ⌊

2(s⊤R,i · pS(modq))

q
⌉.

• Defines yR,i = hR,i · pR,i, and yR = yR,1yR,2 · · · yR,κ ∈ {0, 1}κ.
• Defines and calculates dkR = dkR,1dkR,2 · · · dkR,ℓ ← H2(kw

′,yR).

• Defines and calculates Mdk = CR +
∑ℓ

i=1 dkR,iMR,i.
• Invokes SampleLeft(MR,Mdk,SR, rR, σ2) algorithm to generate Trap1 ∈ Z2m

q .

Title Suppressed Due to Excessive Length 15

• If skR(t) includes the basis SΘ(t) , this algorithm will continue the remainder procedures;
If skR(t) does not include the basis SΘ(t) , this algorithm will call ExtBasis(FΘ(t) ,SΘ(i)) to
generate it and then continue the remainder procedures.

• Invokes SamplePre(SΘ(t) , H3(kw
′), σ3) algorithm to generate Trap2 ∈ Z(d+1)m

q .
• Outputs Trap := (Trap1,Trap2).

– Test(pp, ct,Trap):

• For j = 1, 2, · · · , ρ, calculates vj = c0j −
(
Trap1

Trap2

)⊤

c1j .

• Checks whether it satisfies ⌊vj − ⌊ q2⌋⌋: If it holds, sets vj = 1; Otherwise, sets vj = 0.
• This algorithm outputs 1 if and only if for ∀j = 1, 2, · · · , ρ, it satisfies vj = bj , which

implies the Test(pp, ct,Trap) algorithm succeeds; Otherwise, it outputs 0, which implies
the Test(pp, ct,Trap) algorithm fails.

7 Parameters and Correctness
7.1 Parameters Setting

1. m ≥ 6n log q to make TrapGen(n,m, q) algorithm process properly.
2. s ≥ ηϵ(Λ

⊥(Alabel)) for some ϵ = negl(n) and t = σ1
√
m · (

√
log n) to make KeyGenS(pp) and

KeyGenR(pp) run properly.
3. σ1 = 2

√
n and q > 2

√
n

α to make the lattice reduction algorithm is correct.
4. σ2 > ℓ ·m · ω(

√
log n) to let SampleLeft(A,M,TA,u, σ) algorithm execute properly.

5. m ≥ 2n⌈log q⌉, σ3 ≥∥ B̃ ∥ ·ω(
√
log n) to let SamplePre(A,TA,u, σ) algorithm operate properly.

6. (d+3)m
2 is an integer to make FS-PAEKS(pp, pkS , skS , pkR, kw, t, d) algorithm work properly.

7. q > σ1m
3
2ω(
√
log n) to make first error term is bounded legitimately and yS = yR.

8. α < [σ2ℓmω(
√
log n)]

−1, q = Ω(σ2m
3
2) to make second error term is bounded legitimately.

7.2 Correctness

Theorem 3. We initially consider the condition mentioned by Lemma 6.1 in reference [48] and
ϵ = negl(n) is negligible. That is, if the keywords hold kw = kw′ and the first error term (r⊤R,i · hS,i

and e⊤S,i ·hR,i) is less than ϵ·q
8 with overwhelming probability, then we obtain the equality dkS = dkR.

Proof. For i = 1, 2, · · · , κ, calculates:

hS,i = ⌊
2(r⊤i ·Alabel) · hS(modq)

q
+

2r⊤R,i · hS(modq)

q
⌉︸ ︷︷ ︸

first error term

= ⌊2((r
⊤
i ·Alabel) · hS(modq))

q
⌉ = pR,i;

hR,i = ⌊
2(s⊤i ·Alabel) · hR(modq)

q
+

2r⊤S,i · hR(modq)

q
⌉︸ ︷︷ ︸

first error term

= ⌊2((r
⊤
i ·Alabel) · hR(modq))

q
⌉ = pS,i.

For i = 1, 2, · · · , κ, we have the following equalities: yS,i = hS,i · pS,i = pR,i · pS,i = pS,i · pR,i =
hR,i · pR,i = yR,i. Therefore, we can say that yS = yR. In addition, because of kw = kw′, we obtain
that dkS = H2(kw,yS) = H2(kw

′,yS) = H2(kw
′,yR) = dkR.

