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Abstract. Fully homomorphic encryption is a revolutionary technology
that allows arbitrary computations on encrypted data, providing privacy
and security. State-of-the-art schemes such as the Fan-Vercauteren (FV)
scheme are based on the Learning with Errors assumption and its vari-
ants. Thus, each ciphertext has an error that increases with each homo-
morphic operation. To maintain correctness, the error must be kept below
a certain threshold, which requires a balance between security and com-
putational efficiency. Therefore, choosing optimal, secure, and efficient
parameters can be a challenging task, even for experts in a particular
scheme.
In this paper, we present two major contributions to improve the pa-
rameter selection in the FV scheme. We perform the first average case
analysis to estimate the error growth. Our method significantly improves
on previous work in terms of accuracy and tightness of bounds. For a cir-
cuit with a multiplicative depth of only 3, our bounds are within 1.2 bits
of the experimentally observed values while being up to 19 bits tighter
than previous analyses.
In addition, we take advantage of our theoretical advances and propose
the first parameter generation tool for the FV scheme. Here we add sup-
port for arbitrary but use-case-specific circuits, as well as the ability to
generate easy-to-use code snippets, making our theoretical work accessi-
ble to both researchers and practitioners.

Keywords: Fully Homomorphic Encryption, FV, Parameter Generation,
average-case noise analysis, PALISADE, OpenFHE

1 Introduction

Data privacy concerns are increasing significantly in the context of Internet of
Things, cloud services, edge computing, artificial intelligence applications, and
other applications enabled by the next generation networks. Homomorphic en-
cryption addresses privacy challenges by enabling multiple operations on en-
crypted messages without decryption. Namely, a set of operations can be per-
formed over ciphertexts such that these operations are reflected as additions and
multiplications on the corresponding plaintexts. Thus, homomorphic encryption
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allows data manipulation in the encrypted domain, or, in other words, privacy-
preserving data processing [23].

The first Fully Homomorphic Encryption (FHE) scheme was introduced in
2009 by Gentry in [18]. In his Ph.D. thesis, Gentry provided a method for con-
structing a general FHE scheme from a scheme with limited but sufficient ho-
momorphic evaluation capacity. Since then, novel constructions on FHE have
been proposed following his idea, BGV [7], FV [6, 17], TFHE [11], and CKKS
[9] some of the most representative.

The security of most of the FHE schemes is based on the presumed
intractability of the decision Learning with Errors (LWE) problem and its
ring variant (RLWE), [2]. Informally, they consist of distinguishing equations
perturbed by small noise from random tuples. The problem arising from this
construction is noise growth. Indeed, in order to guarantee a correct decryption,
the error added has to be small. However, it increases as long as operations are
carried on. In particular, it grows exponentially when homomorphic multiplica-
tions are computed. To increase the number of supported operations, we could
increase the ciphertext modulus q. However, a higher modulus also decreases
the security level of the underlying scheme. On the other hand, to increase the
security level, we can adopt a higher polynomial degree at the cost of efficiency.
This required trade-off between security (small ciphertext modulus), and error
margin (big ciphertext modulus) illustrates the difficulty of finding an optimal
set of parameters for a specific FHE scheme.

Related works. One of the greatest challenges facing the FHE community
is to find a set of parameters that must strike a balance between security
and efficiency. Several efforts have been made in this direction. For instance,
Bergerat et al. proposed a framework for efficiently selecting parameters
in TFHE-like schemes [5], while Mono et al. [24] developed an interactive
parameter generator for the leveled BGV scheme that supports an arbitrary
circuit model. The Homomorphic Encryption Standard [1] uses the LWE
Estimator4 [2] and provides upper limits on the size of the ciphertext modulus
for certain security levels λ and polynomial degrees d in the form of lookup
tables. While the standard is crucial for fully homomorphic encryption (FHE)
and provides a solid foundation for selecting Fan-Vercauteren (FV) parameters,
it may not include all the necessary information required for implementation.
For researchers familiar with FHE, this flexibility is valuable. For other users,
however, this burden of choice increases the difficulty of using libraries securely.

Regarding the selection of the FV parameters, the state-of-the-art approach
for establishing the theoretical bounds for the error growth is based on using

4 The LWE Estimator is a software tool to determine the security level of LWE in-
stances since it shows the timeline and fundamentals of the main lattice attacks
proposed until the present time. Its successor is the Lattice Estimator (https:
//github.com/malb/lattice-estimator).

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator
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either the infinity norm [22] or the canonical norm [12, 14, 21]. The canonical
norm is known to result in better parameters. However, both of these methods
often yield overly conservative bounds. An alternative approach is an average-
case analysis, which estimates the growth of the error on average and only sets a
bound on its maximal value at the end of the computation. This method provides
a predicted error closer to the actual errors observed in experimental results. The
average-case approach was first proposed in [10] for computing bounds in the
TFHE scheme. Recent works have introduced similar techniques for CKKS [13]
and BGV [15, 25].

Our contribution. This paper aims to improve the current state of FV parameters
selection by providing, for the first time, 1) an estimation of the noise in average-
case scenarios and 2) a tool to automate the parameters generation in the FV
scheme based on our theoretical findings.

More in detail, in this paper, we present a novel approach for the FV scheme
based on average-case noise analysis. Our method differs from those proposed
for the BGV and CKKS schemes. Specifically, the error coefficients are not inde-
pendent, making it impossible to apply the Central Limit Theorem, as suggested
in previous works [13, 25]. As a result, our analysis is more intricate, particularly
for homomorphic multiplication.

To demonstrate the effectiveness of our method, we compare our bounds with
prior heuristic noise analyses based on the canonical norm. For a circuit with
a multiplicative depth of only 3, our approach provides bounds at least 19 bits
tighter than previous analyses and only up to 1.2 bits lower than the practical
computation.

Finally, we develop an interactive parameters generator for the FV scheme,
which utilizes our theoretical results and the security formula proposed in [24].
This tool provides flexibility, allowing users to choose the desired security level,
the degree of the arithmetic function to be evaluated homomorphically, and the
error and secret distributions, among other parameters.

The structure of the paper is the following:

– To facilitate understanding of the paper, we present the notation and math-
ematical background required in Section 2.

– In Section 3, we comprehensively analyze and compute invariant noise after
any operation in the FV scheme.

– The core of the paper is Section 4, where we introduce our average-case
approach.

– In Section 5, we investigate the error behavior in four different circuits
(proposed in [24]) and two distinct circumstances: with and without mod-
ulus switching. As expected, the modulus switching technique increases the
bounds. However, in Fact 1, we propose a set of parameters that achieve a
ciphertext modulus similar to the one obtained without modulus switching
while improving efficiency.
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– Finally, in Section 6, we compare our average-case approach with prior
bounds of FV noise growth. Additionally, we introduce our parameter gen-
erator to facilitate the selection of optimal parameters for the FV scheme.

2 Preliminaries

2.1 Notation

We start with the general notations we will use in the remainder of this work.

Let f(x) be a monic irreducible polynomial of degree n, we denote by R =
Z[x]/⟨f(x)⟩ and with K = Q[x]/⟨f(x)⟩. In particular, we take f(x) = xn + 1
with n a power of 2.

For a positive integer p, we denote by Zp the set of integers
{−⌊p−1

2 ⌋, . . . , ⌈
p−1
2 ⌉} and by Rp the set of polynomials in R with coeffi-

cients in Zp. Let z ∈ Z, we write [z]p ∈ Zp for the centered representative of z
mod p. For polynomials in R, it denotes the element in Rp where [·]p is applied
to every coefficient. Let x ∈ Q, ⌊x⌉ be the rounding to the nearest integer. The
same holds coefficient-wise for polynomials in K.

We denote by the integer t > 1 the plaintext modulus and with Rt the
plaintext space. We further require t ≡ 1 (mod 2n). Analogously, we denote
the ciphertext modulus and space by q and Rq, respectively. Note that q is the
product of k pair-wise co-prime integers ri > 1 of approximately the same size.
Moreover, we set ri to be co-prime with t and satisfy ri ≡ 1 mod 2n.

Finally, if we want to apply the modulo switch in a circuit as BGV (see

Section 5.2), we need qms =
∏L

j=1 pj with the pj defined analogously to q. For

any ℓ, we denote by qℓ =
∏ℓ

j=1 pj . The multiplicative depth M of the circuit
determines the number of primes L = M + 1.

Let χs and χu be secret key distributions and χe an error distribution from
the Learning with Errors over Rings (RLWE) problem. Tipically, we have χs =
χu = U3, uniform distribution on Z3, and χe = DG(0, σ2), discrete Gaussian
centered in 0 with standard deviation σ = 3.2 [1]. Note that in this article, we
assume that the distributions are symmetric. In general, if χ is a probabilistic
distribution and a ∈ R is a random polynomial, we write a← χ when sampling
each coefficient independently from χ.
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2.2 Mathematical Background

Coverage probability for Gaussian-distributed variables. Let X be a random vari-
able from a Gaussian distribution centered in 0 of variance V , then

P
(
|X| ≤ x

)
= P

(
X ≤ x

)
− P

(
X ≤ −x

)
=

=
1

2

(
1 + erf

( x√
2V

))
− 1

2

(
1 + erf

( −x√
2V

))
= erf

( x√
2V

)
.

(1)

Coverage probability for vectors. Suppose we want to study the infinity norm of
a vector X of random variables distributed as X. If its entries are independent,
then

P
(
||X||∞ ≤ x

)
= P

(
|X| ≤ x

)n
.

In general, we can give an upper bound on the complementary probability:

P
(
||X||∞ > x

)
≤ nP

(
|X| > x

)
. (2)

In particular, if X follows a Gaussian distribution as above, we have

P
(
||X||∞ > x

)
≤ n

(
1− erf

( x√
2V

))
(3)

Canonical embedding and norm. We recall the results of [12, 14, 21]. The canon-
ical embedding of a ∈ R is the vector obtained by evaluating a in the primitive
2n-th roots of unity. The canonical embedding norm of a is defined as the infinity
norm of the canonical embedding.

