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Abstract. In this survey paper, we conduct a systematic examination of vector
arithmetic for polynomial multiplications in software. Vector instruction sets and
extensions typically specify a fixed number of registers, each holding a power-of-
two number of bits, and support an array of vector arithmetic on vector registers.
Programmers then try to align mathematical computations with the vector arith-
metic supported by the designated instruction set or extension. We delve into the
intricacies of this process for polynomial multiplications. In particular, we intro-
duce “vectorization-friendliness” and “permutation-friendliness”, and review “Toeplitz
matrix-vector product” to systematically identify suitable mappings from modules
homomorphisms to vectorized implementations.
To illustrate how the formalization works, we first review the vectorization of the well-
studied polynomial multiplication in the polynomial ring Z3329[x]

/〈
x256 + 1

〉
used in

the key encapsulation mechanism (KEM) Kyber as a warmup. We then go through,
arguably, the most challenging task for vectorization – polynomial multiplication for
Z4591[x]

/〈
x761 − x − 1

〉
used in the parameter set sntrup761 of the NTRU Prime

KEM.
For practical evaluation, we implement vectorized polynomial multipliers for the
ring Z4591[x]

/〈
Φ17

(
x96)〉 with AVX2 and Neon, and benchmark our AVX2 imple-

mentation on Haswell and Skylake and our Neon implementation on Cortex-A72
and the “Firestorm” core of Apple M1 Pro. Our AVX2-optimized implementation
is 1.99−2.16 times faster than the state-of-the-art AVX2-optimized implementation
by [Bernstein, Brumley, Chen, and Tuveri, USENIX Security 2022] on Haswell and
Skylake, and our Neon-optimized implementation is 1.29−1.36 times faster than the
state-of-the-art Neon-optimized implementation by [Hwang, Liu, and Yang, ACNS
2024] on Cortex-A72 and Apple M1 Pro.
For the overall scheme with AVX2, we reduce the batch key generation cycles
(amortized with batch size 32) by 7.9%−12.0%, encapsulation cycles by 7.1%−10.3%,
and decapsulation cycles by 10.7%−13.3% on Haswell and Skylake. For the overall
performance with Neon, we reduce the encapsulation cycles by 3.0%−6.6% and
decapsulation cycles by 12.8%−15.1% on Cortex-A72 and Apple M1 Pro.
Keywords: Vectorization · Polynomial Multiplication · Fast Fourier Transform ·
NTRU Prime

1 Introduction
In this survey paper, we conduct a systematic examination of vector arithmetic for
polynomial multiplications in software. Vector instruction sets and extensions typically
specify a fixed number of vector registers, each holding power-of-two number of bits, and
support a variety of vector arithmetic operating on vector registers. Programmers then try
to map the mathematical computations to strings of vector arithmetic supported by the
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target instruction set or extension. We thoroughly investigate this process for polynomial
multiplications. There are two questions we wish to answer in this paper:

1. Why algebra homomorphisms defined on polynomial rings with power-of-two-multiple
number of elements are frequently assumed to admit efficient vectorization processes?

2. Which algebra homomorphisms are suitable for vectorization?

We answer the first question as follows. In a vector instruction set or extension, there are
usually component-wise addition, subtraction, multiplication and variants. We formalize
the notion vectorization-friendliness and explain why algebra homomorphisms resulting
small-dimensional power-of-two size polynomial multiplications can be suitably mapped
to component-wise arithmetic. After decomposing a large problem into several small
problems, we divide vector instruction sets and extensions into two groups by the presence
of vector-by-scalar multiplication instructions. An instruction is called vector-by-scalar
multiplication instruction if it multiplies all the components of a vector by a scalar and
returns a vector of elements. If there are vector-by-scalar multiplication instructions,
we explain that if the remaing polynomial multiplications are Toeplitz matrix-vector
products, then vectorization-friendliness suffices to justify suitable vectorization of the
overall transformation. On the other hand, if there are no vector-by-scalar multiplication
instructions, we formalize the notion permutation-friendliness and relate it to the
power-of-two nature of the number of subproblems.

For the second question, an evident example is the radix-2 Cooley–Tukey fast Fourier
transformation (FFT). Recent work [BBCT22] showed that radix-2 Schönhage’s and
Nussbaumer’s FFTs, built upon the power-of-two cyclotomic polynomial moduli, are
convenient ones when radix-2 Cooley–Tukey FFT cannot be defined over the native
coefficient ring, and [HLY24] proposed to use radix-2 Bruun’s FFT as an alternative. In
this paper, we identify that truncated Rader’s FFT over Fermat-prime-size cyclotomic
polynomial moduli, previously used for computing the norm of an abelian extension with
prime conductor [Ber22, Section 4.8], is a suitable one for vectorization.

Contributions. We summarize our contributions as follows.

• We formalize vectrozation-friendliness capturing the nature of component-wise arith-
metic supported by a vector instruction set or extension.

• If there are vector-by-scalar multiplication instructions, we explain that vectorization-
friendly transformations resulting small-dimensional Toeplitz matrix-vector products
are suitable for vectorization.

• On the other hand, if there are no vector-by-scalar multiplication instructions, we
formalize permutation-friendliness capturing the power-of-two nature of the number
of subproblems.

• We implement our polynomial multipliers in AVX2 and Armv8.0-A Neon for the ring
Z4591[x]

/〈∑
i=0,...,16 x96i

〉
implementing polynomial multiplications in the NTRU

Prime parameter set sntrup761.

• For the polynomial multiplication, our AVX2 implementation outperforms the state-
of-the-art AVX2-optimized implementation from [BBCT22] by 1.99× on Haswell and
2.16× on Skylake, and our Neon implementation outperforms the state-of-the-art
Neon-optimized implementation from [HLY24] by 1.29× on Cortex-A72 and 1.36×
on Apple M1 Pro.
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• For the overall scheme, we integrate our AVX2 implementation into the package
libsntrup761 provided by [BBCT22] for the batch key generation and the package
supercop for encapsulation and decapsulation. We reduce the amortized cycles of
batch key generation (with batch size 32) by 7.9%−12.0%, encapsulation cycles by
7.1%−10.3%, and decapsulation cycles by 10.7%−13.3% on Haswell and Skylake. As
for our Neon implementation, we integrate our Neon code into the artifact provided
by [HLY24]. Our Neon implementation reduces encapsulation cycles by 3.0%−6.6%
and decapsulation cycles by 12.8%−15.1% on Cortex-A72 and Apple M1 Pro.

Code. Our source code is attached as an artifact and will be publicly available.

Structure of this paper. This paper is structured as follows. Section 2 goes through
the preliminaries. Section 3 formalizes the vectorization process, and Section 4 reviews
various algebra homomorphisms. We then go through two walkthroughs. Section 5 shows
how radix-2 Cooley–Tukey FFT is mapped to vector arithmetic, and Section 6 illustrates
the applications of vector arithmetic to truncated Rader’s, Good–Thomas, and Bruun’s
FFTs. Finally, Section 7 shows the performance cycles with AVX2 on Haswell and Skylake,
and Neon on Cortex-A72 and Apple M1 Pro.

2 Preliminaries
We go through some preliminaries for this paper. Section 2.1 describes the target polynomial
arithmetic of NTRU Prime, Section 2.2 reviews some basics from algebra with emphasis
on tensor of module homomorphisms, and Section 2.3 describes our interested vector
instruction set architectures and extensions.

2.1 Streamlined NTRU Prime
NTRU Prime [BBC+20] is an alternate candidate of key encapsulation mechanism (KEM)
in the 3rd round of NIST Post-Quantum Cryptography (PQC) Standardization and is
currently used in OpenSSH 9.0 hybrid sntrup761x25519-sha512 key exchange by default1.
NTRU prime KEM [BBC+20] operates over the polynomial rings Zq[x]/⟨xp − x − 1⟩ and
Z3[x]/⟨xp − x − 1⟩ for primes p and q such that Zq[x]/⟨xp − x − 1⟩ ∼= Fqp . There are
two cryptosystems built upon Zq[x]/⟨xp − x − 1⟩ and Z3[x]/⟨xp − x − 1⟩ – Streamlined
NTRU Prime (sntrup) and NTRU LPRime (ntrulpr). This paper focuses on polynomial
multiplications in sntrup761 with (p, q) = (761, 4591) and the implementations can be
straightforwardly ported into ntrulpr761. See [BBC+20] for more details of the scheme.
We demonstrate the performance of sntrup to avoid superflous context blurring the
contribution of this paper. In the following, we list all the polynomial multiplications and
inversions required for sntrup.

Key generation: We need one inversion in Zq[x]/⟨xp − x − 1⟩ and one inversion with
invertibility check in Z3[x]/⟨xp − x − 1⟩ for the secret key, and one polynomial
multiplication in Zq[x]/⟨xp − x − 1⟩ for the public key.

Encapsulation: We need one polynomial multiplication in Zq[x]/⟨xp − x − 1⟩ for encryp-
tion.

Decapsulation: We need one polynomial multiplication in Zq[x]/⟨xp − x − 1⟩ for encryp-
tion, and one polynomial multiplication in Zq[x]/⟨xp − x − 1⟩ and one polynomial
multiplication in Z3[x]/⟨xp − x − 1⟩ for decryption.

1See “New features” in https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2.

https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2
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We focuses on polynomial multiplications and inversions in Zq[x]/⟨xp − x − 1⟩ . We
call a polynomial multiplication “big-by-small” if one of the operands is drawn from Z3 :=
{0, ±1} and “big-by-big” otherwise. Our polynomial multipliers target big-by-big ones
and also covers the big-by-small ones by definition. For encapsulation and decapsulation,
we only need big-by-small polynomial multiplications. For the key generation, we only
need big-by-small polynomial multiplication outside the inversion. As for the inversion,
the requirement of polynomial multiplications heavily depends on the choice of approach.
We simply focus on the divstep approach avoiding any polynomial multiplications and
leave the incorporation of jumpdivstep [BY19] as a future work.

To see why big-by-big polynomial multiplications are actually important, we briefly
review the uses of Montgomery’s trick for batch inversion [BBCT22]. Let’s say we want
to invert a finite series of polynomials (a0, . . . , an−1) in Zq[x]/⟨xp − x − 1⟩ . Instead of
inverting each of them one at a time, we first compute the products

a0, a0a1, . . . ,
∏

i=0,...,n−1
ai

with n − 1 polynomial multiplications, and invert
∏

i=0,...,n−1 ai. We now compute the
following  ∏

i=0,...,n−1
ai

−1

,

 ∏
i=0,...,n−2

ai

−1

, . . . , a−1
0

with n − 1 polynomial multiplications. Finally, we recover the inverses a−1
j by computing

a−1
j =

(∏
i=0,...,j ai

)−1 (∏
i=0,...,j−1 ai

)
for j = 1, . . . , n − 1. In sntrup, since all poly-

nomials to be inverted have coefficients in Z3, we need 2n − 2 big-by-small polynomial
multiplications, n − 1 big-by-big polynomial multiplications, and one inversion.

