Technical Report: Even Faster Polynomial Multiplication for NTRU Prime with AVX2

Vincent Hwang
Max Planck Institute for Security and Privacy, Bochum, Germany
vincentvbh7@gmail.com

Abstract

This paper implements a vectorization-friendly polynomial multiplication for the NTRU Prime parameter sets ntrulpr761/sntrup761 with AVX2 based on the recently released work [Chen, Chung, Hwang, Liu, and Yang, Cryptology ePrint Archive, 2023/541]. Our big-by-big polynomial multiplication is 1.77 times faster than the state-of-the-art optimized implementation by [Bernstein, Brumley, Chen, and Tuveri, USENIX Security 2022] on Haswell with AVX2.

Keywords: NTRU Prime • AVX2 • Good-Thomas FFT • Rader's FFT

1 Introduction

OpenSSH 9.0 currently uses the hybrid sntrup761x25519-sha512 key exchange by default ${ }^{1}$. This paper demonstrates the applicability of $\left[\mathrm{CCH}^{+} 23\right]$'s ideas on polynomial multiplication for the NTRU Prime parameter sets ntrulpr761/sntrup761 with AVX2. Our target is the polynomial multiplication in $\mathbb{Z}_{4591}[x] /\left\langle x^{761}-x-1\right\rangle$ used by ntrulpr761/sntrup761. We refer to $\left[\mathrm{BBC}^{+} 20\right]$ for the specification of NTRU Prime. For ntrulpr761/sntrup761, maintaining the vectorization-friendliness while working over \mathbb{Z}_{4591} was challenging. While computing the product of two polynomials, if one of the polynomials has coefficients within a small range, we call the computing task a big-by-small polynomial multiplication. Otherwise, we call it a big-by-big polynomial multiplication. In NTRU Prime, all the polynomial multiplications in the reference implementation are big by small. Nevertheless, big-by-big polynomial multiplications are used for improving the key generation of sntrup [BY19, BBCT22] and can replace big-by-small polynomial multiplications if the performance is improved.
[BBCT22]'s big-by-big polynomial multiplication on Haswell with AVX2 is roughly 1.5 times slower than their big-by-small one, while it was already known that on an ARM Cortex-M4 implementing Armv7E-M with limited SIMD support, big-by-big polynomial multiplication is faster than big-by-small polynomial multiplication [$\mathrm{ACC}^{+} 21$, AHY22]. The reason is that when the SIMD support is raised from 2 halfwords (Armv7E-M) to 16 (AVX2), [BBCT22] applied Schönhage [Sch77] and Nussbaumer [Nus80] crafting radix-2 roots of unity. Since Schönhage and Nussbaumer usually double the number of coefficients, this eventually leads to many base multiplications (small-degree polynomial multiplications).
$\left[\mathrm{CCH}^{+} 23\right]$ explored various vectorization ideas for NTRU and NTRU Prime on an ARM Cortex-A72 with Neon. We are interested in their fast Fourier transformations (FFTs) for ntrulpr761/sntrup761. To ensure vectorization-friendliness, they first introduced the equivalence $x^{16} \sim y$. They then applied a 3-dimensional Good-Thomas FFT [Goo58] based on the coprime factorization $\frac{1632}{16}=17 \cdot 3 \cdot 2$. Radix-3 and radix-2

[^0]cyclic FFTs are obvious. For the Radix-17 cyclic FFT, they applied Rader's FFT [Rad68] to convert the computation into a size- 16 cyclic convolution. The remaining problems are multiplications in the product ring $\prod_{i} R[x] /\left\langle x^{16} \pm \omega_{51}^{i}\right\rangle$ for $i=0, \ldots, 101$. [$\left.\mathrm{CCH}^{+} 23\right]$'s Good-Rader-Bruun applied Cooley-Tukey FFT [CT65] to 48 size-16 problems of the form $R[x] /\left\langle x^{16}-\omega_{51}^{i}\right\rangle$, Bruun's FFT [Bru78, BC87, BGM93] to 48 size-16 problems of the form $R[x] /\left\langle x^{16}+\omega_{51}^{i}\right\rangle$, and schoolbook multiplication to the remaining size-16 problems. We propose an implementation similar to $\left[\mathrm{CCH}^{+} 23\right]$'s Good-Rader-Bruun but discard Bruun's FFT due to the relatively expensive polynomial reduction with AVX2, which lacks long multiplications and incurs a long dependency chain while interleaving and deinterleaving. Our big-by-big polynomial multiplication is 1.77 times faster than [BBCT22]'s on Haswell with AVX2.