Let us consider a random polynomial a ∈ R where each coefficient is sampled
independently from a zero-mean distribution, then ||a||can ≤ D

√
nVa with high

probability [12].
We now want to estimate the probability that the canonical norm of a random

polynomial exceeds a certain value x.
Let us consider the case where the coefficients in a, a0, ..., an−1, are i.i.d. with

0 mean and variance Va, and suppose E(|ai|2+δ) <∞ for all i and for some fixed
δ > 0 (this last condition it is not restrictive in our case). As shown in [16], using
the Lyapunov Central Limit Theorem, it is possible to prove that for any root of
unity ζ = cos(α) + i sin(α), the random variable a(ζ) is a complex random vari-
able which can be approximated by a complex Gaussian random variable. That
is, a(ζ) is approximated by a bivariate Normal distributed r.v. (X,Y ). Moreover,

X and Y are Normal distributed with variance VX = Va(
∑n−1

j=0 cos2(jα)) and

VY = Va(
∑n−1

j=0 sin2(jα)) = nVa − VX , respectively.
Let C be the diagonal matrix with the standard deviation of X and Y over

the diagonal. We have that (X,Y )t = C(Z,Z ′)t with Z and Z ′ i.i.d. standard
Gaussian random variables. Therefore,

P (|a(ζm)| < x) = P (||(X,Y )||2 < x) ≥ P (||C||2||(Z,Z ′)||2 < x) .
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Let M be the maximum between VX and VY (note that n
2Va ≤ M ≤ nVa).

The 2-norm of the matrix C is
√
M . Thus, P (||C||2||(Z,Z ′)||2 < x) =

P
(
||(Z,Z ′)||22 < x2

M

)
. Since Z,Z ′ are independent standard Gaussian random

variable, ||(Z,Z ′)||22 is Chi-squared distributed and

P
(
||(Z,Z ′)||22 <

x2

M

)
= 1− e−

x2

2M ≥ 1− e−
x2

nVa ⇒ P (|a(ζm)| > x) ≤ e−
x2

nVa .

Therefore,

P (||a||can > x) ≤ ne−
x2

nVa . (4)

Probability operators. Let X,Y, Z be real random variables and c a constant.
The expected value enjoys the following properties:

– it is linear: E[X + Y ] = E[X] + E[Y ] and E[cX] = cE[X];
– if X is sampled from a symmetric distribution, i.e. P(X = x) = P(X = −x)

for any x ∈ R, then E[X] = 0;
– if X and Y are independent, then E[XY ] = E[X]E[Y ];
– in general, E[XY ] = E[X]E[Y ] + Cov(X,Y ).

The covariance is consequently defined as Cov(X,Y ) = E[XY ]− E[X]E[Y ] and
is such that

– if X and Y are independent, then Cov(X,Y ) = 0;
– it is bilinear.

Some characteristics of the variance are

– Var(X) ≥ 0;
– Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ) and, more in general,

V (
∑

i Xi) =
∑

i V (Xi) +
∑

i1 ̸=i2
Cov(Xi1 , Xi2);

– if X and Y are independent, then Var(X + Y ) = Var(X) + Var(Y );
– Var(cX) = c2Var(X);
– if X and Y are independent and E[X] = E[Y ] = 0, then Var(XY ) =

Var(X)Var(Y ).

We list the variances of the variable we will use in the rest of the work:

If X ← DG(0, σ2) then Var(X) = σ2

If X ← Uq then Var(X) = q2−1
12 ≈

q2

12

If X ← Ut then Var(X) = t2−1
12

If X ← U3 then Var(X) = 32−1
12 = 2

3

(5)

3 The FV Scheme

The FV scheme [17] is a cutting-edge FHE scheme whose security relies on the
hardness of the ring learning with errors (RLWE) problem. This section presents
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the scheme, considering the latest enhancements proposed in [22]. In particular,
the authors revised the encryption algorithm replacing the term ∆m = ⌊ qt ⌋m
with

⌊
q
tm
⌉
, which eliminates the noise gap with respect to the BGV scheme.

KeyGen(λ, L)
Define parameters and distributions accordingly to λ and L. Sample s ← χs,

a← Uq and e← χe. Output sk = s and pk = (b, a) = ([−as+ e]q, a).

Enc(m, pk)

Receive the plaintext m ∈ Rt and pk = (b, a). Sample u← χu and e0, e1 ← χe.

Output c = (c, q, νclean) with c = (c0, c1) =
([⌊

q
t
m
⌉
+ ub+ e0

]
q
, [ua+ e1]q

)
.

Dec(c, sk)

Receive the extended ciphertext c for sk = s. Output
[⌊

t
qℓ
[c0 + c1s]qℓ

⌉]
t
.

Let c = (c, qℓ, ν) be the extended ciphertext, where c is a ciphertext, qℓ denotes
the ciphertext modulus and ν the invariant noise. The invariant noise [21] is the
minimal ν such that

t

qℓ
[c0 + c1s]qℓ = m+ ν + kt

for some k ∈ R. Therefore,
[⌊

t
q [c0 + c1s]q

⌉]
t
= [⌊m+ ν + kt⌉]t = [m + ⌊ν⌉]t.

Hence the decryption works properly as long as ν is small enough. In particular,
it is correct when the coefficients of ν belong to the interval (− 1

2 ,
1
2 ]. After the

encryption operation, the invariant noise is

νclean =
t

q
(ε+ eu+ e0 + e1s) (6)

where ε =
⌊
q
tm
⌉
− q

tm = − [qm]t
t , [22].

Proof.
t

q
[c0 + c1s]q =

t

q

[⌊q
t
m
⌉
+ ub+ e0 + (ua+ e1)s

]
q
=

=
t

q

(q
t
m+ ε+ ue+ e0 + e1s

)
+ kt = m+ νclean + kt.

Addition & Constant Multiplication.

Add(c, c′)

Receive extended ciphertexts c = (c, qℓ, ν) and c′ = (c′, qℓ, ν
′).

Output (cadd, qℓ, νadd) with cadd = ([c0 + c′0]qℓ , [c1 + c′1]qℓ).
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MulConst(α, c)

Receive constant polynomial α ∈ Rt and extended ciphertext c = (c, qℓ, ν).

Output (cconst, qℓ, νconst) with cconst = ([αc0]qℓ , [αc1]qℓ).

Let u, k ∈ R. The invariant noise is

t

qℓ
[c0 + c1s+ c′0 + c′1s]qℓ =

t

qℓ
([c0 + c1s]qℓ + [c′0 + c′1s]qℓ − uqℓ)

= [m+m′]t + ν + ν′ + kt =⇒ νadd = ν + ν

(7)

t

qℓ
[αc0 + αc1s)]qℓ =

t

qℓ
(α[c0 + c1s]qℓ − uqℓ) = [αm]t + αν + kt

=⇒ νconst = αν,

(8)

Multiplication & Modulus switching. In this section, we are going to see the
multiplication algorithm presented in [22], which applies the modulus switching
to one of the ciphertexts before multiplying them, in order to make the RNS
representation more efficient. The modulus switch technique was first introduced
for the BGV scheme in [8] to reduce the error associated with a ciphertext. In
the FV scheme, this error reduction is made implicitly, so the purpose of the
modulus switch is only to shift to a different ciphertext modulus.

ModSwitch(c, q′ℓ)

Receive the extended ciphertext c = (c, qℓ, ν) and the target modulo q′ℓ. Output

c′ = (c′, q′ℓ, ν + νms(q
′
ℓ)) with c′ =

([⌊
q′ℓ
qℓ
c0
⌉]

q′
ℓ

,
[⌊

q′ℓ
qℓ
c1
⌉]

q′
ℓ

)
.

The noise added by the modulo switch operation is

νms(q
′
ℓ) =

t

q′ℓ
(ε0 + ε1s), with εi = −

[q′ℓci]qℓ
qℓ

. (9)

Indeed, since t
q′ℓ
[c′0 + c′1s]q′ℓ =

t
q′ℓ

[
⌊ q

′
ℓ

qℓ
c0⌉+ ⌊ q

′
ℓ

qℓ
c1⌉s

]
q′ℓ
, we have

t

q′ℓ
[c′0 + c′1s]q′ℓ =

t

q′ℓ

[
q′ℓ
qℓ
c0 + ε0 +

q′ℓ
qℓ
c1s+ ε1s

]
q′ℓ

=

=
t

qℓ
[c0 + c1s]qℓ +

t

q′ℓ
(ε0 + ε1s) + ht = m+ ν +

t

q′ℓ
(ε0 + ε1s) + k′t.

In the case of multiplication, the algorithm takes as input two extended
ciphertexts c and c′, where one of the ciphertexts, say c′, is the result of a
modulo switch to q′ℓ. The new modulus q′ℓ is required to be of approximately the
same size of qℓ, to satisfy q′ℓ ≡ 1 (mod 2n) and (t, q′ℓ) = (qℓ, q

′
ℓ) = 1.
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Ten(c, c′)

Receive the extended ciphertexts c = (c, qℓ, ν) and c′ = (c′, q′ℓ, ν
′). Output

d = (d, qℓ, νmul(qℓ)) with

d = (d0, d1, d2) =

([⌊
t

q′ℓ
c0c

′
0

⌉]
qℓ

,

[⌊
t

q′ℓ
(c0c

′
1 + c1c

′
0)

⌉]
qℓ

,

[⌊
t

q′ℓ
c1c

′
1

⌉]
qℓ

)
.

