
Technical Report: Even Faster Polynomial
Multiplication for NTRU Prime with AVX2

Vincent Hwang

Max Planck Institute for Security and Privacy, Bochum, Germany
vincentvbh7@gmail.com

Abstract. This paper implements a vectorization–friendly polynomial multiplication
for the NTRU Prime parameter sets ntrulpr761/sntrup761 with AVX2 based on
the recently released work [Chen, Chung, Hwang, Liu, and Yang, Cryptology ePrint
Archive, 2023/541]. Compared to the state-of-the-art optimized implementation
by [Bernstein, Brumley, Chen, and Tuveri, USENIX Security 2022], our big-by-big
polynomial multiplication is 1.77×, 1.9×, and 1.92× faster on Haswell, Skylake, and
Comet Lake.
Keywords: NTRU Prime · AVX2 · Good–Thomas FFT · Rader’s FFT

1 Introduction
OpenSSH 9.0 currently uses the hybrid sntrup761x25519-sha512 key exchange by default1.
This paper demonstrates the applicability of [CCH+23]’s ideas on polynomial multiplication
for the NTRU Prime parameter sets ntrulpr761/sntrup761 with AVX2. Our target is
the polynomial multiplication in Z4591[x]

/〈
x761 − x − 1

〉
used by ntrulpr761/sntrup761.

We refer to [BBC+20] for the specification of NTRU Prime. For ntrulpr761/sntrup761,
maintaining the vectorization–friendliness while working over Z4591 was challenging. While
computing the product of two polynomials, if one of the polynomials has coefficients
within a small range, we call the computing task a big-by-small polynomial multiplication.
Otherwise, we call it a big-by-big polynomial multiplication. In NTRU Prime, all the
polynomial multiplications in the reference implementation are big by small. Neverthe-
less, big-by-big polynomial multiplications are used for improving the key generation of
sntrup [BY19, BBCT22] and can replace big-by-small polynomial multiplications if the
performance is improved.

[BBCT22]’s big-by-big polynomial multiplication on Haswell with AVX2 is roughly 1.5
times slower than their big-by-small one, while it was already known that on an ARM
Cortex-M4 implementing Armv7E-M with limited SIMD support, big-by-big polynomial
multiplication is faster than big-by-small polynomial multiplication [ACC+21, AHY22].
The reason is that when the SIMD support is raised from 2 halfwords (Armv7E-M)
to 16 (AVX2), [BBCT22] applied Schönhage [Sch77] and Nussbaumer [Nus80] crafting
radix-2 roots of unity. Since Schönhage and Nussbaumer usually double the number of
coefficients, this eventually leads to many base multiplications (small-degree polynomial
multiplications).

[CCH+23] explored various vectorization ideas for NTRU and NTRU Prime on an
ARM Cortex-A72 with Neon. We are interested in their fast Fourier transformations
(FFTs) for ntrulpr761/sntrup761. To ensure vectorization–friendliness, they first in-
troduced the equivalence x16 ∼ y. They then applied a 3-dimensional Good–Thomas

1See “New features” in https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2.

mailto:vincentvbh7@gmail.com
https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2


2 Technical Report: Even Faster Polynomial Multiplication for NTRU Prime with AVX2

FFT [Goo58] based on the coprime factorization 1632
16 = 17 · 3 · 2. Radix-3 and radix-2

cyclic FFTs are obvious. For the Radix-17 cyclic FFT, they applied Rader’s FFT [Rad68]
to convert the computation into a size-16 cyclic convolution. The remaining problems are
multiplications in the product ring

∏
i R[x]

/〈
x16 ± ωi

51
〉

for i = 0, . . . , 101. [CCH+23]’s
Good–Rader–Bruun applied Cooley–Tukey FFT [CT65] to 48 size-16 problems of the form
R[x]

/〈
x16 − ωi

51
〉

, Bruun’s FFT [Bru78, BC87, BGM93] to 48 size-16 problems of the form
R[x]

/〈
x16 + ωi

51
〉

, and schoolbook multiplication to the remaining size-16 problems. We
propose an implementation similar to [CCH+23]’s Good–Rader–Bruun but discard Bruun’s
FFT due to the relatively expensive polynomial reduction with AVX2, which lacks long
multiplications and incurs a long dependency chain while interleaving and deinterleaving.
Our big-by-big polynomial multiplication is 1.77 times faster than [BBCT22]’s on Haswell
with AVX2.

