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Abstract. This paper implements a vectorization–friendly polynomial multiplication
for the NTRU Prime parameter sets ntrulpr761/sntrup761 with AVX2 based on
the recently released work [Chen, Chung, Hwang, Liu, and Yang, Cryptology ePrint
Archive, 2023/541]. Compared to the state-of-the-art optimized implementation
by [Bernstein, Brumley, Chen, and Tuveri, USENIX Security 2022], our big-by-big
polynomial multiplication is 1.77×, 1.9×, and 1.92× faster on Haswell, Skylake, and
Comet Lake.
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1 Introduction
OpenSSH 9.0 currently uses the hybrid sntrup761x25519-sha512 key exchange by default1.
This paper demonstrates the applicability of [CCH+23]’s ideas on polynomial multiplication
for the NTRU Prime parameter sets ntrulpr761/sntrup761 with AVX2. Our target is
the polynomial multiplication in Z4591[x]

/〈
x761 − x − 1

〉
used by ntrulpr761/sntrup761.

We refer to [BBC+20] for the specification of NTRU Prime. For ntrulpr761/sntrup761,
maintaining the vectorization–friendliness while working over Z4591 was challenging. While
computing the product of two polynomials, if one of the polynomials has coefficients
within a small range, we call the computing task a big-by-small polynomial multiplication.
Otherwise, we call it a big-by-big polynomial multiplication. In NTRU Prime, all the
polynomial multiplications in the reference implementation are big by small. Neverthe-
less, big-by-big polynomial multiplications are used for improving the key generation of
sntrup [BY19, BBCT22] and can replace big-by-small polynomial multiplications if the
performance is improved.

[BBCT22]’s big-by-big polynomial multiplication on Haswell with AVX2 is roughly 1.5
times slower than their big-by-small one, while it was already known that on an ARM
Cortex-M4 implementing Armv7E-M with limited SIMD support, big-by-big polynomial
multiplication is faster than big-by-small polynomial multiplication [ACC+21, AHY22].
The reason is that when the SIMD support is raised from 2 halfwords (Armv7E-M)
to 16 (AVX2), [BBCT22] applied Schönhage [Sch77] and Nussbaumer [Nus80] crafting
radix-2 roots of unity. Since Schönhage and Nussbaumer usually double the number of
coefficients, this eventually leads to many base multiplications (small-degree polynomial
multiplications).

[CCH+23] explored various vectorization ideas for NTRU and NTRU Prime on an
ARM Cortex-A72 with Neon. We are interested in their fast Fourier transformations
(FFTs) for ntrulpr761/sntrup761. To ensure vectorization–friendliness, they first in-
troduced the equivalence x16 ∼ y. They then applied a 3-dimensional Good–Thomas

1See “New features” in https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2.
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FFT [Goo58] based on the coprime factorization 1632
16 = 17 · 3 · 2. Radix-3 and radix-2

cyclic FFTs are obvious. For the Radix-17 cyclic FFT, they applied Rader’s FFT [Rad68]
to convert the computation into a size-16 cyclic convolution. The remaining problems are
multiplications in the product ring

∏
i R[x]

/〈
x16 ± ωi

51
〉

for i = 0, . . . , 101. [CCH+23]’s
Good–Rader–Bruun applied Cooley–Tukey FFT [CT65] to 48 size-16 problems of the form
R[x]

/〈
x16 − ωi

51
〉

, Bruun’s FFT [Bru78, BC87, BGM93] to 48 size-16 problems of the form
R[x]

/〈
x16 + ωi

51
〉

, and schoolbook multiplication to the remaining size-16 problems. We
propose an implementation similar to [CCH+23]’s Good–Rader–Bruun but discard Bruun’s
FFT due to the relatively expensive polynomial reduction with AVX2, which lacks long
multiplications and incurs a long dependency chain while interleaving and deinterleaving.
Our big-by-big polynomial multiplication is 1.77 times faster than [BBCT22]’s on Haswell
with AVX2.

Code. Our source code can be found at https://github.com/vincentvbh/NTRU_Prime_
polymul_AVX2 under CC0 license.

2 Preliminaries
2.1 AVX2 Modular Multiplication and Reduction
We recall the Montgomery multiplication [Mon85] and Barrett reduction [Bar86] from [Sei18].
vpmullw multiplies corresponding signed 16-bit values and places the lower 16-bit values to
the destination register. vpmulhw places the upper 16-bit values to the destination instead.
vpmulhrsw effectively computes

⌊
ab
215

⌉
from the signed 16-bit values a and b. For signed

16-bit values a and b, Montgomery multiplication [Mon85, Sei18] computes a representative
of ab2−16 mod ±q with⌊

ab −
(
abq′ mod ±216)

q

216

⌋
≡ ab2−16 (mod q)

where q′ = q−1 mod ±216 is precomputed. Algorithm 1 is an illustration. If b is known
in prior, we replace (b, bq′ mod ±216) with

(
b216 mod ±q,

(
b216 mod ±q

)
q′ mod ±216)

to
save one multiplication and mitigate the scaling by 2−16. Algorithm 2 is an illustration.