2.2 Basics of Algebra
We first go through some basic notations and definitions of algebraic structures for this
paper. Readers familiar with modules and associative algebras are free to skip this section
and treat this section as a reference for notations whenever needed. We assume that readers
are all familiar with monoids, groups, rings, and modules and refer to standard algebra
books [Jac12a, Jac12b, Bou89] for references. In this paper, all rings are commutative and
unital. Below we go through a short introduction of free modules and associative algebras
over a commutative ring R.

Modules. The central of this paper revolves around free-module homomorphisms and
their tensor products. We call a module free if there is a basis. For a ring R, the n-fold
product Rn is a free module since an element (ri) can be written as the linear combination∑

i riei where ei is the element with ith element one and zero elsewhere for all i. Given
two free modules Rn and Rm, we define the tensor product of Rn and Rm as the free
module consisting of all the elements of the form∑

i

ai ⊗ bi.

where ai ∈ Rn and bi ∈ Rm up to the following equivalences:

• ∀a0, a1 ∈ Rn, ∀b ∈ Rm, (a0 + a1) ⊗ b ∼ a0 ⊗ b + a1 ⊗ b.

• ∀a ∈ Rn, ∀b0, b1 ∈ Rm, a ⊗ (b0 + b1) ∼ a ⊗ b0 + a ⊗ b1.

• ∀r ∈ R, a ∈ Rn, b ∈ Rm, (ra) ⊗ b ∼ a ⊗ (rb).
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Suppose we have module homomorphisms f : Rn → Rn and g : Rm → Rm. We define
the tensor product f ⊗ g : Rn ⊗ Rm → Rn ⊗ Rm of f and g as

x ⊗ y 7→ f(x) ⊗ g(y).

Recall that module homomorphism between modules of finite ranks can be written as
matrix multiplications if we specify the bases. Suppose we have bases {ei} ⊂ Rn and
{ẽj} ⊂ Rm. Then, {ei ⊗ ẽj} is a basis of Rn ⊗ Rm. One can show that the matrix form of
f ⊗ g with the basis {ei ⊗ ẽj} is the same as the tensor product of the matrix forms of f
with {ei} and g with {ẽj}.

By unfolding the definition of tensor product, one can find

∀f0, f1 : Rn → Rn, ∀g0, g1 : Rm → Rm, (f0 ◦ f1) ⊗ (g0 ◦ g1) = (f0 ⊗ g0) ◦ (f1 ⊗ g1)

where ◦ is the function composition. An example that we will frequently encounter in this
paper is the case g0 = g1 = idm, the identity map of Rm. Suppose we have a factorization
for f : Rn → Rn with f = f0 ◦ f1, then we also have

f ⊗ idm = (f0 ◦ f1) ⊗ (idm ◦ idm) = (f0 ⊗ idm) ◦ (f1 ⊗ idm) .

In general, if f factors into f0 ◦ · · · ◦ fd−1, then f ⊗ idm = (f0 ⊗ idm) ◦ · · · ◦ (fd−1 ⊗ idm).

Associative algebras. For an R-module M , if we adjoin a ring structure to M by
introducing a binary associative operator with an identity compatible with 1R to the
underlying additive group M , we call M an associative R-algebra. For simplicity, we
call an associative R-algebra an R-algebra or an algebra when the context is clear. For a
degree-n polynomial g ∈ R[x], the quotient ring R[x]/⟨g⟩ is an R-algebra since (i) R[x]/⟨g⟩

is a ring and (ii) R[x]/⟨g⟩ = Rn as R-modules by specifying xi =

0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0︸ ︷︷ ︸
n−1−i

.

Suppose g = g (xv) for a positive integer v, we have the following isomorphisms:

R[x]
⟨g(xv)⟩

∼=
R[x, y]

⟨xv − y, g(y)⟩
∼=

R[x]
⟨xv−y⟩ [y]
⟨g(y)⟩ .

Let’s abbreviate with R := R[x]/⟨xv − y⟩ . The crucial point is to interpret an R-algebra
homomorphism fR for R[y]/⟨g(y)⟩ as an R-algebra homomorphism for R[x]/⟨g(xv)⟩ . We
claim that fR ⊗ idv is the desired R-algebra homomorphism and give a small example as
follows. Suppose g(x) = x4 − 1, v = 2, and R[y]

/〈
y2 − 1

〉 ∼= R[y]/⟨y − 1⟩ × R[y]/⟨y + 1⟩
via a0 + a1y 7→ (a0 + a1, a0 − a1). Obviously, the transformation matrix over R is(

1 1
1 −1

)
.

If we replace y with x2, define a0 = a0,0 + a0,1x, a1 = a1,0 + a1,1x, and rewrite the
homomorphism as a transformation matrix over R, we find that a0,0 + a0,1x + a1,0x2 +
a1,1x3 7→ (a0,0 + a1,0 + (a0,1 + a1,1) x, a0,0 − a1,0 + (a0,1 − a1,1) x) can be written as

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 =
(

1 1
1 −1

)
⊗
(

1 0
0 1

)
.

Similarly, if we have a factorization of an R-algebra homomorphism f = f0 ◦ f1 for
R[y]/⟨g(y)⟩ , we have a composition of R-algebra homomorphisms f0 ⊗ idv and f1 ⊗ idv

for R[x]/⟨g(xv)⟩ .
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As a side note, there is an analogue of tensor product of algebras and algebra homo-
morphisms (and they are helpful for understanding techniques in Section 4.3), but we feel
that they are too abstract for the audience and decide to stay at tensor product of module
homomorphisms with matrix view.

2.3 Vector arithmetic
We go through the vector instruction set/extension covered in this paper.

AVX2. Advanced vector extension 2 (AVX2) is a vector extension to x86 instruction
architecture. In AVX2, there are 16 ymm registers each holding 256 bits of data. In this
paper, we only consider 16-bit arithmetic and regard each vectors as packed 16-bit elements.
In other words, each registers can be regarded as an element in the set Z16

65536. Along with
the component-wise addition vpaddw and subtraction vpsubw, we have the abelian group
structure with the vector of all zeros as the zero element. We also have the component-wise
multiplication vpmullw with a 16-tuple of all ones as the multiplicative identity. This
gives us a Z65536-module structure by implementing r (ai) as the component-wise product
of a tuple of r’s and (ai) for r ∈ Z16

65536 and (ai) ∈ Z16
65536. Furthermore, we also have

several permutation instructions with two data operands – vpunpck{l, h}{wd, dq, qdq}
interleaves packed halfwords/words/double words from the lower/upper 64-bit of each
128-bit of the operands, and vperm2i128 selects arbitrary pair of 128-bit data from the
multi-set formed by unioning all the 128-bit data from the operands and the zero element.
Frequently, a series of permutation instructions are used for implementing a certain kind
of permutation matrices. We’ll give more insights on permutations in Section 3.2.

Armv8.0-A Neon. The instruction set architecture Armv8.0-A comes with the vector
extension Neon. In Neon, there are 32 vector registers (v0 to v31) each holding 128 bits of
data and instruction encodings are determined by the instructions along with specifiers
following register names – we append .8H to the name of a vector register if the 128-bit data
is regarded as packed halfwords. Similarly to AVX2, we have componenet-wise addition
and subtraction instructions giving an abelian group. Since there are vector-by-vector
and vector-by-scalar multiplication instructions, the module structure is determined by
implementing r(ai) as a component-wise product of a vector-by-vector multiplication
instruction or as a straightforward result of applying a vector-by-scalar multiplication
instructions. In Neon, a vector-by-scalar multiplication instruction multiplies a vector of
elements by a scalar and returns a vector. While dealing with halfwords, the scalar value
must come from a lane of a low registers (v0 to v7). Similar to AVX2, there is a wide
variaty of permutation instructions. One of the convenient ones is ext: we concatenate
two 128-bit vector registers and extract a certain contiguous 16-byte data from the 32-byte
data. Suppose we have two input vector registers holding single words v2 = (a0, . . . , a3)
and v3 = (b0, . . . , b3) and one output register v0, the assembly code ext v0.16B, v2.16B,
v3.16B, #12 assigns (a3, b0, b1, b2) (notice that 12 bytes are 3 words) to v0. In the matrix
view, we have

v0 =


a3
b0
b1
b2

 =


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0





a0
...

a3
b0
...

b3


=
(

v2
v3

)
.

Interestingly, if we further issue ext v1.16B, v3.16B, v2.16B, #12, then (v0, v1) is the
cyclic shift (a3, b0, . . . , b3, a0, a1, a2) of (v2, v3).
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3 Formalization of Vectorization
Let v be the number of elements contained in a vector register. In this section, we
distinguish four basic algebraic constructs: (i) a certain class of block diagonal matrices
capturing component-wise multiplication and cyclic/negacyclic shifts, (ii) tensor products
of module homomorphisms, (iii) a certain class of permutation matrices interleaving strings
of elements, and (iv) Toeplitz matrices. We formalize vectorization-friendliness based on
(i) and (ii), permutation-friendliness based on (i), (ii), and (iv), and discuss an alternative
of permutation-friendliness based on (iv).

Generally, while computing with vector instructions, we choose algebra monomorphisms
f and g such that f is vectorization-friendly and g is permutation-friendly or amounts to
computing Toeplitz matrices when there are vector-by-scalar multiplication instructions.
Their composition g ◦ f then admits suitable mapping to vector arithmetic. Recent
work SPIRAL [FLP+18] had attempted to formalize the vectorization of FFTs for code
generation. However, SPIRAL falls short to cover transformations used in this paper and
we believe this section will give more insights on extending SPIRAL.

Section 3.1 formalizes vectorization-friendliness, Section 3.2 formalizes permutation-
friendliness, and Section 3.3 reviews small-dimensional Toeplitz matrix-vector products.

3.1 Vectorization–Friendliness
Conceptually, we call an algebra monomorphism vectorization-friendly if we can factor it
into module homomorphisms with matrix forms certain kinds of block diagonal matrices or
tensor products with Iv as the right operand. We first identify a set of matrices that can
be implemented efficiently with vector instructions straightforwardly. Let v′ be a multiple
of v. We define BlockDiag as the set of all block diagonal matrices with each block a
v′ × v′ matrix of the following form:

1. Diagonal matrix: a matrix with non-diagonal entries all zeros.

2. Cyclic/negacyclic shift matrix: a matrix implementing (ai)0≤i<v′ 7→
(
a(i+c) mod v′

)
0≤i<v′

(cyclic) or (ai)0≤i<v′ 7→
(

(−1)Ji+c≥v′Ka(i+c) mod v′

)
0≤i<v′

(negacyclic) for a non-
negative integer c.

