
ii

A Needle in the Haystack: Inspecting Circuit
Layout to Identify Hardware Trojans

Xingyu Meng, Student Member, IEEE, Abhrajit Sengupta, Member, IEEE,
Kanad Basu, Senior Member, IEEE

Abstract—Distributed integrated circuit (IC) supply chain has
resulted in a myriad of security vulnerabilities including that of
hardware Trojan (HT). An HT can perform malicious modifica-
tions on an IC design with potentially disastrous consequences,
such as leaking secret information in cryptographic applications
or altering operation instructions in processors. Due to the
emergence of outsourced fabrication, an untrusted foundry is
considered the most potent adversary in introducing an HT. This
can be attributed to the asymmetric business model between the
design house and the foundry; the design house is completely
oblivious to the fabrication process, whereas the design IP is
transparent to the foundry, thereby having full control over the
layout. In order to address this issue, in this paper, we—for
the first time—introduce a layout-level HT detection algorithm
utilizing low-confidence classification and providing Trojan lo-
calization. We convert the IC layout to a graph and utilize
Graph Neural Network (GNN)-based learning frameworks to flag
any unrecognized suspicious region in the layout. The proposed
framework is evaluated on AES and RS232 designs from the
Trusthub benchmark suite, where it has been demonstrated to
detect all nine HT-inserted designs. Finally, we open-source the
full code-base for the research community at large [1].

Index Terms—Hardware Trojan Detection, IC Layout, Graph
Neural Network, Connectivity Graph

I. INTRODUCTION

Integrated circuits (IC) are keystones of modern electron-
ics, ranging from smartphones to military-grade applications.
These ICs form the root-of-trust (RoT) that play an important
role in ensuring the privacy, authenticity, and integrity of the
entire solution stack, including those that contain sensitive
information. However, with the globalization of the IC supply
chain, this assumption has come under intense scrutiny in
recent years.

With deep sub-micron technology, the rising cost of owning
a fabrication facility created a high barrier to enter into the
market, especially for start-ups. For instance, TSMC’s 28nm
Fab 15 in Taiwan is valued at $9.3B. Similarly, the cost of
establishing its new 3nm facility is projected to be $20B [2].
This financial constraint underlaid the birth of the fabless
model; where semiconductor companies began to outsource
manufacturing to large integrated device manufacturers (IDM)
having excess capacity. This shift proved to be advantageous
for many as it allowed design companies to improve the
bottom-line profitability, while remaining focused on core
competencies. However, relinquishing such a a large part of

X. Meng (e-mail: xxm150930@utdallas.edu), and K. Basu are with the
Department of Electrical and Computer Engineering, University of Texas at
Dallas, Richardson, TX, 75080.

Abhrajit Sengupta is a Senior Engineer at Qualcomm Technologies, Inc.,
San Diego, CA, USA.

Figure 1: Overview of the IC supply chain, where outsourced
fabrication is untrusted as marked in red.

control over the IC supply chain has led to several threats,
including the insertion of Hardware Trojans (HT) in a circuit.
For instance, Bloomberg published “The Big Hack” article,
which alleged that a supply chain attack originating in China
had affected server producer companies such as Supermicro,
Apple — plus dozens of other unnamed firms [3]. Besides
massive financial losses [4], these threats can also potentially
undermine national security. Indeed, in 2008, Syrian radar
systems were suspiciously disabled by an alleged backdoor
in its microprocessors [5]. Furthermore, according to a 2013
report by the Semiconductor Industry Association (SIA), 15%
of all the “spare and replacement semiconductors” bought by
the Pentagon are counterfeit [6]. With rapid advancements in
capabilities and know-how for adversaries, such threats are
becoming a pressing concern for commercial and government
agencies alike.

A. Hardware Trojans and Its Associated Challenges
A Hardware Trojan (HT) is an unauthorized alteration of

IC functionality often with malicious intent such as denial of
service, leaking sensitive information, etc. With the emergence
of outsourced fabrication, an off-shore untrusted foundry is
considered the most potent adversary in introducing an HT.
This can be attributed to the asymmetric business model
between the design house and the foundry; the design IP is
fully transparent to the foundry, whereas the design house is
oblivious to the fabrication process. A typical IC supply chain
is shown in Fig. 1, where the untrusted foundry is highlighted
in red. A stealthy Trojan is usually hard to detect due to the
following reasons:

• Conventional IC testing is limited in scope due to the
classic controllability/observability issues.

• Parametric on chip variations (POCV) cause non-
deterministic changes in IC characteristics, which are
indistinguishable from HTs.

• Formal verification for possible HT insertion in an IC
leads to a state space explosion.

• Any destructive analysis techniques such as reverse-
engineering are prone to errors that will limit their

iii

Table I: Summary of existing HT detection techniques and
their limitations. ✗ denotes each technique’s limitation, ✓
denotes it does not suffer from that limitation.

