
The Principal–Agent Problem in Liquid Staking

Apostolos Tzinas1,3 and Dionysis Zindros2,3

1 National Technical University of Athens
2 Stanford University

3 Common Prefix

Jan 27, 2023
Last update: April 28, 2023

Abstract. Proof-of-stake systems require stakers to lock up their funds
in order to participate in consensus validation. This leads to capital in-
efficiency, as locked capital cannot be invested in Decentralized Finance
(DeFi). Liquid staking rewards stakers with fungible tokens in return
for staking their assets. These fungible tokens can in turn be reused
in the DeFi economy. However, liquid staking introduces unexpected
risks, as all delegated stake is now fungible. This exacerbates the al-
ready existing Principal–Agent problem faced during any delegation, in
which the interests of the delegator (the Principal) are not aligned with
the interests of the validator (the Agent). In this paper, we study the
Principal–Agent problem in the context of liquid staking. We highlight
the dilemma between the choice of proportional representation (having
one’s stake delegated to one’s validator of choice) and fair punishment
(being economically affected only when one’s choice is misinformed). We
put forth an attack illustrating that these two notions are fundamentally
incompatible in an adversarial setting. We then describe the mechanism
of exempt delegations, used by some staking systems today, and devise a
precise formula for quantifying the correct choice of exempt delegation
which allows balancing the two conflicting virtues in the rational model.

1 Introduction

When a validator participates in a proof-of-stake protocol, they bond
their stake, locking it up for a period of time in exchange for rewards.
This locked-up stake is slashed in case of validator misbehavior such as
equivocation. Stakeholders delegate their stake to validators to also earn
rewards. If the validator misbehaves, the funds of the delegator are also
slashed. This introduces a Principal–Agent problem [21, 33] in which the
actions of the validator (the Agent) affect the capital of the delegator (the
Principal).

However, staked assets are illiquid and cannot be used for other pur-
poses such as in DeFi applications [35] because they are locked up. Liquid

staking [25] is an attempt to solve this problem by issuing token repre-
sentations of the staked assets that can be freely traded and utilized by
stakeholders elsewhere in the blockchain ecosystem.

Liquid staking token representations are most valuable when they
are fungible. However, this fungibility exacerbates the Principal–Agent
problem of delegated stake. A liquid staking system pools together stakes
from different participants, prompting the question of whom to delegate
these pooled funds to. If the system has proportional representation, every
pool participant decides whom to delegate to in proportion to their con-
tributed shares. The crux of the issue arises from the fact that a malicious
pool participant can choose to delegate to a colluding validator who then
equivocates. This causes a portion of the pooled money to be slashed,
affecting every pool participant in proportion to their contributed stake,
even if they made no unwise delegation decisions, in a situation of unfair
punishment. This causes a drop in the price of the liquid staking tokens.
A rational attacker profits from this price drop by shorting the token.
Our contributions. Our contributions in this paper are as follows:
1. We introduce two desirable properties in the context of Liquid Stak-

ing: Proportional Representation and Fair Punishment.
2. We showcase the Principal–Agent problem in the Liquid Staking set-

ting by describing a concrete attack leveraging it.
3. We give a precise description of the market conditions that enable this

attack, and a formula for a liquid staking system configuration which
can avoid it.

Related work. Proof-of-stake (PoS) was introduced by PeerCoin [23]
and formalized in later works [5, 6, 16, 19, 22]. Slashing [11] is a tech-
nique used to achieve economic safety [12] in many PoS systems, among
others PoS Ethereum [13, 14] and Cosmos [8–10]. Outside of centralized
exchanges, liquid staking was introduced independently by the team of
Joe Bowman, Brian Crain, Felix Lutsch, Dev Ojha, Meher Roy (from
Chorus One and Sikka), and Hyung Yeon Lee (from B-Harvest) in June
2019. First reported as Delegation Vouchers [24] they were later analyzed
in a comprehensive report [25] with the help of the Liquid Staking Work-
ing Group. Lido [1] and Rocket Pool [31] popularized liquid staking in
Ethereum, and Quicksilver [7], Stride [34] and pStake [30] in Cosmos.
Quicksilver is the first protocol to propose proportional representation,
but this is not yet implemented. Besides liquid staking, stake rehypothe-
cation takes the form of restaking (EigenLayer [17]) and cross staking [3].
Exempt delegations, with one name or another, are used in Rocket Pool,
and have been proposed for Cosmos [26].

2

2 Preliminaries

Loans. For the attack we will describe in this paper, some upfront capital
is required. Sometimes a portion of this capital is needed only throughout
one transaction. Towards this purpose, a flash loan [20] is obtained, which
has zero duration and no funds at risk. We assume that a loan of duration
∆t for capital u has an upfront cost factor β, an interest rate r and
the amount to be repaid, including both the principal and interest, is
((1+ r)∆t+β)u. The term β models the cost factor of a flash loan, which
has duration 0. In order to take a non-flash loan, a collateral in different
currency must be deposited for the duration of the loan. DeFi protocols
typically require overcollateralization. We denote by γ ≥ 1 the collateral
ratio required by the loan provider. To take a loan of z in one currency,
one must deposit the equivalent value of γz in another currency.
Proof-of-Stake. Proof-of-stake systems are secured by validators who
propose and vote on blocks. To become a validator in a slashably safe [12]
system, a stakeholder must bond their stake which locks it up for a par-
ticular period of time in return for rewards. Validators promise they will
not equivocate by signing conflicting blocks. In case of equivocation, a
percentage 0 < p ≤ 1 of the locked stake is slashed and the validator
is permanently deactivated. In the cryptographic model, validators can
be honest or adversarial. The honest validators run the prescribed pro-
tocol, and hence never equivocate, whereas the adversarial validators can
deviate from the protocol arbitrarily.
Delegation. Since not everyone has the capacity to become a validator,
a stakeholder can delegate their stake to a validator to participate in
the validation process in their stead. The voting power of the validator
accounts for the delegated stake, and delegated stake is also slashed in
case of validator misbehavior. The stake bonded by a validator themselves
and not delegated from others is known as self-delegation. Self-delegations
as well as stake delegated from others is known as delegated stake, and the
capital holder of delegated stake is known as the delegator, but will also
be referred to as the principal. A principal can undelegate or redelegate at
any time, but must wait4 for an unbonding period δ.
Liquid Staking. Delegated stake earns rewards, but remains locked and
is illiquid. Principals often wish to rehypothecate their delegated stake,
for example to take loans [20] or to, more broadly, participate in the