The multiplication output is a polynomial R3
q that can be decrypted in the

following way:
⌊

t
qℓ
[d0 + d1s+ d2s

2]qℓ

⌉
. Let t

qℓ
(c0+c1s) = m+ν+ht and t

q′ℓ
(c′0+

c′1s) = m′ + ν′ + h′t. Thus,

t

qℓ

[⌊
t

q′ℓ
c0c

′
0

⌉
+

⌊
t

q′ℓ
(c0c

′
1 + c′0c1)

⌉
s+

⌊
t

q′ℓ
c1c

′
1

⌉
s2
]
qℓ

=
t

qℓ

[
t

q′ℓ
c0c

′
0 + ε0 +

t

q′ℓ
(c0c

′
1 + c′0c1)s+ ε1s+

t

q′ℓ
c1c

′
1s

2 + ε2s
2

]
qℓ

=
t

qℓ
(c0 + c1s) ·

t

q′ℓ
(c′0 + c′1s) +

t

qℓ
(ε0 + ε1s+ ε2s

2) + h′′t

=[mm′]t + ν(m′ + h′t) + ν′(m+ ht) + νν′ +
t

qℓ
(ε0 + ε1s+ ε2s

2) + kt

=[mm′]t + νmul(qℓ) + kt,

where the noise after the multiplication is

νmul(qℓ) = −νν′ + ν
t

q′ℓ
(c′0 + c′1s) + ν′

t

qℓ
(c0 + c1s) +

t

qℓ
(ε0 + ε1s+ ε2s

2). (10)

Note that the multiplication output needs to be transformed back to a ci-
phertext in R2

q (re-linearization); this is done by encrypting its last term d2 via
key switching (see Section 3.1).

3.1 Key Switching

The key switch is used for (i) reducing the degree of a ciphertext polynomial,
usually the multiplication output, or (ii) changing the key after a rotation.
For a multiplication, we convert the ciphertext term d2 · s2 to a polynomial
cks0 + cks1 · s and for a rotation, we convert the ciphertext term c1 · rot(s) to a
polynomial cks0 + cks1 · s. In the following, we will only analyze multiplication,
and more specifically, we will output c′ = (d0 + cks0 , d1 + cks1 ) and denote the
ciphertext term we want to remove by d2. This concept encompasses rotations,
as we can identify the term we wish to eliminate as d1, resulting in an output
of (d0 + cks0 , c

ks
1 ).

The idea is to encrypt the extra term s2 under the secret key. However,
in doing so, the resulting error would be too significant. Hence several variants
exist to reduce its growth. This work considers the three main variants: Brakerski
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Vaikuntanathan (BV), Gentry Halevi Smart (GHS), and Hybrid. In particular,
for the BV re-linearization, we consider the latest improvements proposed in
[4, 20] to make this operation more compatible with the RNS representation.

Brakerski-Vaikuntanathan The strategy is to decompose d2 exploiting the Chi-
nese Remainder Theorem (CRT). Let qℓ = r1 · · · rkℓ

with ri pairwise co-prime
of approximately the same size (ri ≈ kℓ

√
qℓ).

KeySwitchGenBV (s, s2)

Sample ai ← Uqℓ , ei ← χe and set (bi, ai) =
([[(

qℓ
ri

)−1]
ri

qℓ
ri
s2−ais+ei

]
qℓ

, ai

)
for i = 1, . . . , kℓ. Output ksBV = {(bi, ai)}.

KeySwitchBV(ksBV, c)

Receive d = (d, qℓ, ν) with d = (d0, d1, d2) and ksBV = {(bi, ai)}. Output c =

(c, qℓ, ν + νBV
ks ) where c =

([
d0 +

∑kℓ
i=1[d2]ribi

]
qℓ

,
[
d1 +

∑kℓ
i=1[d2]riai

]
qℓ

)
.

Observing that
[∑kℓ

i=1[d2]ri(bi + ais)
]
qℓ

is equal to

[
kℓ∑
i=1

[d2]ri

([(
qℓ
ri

)−1
]
ri

qℓ
ri
s2 + ei

)]
qℓ

=

[
d2s

2 +

k∑
i=1

[d2]riei

]
qℓ

,

we have

t

qℓ
[c0 + c1s]qℓ =

t

qℓ

[
d0 + d1s+ d2s

2 +

kℓ∑
i=1

[d2]riei

]
qℓ

= m+ ν +
t

qℓ

kℓ∑
i=1

[d2]riei + kt.

Thus, the error after the BV key switching is ν + νBVks (qℓ) where

νBVks (qℓ) =
t

qℓ

kℓ∑
i=1

[d2]riei. (11)

Gentry-Halevi-Smart An alternative is encrypting q′ℓs
2 instead of s2 with q′ℓ a

big number, usually of approximately the same size of qℓ. In this way, the error
quantity added is divided by q′ℓ.

KeySwitchGenGHS(s, s2)

Sample a′ ← Uqℓq′ℓ , e
′ ← χe and output the key switching key

ksGHS = (b′, a′) = ([q′ℓs
2 − a′s+ e′]qℓq′ℓ , a

′).
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KeySwitchGHS(ks, c)

Receive extended ciphertext d = (d, qℓ, ν) and key switching key ksGHS.

Output c = (c, qℓ, ν + νGHS
ks ) with c =

([
d0 +

⌊
d2b

′

q′
ℓ

⌉]
qℓ

,
[
d1 +

⌊
d2a

′

q′
ℓ

⌉]
qℓ

)
.

To compute the invariant noise, we have to perform the following operation

t

qℓ
[c0 + c1s]qℓ =

t

qℓ

[
d0 + d1s+

⌊
d2b

′

q′ℓ

⌉
+

⌊
d2a

′

q′ℓ

⌉
s

]
qℓ

=
t

qℓ

[
d0 + d1s+

d2(q
′
ℓs

2 + e′)

q′ℓ
+ ε0 + ε1s

]
qℓ

= m+ ν +
t

qℓ

(
d2e

′

q′ℓ
+ ε0 + ε1s

)
+ kt.

Thus, the noise after the GHS key switching is ν + νGHSks (qℓ) where

νGHSks (qℓ) =
t

qℓ

(
d2e

′

q′ℓ
+ ε0 + ε1s

)
. (12)

Hybrid The Hybrid variant offers a trade-off between efficiency and security from
the two previous variants. Indeed, the downside of the first one is the inefficiency
due to a higher number of multiplications to be performed. In contrast, the issue
with the second one is that its security relies on the RLWE assumption with a
larger factor qℓq

′
ℓ instead of qℓ. This larger factor means that to achieve the same

level of security, the modulus qℓ must be smaller, which limits the depth of the
circuit that can be evaluated homomorphically. In the Hybrid relinearization,
the modulus is split in a smaller number of elements k, and the division is done
considering q′ℓ ≈ k

√
qℓ. For further information see [19, 22].

KeySwitchGenHybrid(s, s2)

Sample ai ← Uqℓq′ℓ , ei ← χe and output ksHybrid = {(bi, ai)}i=1,...,k with

(bi, ai) =
([

q′ℓ

[(qℓ
ri

)−1]
ri

qℓ
ri
s2 − ais+ ei

]
qℓq

′
ℓ

, ai

)
.

KeySwitchHybrid(ksHybrid, c)

Receive extended ciphertext d = (d, qℓ, ν) and key switching key ksHybrid.
Output c = (c, qℓ, ν + νHybrid

ks ) with

c =
([

d0 +
⌊∑k

i=1[d2]ribi

q′ℓ

⌉]
qℓ

,
[
d1 +

⌊∑k
i=1[d2]riai

q′ℓ

⌉]
qℓ

)
.
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Since [bi + ais]qℓq′ℓ =
[
q′ℓ

[(
qℓ
ri

)−1]
ri

qℓ
ri
s2 + ei

]
qℓq′ℓ

, we have

t

qℓ
[c0 + c1s]qℓ =

t

qℓ

[
d0 + d1s+

∑k
i=1[d2]ri(bi + ais)

q′ℓ
+ ε0 + ε1s

]
qℓ

=
t

qℓ

[
d0 + d1s+ d2s

2 +

∑k
i=1[d2]riei

q′ℓ
+ ε0 + ε1s

]
qℓ

= m+ ν +
t

qℓ

(∑k
i=1[d2]riei

q′ℓ
+ ε0 + ε1s

)
+ kt.

Thus, the noise after the Hybrid key switching is ν + νHybridks (qℓ) where

νHybridks (qℓ) =
t

qℓ

(∑k
i=1[d2]riei

q′ℓ
+ ε0 + ε1s

)
. (13)

4 Analyzing the Error with the average-case approach

The purpose of this section is to investigate how errors behave during homo-
morphic operations, with the goal of ensuring correct decryption. Specifically,
we aim to establish that the error coefficients lie in the interval (− 1

2 ,
1
2 ] with

overwhelming probability.

We observed that the distributions of these coefficients are well-approximated
by identical distributed Gaussian centered in 0, but not independent. Therefore,
we can bound the maximum error coefficient in absolute value with high prob-
ability by limiting their variance V as in Equation (3). In particular, setting
V ≤ 1/8D2, i.e. D ≤ 1/2

√
2V , the probability of failure for the decryption is

P
(
||ν||∞ >

1

2

)
≤ n

(
1− erf

( 1

2
√
2V

))
≤ n(1− erf(D)),

Usually D = 6. So, for example, for n = 213, we have n(1− erf(D)) ≈ 2−42.

Distribution. We have studied the distribution of the coefficients of the error
vector computationally5 with Python fitter package6, obtaining that they can
be well-approximated by i.d. Gaussians. We show the results for the first coeffi-
cient applied to a Base Model circuit of multiplicative depth 0, 1, 2, and 3 (see
Figure 2).

5 The code used in this paper is written by us, we will update these and all the
following results using an open library

6 https://fitter.readthedocs.io/en/latest/
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SSE: 1.1044e+82, ksstat: 0.00628, kspval: 0.988437 SSE: 8.4321e+73, ksstat: 0.008881, kspval: 0.821915

SSE: 2.6367e+65, ksstat: 0.012477, kspval: 0.41443 SSE: 3.7681e+56, ksstat: 0.007756, kspval: 0.922085

Table 1: The analysis pictured considers 5000 samples computed with the GHS
re-linearization and parameters t = 3, n = 213, q = 2149 + 1, χs = χu = U3,
χe = DG(0, σ2) with σ = 3.2 and η = 2. The level of security guaranteed is
λ = 128.

