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Abstract. This paper implements a vectorized polynomial multiplication for the NTRU
Prime parameter sets ntrulpr761/sntrup761 with AVX2. We explore various fast
Fourier transformations (FFTs) for multiplying polynomials in Z4591[x]

/〈
x761 − x − 1

〉
.

The polynomial ring Z4591[x]
/〈

x761 − x − 1
〉

is a finite field and does not enjoy com-
mon beliefs on friendliness measure for implementations. Commonly, people believe
that radix-2 Cooley–Tukey FFT and other FFTs with the same definibality (2k|(q −1)
for the coefficient ring Zq with prime q) are fast and easy to vectorization. We show
that this belief should be extended to include the following: (i) Bruun’s FFT exploiting
the power-of-two factor of q + 1 if q ≡ 3 mod 4; (ii) truncated Rader’s FFT exploiting
the prime factor of q −1. We qualify the prime 4591 as FFT and vectorization-friendly
and find that most NTRU Prime parameter sets enjoy friendliness measures.
Compared to the state-of-the-art AVX2-optimized implementation by [Bernstein,
Brumley, Chen, and Tuveri, USENIX Security 2022], our big-by-big polynomial
multiplication is 1.99× and 2.16× faster on Haswell and Skylake, respectively. For
the batch key generation with batch size 32, we reduce the amortized cost by 12% on
Haswell and 8% on Skylake. For encapsulation, we reduce the performance cycles by
7% on Haswell and 10% on Skylake. Finally, for the decapsulation, we reduce the
performance cycles by 10% on Haswell and 13% on Skylake.
Keywords: NTRU Prime · AVX2 · Good–Thomas FFT · Rader’s FFT · Bruun’s
FFT · Truncation

1 Introduction
OpenSSH 9.0 currently uses the hybrid sntrup761x25519-sha512 key exchange by default1.
This paper explores various insights on designing transformations that are suitable for
vectorization. We implement AVX2-optimized polynomial multiplication for NTRU Prime
parameter sets ntrulpr761/sntrup761 as a proof of concept on identifying algebraic
structures that are friendly for implementations. Our target is the polynomial multiplication
in Z4591[x]

/〈
x761 − x − 1

〉
used by ntrulpr761/sntrup761. We refer to [BBC+20] for the

specification of NTRU Prime. For ntrulpr761/sntrup761, maintaining the vectorization–
friendliness while working over Z4591 was challenging. While computing the product of
two polynomials, if one of the polynomials has coefficients within a small range, we call
the computing task a big-by-small polynomial multiplication. Otherwise, we call it a
big-by-big polynomial multiplication. In NTRU Prime, all the polynomial multiplications
in the reference implementation are big by small. Nevertheless, big-by-big polynomial
multiplications are used for improving the key generation of sntrup [BY19, BBCT22] and
can replace big-by-small polynomial multiplications if the performance is improved.

1See “New features” in https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2.
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In the context of FFT-based polynomial multiplication over coefficient ring Zq with
prime factorization q =

∏
h pdh

h , one can show that a size-n cyclic discrete Fourier transform
(DFT) Zq[x]/⟨xn − 1⟩ ∼=

∏
i Zq[x]

/〈
x − ωi

n

〉
is definable if and only if n divides gcd(ph −

1) [Pol71, AB74]. See [Pol76, DV78, Für09] for conditions in the ring setting. For
ntrulpr761/sntrup761, since 4591 = 2 · 33 · 5 · 17 + 1 is a prime, we can only define a
cyclic DFT of size n for n|(2 · 33 · 5 · 17). [ACC+21] computed size-1530 and size-1620
cyclic convolutions by applying size-153 and size-270 transformations while working over
Z4591 for big-by-big polynomial multiplication on Cortex-M4. Both implementations are
obviously not suitable for vectorization – the largest power-of-two factors are 2 for 1530 and
4 for 1620. They also proposed to compute size-1536 cyclic convolution for big-by-small
polynomial multiplication by switching the coefficient ring to a large ring Zq′ bounding the
product’s maximum value in Z for a prime q′ with 512|(q′ − 1). [ACC+21] showed that
big-by-big polynomial multiplication is slightly faster than big-by-small one on Cortex-M4
implementing limited SIMD support.

When moving to an architecture implementing a powerful vector instruction set,
big-by-small polynomial multiplication can be vectorized in an obvious way. [BBCT22]
implemented a AVX2-optimized big-by-small polynomial multiplication by operating
over Z7681[x]

/〈
x1536 − 1

〉
and Z10753[x]

/〈
x1536 − 1

〉
. However, big-by-small polynomial

multiplications require the smallness of coefficients.
For big-by-big polynomial multiplications (no smallness assumption), [BBCT22, Section

3.3, Paragraph “Problem description and related multiplication.”] considered three possible
options: (i) In addition to the moduli 7681 and 10753, we also compute the radix-2 FFT
over 12289. (ii) Applying a radix-17 algorithm with Rader’s FFT as did in [ACC+21]. (iii)
Applying radix-2 Schönhage and Nussbaumer.

For (i), this amounts to at least a factor of 1.5 blow up. The actual overhead might be
larger since 12289, the smallest 16-bit prime candidate supporting a size-512 cyclic FFT,
requires more modular reductions [BBCT22].

For (ii), [BBCT22] argued that it is unfriendly for radix-2 NTT. We quote the corre-
sponding paragraphs below.

Secondly, q from the NTRU Prime parameter set is not a radix-2 NTT friendly
prime. For example, q = 4591 in sntrup761, and since 4591 − 1 = 2 ·
33 · 5 · 17, no simple root of unity is available for recursive radix-2 FFT
tricks. Alkim, Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih,
Wälde, and Yang [ACC+21] presented a non-radix-2 NTT implementation on
(Z/4591)[x]

/
(x1530 − 1) for embedded systems. They performed radix-3, radix-

5, and radix-17 NTT stages in their NTT. We instead use a radix-2 algorithm
that efficiently utilizes the full ymm registers in the Haswell architecture.

[BBCT22] eventually implemented (iii) – applying radix-2 Schönhage and Nussbaumer
and computing in Z4591[x]

/〈
(x1024 + 1)(x512 − 1)

〉
. Since Schönhage and Nussbaumer dou-

ble the number of coefficients and interprate the movement of coefficients as multiplications
by roots of unity, [BBCT22] eventually resulted in 4·1536

8 = 768 size-8 base multiplications
(small-dimensional polynomial multiplications). Their big-by-big polynomial multiplication
is roughly 1.5× slower than their big-by-small one.

Recently, [CCH+23] explored various vectorization ideas for NTRU and NTRU Prime
on a Cortex-A72 with Neon. Among the various vectorized transformations, we are
interested in their Good-Rader-Bruun. Good-Rader-Bruun multiplies polynomials in
Z4591[x]

/〈
x1632 − 1

〉
, and introduces no doubling of coefficients while maintaining the

vectorization-friendliness. This results in 6 size-16 base multiplications and 192 size-8 base
multiplications.

Contributions. We summarize our contributions as follows.
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• Let Φ17(x96) = 1 + x96 + · · · x96·16. We improve [CCH+23]’s transformation choice,
and propose an AVX2 implementation multiplying polynomials in Z4591[x]

/〈
Φ17(x96)

〉
with truncated Rader’s, Good–Thomas, and Bruun’s FFT. Compared to the state-
of-the-art AVX2-optimized implementation by [BBCT22], our big-by-big polynomial
multiplication is 1.99× and 2.16× faster on Haswell and Skylake, respectively.

• We formalize two friendliness measures — vectorization–friendliness and permutation–
friendliness — to rigorously argue about the architectural aspect of algebra monomor-
phisms with vector arithmetic.

• We provide the benchmark of the full Streamlined NTRU Prime with batch key
generation and our improved polynomial multiplication. Comparing to the state-of-
the-art [BBCT22], the performance cycles of batch key generation with batch size
32 are reduced by 12% on Haswell and 8% on Skylake. For the encapsulation, the
performance cycles are reduced by 7% on Haswell and 10% on Skylake. As for the
decapsulation, the performance cycles are reduced by 10% on Haswell and 13% on
Skylake.