4The waiting period may sometimes be waived and redelegations allowed instantly
if no other redelegations have happened within δ, such as in Cosmos [15]. The important
point for us is that, after redelegation has commenced, the redelegated stake is still
prone to slashing due to the old validator’s misbehavior for a period of δ.

3

DeFi [35] economy. Protocols that enable this ability are known as liquid
staking protocols [25]. Some such protocols [1, 34] operate in the form of
smart contracts (e.g., Lido and Rocket Pool in Ethereum) or separate
appchains5 (e.g., Stride, pStake, and Quicksilver in Cosmos). Stakehold-
ers deposit their funds into the liquid staking protocol. Upon deposit,
these contracts act as delegators and delegate the incoming funds to
their choice of validators. They collect this delegated stake into a pool
and receive staking rewards from these holdings. During the deposit, a
new derivative asset is minted, which is given to the depositor as a claim
to the delegated stake held by the liquid staking contract. Such derivative
tokens, when issued from the same liquid staking contract, are fungible
with one another6. We are only concerned with liquid staking protocols
that are fully fungible. At any time, the derivative asset holder can re-
deem their derivative asset. During redemption, the contract burns the
holder’s derivative assets and returns the respective assets to the holder.
For completeness, we illustrate the basic deposit and withdrawal function-
alities of any liquid staking protocol in Appendix B. In our treatment, we
consider a generic asset that we denominate in ASSET and the respective
derivative token, that we denominate in stASSET, issued by an arbitrary
liquid staking protocol. We assume a perfectly efficient market for ASSET
and stASSET, as well as a sufficiently deep loan market with rates rA, βA,
and rst, βst respectively.
Exchange rates. Initially, ASSET and stASSET are priced at a 1:1 ex-
change rate, as one can be exchanged for the other by redeeming or with-
drawing. However, the balance of the liquid staking protocol in ASSET
holdings can change with time due to two reasons. Firstly, it continu-
ously receives rewards for staking the ASSET (these rewards are auto-
compounded). Secondly, if a validator it delegates to misbehaves, a por-
tion of its ASSET can get slashed. These events do not change the supply
of stASSET in the market. The deposit and redemption operations must
adjust their price. Let b0 ASSET denote the amount of ASSET holdings
of the liquid staking protocol, and s0 stASSET denote the total market
supply of stASSET that the protocol has issued. When the user deposits
b ASSET, the protocol mints s = b s0b0 stASSET. On the other hand, when

5An appchain is a separate Cosmos zone, connected with other Cosmos zones using
IBC/ICA [36] and functions similarly to a smart contract.

6The exact fungibility constraints depend on the protocol. For example, stATOM in
Stride [34] and stETH in Lido [1] are fully fungible. However, in the proposed Liquidity
Staking Module [2] of Cosmos, derivative tokens are only fungible when they have been
delegated to the same validator in the same batch.

4

the user burns s ASSET, the protocol returns b = s b0
s0

delegated ASSET
to the user. These delegated ASSET can be unbonded to convert them to
ASSET. Because the user can always go back to the protocol and exchange
b for s or vice versa, we assume that the price of stASSET denominated
in ASSET in the market is the same as the quoted protocol price. We
refine this assumption in Section 7. Users can buy and sell stASSETs by
swapping them on-chain [4].
Governance. The choice of which validator the liquid staking protocol’s
assets are delegated to depends on the particularities of the protocol. In
centralized protocols, the decision is taken by a central party or central
committee of parties, who may not be the liquid stake holders themselves.
Some protocols allow the principals to vote. During the voting process,
anyone can propose for a proportion of the protocols’s assets to be dele-
gated to a validator of their choosing. Each principal can then vote yes
or no to the proposal. Decisions are often taken by weighted majority.

3 Representation

In a staking protocol, whether liquid or not, each principal has an opinion
about which validator they wish to delegate to.

Definition 1 (Delegation Wish). For each principal, we define their
delegation wish to be a particular validator of their choice.

It will generally be desired that these delegation wishes point to honest
validators. We formalize this in the notion of wisdom.

Definition 2 (Wisdom). A principal is wise if their delegation wish
points to an honest validator. Otherwise, the principal is unwise.

In the liquid staking protocols described in Section 2, the decision of
which validators to delegate to is up to the majority of the stakeholders.
This creates a problem. A stakeholder holding a minority of the stake
may wish to delegate this stake to a particular validator, but the rest of
the stakeholders can overturn him by a majority vote. Hence, in these
protocols we have a situation of only the majority being represented,
instead of everyone being equally represented [28].

On the contrary, in a proportional representation system, the majority
of the stakeholders decide where to delegate the majority of the stake, but
the minority of the stakeholders also decide where to delegate the minority
of the stake.

5

Definition 3 (Proportional Representation). In a proportionally
represented liquid staking protocol, each validator is delegated a propor-
tion of the liquid staking pool’s ASSET equal to the sum of the proportions
of stASSET held by the principals who wish to delegate to that validator.