Techniques Low
coverage

State
explosion POCV Golden

IC
Error

tolerant
Functional
testing [7] ✗ ✗ ✓ ✗ ✓

SCA [8], [9] ✓ ✓ ✗ ✗ ✓

FV [10], [12], [11], [13] ✓ ✗ ✓ ✓ ✗

Our work ✓ ✓ ✓ ✓ ✓

capability in differentiating the true-positives detection
from false-positives.

Consequently, existing research, including functional test-
ing [7], side-channel analysis (SCA) [8], [9], and formal ver-
ification (FV)-based techniques [10], [11] suffer from several
pitfalls such as low coverage, POCV, and the requirement of
a golden IC. A summary of HT detection techniques and their
limitations is provided in Table I. Further details are provided
in Section II-B.

B. Contributions

To overcome the above shortcomings, we present a frame-
work for HT detection that successfully identifies the struc-
tural/functional characteristics of an HT in an IC layout.1

Accordingly, we represent an IC layout as a directed acyclic
graph (DAG), and extract several features from the design
layout that help capture its structure/functionality. Finally, we
provide a complete end-to-end automated framework for HT
detection. The contributions of this paper are summarized as
follows:

• We extract several features from the layout of a cir-
cuit including gate-types and gate-location to accurately
identify the functionality of a circuit. To this end, we
apply Graph Neural Network (GNN) node classification
to flag a cell, if it contains a function that significantly
differs from the original functionality of the circuit. To the
best of our knowledge, this is the first work that utilizes
layout-level information to detect foundry-inserted HTs
in absence of a golden IC.

• A complete end-to-end automated layout-level HT detec-
tion framework is presented that scales for large designs
such as AES, having 240K+ cells.

• We utilize a low-confidence node classification approach
to flag suspicious cells in the layouts and separate them
into connected components via the layout connection.
Clustering-based identification is applied on the con-
nected components to differentiate the HT-inserted layout
from HT-free one, which aids in further localizing the
Trojan cells.

• We present extensive results on a wide-range of HTs
from the TrustHub benchmark suite [15], that establish
the efficacy of our technique. To this end, we are able to
flag all ICs having HTs in the layout.

• Finally, we shed some light on several aspects of our work
such as different HT payloads, scalability, error tolerance,
and comparison against other GNN-based approaches.

1A circuit’s layout is closely associated with its functionality [14].

The rest of this paper is organized as follows. Section II
describes the defense capabilities, threat model, and related
works in HT detection domain. Section III provides an
overview of the proposed technique. Section IV demonstrates
the evaluation of the proposed technique. Section V discusses
the capablities of the proposed technique and compares it with
prior research. Finally, Section VI concludes our paper.

II. MOTIVATION AND BACKGROUND

Before delving into further details, it is imperative that we
precisely define the threat model and identify the assumptions
within the context of this work.

A. Threat Model

1) Defense Capabilities: From the defender’s perspective,
we assume a full reverse-engineering (RE) capability. With
rapid advancements in tools and know-hows, the question
of RE has turned into how expensive it is, rather than if
someone is able to perform RE on a given chip. Indeed, RE
has flourished into a multi-million dollar industry with several
companies providing commercial RE-service [17], [18]. RE
consists of a complex workflow involving several steps such
as teardown, de-packaging, de-layering, imaging individual
layers, and analyzing the collected data to perform analysis
and gain insights into the design IP. An example RE workflow
is shown in Fig. 2. We consider that the designer has the
capability to reverse engineer the manufactured IC and obtain
the post-silicon layout for analysis. Furthermore, we assume
that the malicious foundry inserts HTs in all copies of the IC
(since it is extremely expensive to create different masks and
thus, tampering only a subset of ICs).

In this paper, we explore the last part (highlighted in the
red box in Fig. 2), where high-level functional abstraction is
performed on the gate-level layout, and subsequently, func-
tional anomalies are identified to flag HTs. However, note that
this does not correspond to the often mentioned concept of
“Golden IC”, since this is a soft IP that does not guarantee to
represent the original RTL, and hence, side-channel analysis
can’t be performed here [19]. Although, formal verification can
detect a difference between the original and reverse-engineered
layout, it fails in the presence of errors while performing
reverse-engineering. Since RE process is highly susceptible to
errors, formal verification will generate a lot of false positives.
To address these challenges, the proposed method only flags
suspicious cells in the layout, and only if these cells perform
an undefined functionality. In this case, the layout is identified
as being infected by Trojans.

2) Adversarial Capabilities: As explained earlier, foundry-
inserted HTs are enabled by the asymmetric business model
between the design house and the foundry; the design IP is
fully transparent to the foundry, whereas the design house
is oblivious to the fabrication process. Usually, HTs are
inserted during the fabrication process by modifying the mask.
However, since the modification is made at the mask level,
the perturbations must remain minimal, else a complete mask
re-generation would be required, which is prohibitively expen-
sive. Given the minimal perturbation in the circuit layout, we
presume that the gate-locations remain relatively unchanged

iv

Figure 2: Overview of the reverse-engineering workflow, where the contribution of this paper is highlighted in the red box. If
an unknown function is detected in the circuit, it is flagged as HT-inserted. Source: [16]

from the original layout and hence, a user can utilize the gate-
location as a feature while training the GNN model.