Diagonal matrices are suitable for vectorization since we can load v coefficients, multiply
them by v constants, and store them back to memory with vector instructions. For
cyclic/negacyclic shift matrices, we discuss how to implement them for the following vector
instruction sets:

• Armv7/8-A Neon: For cyclic shifts, we use the instruction ext extracting consecutive
elements from a pair of vector registers. We negate one of the registers before
applying ext for negacyclic shifts [HLY24].

• AVX2: For cyclic shifts, we perform unaligned loads, shuffle the last vector register,
and store the vectors to memory. Again, the last vector register is negated for
negacyclic shifts [BBCT22].

Let f be an algebra monomorphism, and Mf be the matrix form of f . We call f
vectorization-friendly if

Mf =
∏

i

(Mfi
⊗ Iv) Sfi

for some Mfi
and Sfi

∈ BlockDiag. The tensor product Mfi
⊗Iv ensures that each v-chunk

is regarded as a whole while applying Mfi
⊗ Iv. Additionally, f is vectorization-friendly

if and only if f−1 is vectorization-friendly, so we only need to discuss the vectorization-
friendliness of a monomorphism and its inverse follows immediately.
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3.2 Permutation–Friendliness
We introduce the notion “permutation-friendliness”. Conceptually, permutation-friendliness
stands for vectorization-friendliness after applying a special type of permutation — inter-
leaving. Again, let v′ be a multiple of v. We define the transposition matrix Tv′2 as the
v′2 × v′2 matrix permuting the elements as if transposing a v′ × v′ matrix. We illustrate
the case v′ = 2 with Algorithm 1 for Neon and Algorithm 2 for AVX2. Now we are ready
to specify the set Interleave of interleaving matrices. We call a matrix M interleaving
matrix with step v′ if it takes the form

M = (π′ ⊗ Iv′) (Im ⊗ Tv′2) (π ⊗ Iv′)

for a positive integer m and permutation matrices π, π′ permuting mv′ elements. The
set Interleave consists of interleaving matrices of all possible steps and is closed under
inversion.

We call an algebra monomorphism g permutation-friendly if we can factor its matrix
form M ′

g as
M ′

g =
∏

i

Sgi
Mgi

for Sgi
∈ Interleave and vectorization-friendly Mgi

’s. Immediately, we know that g is
permutation-friendly if and only if g−1 is permutation-friendly.

Algorithm 1 trn{1, 2} permuting double words in Armv8.0-A Neon registers.
Inputs: (v0, v1) = ((a0, a1) , (b0, b1)).
Outputs: (v2, v3) = ((a0, b0) , (a1, b1)).

1: trn1 v2.2D, v0.2D, v1.2D
2: trn2 v3.2D, v0.2D, v1.2D

Algorithm 2 vperm2i128 permuting double words in AVX2 %ymm registers.
Inputs: (%ymm0, %ymm1) = ((a0, a1) , (b0, b1)).
Outputs: (%ymm2, %ymm3) = ((a0, b0) , (a1, b1)).

1: vperm2i128 %ymm2, %ymm0, %ymm1, 0x20
2: vperm2i128 %ymm3, %ymm0, %ymm1, 0x31

3.3 Toeplitz Matrix–Vector Products (Small Dimensional)
We go through an alternative for permutation friendliness when there are vector-by-scalar
multiplication instructions. Suppose we have a vectorization-friendly monomorphism
resulting several small-dimensional cyclic/negacyclic convolutions. By the definition of
vectorization-friendliness, a cyclic/negacyclic convolution can be phrased as applying a
v′ ×v′ Toeplitz matrix to a vector for a v-multiple v′. We call a matrix M Toeplitz if Mi,j =
Mi+1,j+1 for all possible i, j. Below we illustrate with (a0b0 − a1b1) + (a0b1 + a1b0) =
(a0 + a1x) (b0 + b1x) mod

(
x2 + 1

)
:(

a0b0 − a1b1
a0b1 + a1b0

)
=
(

a0 −a1
a1 a0

)(
b0
b1

)
.

Generally, one can write a polynomial multiplication modulo xv′ − ζ as an application
of a Toeplitz matrix constructed from one of the operands [BDL+12, Hwa22, IKPC22].
Recently, [CCHY23] decomposed the application of a v′ × v′ Toeplitz matrix as a sum of
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column-to-scalar multiplications and implemented each with a vector-by-scalar multiplica-
tion instruction. Algorithm 3 illustrates the idea for v′ = 8 in Neon.

Algorithm 3 Toeplitz matrix-vector product approach implementing polynomial multipli-
cation in Z4951[x]

/〈
x8 + 1

〉
with Neon, adapted from [CCHY23].

Input(s): v16 = (a0, . . . , a7) , v0 = (b0, . . . , b7).
Output(s): v0 = (c0, . . . , c7) where ci is the i-th coefficient of

(∑
j ajxj

) (∑
k bkxk

)
mod(

x8 + 1
)
.

1: neg v1.16B, v16.16B
2: ext v17.16B, v1.16B, v16.16B, #14

3:
...

4: ext v23.16B, v1.16B, v16.16B, #2
▷
(
v16 · · · v23

)
is the transformation matrix implementing negacyclic convolution by

(a0, . . . , a7).
5: smull v8.4S, v16.4H, v0.H[0]
6: smull2 v9.4S, v16.4H, v0.H[0]
7: smlal v8.4S, v17.4H, v0.H[1]
8: smlal2 v9.4S, v17.4H, v0.H[1]

9:
...

10: smlal v8.4S, v23.4H, v0.H[7]
11: smlal2 v9.4S, v23.4H, v0.H[7]

▷ (v8, v9) now contains the result of negacyclic convolution where elements are
unreduced.

12: v0 = reduce(v8, v9)
▷ We apply custom reduction subroutine. Typically Montgomery reduction [Mon85].
Since this step is independent from our work, we simply refer to [BHK+22, Algorithm
14] to avoid bombarding our audience.

4 Transformations
This section reviews various algebraic techniques, including Chinese remainder theorem in
Section 4.1, Cooley–Tukey FFT in Section 4.2, Good–Thomas FFT in Section 4.3, Rader’s
FFT in Section 4.4, Bruun’s FFT in Section 4.5, twisting in Section 4.7, and Karatsuba in
Section 4.8.

4.1 Chinese Remainder Theorem

For finitely many coprime polynomials gi0,...,ih−1
∈ R[x], the Chinese remainder theorem

implies the following series of isomorphisms

R[x]〈∏
i0,...,ih−1

gi0,...,ih−1

〉 ∼=
∏
i0

R[x]〈∏
i1,...,ih−1

gi0,...,ih−1

〉 ∼= · · · ∼=
∏

i0,...,ih−1

R[x]〈
gi0,...,ih−1

〉
by moving the indices from the ideal parts to the product-ring parts. If all the iso-
morphisms are fast in terms of computational complexity, the overall isomorphism
R[x]

/〈∏
i0,...,ih−1

gi0,...,ih−1

〉
∼=
∏

i0,...,ih−1
R[x]

/〈
gi0,...,ih−1

〉
will be fast.
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4.2 Cooley–Tukey FFT
Let n =

∏
j nj , and ij runs over 0, . . . , nj − 1 for each j. The Cooley–Tukey FFT [CT65]

computes the following isomorphism:

R[x]
⟨xn − ζn⟩

∼=
∏

i0,...,ih−1

R[x]〈
x − ζω

∑
l

il

∏
j<l

nj

n

〉
in a layer-by-layer fashion where ωn is a principal n-th root of unity2. The simplest case is

the isomorphism R[x]
/〈

x2h − 1
〉

∼=
∏

i0,...,ih−1
R[x]

/〈
x − ω

∑
l

il2l

2h

〉
. However, we will

encounter various transformations built upon non-power-of-two Cooley–Tukey FFTs.

4.3 Good–Thomas FFT
In the previous section we see how Cooley–Tukey FFT factors the transformation matrix
into matrix multiplication of easier ones up to a permutation. Good–Thomas FFT [Goo58]
employs a different permutation strategy driven by factorizations of cyclic groups into
smaller ones and rewrite transformation matrices as tensor products of transformation
matrices of cyclic ones. Suppose we have a coprime factorization n =

∏
j qj , Good–

Thomas FFT turns a size-n cyclic transformation into a tensor product of size-qi cyclic
transformations. We explain the idea briefly with the smallest case n = 6. Consider the
cyclic transformation R[x]

/〈
x6 − 1

〉 ∼=
∏

i R[x]
/〈

x − ωi
6
〉

, If we perform pre- and post-
permutation for the 1st and the 4th element (we start with 0), and define ω3 := ω4

6 , ω2 := ω3
6 ,

we have

P(14)


1 1 1 1 1 1
1 ω6 ω2

6 ω3
6 ω4

6 ω5
6

1 ω2
6 ω4

6 1 ω2
6 ω4

6
1 ω3

6 1 ω3
6 1 ω3

6
1 ω4

6 ω2
6 1 ω4

6 ω2
6

1 ω5
6 ω4

6 ω3
6 ω2

6 ω6

P(14) =
(

1 1
1 −1

)
⊗

1 1 1
1 ω3 ω2

3
1 ω2

3 ω3



=

(1 1
1 −1

)
⊗

1 0 0
0 1 0
0 0 1

(1 0
0 1

)
⊗

1 1 1
1 ω3 ω2

3
1 ω2

3 ω3

 .

Comparing to Cooley–Tukey FFT, we save two multiplications by ω6 and ω2
6 .

4.4 Rader’s FFT
Let p be an odd prime, and I = {0, . . . , p − 1} , I∗ = {1, . . . , p − 1} be index sets. Rader’s
FFT [Rad68] computes the map R[x]/⟨xp − 1⟩ ∼=

∏
i R[x]

/〈
x − ωi

p

〉
with a size-λ(p)

cyclic convolution where λ is the Carmichael’s lambda function. See [Win78] for the
odd-prime-power case.

Since p is a prime, there is a g ∈ I with I∗ =
{

1, g, . . . , gλ(p)−1}. We define logg : I∗ →
Zλ(p) as the discrete logarithm. This allows us to introduce the following reindexing for
(âj)j∈I =

(∑
i∈I aiω

ij
p

)
j∈I : (i) i ∈ I∗ 7→ − logg i ∈ Zλ(p) and (ii) j ∈ I∗ 7→ logg j ∈ Zλ(p).