Characterization of the error. In the next paragraphs, we prove that the error
coefficients have always mean 0, and we show how to compute the variance as the
different operations are performed. To do so, we give a general characterization
of the error as

ν =
∑
ι

aιs
ι, (14)

where the following conditions hold:

1. E[aι|i] = 0 for any ι,

2. Cov(aι1 |i1 , aι2 |i2) = 0 if either ι1 ̸= ι2 or i1 ̸= i2.

See Appendix A for the proof.
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Expected value. As a consequence of Condition 1, we obtain that the error coef-
ficients have mean 0 all along the circuit, i.e.

E[ν|i] = 0. (15)

Proof. Since the error ν can be written as in (14), we have

ν|i =
∑
ι

(aιs
ι)|i =

∑
ι

n−1∑
j=0

ξ(i, j)aι|jsι|i−j mod n

where ξ(i, j) =

{
1 if i− j ∈ [0, n)

−1 otherwise
.

Hence, by the linearity of the expected value (see Section 2.2),

E[ν|i] =
∑
ι

n−1∑
j=0

ξ(i, j)E[aι|j ]sι|i−j mod n = 0.

Note that the secret key s is seen as a fixed vector.

Variance. From Condition 2, we have

Var(ν|i) =
∑
ι

n−1∑
j=0

Var(aι|j)sι|2i−j mod n. (16)

Proof. Analogously to the previous proof, we have

Var(ν|i) = Var
(∑

ι

n−1∑
j=0

ξ(i, j)aι|jsι|2i−j mod n

)
Sec. 2.2
=

∑
ι

n−1∑
j=0

Var(aι|j)sι|2i−j mod n+

+
∑

ι1 ̸=ι2 or j1 ̸=j2

ξ(i, j1)ξ(i, j2)Cov(aι1 |j1 , aι2 |j2)sι1 |2i−j1 mod ns
ι2 |2i−j2 mod n

Thus, by Equation (14), Var(ν|i) =
∑

ι

∑n−1
j=0 Var(aι|j)sι|2i−j mod n.

While the variance of ν|i could be computed by calculating Var(aι|i) and sι|i
for any ι, this approach can be challenging to generalize due to the potential
complexity of aι. Instead, we examined how the variance changes with each
operation applied. Although this method is slightly less precise, it still provides
good bounds and is easier to manage.

Encryption. The variance of the error coefficients of a fresh ciphertext is

Var(νclean|i) ≈
Bclean

q2
where Bclean = t2

( 1

12
+ nVeVu + Ve + nVeVs

)
. (17)
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Proof. By Equation (6), the fresh error νclean can be written as νclean = a0 + a1s
with a0 = t

q (ε+eu+e0), a1 = t
q e1. Defined Ve, Vs, Vu the variances of coefficients

from the distributions χe, χs, χu, respectively, Var(a0|i) = t2

q2

(
1
12 + nVeVu + Ve

)
and Var(a1|i) = t2

q2Ve, while E[
∑

i s|2i ] = nVs. It follows that

Var(νclean|i)
16
= Var(a0|i) +

n−1∑
j=0

Var(a1|j)s|2i−j mod n ≈

≈ t2

q2

( 1

12
+ nVeVu + Ve + nVeVs

)
,

(18)

where Var(ε|i) = 1
12 comes from the fact that ε =

⌊
q
tm
⌉
− q

tm = − [qm]t
t and

[qm]t can be consider a random element from the uniform distribution Ut.

Addition. Let ν, ν′ the errors of two ciphertexts computed independently, so
independent themselves. Then,

Var((ν + ν′)|i)
Sec. 2.2
= Var(ν|i) + Var(ν′|i). (19)

The same argument can be applied to modulo-switch and key-switch opera-
tions.

Modulo switching. Since the modulus switch from qℓ to q
′
ℓ adds an error νms(q

′
ℓ) =

t
q′ℓ
(ε0 + ε1s) independent on ν by Equation (9), the variance becomes

Var((ν + νms(q
′
ℓ))|i) = Var(ν|i) +

Bms

q′2ℓ
where Bms =

t2

12
(1 + nVs). (20)

Key switching. Analogously, after the key switch, the variance becomes

Var(ν|i) + Vks(qℓ), (21)

where Vks(qℓ) depends on the chosen key-switching variants. Specifically,

– BV key switching. Since νBVks (qℓ) =
t
qℓ

∑kℓ

i=1[d2]riei as in Equation (11) with

ri ≈ kℓ
√
qℓ and [d2]ri behaves as if selected uniformly at random from Uri ,

we have that

V BV
ks (qℓ) =

t2

q2ℓ
nVe

kℓ∑
i=1

r2i
12
≈ kℓ

t2n

12q2ℓ

kℓ

√
q2ℓVe. (22)

– GHS key switching. From Equation (12) we have νGHSks (qℓ) =
t
qℓ

(
d2e

′

q′ℓ
+ ε0 + ε1s

)
where q′ℓ ≈ qℓ, hence

V GHS
ks (qℓ) ≈

t2

12q2ℓ
(nVe + 1 + nVs) (23)
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and, in particular, we can write V GHS
ks (qℓ) = BGHS

ks /q2ℓ , where

BGHS
ks ≈ t2

12
(nVe + 1 + nVs) . (24)

– Hybrid key switching. Since νHybridks (qℓ) = t
qℓ

(∑k
i=1[d2]riei

q′ℓ
+ ε0 + ε1s

)
as in

Equation (13) and ri ≈ q′ℓ ≈ k
√
qℓ, we have

V Hybrid
ks (qℓ) ≈

t2

q2ℓ

(
knV e

12
+

1

12
+

nVs

12

)

then we can set V Hybrid
ks (qℓ) = BHybrid

ks /q2ℓ , where

BHybrid
ks ≈ t2

12
(knV e+ 1 + nVs) .

Note that, in this work, we focus on the GHS and Hybrid variants.

Constant multiplication. The variance of the error coefficients after a constant
multiplication is

Var((αν)|i) ≈
(t2 − 1)n

12
Var(ν|i), (25)

Proof. Since the coefficients of α behave as sampled independently at random

from a uniform distribution over Ut, then E[α|i] = 0 and Var(α|i) ≈ t2−1
12 . It

follows

Var((αν)|i)
(14)
=
∑
j

Var(α|jν|i−j mod n)
indep.
=

=
∑
j

Var(α|j)Var(ν|i−j mod n) =
(t2 − 1)n

12
Var(ν|i−j mod n).

Multiplication. Let ν =
∑T1

ι1=0 aι1s
ι1 , ν′ =

∑T2

ι2=0 a
′
ι2s

ι2 be two independently-
computed ciphertexts, then by Equation (10),

νmul(qℓ) = −νν′ + ν
t

q′ℓ
(c′0 + c′1s) + ν′

t

qℓ
(c0 + c1s) +

t

qℓ
(ε0 + ε1s+ ε2s

2) =

= −
∑
ι1

∑
ι2

aι1a
′
ι2s

ι1+ι2 +
∑
ι1

aι1

( t

q′ℓ
c′0s

ι1 +
t

q′ℓ
c′1s

ι1+1
)
+

+
∑
ι2

aι′2

( t

qℓ
c0s

ι2 +
t

qℓ
c1s

ι2+1
)
+

t

qℓ
(ε0 + ε1s+ ε2s

2)
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and the variance of its coefficients is

Var(νmul(qℓ)|i) = n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)
n−1∑
j=0

sι1+ι2 |2i−j mod n+

+ n
∑
ι1

Var(aι1 |i)
t2

12

n−1∑
j=0

(
sι1 |2i−j mod n + sι1+1|2i−j mod n

)
+

+ n
∑
ι2

Var(a′ι2 |i)
t2

12

n−1∑
j=0

(
sι2 |2i−j mod n + sι2+1|2i−j mod n

)
+

+
t2

12q2ℓ

(
1 +

n−1∑
j=0

s|2i−j mod n +

n−1∑
j=0

s2|2i−j mod n

)
.

Assuming the independence of the coefficients of a noise vector among each
other, we could compute the quantity above as

nVar(ν|i)Var(ν′|i) + nVar(ν|i)
t2

12
(1 + nVs)+

+ nVar(ν′|i)
t2

12
(1 + nVs) + Var

( t

qℓ
(ε0 + ε1s+ ε2s

2)|i
)
.

However, what we would obtain is

n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)
n−1∑
j1=0

sι1 |2i−j1 mod n

n−1∑
j2=0

sι2 |2i−j2 mod n+

+ n
∑
ι1

Var(aι1 |i)
t2

12

n−1∑
j=0

(
sι1 |2i−j mod n + sι1 |2i−j mod n

n−1∑
j1=0

s|2i−j1 mod n

)
+

+ n
∑
ι2

Var(a′ι2 |i)
t2

12

n−1∑
j=0

(
sι2 |2i−j mod n + sι2 |2i−j mod n

n−1∑
j1=0

s|2i−j1 mod n

)
+

+ Var
( t

qℓ
(ε0 + ε1s+ ε2s

2)|i
)
,

which differs from Var(νmul(qℓ)|i) in the powers of s.
To address this issue, we examined the expected value of the ratio between

the target and obtained terms. Specifically, we computed the mean of∑n−1
i=0 sι|2i∑n−1

i1=0 s|2i1
∑n−1

i2=0 s
ι−1|2i2

, (26)

for ι ≥ 2. Our analysis revealed that this mean can be approximated by

f(ι) = − 1

eaι−b
+ c, (27)
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n a b c

212 0.2417 2.3399 8.1603
213 0.2240 2.4181 8.8510
214 0.2058 2.4844 9.5691
215 0.1906 2.5489 10.2903

Table 2: Value for a, b, c setting χs = U3.

where a, b, c are dependent on n and are listed in Table 2.
As an illustrative example, we consider the case where n = 213. The values

of f(ι) are listed in the table below, and Figure 1 pictures the graph of f(ι). It
can be observed that f approximates the mean of Equation (26) accurately.

ι 2 3 4 5 ... 27 28 29 30

f(ι) 1.9997 2.9996 3.9847 4.9405 ... 8.7651 8.7847 8.7968 8.7950,

Fig. 1: The function f(ι) fitting the points from Equation (26) for n = 213.