B. Prior Work and Their Limitations
All prior works on HT detection can be classified into the

following categories:
1) Functional testing: Traditional functional testing of ICs

with test patterns is ineffective for HT detection due to the
following reasons: a) HTs are stealthy in nature, thus, the
trigger condition is rarely satisfied, b) functional testing only
covers a negligible part of the total input space, and c) it
is computationally infeasible to cover the whole input space
through automatic test pattern generation (ATPG), and thus,
techniques relying on ATPG suffer from low success rate [7].

2) Side-channel analysis (SCA): Several methods have
been proposed that leverage SCA to detect HTs [8], [9].
However, such methods suffer from several pitfalls: a) the
footprint of an HT could be small, sometimes as low as
0.01% of the main circuit, and thus the SCA footprint such as
power profile of an HT becomes hard to detect [9], b) at deep
sub-micron technology, the difference between HT footprint
and random POCV becomes indistinguishable, and c) it is
difficult to obtain all such techniques relying on the existence
of a golden IC, against which the SCA measurements are
compared.

3) Formal verification (FV): FV is used to formally prove
that a given design conforms to the specified properties, else
flags an issue if any such property is violated. There exists
several works that have leveraged FV for the detection of
HTs such as [10], [11]. However, the scope of applying
FV for HT detection remains limited due to the following
reasons: a) the large available space in the IC for possible HT
insertion leads to state space explosion for FV, thus, limiting its
scalability, b) FV assumes the existence of a golden reference,
and c) FV has zero tolerance toward any error, and thus fails
against a circuit that may include unintentional errors while
performing RE. In other words, it can not distinguish between
an unintentional error and a true HT in a reverse-engineered
circuit layout.

4) Self-authentication techniques: These approaches uti-
lize runtime measurements to identify HT effect without the
golden design. Operation parameters such as transient current,
path delay fingerprints, and error signals are collected to
capture significant differences caused by Trojan payloads in
different time periods [20], [21], [22], [23]. However, these
approaches suffer from reduced detection sensitivity without
the original design netlist. On the other hand, they also require
expensive computations, variations of process models, and a
significant amount of measurements to ensure accuracy for
complex designs.

5) Machine learning (ML): Recently, several ML-based
HT detection techniques have been proposed such as [24],
[25], [26], [27]. In [25], the authors developed a gradient-
boosting model that extracts features from the RTL source
code. Further, several works on less-toggled signal (LTS)
identification using a support vector machine or artificial
neural network have been presented in [26], [28], [29]. Finally,
GNN4TJ, a GNN-based approach was presented which is a
golden reference-free HT detection method in the RTL [30].

C. Graph Neural Network (GNN)

GNNs are powerful tools that facilitate classification and
clustering on attributed graphs. Consider G(V, E) is an un-
directed attributed graph; V is the set of nodes, and E is the set
of edges. Each node v ∈ V is associated with a feature vector
(embedding) that captures its properties. Afterwards, GNN
performs neighborhood aggregation (AGG), where the em-
beddings are exchanged between neighboring nodes through
message passing. A new embedding is computed through a
loss function by combining the node’s embedding with its
neighbors aggregated embedings. This facilitates a node to
capture the structural/functional information about its neigh-
borhood. Thus, GNNs are well-suited for identifying sub-
circuits (sub-graphs) as they tend to possess specific structures
and connections.

The GNN framework GraphSAINT used in our tech-
nique is inspired by the Graph Convolution Neural Network
(GCN) [31]. However, instead of building a GCN on the
full graph through the nodes or edges across GCN layers,
GraphSAINT is developed from minibatch construction by
sampling the training graph, and developing a full GCN on
the sub-graph. Since nodes with higher influence on each
other will have a higher probability of forming a sub-graph,
the framework allows the sampled nodes to have a stronger
correlation with each other in the minibatch. It also applies
normalization techniques in order to address the issues of non-
identical node sampling probability and bias in the minibatch
estimator. Furthermore, variance reduction analysis and light-
weight sampling algorithm are utilized to improve the scala-
bility of training process.

III. FINDING THE NEEDLE: GNN-BASED HARDWARE
TROJAN DETECTION

An HT consists of the following two components:
• HT trigger: The activation mechanism.
• HT payload: The part of the circuit that is altered.

Since the HT payload considerably differs from that of the
original function, a question that naturally follows “Is it

v

Figure 3: An overview of the proposed methodology. It utilizes the GNN model to classify the suspicious node in the graph
and generate cell connectivity graph to identify HT in the design.

Figure 4: Figure (a) demonstrate a sub-circuit with an AND gate at the center and its neighbor cells (green), as well as a
simplified table of gate types and their index. Figure (b) demonstrates the corresponding sub-Graph shown in Figure (a). Figure
(c) show one row of the feature generated for Ci.

possible to identify an HT payload by inspecting the layout
of a circuit?”