Code. Our source code can be found at https://github.com/vincentvbh/NTRU_Prime_
polymul_AVX2 under CC0 license.

Structure of this paper. This paper is structured as follows: Section 2 describes
modular arithmetic, Section 3 describes various algebraic techniques, Section 4 formalizes
the need of vectorization, and Section 5 describes our choice of transformation and
compares the design choice to existing vectorized polynomial multiplications for NTRU
Prime. Section 6 shows the performance of our polynomial multiplication, and Section 7
drafts several possible future works, including the deployment of FFT-based constant-time
GCD [BY19] and applications to other NTRU Prime parameter sets.

2 Modular Multiplication and Reduction

2.1 Definitions and Notations
Let q be a positive integer. We call two integers a, b equivalent modulo q if their difference
is a multiple of q, and denote with a ≡ b (mod q). For the set Z of integers, we can
partition Z into q sets such that integers in the same partition are equivalent modulo q.
The set formed by collecting these q sets is denoted by Zq. In each partition P , we call
integers in P representatives of P . A common way for enumerating the members of Zq is
to select one representative from each partition. If we define Zq := [0, q) ∩ Z, we call the
corresponding arithmetic unsigned, and define mod+q : Z → Zq as the function satisfying
∀z ∈ Z, z ≡ z mod +q (mod q). On the other hand, if we define Zq :=

[
− q

2 , q
2
)

∩Z, we call
the corresponding arithmetic signed, and define mod ±q : Z → Zq as the function satisfying
∀z ∈ Z, z ≡ z mod ±q (mod q). Additionally, we define floor function ⌊⌋ : R → Z as the
function mapping a real number r to the largest integer lower-bounding r, and rounding
function ⌊⌉ : R → Z as r 7→ ⌊r + 0.5⌋.

2.2 AVX2 Implementations
In AVX2, each vector register holds 256-bit of data. Since we are only dealing with 16-bit
coefficients, each vector register holds 16 coefficients. We recall the vectorized Montgomery
multiplication [Mon85] and Barrett reduction [Bar86] from [Sei18]. vpmullw multiplies
corresponding signed 16-bit values and places the lower 16-bit values of the products to

https://github.com/vincentvbh/NTRU_Prime_polymul_AVX2
https://github.com/vincentvbh/NTRU_Prime_polymul_AVX2
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the destination register. vpmulhw places the upper 16-bit values to the destination instead.
vpmulhrsw effectively computes

⌊
ab
215

⌉
from the signed 16-bit values a and b.

For signed 16-bit values a and b, Montgomery multiplication [Mon85, Sei18] computes
a representative of ab2−16 mod ±q with⌊

ab

216

⌋
−

⌊(
abq′ mod ±216) q

216

⌋
≡ ab2−16 (mod q)

where q′ = q−1 mod ±216. Algorithm 1 is an illustration. If b is known in prior, we replace
(b, bq′ mod ±216) with

(
b216 mod ±q,

(
b216 mod ±q

)
q′ mod ±216) to save one multiplica-

tion and mitigate the scaling by 2−16. Algorithm 2 is an illustration.
Barrett reduction [Bar86, Sei18] reduces a signed 16-bit value a by computing

a −

a
⌊

215

q

⌉
215

 q ≡ a (mod q).

Algorithm 3 is an illustration. In the case of q = 4591, one can show (by brute-force
testing) that for a ∈ [−32768, 32767], the results lies in [−2881, 2881].

Algorithm 1 Montgomery multiplication [Sei18].
Inputs: a = a, b = b.
Constants: q = 4591, q′ = q−1 mod ±216 = 15631.
Output: c =

⌊
ab
216

⌋
−
⌊

(abq′ mod ±216)q

216

⌋
≡ ab2−16 mod ±q (mod q).

1: vpmullw b, q′, lo
2: vpmullw lo, a, lo
3: vpmulhw b, a, hi
4: vpmulhw lo, q, lo
5: vpsubw lo, hi, c

Algorithm 2 Montgomery multiplication with precomputation [Sei18].
Input: a = a.
Constants: q = 4591, b = b216 mod ±q, b’ =

(
b216 mod ±q

)
q−1 mod ±216.

Output: c =
⌊

a(b216 mod ±q)
216

⌋
−
⌊

(a((b216 mod ±q)q−1 mod ±216))q

216

⌋
≡ ab mod ±q (mod q).

1: vpmullw b’, a, lo
2: vpmulhw b, a, hi
3: vpmulhw lo, q, lo
4: vpsubw lo, hi, c

Algorithm 3 Barrett reduction [Sei18].
Input: a = a.
Constants: q = 4591, q̄ =

⌊
215

q

⌉
= 7.

Output: a = a −
⌊

aq̄
215

⌉
q, −2881 ≤ a −

⌊
aq̄
215

⌉
q ≤ 2881.

1: vpmulhrsw a, q̄, hi
2: vpmullw hi, q, hi
3: vpsubw hi, a, a
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3 Transformations
This section reviews various algebraic techniques, including Chinese remainder theorem in
Section 3.2, truncation in Section 3.3, Cooley–Tukey FFT in Section 3.4, Good–Thomas
FFT in Section 3.5, Rader’s FFT in Section 3.6, Bruun’s FFT in Section 3.7, twisting and
composed multiplication in Section 3.8, and Karatsuba in Section 3.9.

3.1 Definitions and Notations

In this paper, we assume all readers are familiar with some basic algebraic structures,
including, monoids, groups, rings, modulues, and associative algebras. We go through an
informal introduction of them in this section.

Monoids, groups, rings. A monoid M is a set equipped with a binary associative
operator ·M admitting an identity element 1M . If ·M is commutative, we write it +M ,
denote 0M for the identity element, and call M a commutative monoid. If each elements in
M admits an inverse element, we call M a group. Let G be a group. If there is an element
g ∈ G such that G =

{
gi
}

, we call G a cyclic group. Furthermore, if the binary associative
operator is commutative, we call G an abelian group. Obviously, cyclic groups are abelian.
For an abelian group G, if we additionally find a binary associative operator ·G with 1G

satisfying the left and right distributivity over the commutative operator +G, we call
(G, ·G, 1G) a ring and G its underlying additive group. For a ring R, if ·R is commutative,
we call R a commutative ring. In this paper, all rings are commutative. For a subgroup I
of the underlying additive group of a ring R, we call I an ideal if ∀r ∈ R, ∀a ∈ I, ra ∈ I. If
I = rR := {ra|a ∈ R} for an r ∈ R, we denote I = ⟨r⟩. For an ideal I of a ring R, the set
R/I := {{r + a|a ∈ I} |r ∈ R} is a ring called quotient ring. A straightforward example
of rings is Z with the usual addition and multiplication as the binary associative operators.
For a positive integer q, the set of q-multiples qZ = {qz|z ∈ Z} is an ideal. We denote
the quotient ring Z/qZ as Zq in this paper. Notice that Zq is in fact a cyclic group of q
elements. Since cyclic groups containing the same number of elements are isomorphic in
an obvious way, Zq is also used for denoting a cyclic group of q elements.

Modules. For an abelian group M , a ring R, and a map ·R×M : R × M → M , we call
(M, ·R×M ) a left R-module if ∀r, s ∈ R, ∀a, b ∈ M , (i) r·R×M (a+M b) = r·R×M a+M r·R×M b
(distributivity over addition in M), (ii) (r+Rs)·R×M a = r·R×M a+M r·R×M b (distributivity
over addition in R), (iii) (r ·R s) ·R×M a = r ·R×M (s ·R×M a) (associativity of ·R and
·R×M ), and (iv) 1R ·R×M a = a (compatibility of the multiplicative identity 1R). For a
ring R, an immediate example of an R-module is the set Rn: for an r ∈ R and an n-tuple
(ai) ∈ Rn, we define r(ai) as (rai).