Code. Our source code can be found at https://github.com/vincentvbh/NTRU_Prime_
polymul_AVX2 under CC0 license.

2 Preliminaries
2.1 AVX2 Modular Multiplication and Reduction
We recall the Montgomery multiplication [Mon85] and Barrett reduction [Bar86] from [Sei18].
vpmullw multiplies corresponding signed 16-bit values and places the lower 16-bit values to
the destination register. vpmulhw places the upper 16-bit values to the destination instead.
vpmulhrsw effectively computes

⌊
ab
215

⌉
from the signed 16-bit values a and b. For signed

16-bit values a and b, Montgomery multiplication [Mon85, Sei18] computes a representative
of ab2−16 mod ±q with⌊

ab −
(
abq′ mod ±216)

q

216

⌋
≡ ab2−16 (mod q)

where q′ = q−1 mod ±216 is precomputed. Algorithm 1 is an illustration. If b is known
in prior, we replace (b, bq′ mod ±216) with

(
b216 mod ±q,

(
b216 mod ±q

)
q′ mod ±216)

to
save one multiplication and mitigate the scaling by 2−16. Algorithm 2 is an illustration.

Barrett reduction [Bar86, Sei18] reduces a value a by computing

a −

a
⌊

215

q

⌉
215

 q ≡ a (mod q).

Algorithm 3 is an illustration. In the case of q = 4591, one can show (by brute-force
testing) that for a ∈ [−32768, 32767], the results lies in [−2881, 2881].

Algorithm 1 Montgomery multiplication [Sei18].
Inputs: a = a, b = b.
Constants: q = 4591, q′ = q−1 mod ±216 = 15631.

Output: c = c =
⌊

ab−(abq′ mod ±216)q

216

⌋
≡ ab2−16 mod ±q.

1: vpmullw b, q′, lo
2: vpmullw lo, a, lo
3: vpmulhw b, a, hi
4: vpmulhw lo, q, lo
5: vpsubw lo, hi, c

https://github.com/vincentvbh/NTRU_Prime_polymul_AVX2
https://github.com/vincentvbh/NTRU_Prime_polymul_AVX2


Vincent Hwang 3

Algorithm 2 Montgomery multiplication with precomputation [Sei18].
Inputs: a = a.
Constants: q = 4591, b = b216 mod ±q, b’ =

(
b216 mod ±q

)
q−1 mod ±216.

Output: c = c =
⌊

a(b216 mod ±q)−(a((b216 mod ±q)q−1 mod ±216))q

216

⌋
≡ ab mod ±q.

1: vpmullw b’, a, lo
2: vpmulhw b, a, hi
3: vpmulhw lo, q, lo
4: vpsubw lo, hi, c

Algorithm 3 Barrett reduction [Sei18].
Input: a = a.
Constants: q = 4591, q̄ =

⌊
215

q

⌉
= 7.

Output: a = a′ = a −
⌊

aq̄
215

⌉
q, −2881 ≤ a′ ≤ 2881.

1: vpmulhrsw a, q̄, hi
2: vpmullw hi, q, hi
3: vpsubw hi, a, a

2.2 Chinese Remainder Theorem
In this paper, all the rings are commutative and unital. Let R be a ring. For elements
e0, e1 ∈ R, we call them orthogonal if e0e1 = 0. An element e ∈ R is called idempotent
if e2 = e. For orthogonal idempotent elements e0 and e1 in R satisfying e0 + e1 = 1,
we have the ring isomorphism R ∼= R/(1 − e0)R × R/(1 − e1)R . This easily generalizes
to finitely many orthogonal idempotent elements (e0, . . . , ed−1) with

∑
i ei = 1 realizing

R ∼=
∏

i R/(1 − ei)R . Explicitly, we have the isomorphism Φ : R →
∏

i
R

(1−ei)R mapping
a to the n-tuple (a mod (1 − ei)R) with the inverse Ψ : (âi) 7→

∑
i âiei [Bou89].