To achieve this, the process of liquid staking becomes different: Each
principal must signal their intent indicating which validator they wish the
pool to delegate to. This election mechanism was introduced by Quick-
silver [7] even though it has not yet been implemented, at the time of
writing.

First, the principal deposits ASSET into the protocol and signals dele-
gation intent to the validator of their choice. Then, the protocol delegates
the deposited ASSET to that validator. The principal is now a holder of
tradable stASSET representations of the delegated ASSET. This stASSET
can now be transferred to a different owner.

At some later time, the stASSET holder may wish to redelegate their
underlying ASSET to a new validator. The stASSET holder can resignal
their delegation intent and the protocol will redelegate the underlying
ASSET to the new validator. The goal is for all stASSET holders to be
represented proportionally to their stake.

Note that proportional representation may not be instant. Redelega-
tion speeds are limited by the underlying blockchain’s unbonding period.
Hence, a stASSET holder may have to wait δ before their corresponding
ASSETs are redelegated to the validator of their choice.

4 The Principal–Agent Problem

In the proof-of-stake systems described in the previous sections, princi-
pals grant permission of their funds to validators so they can participate
in consensus on their behalf. Principals have ownership of the stake, but
validators have control over it. The stakeholders rely on validators to
act according to their best interest: Stay online and follow the protocol.
However, validators (the agents) may have extrinsic motivation to misbe-
have and plot against principals. This creates a conflict of interest that
is known as the Principal–Agent problem.

For example, a malicious validator can equivocate, which causes the
principal’s funds to be slashed. If the malicious validator has limited self-
delegation and no reputation to lose, the validator may be able to profit
from the principal’s loss. However, a validator with a larger self-delegation
will themselves be affected by the slashing. This is why self-delegation
offers a layer of protection against the Principal–Agent problem.

6

In traditional staking protocols, principals have the responsibility to
delegate their funds wisely. When a malicious validator misbehaves, only
the stake of unwise principals is slashed. No wise principal gets unfairly
punished.

Definition 4 (Fair Punishment). A staking protocol has Fair Punish-
ment if no wise principal’s stake gets slashed as a result of a malicious
validator’s actions.

With the introduction of liquid staking protocols, the principal is no
longer directly delegating to the validator of their choice. Instead, the
protocol is now responsible for the delegation process and stake allocation
to validators. Although the principal can express their delegation wish,
ultimately it is the protocol that decides where funds are delegated based
on its delegation strategy. All liquid staking tokens are fungible, hence all
validators delegated to by the protocol become agents for all principals.
The Principal–Agent problem is exacerbated. The principal’s funds are
now effectively delegated to validators he has not necessarily chosen, some
with mischievous intentions.

5 Attack

We now describe an attack an adversary can conduct which leverages
the Principal–Agent problem of liquid staking. First, we observe that fair
punishment in the class of protocols we are concerned about is impossible.

Claim. Any fungible liquid staking protocol with Proportional Represen-
tation deployed over any proof-of-stake consensus protocol which slashes
equivocating validators by a rate of p > 0 cannot have fair punishment.

Demonstration. To see why the above claim holds, consider the fol-
lowing simplistic attack illustrated in Figure 1. Let b0 be the amount of
delegated ASSET in the protocol’s delegation pool, and s0 be the total
amount of stASSET tokens outstanding before the attack commences. The
initial quoted price of stASSET is b0

s0
.

Initially, the adversary A creates a new validator V under her control7.
We do not require any of the existing protocol participants to delegate to
this validator for the attack to work, i.e., we assume, without loss of gener-
ality, that all participants are wise and all other validators are honest. At

7To do so, she uses a fresh identity to suppress potential suspicions. Most validators
have a real-world presence and can be held legally accountable [25, p. 29], but this
validator is pseudonymous.

7

time t2, the adversary deposits b ASSET to the protocol, signalling delega-
tion intent to V. Due to proportional representation, the protocol respects
this intent and delegates b ASSET to V. The protocol now holds b dele-
gated ASSET to V. Through this deposit, the adversary obtains s = s0

b0
b

stASSET, and the quoted price remains b0+b
s0+s = b0

s0
. Lastly, at time t4 > t2,

validator V equivocates. This causes a proportion p of the capital b to be
slashed. The rest (1−p)b ASSET is returned back to the protocol. However
the amount of stASSET circulating in the market remains s0+s = s0+b s0b0 .
The new quoted price is now b0+(1−p)b

s0+s = b0
s0
(1− p b

b0+b) <
b0
s0

.

ASSET reserves:
stASSET supply:

b0
s0

▼b0+(1−p)b
s0+s

▲b0+b
▲s0+s

t2

Liquid stakes
t4

Equivocates

Fig. 1: Timeline of the simplistic attack.

Because stASSET is fungible, every stakeholder is negatively affected,
proportionally to their holdings. The losses are socialized. As everyone
else was wise, this constitutes unfair punishment. ⋄

The above attack requires the adversary to expend capital b to cause
harm to others, and is irrational. In the remainder of this section, we
explore how to make this attack profitable. The profitable attack works
for protocols with an unbonding period δ > 0. First, we show how to
attack without adversarial losses; later, how to profit.
Attack with no initial capital. With a subtle change to the above
construction, the attack can be performed without the adversary expend-
ing any capital (Figure 2). Before depositing, the adversary acquires a
flash loan of b ASSET. At time t2 she deposits those borrowed funds in-
stead of her own. For now, we assume that the borrowing of money is free
and there is no cost for the flash loan (we revisit this assumption in Sec-
tion 7). During equivocation, the adversary does not want to be holding
any stASSET of her own, as the price of stASSET is about to drop. She
also needs to repay the acquired flash loan. Therefore, after the adversary
obtains s = s0

b0
b stASSET from the deposit, she immediately sells8 them

for b = b0
s0
s ASSET in the open market, at time t3. She uses the obtained

8Instead of selling, the adversary can redeem, but this may incur an unbonding
delay, which can be rectified by taking a loan. See Section 7.