Associative algebras. For an R-module M , if we adjoin a ring structure to M by
introducing a binary associative operator with an identity compatible with 1R to the
underlying additive group M , we call M an associative R-algebra. For simplicity, we call
an associative R-algebra an R-algebra or an algebra when the context is clear. For a degree-
n polynomial g ∈ R[x], the quotient ring R[x]/⟨g⟩ is an R-algebra: (i) R[x]/⟨g⟩ = Rn as
R-modules, and (ii) R[x]/⟨g⟩ is a ring. We give more examples that are relevant to this
paper. For a group G of n elements, we define R[G] as the set of elements of the form∑

i

rigi
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for ri ∈ R and gi ∈ G. Obviously, we have R[G] = Rn as R-modules. It remains to verify
the ring structure of R[G]. We turn R[G] into a ring by defining(∑

i

aigi

)(∑
i

bigi

)
:=
∑

i

 ∑
gjgk=gi

ajbk

 gi.

Immediately, if G = Zn is a cyclic group of n elements, we have R[Zn] ∼= R[x]/⟨xn − 1⟩ as
R-algebras. In this paper, R[Zn] and R[x]/⟨xn − 1⟩ are used interchangeably. For two R-
algebras A, B, we can form an R-algebra A ⊗ B called tensor product of A and B. We refer
to [Bou89, Section 3, Chapter II] and [Jac12, Section 3.9] for definition. If we have a group
isomorphism G ∼= G0 × G1, then R[G] ∼= R[G0] ⊗ R[G1] as R-algebras and isomorphisms
defined on R[G] might be much faster in terms of computational complexity if we first move
to R[G0] ⊗ R[G1]. For example, for coprime positive integers q0, q1, the group isomorphism
Zq0q1

∼= Zq0 × Zq1 implies the algebra isomorphism R[Zq0q1 ] ∼= R[Zq0 ] ⊗ R[Zq1 ], and for
an arbitrary isomorphism defined on R[Zq0q1 ], there is a corresponding tensor product
of isomorphisms defined on R[Zq0 ] ⊗ R[Zq1 ] by tensor-hom adjunction [Jac12, Exercise 3,
Section 3.8]. Such a tensor product of isomorphisms usually admits faster computation.
We will give more details in Section 3.5.

3.2 Chinese Remainder Theorem
Let R be a ring. For elements e0, e1 ∈ R, we call them orthogonal if e0e1 = 0. An element
e ∈ R is called idempotent if e2 = e. For orthogonal idempotent elements e0 and e1 in R
satisfying e0 + e1 = 1, we have the ring isomorphism R ∼= R/(1 − e0)R × R/(1 − e1)R .
This easily generalizes to finitely many orthogonal idempotent elements (e0, . . . , ed−1)
with

∑
i ei = 1 realizing R ∼=

∏
i R/(1 − ei)R . Explicitly, we have the isomorphism

R →
∏

i R/(1 − ei)R mapping a to the n-tuple (a mod (1 − ei)R) with the inverse (âi) 7→∑
i âiei [Bou89]. This is the idempotent-element-based approach to the Chinese remainder

theorem for rings.
We are interested in two cases: R[x]

/〈∏
i0,...,ih−1

gi0,...,ih−1

〉
for coprime polynomials

gi0,...,ih−1
’s in R[x] and Zq0···qd−1 for coprime integers q0, . . . , qd−1. For the former, since

gi0,...,ih−1
’s are coprime, we can split in a “layer-by-layer” fashion by moving indices ij ’s

from the ideal part to the product-ring part as follows:

R[x]〈∏
i0,...,ih−1

gi0,...,ih−1

〉 ∼=
∏
i0

R[x]〈∏
i1,...,ih−1

gi0,...,ih−1

〉 ∼= · · · ∼=
∏

i0,...,ih−1

R[x]〈
gi0,...,ih−1

〉 .

If all the isomorphisms are fast in terms of computational complexity, the overall isomor-
phism R[x]

/〈∏
i0,...,ih−1

gi0,...,ih−1

〉
∼=
∏

i0,...,ih−1
R[x]

/〈
gi0,...,ih−1

〉
will be fast. For the

later case Zq0···qd−1
∼=
∏

i Zqi
, a similar complexity argument holds via tensor product. See

Section 3.5 for details.

3.3 Truncation
Let I be a finite index set. Suppose we have an isomorphism ηI : R[x]

/〈∏
i∈I gi

〉
→∏

i∈I R[x]/⟨gi⟩ for coprime ideals (gi)i∈I . Truncation [CF94, vdH04, Ber08] is a system-
atic approach for computing a product of size n < deg (

∏
iI gi) while requiring the defining

conditions of ηI .
For an index set J ⊂ I with n + 1 = deg

(∏
j∈J gj

)
, we have the isomorphism

ηJ : R[x]
/〈∏

j∈J gj

〉
→
∏

j∈J R[x]
/〈

gj

〉
for computing a size-n product. Obviously, ηJ

is defined whenever ηI is defined, and any algorithm implementing ηI can be converted into
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an algorithm implementing ηJ . In the simplest case
∏

i∈I gi = x2k − 1, the computational
complexity of ηJ is roughly n

2k of ηI .

3.4 Cooley–Tukey FFT

Let n =
∏

j nj , and ij run over 0, . . . , nj − 1 for each j. The Cooley–Tukey FFT [CT65]
computes with the following isomorphisms:

R[x]〈∏
i0,...,ih−1

gi0,...,ih−1

〉 ∼=
∏
i0

R[x]〈∏
i1,...,ih−1

gi0,...,ih−1

〉 ∼= · · · ∼=
∏

i0,...,ih−1

R[x]〈
gi0,...,ih−1

〉

by choosing gi0,...,ih−1
= x−ζω

∑
l

il

∏
j<l

nj

n where ωn is a principal n-th root of unity2. The
Cooley–Tukey FFT is invertible if ζ and n are invertible in R. Since

∏
i0,...,ih−1

gi0,...,ih−1
=

xn −ζn, we can multiply polynomials in R[x]/⟨xn − ζn⟩ via
∏

i0,...,ih−1
R[x]

/〈
gi0,...,ih−1

〉
.

See Figure 1a for the radix-2 cyclic case R[x]
/〈

x2 − 1
〉

and Figure 1b for the radix-3
cyclic case R[x]

/〈
x3 − 1

〉
.

a0 + a1

a0 − a1a1

a0

(a) Radix-2 CT butterfly for R[x]
/〈

x2 − 1
〉

.

a0 + a1 + a2

a0 + ω3a1 + ω2
3a2

a0 + ω2
3a1 + ω3a2a2

a1

a0

(b) Radix-3 CT butterfly for R[x]
/〈

x3 − 1
〉

.

Figure 1: Radix-2 and Radix-3 Cooley–Tukey butterflies (CT butterflies).

3.5 Good–Thomas FFT

Let n =
∏

j qj for coprime integers q0, . . . , qd−1. There are two ways for stating Good–
Thomas FFT [Goo58]: (i) as an isomorphism from a group algebra to a tensor product
of associative algebras; and (ii) as a correspondence between one-dimensional FFT and
multi-dimensional FFT. (ii) was stated in [Goo58], and (i) is a more general statement in
the modern algebra language and is apparent from [Goo58].

Recall that we have a group isomorphism Zn
∼=
∏

j Zqj . This implies an isomorphism
between the group algebras R [Zn] and

⊗
j R
[
Zqj

]
. Suppose n is invertible in R, and there

is a principal n-th root of unity ωn ∈ R realizing the isomorphism η : R[x]/⟨xn − 1⟩ ∼=∏
i R[x]

/〈
x − ωi

n

〉
. By definition, we also have a principal nj-th root of unity ωnj for

each j. Let ej be the unique tuple of orthogonal idempotents implementing ∀a ∈ Zn, a ≡∑
j(a mod qj)ej (mod n). We choose ωnj

:= ω
ej
n so

∏
j ωnj

= ω

∑
j

ej

n = ωn. We define ηj

as the isomorphism R[xj ]
/〈

x
nj

j − 1
〉 ∼=

∏
ij

R[xj ]
/〈

xj − ω
ij
nj

〉
for each j, and relate the

tensor product
⊗

j ηj to η via the equivalence x ∼
∏

j xj . Figure 2 is an illustration. This
is how Good–Thomas FFT converts the computation η into

⊗
j ηj .