We are interested in two cases: R[x]
/〈∏

i0,...,ih−1
gi0,...,ih−1

〉
for coprime polynomials

gi0,...,ih−1
’s in R[x] and Zq0···qd−1 for coprime integers q0, . . . , qd−1.

2.3 Cooley–Tukey FFT
Let n =

∏
j nj , and ij run over 0, . . . , nj − 1 for each j. The Cooley–Tukey FFT [CT65]

computes with the following isomorphsisms:

R[x]〈∏
i0,...,ih−1

gi0,...,ih−1

〉 ∼=
∏
i0

R[x]〈∏
i1,...,ih−1

gi0,...,ih−1

〉 ∼= · · · ∼=
∏

i0,...,ih−1

R[x]〈
gi0,...,ih−1

〉
by choosing gi0,...,ih−1

= x−ζω

∑
l

il

∏
j<l

nj

n where ωn is a principal n-th root of unity2. The
Cooley–Tukey FFT is invertible if we can “invert” n. Since

∏
i0,...,ih−1

gi0,...,ih−1
= xn − ζn,

we now can multiply polynomials in R[x]/⟨xn − ζn⟩ via
∏

i0,...,ih−1
R[x]

/〈
gi0,...,ih−1

〉
.

2.4 Good–Thomas FFT
Let n =

∏
j qj for coprime integers q0, . . . , qd−1. There are two ways for stating Good–

Thomas FFT [Goo58]: (i) as an isomorphism from a group algebra to a tensor product
2∀j = 1, . . . , n − 1,

∑
i

ωij
n = 0.



4 Technical Report: Even Faster Polynomial Multiplication for NTRU Prime with AVX2

of associative algebras; and (ii) as a correspondence between one-dimensional FFT and
multi-dimensional FFT. (ii) was stated in [Goo58]. (i) is a more general statement in the
modern algebra language and is apparent from [Goo58].

Recall that we have a group isomorphism Zn
∼=

∏
j Zqj . This implies an isomorphism

between the group algebras R [Zn] and R
[∏

j Zqj

]
. Notice that R

[∏
j Zqj

]
is isomorphic

to the tensor product
⊗

j R
[
Zqj

]
. Suppose n is invertible in R, and there is a principal

n-th root of unity ωn ∈ R realizing the isomorphism R[x]/⟨xn − 1⟩ ∼=
∏

i R[x]
/〈

x − ωi
n

〉
.

By definition, we also have a principal nj-th root of unity ωnj for each j. We choose

ωnj
:= ω

ej
n so

∏
j ωnj

= ω

∑
j

ej

n = ωn. This allows us to relate the tensor product⊗
j

(
R[xj ]

/〈
x

nj

j − 1
〉 ∼=

∏
ij

R[xj ]
/〈

xj − ω
ij
nj

〉)
to R[x]/⟨xn − 1⟩ ∼=

∏
i R[x]

/〈
x − ωi

n

〉
via the relation x ∼

∏
j xj . Figure 1 is an illustration.

R[x]
⟨xn−1⟩

⊗
j

R[xj ]
⟨x

nj
j

−1⟩

∏
i

R[x]
⟨x−ωi

n⟩

⊗
j

∏
ij

R[xj ]〈
xj−ω

ij
nj

〉

x 7→
∏

j xj

∏
j ωnj 7→ ωn

Figure 1: Commutative diagram of Good–Thomas FFT. Notice that x 7→
∏

j xj itself is
already an FFT improving the overall asymptotic behavior.

Vectorization–friendly Good–Thomas first introduces xv ∼ y for R[x]/⟨xnv − 1⟩ and
operates as a polynomial ring modulo yn − 1 [FP07, AHY22, CCH+23].