For j ∈ I∗, this gives us

âglogg j − a0 =
∑
i∈I∗

aiω
ij
p =

∑
− logg i∈Zλ(p)

aglogg iωglogg i+logg j

p .

2∀j = 1, . . . , n − 1,
∑n−1

i=0 ωij
n = 0.
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Therefore, we find that
(
âgk − a0

)
k∈Zλ(p)

is the convolution of
(
ag−k

)
k∈Zλ(p)

and
(

ωgk

p

)
k∈Zλ(p)

.

The reindexing transforming R[x]/⟨xp − 1⟩ ∼=
∏

i R[x]
/〈

x − ωi
p

〉
into a size-(p − 1) cyclic

convolution along with the post-processing is called the Rader’s FFT.

4.4.1 Truncated Rader’s FFT and its Inverse

Let Φp be the p-th cyclotomic polynomial. Since p is a prime, we have Φp(x) =∑
i=0,...,p−1 xi and Φp(x)|(xp − 1). A natural question is how to build an efficient

transformation for R[x]/⟨Φp(x)⟩ ∼=
∏

i∈I∗ R[x]
/〈

x − ωi
p

〉
based on the Rader’s FFT

for R[x]/⟨xp − 1⟩ . We first find the following isomorphism
R[x]/⟨Φp(x)⟩ ∼=

∏
j∈I∗

R[x]
/〈

x − ωj
p

〉
,

∑
i∈I∗

ai−1xi−1 7→

(
âj =

∑
i∈I∗

ai−1ω(i−1)j
p

)
j∈I∗

.

With the same reindexing i 7→ − logg i and j 7→ logg j, we have

âglogg j =
∑
i∈I∗

ai−1ω(i−1)j
p = ω−j

p

∑
− logg i∈Zλ(p)

aglogg i−1ωglogg i+logg j

p

and find that
(
ωk

p âgk

)
k∈Zλ(p)

is the convolution of
(
ag−k−1

)
k∈Zλ(p)

and
(

ωgk

p

)
k∈Zλ(p)

. This

is called the truncated Rader’s FFT. Below is an illustration for p = 5 and g = 2:

P(23)


ω5 ω2

5 ω3
5 ω4

5
ω2

5 ω4
5 ω5 ω3

5
ω3

5 ω5 ω4
5 ω2

5
ω4

5 ω3
5 ω2

5 ω5

P(312) =


ω20

5 ω23

5 ω22

5 ω21

5
ω21

5 ω20

5 ω23

5 ω22

5
ω22

5 ω21

5 ω20

5 ω23

5
ω23

5 ω22

5 ω21

5 ω20

5

 .

For the inverse, [Ber22, Section 4.8.2] showed how to implement it with a size-λ(p)
cyclic convolution. They found that convoluting with 1

p

(
ω−g−k

p − 1
)

k∈Zλ(p)
results in the

desired inversion. We illustrate below for p = 5 and g = 2:
ω20

5 ω23

5 ω22

5 ω21

5
ω21

5 ω20

5 ω23

5 ω22

5
ω22

5 ω21

5 ω20

5 ω23

5
ω23

5 ω22

5 ω21

5 ω20

5




ω−2−0

5 − 1
ω−2−1

5 − 1
ω−2−2

5 − 1
ω−2−3

5 − 1

 =


5
0
0
0

 .

In summary, we can implement η−1 by mapping (âgk )k∈Zλ(p) to
(
ωk

p âgk

)
k∈Zλ(p)

and

convoluting with
(

ω−g−k

p − 1
)

k∈Zλ(p)
. Scaling by 1

p is postponed to the end. See [Ber22,

Sections 4.12.3 and 4.12.4] for the generalization to arbitrary p.

4.5 Bruun’s FFT
Let q be a prime with q ≡ 3 mod 4 and q + 1 = r2w for an odd r. Bruun’s FFT allows us
to split Zq[x]

/〈
x2w + 1

〉
as follows:

Zq[x]
⟨x2w + 1⟩

∼=
∏

i

Zq[x]
⟨x2 ± αix − 1⟩

.
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See [BGM93] for a proof. For q = 4591, we can split Zq[x]
/〈

x16 + 1
〉

into size-2 polynomial
rings with moduli of the form x2 ± αix − 1 since 4591 + 1 = 287 · 24. In this paper, we
are interested in the case Zq[x]

/〈
x16 + 1

〉 ∼=
∏

Zq[x]
/〈

x8 ±
√

2x4 + 1
〉

. For simplicity,
we illustrate with the case Zq[x]

/〈
x4 + 1

〉 ∼=
∏

Zq[x]
/〈

x2 ±
√

2x + 1
〉

: We compute
(a0 − a2, a1 + a3,

√
2a2,

√
2a3), swap the last two values, and apply add-sub pairs [HLY24].

See below for the corresponding transformation matrices:
1 0 1 0
0 1 0 −1
1 0 −1 0
0 1 0 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 −1 0
0 1 0 1
0 0

√
2 0

0 0 0
√

2

 .

Bruun’s FFT was originally proposed with C as the coefficient ring. See [Bru78] for
the power-of-two case and [Mur96] for the even case.

4.6 Schönhage’s and Nussbaumer’s FFTs
Schönhage’s [Sch77] and Nussbaumer’s [Nus80] FFTs convert polynomial reduction modulo
cyclotomic polynomials into multiplications by roots of unity at the cost of doubling the
number of coefficients. We go through a brief introduction for the power-of-two cyclotomic
cases.

For a ring R[x]
/〈

x2k0+k1 − 1
〉

, Schönhage’s FFT introduces x2k0 ∼ y rewriting the ring

as
(

R[x]
/〈

x2k0 − y
〉)

[y]
/〈

y2k1 − 1
〉

. If we perform an injection R[x]
/〈

x2k0 − y
〉

↪→

R := R[x]
/〈

x2k0+1 + 1
〉

by padding 2k0 zeros, we have x a principal 2k0+2-th root

supporting a size-2k0+2 cyclic FFT. In other words, R[y]
/〈

y2k1 − 1
〉

splits into linear
factors in y via additions, subtractions, and multiplications by x in R if k1 ≤ k0 + 2. Since
x is a formal variable, multiplications by powers of x in R amount to negacyclic shifts.
Let’s take k0 = 1, k1 = 2 as an example. We have

R[x]
⟨x8 − 1⟩

∼=
R[x]

⟨x2−y⟩ [y]
⟨y4 − 1⟩

↪→
R[x]

⟨x4+1⟩ [y]
⟨y4 − 1⟩

∼=
∏

i=0,...,3

R[x]
⟨x4+1⟩ [y]
⟨y − x2i⟩

.

For the matrix view, we first observe that R[x]
/〈

x2 − y
〉

↪→ R[x]
/〈

x4 + 1
〉

can be written

as the application of
(

1
0

)
⊗ I2. Since we have a size-4 cyclic convolution in y, the overall

injection map can be written as

I4 ⊗
(

1
0

)
⊗ I2,

which is vectorization-friendly if each vectors contain two elements. Similar justification
holds when 2k0 is a multiple of the number of elements contained in a vector register.
Now, let’s write down the matrix view of R[y]

/〈
y4 − 1

〉 ∼=
∏

i=0,...,3 R[y]
/〈

y − x2i
〉

via
Cooley–Tukey FFT over R as:

(
I2 ⊗

(
1 1
1 −1

))
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 x2

((1 1
1 −1

)
⊗ I2

)
.

Since R is a rank-4 module over R, the transformation matrix over R can be written as:

(
I2 ⊗

(
1 1
1 −1

)
⊗ I4

)
I4 04 04 04
04 I4 04 04
04 04 I4 04
04 04 04 shift2 mod (x4 + 1)

((1 1
1 −1

)
⊗ I8

)
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where

04 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , shift2 mod (x4 + 1) =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 .

Obviously, the transformation matrix is vectorization-friendly if each vector registers
contains four elements since all the matrices are either right-tensored by I4 or a block
diagonal matrix with each blocks a 4 × 4 diagonal or cyclic/negacyclic shift matrix.

On the other hand, Nussbaumer starts with

R[x]〈
x2k0+k1 + 1

〉 ∼=
R′[x]〈

x2k1−1 − y
〉 ↪→ R′[x]〈

x2k1 − 1
〉

for R′ := R[y]〈
y2k0+1 +1

〉 , and regards y as a principal 2k0+2-th root of unity defining an FFT

for R′[x]
/〈

x2k1 − 1
〉

. It can be shown that the matrix form of Nussbaumer only differs
from Schönhage by an interleaving matrix. For the case k0 = 1, k1 = 2, its matrix form

can be obtained by replacing I4 ⊗
(

1
0

)
⊗ I2 in Schönhage by the following:

T16

(
I4 ⊗

(
1
0

)
⊗ I2

)
.

Therefore, Nussbaumer’s FFT is permutation-friendly.

4.7 Twisting
Let R be a ring, ζ ∈ R be an invertible element, n be an integer, and ξ ∈ R be an element.
We have the isomorphism R[x]/⟨xn − ξζn⟩ ∼= R[y]/⟨yn − ξ⟩ by sending x to ζy. This is
called twisting. Obviously, twisting amounts to multiplying all the coefficients by certain
constants and its transformation matrix is a diagonal matrix. In the literature, twising is
commonly specialized to ξ = 1, but we need the cases ξ = ±1 in this paper.

4.8 Karatsuba
Karatsuba [KO62] computes the product (a0 + a1x)(b0 + b1x) by evaluating at the point
set {0, 1, ∞}. We compute (a0 + a1x)(b0 + b1x) = a0b0 + (a0b1 + a1b0)x + a1b1x2 with
three multiplications a0b0, a1b1, and (a0 + a1)(b0 + b1) by observing a0b1 + a1b0 =
(a0 + a1)(b0 + b1) − a0b0 − a1b1.

5 A Walkthrough for Z3329[x]/⟨x256 + 1⟩
This section goes through a walkthrough demonstrating a suitable mapping from the
Cooley–Tukey FFT for

Z3329[x]
⟨x256 + 1⟩

∼=
∏

i

Z3329[x]〈
x2 − ω2i+1

256
〉

to vector arithmetic as a warmup. We choose the ring Z3329[x]
/〈

x256 + 1
〉

since it is used
in the KEM Kyber recently standardized by NIST, and it is well-studied to some extent.
We go through a detailed justification of vectorization- and permutation-friendliness of
the Neon-optimized implementation by [BHK+22]. Since each vector registers in Neon
holds 128

16 = 8 cofficients, our justification for vectorization-friendliness boils down to
right-tensoring by I8. For simplicity, we denote R = Z3329 in this section. Recall that



14 Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime (SoK)

instead of transforming R[x]
/〈

x256 + 1
〉

into R[x]
/〈

x2 − ω2i+1
256

〉
directly, Cooley–Tukey

FFT applies a series of algebra isomorphisms as follows:

R[x]
⟨x256 + 1⟩

∼=
∏

i0=0,1

R[x]〈
x128 − ω1+2i0

4
〉 ∼= · · · ∼=

∏
i0,...,i6=0,1

R[x]〈
x2 − ω

1+2
∑

l
il2l

256

〉 .