2∀j = 1, . . . , n − 1,
∑n−1

i=0 ωij
n = 0.
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R[x]
⟨xn−1⟩

⊗
j

R[xj ]
⟨x

nj
j

−1⟩

∏
i

R[x]
⟨x−ωi

n⟩

⊗
j

∏
ij

R[xj ]〈
xj−ω

ij
nj

〉

x 7→
∏

j xj

η
⊗

j ηj

∏
j ωnj

7→ ωn

Figure 2: Commutative diagram of Good–Thomas FFT.

We give a small example for n = 6. By defining ω3 := ω4
6 and ω2 := ω3

6 , we rewrite the
transformation matrix implementing R[x]

/〈
x6 − 1

〉 ∼=
∏

i R[x]
/〈

x − ωi
6
〉

as:

P(14)


1 1 1 1 1 1
1 ω6 ω2

6 ω3
6 ω4

6 ω5
6

1 ω2
6 ω4

6 1 ω2
6 ω4

6
1 ω3

6 1 ω3
6 1 ω3

6
1 ω4

6 ω2
6 1 ω4

6 ω2
6

1 ω5
6 ω4

6 ω3
6 ω2

6 ω6

P(14)

=


1 1 1 1 1 1
1 ω4

6 ω2
6 1 ω4

6 ω2
6

1 ω2
6 ω4

6 1 ω2
6 ω4

6
1 1 1 ω3

6 ω3
6 ω3

6
1 ω4

6 ω2
6 ω3

6 ω6 ω5
6

1 ω2
6 ω4

6 ω3
6 ω5

6 ω6

 =
(

1 1
1 ω2

)
⊗

1 1 1
1 ω3 ω2

3
1 ω2

3 ω3



for P(14) the permutation matrix swapping the 1st and 4th elements.

3.6 Rader’s FFT
Let p be an odd prime, and I = {0, . . . , p − 1} , I∗ = {1, . . . , p − 1} be index sets. Rader’s
FFT [Rad68] computes the map R[x]/⟨xp − 1⟩ ∼=

∏
i R[x]

/〈
x − ωi

p

〉
with a size-λ(p)

cyclic convolution where λ is the Carmichael’s lambda function. See [Win78] for the
odd-prime-power case.

Since p is a prime, there is a g ∈ I with I∗ =
{

1, g, . . . , gλ(p)−1}. We define logg : I∗ →
Zλ(p) as the discrete logarithm. This allows us to introduce the following reindexing for
(âj)j∈I =

(∑
i∈I aiω

ij
p

)
j∈I : (i) i ∈ I∗ 7→ − logg i ∈ Zλ(n) and (ii) j ∈ I∗ 7→ logg j ∈ Zλ(n).

For j ∈ I∗, this gives us

âglogg j − a0 =
∑
i∈I∗

aiω
ij
p =

∑
− logg i∈Zλ(p)

aglogg iωglogg i+logg j

p .

Therefore, we find that
(
âgk − a0

)
k∈Zλ(p)

is the convolution of
(
ag−k

)
k∈Zλ(p)

and
(

ωgk

p

)
k∈Zλ(p)

.
We give an example for p = 5 and g = 2:

(â2k − a0)k∈Z4
=


a1ω1

5 + a2ω2
5 + a3ω3

5 + a4ω4
5

a1ω2
5 + a2ω4

5 + a3ω1
5 + a4ω3

5
a1ω4

5 + a2ω3
5 + a3ω2

5 + a4ω1
5

a1ω3
5 + a2ω1

5 + a3ω4
5 + a4ω2

5

 =


a20ω20

5 + a23ω23

5 + a22ω22

5 + a21ω21

5
a20ω21

5 + a23ω20

5 + a22ω23

5 + a21ω22

5
a20ω22

5 + a23ω21

5 + a22ω20

5 + a21ω23

5
a20ω23

5 + a23ω22

5 + a22ω21

5 + a21ω20

5

 .

Obviously, for the inversion, we apply Rader’s FFT with inverted roots.
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3.6.1 Truncated Rader’s FFT and its Inverse

Let Φp be the p-th cyclotomic polynomial. Since p is a prime, we have Φp(x) =∑
i=0,...,p−1 xi and Φp(x)|(xp − 1). A natural question is how to truncate Rader’s FFT

defined over xp − 1 to Φp(x). We first find the following isomorphism

η :


R[x]/⟨Φp(x)⟩ ∼=

∏
j∈I∗

R[x]
/〈

x − ωj
p

〉
∑
i∈I∗

ai−1xi−1 7→

(
âj =

∑
i∈I∗

ai−1ω(i−1)j
p

)
j∈I∗

by truncation. With the same reindexing i 7→ − logg i and j 7→ logg j, we have

âglogg j =
∑
i∈I∗

ai−1ω(i−1)j
p = ω−j

p

∑
i∈I∗

ai−1ωij
p =

ω−j
p

∑
− logg i∈Zλ(p)

aglogg i−1ωglogg i+logg j

p

and find that
(
ωk

p âgk

)
k∈Zλ(p)

is the convolution of
(
ag−k−1

)
k∈Zλ(p)

and
(

ωgk

p

)
k∈Zλ(p)

. Below
is an illustration for p = 5 and g = 2:

(
ωk

p â2k

)
k∈Z4

=


a0ω1

5 + a1ω2
5 + a2ω3

5 + a3ω4
5

a0ω2
5 + a1ω4

5 + a2ω1
5 + a3ω3

5
a0ω4

5 + a1ω3
5 + a2ω2

5 + a3ω1
5

a0ω3
5 + a1ω1

5 + a2ω4
5 + a3ω2

5

 =


a0ω20

5 + a1ω21

5 + a2ω23

5 + a3ω22

5
a0ω21

5 + a1ω22

5 + a2ω20

5 + a3ω23

5
a0ω22

5 + a1ω23

5 + a2ω21

5 + a3ω20

5
a0ω23

5 + a1ω20

5 + a2ω22

5 + a3ω21

5



=


a20−1ω20

5 + a23−1ω23

5 + a22−1ω22

5 + a21−1ω21

5
a20−1ω21

5 + a23−1ω20

5 + a22−1ω23

5 + a21−1ω22

5
a20−1ω22

5 + a23−1ω21

5 + a22−1ω20

5 + a21−1ω23

5
a20−1ω23

5 + a23−1ω22

5 + a22−1ω21

5 + a21−1ω20

5

 .

For the inverse η−1, [Ber22, Section 4.8.2] showed how to implement it with a size-
λ(p) cyclic convolution. Since convoluting with

(
ωgk

p

)
k∈Zλ(p)

is exactly the same as

multiplying by
(

ωgk

p

)
k∈Zλ(p)

in the group algebra R[Zλ(p)] by definition, it suffices to identify

the multiplicative inverse of
(

ωgk

p

)
k∈Zλ(p)

in R[Zλ(p)]. [Ber22] found
(

ωgk

p

)−1

k∈Zλ(p)
=

1
p

(
ω−g−k

p − 1
)

k∈Zλ(p)
. We illustrate below for p = 5 and g = 2:

ω20

5 ω23

5 ω22

5 ω21

5
ω21

5 ω20

5 ω23

5 ω22

5
ω22

5 ω21

5 ω20

5 ω23

5
ω23

5 ω22

5 ω21

5 ω20

5




ω−2−0

5 − 1
ω−2−1

5 − 1
ω−2−2

5 − 1
ω−2−3

5 − 1



=


ω1

5 ω3
5 ω4

5 ω2
5

ω2
5 ω1

5 ω3
5 ω4

5
ω4

5 ω2
5 ω1

5 ω3
5

ω3
5 ω4

5 ω2
5 ω1

5




ω−1
5 − 1

ω−3
5 − 1

ω−4
5 − 1

ω−2
5 − 1

 =


5
0
0
0

 .