In this paper, we demonstrate that this is indeed possible.
To this end, we train a GNN-based model to capture a circuit’s
functionality from its layout.2 Since the functionality of a
Trojan payload is fundamentally different than that of a Trojan-
free circuit, it can be accurately identified by the GNN model,
thereby flagging the circuit. Nevertheless, it is challenging
to correctly extract the feature sets from the layout, and
subsequently, train the GNN model. Fig. 3 shows the complete
end-to-end framework, which can be divided into two major
processes: 1) model training and 2) HT detection.

A. Model Training
The training phase can be divided into three parts, which

are described as follows:
1) Layout-based feature extraction,
2) Circuit to graph transformation,
3) Dataset generation.
1) Layout-based Feature Extraction: In order to capture

the functionality of a circuit, we leverage the following fea-
tures from a circuit layout;

• Gate-type. Each cell in the circuit is associated with a
specific type of Boolean logic gate such as AND, OR,
etc., that is captured as a feature in the GNN.

• Neighborhood-size. The layers of neighboring cells,
corresponding to each individual cell are denoted as
h = 1, 2, 3, For example, in Fig. 4a, for cell Ci
(marked in blue), its neighborhood-size h = 1 is illus-
trated in green. Note that each individual cell represents
only a limited amount of information about a particular
functionality. However, the aggregation of neighboring

2Note that a circuit’s function exhibits strong correlation with its structure,
as illustrated in [14], [32].

cells could capture the structure/function of the local
neighborhood in a holistic way, and thus, help identify
the unique functionality of the circuit. To this end, we
store the gate-type information for all the neighboring
cells in the circuit, as illustrated in Fig. 4b.

• Cell-location. As mentioned in Section II-A2, we pre-
sume the layout to be minimally perturbed during the
insertion of HTs, thereby keeping the cell-locations rel-
atively unchanged in the HT-inserted circuit compared
to the original. Thus, cell-locations can be leveraged to
identify the functionality of a circuit. To this end, we
store the relative location of all the cells from the layout
in a neighborhood of size h.

2) Circuit to Graph Transformation: In order to apply
GNN model, we first need to convert a circuit to its equiv-
alent graph representation. Usually, this can be achieved in
a straightforward manner, where a circuit is represented as a
directed acyclic graph (DAG) [32]. However, an un-directed
graph is more suitable for GNN, since it renders the internal
message passing more efficient. Therefore, we represent a
circuit as an un-directed graph G = (V,E), where V denotes
the set of nodes, i.e., cells, while E represents the set of edges,
i.e., the connections between the cells.3 Fig. 4a shows a sub-
circuit and a table for each included cell. It can be transformed
into a sub-graph, as shown in Fig. 4b.

3) Dataset Generation: As mentioned in Section II-C, we
utilize an open-source GNN model, GraphSAINT, to learn
the functionalities of different circuits [31]. The proposed
GNN-based methodology operates by identifying a Trojan
payload, whose circuit features differ considerably from that of
the known functionalities. GraphSAINT dataset requires five
separate files to train the model, viz., 1) full graph matrix,

3Note that a circuit can be represented as an un-directed graph without loss
of generality.

vi

2) training matrix, 3) role dictionary, 4) class dictionary, and
5) cell feature matrix, which are described below.

• Full graph matrix (MF) GraphSAINT represents a
layout graph with an N × N adjacency matrix, where
N = |V | denotes the number of nodes in the graph.
If there exists a connection between cells Cx → Cy ,
MF [x][y] andMF [y][x] will have value of one, where x
and y denotes the index for cells Cx and Cy , respectively.
In addition, we can process multiple graphs by stacking
the matrices into a larger matrix. As shown in Fig. 5a, an
N ×N matrix and an M ×M matrix can be merged into
a (N +M)× (N +M) matrix. This technique is used to
represent the training and the testing circuit in a single
graph, where the nodes in the testing circuit are kept
completely separate from that of training or validation.
Nevertheless, since MF is a sparse matrix, it can be
stored with three one-dimensional arrays for the non-zero
values, thereby having only a linear space complexity.

• Training matrix (MT) In contrast to the full graph ma-
trixMF , a non-zero value inMT corresponds to an edge
between two training nodes. In Fig. 5b, the full graph
matrix MF is shown, where training nodes, validation
nodes, and testing nodes are denoted with green, yellow,
and red, respectively. The training and validation metrics
are generated by multiple layouts containing the same
functionalities with a split of 80% and 20%. The testing
matrix is generated by the target layout which potentially
contains a Trojan. In training matrix MT , all the non-
zero values in the yellow/red region will be ignored, and
only the training nodes marked in green will retain the
connectivity information from MF .

• Role dictionary (DR) The role dictionary DR contains
three keys, viz., tr, va, and te corresponding to train-
ing, validation and testing nodes, respectively. Note that
|tr|+ |va|+ |te| = N , where N denotes the total number
of nodes in the graph. DR directly establishes the relation
betweenMT andMF , where it dedicates the node as one
for training, validation, or testing. To this end, we first
select the training and testing nodes, and subsequently,
choose 10% of the training nodes at random for cross-
validation. For example, in Fig. 5b, the green nodes
are used for training, the yellow nodes are chosen for
validation, and the red nodes are used for testing.