Code. Our source code can be found at https://github.com/vincentvbh/NTRU_Prime_ polymul_AVX2 under CC0 license.

2 Preliminaries

2.1 AVX2 Modular Multiplication and Reduction

We recall the Montgomery multiplication [Mon85] and Barrett reduction [Bar86] from [Sei18]. vpmullw multiplies corresponding signed 16 -bit values and places the lower 16 -bit values to the destination register. vpmulhw places the upper 16 -bit values to the destination instead. vpmulhrsw effectively computes $\left\lfloor\frac{a b}{2^{15}}\right\rceil$ from the signed 16 -bit values a and b. For signed 16 -bit values a and b, Montgomery multiplication [Mon85, Sei18] computes a representative of $a b 2^{-16} \bmod { }^{ \pm} q$ with

$$
\left\lfloor\frac{a b-\left(a b q^{\prime} \bmod { }^{ \pm} 2^{16}\right) q}{2^{16}}\right\rfloor \equiv a b 2^{-16} \quad(\bmod q)
$$

where $q^{\prime}=q^{-1} \bmod { }^{ \pm} 2^{16}$ is precomputed. Algorithm 1 is an illustration. If b is known in prior, we replace $\left(b, b q^{\prime} \bmod { }^{ \pm} 2^{16}\right)$ with $\left(b 2^{16} \bmod { }^{ \pm} q,\left(b 2^{16} \bmod { }^{ \pm} q\right) q^{\prime} \bmod { }^{ \pm} 2^{16}\right)$ to save one multiplication and mitigate the scaling by 2^{-16}. Algorithm 2 is an illustration.

Barrett reduction [Bar86, Sei18] reduces a value a by computing

$$
a-\left\lfloor\frac{a\left\lfloor\frac{2^{15}}{q}\right\rceil}{2^{15}}\right\rceil q \equiv a \quad(\bmod q) .
$$

Algorithm 3 is an illustration. In the case of $q=4591$, one can show (by brute-force testing) that for $a \in[-32768,32767]$, the results lies in [$-2881,2881]$.

```
Algorithm 1 Montgomery multiplication [Sei18].
Inputs: \(\mathrm{a}=a, \mathrm{~b}=b\).
Constants: \(q=4591, q^{\prime}=q^{-1} \bmod { }^{ \pm} 2^{16}=15631\).
Output: \(\mathrm{c}=c=\left\lfloor\frac{a b-\left(a b q^{\prime} \bmod { }^{ \pm} 2^{16}\right) q}{2^{16}}\right\rfloor \equiv a b 2^{-16} \bmod { }^{ \pm} q\).
    vpmullw \(\mathrm{b}, q^{\prime}\), lo
    vpmullw lo, a, lo
    vpmulhw b, a, hi
    vpmulhw lo, \(q\), lo
    vpsubw lo, hi, c
```

```
Algorithm 2 Montgomery multiplication with precomputation [Sei18].
Inputs: \(\mathrm{a}=a\).
Constants: \(q=4591, \mathrm{~b}=b 2^{16} \bmod { }^{ \pm} q, \mathrm{~b}^{\prime}=\left(b 2^{16} \bmod { }^{ \pm} q\right) q^{-1} \bmod { }^{ \pm} 2^{16}\).
Output: \(\mathrm{c}=c=\left\lfloor\frac{a\left(b 2^{16} \bmod { }^{ \pm} q\right)-\left(a\left(\left(b 2^{16} \bmod ^{ \pm} q\right) q^{-1} \bmod ^{ \pm} 2^{16}\right)\right) q}{2^{16}}\right\rfloor \equiv a b \bmod { }^{ \pm} q\).
    vpmullw b', a, lo
    vpmulhw b, a, hi
    vpmulhw lo, \(q\), lo
    vpsubw lo, hi, c
```

```
Algorithm 3 Barrett reduction [Sei18].
Input: \(\mathrm{a}=a\).
Constants: \(q=4591, \bar{q}=\left\lfloor\frac{2^{15}}{q}\right\rceil=7\).
Output: \(\mathrm{a}=a^{\prime}=a-\left\lfloor\frac{a \bar{q}}{2^{15}}\right\rceil q,-2881 \leq a^{\prime} \leq 2881\).
    vpmulhrsw a, \(\bar{q}\), hi
    vpmullw hi, \(q\), hi
    vpsubw hi, a, a
```