In summary, we can implement η−1 by mapping (âgk )k∈Zλ(p) to
(
ωk

p âgk

)
k∈Zλ(p)

and

convoluting with
(

ω−g−k

p − 1
)

k∈Zλ(p)
. Scaling by 1

p is postponed to the end. See [Ber22,

Sections 4.12.3 and 4.12.4] for the generalization to arbitrary p.
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3.7 Bruun’s FFT
Let q be a prime with q ≡ 3 mod 4 and q + 1 = r2w for an odd r. Bruun’s FFT allows us
to split Zq[x]

/〈
x2w + 1

〉
as follows:

Zq[x]
⟨x2w + 1⟩

∼=
∏

i

Zq[x]
⟨x2 ± αix − 1⟩

.

See [BGM93] for a proof. The benefit is that the number of coefficients is the same after the
transformation. Earlier work [BBCT22] with Nussbaumer for the same scenario resulted
in 2× many coefficients after transforming. For q = 4591, we can split Zq[x]

/〈
x16 + 1

〉
into size-2 polynomial rings with moduli of the form x2 ± αix − 1 since 4591 + 1 = 287 · 24.
In this paper, we are interested in the case Zq[x]

/〈
x16 + 1

〉 ∼=
∏

Zq[x]
/〈

x8 ±
√

2x4 + 1
〉

.
For simplicity, we illustrate with the case Zq[x]

/〈
x4 + 1

〉 ∼=
∏

Zq[x]
/〈

x2 ±
√

2x + 1
〉

. We
compute (a0 − a2, a1 + a3,

√
2a2,

√
2a3), swap the last two values implicitly, and apply

add-sub pairs [CCH+23]. See Figure 3 for illustration.

a0

a1

a2

a3

â0

â1

â2

â3

Figure 3: Bruun’s butterfly computing â0 + â1x = a(x) mod
(
x2 +

√
2x + 1

)
, â2 + â3x =

a(x) mod
(
x2 −

√
2x + 1

)
for a(x) =

∑
i=0,...,3 aix

i [CCH+23].

Bruun’s FFT was originally proposed with C as the coefficient ring. See [Bru78] for
the power-of-two case and [Mur96] for the even case. The finite field case is closely related
to [BGM93, Mey96, TW13, BMGVdO15, WYF18, WY21].

3.8 Twisting
Let R be a ring, ζ ∈ R be an invertible element, n be an integer, and ξ ∈ R be an element.
We have the isomorphism R[x]/⟨xn − ξζn⟩ ∼= R[y]/⟨yn − ξ⟩ by sending x to ζy. This is
called twisting. In the literature, twising is commonly specialized to ξ = 1. In this paper,
we need the cases ξ = ±1.

3.9 Karatsuba
Karatsuba [KO62] computes the product (a0 + a1x)(b0 + b1x) by evaluating at the point
set {0, 1, ∞}. We compute (a0 + a1x)(b0 + b1x) = a0b0 + (a0b1 + a1b0)x + a1b1x2 with
three multiplications a0b0, a1b1, and (a0 + a1)(b0 + b1) by observing a0b1 + a1b0 =
(a0 + a1)(b0 + b1) − a0b0 − a1b1.

4 The Need of Vectorization
Let v be the number of elements contained in a vector register. In this section, we formalize
vectorization and permutation–friendliness of an algebra monomorphism. Since algebra
monomorphisms can be characterized as matrix multiplications, our formulation is based
on manipulations of matrices with standard bases unless specified otherwise. Recent
work SPIRAL [FLP+18] had attempted to formalize the vectorization of FFTs for code
generation. However, it seems to fall short to cover the transformations considered in this
paper. We believe this section will give more insights on extending SPIRAL.
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4.1 Vectorization–Friendliness
We first identify a set SD of matrices that can be implemented efficiently with vector
instructions. Although SD is definitely platform-dependent, we fix SD to be a union of
certain matrices and explain why they are usually suitable for vectorization. We define
SD as a set of all possible block diagonal matrices with each block a v′ × v′ matrix of the
following form for a v-multiple v′:

1. Diagonal matrix: a matrix with non-diagonal entries all zeros.

2. Cyclic/negacyclic shift matrix: a matrix implementing (ai)0≤i<v′ 7→
(
a(i+c) mod v′

)
0≤i<v′

(cyclic) or (ai)0≤i<v′ 7→
(

(−1)Ji+c≥v′Ka(i+c) mod v′

)
0≤i<v′

(negacyclic) for a non-
negative integer c.

Diagonal matrices are suitable for vectorization since we can load v coefficients, multiply
them by v constants, and store them back to memory with vector instructions. For
cyclic/negacyclic shift matrices, we discuss how to implement them for the following vector
instruction sets:

• Armv7/8-A Neon: For cyclic shifts, we use the instruction ext extracting consecutive
elements from a pair of vector registers. We negate one of the registers before
applying ext for negacyclic shifts [CCH+23].

• AVX2: For cyclic shifts, we perform unaligned loads, shuffle the last vector register,
and store the vectors to memory. Again, the last vector register is negated for
negacyclic shifts [BBCT22].

Let f be an algebra monomorphism, and Mf be the matrix form of f . We call f
vectorization–friendly if

Mf =
∏

i

(Mfi
⊗ Iv) Sfi

for some Mfi
and Sfi

∈ S. We first observe that vector instruction sets usually provide
instructions loading/storing consecutive v coefficients from/to memory. The tensor product
Mfi

⊗ Iv ensures that each v-chunk is regarded as a whole while applying Mfi
⊗ Iv.

Additionally, f is vectorization–friendly if and only if f−1 is vectorization–friendly.

4.2 Permutation–Friendliness
We introduce the notion “permutation–friendliness”. Conceptually, permutation–friendliness
stands for vectorization–friendliness after applying a special type of permutation – inter-
leaving. Again, let v′ be a multiple of v. We define the transposition matrix Tv′2 as the
v′2 × v′2 matrix permuting the elements as if transposing a v′ × v′ matrix. We illustrate
the case v′ = 2 with Algorithm 4 for Neon and Algorithm 5 for AVX2. Now we are ready
to specify the set SI of interleaving matrices. We call a matrix M interleaving matrix
with step v′ if it takes the form

M = (π′ ⊗ Iv′) (Im ⊗ Tv′2) (π ⊗ Iv′)

for a positive integer m and permutation matrices π, π′ permuting mv′ elements. The set
SI consists of interleaving matrices of all possible steps and is closed under inversion.

We now define permutation–friendliness formally as follows. We call an algebra
monomorphism g permutation–friendly if we can factor its matrix form Mg as

Mg = M ′
SIMf MSI
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for a vectorization–friendly Mf and MSI , M ′
SI ∈ SI an interleaving matrix. Immediately,

we know that g is permutation–friendly if and only if g−1 is permutation–friendly.

Algorithm 4 trn{1, 2} permuting double words in Armv8.0-A Neon registers.
Inputs: (v0, v1) = (a0 || a1, b0 || b1)
Outputs: (v2, v3) = (a0 || b0, a1 || b1)

1: trn1 v2.2D, v0.2D, v1.2D
2: trn2 v3.2D, v0.2D, v1.2D

Algorithm 5 vperm2i128 permuting double words in AVX2 %ymm registers.
Inputs: (%ymm0, %ymm1) = (a0 || a1, b0 || b1)
Outputs: (%ymm2, %ymm3) = (a0 || b0, a1 || b1)

1: vperm2i128 %ymm2, %ymm0, %ymm1, 0x20
2: vperm2i128 %ymm3, %ymm0, %ymm1, 0x31

Generally, while computing with vector instructions, we choose algebra monomorphisms
f and g such that f is vectorization–friendly and g is permutation–friendly. Their composi-
tion g ◦ f then admits a suitable mapping to our target vector instruction set. Concretely,
we vectorize f , transpose the coefficients, and vectorize the vectorization–friendly part of
g.

5 Implementation

This section goes through the implementation with truncated Rader’s FFT, Good–Thomas
FFT, and Bruun’s FFT. For simplicity, we assume R = F4591 and multiply polynomials in

R[x]
⟨Φ17(x96)⟩ .