2.5 Rader’s FFT
Let p be prime. Rader’s FFT [Rad68] computes the map R[x]/⟨xp − 1⟩ ∼=

∏
i R[x]

/〈
x − ωi

p

〉
with a size-(p − 1) cyclic convolution. Since p is a prime, there is a g with {1, . . . , p − 1} ={

g1, . . . , gp−1}
. This allows us to introduce two equivalences for (âj) =

∑p−1
i=0 aiω

ij
p : (i)

(1, 2, . . . , p − 1) ∼= (g, g2, . . . , . . . , gp−1) and (ii) (1, 2, . . . , p − 1) ∼= (g−1, g−2, . . . , g−(p−1)).
If we map j 7→ gj and i 7→ g−i, we have

(
âgj − a0

)
j∈J =

(∑p−1
i=1 ag−iωgj−i

p

)
j∈J

where
J = {1, . . . , p − 1}. Obviously, the right-hand side is the size-(p − 1) cyclic convolution of(
ag−i−1

)
i=0,...,p−2 and

(
ωgi

p

)
i=0,...,p−2

.

2.6 Karatsuba
Karatsuba [KO62] computes the product (a0 + a1x)(b0 + b1x) by evaluating at the point
set {0, 1, ∞}. We compute (a0 + a1x)(b0 + b1x) = a0b0 + (a0b1 + a1b0)x + a1b1x2 with
three multiplications a0b0, a1b1, and (a0 + a1)(b0 + b1) by observing a0b1 + a1b0 =
(a0 + a1)(b0 + b1) − a0b0 − a1b1.

3 Implementation
This section goes through the implementation and is largely based on various ideas
presented in [CCH+23]. For simplicity, we assume R = F4591.



Vincent Hwang 5

3.1 Chosen Transformation
Let (e0, e1, e2) = (18, 34, 51) be the unique orthogonal idempotent elements satisfying
∀a ∈ Z102, a ≡ (a mod 17)e0 + (a mod 3)e1 + (a mod 2)e2 (mod 102).

Conceptionally, we first apply the 3-dimensional Good–Thomas R[x]
/〈

x1632 − 1
〉 ∼=

R̄[u, w, z]
/〈

u17 − 1, w3 − 1, z2 − 1
〉

where R̄ := R[x]
/〈

x16 − uwz
〉

. We then apply the 3-
dimensional FFT NTTR̄0:ω17

⊗NTTR̄1:ω3
⊗NTTR̄2:ω2

where (ω17, ω3, ω2) = (ωe0
102, ωe1

102, ωe2
102),

R̄0 = R̄[u]
/〈

u17 − 1
〉

, R̄1 = R̄[w]
/〈

w3 − 1
〉

, and R̄2 = R̄[z]
/〈

z2 − 1
〉

. For NTTR̄0:ω17
, we

apply Rader’s FFT converting the computation into size-16 cyclic convolution. NTTR̄1:ω3
and NTTR̄2:ω2

are straightforward. The remaining problem is to multiply polynomials in∏
i0,i1,i2

R[x]
/〈

x16 − ωi0e0+i1e1+i2e2
102

〉
.

We denote η0 the permutation map induced by the relation x16 ∼ uwz, η1 = NTTR̄0:ω17
,

η2 = NTTR̄1:ω3
⊗ NTTR̄2:ω2

, and η3 = id1632. The following is the chain of isomorphisms
implemented.

R[x]
⟨x1632 − 1⟩

η0∼=
R[x, u, w, z]

⟨x16 − uwz, u17 − 1, w3 − 1, z2 − 1⟩
η1⊗id3⊗id2∼=

∏
i0

R̄[u, w, z]〈
u − ωi0

17, w3 − 1, z2 − 1
〉

id17⊗η2∼=
∏

i0,i1,i2

R̄[u, w, z]〈
u − ωi0

17, w − ωi1
3 , z − ωi2

2
〉

η3∼=
∏

i0,i1,i2

R[x]〈
x16 − ωi0e0+i1e1+i2e2

102
〉 .