16 S. Xu et al.

Theorem 4. If the second error term (xj −
(
Trap1

Trap2

)⊤[
yj

zj

]
) has been bounded by ((q ·σ2 · ℓ ·m ·α ·

ω(
√
logm) +O(ℓσ2m

3
2)) ≤ q

5), then the Test(pp, ct,Trap) algorithm outputs 1, and bj is correct.

Proof.

vj = c0j −
(
Trap1

Trap2

)⊤

c1j
= (r⊤R +H3(kw)

⊤)sj + xj + bj⌊
q

2
⌋ −

(
Trap1

Trap2

)⊤

c1j

= r⊤Rsj + xj + bj⌊
q

2
⌋+H3(kw)

⊤sj −
(
Trap1

Trap2

)⊤

[(Fdk ∥ Ft)
⊤sj +

[
yj

zj

]
]

= r⊤Rsj + xj + bj⌊
q

2
⌋+H3(kw)

⊤sj − (Trap1Fdk +Trap1Ft)sj −
(
Trap1

Trap2

)⊤[
yj

zj

]
= bj⌊

q

2
⌋+ xj −

(
Trap1

Trap2

)⊤[
yj

zj

]
︸ ︷︷ ︸

second error term

Therefore, as mentioned in Lemma 22 of reference [46], for j = 1, 2, · · · , ρ, if the given keywords
are absolutely identical, we can conclude that vj = bj .

8 Theoretical Comparison
We cryptanalyze and compare eight PEKS and PAEKS schemes with regards to six security prop-
erties in Table. 1. Then, we compare the computational complexity and communication overhead
with several post-quantum PEKS and PAEKS primitives in Table. 2 and Table. 3.

Table 1. Security properties comparison with other existing PEKS and PAEKS schemes

Schemes FS CI MCI TP PQ WTA

Boneh et al. [1] × ✓ ✓ × × ✓
Huang et al. [5] × × × × × ✓
Behnia et al. [24] × ✓ ✓ × ✓ ✓
Zhang et al. [49] × ✓ ✓ × ✓ ×
Zhang et al. [19] ✓ ✓ ✓ × ✓ ✓
Liu et al. [12] × ✓ ✓ ✓ ✓ ✓
Emura [50] × ✓ ✓ ✓ ✓ ✓
Cheng et al. [35] × ✓ ✓ ✓ ✓ ✓
Our scheme ✓ ✓ ✓ ✓ ✓ ✓

Notes. PQ: Post-quantum. WTA: Without trusted authority.

As for Table. 2, the abbreviations are multiplication (TMul), hash function (THF), SampleLeft
(TSL), SamplePre(TSP), and BasisDel(TBD) algorithms. With regard to Table. 3, we analyze the
communication overhead in terms of ciphertext size and trapdoor size. d is the depth of a binary
tree, ℓ is the length of a keyword kw, ρ, κ are related to the security parameter.

9 Potential Applications of FS-PAEKS
(1) Combining with Electronic Medical Records (EMRs). Numerous scholars have utilized
PEKS primitive for doctors (data receiver) to search EMRs and protect the privacy of patients

Title Suppressed Due to Excessive Length 17

Table 2. Computational complexity comparison

Schemes Ciphertext Generation Trapdoor Generation Test Generation

Behnia et al. [24] ρ(m2 + 2nm + n + ℓ + 1)TMul ℓTMul + TSL 2ρmTMul

Zhang et al. [19] THF + (ρn + nm2 + ρ)TMul + TSP
THF + nm2TMul
+TBD + TSP

THF + (ℓm + nm)TM

Liu et al. [12]
THF + (κ(m + n + 1)
+ρ(m2 + 2nm + n + ℓ + 1))TMul

THF + (κ(m + n + 1)
+ℓ)TMul + TSL

2ρmTM

Our scheme
(ρ + 1)THF + (κ(m + n + 1)

+ρ(
(d+3)2m2

4 + (d + 3)nm
+2n+ℓ + 1))TMul

2THF + (κ(m + n + 1)
+ℓ)TMul + TSL + TSP

(d + 3)ρmTM

Table 3. Communication overhead comparison

Schemes Ciphertext Size Trapdoor Size

Behnia et al. [24] κ(|q|+ 2m|q|+ 1) 2m|q|
Zhang et al. [19] (ℓ+mℓ+m)|q| m|q|
Liu et al. [12] ρ(|q|+ 2m|q|+ 1) 2m|q|
Our scheme ρ(|q|+ (d+ 3)m|q|+ 1) (d+ 3)m|q|