5.1 Large-Dimensional Transformations

We first split R[x]
/〈

Φ17(x96)
〉

into
∏

i=1,...,16 R[x]
/〈

x96 − ωi
17
〉

with truncated size-17
Rader’s FFT. We then twist all R[x]

/〈
x96 − ωi

17
〉

into R[x]
/〈

x96 − 1
〉

by observing ω17 =
ω1344

17 =
(
ω14

17
)96. See Algorithms 6 and 7 for illustrations. In practice, twisting is merged

with the scaling by ω−i
17 at the end of truncated Rader’s FFT. For each R[x]

/〈
x96 − 1

〉
,

we split it into
∏

j R[x]
/〈

x16 − ωj
6

〉
with Good–Thomas FFT. This amounts to applying

the tensor product of size-2 and size-3 cyclic FFT. Algorithm 8 is an illustration. Since
everything so far is defined over chunks of 16-tuples, all of the above are vectorization-
friendly.
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Algorithm 6 Big picture of R[x]
/〈

Φ17(x96)
〉 ∼=

(
R[x]

/〈
x96 − 1

〉)16.
Input(s): poly[0-15][0-95] = a(x) =

∑
i=0,...,1535 aix

i.
Output(s):

(
a
(

ω
14(i0+1)
17 y

)
mod

(
y96 − 1

))
i0=0,...,15

.

1: for i1 ∈ {0, . . . , 95} do
2: poly_NTT[0-15][i1] = trunc_Rader(poly[0-15][i1]).
3: end for
4: ▷ ∀i0 ∈ {0, . . . , 15} , poly_NTT[i0][0-95] = ωi0+1

17 a(x) mod
(
x96 − ωi0+1

17
)
.

5: for i0 ∈ {0, . . . , 15} do
6: poly_NTT[i0][0-95] = twist96

(
poly_NTT[i0][0-95], ω

14(i0+1)
17

)
.

7: end for
8: ▷ ∀i0 ∈ {0, . . . , 15} , poly_NTT[i0][0-95] = a

(
ω

14(i0+1)
17 y

)
mod

(
y96 − 1

)
.

Algorithm 7 Implementation of trunc_Rader.
Input(s): a(x) =

∑
i=0,...,15 aix

i.
Output(s): (ci)i=0,...,15 =

(
ωi+1

17 a(ωi+1
17 )

)
i=0,...,15.

1: for i = 0, . . . , 15 do
2: src[(16 − log3(i + 1)) mod +16] = ai.
3: twiddle[log3(i + 1)] = ωi+1

17 .
4: end for
5: buff[0-15] = src[0-15] · twiddle[0-15] mod

(
x16 − 1

)
.

6: for i = 0, . . . , 15 do
7: ci = buff[log3(i + 1)].
8: end for
9: ▷ (ci)i=0,...,15 =

(
ωi+1

17 a(ωi+1
17 )

)
i=0,...,15.

Algorithm 8 NTT R[x]/⟨x6−1⟩ = π ◦
(
NTT R[y]/⟨y2−1⟩ ⊗ NTT R[z]/⟨z3−1⟩

)
◦ π via Good–

Thomas FFT where π = P(14) is the permutation matrix swapping the 1st and 4th
element.
Input(s): a(x) =

∑
i=0,...,5 aix

i.
Output(s): (a0, a4, a2, a3, a1, a5) =

(
a(ωi

6)
)

i=0,...,5.
1: (a0, . . . , a5) = (a0, a4, a2, a3, a1, a5).
2: (a0, a1, a2) = NTT R[z]/⟨z3−1⟩ (a0, a1, a2).
3: (a3, a4, a5) = NTT R[z]/⟨z3−1⟩ (a3, a4, a5).
4: (a0, a3) = NTT R[y]/⟨y2−1⟩ (a0, a3).
5: (a1, a4) = NTT R[y]/⟨y2−1⟩ (a1, a4).
6: (a2, a5) = NTT R[y]/⟨y2−1⟩ (a2, a5).
7: ▷ (a0, a4, a2, a3, a1, a5) =

(
a(ωi

6)
)

i=0,...,5 for ω6 = ω2ω3.

The remaining problems are multiplying in R[x]
/〈

x16 − ωj
6

〉
– we have 16 instances

for each of R[x]
/〈

x16 − ωj
6

〉
. Obviously, this implies permutation-friendliness – we simply

partition 6 · 16 size-16 polynomial multiplications into 6 partitions where each partition
contains 16 instances, and apply transposition matrices to all the partitions. By definition,
we have ωj

6 = ωj mod +2
2 ωj mod +3

3 . Let’s rewrite (j mod +2, j mod +3) as (j0, j1) for all j.
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After interleaving, we twist as follows:

R[x]〈
x16 − ωj

6

〉 = R[x]〈
x16 − ωj0

2 ωj1
3

〉 = R[x]〈
x16 − ωj0

2

(
ωj1

3

)16
〉 ∼=

R[x]〈
x16 − ωj0

2

〉 .

In practice, we merge the twisting R[x]
/〈

x16 − ωj
6

〉
∼= R[x]

/〈
x16 − ωj0

2

〉
and interleav-

ing.

5.2 Small-Dimensional Polynomial Multiplications
The remaining problems are multiplying in R[x]

/〈
x16 ± 1

〉
.

R[x]
/〈

x16 − 1
〉

. For R[x]
/〈

x16 − 1
〉

, if one of multiplicands is known in prior (as in the
case of truncated Rader’s FFT), we split R[x]

/〈
x16 − 1

〉
with Cooley–Tukey butterflies

whenever the ring takes the form R[x]
/〈

x2k − 1
〉

for a k > 0:

R[x]
⟨x16 − 1⟩

∼=
R[x]

⟨x − 1⟩
× R[x]

⟨x + 1⟩
× R[x]

⟨x2 + 1⟩
× R[x]

⟨x4 + 1⟩
× R[x]

⟨x8 + 1⟩
.

For a size-16 polynomial c(x) with coefficients known in prior, we precompute its image with
proper scaling. In other words, we compute 8c(x = 1), 8c(x = −1), 4c(x2 = −1), 2c(x4 =
−1), c(x8 = −1) where c(x = 1) is obtained by replacing x with 1 and similarly for
c(x = −1), c(x2 = −1), c(x4 = −1), c(x8 = −1). The scaling of the coefficients is then
the same while inverting Cooley–Tukey butterflies. On the other hand, if both of the
multiplicands are unknown, we split R[x]

/〈
x16 − 1

〉
into

R[x]
⟨x16 − 1⟩

∼=
R[x]

⟨x4 − 1⟩
× R[x]

⟨x4 + 1⟩
× R[x]

⟨x8 − 1⟩

and perform additional additions doubling half of the coefficients in order to have consistent
scaling for all the coefficients.

R[x]
/〈

x16 + 1
〉

. For R[x]
/〈

x16 + 1
〉

, we split with Bruun’s butterfly as follows

R[x]
⟨x16 + 1⟩

∼=
R[x]〈

x8 +
√

2x4 + 1
〉 × R[x]〈

x8 −
√

2x4 + 1
〉 .

Finally, we perform Karatsuba for size-8 polynomial multiplications and schoolbook
otherwise. The criteria for choosing between Cooley–Tukey butterflies, Bruun’s butterflies,
Karatsuba, and schoolbook is based on our experiments.

5.3 Comparisons to Prior Vectorized Implementation
We briefly compare our vectorized implementation to prior AVX2 work [BBCT22] and
Neon work [CCH+23].

5.3.1 Comparison to [BBCT22]

[BBCT22] reduced the computing task to

R[x]
⟨(x1024 + 1)(x512 − 1)⟩ .
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They first introduced x32 − y and rewrite R[x]
/〈

(x1024 + 1)(x512 − 1)
〉

as

R[x]
⟨x32−y⟩ [y]

⟨(y32 + 1)(y16 − 1)⟩ .

They then applied Schönhage [Sch77] by replacing x32 − y with x64 + 13. Since x64 ∼ −1
in R[x]

/〈
x64 + 1

〉
, x is a principal 128-th root of unity for radix-2 Cooley–Tukey FFT in

y. We argue that Schönhage is vectorzation-friendly: the replacement of x32 − y by x64 + 1
can be described as

(
1
0

)
⊗ I32 and multiplication by powers of x over R[x]

/〈
x64 + 1

〉
are

negacyclic shifts. Therefore, the overall transformation can be written as:(∏
(AddSubi ⊗ I16)BlockNegShifti

)(
I48 ⊗

(
1
0

)
⊗ I32

)
for BlockNegShifti ∈ SD and AddSubi’s implementing add-sub pairs of various sizes.