• Class dictionary (Dc) The class dictionary contains N
keys, representing the class label for each node in the
training set. To this end, we classify each cell in the
layout according to its base-level functionality. Note that
the base-level functionality of a cell can be easily derived
from the module hierarchy. Consider Fig. 6a, where the
module hierarchy for each cell is shown with the colored
boxes. For example, the module hierarchy for the cell 67
is marked in the red box, which is t2. Since this is an
instance of a multi-class node classification, we assign a
numerical value to each class in the circuit, e.g., the class
t2 is assigned to Class 6, as seen from Fig. 6c.
In addition to functionality, a single module can have
multiple instances that are located in specific parts of
the layout. In order to obtain a better prediction of the
functionality based on cell-location, we classify each

Figure 5: Figure (a) shows how two matrices combine into
one. Figure (b) shows the layout of training, validating and
testing.

Figure 6: Figure (a) shows required class information and
location parameters for each cell. Figure (b) shows an example
of AES layout with multiple functionality regions. Figure (c)
demonstrates the additional location features for each cell.

such instance as its own class. For example, in AES,
the module expand_key has 10 instances, where each
of these instances are labelled separately, as shown in
Fig. 6b. In total, 20 different functionality regions can
be defined for AES, including the top module. Thus,
to generate the class labels for each cell, two vectors
are created; one for module functionality (shown in red
box) and one for module instance (shown in green box).
For example, in case of AES-128, Fig. 6d shows that
cell 67 obtains a classification array, which contains the
functionality and location classes as [12, 6].

• Cell feature matrix (F). The feature matrix is an N×F
matrix, where each row i represents a vector of length F
for each cell Ci in the training set. The features we used
to train the data include four aspects of layout: the gate-
type of target cell Ci, number of each gate-type from
input set Ciin , number of each gate-type from output
set Ciout

, and distances to all functional regions. This is
illustrated in Fig. 4c. First, we create a list [Ci, Gi], that

vii

extracts each cell and its gate-type. Next, the input set
Ciin is created. To store the gate-type of input set Ciin ,
an array of length X is created, where X denotes the
total number gate-types present in the library. A simple
example for a table of gate-type is shown in Fig. 4a,
where each gate-type has its own index. Now, the array
is populated according to the number of gate-types that
are present in Ciin . A similar approach is followed for the
output set Ciout

. Finally, we combine all three together
to form a single array that stores the gate-types in the
neighborhood of cell Ci. The neighborhood-size can be
increased by extending the layers of neighbors, as shown
in Section III-A1. Moreover, we store the distance of
a cell from the center of each class to create the cell-
location feature. After the co-ordinates of all the cells in
a class have been parsed, the mean is used as the class
center. Thus, the cell-location array contain Y values,
where Y denotes the number of classes in the dataset,
as shown in Fig. 4c.

B. Determining the Existence of an HT Node
After the dataset generation, we proceed to train the GNN

model. Note that the model is trained only with the original
layout. Hence, any cell with an unknown function such as a
Trojan payload would result in a low-confidence classification.
Accordingly, we develop a strategy to detect the Trojan pay-
load by identifying such cells with low prediction value and
generate a detection profile, which contains all cells with low-
confidence classification. To this end, we develop the following
three parameters that help achieve a higher coverage of Trojan
cells for detecting the HT payload.

• Threshold of Trojan node detection (PT) The model
will furnish each cell in the testing layout a prediction
score for each class from 0 to 1. The class index with the
highest score will be the predicted class for the testing
cell. Since the Trojan payload is not included in the
training layout, we posit that the trained model will face
challenges in predicting the class for these cells, which
will end up with a low prediction score for all classes. We
utilize this feature to identify any cell that has a prediction
score lower than a pre-defined PT .

• Number of rounds (R) With the same layout, the
GNN model will produce different weight values on each
feature in various training rounds, thereby, leading to
different prediction outcomes. We could apply this aspect
to reveal more Trojan cells that might escape the detection
in one round.

• Reappearance ratio (A) After each round of testing,
different cells will be flagged. The reappearance ratio
A, where 0 ≤ A ≤ 1, is introduced to determine the
number of times each cell is flagged during testing, which
could help in filtering the true-positives from the false-
positives. A is defined as n/R, where 1 ≤ n ≤ R, is a
predetermined threshold. Any cell having a reappearance
ratio larger than A will be flagged as a Trojan.

After the detection profile is generated, we visualize the cell
distribution by plotting its corresponding graph. Fig. 7a shows
the detection profile graph for AES-T900 from TrustHub,

(a) AES-T900 (b) HT-free AES

Figure 7: Graph connectivity of the detection profile. a) Shows
the detection profile of AES-T900, where true-positives are
marked in red while false-positives are marked blue. b) Shows
the detection profile of an HT-free AES. It is evident that
the true-positive nodes in the AES-T900 exhibit a strong
clustering, whereas no such clustering can be observed in
an HT-free circuit. Both benchmarks are downloaded from
TrustHub [15].