(data sender) [20, 51, 52]. However, a malicious attacker may recover the keyword kw from the
previous search trapdoor Trap through keyword guessing attacks. Besides, if secret keys have been
compromised, sensitive medical data may be disclosed. Compared with the existing schemes, our
FS-PAEKS protocol completely avoids those problems and provides better security.
(2) Combining with Industrial Internet of Things (IIoTs). The PAKES protocol has been
employed to safeguard the privacy of IIoTs while simultaneously achieving CI and TP security [37].
However, they failed to account for the potential risks of quantum computing attacks and the
likelihood of secret key leakage during communication. Our FS-PAEKS primitive offers enhanced
security features such as quantum resistance and elimination of secret key leakage. Besides, we
realize MCI security, which addressed a previously unresolved issue of their work.

10 Conclusion

In this paper, we generalize the first post-quantum public-key authenticated searchable encryption
with forward security primitive, namely FS-PAEKS. The proposed scheme addresses the challenge
of secret key exposure while enjoying quantum-safe security without trusted authorities. Techni-
cally speaking, we introduce the binary tree structure, the minimal cover set, and ExtBasis and
SamplePre algorithms to achieve the post-quantum one-way secret key evolution. Moreover, we
analyze it satisfies IND-CKA, IND-IKGA, and IND-Multi-CKA in a quantum setting. Besides, we
also elaborate on the theoretical comparisons. Ultimately, we show two applications for FS-PAEKS
to illustrate its feasibility. We hereby address an open problem of how to construct a post-quantum
FS-PAEKS scheme without random oracle models.

Acknowledgements. Xue Chen interned as a Summer Research Assistant at HKU. This work
is partially supported by HKU-SCF FinTech Academy, Shenzhen-Hong Kong-Macao Science and
Technology Plan Project (Category C Project: SGDX20210823103537030), and Theme-based Re-
search Scheme of RGC, Hong Kong (T35-710/20-R).

18 S. Xu et al.

References

1. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. In Advances in Cryptology-EUROCRYPT 2004: International Conference on
the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004.
Proceedings 23, pages 506–522. Springer, 2004.

2. Gang Xu, Yibo Cao, Shiyuan Xu, Xin Liu, Xiu-Bo Chen, Yiying Yu, and Xiaojun Wang. A searchable
encryption scheme based on lattice for log systems in blockchain. Computers, Materials and Continua,
72(3):5429–5441, 2022.

3. Gang Xu, Shiyuan Xu, Yibo Cao, Fan Yun, Yu Cui, Yiying Yu, Ke Xiao, et al. Ppseb: a postquan-
tum public-key searchable encryption scheme on blockchain for e-healthcare scenarios. Security and
Communication Networks, 2022, 2022.

4. Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon Lee. Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data. In Secure Data Management: Third VLDB
Workshop, SDM 2006, Seoul, Korea, September 10-11, 2006. Proceedings 3, pages 75–83. Springer,
2006.

5. Qiong Huang and Hongbo Li. An efficient public-key searchable encryption scheme secure against inside
keyword guessing attacks. Information Sciences, 403:1–14, 2017.

6. Baodong Qin, Yu Chen, Qiong Huang, Ximeng Liu, and Dong Zheng. Public-key authenticated encryp-
tion with keyword search revisited: Security model and constructions. Information Sciences, 516:515–
528, 2020.

7. Mahnaz Noroozi and Ziba Eslami. Public key authenticated encryption with keyword search: revisited.
IET Information Security, 13(4):336–342, 2019.

8. Baodong Qin, Hui Cui, Xiaokun Zheng, and Dong Zheng. Improved security model for public-key au-
thenticated encryption with keyword search. In Provable and Practical Security: 15th International Con-
ference, ProvSec 2021, Guangzhou, China, November 5–8, 2021, Proceedings 15, pages 19–38. Springer,
2021.

9. Yang Lu and Jiguo Li. Lightweight public key authenticated encryption with keyword search against
adaptively-chosen-targets adversaries for mobile devices. IEEE Transactions on Mobile Computing,
21(12):4397–4409, 2021.

10. Xiangyu Pan and Fagen Li. Public-key authenticated encryption with keyword search achieving both
multi-ciphertext and multi-trapdoor indistinguishability. Journal of Systems Architecture, 115:102075,
2021.