It follows by induction from Equation (26) that

n−1∑
i=0

sι|2i ≈ (nVs)
ιg(ι)

where g(ι) = f(2) · · · f(ι).

Proof. Recall that
∑n−1

i=0 s|2i ≈ nVs, then
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–
∑n−1

i=0 s2|2i
(26)
≈
(∑n−1

i=0 s|2i
)
f(2) ≈ (nVs)

2f(2) = (nVs)
2g(2),

–
∑n−1

i=0 sι−1|2i ≈ (nVs)
ι−1g(ι− 1) =⇒

=⇒
∑n−1

i=0 sι|2i
(26)
≈ nVs(nVs)

ι−1g(ι−1)f(ι) = (nVs)
ιg(ι).

It follows that, in order to convert the first term of Var(νmul(qℓ)|i)

n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)
n−1∑
j1=0

sι1 |2i−j1 mod n

n−1∑
j2=0

sι2 |2i−j2 mod n ≈

≈ n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)(nVs)
ι1g(ι1)(nVs)

ι2g(ι2)

into

n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)
n−1∑
j=0

sι1+ι2 |2i−j mod n ≈

≈ n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)(nVs)
ι1+ι2g(ι1 + ι2),

we can multiply it by g(ι1+ι2)
g(ι1)g(ι2)

≤ g(T1+T2)
g(T1)g(T2)

by Proposition 2. Analogously, we
get

n
∑
ιk

Var(aιk |i)
t2

12

n−1∑
j=0

sιk+1|2i−j mod n ≈ n
∑
ιk

Var(aιk |i)
t2

12
(nVs)

ιk+1g(ιk + 1)

multiplying by f(ιk + 1) ≤ f(Tk + 1)

n
∑
ιk

Var(aιk |i)
t2

12

n−1∑
j=0

sι1 |2i−j mod n

n−1∑
j1=0

s|2i−j1 mod n ≈ n
∑
ιk

Var(aιk |i)
t2

12
(nVs)

ιkg(ιk)(nVs).

Therefore, we can bound Var(νmul(qℓ)|i) by

Var(νmul(qℓ)|i) ≤ nVar(ν|i)Var(ν′|i)
g(T1 + T2)

g(T1)g(T2)
+ nVar(ν|i)

t2

12

(
1 + nVsf(T1 + 1)

)
+

+ nVar(ν′|i)
t2

12

(
1 + nVsf(T2 + 1)

)
+

t2

12q2ℓ

(
1 + nVs + (nVs)

2f(2)
)
.

Now we prove that the first and last terms are negligible compared to the
others. Hence we can set

Var(νmul|i) ≈ t2n
12

(
Var(ν|i)

(
1 + nVsf(T1 + 1)

)
+ Var(ν′|i)

(
1 + nVsf(T2 + 1)

))
≈ t2n2Vs

12

(
Var(ν|i)f(T1 + 1) + Var(ν′|i)f(T2 + 1)

)
.

(28)

Proof. For correct decryption, we require Var(νmul|i) ≤ 1
8D2 . Thus, since all the

addends of Equation (28) are positive quantities, we have

Var(ν|i)
t2n2Vs

12
f(T1 + 1) ≤ Var(ν|i)

t2n

12

(
1 + nVsf(T1 + 1)

)
≤ 1

8D2
,
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That is,

Var(ν|i) ≤
3

2D2t2n2Vsf(T1 + 1)
.

Thanks to Proposition 3,

nVar(ν|i)Var(ν′|i)
g(T1 + T2)

g(T1)g(T2)
≤ n

3

2D2t2n2Vsf(T1 + 1)
Var(ν′|i)

g(T1 + T2)

g(T1)g(T2)
≤

≤ 18Kn

D2t4n3V 2
s

t2n2Vs

12
f(T2 + 1)Var(ν′|i)≪

t2n2Vs

12
f(T2 + 1)Var(ν′|i).

Note that all the homomorphic operations performed increase the variance of
the error coefficients, hence either Var(ν|i) ≥ Bclean/q

2 (thanks to Equation (17))
or Var(ν|i) ≥ Bclean/q

2 +Bms/q
2
ℓ if we switched to a modulus qℓ ̸= q (see Equa-

tion (20)). In the first case

t2n

12
Var(ν|i)

(
1 + nVsf(T1 + 1)

)
≥ t2n

12

Bclean

q2
(
1 + nVsf(T1 + 1)

) 17
≥

≥ t2

12q2
t2n2VeVs

(
1 + nVsf(T1 + 1)

)
≫ t2

12q2
(
1 + nVs + n2V 2

s f(2)
)
.

In the second one,

t2n

12
Var(ν|i)

(
1 + nVsf(T1 + 1)

)
≥ t2n

12

Bms

q2ℓ

(
1 + nVsf(T1 + 1)

)
≥

≥ t2

12q2ℓ

t2n2Vs

12

(
1 + nVsf(T1 + 1)

)
≫ t2

12q2ℓ

(
1 + nVs + n2V 2

s f(2)
)
.

5 Modeling the Homomorphic Circuit

In this section, we exploit our theoretical work (Section 4) to improve the
parameter generation for the FV scheme, providing closed formulas to compute
the ciphertext modulus q and, eventually, its sub-moduli pj . These formulas
are employed in our tool, which provides automated parameter selection for
non-FHE experts (Section 6.2). In our analysis, we extend the previous work on
BGV [24] considering the circuit models newly proposed by Mono et al. [24].

Each circuit performs a list of operations on η ciphertexts ci in parallel, as
illustrated in Figure 2. The resulting ciphertexts are homomorphically multiplied
with another ciphertext computed analogously. This sequence is repeated M
times.

Base model This is a simplified version of the other models, performing
constant multiplications on the ciphertexts and summing them afterward
before the homomorphic multiplication. It is mainly used to make the
analysis easier, and it is equal to Model 1 and 2 with τ = 0.
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c1 . . . cη

+

c

α0 αη

Base Model

c1 . . . cη

+

α0

rot

rot

αη

rot

rot

τ

c

Model 1

c1 . . . cη

+

rot

rot

α0

rot

rot

αη

τ

c

Model 2

c1 . . . cη

+

rot

rot

c

OpenFHE Model

Fig. 2: Sequences of operations in the different models.

Model 1 & 2 Models 1 and 2 extend the Base Model performing τ rotations
either after or before the constant multiplications, respectively.

OpenFHE Model For comparison with previous work, we also define the
model as used in the OpenFHE library [3, 22]. Here the first operation to be
performed is homomorphic multiplication, then η additions and τ rotations
are carried out. The sequence is repeated M times.

In the following, we consider the input ciphertexts in a circuit to encrypt
different messages, therefore independent of each other. Moreover, we focus our
analysis on Model 2, as it has the worst possible error growth. The same tech-
niques can, however, be applied to simpler models as well, and we provide the
results of our study in Table 3. In Section 5.2, we will study the case where a
modulus switch to a smaller modulus is applied before every round of operations,
as in BGV circuits. This divides the circuit into levels, and the number of moduli
L is determined by the multiplicative depth M , namely, L = M + 1.

5.1 Computing the error growth and the parameters setting

Consider a circuit with multiplicative depth M = L− 1. Let Vℓ denote the vari-
ance of the error coefficients after the ℓ-th level. In particular, V0 = Var(νclean|i)
is the variance just after the encryption, and Vℓ is the variance after the ℓ-th
multiplication. Since the variance increases with each operation, we only need to
ensure that the final error coefficients (with variance VL−1) satisfy the condition
in Section 4 for correct decryption throughout the circuit. That is, we require

VL−1 ≤
1

8D2
.

We now examine the ℓ-th level of Model 2, in order to compute VL−1 re-
cursively. Given the variance Vℓ−1 of each ciphertext in the circuit input, the
evolution of the model can be described as follows:
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– We first apply τ rotations, obtaining

Vℓ−1 + τVks.

Note that when the modulus is not explicitly specified in the formulas, it is
assumed to be q.

– Secondly, we have a constant multiplication. Thus the variance is multiplied

by Bconst =
(t2−1)n

12 (25), becoming

(Vℓ−1 + τVks)Bconst.

If constant multiplications are not required, we set Bconst = 1.

– We add η ciphertexts, getting

η(Vℓ−1 + τVks)Bconst.

– During homomorphic multiplication, a modulo switch is applied from q to
q′ ≈ q on one of the ciphertexts. This operation, adds to the variance a
quantity Vms(q

′) ≈ Vms(q), leading to a total variance of

η(Vℓ−1 + τVks)Bconst + Vms.

Finally, after performing multiplication (with re-linearization) of two cipher-
texts, we have, thanks to Equations (21) and (28),

Vℓ ≈
t2

12
n2Vs

(
2η(Vℓ−1 + τVks)Bconst + Vms

)
f(ℓ+ 1) + Vks

≈ t2

12
n2Vs

(
2η(Vℓ−1 + τVks)Bconst + Vms

)
f(ℓ+ 1). (29)

since Vks is negligible.
Note that in the function f (see Equation (27)), T1 = T2 = ℓ, indeed the
initial error has degree 1 in s and this degree increases by 1 after each
multiplication.

Since Vℓ = Bℓ/q
2 with Bℓ is independent of q, we can rewrite Equation (29) as

Vℓ =
Bℓ

q2
≈ (ABℓ−1 + C)f(ℓ+ 1)

q2
(30)

where A = ηt2n2Vs

6 Bconst and C = t2n2Vs

12 (2ητBksBconst + Bms). From Equa-
tion (30), we can recursively compute the final variance

VL−1 =
BL−1

q2
≈ (ABL−2 + C)f(L)

q2
≈

≈
(
A(ABL−3 + C)f(L− 1) + C

)
f(L)

q2
≈ A(ABL−3 + C)f(L− 1)f(L)

q2
≈

≈ · · · ≈ AL−2(ABclean + C)g(L)

q2
,
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and use it to determine a bound on the ciphertext modulus. Indeed, since VL−1 ≤
1

8D2 , we have

q2 ≥ 8D2AL−2(ABclean + C)g(L). (31)

Note that the bound on the modulus q is computed in the same way for all
the models, except for the OpenFHE one, where the multiplication is done at

the beginning of the circuit. In this case, we approximate Vℓ =
ABℓ−1f(ℓ+1)+C

q2 ,
hence

q2 ≥ 8D2AL−2(ABclean + C/f(2))g(L). (32)

In Table 3, we list the resulting A and C depending on the models.