Algorithm 1 Trojan Detection via Detection Profile
Input: Detection Profile H , Layout Graph G(V,E)
Output: True/False

1: G′ ←−initialize graph
2: for each h ∈ H do
3: G′ ←− add node(h)
4: end for
5: for each edge (u, v) ∈ E do
6: if u, v ∈ H then
7: G′ ←−add edge(u, v)
8: end if
9: end for

10: Lc ←− connected component(G′)
11: {y[0], y[1]} ←− k-means(Lc, n cluster = 2)
12: if 0 < sizeof(y[0] or y[1]) < Th then
13: return True
14: else
15: return False
16: end if

whereas Fig. 7b shows the detection profile graph of an HT-
free AES circuit [15]. Note that the false-positives are marked
in blue, whereas the true-positives are marked in red. It is
evident from Fig. 7a that in an HT-inserted layout, the true-
positives exhibit a strong clustering as compared to the false-
positive ones.

Based on this observation, we develop a heuristic that
captures the clustering pattern in the detection profile. To
this end, we generate the sub-graph for the detection profile
and subsequently, list all the connected components in it. If
there exists a few connected components that are significantly
larger than the rest, we flag the circuit as HT-inserted, else
not. Algorithm 1 delineates the proposed heuristic. First, we
initialize the sub-graph with all the nodes from the detection
profile. Next, we add the edge (u, v) ∈ E to G′ if u, v are both
present in the detection profile H . Afterwards, we list all the
connected components in G′ denoted by Lc. Next, we classify
the components in terms of the number of nodes present. To

viii

Table II: TrustHub benchmark suites used in our experi-
ments [15].

Benchmark Trigger? HT Payload Detected? Runtime
AES-T100 No Leakage Yes 45m57s
AES-T200 No Leakage Yes 46m5s
AES-T900 Yes Leakage Yes 46m17s
AES-T1200 Yes Leakage Yes 46m30s
AES-T1800 Yes DoS Yes 46m48s
RS232-T100 Yes DoS Yes 3m40s
RS232-T200 Yes Function Alter Yes 4m10s
RS232-T400 Yes Function Alter Yes 3m55s
RS232-T800 Yes Function Alter Yes 7m10s

this end, we apply K-Means clustering to split them into two
clusters y[0], y[1] [33], from which either of the following two
conclusions can be made:

1) If only a few components have a large number of nodes,
they are labeled in one cluster, whereas the majority of
the components having only a small number of nodes fall
into the other. The existence of a few such components
having a large number of nodes is indicative of HT,
and accordingly, we return True. In our experiments,
we empirically determine that the threshold Th for the
number of large components to be three. Note that the
identification of such components implicitly localize the
Trojan cells in the layout.

2) If both clusters y[0] and y[1] contain a similar number
of components which is larger than the threshold Th, it
indicates that there is no outlier having a large # nodes;
thus the layout is marked Trojan-free by returning False.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup
All our experiments are carried out on a machine having 40

CPUs of 64-bit Intel(R) Xeon(R) E5-2698 v4 @ 2.20GHz.
All the codes have been implemented on Python. All the
circuits are synthesized using Synopsys Design Compiler (DC)
with the 45nm NanGate Open Cell Library [34], and the the
corresponding layouts are generated using Cadence Innovus.
For evaluation purposes, we use five AES-128 and four
RS232 benchmark suites from Trusthub [15]. Noted that since
we are comparing our performances with the work in [35], we
chose these benchmarks with different Trojans that are shown
in their work. A brief description of the circuits is presented
in Table II.

B. Identifying HTs in design layout
Through the evaluation shown later in Section IV-C, we em-

pirically select the following parameters: threshold of Trojan
detection PT = 0.8, # of rounds R = 10, reappearance ratio
A = 0.1, and neighborhood-size h = 2 for our experiments.
Table II summarizes the HT detection results. It is seen that our
approach is able to correctly detect HT in all nine HT-inserted
benchmarks. On average, for each HT-inserted AES layout,
our technique is able to reveal 70% of the Trojan cells in a
layout, with the maximum coverage up to 90%. In addition,
false-positive rates are almost zero once the outlier component
is identified.

Note that the main objective of this work is to identify
whether the HTs exsit in an unseen layout, where it succeeds

(a) PT = 0.7 (b) PT = 0.8 (c) PT = 0.9

Figure 8: Effect of detection threshold PT on AES-T900.

(a) R = 1 (b) R = 5 (c) R = 10

Figure 9: Effect of # Rounds R on AES-T900.

in all cases. Further, these results show that not only is our
technique capable of Trojan-inserted layout detection, but also
in localizing the majority (up to 90%) of the Trojan cells that
are inserted in the layout.

C. Parameter Evaluation for PT , R, A, and h

In this section, we discuss how to tune different parameters
of our proposed GNN model. As mentioned earlier, the param-
eters chosen for our model are as follows: PT = 0.8, R = 10,
A = 0.1, and h = 2. To evaluate the effects, we change only
one parameter at a time, while keeping the rest constant. All
the experiments in this section are demonstrated based on the
cell connectivity graphs of AES-T900 benchmark. Similar
results were obtained for other benchmarks as well.