11. Qiong Huang, Peisen Huang, Hongbo Li, Jianye Huang, and Hongyuan Lin. A more efficient public-key
authenticated encryption scheme with keyword search. Journal of Systems Architecture, 137:102839,
2023.

12. Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen. Public-key authenticated
encryption with keyword search: Cryptanalysis, enhanced security, and quantum-resistant instantiation.
In Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, pages
423–436, 2022.

13. Mihir Bellare and Sara K Miner. A forward-secure digital signature scheme. In Advances in Cryptol-
ogy—CRYPTO’99: 19th Annual International Cryptology Conference Santa Barbara, California, USA,
August 15–19, 1999 Proceedings 19, pages 431–448. Springer, 1999.

14. Yibo Cao, Shiyuan Xu, Xue Chen, Yunhua He, and Shuo Jiang. A forward-secure and efficient au-
thentication protocol through lattice-based group signature in vanets scenarios. Computer Networks,
214:109149, 2022.

15. Xue Chen, Shiyuan Xu, Yunhua He, Yu Cui, Jiahuan He, and Shang Gao. Lfs-as: lightweight forward
secure aggregate signature for e-health scenarios. In ICC 2022-IEEE International Conference on
Communications, pages 1239–1244. IEEE, 2022.

16. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. Journal
of Cryptology, 20:265–294, 2007.

Title Suppressed Due to Excessive Length 19

17. Xue Chen, Shiyuan Xu, Yibo Cao, Yunhua He, and Ke Xiao. Aqrs: Anti-quantum ring signature scheme
for secure epidemic control with blockchain. Computer Networks, 224:109595, 2023.

18. Shiyuan Xu, Xue Chen, Weimin Kong, Yibo Cao, Yunhua He, and Ke Xiao. An efficient blockchain-
based privacy-preserving authentication scheme in vanet. In 2023 IEEE 97th Vehicular Technology
Conference (VTC2023-Spring), pages 1–6. IEEE, 2023.

19. Xiaojun Zhang, Chunxiang Xu, Huaxiong Wang, Yuan Zhang, and Shixiong Wang. Fs-peks: Lattice-
based forward secure public-key encryption with keyword search for cloud-assisted industrial internet
of things. IEEE Transactions on dependable and secure computing, 18(3):1019–1032, 2021.

20. Zhe Jiang, Kai Zhang, Liangliang Wang, and Jianting Ning. Forward secure public-key authenticated
encryption with conjunctive keyword search. The Computer Journal, 2022.

21. Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM review, 41(2):303–332, 1999.

22. Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings
35th annual symposium on foundations of computer science, pages 124–134. Ieee, 1994.

23. Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen. Public-key authenticated
encryption with keyword search: A generic construction and its quantum-resistant instantiation. The
Computer Journal, 65(10):2828–2844, 2022.

24. Rouzbeh Behnia, Muslum Ozgur Ozmen, and Attila Altay Yavuz. Lattice-based public key searchable
encryption from experimental perspectives. IEEE Transactions on Dependable and Secure Computing,
17(6):1269–1282, 2020.

25. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice
basis. Journal of cryptology, 25:601–639, 2012.

26. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In Advances in Cryptology—EUROCRYPT 2002: International Confer-
ence on the Theory and Applications of Cryptographic Techniques Amsterdam, The Netherlands, April
28–May 2, 2002 Proceedings 21, pages 45–64. Springer, 2002.

27. Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based authenti-
cated key exchange from lattices. In Asiacrypt, volume 5912, pages 636–652. Springer, 2009.

28. Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and Hoeteck Wee. Efficient password
authenticated key exchange via oblivious transfer. In Public Key Cryptography–PKC 2012: 15th Inter-
national Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, May
21-23, 2012. Proceedings 15, pages 449–466. Springer, 2012.

29. Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. Security of the j-pake password-
authenticated key exchange protocol. In 2015 IEEE Symposium on Security and Privacy, pages 571–587.
IEEE, 2015.

30. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. Opaque: an asymmetric pake protocol secure against
pre-computation attacks. In Advances in Cryptology–EUROCRYPT 2018: 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May
3, 2018 Proceedings, Part III 37, pages 456–486. Springer, 2018.