2.2 Chinese Remainder Theorem

In this paper, all the rings are commutative and unital. Let R be a ring. For elements $e_{0}, e_{1} \in R$, we call them orthogonal if $e_{0} e_{1}=0$. An element $e \in R$ is called idempotent if $e^{2}=e$. For orthogonal idempotent elements e_{0} and e_{1} in R satisfying $e_{0}+e_{1}=1$, we have the ring isomorphism $R \cong R /\left(1-e_{0}\right) R \times R /\left(1-e_{1}\right) R$. This easily generalizes to finitely many orthogonal idempotent elements (e_{0}, \ldots, e_{d-1}) with $\sum_{i} e_{i}=1$ realizing $R \cong \prod_{i} R /\left(1-e_{i}\right) R$. Explicitly, we have the isomorphism $\Phi: R \rightarrow \prod_{i} \frac{R}{\left(1-e_{i}\right) R}$ mapping a to the n-tuple $\left(a \bmod \left(1-e_{i}\right) R\right)$ with the inverse $\Psi:\left(\hat{a}_{i}\right) \mapsto \sum_{i} \hat{a}_{i} e_{i}$ [Bou89].

We are interested in two cases: $R[x] /\left\langle\prod_{i_{0}, \ldots, i_{h-1}} \boldsymbol{g}_{i_{0}, \ldots, i_{h-1}}\right\rangle$ for coprime polynomials $\boldsymbol{g}_{i_{0}, \ldots, i_{h-1}}$'s in $R[x]$ and $\mathbb{Z}_{q_{0} \cdots q_{d-1}}$ for coprime integers q_{0}, \ldots, q_{d-1}.

2.3 Cooley-Tukey FFT

Let $n=\prod_{j} n_{j}$, and i_{j} run over $0, \ldots, n_{j}-1$ for each j. The Cooley-Tukey FFT [CT65] computes with the following isomorphsisms:

$$
\frac{R[x]}{\left\langle\prod_{i_{0}, \ldots, i_{h-1}} \boldsymbol{g}_{i_{0}, \ldots, i_{h-1}}\right\rangle} \cong \prod_{i_{0}} \frac{R[x]}{\left\langle\prod_{i_{1}, \ldots, i_{h-1}} \boldsymbol{g}_{i_{0}, \ldots, i_{h-1}}\right\rangle} \cong \cdots \cong \prod_{i_{0}, \ldots, i_{h-1}} \frac{R[x]}{\left\langle\boldsymbol{g}_{i_{0}, \ldots, i_{h-1}}\right\rangle}
$$

by choosing $\boldsymbol{g}_{i_{0}, \ldots, i_{h-1}}=x-\zeta \omega_{n}^{\sum_{l} i_{l} \prod_{j<l} n_{j}}$ where ω_{n} is a principal n-th root of unity ${ }^{2}$. The Cooley-Tukey FFT is invertible if we can "invert" n. Since $\prod_{i_{0}, \ldots, i_{h-1}} \boldsymbol{g}_{i_{0}, \ldots, i_{h-1}}=x^{n}-\zeta^{n}$, we now can multiply polynomials in $R[x] /\left\langle x^{n}-\zeta^{n}\right\rangle$ via $\prod_{i_{0}, \ldots, i_{h-1}} R[x] /\left\langle\boldsymbol{g}_{i_{0}, \ldots, i_{h-1}}\right\rangle$.