1) Detection Threshold PT : Fig. 8 establishes a direct cor-
relation between PT and the false-positive rate on AES-T900
benchmark; the larger the threshold, the higher is the false-
positive rate. This is due to the fact any node having prediction
score less than PT is flagged as a potential HT. Nonetheless,
even with a high false-positive rate, the HT-inserted circuit
exhibits strongly clustering components, thereby aiding in
the detection of HT. However, with lower threshold, the
connectivity starts to fade out as seen for PT = 0.7, when
compared to PT = 0.8. Thus, it becomes a trade-off between
HT detection capability vs false-positive rate, and we consider
PT = 0.8 for our experiments.

2) # Round R: Fig. 9 shows the effects of R on
AES-T900 benchmark. It can be seen that with R = 1, the
GNN model fails to detect the existence of HT in the circuit.
Nevertheless, with larger R, the true-positive improves con-
siderably, and after R = 10, the improvement plateaus. Hence,
R = 10 is selected for our experiments, in order to maximize
the detection coverage and reduce time consumption.

3) Reappearance Ratio A: Fig. 10 shows the effect of A on
false-positive rate; smaller the ratio, higher is the false-positive
rate. Nevertheless, even with a high false-positive rate, the
HT-inserted circuit strongly exhibits clustering components,
thereby aiding in the detection of HT. However, with larger

ix

(a) A = 0.1 (b) A = 0.3 (c) A = 0.5

Figure 10: Effect of reappearance ratio A on AES-T900.

(a) h = 1 (b) h = 2 (c) h = 3

Figure 11: Effect of neighborhood-size h on AES-T900.

ratio, the connectivity starts to fade out as seen for A = 0.5
when compared to A = 0.1, thereby limiting the HT detection
ability of the model. For our experiments, A = 0.1 provides
the best results, i.e., some Trojan cells might be detected only
once in 10 rounds. On the other hand, some cells in Sbox and
ShiftRow have a much higher appearance ratio, since these
cells lack the amount of input and output features compared
to other cells. Therefore, they are more likely to be flagged
due to their limited features in any class. However, the Trojan
cells have different features from the majority of cells in Sbox
and ShiftRow; thus, they have unstable prediction confidence
through different rounds of testing. Hence, when A = 0.1, the
framework achieves the highest Trojan cell coverage, as it has
more possibilities to review difficult-to-classify Trojan cells.

4) Neighbourhood-size h: The effect of neighborhood-size
is illustrated in Fig. 11. We can conclude that the dataset
with h = 2 provides the best performance. Two layers of
neighbouring cells could properly capture the functionality in
a local region, thereby drastically reducing the false-positive
rate from h = 1. Although increasing h further reduces the
false-positive, which can be seen when h = 3, the detection
coverage gets significantly lower.

V. DISCUSSION

A. Efficacy of the Proposed Technique

1) Run-time & Scalability: As shown in Table II, the total
execution time takes only up to a few minutes, even for large
layouts such as AES crypto cores having ∼ 250K+ gates.
Since the GNN represents the graphs with sparse matrices,
the complexity scales only linearly in (|V |+ |E|), where |V |
denotes number of nodes and |E| denotes the number of edges
in the graph. This is evident from the fact that even when the
size of dataset changes from ∼ 5K+ to ∼ 250K+ cells, the run-
time does not suffer from any bottleneck. Furthermore, each
round of training can be completely parallelized independent
of each other, making our framework highly scalable.

2) Effectiveness Against Different Types of HT Payloads:
We experimented with three different types of HT payloads,
viz., leakage, denial of service, and change-functionality. It

(a) AES-T900 (b) Faulty AES layout

Figure 12: Distinguishing between an HT-inserted and a Faulty
Layout. Note that in case of the fault layout no clusters are
present, whereas for AES-T900 existence of clusters flags the
circuit as suspicious.

is evident from Table I that we are able to detect all three
different types of payload successfully. However, certain types
of payload may prove to be harder to detect than others, e.g.,
denial of service. This is attributed to the small footprint of
the HT. Moreover, we can easily identify multiple obvious
connectivity clusters, which correspond to HT triggers, since
they differ from any fundamental functional module.

B. Distinguishing Between HT-inserted and Faulty Layouts

In our threat model, we assume that a fully reverse-engi-
neered fault-free gate-level layout is always present. However,
this might not always be true, since any faults/error during the
RE phase can lead to a faulty layout recovery. In such cases,
it gets challenging to distinguish between a faulty layout
and an intentional alteration in the circuit. On the contrary,
the proposed framework can easily differentiate between them.
Since, an error caused by RE would be uniformly random, it
would be spread across the layout as opposed to an HT, which
exhibits a strong clustering behavior. To mimic an RE faulty
layout, we randomly alter 0.1% of their connections during the
testing. The results of applying our framework to such faulty
layout is shown in Fig. 12b, where the absence of any cluster
correctly classifies it as HT-free. However, for AES-T900,
and other benchmarks in our experiments, clear clusters can
be observed toward the center, thereby flagging the circuit as
suspicious. In addition, we created five faulty layouts with a
few cell connection and gate types swapped in HT-free layout,
and none of them were falsely identified as HT-inserted.