In practice, we apply (η1 ⊗ id3 ⊗ id2) ◦ η0 at the same time and omit η3.

3.2 Small-Dimensional Polynomial Multiplications
The remaining problems are multiplying small-degree polynomials. In this work, our main
problems are R[x]

/〈
x16 − 1

〉
and R[x]

/〈
x16 ± ωi0e0+i1e1

102
〉

. For R[x]
/〈

x16 − 1
〉

, we split
it into

R[x]
⟨x16 − 1⟩

∼=
R[x]

⟨x − 1⟩
× R[x]

⟨x + 1⟩
× R[x]

⟨x2 + 1⟩
× R[x]

⟨x4 + 1⟩
× R[x]

⟨x8 + 1⟩
.

For R[x]
/〈

x16 − ωi0e0+i1e1
102

〉
, we split it into

R[x]〈
x16 − ωi0e0+i1e1

102
〉 ∼=

R[x]〈
x8 − ω

i0e0+i1e1
2

51

〉 × R[x]〈
x8 + ω

i0e0+i1e1
2

51

〉 .

Finally, we apply two layers of Karatsuba for R[x]
/〈

x16 + ωi0e0+i1e1
102

〉
, and one layer of

Karatsuba for R[x]
/〈

x8 + 1
〉

and R[x]
/〈

x8 ± ω
i0e0+i1e1

2
51

〉
.

4 Results
4.1 Benchmarking Environment
We benchmark on Intel(R) Core(TM) i7-4770K (Haswell) processor with the frequency
3.5 GHz, Intel(R) Xeon(R) CPU E3-1275 v5 (Skylake) with the frequency 3.6 GHz, and
Intel(R) Core(TM) i7-10700K (Comet Lake) with the frequency 800 MHz. We compile
with GCC 10.4.0 on Haswell, GCC 11.3.0 on Skylake, and GCC 10.2.1 on Comet Lake.
TurboBoost and hyperthreading are disabled.



6 Technical Report: Even Faster Polynomial Multiplication for NTRU Prime with AVX2

4.2 Polynomial Multiplication
We provide the performance in cycle counts of two functions mulcore and polymul.
mulcore derives the products in Z4591[x] with potential scaling by a predefined constant,
and polymul additionally reduces the result to Z4591[x]

/〈
x761 − x − 1

〉
and mitigates the

potential scaling. Compared to [BBCT22], our mulcore is 1.69×, 1.83×, and 1.88× faster
on Haswell, Skylake, and Comet Lake. For polymul, our implementation is 1.77×, 1.9×,
and 1.92× faster on Haswell, Skylake, and Comet Lake, respectively. We additionally
vectorize reduction modulo x761 − x − 1 and obtain some improvements.

Table 1: Cycles of big-by-big polynomial multiplications for ntrulprs761/sntrup761 on
Haswell, Skylake, and Comet Lake with AVX2.

[BBCT22]∗ This work
Haswell

mulcore (Z4591[x]) 23 460 13 892
polymul

(
Z4591[x]

⟨x761−x−1⟩

)
25 356 14 312

Skylake
mulcore (Z4591[x]) 21 402 11 682
polymul

(
Z4591[x]

⟨x761−x−1⟩

)
23 306 12 242

Comet Lake
mulcore (Z4591[x]) 16 154 8 570
polymul

(
Z4591[x]

⟨x761−x−1⟩

)
16 852 8 776

∗ Our own benchmarks.

5 References
[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,

Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederha-
gen, Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial Multipli-
cation in NTRU Prime Comparison of Optimization Strategies on Cortex-
M4. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2021(1):217–238, 2021. https://tches.iacr.org/index.php/TCHES/
article/view/8733. 1

[AHY22] Erdem Alkim, Vincent Hwang, and Bo-Yin Yang. Multi-Parameter Support
with NTTs for NTRU and NTRU Prime on Cortex-M4. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022(4):349–371, 2022. 1, 4

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor. In CRYPTO
1986, LNCS, pages 311–323. SV, 1986. 2