We cut this series into two parts. The first part implements

R[x]
⟨x256 + 1⟩

∼=
∏

i0,...,i4=0,1

R[x]〈
x8 − ω

1+2
∑

l<5
il2l

64

〉
in a vectorization-friendly way and the second part implements∏

i0,...,i4=0,1

R[x]〈
x8 − ω

1+2
∑

l<5
il2l

64

〉 ∼=
∏

i0,...,i6=0,1

R[x]〈
x2 − ω

1+2
∑

l<7
il2l

256

〉
in a permutation-friendly way.

To obtain a vectorization-friendly transformation, we first find the isomorphism
R[x]

/〈
x256 + 1

〉 ∼=
(

R[x]
/〈

x8 − y
〉)

[y]
/〈

y32 + 1
〉

reducing the computation to right-
tensoring an isomorphism defined on R[x]

/〈
x32 + 1

〉
by I8. Suppose we have an isomor-

phism η implementing

R[x]
⟨x32 + 1⟩

∼=
∏

i0,...,i4=0,1

R[x]〈
x − ω

1+2
∑

l<5
il2l

64

〉 ,

we can craft the isomorphism η ⊗ I8 computing(
R[x]

⟨x8−y⟩

)
[y]

⟨y32 + 1⟩
∼=

∏
i0,...,i4=0,1

(
R[x]

⟨x8−y⟩

)
[y]〈

y − ω
1+2
∑

l<5
il2l

64

〉 .

Replacing y with x8 gives the desired computation. See Figure 1 for an illustration of the
resulting computations and their mapping to 128-bit Neon registers denoted by rectangles.

R[x]
/〈

x256 + 1
〉

· · ·
32

R[x]
/〈

x128 − ω4
〉

· · ·
16

R[x]
/〈

x128 − ω3
4
〉

· · ·
16...

...
...R[x]

⟨x8−ω64⟩
R[x]

⟨x8−ω63
64⟩

· · ·
32

Figure 1: Neon register view of the isomorphism R[x]
/〈

x256 + 1
〉 ∼=∏

i0,...,i4=0,1 R[x]
/〈

x8 − ω
1+2
∑

l<5
il2l

64

〉
with Cooley–Tukey FFT where R = Z3329 and

each rectangles corresponds to a 128-bit Neon register.
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The second part illustrates a permutation-friendly way implementing∏
i0,...,i4=0,1

R[x]〈
x8 − ω

1+2
∑

l<5
il2l

64

〉 ∼=
∏

i0,...,i6=0,1

R[x]〈
x2 − ω

1+2
∑

l<7
il2l

256

〉 .

The basic idea is to group four polynomial rings of the form R[x]
/〈

x8 − ω
1+2
∑

l<5
il2l

64

〉
together, permutate with T4 ⊗I2, and finally apply Cooley–Tukey FFT. Since 256 = 8 ·4 ·8,
we can group all the polynomials into eight groups with no leftovers, implying permutation-
friendliness. Readers might wonder why applying T4 ⊗ I2 instead of T8. The reason is
that although algebraically we are working over Z3329, we can in fact introduce x2 ∼ y
throughout the FFT. This reduces the complexity of permutation and was implemented
by [BHK+22]. See Figure 2 for a concrete layout of permutation where each rectangles
represents a 128-bit vector register.

a0

b0

c0

d0

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4

b4

c4

d4

a5

b5

c5

d5

a6

b6

c6

d6

a7

b7

c7

d7

T4 ⊗ I2

a0 b0 c0 d0a1 b1 c1 d1

a2 b2 c2 d2a3 b3 c3 d3

a4 b4 c4 d4a5 b5 c5 d5

a6 b6 c6 d6a7 b7 c7 d7

Cooley–Tukey

â0 b̂0 ĉ0 d̂0â1 b̂1 ĉ1 d̂1

â2 b̂2 ĉ2 d̂2â3 b̂3 ĉ3 d̂3

â4 b̂4 ĉ4 d̂4â5 b̂5 ĉ5 d̂5

â6 b̂6 ĉ6 d̂6â7 b̂7 ĉ7 d̂7

T4 ⊗ I2

â0

b̂0

ĉ0

d̂0

â1

b̂1

ĉ1

d̂1

â2

b̂2

ĉ2

d̂2

â3

b̂3

ĉ3

d̂3

â4

b̂4

ĉ4

d̂4

â5

b̂5

ĉ5

d̂5

â6

b̂6

ĉ6

d̂6

â7

b̂7

ĉ7

d̂7

Figure 2: An implementation for
∏

i∈I Z3329[x]
/〈

x8 − ωi
64
〉 ∼=

∏
i∈J Z3329[x]

/〈
x2 − ωi

256
〉

where I = {1, 33, 17, 49} , J = {1, 129, 65, 193, 33, 161, 97, 225}. Each rectangles represents
a 128-bit vector register in Neon.

6 A Walkthrough for Z4591[x]/⟨x761 − x − 1⟩
This section goes through the implementation with truncated Rader’s FFT, Good–Thomas
FFT, and Bruun’s FFT. We multiply polynomials in

Z4591[x]
⟨Φ17 (x96)⟩ .

For simplicity, we assume R = F4591 in this section.
There are two steps for deciding isomorphisms admitting suitable mapping to vector

arithmetic. The first step is to find an isomorphism honoring our intuition of the memory
layout – we choose an isomorphism dividing a large problem into several subproblems of sizes
multiples of v (the number of elements contained in a vector register). Section 6.1 discusses
how to implement the following isomorphisms resulting several size-16 subproblems:

R[x]
⟨Φ17 (x96)⟩

∼=
(

R[x]
⟨x96 − 1⟩

)16
∼=
(∏ R[x]

⟨x16 ± 1⟩

)48
.
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The second step is to decide isomorphisms solving the subproblems. Generally, there are
two lines of approaches distinguished by the existence of vector-by-scalar multiplication
instructions (instructions multiplying vectors by elements of other vectors). We single out
the corresponding identifying algebraic structures as follows:

Permutation-friendly isomorphisms: The first approach is to find a permutation-friendly
isomorphism. Section 6.2.1 discusses our implementation for the following isomor-
phism (∏ R[x]

⟨x16 ± 1⟩

)48
∼=

(∏ R[x]
⟨x8 ± 1⟩

×
∏ R[x]〈

x8 ±
√

2x4 + 1
〉)48

via Cooley–Tukey and Bruun’s FFT, and specifies the corrsponding interleaving
matrices justifying permutation-friendliness.

Toeplitz matrices: The second approach splits all R[x]
/〈

x16 − 1
〉

into
∏

R[x]
/〈

x8 ± 1
〉

,
and implements all cyclic and negacyclic convolutions with Toeplitz matrix-vector
products using vector-by-scalar multiplication instructions. See Section 6.2.2 for
more details.

Finally, we go through a detailed comparisons to existing works with emphases on
vectorization-friendliness and permutation-friendliness in Section 6.3.

6.1 A Vectorzation-Friendly Approach

We first go through the implementation of

R[x]
⟨Φ17 (x96)⟩

∼=
(

R[x]
⟨x96 − 1⟩

)16

via truncated Rader’s FFT and twisting. Let η0 : R16 → R16 be the module map
implementing the permutation and cyclic convolution parts of the truncated size-17 Rader’s
FFT. In other words, η0 maps a tuple (ai)i=0,...,15 to

(
ωi+1

17
∑15

j=0 ajω
j(i+1)
17

)
i=0,...,15

. See

Algorithm 4 for an illustration. The isomorphism R[x]/⟨Φ17(x)⟩ ∼=
∏15

i=0 R[x]
/〈

x − ωi+1
17
〉

is then implemented as mul0 ◦ η0 where mul0 := (ai)i=0,...,15 7→
(

ω
−(i+1)
17 ai

)
i=0,...,15

.

Recall that R[x]
/〈

Φ17
(
x96)〉 ∼=

(
R[x]

/〈
x96 − y

〉)
[y]
/

⟨Φ17(y)⟩ implies one can always
build a transformation defined on R[x]

/〈
Φ17

(
x96)〉 by tensoring an isomorphism defined

on R[x]/⟨Φ17(x)⟩ by I96, we tensor the composition mul0 ◦ η0 by I96 for implementing
R[x]

/〈
Φ17

(
x96)〉 ∼=

∏15
i=0 R[x]

/〈
x96 − ωi+1

17
〉

. We then twist all the rings to the cyclic ones
via the product map twist0 :=

∏15
i=0

(
x 7→ ω

14(i+1)
17 x

)
(notice that ω17 = ω1344

17 =
(
ω14

17
)96).

To sum up, we implement the isomorphism R[x]
/〈

Φ17
(
x96)〉 ∼=

(
R[x]

/〈
x96 − 1

〉)16 as

twist0 ◦ ((mul0 ◦ η0) ⊗ I96)

which is obviously vectorization friendly.
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Algorithm 4 Implementation of η0 = (ai)i=0,...,15 7→
(

ωi+1
17
∑15

j=0 ajω
j(i+1)
17

)
i=0,...,15

.

Input(s): (ai)i=0,...,15.
Output(s): (ci)i=0,...,15 =

(
ωi+1

17
∑15

j=0 ajω
j(i+1)
17

)
i=0,...,15

.

1: for i = 0, . . . , 15 do
2: src[(16 − log3(i + 1)) mod 16] = ai.
3: twiddle[log3(i + 1)] = ωi+1

17 .
4: end for
5: buff[0-15] = src[0-15] · twiddle[0-15] mod

(
x16 − 1

)
.

6: for i = 0, . . . , 15 do
7: ci = buff[log3(i + 1)] ▷ ci = ωi+1

17
∑15

j=0 ajω
j(i+1)
17

8: end for

Next, we turn all the rings R[x]
/〈

x96 − 1
〉

into
(∏

R[x]
/〈

x16 ± 1
〉)3 by applying

Good–Thomas FFT and twisting. Let η1 be the map implementing Good–Thomas FFT,
and twist1 :=

(∏
i=0,1,2

(
x 7→ ω2i mod 3

3 x
)2
)16

twisting
∏

i=0,...,5 R[x]
/〈

x16 − ωi
6
〉

into(∏
R[x]

/〈
x16 ± 1

〉)3. Then, twist1◦(η1 ⊗ I16) implements the isomorphism R[x]
/〈

x96 − 1
〉 ∼=(∏

R[x]
/〈

x16 ± 1
〉)3. See Algorithm 5 for an implementation of η1. Since there are 16

copies of R[x]
/〈

x96 − 1
〉

, the overall map is

I16 ⊗ (twist1 ◦ (η1 ⊗ I16)) = (I16 ⊗ twist1) ◦ (I16 ⊗ η1 ⊗ I16) .