Barrett reduction [Bar86, Sei18] reduces a value a by computing

a −

a
⌊

215

q

⌉
215

 q ≡ a (mod q).

Algorithm 3 is an illustration. In the case of q = 4591, one can show (by brute-force
testing) that for a ∈ [−32768, 32767], the results lies in [−2881, 2881].

Algorithm 1 Montgomery multiplication [Sei18].
Inputs: a = a, b = b.
Constants: q = 4591, q′ = q−1 mod ±216 = 15631.

Output: c = c =
⌊

ab−(abq′ mod ±216)q

216

⌋
≡ ab2−16 mod ±q.

1: vpmullw b, q′, lo
2: vpmullw lo, a, lo
3: vpmulhw b, a, hi
4: vpmulhw lo, q, lo
5: vpsubw lo, hi, c

https://github.com/vincentvbh/NTRU_Prime_polymul_AVX2
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Algorithm 2 Montgomery multiplication with precomputation [Sei18].
Inputs: a = a.
Constants: q = 4591, b = b216 mod ±q, b’ =

(
b216 mod ±q

)
q−1 mod ±216.

Output: c = c =
⌊

a(b216 mod ±q)−(a((b216 mod ±q)q−1 mod ±216))q

216

⌋
≡ ab mod ±q.

1: vpmullw b’, a, lo
2: vpmulhw b, a, hi
3: vpmulhw lo, q, lo
4: vpsubw lo, hi, c

Algorithm 3 Barrett reduction [Sei18].
Input: a = a.
Constants: q = 4591, q̄ =

⌊
215

q

⌉
= 7.

Output: a = a′ = a −
⌊

aq̄
215

⌉
q, −2881 ≤ a′ ≤ 2881.

1: vpmulhrsw a, q̄, hi
2: vpmullw hi, q, hi
3: vpsubw hi, a, a

2.2 Chinese Remainder Theorem
In this paper, all the rings are commutative and unital. Let R be a ring. For elements
e0, e1 ∈ R, we call them orthogonal if e0e1 = 0. An element e ∈ R is called idempotent
if e2 = e. For orthogonal idempotent elements e0 and e1 in R satisfying e0 + e1 = 1,
we have the ring isomorphism R ∼= R/(1 − e0)R × R/(1 − e1)R . This easily generalizes
to finitely many orthogonal idempotent elements (e0, . . . , ed−1) with

∑
i ei = 1 realizing

R ∼=
∏

i R/(1 − ei)R . Explicitly, we have the isomorphism Φ : R →
∏

i
R

(1−ei)R mapping
a to the n-tuple (a mod (1 − ei)R) with the inverse Ψ : (âi) 7→

∑
i âiei [Bou89].

We are interested in two cases: R[x]
/〈∏

i0,...,ih−1
gi0,...,ih−1

〉
for coprime polynomials

gi0,...,ih−1
’s in R[x] and Zq0···qd−1 for coprime integers q0, . . . , qd−1.

2.3 Cooley–Tukey FFT
Let n =

∏
j nj , and ij run over 0, . . . , nj − 1 for each j. The Cooley–Tukey FFT [CT65]

computes with the following isomorphsisms:

R[x]〈∏
i0,...,ih−1

gi0,...,ih−1

〉 ∼=
∏
i0

R[x]〈∏
i1,...,ih−1

gi0,...,ih−1

〉 ∼= · · · ∼=
∏

i0,...,ih−1

R[x]〈
gi0,...,ih−1

〉
by choosing gi0,...,ih−1

= x−ζω

∑
l

il

∏
j<l

nj

n where ωn is a principal n-th root of unity2. The
Cooley–Tukey FFT is invertible if we can “invert” n. Since

∏
i0,...,ih−1

gi0,...,ih−1
= xn − ζn,

we now can multiply polynomials in R[x]/⟨xn − ζn⟩ via
∏

i0,...,ih−1
R[x]

/〈
gi0,...,ih−1

〉
.

2.4 Good–Thomas FFT
Let n =

∏
j qj for coprime integers q0, . . . , qd−1. There are two ways for stating Good–

Thomas FFT [Goo58]: (i) as an isomorphism from a group algebra to a tensor product
2∀j = 1, . . . , n − 1,

∑
i

ωij
n = 0.
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of associative algebras; and (ii) as a correspondence between one-dimensional FFT and
multi-dimensional FFT. (ii) was stated in [Goo58]. (i) is a more general statement in the
modern algebra language and is apparent from [Goo58].