8

b ASSET to repay the flash loan. The acts of taking the flash loan, de-
positing, swapping, and returning the flash loan, can all be performed in
a single transaction.

ASSET reserves:
stASSET supply:

b0
s0

▼b0+(1−p)b
s0+s

▲b0+b
▲s0+s

t2

Liquid stakes
t3

Sells
t4

Equivocates

b ASSET
flash loan

Fig. 2: Timeline of the attack with no initial capital.

The adversary has now managed to add b ASSET delegated to val-
idator V in the protocol’s delegation pool while not currently holding
any stASSET. The loss has been averted. At this time, even though the
stASSETs have changed hands, the liquid staking protocol cannot redele-
gate its ASSETs instantly due to δ > 0. The adversary can now equivocate
at time t4 and, as before, cause the price of stASSET to drop.
Making the attack profitable. The profitable version of the attack
(Figure 3) works similarly to the above attack, but with some extra steps.
As before, the adversary begins by spawning the colluding validator V,
deposits b ASSET, obtained by a flash loan, at time t2, sells the acquired
s stASSET to repay the flash loan at time t3, and equivocates at time t4.

ASSET reserves:
stASSET supply:

b0
s0

▼b0+(1−p)b
s0+s

▲b0+b
▲s0+s

t0

Shorts
t2

Liquid stakes
t3

Sells
t4

Equivocates
t5

Closes

b ASSET
flash loan

z stASSET
loan

Fig. 3: Timeline of the profitable attack.

A small extra trick will allow her to profit. Before forcing the price
of stASSET to drop, at time t0 < t4 the adversary shorts stASSET: She
takes a loan of z stASSETs and sells them for b∗ = z b0

s0
ASSET in the

9

market. Lastly, at time t5 > t4 after the price drop, the adversary closes
her short position by repaying z stASSET. To recover this amount of
stASSET, at time t5, the adversary deposits b′ = b0

s0
(1 − p b

b0+b)z ASSET
into the protocol, which allows her to issue the exact required stASSET
to be paid back. This concludes the attack.

Her total profits from the attack are α = b∗ − b′ = z b0
s0
p b
b0+b ASSET.

A larger short position z b0
s0

and a larger stASSET price drop percentage
p b
b0+b , yields higher profits for the adversary.

So far, we have allowed the adversary to take a loan indiscriminately
without any concern for collateral. In practice, loan platforms require a
collateral, so the attack impact will be limited by the adversary’s initial
capital available for collateralization. Let u ASSET be the initial capital
of the adversary. If no overcollateralization is required she can obtain a
loan of up to z = u s0

b0
stASSET and then sell them back for b∗ = u ASSET.

Her profit relative to her initial capital is then α = up b
b0+b ASSET.

6 Exempt Delegations

Exempt delegations (proposed in LSM [2]) are a mechanism to alleviate
the Principal–Agent problem in liquid staking. In this mechanism, an
exempt delegation amount c ASSET is associated with each validator. It
is a measure of the validator’s trustworthiness. The liquid staking protocol
is now redesigned to impose restrictions on how much of the protocol’s
pooled moneys can be delegated to a particular validator based on the
validator’s exempt delegation. The restriction is parameterized by a factor
ϕ (in practice, ϕ > 1) and is given by the inequality b ≤ ϕc: Only up to
ϕc ASSETs are allowed to be delegated in aggregate by the liquid staking
protocol to a validator with a reserve of c ASSET in exempt delegations.

A new validator begins its lifecycle with c = 0. They can then raise
their own exempt delegation amount by locking aside a chosen amount
of ASSET, and marking it as exempt. Those assets are delegated to the
validator as usual. However, the exempt marking means that those dele-
gated assets cannot be part of the liquid staking protocol pool, but must
remain locked aside. Additionally, these specially marked delegations are
slashed9 at a potentially higher rate q ≥ p. Exempt delegated assets can-
not be undelegated in a way that causes a violation of b ≤ ϕc.

Principals, whether wise or unwise, are not expected to participate in
exempt delegations; instead, it is the validator who exempt delegates to

9We abstract some of the irrelevant implementation details here. See Appendix A
for how the real protocol works in the context of Cosmos.

10

t0

Shorts

t1

Exempt
delegates

t2

Liquid
stakes

t3

Sells

t4

Equivocates

t5

Closes

b ASSET
flash loan

z stASSET
loan

Fig. 4: Timeline of the exempt delegation attack.

themselves (or someone who trusts the validator for extrinsic reasons).
This means that, in case of validator misbehavior, the exempt delegation
slashing qc is a penalty that only affects the validator.

This raises the cost of the attack described in the previous section. The
adversary must first, at time t1 (where t0 < t1 < t2), exempt delegate
a sufficient amount c ≥ b

ϕ ASSET to V before she can liquid stake b
ASSET. Whereas the stASSETs corresponding to those b ASSETs can be,
as before, sold at t3 to separate the agent from the principal, the c amount
remains with the agent, holding her financially liable to misbehavior.
After equivocation at t4, in addition to any other costs, the adversary loses
qc ASSET. At the conclusion of the attack, the adversary undelegates the
unslashed (1− q)c ASSET exempt delegation. The timeline of the refined
attack is illustrated in Figure 4 and the respective sequence diagram in
Figure 5.