2.4 Good-Thomas FFT

Let $n=\prod_{j} q_{j}$ for coprime integers q_{0}, \ldots, q_{d-1}. There are two ways for stating GoodThomas FFT [Goo58]: (i) as an isomorphism from a group algebra to a tensor product

[^1]of associative algebras; and (ii) as a correspondence between one-dimensional FFT and multi-dimensional FFT. (ii) was stated in [Goo58]. (i) is a more general statement in the modern algebra language and is apparent from [Goo58].

Recall that we have a group isomorphism $\mathbb{Z}_{n} \cong \prod_{j} \mathbb{Z}_{q_{j}}$. This implies an isomorphism between the group algebras $R\left[\mathbb{Z}_{n}\right]$ and $R\left[\prod_{j} \mathbb{Z}_{q_{j}}\right]$. Notice that $R\left[\prod_{j} \mathbb{Z}_{q_{j}}\right]$ is isomorphic to the tensor product $\bigotimes_{j} R\left[\mathbb{Z}_{q_{j}}\right]$. Suppose n is invertible in R, and there is a principal n-th root of unity $\omega_{n} \in R$ realizing the isomorphism $R[x] /\left\langle x^{n}-1\right\rangle \cong \prod_{i} R[x] /\left\langle x-\omega_{n}^{i}\right\rangle$. By definition, we also have a principal n_{j}-th root of unity $\omega_{n_{j}}$ for each j. We choose $\omega_{n_{j}}:=\omega_{n}^{e_{j}}$ so $\prod_{j} \omega_{n_{j}}=\omega_{n}^{\sum_{j} e_{j}}=\omega_{n}$. This allows us to relate the tensor product $\bigotimes_{j}\left(R\left[x_{j}\right] /\left\langle x_{j}^{n_{j}}-1\right\rangle \cong \prod_{i_{j}} R\left[x_{j}\right] /\left\langle x_{j}-\omega_{n_{j}}^{i_{j}}\right\rangle\right)$ to $R[x] /\left\langle x^{n}-1\right\rangle \cong \prod_{i} R[x] /\left\langle x-\omega_{n}^{i}\right\rangle$ via the relation $x \sim \prod_{j} x_{j}$. Figure 1 is an illustration.

Figure 1: Commutative diagram of Good-Thomas FFT. Notice that $x \mapsto \prod_{j} x_{j}$ itself is already an FFT improving the overall asymptotic behavior.

Vectorization-friendly Good-Thomas first introduces $x^{v} \sim y$ for $R[x] /\left\langle x^{n v}-1\right\rangle$ and operates as a polynomial ring modulo $y^{n}-1$ [FP07, AHY22, $\left.\mathrm{CCH}^{+} 23\right]$.

2.5 Rader's FFT

Let p be prime. Rader's FFT [Rad68] computes the map $R[x] /\left\langle x^{p}-1\right\rangle \cong \prod_{i} R[x] /\left\langle x-\omega_{p}^{i}\right\rangle$ with a size- $(p-1)$ cyclic convolution. Since p is a prime, there is a g with $\{1, \ldots, p-1\}=$ $\left\{g^{1}, \ldots, g^{p-1}\right\}$. This allows us to introduce two equivalences for $\left(\hat{a}_{j}\right)=\sum_{i=0}^{p-1} a_{i} \omega_{p}^{i j}$: (i) $(1,2, \ldots, p-1) \cong\left(g, g^{2}, \ldots, \ldots, g^{p-1}\right)$ and (ii) $(1,2, \ldots, p-1) \cong\left(g^{-1}, g^{-2}, \ldots, g^{-(p-1)}\right)$. If we map $j \mapsto g^{j}$ and $i \mapsto g^{-i}$, we have $\left(\hat{a}_{g^{j}}-a_{0}\right)_{j \in \mathcal{J}}=\left(\sum_{i=1}^{p-1} a_{g^{-i}} \omega_{p}^{g^{j-i}}\right)_{j \in \mathcal{J}}$ where $\mathcal{J}=\{1, \ldots, p-1\}$. Obviously, the right-hand side is the size- $(p-1)$ cyclic convolution of $\left(a_{g^{-i-1}}\right)_{i=0, \ldots, p-2}$ and $\left(\omega_{p}^{g^{i}}\right)_{i=0, \ldots, p-2}$.