31. Andreas Erwig, Julia Hesse, Maximilian Orlt, and Siavash Riahi. Fuzzy asymmetric password-
authenticated key exchange. In Advances in Cryptology–ASIACRYPT 2020: 26th International Con-
ference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea,
December 7–11, 2020, Proceedings, Part II 26, pages 761–784. Springer, 2020.

32. Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler, and Doreen Riepel. Password-
authenticated key exchange from group actions. In Advances in Cryptology–CRYPTO 2022: 42nd
Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–
18, 2022, Proceedings, Part II, pages 699–728. Springer, 2022.

33. Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key ex-
change. Journal of Cryptology, 26:714–743, 2013.

34. Rui Zhang and Hideki Imai. Generic combination of public key encryption with keyword search and
public key encryption. In Cryptology and Network Security: 6th International Conference, CANS 2007,
Singapore, December 8-10, 2007. Proceedings 6, pages 159–174. Springer, 2007.

20 S. Xu et al.

35. Leixiao Cheng and Fei Meng. Public key authenticated encryption with keyword search from lwe.
In Computer Security–ESORICS 2022: 27th European Symposium on Research in Computer Security,
Copenhagen, Denmark, September 26–30, 2022, Proceedings, Part I, pages 303–324. Springer, 2022.

36. Lisha Yao, Jian Weng, Anjia Yang, Xiaojian Liang, Zhenghao Wu, Zike Jiang, and Lin Hou. Scal-
able cca-secure public-key authenticated encryption with keyword search from ideal lattices in cloud
computing. Information Sciences, 624:777–795, 2023.

37. Lang Pu, Chao Lin, Biwen Chen, and Debiao He. User-friendly public-key authenticated encryption
with keyword search for industrial internet of things. IEEE Internet of Things Journal, 2023.

38. Ming Zeng, Haifeng Qian, Jie Chen, and Kai Zhang. Forward secure public key encryption with keyword
search for outsourced cloud storage. IEEE transactions on cloud computing, 10(1):426–438, 2019.

39. Xinmin Yang, Xinjian Chen, Jianye Huang, Hongbo Li, and Qiong Huang. Fs-ibeks: Forward se-
cure identity-based encryption with keyword search from lattice. Computer Standards & Interfaces,
86:103732, 2023.

40. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Public-key encryption indistinguishable
under plaintext-checkable attacks. IET Information Security, 10(6):288–303, 2016.

41. Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 99–108, 1996.

42. Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Advances in Cryptology–
CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings 30, pages 80–97. Springer, 2010.

43. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical ibe. In Advances in Cryptology–CRYPTO 2010: 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings 30, pages 98–115. Springer,
2010.

44. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
Eurocrypt, volume 7237, pages 700–718. Springer, 2012.

45. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 197–206, 2008.

46. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h) ibe in the standard model. In
Eurocrypt, volume 6110, pages 553–572. Springer, 2010.

47. Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. Trapdoor security in a searchable
public-key encryption scheme with a designated tester. Journal of Systems and Software, 83(5):763–771,
2010.

48. Zengpeng Li and Ding Wang. Achieving one-round password-based authenticated key exchange over
lattices. IEEE transactions on services computing, 15(1):308–321, 2019.

49. Xiaojun Zhang, Yao Tang, Huaxiong Wang, Chunxiang Xu, Yinbin Miao, and Hang Cheng. Lattice-
based proxy-oriented identity-based encryption with keyword search for cloud storage. Information
Sciences, 494:193–207, 2019.

50. Keita Emura. Generic construction of public-key authenticated encryption with keyword search revis-
ited: stronger security and efficient construction. In Proceedings of the 9th ACM on ASIA Public-Key
Cryptography Workshop, pages 39–49, 2022.

51. Gang Xu, Shiyuan Xu, Yibo Cao, Ke Xiao, Xiu-Bo Chen, Mianxiong Dong, and Shui Yu. Aaq-peks:
An attribute-based anti-quantum public-key encryption scheme with keyword search for e-healthcare
scenarios. Cryptology ePrint Archive, 2023.

52. Hongbo Li, Qiong Huang, Jianye Huang, and Willy Susilo. Public-key authenticated encryption with
keyword search supporting constant trapdoor generation and fast search. IEEE Transactions on Infor-
mation Forensics and Security, 18:396–410, 2022.

	Post-Quantum Public-key Authenticated Searchable Encryption with Forward Security: General Construction, and Applications