Recall that we have a group isomorphism Zn
∼=

∏
j Zqj . This implies an isomorphism

between the group algebras R [Zn] and R
[∏

j Zqj

]
. Notice that R

[∏
j Zqj

]
is isomorphic

to the tensor product
⊗

j R
[
Zqj

]
. Suppose n is invertible in R, and there is a principal

n-th root of unity ωn ∈ R realizing the isomorphism R[x]/⟨xn − 1⟩ ∼=
∏

i R[x]
/〈

x − ωi
n

〉
.

By definition, we also have a principal nj-th root of unity ωnj for each j. We choose

ωnj
:= ω

ej
n so

∏
j ωnj

= ω

∑
j

ej

n = ωn. This allows us to relate the tensor product⊗
j

(
R[xj ]

/〈
x

nj

j − 1
〉 ∼=

∏
ij

R[xj ]
/〈

xj − ω
ij
nj

〉)
to R[x]/⟨xn − 1⟩ ∼=

∏
i R[x]

/〈
x − ωi

n

〉
via the relation x ∼

∏
j xj . Figure 1 is an illustration.

R[x]
⟨xn−1⟩

⊗
j

R[xj ]
⟨x

nj
j

−1⟩

∏
i

R[x]
⟨x−ωi

n⟩

⊗
j

∏
ij

R[xj ]〈
xj−ω

ij
nj

〉

x 7→
∏

j xj

∏
j ωnj 7→ ωn

Figure 1: Commutative diagram of Good–Thomas FFT. Notice that x 7→
∏

j xj itself is
already an FFT improving the overall asymptotic behavior.

Vectorization–friendly Good–Thomas first introduces xv ∼ y for R[x]/⟨xnv − 1⟩ and
operates as a polynomial ring modulo yn − 1 [FP07, AHY22, CCH+23].

2.5 Rader’s FFT
Let p be prime. Rader’s FFT [Rad68] computes the map R[x]/⟨xp − 1⟩ ∼=

∏
i R[x]

/〈
x − ωi

p

〉
with a size-(p − 1) cyclic convolution. Since p is a prime, there is a g with {1, . . . , p − 1} ={

g1, . . . , gp−1}
. This allows us to introduce two equivalences for (âj) =

∑p−1
i=0 aiω

ij
p : (i)

(1, 2, . . . , p − 1) ∼= (g, g2, . . . , . . . , gp−1) and (ii) (1, 2, . . . , p − 1) ∼= (g−1, g−2, . . . , g−(p−1)).
If we map j 7→ gj and i 7→ g−i, we have

(
âgj − a0

)
j∈J =

(∑p−1
i=1 ag−iωgj−i

p

)
j∈J

where
J = {1, . . . , p − 1}. Obviously, the right-hand side is the size-(p − 1) cyclic convolution of(
ag−i−1

)
i=0,...,p−2 and

(
ωgi

p

)
i=0,...,p−2

.

2.6 Karatsuba
Karatsuba [KO62] computes the product (a0 + a1x)(b0 + b1x) by evaluating at the point
set {0, 1, ∞}. We compute (a0 + a1x)(b0 + b1x) = a0b0 + (a0b1 + a1b0)x + a1b1x2 with
three multiplications a0b0, a1b1, and (a0 + a1)(b0 + b1) by observing a0b1 + a1b0 =
(a0 + a1)(b0 + b1) − a0b0 − a1b1.

3 Implementation
This section goes through the implementation and is largely based on various ideas
presented in [CCH+23]. For simplicity, we assume R = F4591.
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3.1 Chosen Transformation
Let (e0, e1, e2) = (18, 34, 51) be the unique orthogonal idempotent elements satisfying
∀a ∈ Z102, a ≡ (a mod 17)e0 + (a mod 3)e1 + (a mod 2)e2 (mod 102).

Conceptionally, we first apply the 3-dimensional Good–Thomas R[x]
/〈

x1632 − 1
〉 ∼=

R̄[u, w, z]
/〈

u17 − 1, w3 − 1, z2 − 1
〉

where R̄ := R[x]
/〈

x16 − uwz
〉

. We then apply the 3-
dimensional FFT NTTR̄0:ω17

⊗NTTR̄1:ω3
⊗NTTR̄2:ω2

where (ω17, ω3, ω2) = (ωe0
102, ωe1

102, ωe2
102),

R̄0 = R̄[u]
/〈

u17 − 1
〉

, R̄1 = R̄[w]
/〈

w3 − 1
〉

, and R̄2 = R̄[z]
/〈

z2 − 1
〉

. For NTTR̄0:ω17
, we

apply Rader’s FFT converting the computation into size-16 cyclic convolution. NTTR̄1:ω3
and NTTR̄2:ω2

are straightforward. The remaining problem is to multiply polynomials in∏
i0,i1,i2

R[x]
/〈

x16 − ωi0e0+i1e1+i2e2
102

〉
.