The attack may remain profitable despite exempt delegations. To
maximize her shorting leverage, the adversary wants to use all of her
initial capital u ASSET to obtain the z stASSET loan. Upon swapping z
for b∗ ASSET, the adversary can then use part of it as c. The rational ad-
versary should not waste any unnecessary resources on c; therefore, after
choosing b she can set c = b

ϕ . Since the maximum amount the adversary
exempt delegates cannot be more than her initial capital u ASSET, it
must always hold that b ≤ uϕ.

The profit of the attack now becomes α = b∗−b′−qc. Solving for dα
db =

0 yields the optimal b =
√
upb0

ϕ
q − b0, which maximizes the adversary’s

profit, subject to the constraint 0 ≤ b ≤ uϕ.
The intuition for why exempt delegations protect the system is that,

for the adversary to profit from the short, she must cause a significant
shift in the price. The shift in the price is determined by the factor p b

b0+b ,

11

so the adversary aims for a large b. But because b ≤ ϕc must be respected,
this incurs a large penalty qc = q

ϕb.

Loan
Provider

Swap
Protocol

Adversary Liquid
Staking

ValidatorFlash
Loan

b*

c

u

s
b

z
z

b b b

(1 - p)b(1 - q)c

s

b

b′
zz

u

ASSET stASSET

Fig. 5: Sequence diagram of the attack with exempt delegations.

To make the attack irrational, we select the parameter ϕ
q such that

α ≤ 0. Plugging in the adversarially optimal value for b in the inequality
α ≤ 0 and solving for ϕ

q yields

ϕ

q
≤ b0

pu
. (∗)

Plugging the values we believe the protocol to operate under into p,
b0 and u, we calculate a secure ϕ

q for an assumed maximum adversarial
market domination u

b0
. In Figure 6, we show the adversarial profit for

different values of ϕ
q and u

b0
. For the figure, we used a slashing rate p = 0.5.

A higher exempt delegation slashing rate q makes the attack more
expensive. This is because a larger portion of the exempt delegation c,
holding the adversary accountable, is slashed. A lower exempt delegation
factor ϕ also makes the attack more expensive since a larger exempt

12

0% 20% 40% 60% 80% 100%
Adversary market domination u

b0

20

40

60

80

100

φ
q

0%

8%

16%

24%

32%

40%

profit
α
b0

Fig. 6: Adversarial profitability based on market domination u
b0

and pa-
rameter ϕ

q . The white area indicates secure parametrizations.

delegation is required to liquid stake the same b ASSET. Hence, a lower ϕ
q

makes the protocol less vulnerable to the attack. We recommend always
setting q = 1 if possible, as this allows for larger values of ϕ, increasing
liquidity, without any harm to anyone besides the adversary.
Repeating the attack. If the adversary finds herself in a situation where
the attack is profitable, the attack can be repeated in quick succession
to siphon off almost all of the money in the liquid staking protocol. This
corresponds to moving across the x axis in Figure 6. As the attack repeats,
b0 decreases and u increases as money moves from the reserves of the
staking protocol to the hands of the adversary. We conclude that the
protocol must be configured with enough margin such that the conditions
for the attack never emerge.
Proportional representation VS fair punishment. Proportional rep-
resentation and fair punishment, as indicated in Section 5, are conflicting
properties in liquid staking. Without exempt delegations (ϕ = ∞), the
protocol has full proportional representation, as the principal can signal
delegation to any agent of their choice without restriction. There, an ad-
versary can always cause unfair punishment of principals. However, with
the introduction of exempt delegations, if we make ϕ

q smaller, the pool of

13

available agents to choose from is reduced to only the wealthy amongst
them, so proportional representation becomes limited. For a sufficiently
small ϕ

q , the protocol has fair punishment in the rational model.
This concludes the main contribution of our paper. The next sections

make some of the financial arguments slightly more precise.

7 Cost of Money

In the previous sections, we assumed that the cost of borrowing money
is free. In this section we incorporate the cost (interest and collateral) of
borrowing money into our model. For the flash loan, the adversary must
pay an extra βAb ASSET in fees upon returning the borrowed b ASSET.
The adversary must also pay interest on the z stASSET she borrowed.
The duration of the loan was ∆z = t5 − t0, so the total loan amount
to be repaid, including the principal and interest, is ((1 + rst)∆z + βst)z
stASSET. Letting f = ((1 + rst)∆z + βst) be the cost factor of the loan,
to recover this amount of stASSET and pay back the loan, the adversary
must now deposit b′ = b0

s0
(1 − p b

b0+b)fz ASSET into the protocol instead
of b0

s0
(1− p b

b0+b)z ASSET like before.
Additionally, loans must be overcollateralized. Let γst be the collateral

ratio of a standard stASSET loan. The adversary, using her initial capital
u as collateral can get a loan of up to z = u

γst
s0
b0

stASSET instead of
the previous u s0

b0
stASSET. The loaned z stASSET are then converted to

b∗ = u
γst

ASSET. To perform the attack, part of the b∗ ASSET is used to
exempt delegate c like before, but another part is now used to pay βAb
for the flash loan cost. Hence c + βAb ≤ b∗ and the adversary may only
use up to b ≤ u

(1
ϕ
+βA)γst

to move the price of stASSET.
Taking into consideration the cost of borrowing money, the final profit

of the attack is now α = b∗− b′− qc−βAb for the new values of b∗ and b′.
Solving for dα

db = 0 gives the optimal b =
√

ufpb0
(βA+

q
ϕ
)γst

−b0, which maximizes

the adversary’s profit, subject to the new constraints 0 ≤ b ≤ u
(1
ϕ
+βA)γst

.

Solving the inequality α ≤ 0 for ϕ
q and plugging in the adversarially opti-

mal value for b yields the new parametrization that renders the protocol
secure

ϕ

q
≤ b0γst

fpu+ fu− b0βAγst − 2u
√
fp(f − 1)− u

.