For R[x]
/〈

x64 + 1
〉

, they applied Nussbaumer [Nus80] as follows:

R[x]
⟨x64 + 1⟩

∼=
R[z]

⟨z8+1⟩ [x]
⟨x8 − z⟩

↪→
R[z]

⟨z8+1⟩ [x]
⟨x16 − 1⟩

.

Again, z is a principal 16-th root of unity for radix-2 Cooley–Tukey FFT in x. We claim
that Nussbaumer is permutation friendly with an informal justification: Observe that
Nussbaumer can be seen as a composition of Schönhage and interleaving, it remains to
specify clearly the interleaving step. We leave the formal justification to readers.

The remaining problem is to compute 48 · 16 = 768 polynomial multiplications of the
form R[z]

/〈
z8 + 1

〉
. [BBCT22] applied recursive Karatsuba to R[z]

/〈
z8 + 1

〉
.

On the other hand, after the FFT computation, our transformation results in only 48
size-4 cyclic convolution, 48 size-4 negacyclic convolution, 48 size-8 negacyclic convolution,
48 polynomial multiplications in R[x]

/〈
x8 +

√
2x4 + 1

〉
, and 48 polynomial multiplications

in R[x]
/〈

x8 −
√

2x4 + 1
〉

. A rough measure is to count the number of coefficients involved.
768 · 8 = 6144 coefficients are involved in [BBCT22]’s implementation while only 48 · 4 +
48 · 4 + 48 · 8 + 48 · 8 + 48 · 8 = 1536, a quater of 6144, are involved in our implementation.
This explains the significant overal performance improvement.

5.3.2 Comparison to [CCH+23]

In this section, we compare our transformation to the Good–Rader–Bruun approach used
in [CCH+23]. We will explain the benefit of truncated Rader’s FFT over Rader’s FFT in
terms of permutation-friendliness.

Although we rely on several techniques used in [CCH+23], our implementation is
actually quite different from them in terms of transformation choices. They computed
in R[x]

/〈
x1632 − 1

〉
. [CCH+23] first permuted with the equivalences x16 ∼ uvw, u17 ∼

v3 ∼ w2 ∼ 1. This gives them R̄[u]
/〈

u17 − 1
〉

⊗ R̄[v]
/〈

v3 − 1
〉

⊗ R̄[w]
/〈

w2 − 1
〉

where
R̄ = R[x]

/〈
x16 − uvw

〉
. They then applied size-17 Rader’s FFT without truncation

to R̄[u]
/〈

u17 − 1
〉

, size-3 FFT to R̄[v]
/〈

v3 − 1
〉

, and size-2 FFT to R̄[w]
/〈

w2 − 1
〉

.
Obviously, since all transformations operate over R̄, they are vectorization-friendly.

Substituting uvw with various ωi
102, [CCH+23] splitted R[x]

/〈
x16 − ωi

102
〉

with Cooley–
Tukey and Bruun’s FFTs without twisting. This step is not permutation-friendly: Observe
that permutation-friendliness is defined only for monomorphisms with rank over R a

3This map is a monomorphism in the sense that products in R[x]
/〈

x32 − y
〉

can be uniquely identified
while computing in R[x]

/〈
x64 + 1

〉
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multiple of v2 = 162 = 256, we can’t find a suitable interleaving matrix for permutation-
friendliness. They applied Cooley–Tukey to 48 instances of R[x]

/〈
x16 − ωi

102
〉

, i ≡ 0
(mod 2) and Bruun to 48 instances of R[x]

/〈
x16 − ωi

102
〉

, i ≡ 1 (mod 2). For the remaining
6 instances, they interleaved with don’t-cares and applied Karatsuba.

In our implementation, we compute in R[x]
/〈

Φ17(x96)
〉

by first applying truncated
size-17 Rader’s FFT which results in 16

17 number of subproblems of size-17 Rader’s FFT.
Since 16|96, the transformation can be written as a tensor product of a matrix and I16.
After twisting and Good–Thomas FFT, we have 48 instances of R[x]

/〈
x16 − 1

〉
and 48

instances of R[x]
/〈

x16 + 1
〉

with no leftovers – hence permutation-friendly.

For the size-16 polynomial multiplications of the form R[x]
/〈

x16 − ζ
〉

, [CCH+23]
applied the Cooley–Tukey and Bruun’s FFTs defined on R[x]

/〈
x16 − ζ

〉
. We apply

twisting instead as implemented in common AVX2-optimized implementations. The
benefit of twisting is twofold: (i) twisting effectively reduces the range of the coefficients
(this is widely known, but somehow [CCH+23] didn’t implement it), and (ii) Bruun’s FFT
is more favorable when the modulus takes the form x8 ±

√
2x4 + 1 in terms of arithmetic

and register scheduling since
√

22 − 1 = 1 and the dependency chain is shorter than
x8 ± αx4 + β in general.

6 Results

6.1 Benchmarking Environment

We benchmark on Intel(R) Core(TM) i7-4770K (Haswell) processor with frequency 3.5
GHz, and Intel(R) Xeon(R) CPU E3-1275 v5 (Skylake) with frequency 3.6 GHz. For
benchmarking polynomial multiplications, we compile with GCC 10.4.0 on Haswell and
GCC 11.3.0 on Skylake using the optimization flag -O3. For the batch key generation, we
reuse the libsntrup761-20210608 package from [BBCT22]. For the encapsulation and
decapsulation, we benchmark with the benchmarking framework SUPERCOP, version
supercop-20230530. TurboBoost and hyperthreading are disabled throughout the entire
benchmarking.

6.2 Performance of Polynomial Multiplication

We provide the performance cycles of functions mulcore and polymul in Table 1. mulcore
computes the product in Z4591[x] with potential scaling by a predefined constant, and
polymul additionally reduces the product modulo x761 − x − 1 and mitigates the potential
scaling. Compared to [BBCT22], our mulcore is 1.90× and 2.05× faster on Haswell and
Skylake. For polymul, our implementation is 1.99× and 2.16× faster on Haswell and
Skylake. In Appendix A, we provide the detailed performance numbers. Additionally,
Table 2 summarizes the Haswell and Skylake cycles of existing x86 implementations.
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Table 1: Performance cycles of big-by-big polynomial multiplications for
ntrulprs761/sntrup761 on Haswell and Skylake with AVX2.

[BBCT22]∗ This work
Haswell

mulcore (Z4591[x]) 23 460 12 336
polymul

(
Z4591[x]

⟨x761−x−1⟩

)
25 356 12 760

Skylake
mulcore (Z4591[x]) 20 070 9 778
polymul

(
Z4591[x]

⟨x761−x−1⟩

)
21 364 9 876

∗ Our own benchmarks.

Table 2: Performance cycles of existing polynomial multiplications for
ntrulpr761/sntrup761.

Haswell cycles Skylake cycles Applicability
round1∗∗∗ 29 013 26 401 Big-by-small
round2∗∗∗ 17 546 14 448 Big-by-small
avx800∗∗∗ 16 514 13 222 Big-by-small
[BBCT22]∗∗ 25 356 21 364 Big-by-big
This work 12 760 9 876 Big-by-big

∗∗ Our own benchmarks.
∗∗∗ Implementations in SUPERCOP (version supercop-20230530). See https://bench.cr.yp.to/
impl-core/multsntrup761.html for numbers on other processors.

6.3 Performance of Scheme
Finally, we compare the overall performance on Haswell and Skylake. For the batch key
generation with batch size 32, we reduce the amortized cost by 12% on Haswell and 8% on
Skylake. For encapsulation, we reduce the cost by 7% on Haswell and 10% on Skylake. For
decapsulation, we reduce the cost by 10% on Haswell and 13% on Skylake. We summarize
the performance in Table 3.