We denote η0 the permutation map induced by the relation x16 ∼ uwz, η1 = NTTR̄0:ω17
,

η2 = NTTR̄1:ω3
⊗ NTTR̄2:ω2

, and η3 = id1632. The following is the chain of isomorphisms
implemented.

R[x]
⟨x1632 − 1⟩

η0∼=
R[x, u, w, z]

⟨x16 − uwz, u17 − 1, w3 − 1, z2 − 1⟩
η1⊗id3⊗id2∼=

∏
i0

R̄[u, w, z]〈
u − ωi0

17, w3 − 1, z2 − 1
〉

id17⊗η2∼=
∏

i0,i1,i2

R̄[u, w, z]〈
u − ωi0

17, w − ωi1
3 , z − ωi2

2
〉

η3∼=
∏

i0,i1,i2

R[x]〈
x16 − ωi0e0+i1e1+i2e2

102
〉 .

In practice, we apply (η1 ⊗ id3 ⊗ id2) ◦ η0 at the same time and omit η3.

3.2 Small-Dimensional Polynomial Multiplications
The remaining problems are multiplying small-degree polynomials. In this work, our main
problems are R[x]

/〈
x16 − 1

〉
and R[x]

/〈
x16 ± ωi0e0+i1e1

102
〉

. For R[x]
/〈

x16 − 1
〉

, we split
it into

R[x]
⟨x16 − 1⟩

∼=
R[x]

⟨x − 1⟩
× R[x]

⟨x + 1⟩
× R[x]

⟨x2 + 1⟩
× R[x]

⟨x4 + 1⟩
× R[x]

⟨x8 + 1⟩
.

For R[x]
/〈

x16 − ωi0e0+i1e1
102

〉
, we split it into

R[x]〈
x16 − ωi0e0+i1e1

102
〉 ∼=

R[x]〈
x8 − ω

i0e0+i1e1
2

51

〉 × R[x]〈
x8 + ω

i0e0+i1e1
2

51

〉 .

Finally, we apply two layers of Karatsuba for R[x]
/〈

x16 + ωi0e0+i1e1
102

〉
, and one layer of

Karatsuba for R[x]
/〈

x8 + 1
〉

and R[x]
/〈

x8 ± ω
i0e0+i1e1

2
51

〉
.

4 Results
4.1 Benchmarking Environment
We benchmark on Intel(R) Core(TM) i7-4770K (Haswell) processor with the frequency
3.5 GHz, Intel(R) Xeon(R) CPU E3-1275 v5 (Skylake) with the frequency 3.6 GHz, and
Intel(R) Core(TM) i7-10700K (Comet Lake) with the frequency 800 MHz. We compile
with GCC 10.4.0 on Haswell, GCC 11.3.0 on Skylake, and GCC 10.2.1 on Comet Lake.
TurboBoost and hyperthreading are disabled.
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4.2 Polynomial Multiplication
We provide the performance in cycle counts of two functions mulcore and polymul.
mulcore derives the products in Z4591[x] with potential scaling by a predefined constant,
and polymul additionally reduces the result to Z4591[x]

/〈
x761 − x − 1

〉
and mitigates the

potential scaling. Compared to [BBCT22], our mulcore is 1.69×, 1.83×, and 1.88× faster
on Haswell, Skylake, and Comet Lake. For polymul, our implementation is 1.77×, 1.9×,
and 1.92× faster on Haswell, Skylake, and Comet Lake, respectively. We additionally
vectorize reduction modulo x761 − x − 1 and obtain some improvements.

Table 1: Cycles of big-by-big polynomial multiplications for ntrulprs761/sntrup761 on
Haswell, Skylake, and Comet Lake with AVX2.

[BBCT22]∗ This work
Haswell

mulcore (Z4591[x]) 23 460 13 892
polymul

(
Z4591[x]

⟨x761−x−1⟩

)
25 356 14 312

Skylake
mulcore (Z4591[x]) 21 402 11 682
polymul

(
Z4591[x]

⟨x761−x−1⟩

)
23 306 12 242

Comet Lake
mulcore (Z4591[x]) 16 154 8 570
polymul

(
Z4591[x]

⟨x761−x−1⟩

)
16 852 8 776

∗ Our own benchmarks.
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