Obviously, this is vectorization friendly since I16 ⊗ twist1 is a diagonal matrix and
I16 ⊗ η1 ⊗ I16 is right-tensored by I16.

Algorithm 5 Implementation of η1 := (ai)i=0,...,5 7→
(∑5

j=0 ajωij
6

)
i=0,...,5

with Good–
Thomas FFT.
Input(s): (ai)i=0,...,5.
Output(s):

(∑5
j=0 ajωij

6

)
i=0,...,5

.

1: (a0, . . . , a5) = (a0, a4, a2, a3, a1, a5).
2: (a0, a1, a2) =

(
a0 + a1 · ωi

3 + a2 · ω2i
3
)

i=0,1,2.
3: (a3, a4, a5) =

(
a3 + a4 · ωi

3 + a5 · ω2i
3
)

i=0,1,2.
4: (a0, a3) = (a0 + a3, a0 − a3).
5: (a1, a4) = (a1 + a4, a1 − a4).
6: (a2, a5) = (a2 + a5, a2 − a5).

▷ (a0, a4, a2, a3, a1, a5) =
(∑5

j=0 ajωij
6

)
i=0,...,5

.

For a more illustrative explanation of how polynomials are mapped to 128-bit registers,
we outline the workflow in Figure 3 where each rectangles represent a 128-bit register.
Note that similar justification holds for 256-bit registers since we are right-tensoring by
I16.
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R[x]
/〈

Φ17
(
x96)〉

· · ·
192

twist0 ◦ ((mul0 ◦ η0) ⊗ I96)
R[x]

/〈
x96 − 1

〉
· · ·
12

· · ·

R[x]
/〈

x96 − 1
〉

· · ·
12

16

I16 ⊗ (twist1 ◦ (η1 ⊗ I16))∏
R[x]

/〈
x16 ± 1

〉
· · ·
4

· · ·

∏
R[x]

/〈
x16 ± 1

〉
· · ·
4

48

Figure 3: Overview of the correspondence between algebraic maps and 128-bit vector
register view in Neon. Each rectangles holds 128

16 = 8 coefficients and is loaded to a vector
register. Similar justification of vectorization-friendliness holds if we move two 256-bit
vector registers in AVX2.

6.2 Small-Dimensional Cyclic/Negacyclic Convolutions
This section goes through our approaches multiplying in(∏ R[x]

⟨x16 ± 1⟩

)48
.

We propose two approaches: a permutation-friendly approach for AVX2 and a Toeplitz
matrix-vector product approach for Neon.

6.2.1 A Permutation-Friendly Approach

We first go through a permutation-friendly approach used in our AVX2 implementation.
Since the goal is to interleave 16 polynomial rings with the same shape of computation,
we explain how to map the multiplication in

(∏
R[x]

/〈
x16 ± 1

〉)16 to vector arithmetic.
We perform an even-odd permutation over 16-tuples resulting

(
R[x]

/〈
x16 − 1

〉)16 ×(
R[x]

/〈
x16 + 1

〉)16 followed by two copies of T256. This gives us the map

(I2 ⊗ T256) (EvenOdd32 ⊗ I16)

where EvenOdd32 moves the even indices to the first half and the odd indices to the second
half. See Figure 4 for an illustration. The overall interleaving matrix for

(∏ R[x]
⟨x16±1⟩

)48

can be written as:
(I6 ⊗ T256) (I3 ⊗ EvenOdd32 ⊗ I16)

which is permutation-friendly. Finally, we apply Cooley–Tukey to R[x]
/〈

x16 − 1
〉 ∼=∏

R[x]
/〈

x8 ± 1
〉

and Bruun to R[x]
/〈

x16 + 1
〉 ∼= R[x]

/〈
x8 ±

√
2x4 + 1

〉
followed by

Karatsuba defined over vector registers.
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∏
R[x]

/〈
x16 ± 1

〉
2

· · ·

∏
R[x]

/〈
x16 ± 1

〉
2

16

EvenOdd32 ⊗ I16(
R[x]

/〈
x16 − 1

〉)16

· · ·
16

(
R[x]

/〈
x16 + 1

〉)16

· · ·
16

I2 ⊗ T256([
x0] R[x]

⟨x16−1⟩

)16

...
...([

x15] R[x]
⟨x16−1⟩

)16

([
x0] R[x]

⟨x16+1⟩

)16

...
...([

x15] R[x]
⟨x16+1⟩

)16

Figure 4: Overview of permutations implementing permutation-friendliness for our AVX2
implementation defined on

(
R[x]

/〈
x16 ± 1

〉)16. Same idea applies to
(

R[x]
/〈

x16 ± 1
〉)48

since 48 = 3 · 16. Each rectangles represents a 16-tuple mapped to a 256-bit vector register
in AVX2.

6.2.2 Toeplitz Matrix-Vector Products

Recall that one can phrases polynomial multiplications in R[x]
/〈

xv′ ± 1
〉

as Toeplitz
matrix-vector products for v′ a multiple of v (cf. Section 3.3). We describe an alternative
approach for multiplying in

(∏
R[x]

/〈
x16 ± 1

〉)48 with Neon. Since each vector registers
in Neon holds eight coefficients, we first split R[x]

/〈
x16 − 1

〉
into

∏
R[x]

/〈
x8 ± 1

〉
, and

apply Toeplitz matrix-vector multiplications in R[x]
/〈

x8 ± 1
〉

and R[x]
/〈

x16 − 1
〉

. The
implementations follow analogously from the example in Section 3.3.

6.3 Comparisons to Prior Implementations
We briefly compare our vectorized implementation to prior FFT works working over
R = Z4591. Table 1 summarizes the vectorization- and permutation-friendliness of ex-
isting polynomial multipliers over R. Table 2 summarizes existing vectorization-friendly
approaches with AVX2 and Neon, Table 3 summarizes existing permutation-friendly ap-
proaches with AVX2, and Table 4 summarizes existing permutation-friendly and Toeplitz
matrix-vector product approaches with Neon.

Comparison(s) to R[x]
/〈

x1530 − 1
〉

from [ACC+21]. The earliest FFT work over R
was implemented by [ACC+21]. Since 4591 is a prime, one can only define Cooley–
Tukey FFTs of sizes factors of 4591 − 1 = 2 · 32 · 5 · 17. They computed the iso-
morphsims R[x]

/〈
x1530 − 1

〉 ∼=
∏

i R[x]
/〈

x90 − ωi
17
〉 ∼=

∏
i R[x]

/〈
x10 − ωi

102
〉

with size-
17 Rader’s and Cooley–Tukey FFTs. For the size-10 polynomial multiplications in∏

i R[x]
/〈

x10 − ωi
102
〉

, they implemented the naïve approach. Since 2 is the only power-of-
two factor of 1530, the isomorphisms are not vectorization-friendly if there are more than
two elements in a vector register. Therefore, their approach is unsuitable for vectorization
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while moving to Neon and AVX2 where eight and sixteen halfwords are contained in
each vector registers, respectively. On the other hand, our transformation is suitable for
vectorization in Neon and AVX2.

Comparison(s) to R[x]
/〈

x2048−1
x512+1

〉
from [BBCT22]. We compare our AVX2 imple-

mentation to the state-of-the-art AVX2 work by [BBCT22]. In [BBCT22], they made a
first attempt to deliver a power-of-two-sized FFT polynomial multiplier in AVX2 based
on Schönhage’s and Nussbaumer’s FFTs. They performed Schönhage’s FFT with the
following injection:

R[x]〈
x2048−1
x512+1

〉 ∼=

(
R[x]

⟨x32−y⟩

)
[y]〈

y64−1
y16+1

〉 ↪→

(
R[x]

⟨x64+1⟩

)
[y]〈

y64−1
y16+1

〉 .

Since x2 is now a principal 32-nd root of unity, we can split the resulting polynomial
ring into linear ones in y by appling Cooley–Tukey FFT with twiddle factors x2i’s. After
splitting into linear ones in y, they applied Nussbaumer’s FFT with the following injection
to all the 48 copies of R[x]

/〈
x64 + 1

〉
:

R[x]
⟨x64 + 1⟩

∼=

(
R[z]

⟨z8+1⟩

)
[x]

⟨x8 − z⟩
↪→

(
R[z]

⟨z8+1⟩

)
[x]

⟨x16 − 1⟩
.

Again, since z is now a principal 16-th root of unity, we can split the ring into size-1
polynomial rings in x. Since Schönhage’s FFT is vectorization-friendly and Nussbaumer’s
FFT is permutation-friendly (cf. Section 4.6), the overall computation is suitable for
vectorization. As for polynomial multiplications in R[z]

/〈
z8 + 1

〉
, they applied recursive

Karatsuba. The downsize of their choice is the number of subproblems. Recall that each
applications of Schönhage’s and Nussbaumer’s FFTs doubles the number of coefficients,
there are eventually 1536·4

8 = 768 polynomial multiplications in the ring R[z]
/〈

z8 + 1
〉

.
In our transformation for AVX2, we only need 48 multiplications in R[x]

/〈
x8 − 1

〉
, 48

multiplications in R[x]
/〈

x8 + 1
〉

, 48 multiplications in R[x]
/〈

x8 +
√

2x4 + 1
〉

, and 48
multiplications in R[x]

/〈
x8 −

√
2x4 + 1

〉
. To sum up, only 48 · 4 = 192 size-8 polynomial

multiplications are required in our implementation. This is the main reason why our AVX2
implementation outperform [BBCT22] implementation.