2.6 Karatsuba

Karatsuba [KO62] computes the product $\left(a_{0}+a_{1} x\right)\left(b_{0}+b_{1} x\right)$ by evaluating at the point set $\{0,1, \infty\}$. We compute $\left(a_{0}+a_{1} x\right)\left(b_{0}+b_{1} x\right)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+a_{1} b_{1} x^{2}$ with three multiplications $a_{0} b_{0}, a_{1} b_{1}$, and $\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)$ by observing $a_{0} b_{1}+a_{1} b_{0}=$ $\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}$.

3 Implementation

This section goes through the implementation and is largely based on various ideas presented in $\left[\mathrm{CCH}^{+} 23\right]$. For simplicity, we assume $R=\mathbb{F}_{4591}$.

3.1 Chosen Transformation

Let $\left(e_{0}, e_{1}, e_{2}\right)=(18,34,51)$ be the unique orthogonal idempotent elements satisfying $\forall a \in \mathbb{Z}_{102}, a \equiv(a \bmod 17) e_{0}+(a \bmod 3) e_{1}+(a \bmod 2) e_{2}(\bmod 102)$.

Conceptionally, we first apply the 3-dimensional Good-Thomas $R[x] /\left\langle x^{1632}-1\right\rangle \cong$ $\bar{R}[u, w, z] /\left\langle u^{17}-1, w^{3}-1, z^{2}-1\right\rangle$ where $\bar{R}:=R[x] /\left\langle x^{16}-u w z\right\rangle$. We then apply the 3dimensional FFT NTT $\bar{R}_{0}: \omega_{17} \otimes$ NTT $_{\bar{R}_{1}: \omega_{3}} \otimes$ NTT $_{\bar{R}_{2}: \omega_{2}}$ where $\left(\omega_{17}, \omega_{3}, \omega_{2}\right)=\left(\omega_{102}^{e_{0}}, \omega_{102}^{e_{1}}, \omega_{102}^{e_{2}}\right)$, $\bar{R}_{0}=\bar{R}[u] /\left\langle u^{17}-1\right\rangle, \bar{R}_{1}=\bar{R}[w] /\left\langle w^{3}-1\right\rangle$, and $\bar{R}_{2}=\bar{R}[z] /\left\langle z^{2}-1\right\rangle$. For NTT $\bar{R}_{0}: \omega_{17}$, we apply Rader's FFT converting the computation into size- 16 cyclic convolution. NTT ${ }_{\bar{R}_{1}: \omega_{3}}$ and $\mathrm{NTT}_{\bar{R}_{2}: \omega_{2}}$ are straightforward. The remaining problem is to multiply polynomials in $\prod_{i_{0}, i_{1}, i_{2}} R[x] /\left\langle x^{16}-\omega_{102}^{i_{0} e_{0}+i_{1} e_{1}+i_{2} e_{2}}\right\rangle$.