[BBC+20] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok
Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola Tuveri,
Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Submission to
the NIST Post-Quantum Cryptography Standardization Project [NIS], 2020.
https://ntruprime.cr.yp.to/. 1

[BBCT22] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri.
OpenSSLNTRU: Faster post-quantum TLS key exchange. In 31st USENIX
Security Symposium (USENIX Security 22), pages 845–862, 2022. 1, 2, 6

https://tches.iacr.org/index.php/TCHES/article/view/8733
https://tches.iacr.org/index.php/TCHES/article/view/8733
https://ntruprime.cr.yp.to/


Vincent Hwang 7

[BC87] J. V. Brawley and L. Carlitz. Irreducibles and the composed product for
polynomials over a finite field. Discrete Mathematics, 65(2):115–139, 1987. 2

[BGM93] Ian F. Blake, Shuhong Gao, and Ronald C. Mullin. Explicit Factorization of
x2k + 1 over Fp with Prime p ≡ 3 mod 4. Applicable Algebra in Engineering,
Communication and Computing, 4(2):89–94, 1993. 2

[Bou89] Nicolas Bourbaki. Algebra I. Springer, 1989. 3

[Bru78] Georg Bruun. z-transform DFT Filters and FFT’s. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 26(1):56–63, 1978. 2

[BY19] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation
and modular inversion. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(3):340–398, 2019. https://tches.iacr.org/index.
php/TCHES/article/view/8298. 1

[CCH+23] Han-Ting Chen, Yi-Hua Chung, Vincent Hwang, Chi-Ting Liu, and Bo-Yin
Yang. Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and
NTRU Prime (Long Paper). Cryptology ePrint Archive, Paper 2023/541, 2023.
https://eprint.iacr.org/2023/541. 1, 2, 4

[CT65] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calcula-
tion of Complex Fourier Series. Mathematics of Computation, 19(90):297–301,
1965. 2, 3

[FP07] Franz Franchetti and Markus Puschel. SIMD Vectorization of Non-Two-Power
Sized FFTs. In 2007 IEEE International Conference on Acoustics, Speech and
Signal Processing-ICASSP’07, volume 2, 2007. 4

[Goo58] I. J. Good. The Interaction Algorithm and Practical Fourier Analysis. Journal
of the Royal Statistical Society: Series B (Methodological), 20(2):361–372, 1958.
2, 3, 4

[KO62] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-
digital numbers by automatic computers. In Doklady Akademii Nauk, volume
145(2), pages 293–294, 1962. 4

[Mon85] Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathe-
matics of computation, 44(170):519–521, 1985. 2

[NIS] NIST, the US National Institute of Standards and Technology. Post-quantum
cryptography standardization project. https://csrc.nist.gov/Projects/
post-quantum-cryptography. 6

[Nus80] Henri Nussbaumer. Fast Polynomial Transform Algorithms for Digital Con-
volution. IEEE Transactions on Acoustics, Speech, and Signal Processing,
28(2):205–215, 1980. 1

[Rad68] Charles M. Rader. Discrete fourier transforms when the number of data samples
is prime. Proceedings of the IEEE, 56(6):1107–1108, 1968. 2, 4

[Sch77] Arnold Schönhage. Schnelle multiplikation von polynomen über körpern der
charakteristik 2. Acta Informatica, 7(4):395–398, 1977. 1

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE lattice
cryptography. 2018. https://eprint.iacr.org/2018/039. 2, 3

https://tches.iacr.org/index.php/TCHES/article/view/8298
https://tches.iacr.org/index.php/TCHES/article/view/8298
https://eprint.iacr.org/2023/541
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://eprint.iacr.org/2018/039

	Introduction
	Preliminaries
	AVX2 Modular Multiplication and Reduction
	Chinese Remainder Theorem
	Cooley–Tukey FFT
	Good–Thomas FFT
	Rader's FFT
	Karatsuba

	Implementation
	Chosen Transformation
	Small-Dimensional Polynomial Multiplications

	Results
	Benchmarking Environment
	Polynomial Multiplication

	References