Table 1: Summary of maximum possible v justifying vectorization- and permutation-
friendliness of existing polynomial multipliers over Z4591 for Z4591[x]

/〈
x761 − x − 1

〉
. CT

stands for Cooley–Tukey FFT and GT stands for Good–Thomas FFT.
[ACC+21] [BBCT22] [HLY24] This work

ISA/extension Armv7E-M AVX2 Neon Neon/AVX2
# halfwords 2 16 8 8 / 16in a vector register
Domain R[x]

⟨x1530−1⟩
R[x]〈

x2048−1
x512+1

〉 R[x]
⟨x1632−1⟩

R[x]
⟨Φ17(x96)⟩

FFT Rader, Schönhage, Rader, truncated Rader,
CT Nussbaumer GT GT

Vectorization-friendly v = 2 (Yes) v = 64 (Yes) v = 32 (Yes) v = 32 (Yes)
Permutation-friendly v = 1 (No) v = 32 (Yes) v = 4 (No) v = 16 (Yes)
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Table 2: Summary of vectorization-friendly approaches.
[BBCT22] [HLY24] This work

ISA/extension AVX2 Neon Neon/AVX2
Domain R[x]〈

x2048−1
x512+1

〉 R[x]
⟨x1632−1⟩

R[x]
⟨Φ17(x96)⟩

FFT Schönhage Rader-17 + GT truncated Rader-17 + GT

Image
(

R[x]
⟨x64+1⟩

)48 ∏
i

R[x]
⟨x16−ωi

102⟩
(∏ R[x]

⟨x16±1⟩

)48

Table 3: Summary of permutation-friendly approaches with AVX2. K stands for Karatsuba.
[BBCT22] This work

Domain
(

R[x]
⟨x64+1⟩

)48 (∏ R[x]
⟨x16±1⟩

)48

FFT Nussbaumer CT + Bruun

Image
(

R[z]
⟨z8+1⟩

)768
(∏ R[x]

⟨x8±1⟩ ×
∏ R[x]

⟨x8±
√

2x4+1⟩

)48

Follow up polymul. Recursive K K
Multiplication instruction Vector-by-vector Vector-by-vector

Table 4: Summary of permutation-friendly and Toeplitz matrix-vector product approaches
multiplying small-dimensional polynomials in Neon.

[HLY24] This work

Domain
∏

i
R[x]

⟨x16−ωi
102⟩

(∏ R[x]
⟨x16±1⟩

)48

FFT CT + Bruun CT

Image

∏
i<48

(∏ R[x]
⟨x8±ωi

51⟩

)
× (∏ R[x]

⟨x8±1⟩ × R[x]
⟨x16+1⟩

)48∏
i<48

(∏ R[x]
⟨x8±

√
2ω64i

51 x4+ω128i
51 ⟩

)
×
∏

i>=96
R[x]

⟨x16−ωi
102⟩

Follow up polymul. Naïve (size-8) + K (size-16) Toeplitz
Multiplication instruction Vector-by-vector Vector-by-scalar

Comparison(s) to R[x]
/〈

x1632 − 1
〉

from [HLY24]. Finally, we compare our Neon
implementation to the state-of-the-art Neon work by [HLY24]. Let R := R[x]

/〈
x16 − y

〉
.

They started by applying a 3-dimensional Good–Thomas FFT to R[x]
/〈

x1632 − 1
〉

as
follows:

R[x]
⟨x1632 − 1⟩

∼=
R[u, w, z]

⟨u17 − 1, w3 − 1, z2 − 1⟩
∼=

∏
i0,i1,i2

R[u, w, z]〈
u − ωi0

17, w − ωi1
3 , z − ωi2

2
〉 .

The size-2 and size-3 cyclic transformations are obvious. For the size-17 cyclic transforma-
tion, they applied size-17 Rader’s FFT. After moving back to the coefficient ring R, we
have

R[x]
⟨x1632 − 1⟩

∼=
∏

i0,i1,i2

R[x]〈
x16 − ωi0

17ωi1
3 ωi2

2
〉 ∼=

∏
i

R[x]〈
x16 − ωi

102
〉
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up to a suitable permutation, resulting in 102 instantces of polynomial multiplications of the
form R[x]

/〈
x16 − ωi

102
〉

. Since 102·16 = 1632 is not a multiple of 64 (there are 8 elements in
each vector register and 64 = 82), the follow up computation can’t be permutation-friendly.
They then separated the computing tasks into two parts:

∏
i<96 R[x]

/〈
x16 − ωi

102
〉

and∏
i≥96 R[x]

/〈
x16 − ωi

102
〉

. For
∏

i<96 R[x]
/〈

x16 − ωi
102
〉

, they splitted it into

∏
i<96,2|i

∏ R[x]〈
x8 ± ωi

51
〉 ×

∏
i<96,2⊥i

∏ R[x]〈
x8 ±

√
2ω64i

51 x4 + ω128i
51
〉 3

amounting to 96 polynomial multiplications of the form R[x]
/〈

x8 − γ
〉

and 96 polynomial
multiplications of the form R[x]

/〈
x8 + αx4 + β

〉
for α, β, γ ∈ R. For the remaining part∏

i≥96 R[x]
/〈

x16 − ωi
102
〉

, since there are only six polynomial multiplications, they inter-
leaved the polynomials with don’t-cares and applied naïve computation. Our transformation
removes this part.

7 Results

7.1 Benchmarking Environment

Intel processors with AVX2. We benchmark our AVX2 implementation on Intel(R)
Core(TM) i7-4770K (Haswell) processor with frequency 3.5 GHz, and Intel(R) Xeon(R)
CPU E3-1275 v5 (Skylake) with frequency 3.6 GHz. For benchmarking polynomial multi-
plications, we compile with GCC 10.4.0 on Haswell and GCC 11.3.0 on Skylake using the
optimization flag -O3. For the batch key generation, we reuse the libsntrup761-20210608
package from [BBCT22]. For the encapsulation and decapsulation, we benchmark with
the benchmarking framework SUPERCOP, version supercop-20230530. TurboBoost and
hyperthreading are disabled throughout the entire benchmarking.

Armv8.0+-A Neon. We benchmark our Neon implementation on a Raspberry Pi 4
Model B and Apple M1 Pro. Raspberry Pi 4 comes with the quad-core (Cortex-A72)
Broadcom BCM2711 chipset and runs at 1.5GHz. Apple M1 Pro is a system-on-chip
featuring eight high-performance cores “Firestorms” running at 3.2 GHz and two energy-
efficient cores “Icestorm” running at 2.0 GHz. We compile our code with GCC version
12.3.0 with -O3 on Cortex-A72, and GCC version 13.2.0 with -O3 on Firestorm.

7.2 Performance of Polynomial Multiplication

We provide the performance cycles of functions mulcore and polymul in Table 5. mulcore
computes the product in Z4591[x] with potential scaling by a predefined constant, and
polymul additionally reduces the product modulo x761 − x − 1 and mitigates the potential
scaling. Our AVX2-optimized mulcore outperforms the state-of-the-art AVX2 implementa-
tion from [BBCT22] by factors of 1.90× and 2.05× on Haswell and Skylake, and polymul
outperforms the state-of-the-art AVX2 implementation by factors of 1.99× and 2.16× on
Haswell and Skylake. As for our Neon-optimized mulcore and polymul, they outperform
the state-of-the-art Neon implementation from [HLY24] by factors of 1.25× and 1.29×
on Cortex-A72, and 1.25× and 1.36× on Appl1 M1 Pro. In Appendix A, we provide the
detailed performance numbers.

3The notation n⊥m means that n and m are coprime.
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Table 5: Performance cycles of polynomial multiplications over Z4591 for sntrup761.

AVX2
[BBCT22]∗ This work [BBCT22]∗ This work

Haswell Skylake
mulcore (Z4591[x]) 23 460 12 336 20 070 9 778
polymul

(
Z4591[x]

⟨x761−x−1⟩

)
25 356 12 760 21 364 9 876

Neon
[HLY24] This work [HLY24]∗ This work

Cortex-A72 Apple M1 Pro
mulcore (Z4591[x]) 37 475 29 909 8 120 6 508
polymul

(
Z4591[x]

⟨x761−x−1⟩

)
39 788 30 912 9 091 6 697

∗ Our own benchmarks.

7.3 Performance of Scheme
Finally, we compare the overall performance of sntrup761, and summarize them in Tables 6
and 7.

AVX2 code package(s). For the AVX2-optimized implementation, we integrate our
code into the package libsntrup761 with version 20210608 provided by [BBCT22], and
report the the amortized cost of batch key generation with batch size 32. Additionally, we
also integrate our code into the package supercop with version 20230530, and report the
performance of encapsulation and decapsulation after contacting the authors of [BBCT22]
for reproducing the numbers in their work.

Neon code package(s). For the Neon-optimized implementation, We integrate our
code into the artifact provided by [HLY24].

Overall performance with AVX2. For the batch key generation with batch size 32,
we reduce the amortized cost by 12.0% on Haswell and 7.9% on Skylake. For encapsulation,
we reduce the cost by 7.1% on Haswell and 10.3% on Skylake. For decapsulation, we
reduce the cost by 10.7% on Haswell and 13.3% on Skylake.

Overall performance with Neon. We skip the comparison of key generation on
Cortex-A72 and Apple M1 Pro since it is dominated by inversions, which are out of the
scope of this paper. For the encapsulation, we reduce the cycles by 6.6% on Cortex-A72
and 3.0% on Apple M1 Pro, and for the decapsulation, we reduce the cycles by 15.1% on
Cortex-A72 and 12.8% on Apple M1 Pro.

A Profiling of Polynomial Multiplication
This section provides detailed performance profiling. For AVX2 implementations, we report
the median cycles of 100,000 iterations on Haswell and Skylake. For Neon implementations,
we run all the components with 1,000 iterations and report the median cycles on Cortex-A72
and average cycles on Firestorm.
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Table 6: Performance cycles of sntrup761 with batch key generation using Montgomery’s
trick on Haswell and Skylake. For the batch key generation, we benchmark with batch
size 32.

[BBCT22]∗∗ SUPERCOP This work
Haswell

Batch key generation (amortized) 154 552 - 136 003
Encapsulation - 47 464 44 108
Decapsulation - 56 064 50 080

Skylake
Batch key generation (amortized) 129 159 - 118 939
Encapsulation - 40 653 36 486
Decapsulation - 47 387 41 070

∗∗ Our own benchmark.

Table 7: Performance cycles of sntrup761 on Cortex-A72 and Apple M1 Pro.

[HLY24]∗∗∗ This work [HLY24]∗∗∗ This work
Cortex-A72 Apple M1 Pro

Key generation 6 574 055 6 539 849 1 813 947 1 806 741
Encapsulation 150 054 140 107 64 924 62 959
Decapsulation 159 286 135 184 43 778 38 196

∗∗∗ Our own benchmark.

A.1 AVX2 Performance

Table 8 gives an overview of the number of corresponding function calls in our AVX2
implementation, Table 9 summarizes the performance of truncated size-17 Rader’s FFT
and radix-(3, 2) butterflies with Good–Thomas FFT, and Table 10 summarizes the transpo-
sitions and polynomial multiplications in R[x]

/〈
x16 − ζ

〉
. For the radix-(3, 2) butterflies,

we provide two implementations – one twists the polynomials prior to Good–Thomas
FFT and one twists the polynomials after Good–Thomas FFT. For the transpositions, we
provide two implementations – one twists the polynomials prior to transposing and one
twists the polynomials after transposing.