14

The cost of borrowing money increases when the collateral ratio γst,
the flash loan cost factor βA or the loan cost factor f increase. While the
cost of borrowing money goes up, the attack becomes less profitable for
the adversary. Thus, the protocol can afford to increase ϕ

q and still remain
secure. The effect of varying f is illustrated in Figure 7 for an adversary
with 30% and 50% market domination u

b0
. While f increases, the safe

bound of parameter ϕ
q can increase with it. The black line indicates where

the attack becomes unprofitable for the adversary (α = 0). The white area
under the black line represents the configuration in which the protocol is
secure in the rational model.

100% 105% 110% 115% 120%
Loan cost factor f

30

60

90

120

φ
q

0%

3%

6%

9%

12%

profit
α
b0

(a) Initial capital u is 30% of b0.

100% 105% 110% 115% 120%
Loan cost factor f

30

60

90

120

φ
q

0%

3%

6%

9%

12%

profit
α
b0

(b) Initial capital u is 50% of b0.

Fig. 7: Cost of borrowing and attack profitability.

In this illustration, we consider a blockchain with slashing percentage
p = 0.5 and market conditions10 with ASSET flash loan cost factor βA =
0.09% and collateral ratio γst = 146%. At the time of writing10, the
annual cost of borrowing stASSET is rst = 1.59% (and βst = 0 for non-
flash loans). If the attack duration is ∆z = 20 sec, we have f = 1+ 10−8.
Hence, in practice, f ≃ 1, and money borrowing is almost free for short
durations.

Free money borrowing makes the adversary more powerful and her
attack more profitable. Hence, a safe ϕ

q under free borrowing (f = 100%,
βA = 0, γst = 100%) is also safe when borrowing is not free. This is
illustrated in Figure 8. Safe values of parameter ϕ

q for f = 100%, indicated

10ETH and Lido stETH borrowing rates on Aave [18] as of 27 Jan, 2023.

15

by the black line, are also safe for f > 100% under any adversarial market
domination u

b0
. Similarly, safe parametrizations for γst = 100% are also

safe for γst > 100%. We deduce that formula (∗) suffices for calculating
safe protocol parameters.

0% 20% 40% 60% 80% 100%
Adversary market domination u

b0

25

50

75

100

φ
q

Loan cost f
100%
101%
102%
103%

(a) For varying loan cost f .

0% 20% 40% 60% 80% 100%
Adversary market domination u

b0

25

50

75

100

φ
q

Collateral ratio γst
100%
150%
200%
250%

(b) For varying collateral ratio γ.

Fig. 8: Optimal ϕ
q for varying adversarial market domination u

b0
and dif-

ferent market conditions.

Bookkeeping in USD. If the attacker does bookkeeping in a different
currency, such as USD, the attack remains profitable. She begins by buy-
ing ASSET for USD. At the end of the attack, she sells ASSET for USD.
Because the attack concerns a particular liquid staking protocol, and not
the whole ASSET network, the price of ASSET will likely not be signifi-
cantly affected. This attack decreases the market confidence in stASSET,
but not in ASSET. In fact, because the attack causes slashing of ASSET,
the supply of ASSET is decreased and the price of ASSET with respect to
the reference currency may even increase. Lastly, any price fluctuations
of ASSET with respect to USD will likely be minor, as the attack has a
short duration of a couple of seconds.
The Market price of stASSET. Let us consider the price v of stASSET
denominated in ASSET in the market.

Upper bound. Because the option always exists to mint at a rate of s0
b0

by depositing, the price of stASSET denominated in ASSET in a perfectly
efficient market is b0

s0
at maximum. Otherwise, no rational buyer would

use the market. Hence, the market rate is v ≤ b0
s0

.
Lower bound. There are two options to convert s stASSET to ASSET:

either sell at the market rate to obtain b = vs ASSET, or use the redemp-
tion mechanism. Using the redemption mechanism, the ASSETs become

16

available after time δ. Initially, using s stASSET, a redemption is made of
b′ = s b0

s0
delegated assets. To get b ASSET immediately (and avoid having

to wait for the unbonding period), a loan of b ASSET is taken [25, p. 13]
and repaid after duration δ. The amount of ASSET that needs to be paid
back, including principal and interest, is ((1 + rA)δ + βA)b ASSET. We
set this amount to be equal to b′, the amount of ASSETs that will be un-
bonded after δ time. Solving for b, we get b = s b0

s0((1+rA)δ+βA)
. Therefore,

in an efficient market v ≥ b0
s0((1+rA)δ+βA)

.
We deduce that the bounds for an efficient market of ASSET and

stASSET are

b0
s0((1 + rA)δ + βA)

≤ v ≤ b0
s0

.

The longer the duration δ, the larger the potential price deviation
(c.f. the empirical analysis in Liquid Staking: Basis Determinants and
Price Discovery [32]). Such loans are available in practice and some pro-
tocols [29, §5] [27] even automate this process.

It is also possible for the protocol to use the principle of remittances
(matching) [29, §5] [27] to match depositing and redeeming parties, so
that the redeeming party does not have to incur any unbonding delay.
If the redeemed amounts exceed the deposited amounts, some amounts
will necessarily incur a delay. The above bounds may be tighter due to a
shorter effective unbonding delay.

8 Acknowledgements

The authors wish to thank Joachim Neu for the suggestion of the repeated
attack; Zaki Manian, Aidan Salzmann and Vish Modali for the insights
on the history and implementation details of liquid staking; Viraj Nad-
karni for the fruitful discussions during the development of our model;
Ertem Nusret Tas, Vasiliy Shapovalov, Nikolaos Kamarinakis, Dimitris
Karakostas and Aleksis Brezas for reading early versions of the paper and
providing valuable feedback; and Harry Karavassilis and Zeta Avarikioti
for the creative contributions.