We denote η_{0} the permutation map induced by the relation $x \sim u w z, \eta_{1}=\mathrm{NTT}_{\bar{R}_{0}: \omega_{17}}$, $\eta_{2}=\mathrm{NTT}_{\bar{R}_{1}: \omega_{3}} \otimes \mathrm{NTT}_{\bar{R}_{2}: \omega_{2}}$, and $\eta_{3}=\mathrm{id}_{1632}$. The following is the chain of isomorphisms implemented.

$$
\begin{aligned}
\frac{R[x]}{\left\langle x^{1632}-1\right\rangle} & \stackrel{\eta_{0}}{\cong} \\
& \stackrel{R[x, u, w, z]}{\eta_{1} \otimes \operatorname{id}_{3} \otimes \mathrm{id}_{2}}
\end{aligned} \prod_{\substack{16 \\
\\
x_{0}}} \frac{\bar{R}[u, w, z]}{} \frac{\left.u^{17}-1, w^{3}-1, z^{2}-1\right\rangle}{\left\langle u-\omega_{17}^{i_{0}}, w^{3}-1, z^{2}-1\right\rangle} .
$$

In practice, we apply $\left(\eta_{1} \otimes \mathrm{id}_{3} \otimes \mathrm{id}_{2}\right) \circ \eta_{0}$ at the same time and omit η_{3}.

3.2 Small-Dimensional Polynomial Multiplications

The remaining problems are multiplying small-degree polynomials. In this work, our main problems are $R[x] /\left\langle x^{16}-1\right\rangle$ and $R[x] /\left\langle x^{16} \pm \omega_{102}^{i_{0} e_{0}+i_{1} e_{1}}\right\rangle$. For $R[x] /\left\langle x^{16}-1\right\rangle$, we split it into

$$
\frac{R[x]}{\left\langle x^{16}-1\right\rangle} \cong \frac{R[x]}{\langle x-1\rangle} \times \frac{R[x]}{\langle x+1\rangle} \times \frac{R[x]}{\left\langle x^{2}+1\right\rangle} \times \frac{R[x]}{\left\langle x^{4}+1\right\rangle} \times \frac{R[x]}{\left\langle x^{8}+1\right\rangle} .
$$

For $R[x] /\left\langle x^{16}-\omega_{102}^{i_{0} e_{0}+i_{1} e_{1}}\right\rangle$, we split it into

$$
\frac{R[x]}{\left\langle x^{16}-\omega_{102}^{\left.i_{0} 0_{0}+i_{1} e_{1}\right\rangle}\right\rangle} \cong \frac{R[x]}{\left\langle x^{8}-\omega_{51}^{\frac{i_{0} e_{0}+i_{1} e_{1}}{2}}\right\rangle} \times \frac{R[x]}{\left\langle x^{8}+\omega_{51}^{\frac{i_{0} e_{0}+i_{1} e_{1}}{2}}\right\rangle} .
$$

Finally, we apply two layers of Karatsuba for $R[x] /\left\langle x^{16}+\omega_{102}^{i_{0} e_{0}+i_{1} e_{1}}\right\rangle$, and one layer of Karatsuba for $R[x] /\left\langle x^{8}+1\right\rangle$ and $R[x] /\left\langle x^{8} \pm \omega_{51}^{\frac{i_{0} e_{0}+i_{1} e_{1}}{2}}\right\rangle$.

4 Results

4.1 Benchmarking Environment

We benchmark on an $\operatorname{Intel}(\mathrm{R})$ Core(TM) i7-4770K (Haswell) processor with the frequency 3.5 GHz . TurboBoost and hyperthreading are disabled.

4.2 Polynomial Multiplication

We provide the performance in cycle counts of two functions mulcore and polymul. mulcore derives the products in $\mathbb{Z}_{4591}[x]$ with potential scaling by a predefined constant, and polymul additionally reduces the result to $\mathbb{Z}_{4591}[x] /\left\langle x^{761}-x-1\right\rangle$ and mitigates the potential scaling. Compared to [BBCT22], our mulcore is 1.69 times faster, and polymul is 1.77 times faster. We additionally vectorize reduction modulo $x^{761}-x-1$ and obtain some improvements.

Table 1: Cycles of big-by-big polynomial multiplications for ntrulprs761/sntrup761 on Haswell with AVX2.