Table 3: Performance cycles of sntrup761 with batch key generation using Montgomery’s
trick. For the batch key generation, we benchmark with batch size 32.

[BBCT22]∗∗∗∗ SUPERCOP This work
Haswell

Batch key generation (amortized) 154 552 - 136 003
Encapsulation - 47 464 44 108
Decapsulation - 56 064 50 080

Skylake
Batch key generation (amortized) 129 159 - 118 939
Encapsulation - 40 653 36 486
Decapsulation - 47 387 41 070

∗∗∗∗ Our own benchmark.

https://bench.cr.yp.to/impl-core/multsntrup761.html
https://bench.cr.yp.to/impl-core/multsntrup761.html
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7 Future Works
This work shows that polynomial multiplication in a ring lacking common beliefs of
friendliness measures for implementations, truncated Rader’s, Good–Thomas, and Bruun’s
FFT are more favorable than Schönhage’s and Nussbaumer’s FFTs.

There are several future works for parameter set sntrup761. An immediate one is
to generate several multipliers of sizes 2i03i15i2 based on this work for FFT-based fast
constant-time GCD computation [BY19]. Additionally, an ambitious goal is to explore
various possible vectorized multipliers for other NTRU Prime parameter sets. We briefly
draft below for the parameter sets ntrulpr857/sntrup857, ntrulpr1013/sntrup1013,
and ntrulpr1277/sntrup1277.

In ntrulpr857/sntrup857, we want to multiply polynomials in ZZ5167[x]
/〈

x857 − x − 1
〉

.
We propose to multiply in Z5167[x]

/〈
Φ7(x288)

〉
with truncated Rader’s, Good–Thomas,

and Bruun’s FFTs. Since 5167 − 1 = 2 · 32 · 7 · 41 and 5167 + 1 = 24 · 17 · 19, we can define
principal roots ω7, ω2, ω9, and Z5167[x]

/〈
x16 + 1

〉
splits into eight trinomials. We first

compute the isomorphism

Z5167[x]
⟨Φ7(x288)⟩

∼=
∏

i=1,...,6

Z5167[x]〈
x288 − ωi

7
〉 ∼=

(
Z5167[x]

⟨x288 − 1⟩

)6

with truncated size-7 Rader’s FFT and twisting. We then apply Good–Thomas FFT
turning a size-18 cyclic DFT into a tensor product of a size-2 cyclic DFT and a size-9
cyclic DFT. The size-9 cyclic DFT is then implemented with Cooley–Tukey FFT using
radix-3 butterflies. After applying the size-18 cyclic DFT, we twist all the polynomial
rings into cyclic and negacyclic ones. Below is an illustration:

Z5167[x]
⟨x288 − 1⟩

∼=
∏
i0,i1

Z5167[x]〈
x16 − ωi0

2 ωi1
9
〉 ∼=

∏
i0

(
Z5167[x]〈

x16 − ωi0
2
〉)9

.

The remaining problems are 54 polynomial multiplications in each of Z5167[x]
/〈

x16 − 1
〉

and Z5167[x]
/〈

x16 + 1
〉

. We interleave 48 polynomials in Z5167[x]
/〈

x16 − 1
〉

and 48 poly-
nomials in Z5167[x]

/〈
x16 + 1

〉
, and apply AVX2-optimized Cooley–Tukey and Bruun’s

FFT as shown in Section 5.2. For the remaining 12 polynomial multiplications in
Z5167[x]

/〈
x16 ± 1

〉
, we interleave them with four don’t-care polynomials and apply AVX2-

optimized Karatsuba. As a side note, if the number of elements is smaller than 16, one
can possibly choose other approaches. Let’s take Neon as an example. Since each vector
register in Neon holds 128-bit of data, or equivalently, 8 elements in Z5167, we can instead
interleave 6 polynomials in Z5167[x]

/〈
x16 − 1

〉
with don’t-cares and apply Cooley–Tukey

FFT. Similar arguement applies to Z5167[x]
/〈

x16 + 1
〉

with Bruun’s FFT.
We estimate the performance of Z5167[x]

/〈
Φ7(x288)

〉
as follows. For the truncated

Rader-7 FFT, the performance is the same as a size-6 cyclic convolution. We overestimate
the size-6 cyclic convolution with two size-6 cyclic FFTs followed by twisting since one of
the operands contains only publicly known constants where precomputation is allowed.
We regard this as an overestimation since there could be faster way for the size-6 cyclic
convolution. For the follow up size-18 cyclic DFT via Good–Thomas and Cooley–Tukey
FFTs, since the performance is no worsee than a size-36 cyclic DFT and one size-36 cyclic
DFT can be implemented as two layers of size-6 cyclic FFTs followed by twisting, we again
overestimate the performance of size-18 cyclic DFT with two size-6 cyclic FFTs followed by
twisting. Based on the performance numbers in Table 5, we overestimate the performance
cycles of

Z5167[x]
⟨Φ7(x288)⟩

∼=
(∏ Z5167[x]

⟨x16 ± 1⟩

)54
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as 5112· 1
256·8 · 1728

6 ·4 = 2875.5 cycles. For the performance estimation of size-16 cyclic/nega-
cyclic polynomial multiplications, we estimate it as the sum of performance numbers for 48
Cooley–Tukey FFT for Z5167[x]

/〈
x16 − 1

〉
, 48 Bruun’s FFT for Z5167[x]

/〈
x16 + 1

〉
, and

16 Karatsuba for Z5167[x]
/〈

x16 − ζ
〉

where ζ could be different among the 16 polynomials.
Therefore, the performance of size-16 polynomial multiplication is 3168 · 48

128 + 4720 · 48
128 +

5588 · 16
128 = 3656.5 cycles. Finally, the remaining estimation is about interleaving polyno-

mials. Since 1728 < 256 · 7, we overestimate the performance as 768 · 7
8 = 672. In summary,

the overall overestimation of the performance is 2875.5 ·3+672 ·3+3656.5 = 14299 cycles.
We briefly draft below some promising approaches for larger parameter sets. For

ntrulpr1013/sntrup1013, we reduce polynomial multiplication in Z7177[x]
/〈

x1013 − x − 1
〉

to Z7177[x]
/〈

x2496−1
x312+1

〉
with Rader’s, truncated Good–Thomas [HVDH22, Section 3.5],

and Cooley–Tukey FFTs. For ntrulpr1277/sntrup1277, we reduce the computing task in
Z7879[x]

/〈
x1277 − x − 1

〉
to Z7879[x]

/〈
(x2496 − 1)(x64 + 1)

〉
with Rader’s, Good–Thomas,

and Cooley–Tukey FFTs.

A Profiling of Polynomial Multiplication

Table 4: Performance of permutations with twisting. Numbers are medians of 100,000 iter-
ations where each iteration computes with the indicated repetions of algebraic operations.

Haswell Skylake
Twist with pre-transpose (8×, 256 coeff. each) 768 632
Twist wit post-transpose (8×, 256 coeff. each) 720 618

Table 5: Performance cycles of butterfly operations. Numbers are medians of 100,000 iter-
ations where each iteration computes with the indicated repetions of algebraic operations.

Haswell Skylake
Radix-(3, 2)

Radix-(3, 2) with pre-twist (256 × 8) 5 112 3 794
Radix-(3, 2) with post-twist (256 × 8) 4 904 3 550

Radix-17
Truncated Rader-17 for R[x]/⟨Φ17(x)⟩ (128×) 2 504 1 776
Inverse of truncated Rader-17 for R[x]/⟨Φ17(x)⟩ (128×) 2 528 1 752

Table 6: Performance cycles of power-of-two base multiplications. Numbers are medians of
100,000 iterations where each iteration computes with the indicated repetions of algebraic
operations. Karatsuba for R[x]

/〈
x16 − ζ

〉
is only involved in our development and not

used in our implementation.

Approach Haswell Skylake
R[x]

/〈
x16 − 1

〉
(128×) Cooley–Tukey 3 168 2 576

R[x]
/〈

x16 + 1
〉

(128×) Bruun’s 4 720 3 616
R[x]

/〈
x16 − ζ

〉
(128×) Karatsuba 5 588 4 428
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