17

References

1. Lido: Ethereum Liquid Staking. 2020.
2. Liquidity staking module. Available at: https://github.com/iqlusioninc/

liquidity-staking-module, 2022.
3. S. Agrawal. Mesh Security. Presentation at Cosmoverse 2022.
4. G. Angeris, H.-T. Kao, R. Chiang, C. Noyes, and T. Chitra. An analysis of uniswap

markets. 2021.
5. C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas. Ouroboros Genesis:

Composable proof-of-stake blockchains with dynamic availability. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 913–930, 2018.

6. I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of stake. IACR
Cryptology ePrint Archive, 2016:919, 2016.

7. J. Bowman, V. Modali, and R. Mortaki. Quicksilver Protocol, The Cosmos Liquid
Staking Zone. 2022.

8. E. Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD
thesis, University of Guelph, 2016.

9. E. Buchman and J. Kwon. Cosmos Whitepaper: A Network of Distributed Ledgers.
2016.

10. E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on BFT consensus.
arXiv preprint arXiv:1807.04938, 2018.

11. V. Buterin. Slasher: A Punitive Proof-of-Stake Algorithm. Avail-
able at: https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-
of-stake-algorithm, Jan. 2014.

12. V. Buterin. Minimal Slashing Conditions. Available at: https://medium.com/
@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c, Mar 2017.

13. V. Buterin and V. Griffith. Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437, 2017.

14. V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan, J. Sin,
Y. Wang, and Y. X. Zhang. Combining GHOST and Casper. arXiv preprint
arXiv:2003.03052, 2020.

15. Cosmos SDK Team. Cosmos SDK Staking module. Available at: https://docs.
cosmos.network/v0.47/modules/staking.

16. B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros Praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 66–98.
Springer, 2018.

17. EigenLayer Team. EigenLayer: The Restaking Collective. Avail-
able at: https://2039955362-files.gitbook.io/~/files/v0/b/gitbook-
x-prod.appspot.com/o/spaces%2FPy2Kmkwju3mPSo9jrKKt%2Fuploads%
2F2dCfPgItRfQbX25KriQv%2Fwhitepaper.pdf?alt=media&token=d4d94480-
3f01-4e63-bc92-a0658ea37aab, Jan 2023.

18. E. Frangella and L. Herskind. Aave V3 Technical Paper. Available at:
https://github.com/aave/aave-v3-core/blob/master/techpaper/Aave_V3_
Technical_Paper.pdf, Jan 2022.

19. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Proceedings of the 26th symposium
on operating systems principles, pages 51–68, 2017.

18

https://github.com/iqlusioninc/liquidity-staking-module
https://github.com/iqlusioninc/liquidity-staking-module
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://docs.cosmos.network/v0.47/modules/staking
https://docs.cosmos.network/v0.47/modules/staking
https://2039955362-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FPy2Kmkwju3mPSo9jrKKt%2Fuploads%2F2dCfPgItRfQbX25KriQv%2Fwhitepaper.pdf?alt=media&token=d4d94480-3f01-4e63-bc92-a0658ea37aab
https://2039955362-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FPy2Kmkwju3mPSo9jrKKt%2Fuploads%2F2dCfPgItRfQbX25KriQv%2Fwhitepaper.pdf?alt=media&token=d4d94480-3f01-4e63-bc92-a0658ea37aab
https://2039955362-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FPy2Kmkwju3mPSo9jrKKt%2Fuploads%2F2dCfPgItRfQbX25KriQv%2Fwhitepaper.pdf?alt=media&token=d4d94480-3f01-4e63-bc92-a0658ea37aab
https://2039955362-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FPy2Kmkwju3mPSo9jrKKt%2Fuploads%2F2dCfPgItRfQbX25KriQv%2Fwhitepaper.pdf?alt=media&token=d4d94480-3f01-4e63-bc92-a0658ea37aab
https://github.com/aave/aave-v3-core/blob/master/techpaper/Aave_V3_Technical_Paper.pdf
https://github.com/aave/aave-v3-core/blob/master/techpaper/Aave_V3_Technical_Paper.pdf

20. L. Gudgeon, S. Werner, D. Perez, and W. J. Knottenbelt. DeFi Protocols for
Loanable Funds: Interest Rates, Liquidity and Market Efficiency. In Proceedings
of the 2nd ACM Conference on Advances in Financial Technologies, pages 92–112,
2020.

21. M. C. Jensen and W. H. Meckling. Theory of the firm: Managerial behavior,
agency costs and ownership structure. Journal of Financial Economics, 3(4):305–
360, 1976.

22. A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A Provably Se-
cure Proof-of-Stake Blockchain Protocol. In J. Katz and H. Shacham, editors,
Annual International Cryptology Conference, volume 10401 of LNCS, pages 357–
388. Springer, Springer, Aug 2017.

23. S. King and S. Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.
self-published paper, August, 19(1), 2012.

24. F. Lutsch. Delegation Vouchers: A Design Concept for Liquid Staking Po-
sitions. Available at: https://medium.com/chorus-one/delegation-vouchers-
cfb511a29aac, Jun 2019.

25. F. Lutsch. Liquid Staking Research Report. Available at: https://mirror.
chorus.one/liquid-staking-report.pdf, June 2020.

26. Z. Manian. ADR ADR-061: Liquid Staking. Available at: https://docs.cosmos.
network/v0.47/architecture/adr-061-liquid-staking, Sep 2022.

27. Marinade team. Marinade: Unstake Liquidity Pool. Available at: https:
//docs.marinade.finance/marinade-protocol/system-overview/unstake-
liquidity-pool#order-matching.