Table 8: Overview of function calls in our AVX2 implementation.

Function Count
Truncated Rader-17 for R[x]/⟨Φ17(x)⟩ (128×) 2
Inverse of truncated Rader-17 for R[x]/⟨Φ17(x)⟩ (128×) 1
Radix-(3, 2) with pre-twist (256) 2
Rader-(3, 2) with post-twist (256) 1
Twist with pre-transpose 12
Twist with post-transpose 6
Polynomial multiplication in R[x]

/〈
x16 − 1

〉
(16×) 3

Polynomial multiplication in R[x]
/〈

x16 + 1
〉

(16×) 3
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Table 9: AVX2 Performance cycles of butterfly operations. Numbers are medians of
100,000 iterations where each iteration computes with the indicated repetions of algebraic
operations.

Haswell Skylake
Radix-17

Truncated Rader-17 for R[x]/⟨Φ17(x)⟩ (128×) 2 504 1 776
Inverse of truncated Rader-17 for R[x]/⟨Φ17(x)⟩ (128×) 2 528 1 752

Radix-(3, 2)
Radix-(3, 2) with pre-twist (256 × 8) 5 112 3 794
Radix-(3, 2) with post-twist (256 × 8) 4 904 3 550

Table 10: AVX2 Performance of permutations with twisting. Numbers are medians of
100,000 iterations where each iteration computes with the indicated repetions of algebraic
operations.

Haswell Skylake
Twist with pre-transpose (8×, 256 coeff. each) 768 632
Twist wit post-transpose (8×, 256 coeff. each) 720 618

A.2 Neon Performance
Table 12 gives an overview of the number of corresponding function calls in our Neon
implementation, Table 13 summarizes the performance of truncated size-17 Rader’s FFT
and radix-(3, 2) butterflies with Good–Thomas FFT, and Table 14 summarizes the perfor-
mance of polynomial multiplications in R[x]

/〈
x16 ± 1

〉
. For the radix-(3, 2) butterflies,

we perform two layers of twisting – we twist the polynomials, apply Good–Thomas FFT,
and twist the results again.

B Future Works
This work shows that polynomial multiplication in a ring lacking common beliefs of
friendliness measures for implementations, truncated Rader’s, Good–Thomas, and Bruun’s
FFT are more favorable than Schönhage’s and Nussbaumer’s FFTs.

There are several future works for parameter set sntrup761. An immediate one
is to generate several multipliers of sizes 2i03i15i2 based on this work for FFT-based
fast constant-time GCD computation [BY19]. Additionally, an ambitious goal is to
explore various possible vectorized multipliers for other NTRU Prime parameter sets.
We first draft vectorized polynomial multipliers for ntrulpr857/sntrup857 based on
various ideas presented in this paper and give theoretical estimations for the resulting
performance. Additionally, we also briefly draft some ideas for ntrulpr1013/sntrup1013
and ntrulpr1277/sntrup1277.

B.1 Theoretical Estimations for ntrulpr857/sntrup857

Definition of a meaningful theoretical estimation. Before jumping to the technical
details, we first define the terminology “meaningful theoretical esitmation” for clarity since
from submission experience, reviewers had different interpretations of this term. We call
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Table 11: AVX2 Performance cycles of power-of-two base multiplications. Numbers are
medians of 100,000 iterations where each iteration computes with the indicated repetions
of algebraic operations. Karatsuba for R[x]

/〈
x16 − ζ

〉
is only involved in our development

and not used in our implementation.

Approach Haswell Skylake
R[x]

/〈
x16 − 1

〉
(128×) Cooley–Tukey 3 168 2 576

R[x]
/〈

x16 + 1
〉

(128×) Bruun 4 720 3 616
R[x]

/〈
x16 − ζ

〉
(128×) Karatsuba 5 588 4 428

Table 12: Overview of function calls in our Neon implementation.

Function Count
Truncated Rader-17 for R[x]/⟨Φ17(x)⟩ (128×) 2
Inverse of truncated Rader-17 for R[x]/⟨Φ17(x)⟩ (128×) 1
Radix-(3, 2) with twists (256) 3
Polynomial multiplication in R[x]

/〈
x16 − 1

〉
(16×) 3

Polynomial multiplication in R[x]
/〈

x16 + 1
〉

(16×) 3

a performance number a theoretical estimation of a computation if someone claims
that target computation runs in the estimated cycles. Not all theoretical estimations
are meaningful in the common sense. For example, claiming that multiplying two 1024-
bit integers takes 1010101010

Firestorm cycles is not meaningful even when Apple M1
Pro is broken and repairing time is counted! We call a theoretical estimation of a
computation meaningful if the computation can be constructed from already implemented
computations, up to replacements of tables of constants. In the following, we propose our
vectorized polynomial multipliers and deliver meaningful theoretical estimations of Haswell
and Cortex-A72 cycles.

Overview of our proposed vectorized polynomial multipliers. For the parameter
sets ntrulpr857/sntrup857, we want to multiply polynomials in ZZ5167[x]

/〈
x857 − x − 1

〉
.

We propose to multiply in Z5167[x]
/〈

Φ7(x288)
〉

with truncated Rader’s, Good–Thomas,
and Bruun’s FFTs. Since 5167 − 1 = 2 · 32 · 7 · 41 and 5167 + 1 = 24 · 17 · 19, we can define
principal roots ω7, ω2, ω9, and Z5167[x]

/〈
x16 + 1

〉
splits into eight trinomials. We first

compute the isomorphism

Z5167[x]
⟨Φ7(x288)⟩

∼=
∏

i=1,...,6

Z5167[x]〈
x288 − ωi

7
〉 ∼=

(
Z5167[x]

⟨x288 − 1⟩

)6

with truncated size-7 Rader’s FFT and twisting. We then apply Good–Thomas FFT
turning a size-18 cyclic DFT into a tensor product of a size-2 cyclic DFT and a size-9
cyclic DFT. The size-9 cyclic DFT is then implemented with Cooley–Tukey FFT using
radix-3 butterflies. After applying the size-18 cyclic DFT, we twist all the polynomial
rings into cyclic and negacyclic ones. Below is an illustration:

Z5167[x]
⟨x288 − 1⟩

∼=
∏
i0,i1

Z5167[x]〈
x16 − ωi0

2 ωi1
9
〉 ∼=

∏
i0

(
Z5167[x]〈

x16 − ωi0
2
〉)9

.
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Table 13: Neon Performance cycles of butterfly operations. Numbers are medians on
Cortex-A72 and averages on Firestorm of 1,000 iterations where each iteration computes
with the indicated repetions of algebraic operations.

Cortex-A72 Firestorm
Radix-17

Truncated Rader-17 for R[x]/⟨Φ17(x)⟩ (96×) 4 369 1 016
Inverse of truncated Rader-17 for R[x]/⟨Φ17(x)⟩ (96×) 4 379 1 016

Radix-(3, 2)
Radix-(3, 2) with twistings (256×) 3 184 505

Table 14: Neon Performance cycles of power-of-two base multiplications. Numbers are
medians on Cortex-A72 and averages on Firestorm of 1,000 iterations where each iteration
computes with the indicated repetions of algebraic operations.

Approach Cortex-A72 Firestorm
R[x]

/〈
x16 − 1

〉
(96×) Cooley–Tukey + Toeplitz 2 590 788

R[x]
/〈

x16 + 1
〉

(96×) Toeplitz 3 670 1 144

The remaining problems are 54 polynomial multiplications in each of Z5167[x]
/〈

x16 − 1
〉

and Z5167[x]
/〈

x16 + 1
〉

. In Neon, we simply reuse the implementations for sntrup761.
As for AVX2, we interleave 48 polynomials in Z5167[x]

/〈
x16 − 1

〉
and 48 polynomials in

Z5167[x]
/〈

x16 + 1
〉

, and apply AVX2-optimized Cooley–Tukey and Bruun’s FFT as shown
in Section 6.2. For the remaining 12 polynomial multiplications in Z5167[x]

/〈
x16 ± 1

〉
, we

interleave them with four don’t-care polynomials and apply AVX2-optimized Karatsuba.

Meaningful theoretical estimations for the performance. We estimate the perfor-
mance of Z5167[x]

/〈
Φ7(x288)

〉
as follows. For the truncated Rader-7 FFT, the performance

is the same as a size-6 cyclic convolution. We overestimate the size-6 cyclic convolution with
two size-6 cyclic FFTs followed by twisting since one of the operands contains only publicly
known constants where precomputation is allowed. We regard this as an overestimation
since there could be faster way for the size-6 cyclic convolution. For the follow up size-18
cyclic DFT via Good–Thomas and Cooley–Tukey FFTs, since the performance is no worsee
than a size-36 cyclic DFT and one size-36 cyclic DFT can be implemented as two layers of
size-6 cyclic FFTs followed by twisting, we again overestimate the performance of size-18
cyclic DFT with two size-6 cyclic FFTs followed by twisting. Based on the performance
numbers in Tables 9 and 13, we overestimate the performance cycles of

Z5167[x]
⟨Φ7(x288)⟩

∼=
(∏ Z5167[x]

⟨x16 ± 1⟩

)54

as 5112 · 1
256·8 · 1728

6 · 4 = 2875.5 Haswell cycles and 3184 · 1
256 · 1728

6 · 4 = 14328.0
Cortex-A72 cycles. For the performance estimation of size-16 cyclic/negacyclic polynomial
multiplications with AVX2, we estimate it as the sum of performance numbers for 48
Cooley–Tukey FFT for Z5167[x]

/〈
x16 − 1

〉
, 48 Bruun’s FFT for Z5167[x]

/〈
x16 + 1

〉
, and

16 Karatsuba for Z5167[x]
/〈

x16 − ζ
〉

where ζ could be different among the 16 polynomials.
Therefore, the performance of size-16 polynomial multiplication is 3168 · 48

128 + 4720 · 48
128 +

5588 · 16
128 = 3656.5 Haswell cycles. On the other hand, for the Neon implementation, we
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simply reuse the implementations for sntrup761 and estimate as (2590 + 3670) · 1
1536 ·

1728 = 7042.5 Cortex-A72 cycles. Finally, the remaining estimation is about interleaving
polynomials for the AVX2 implementation. Since 1728 < 256 · 7, we overestimate the
performance as 768 · 7

8 = 672. In summary, the overall overestimation of the performance
is 2875.5 · 3 + 672 · 3 + 3656.5 = 14299 Haswell cycles and 14328.0 · 3 + 7042.5 = 50026.5
Cortex-A72 cycles.
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