Model A C

Base Model ηt2n2Vs
6

Bconst
t2n2Vs

12
Bms

Model 1 ηt2n2Vs
6

Bconst
t2n2Vs

12
(2ητBks +Bms)

Model 2 ηt2n2Vs
6

Bconst
t2n2Vs

12
(2ητBksBconst +Bms)

OpenFHE Model ηt2n2Vs
6

(η + τ)Bks

Table 3: The table shows the constants A and C for each model depicted in
Figure 2. These constants are required to calculate the ciphertext modulus using
Equation (31) for all models, with the exception of the OpenFHE model where
q is computed using Equation (32).

5.2 Error growth and parameter setting with modulo switching

This section analyzes the homomorphic circuit (Model 2 in Figure 2) in which
the modulus is switched to a smaller value as the first step in the circuit levels. It
is important to note that, unlike BGV, the modulo-switching procedure does not
decrease the error. However, it can still be useful because it enables computations
to be performed in smaller moduli.

Using the same argument as in the previous section, we begin with noise after
fresh encryption, with coefficient variance V ms

0 = Var(νclean|i), and need only
ensure that the final variance is bounded. To analyze the ℓ-th level, we follow a
similar approach to that in Section 5.1, with the main difference being the use
of different moduli. To compute V ms

ℓ from V ms
ℓ−1, a modulo switch is performed

from the current modulus qL−ℓ+1 to the smaller modulus qL−ℓ, obtaining

V ms
ℓ−1 + Vms(qL−ℓ) = V ms

ℓ−1 +
Bms

q2L−ℓ

where Bms as in Equation (20). Similarly to before (see Equation (29)), we have

V ms
ℓ ≈ t2n2Vs

12

(
2η
(
V ms
ℓ−1 +

Bms + τBks

q2L−ℓ

)
Bconst +

Bms

q2L−ℓ

)
f(ℓ+ 1).
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Therefore

V ms
ℓ ≈

(
AmsVℓ−1 +

Cms

q2L−ℓ

)
f(ℓ+ 1), (33)

where Ams =
ηt2n2Vs

6 Bconst and Cms =
t2n2Vs

12

(
2ητBksBconst + (2ηBconst +1)Bms

)
.

Note that Ams = A and Cms > C, where A,C are as in Table 3 considering
Model 2.

Thanks to Equation (33), we can recursively compute the variance V ms
L−1 as

V ms
L−1 ≈ AV ms

L−2f(L) +
Cms

q21
f(L) ≈

≈ A2V ms
L−3f(L−1)f(L) +

ACms

q22
f(L−1)f(L) +

Cms

q21
f(L) ≈ · · · ≈

≈ AL−1V ms
0 f(2)···f(L) +

L−1∑
i=1

Ai−1Cms

q2i
f(L−i+1)···f(L),

therefore,

AL−1Bclean

q2L
g(L) +

L−1∑
i=1

Ai−1Cms

q2i

g(L)

g(L−i)
≤ 1

8D2
. (34)

Observe that V ms
L−1 > VL−1, since Cms > C and qℓ ≤ qL. This implies that the

ciphertext modulus obtained with the modulus switch technique is bigger than
the one without this method. However, we can select specific moduli to achieve
a ciphertext modulus close to the one obtained in Equation (31), improving
efficiency.

Fact 1. An optimal choice of the pj’s that maximizes the efficiency of keeping
the ciphertext modulus close to the one obtained without modulus-switching is
the following:

p21 ≈ 8D2LCmsf(L), p2ℓ ≈ Af(L−ℓ−1), p2L ≈
ABclean

Cms
,

then q2ms ≈ 8D2LAL−1Bcleang(L). It is worth noting that qms is approximately√
L times the ciphertext modulus obtained without modulus-switching.

Proof. We begin our proof by contradiction, assuming that there exists at least
one index i in Equation (34) such that

Ai−1Cms

q2i

g(L)

g(L−i)
≫ AL−1Bclean

q2L
g(L), (35)

Then, we can estimate the variance of the (L− 1)-th level to be

V ms
L−1 ≈

NAi−1Cms

q2i

g(L)

g(L−i)
≤ 1

8D2
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where N ≥ 1 is the number of indices i that satisfy Equation (35). It follows
that q2i ≥ 8D2NAi−1Cmsg(L)/g(L−i), and, from Equation (35), we also have

q2L/q
2
i ≫ AL−iBclean

Cms
g(L−i). Therefore, we would obtain the bound

q2ms ≫ 8D2NAL−1Bcleang(L),

which is much larger than the bound for q given by (31).

Thus, we can now suppose that for any i we have7

Ai−1Cms

q2i

g(L)

g(L−i)
≤ AL−1Bclean

q2L
g(L). (36)

So we have that

V ms
L−1 ≤

LAL−1Bclean

q2L
g(L) =⇒ q2ms ≥ 8D2LAL−1Bcleang(L), (37)

namely, qms is
√
L times the previous bound over q (see Equation (31)). From

Equation (36), for 1 ≤ i ≤ L− 1, we have

p2L ≤
ABclean

Cms

p2L−1p
2
L ≤

A2Bclean

Cms
g(2)

...

p22 · · · p2L ≤
AL−1Bclean

Cms
g(L−1)

Moreover, from Equation (37), we have p21 · · · p2L ≥ 8D2LAL−1Bcleang(L). For
optimal efficiency, we can choose p1 to be as small as possible so we set p22 · · · p2L
to be the largest value satisfying p22 · · · p2L ≈

AL−1Bclean

Cms
g(L−1). This yields

p21 ≈ 8D2LCmsf(L).

We can recursively apply the same argument to estimate the values of p22, . . . , p
2
L.

Specifically, for any 2 ≤ ℓ ≤ L, we have

p2ℓ ≈ Af(L−ℓ+1), and p2L ≈
ABclean

Cms
.

7 Note that in this context, when we use the symbol ≤, we mean that the two members
of the inequality can be approximately the same, with the left-hand side possibly
being slightly larger.
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6 Results

In this section, we show the effectiveness of our average-case approach by
comparing it to the prior heuristic noise analyses of FV [12, 14, 21]. These works
present a worst-case study employing the canonical norm (to facilitate the
comparison, we recall their bounds in Section 6.1). In contrast, our approach,
outlined in Sections 4 and 5, analyses the average behavior of error coefficients
along a circuit. In Tables 5 and 6, we compare the error analysis for the single
functions and for basic circuits using the bounds computed with the canonical
norm and our approach. As can be seen, our method provides more accurate
results, especially as the multiplicative depth of the circuit grows. Notably,
with just three multiplications (see Table 6), we improve the bounds by at least
17 bits, and, more importantly, our bounds are very close to experimentally
observed values (it differs at most of 3 bits). Furthermore, in Table 7, we show
how this reflects in smaller bounds for the ciphertext modulus, which has a
big impact on the efficiency and the security of the scheme. This suggests that
our approach is a promising method for analyzing noise in the FV scheme,
providing reliable estimates very close to actual error values.

Finally, in Section 6.2, using our theoretical formulas (see Section 4) and
the security formula by Mono et al. [24], we provide an interactive parameter
generator for the FV scheme. The generator outputs easy-to-use code snippets
for the computed parameters for multiple state-of-the-art libraries.

6.1 Comparison with previous works

In order to facilitate the comparison of the results, we use the noise budget rather
than the invariant noise itself. Roughly speaking, it measures in bits the distance
between the input and the optimal bound for correct decryption, namely 1

2 .
Let ν be the invariant noise associated with a ciphertext c, the noise budget,
[26], of ||ν|| is

− log2(2 · ||ν||) = log2 (
1
2 )− log2(||ν||).

In the tables below, we compare our average-case approach with the current
state-of-the-art method [14], as well as with experimental results. We conduct
the computations with our MAGMA code8 considering over 1000 trials.

In the following, we recall some important results about the canonical em-
bedding norm and our method to explain how the bounds in the tables are
obtained.

Canonical norm bounds. The bounds with the canonical norm are computed
following the latest work by Costache et al. [14], and Iliashenko [21]. To ensure
clarity, we summarize the relevant bound, taking into account the modifications

8 Please find the link to our MAGMA code here: https://github.com/Crypto-TII/
FV_error_computation.git. Note that the computations will soon be updated using
the PALISADE library.

https://github.com/Crypto-TII/FV_error_computation.git
https://github.com/Crypto-TII/FV_error_computation.git
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we made to the encryption and multiplication algorithms based on the work of
Kim et al. [22].

Recall that in [12], the authors used the bound ||a||can ≤ D
√
nVa for poly-

nomials a ∈ R, assuming independence among the coefficients. With the same
hypothesis, we can bound the canonical norm of the invariant noise ν with

||ν||can ≤ D
√
nV (38)

with probability greater or equal to

1− ne
−(D

√
nV )2

nV = 1− ne−D2

by Section 2. Aligning with previous works [12, 14, 21], we set D = 6, which
guarantee that Equation (38) holds with probability at least 1 − 2−36. It’s
worth noting that, in a practical scenario is better to choose D = 8 since the
probability of failure is limited to 2−76.

Let us list the main results.