	$[$ BBCT22]	This work
mulcore $\left(\mathbb{Z}_{4591}[x]\right)$	23460	13892
polymul $\left(\frac{\mathbb{Z}_{4591}[x]}{\left\langle x^{761}-x-1\right\rangle}\right)$	25356	14312
Our own benchmarks.		

5 References

$\left[\mathrm{ACC}^{+} 21\right]$ Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan, Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen, Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial Multiplication in NTRU Prime Comparison of Optimization Strategies on CortexM4. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(1):217-238, 2021. https://tches.iacr.org/index.php/TCHES/ article/view/8733. 1
[AHY22] Erdem Alkim, Vincent Hwang, and Bo-Yin Yang. Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022(4):349-371, 2022. 1, 4
[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor. In CRYPTO 1986, LNCS, pages 311-323. SV, 1986. 2
$\left[\mathrm{BBC}^{+} 20\right]$ Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola Tuveri, Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Submission to the NIST Post-Quantum Cryptography Standardization Project [NIS], 2020. https://ntruprime.cr.yp.to/. 1
[BBCT22] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri. OpenSSLNTRU: Faster post-quantum TLS key exchange. In 31st USENIX Security Symposium (USENIX Security 22), pages 845-862, 2022. 1, 2, 6
[BC87] J. V. Brawley and L. Carlitz. Irreducibles and the composed product for polynomials over a finite field. Discrete Mathematics, 65(2):115-139, 1987. 2
[BGM93] Ian F. Blake, Shuhong Gao, and Ronald C. Mullin. Explicit Factorization of $x^{2^{k}}+1$ over \mathbb{F}_{p} with Prime $p \equiv 3 \bmod 4$. Applicable Algebra in Engineering, Communication and Computing, 4(2):89-94, 1993. 2
[Bou89] Nicolas Bourbaki. Algebra I. Springer, 1989. 3
[Bru78] Georg Bruun. z-transform DFT Filters and FFT's. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):56-63, 1978. 2
[BY19] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation and modular inversion. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(3):340-398, 2019. https://tches.iacr.org/index. php/TCHES/article/view/8298. 1
$\left[\mathrm{CCH}^{+} 23\right]$ Han-Ting Chen, Yi-Hua Chung, Vincent Hwang, Chi-Ting Liu, and Bo-Yin Yang. Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime (Long Paper). Cryptology ePrint Archive, Paper 2023/541, 2023. https://eprint.iacr.org/2023/541. 1, 2, 4
[CT65] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation, 19(90):297-301, 1965. 2, 3
[FP07] Franz Franchetti and Markus Puschel. SIMD Vectorization of Non-Two-Power Sized FFTs. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'07, volume 2, 2007. 4
[Goo58] I. J. Good. The Interaction Algorithm and Practical Fourier Analysis. Journal of the Royal Statistical Society: Series B (Methodological), 20(2):361-372, 1958. 1, 3, 4
[KO62] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of manydigital numbers by automatic computers. In Doklady Akademii Nauk, volume 145(2), pages 293-294, 1962. 4
[Mon85] Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathematics of computation, 44(170):519-521, 1985. 2
[NIS] NIST, the US National Institute of Standards and Technology. Post-quantum cryptography standardization project. https://csrc.nist.gov/Projects/ post-quantum-cryptography. 6
[Nus80] Henri Nussbaumer. Fast Polynomial Transform Algorithms for Digital Convolution. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(2):205-215, 1980. 1
[Rad68] Charles M. Rader. Discrete fourier transforms when the number of data samples is prime. Proceedings of the IEEE, 56(6):1107-1108, 1968. 2, 4
[Sch77] Arnold Schönhage. Schnelle multiplikation von polynomen über körpern der charakteristik 2. Acta Informatica, 7(4):395-398, 1977. 1
[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography. 2018. https://eprint.iacr.org/2018/039. 2, 3

[^0]: ${ }^{1}$ See "New features" in https://marc.info/?l=openssh-unix-dev\&m=164939371201404\&w=2.

[^1]: ${ }^{2} \forall j=1, \ldots, n-1, \sum_{i} \omega_{n}^{i j}=0$.