28. J. S. Mill. Of True and False Democracy; Representation of All, and Representation
of the Majority Only. 1862.

29. Parallel Team. Parallel Finance White Paper. Available at: https://docs.
parallel.fi/parallel-finance.

30. pStake Team. pStake: Unlocking Liquidity for Staked Assets. Available at: https:
//pstake.finance.

31. Rocket Pool Team. Rocket Pool. Available at: https://rocketpool.net.
32. S. Scharnowski and H. Jahanshahloo. Liquid Staking: Basis Determinants and

Price Discovery. Available at SSRN 4180341, 2022.
33. A. Smith. The Wealth of Nations. 1776.
34. Stride. Stride: Multichain liquid staking. Available at: https://www.stride.zone.
35. S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and W. J. Knot-

tenbelt. SoK: Decentralized Finance (DeFi). arXiv preprint arXiv:2101.08778,
2021.

36. T. Yun, J. Lee, and S. King. ICS-027: Interchain Accounts. Available at:
https://github.com/cosmos/ibc/blob/main/spec/app/ics-027-interchain-
accounts/README.md, Aug 2019.

19

https://medium.com/chorus-one/delegation-vouchers-cfb511a29aac
https://medium.com/chorus-one/delegation-vouchers-cfb511a29aac
https://mirror.chorus.one/liquid-staking-report.pdf
https://mirror.chorus.one/liquid-staking-report.pdf
https://docs.cosmos.network/v0.47/architecture/adr-061-liquid-staking
https://docs.cosmos.network/v0.47/architecture/adr-061-liquid-staking
https://docs.marinade.finance/marinade-protocol/system-overview/unstake-liquidity-pool#order-matching
https://docs.marinade.finance/marinade-protocol/system-overview/unstake-liquidity-pool#order-matching
https://docs.marinade.finance/marinade-protocol/system-overview/unstake-liquidity-pool#order-matching
https://docs.parallel.fi/parallel-finance
https://docs.parallel.fi/parallel-finance
https://pstake.finance
https://pstake.finance
https://rocketpool.net
https://www.stride.zone
https://github.com/cosmos/ibc/blob/main/spec/app/ics-027-interchain-accounts/README.md
https://github.com/cosmos/ibc/blob/main/spec/app/ics-027-interchain-accounts/README.md

Appendix

A Liquid Staking Module (LSM)

In the context of Cosmos, the exempt delegation mechanism is planned
to be applied at the consensus layer by the Liquidity Staking Module
(LSM) [2]. When this mechanism is used, assets are first delegated to
a validator by a principal who obtains delegated assets, marking them
as exempt or non-exempt. In the case of non-exempt delegated assets,
these are then tokenized into LSM shares, representations of delegated
assets that are minimally fungible (fungible among the other tokens that
were delegated in the same batch to the same validator). These tokenized
shares are subject to the exempt delegation constraint b ≤ ϕc.

The tokenized shares can then be deposited into the liquid staking
protocol, which issues liquid staking tokens (stASSETs), as usual, in a
process termed refungibilization. The protocol does not need to delegate
further, as it can readily start reaping the delegation rewards (as long
as a relevant so-called LSM record, which enshrines its holder with the
privilege of claiming the rewards associated with a particular delegation,
is also transferred along with the tokenized shares). It also does not need
to perform further exempt delegation constraint checks as these are en-
forced by the LSM. When the user redeems stASSETs, the protocol may
elect to give back tokenized shares instead of ASSETs. Those can then
be unwrapped into delegated assets, that can afterwards be undelegated
into ASSETs after the relevant unbonding period expires.

Through this mechanism, the exempt delegation c of a validator is a
shared amount across potentially multiple liquid staking protocols that
opt to accept tokenized shares instead of ASSETs directly. The intent
necessary for proportional representation can be read by the liquid stak-
ing protocol by simply looking at the LSM tokenized share records, and
no separate voting is necessary when entering the protocol. The factor
ϕ is decided not by the liquid staking protocols’ governance, but by the
governance of the underlying chain. The slashing factor q is applied di-
rectly by the chain and not by the liquid staking protocol. In the current11

LSM design, q = p. If a liquid staking protocol participates in multiple
chains, the ϕ factors can be different in each chain. In our exposition,
we abstract out these implementation details to highlight the economic
issues at hand.

11Zaki Manian, personal communication, Jan 1st, 2023

20

B Liquid Staking Protocol Tokenomics

Algorithm 1 The basic tokenomics of all liquid staking protocols.
1: contract liquid-stake extends ERC20
2: b0 ← 0
3: s0 ← 0
4: payable function constructor
5: require(msg.value ≥ 0)
6: b0 ← msg.value
7: s0 ← b0
8: balances[msg.sender]← msg.value
9: end function

10: payable function deposit
11: b← msg.value
12: s← b · s0

b0
13: balances[msg.sender]← balances[msg.sender] + s
14: ▷ Maintain the invariant b0

s0
= b0+b

s0+s

15: b0 ← b0 + b
16: s0 ← s0 + s ▷ Mint
17: end function
18: function withdraw(s)
19: require(balances[msg.sender] ≥ s)
20: require(s0 > s)
21: b← s · b0

s0

22: ▷ Maintain the invariant b0
s0

= b0−b
s0−s

23: s0 ← s0 − s ▷ Burn
24: b0 ← b0 − b
25: balances[msg.sender]← balances[msg.sender]− s
26: msg.sender.transfer(b)
27: end function
28: end contract

21

	 The Principal–Agent Problem in Liquid Staking
	Introduction
	Preliminaries
	Representation
	The Principal–Agent Problem
	Attack
	Exempt Delegations
	References
	Appendix
	Liquid Staking Module (LSM)
	Liquid Staking Protocol Tokenomics