Fresh ciphertext By Equation (17), we have

||νclean||can ≤ D
t

q

√
n
( 1

12
+ nVeVu + Ve + nVeVs

)
= D

t

q

√
n

(
1

12
+ σ2

(4
3
n+ 1

))
Addition & Modulo switch & Key switch By the properties of norm, we

have that

||ν + ν′||can ≤ ||ν||can + ||ν′||can

||ν + νms(q
′)||can ≤ ||ν||can + ||νms(q

′)||can
20
≤ ||ν||can +

D
√
nBms

q′

||ν + νks||can ≤ ||ν||can + ||νks||can
21
≤ ||ν||can +D

√
nVks

Constant multiplication

||αν||can ≤ ||α||can||ν||can ≤ D

√
n
(t2 − 1)

12
||ν||can

Multiplication

||νmul||can
10
≤ ||ν||can|| t

q′
(c′0 + c′1s)||can + (||ν||can+

+ ||νms(q)||can)||
t

q
(c0 + c1s)||can =

≤ (2||ν||can +D
√
nVms(q))Dt

√
n

12
(1 + nVs)
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Applying the same argument of Section 5.2 on the Base Model, we obtain

||νℓ||can ≤ (2η||νℓ−1||can +
D
√
nBms

q
)Dt

√
n

12
(1 + nVs) = A′||νℓ−1||can +

C ′

q
,

hence ||νL−1||can ≤ A′L−2
(
A′D
√
nBclean + C ′)/q, where A′ = Dηt

√
n
3 (1 + nVs)

and C ′ = D2t2n
12 (1 + nVs). Finally, as we require the norm to satisfy

||νL−1||can ≤ 1/2, the ciphertext modulus is computed as

q ≥ 2A′L−2(A′D
√
nBclean + C ′). (39)

Average-case bounds. In the average-case approach, we set

||ν||∞ ≤ D
√
2V , (40)

with the V is the variance of each coefficient of ν and it depends of the homo-
morphic operations (see Table 4). Thanks to Equation (3), the bound holds with
probability at least

1− n
(
1− erf(D)

)
, (41)

which for D = 6 is at least 1− 2−40.
Summarizing the results of Section 4, let ν, ν′ be the invariant noises associ-

ated with the ciphertexts c and c′, results of independent circuits of depth ℓ−1.
Let V be the variance of their coefficients. Then V depends on the homomorphic
operations, and its values are listed in Table 4.

Homomorphic operation Variance

Add(c, c′) 2V

Enc t2/q2
(

1
12

+ nVeVu + Ve + nVeVs

)
Mod Switch(q′ℓ) V + t2(1 + nVs)/12q

′2
ℓ

Key switch(qℓ) V + Vks(qℓ)

Const(c) (t2−1)n
12

V

Mult(c, c′) t2n2Vs
12

(2V + Vms)f(ℓ+1)

Table 4: Variance depending on the homomorphic operations. Vks(qℓ) depends on
the key switching variants (see Equations (22) to (24)) and f is as Equation (27).

In Table 5 and 6, we show the estimations obtained with the worst-case
error analysis employing the canonical norm [14, 21] (tagged with “can” ) and
with our average-case approach (“our”). Moreover, we compare them with
the experimental results (“exp”). In particular, in the columns labeled by
“maximum value”, we list the bounds computed as explained in Section 6.1
for the maximum coefficient of ν in absolute value. While in “mean value”,
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we compare our estimation of the mean value of the coefficients, computed
as
√
Var(ν|i), with the experimental result. The chosen set of parameters is

the following: the plaintext modulus is t = 3, the degree is n = 2κ where
12 ≤ κ ≤ 15. Moreover, we take D = 6, χs = χu = U3 the ternary distribution,
χe = DG(0, σ2) the discrete Gaussian distribution with standard deviation
σ = 3.2 centred in 0 and GHS key switch.

In Table 5, we examine the error ν after encryption (“Encryption”), the
addition of two fresh ciphertexts (“Addition”), and the multiplication of two
fresh ciphertexts (“Multiplication”).

Encryption Addition

maximum value mean value maximum value mean value
n log2(q) can our exp our exp can our exp our exp

212 74 54.9 60.4 61.1 63.5 63.9 53.9 59.9 60.7 63.0 63.4

213 149 128.9 134.9 135.7 138.0 138.4 127.9 134.4 135.1 137.5 137.86

214 298 276.9 283.4 284.0 286.5 286.9 275.9 282.9 283.6 286.0 286.4

215 597 574.9 581.9 582.5 585.0 585.4 573.9 581.4 582.0 584.5 584.9

Multiplication

maximum value mean value
n log2(q) can our exp our exp

212 74 38.0 48.0 48.8 51.1 51.6

213 149 111.0 121.6 122.3 124.7 125.1

214 298 258.0 269.1 269.8 272.2 272.6

215 597 555.0 566.6 567.3 569.7 570.1

Table 5: Comparison between the estimation of the noise budget using heuristic
bounds obtained the canonical norm approach (can), our average-case analysis
(our). The last column (exp) denoted the results from the experimental compu-
tations using our MAGMA code over 1000 trials.

In Table 6, the error is obtained from a Base Model circuit(see Figure 2) with
multiplicative depth of either 2 or 3, with no constant multiplication and η = 8.

We want to emphasize the result of the first row in the circuit of multiplicative
depth 3 of Table 6. According to the state-of-the-art estimation, we would not be
able to perform any further operations since there would be no noise budget left.
However, this analysis overestimates the error, as the experimental computation
shows a remaining noise budget of 21 bits, while our estimation suggests a noise
budget of at least 17.7 bits.

In Table 7, we present the bounds on the ciphertext modulus q obtained using
both approaches (Equations (31) and (39)). It is important to emphasize that
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2 multiplications 3 multiplications

maximum value mean value maximum value mean value
n log2(q) can our exp our exp can our exp our exp

212 74 18.8 32.2 33.5 35.3 35.9 0.7 17.7 19.1 20.8 21.4

213 149 90.8 104.7 106.0 107.8 108.4 71.7 89.2 90.3 92.3 92.8

214 298 236.8 251.3 252.3 254.4 254.8 216.7 234.7 235.9 237.8 238.4

215 597 532.8 547.8 548.9 550.9 551.3 511.7 530.3 531.5 533.3 533.9

Table 6: Comparison between the estimation of the noise budget in the Base
Model (Figure 2) with α = 1 and η = 8, using heuristic bounds obtained the
canonical norm approach (can), our average-case analysis (our). The last col-
umn (exp) denoted the results from the experimental computations using our
MAGMA code over 1000 trials.

having a smaller value of q is crucial for both the efficiency and security of the
scheme. As seen from Table 7, our approach yields significantly smaller values
of q compared to the norm trace approach, highlighting the importance of our
new approach for improving the efficiency and security of the FV scheme. Note
that in Table 7, we set D = 8 to have a failure probability smaller than 2−80

(see Equation (41)), which is usually required in a practical scenario. Moreover,
we use a Base Model circuit (Figure 2) of depth M = 3 (i.e., L = 4) with α = 1
and η = 8.

log2(q) log2(q)

n can our n can our

212 75.0 56.7 214 83.0 63.7

213 79.0 60.2 215 87.0 67.2

Table 7: Comparison between the ciphertext modulus q, using the heuristic
bounds obtained by the worst-case approach (can) [14, 21] and our average-
case analysis (our) in the Base Model (Figure 2) with α = 1 and η = 8, M = 3
and D = 8.

6.2 A Parameter Generator for FV

To make our work more valuable and approachable for practical purposes, we
provide automated parameter generation implemented in Python and publicly
available on GitHub 9. The interactive mode of the parameter generator prompts
the user with a number of questions. We list required inputs in the first part and
optional inputs in the second part of Table 8.

9 https://github.com/Crypto-TII/fhegen

https://github.com/Crypto-TII/fhegen
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Model 'Base', 'Model1', 'Model2', 'OpenFHE'
t or log t any integer ≥ 2
λ or m any integer ≥ 40 or ≥ 4, respectively
M , η any integer > 0
τ any integer ≥ 0
Library 'None', 'OpenFHE', 'PALISADE', 'SEAL'

Full Batching full batching with t, 'True' or 'False'
Secret Distribution 'Ternary', 'Error'
Key Switching 'Hybrid', 'BV', 'GHS'
β any integer ≥ 2
ω any integer ≥ 1

Table 8: Required and optional inputs to the parameter generator

We use the approach by Mono et al. [24] to estimate security. Additionally,
to support arbitrary circuit models, we adopt their approach to estimate the key
switching noise: we use fix values for β and ω, per default β = 210 and ω = 3.
If applicable, we set the extension modulus P to be roughly equal to the noise
produced by the ciphertext modulus depending on the key switching variant and
scale it by a constant K, per default K = 100. Now, we can use this estimate
for the key switching modulus to compute the noise bound programmatically.
Note that we slightly overestimate the error this way and that the error growth
from key switching is rather small compared to other operations, thus using this
estimate results in valid parameter sets.

7 Conclusion

Selecting optimal, secure, and efficient parameters for a specific Fully Homomor-
phic Encryption scheme can be challenging.

This work presents several significant contributions to parameter selection
in the Fan-Vercauteren scheme. We propose a new approach to average-case
noise estimation, which significantly improves the accuracy and tightness of the
bounds compared to previous works. In addition, we combine our theoretical
analysis with the security formula proposed in [24] to develop the first flexible
and user-friendly parameter generator for the FV scheme.

Overall, our work advances the state-of-the-art parameter selection for the
FV scheme and provides a powerful tool that can assist in selecting efficient
and reliable parameters for the FV scheme, making the task significantly more
efficient and accessible for researchers and practitioners.
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A Characterization of the error

Proposition 1. The noise invariant can always be written as

ν =
∑
ι

aιs
ι

and enjoys the following properties

1. E[aι|i] = 0 for any ι,

2. Cov(aι1 |i1 , aι2 |i2) = 0 if either ι1 ̸= ι2 or i1 ̸= i2.

Proof. Fresh ciphertext Recall that the noise after the encryption is

νclean
(6)
=

t

q
(ε+ eu+ e0 + e1s).

We can rewrite it as a0 + a1s with a0 = t
q (ε+ eu+ e0) and a1 = t

q e1.

1. Since e1|i ← χe and χe is symmetric, we have E[e1|i] = 0, then

E[a1|i] =
t

q
E[e1|i] = 0.

Analogously, E[ε|i] = E[e|i] = E[u|i] = E[e0|i] = 0 and all the coefficients
of these polynomial are independent among each other, so

E[a0|i]
Sec. 2.2
=

t

q
(E[ε|i] +

n−1∑
j=0

ξ(i, j)E[e|j ]E[u|i−j mod n] + E[e0|i]) = 0.

See Section 4 for the definition of ξ(i, j).
2. By the independence of the coefficients of e1 among each other and

with the coefficients of the other polynomial and by the covariance bi-
linearity (see Section 2.2), we get Cov(a1|i1 , a1|i2) = 0 for i1 ̸= i2 and
Cov(a0|i1 , a1|i2) = 0 for any i1, i2. Again for independence of the coeffi-
cients and the bilinearity of the covariance, we have

Cov(a0|i1 , a0|i2) =
t2

q2
Cov((eu)|i1 , (eu)|i2).

Since (eu)|i =
∑n−1

j=0 ξ(i, j)e|ju|i−j mod n (we will avoid to write the mod
n from now on),

Cov((eu)|i1 , (eu)|i2) =
n−1∑

j1,j2=0

ξ(i1, j1)ξ(i2, j2)Cov(e|j1u|i1−j1 , e|j2u|i2−j2) =

=

n−1∑
j1,j2=0

ξ(i1, j1)ξ(i2, j2)
(
E[e|j1e|j2 ]E[u|i1−j1u|i2−j2 ]+

− E[e|j1 ]E[e|j2 ]E[u|i1−j1 ]E[u|i2−j2 ]
)
= 0,
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as either j1 ̸= j2, hence E[e|j1e|j2 ] = E[e|j1 ]E[e|j2 ], or i1− j1 mod n ̸=
i2 −j2 mod n, so E[u|i1−j1u|i2−j2 ] = E[u|i1−j1 ]E[u|i2−j2 ].

Addition Let ν =
∑

ι aιs
ι, ν′ =

∑
ι′ a

′
ι′s

ι′ be two errors as claimed in the
proposition, then νadd =

∑
ι(aι + a′ι)s

ι with

1. E[(aι + a′ι)|i] = E[aι|i] + E[a′ι|i] = 0,

2. If ι1 ̸= ι2 or i1 ̸= i2, Cov((aι1 + a′ι1)|i1 , (aι2 + a′ι2)|i2) is equal to

Cov(aι1 |i1 , aι2 |i2)+Cov(aι1 |i1 , a′ι2 |i2)+Cov(a′ι1 |i1 , aι2 |i2)+Cov(a′ι1 |i1 , a
′
ι2 |i2) = 0,

because aι1 and a′ι2 are independent and the other pairs are uncorrelated.

Modulo switch & Key switch The proof is analogous to the addition one by
independence of the added quantity with the error ν.

Constant multiplication Let ν =
∑

ι aιs
ι be an error satisfying the proper-

ties above and α be a random element from Ut, then αν =
∑

ι αaιs
ι and

1. Since the α and aι are independent with null expected value,

E
[
(αaι)|i

] Sec. 2.2
=

n−1∑
j=0

ξ(i, j)E[α|j ]E[aι|i−j ] = 0,

2. By bilinearity of the covariance, we have

Cov
(
(αaι1)|i1 , (αaι2)|i2

)
=

n−1∑
j1,j2=0

ξ(i1,j1)ξ(i2,j2)Cov
(
α|j1aι1 |i1−j1 , α|j2aι2 |i2−j2

)
,

with Cov
(
α|j1aι1 |i1−j1 , α|j2aι2 |i2−j2

)
equal to

E[α|j1α|j2 ]E[aι1 |i1−j1aι2 |i2−j2 ]− E[α|j1 ]E[α|j2 ]E[aι1 |i1−j1 ]E[aι2 |i2−j2 ].

If ι1 ̸= ι2 or i1−j1 mod n ̸= i2−j2 mod n, then

E[aι1 |i1−j1aι2 |i2−j2 ] = E[aι1 |i1−j1 ]E[aι2 |i2−j2 ]

by the second property of the error ν.
Otherwise, j1 ̸= j2, by independence of the coefficients of α,

E[α|j1α|j2 ] = E[α|j1 ]E[α|j2 ].

It follows
Cov

(
(αaι1)|i1 , (αaι2)|i2

)
= 0.

Multiplication Let ν, ν′ as before, then νν′ =
∑

ι

∑
j+k=ι aja

′
ks

ι.
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1. Since aj and a′k are independent,

E
[( ∑

j+k=ι

aja
′
k

)
|i
]
=
∑

j+k=ι

E[aj ]E[a′k] = 0.

2. For ι1 ̸= ι2 or i1 ̸= i2,

Cov((
∑

j1+k1=ι1

aj1a
′
k1
)|i1 , (

∑
j2+k2=ι2

aj2a
′
k2
)|i2) =

=
∑

j1+k1=ι1

∑
j2+k2=ι2

n−1∑
l1,l2=0

ξ(i1, l1)ξ(i2, l2)Cov(aj1 |l1a′k1
|i1−l1 , aj2 |l2a′k2

|i2−l2),

where

Cov(aj1 |l1a′k1
|i1−l1 , aj2 |l2a′k2

|i2−l2) = E[aj1 |l1aj2 |l2 ]E[a′k1
|i1−l1a

′
k2
|i2−l2 ]+

− E[aj1 |l1 ]E[aj2 |l2 ]E[a′k1
|i1−l1E[a′k2

|i2−l2 ] = 0,

indeed, if ι1 = ι2 then j1 ̸= j2 or k1 ̸= k2, while if i1 ̸= i2 then i1 − l1
mod n ̸= i2 − l2 mod n or l1 ̸= l2.

Analogously, this holds for ν t
q′ℓ
(c′0+c′1s), ν

′ t
qℓ
(c0+c1s). Finally, we have that

the covariance of different summands is 0, hence the conditions hold also for
νmul = −νν′ + ν t

q′ℓ
(c′0 + c′1s) + ν′ t

qℓ
(c0 + c1s) +

t
q (ε0 + ε1s+ ε2s

2).

B Properties of the function g

Let us define f(0) = f(1) = 1 and g(ι) =
∏ι

i=0 f(i) for more generality.

Proposition 2. Let ι1 = 0, . . . , T1 and ι2 = 0, . . . , T2, then

g(ι1 + ι2)

g(ι1)g(ι2)
≤ g(T1+T2)

g(T1)g(T2)
.

Proof. Let us fix ι1 and consider ι2, ι
′
2 with ι2 ≤ ι′2. Since f is an increasing

function, we have f(ι2 + i) ≤ f(ι′2 + i), then

g(ι1 + ι2)

g(ι2)
= f(ι2 + 1) · · · f(ι1 + ι2) ≤ f(ι′2 + 1) · · · f(ι1 + ι′2) =

g(ι1 + ι′2)

g(ι′2)
.

It follows, in particular,

g(ι1 + ι2)

g(ι1)g(ι2)
≤ g(ι1 + T2)

g(ι1)g(T2)
.

Analogously, we get
g(ι1 + T2)

g(ι1)g(T2)
≤ g(T1+T2)

g(T1)g(T2)
.
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Proposition 3. Let T1, T2 ∈ N, then

g(T1+T2)

g(T1+1)g(T2+1)
≤ Kn < +∞.

Proof. Let us assume T1 ≤ T2 and observe that the values that g(T1+T2)
g(T1+1)g(T2+1)

can take are

g(T1+T2)

g(1)g(T1+T2+1)
=

1

f(T1+T2+1)
if T1 = 0, T2 = T1 + T2,

g(T1 + T2)

g(2)g(T1 + T2)
=

1

f(2)
if T1 = 1, T2 = T1 + T2 − 1,

g(T1 + T2)

g(3)g(T1 + T2 − 1)
=

f(T1 + T2)

f(2)f(3)
if T1 = 2, T2 = T1 + T2 − 2,

g(T1 + T2)

g(4)g(T1 + T2 − 2)
=

f(T1 + T2)f(T1 + T2 − 1)

f(2)f(3)f(4)
if T1 = 3, T2 = T1 + T2 − 3,

...

g(T1 + T2)

g(⌊T1+T2

2 ⌋+ 1)g(⌈T1+T2

2 ⌉+ 1)
=

f(⌈T1+T2

2 ⌉+ 2) · · · f(T1 + T2)

f(2) · · · f(⌊T1+T2

2 ⌋+ 1)
if T1 = ⌊T1 + T2

2
⌋, T2 = ⌈T1 + T2

2
⌉,

which are in increasing order. Hence

g(T1 + T2)

g(T1 + 1)g(T2 + 1)
≤

f(⌈T1+T2

2 ⌉+ 2) · · · f(T1 + T2)

f(2) · · · f(⌊T1+T2

2 ⌋+ 1)
=

=
1

f(⌊T1+T2

2 ⌋+ 1)

⌊T1+T2
2 ⌋∏

ι=2

f(⌈T1+T2

2 ⌉+ ι)

f(ι)

We set τ = ⌊T1+T2

2 ⌋, cι = c− 1
eaι−b = f(ι) and ει =

(
1− 1

eaτ−b

)
1

eaι−b , then

g(T1 + T2)

g(T1 + 1)g(T2 + 1)
≤ 1

c(τ+1)

τ∏
ι=2

cι + ει
cι

.

Since cι+ει
cι
≥ 1, we have that

τ∏
ι=2

cι + ει
cι

≤ exp

(
τ∑

ι=2

ει
cι

)
.

Now, comparing εi
ci

and εi+1

ci+1
we get

τ∑
i=2

εi
ci
≤ε2
c2

τ∑
i=2

(
1

ea

)i

≤ ε2
c2

(
ea

ea − 1
· e

τa − 1

eτa
− ea + 1

ea

)
≤ε2
c2

(
1

e2a − ea

)
≤ eb

(e2ac− eb)(e2a − ea)
.
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We computed the value of the fraction

f(⌈T1+T2

2 ⌉+ 2) · · · f(T1 + T2)

f(2) · · · f(⌊T1+T2

2 ⌋+ 1)
,

for T1 + T2 = 220, obtaining the following upper bounds (varying n):

n 212 213 214 215

Kn 22 38 70 133

Table 9: Values of Kn
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