Note that our work does not suffer from the requirement of
a “Golden IC” which is necessary for SCA/functional testing-
based detection techniques [7], [8], [9]. Our framework only
requires the design house to possess the un-tampered layout,
which is a “soft-IP”. It is reasonable since the design house
generates the circuit layout.

C. Comparison with Prior Work

In this section, we compare our method with a related
technique [35]. In [35], a data flow graph (DFG) is generated
from the design RTL and Spatial Graph Convolution Neural
Network (SGCN) is applied to study the convolution operation
based on a node’s spatial relations. It converts each hardware
design RTL into the corresponding DFG and generates the

x

graph embedding of the design. The authors trained and
tested GNN models with graph embedding generated from
Trojan-inserted and Trojan-free DFG, and demonstrated that
their approach is capable of classifying Trojan-inserted and
Trojan-free RTL through DFG. However, this approach fails
to classify an unseen benchmark unless the benchmark is
labeled prior to training, which limits the performance on
Trojan detection. In a separate work [30], although the authors
claim that the approach is able to provide Trojan localization
and labeling, it does not consider the performance on faulty
designs. Furthermore, we could not evaluate it since the code
is not publicly available.

For our proposed HT detection technique, we use clus-
ter identification to distinguish between Trojan-inserted and
Trojan-free ICs at the layout level. As shown in Section III-B,
through our approach, if a cluster is detected among all
the connections formed by the nodes flagged by the GNN
model, the layout under test will be considered as HT-inserted.
Therefore, it is applicable in real scenarios when the designs
under test are not labeled and the inserted Trojan payloads are
unpredictable.

VI. CONCLUSION

In this paper, we have presented our proposed framework
for Hardware Trojan detection that operates on layout-inserted
HT, utilizing graph neural networks (GNN) for identification
and labeling of different functionality regions. By transforming
an IC layout into a graph, the GNN model can capture
the global network structural information of the layout and
local structural details of each cell along with its neighboring
cells. Moreover, it captures the gate-level features of each
cell to identify each unique functional region. Our proposed
framework identifies whether the layout is HT-inserted by
utilizing the trained model to reveal suspicious cells by
flagging cells with low-confidence classification, and utilizes
clustering-based identification to provide Trojan localization
in the layout. It is demonstrated to be capable of identifying
Trojan-inserted layouts corresponding to various types of
Trojan payloads and different sizes of layouts using designs
from the Trusthub benchmarks. The proposed method operates
without the need for a Golden IC. In future, we aim to intro-
duce methods to improve the performance of HT coverage;
thereby, reducing the amount of effort to examine the layout
and uncover all the Trojan cells.

REFERENCES

[1] “Omitted to facilitate blindfold review.”
[2] Tom’sHARDWARE, https://www.tomshardware.com/news/tsmc-fab-

3nm-5nm-process-intel-samsung, 2019.
[3] “The Big Hack: How China Used a Tiny Chip to Infiltrate U.S.

Companies,” https://www.bloomberg.com/news/features/2018-10-
04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-
companies, Bloomberg Businessweek, 2018.

[4] semi, “Innovation is at risk: Losses of up to $4 billion annually due to
ip infringement,” 2008.

[5] “The Hunt For the Kill Switch,” https://spectrum.ieee.org/the-hunt-for-
the-kill-switch, IEEE Spectrum, 2008.

[6] “Detecting and Removing Counterfeit Semiconductors in
the U.S. Supply Chain,” https://www.semiconductors.org/wp-
content/uploads/2018/06/ACTF-Whitepaper-Counterfeit-One-Pager-
Final.pdf, Semiconductor Industry Association, 2013.

[7] S. Saha et al., “Improved test pattern generation for hardware trojan
detection using genetic algorithm and boolean satisfiability,” in CHES,
vol. 9293, 2015, pp. 577–596.

[8] D. Agrawal et al., “Trojan detection using ic fingerprinting,” in IEEE
S&P, 2007, pp. 296–310.

[9] Y. Jin et al., “Hardware trojan detection using path delay fingerprint,”
in IEEE HOST, 2008, pp. 51–57.

[10] A. Ardeshiricham et al., “Register transfer level information flow
tracking for provably secure hardware design,” in IEEE DATE, 2017,
pp. 1691–1696.

[11] A. Nahiyan et al., “Hardware trojan detection through information flow
security verification,” in IEEE ITC, 2017, pp. 1–10.

[12] P. Subramanyan et al., “Formal verification of taint-propagation security
properties in a commercial soc design,” in IEEE DATE, 2014, pp. 1–2.

[13] W. Hu et al., “Detecting hardware trojans with gate-level information-
flow tracking,” Computer, vol. 49, pp. 44–52, 2016.

[14] J. Baehr et al., “Machine learning and structural characteristics for
reverse engineering,” Integration, vol. 72, pp. 1–12, 2020.

[15] “Trust-hub.org,” https://trust-hub.org/benchmarks/chip-level-trojan, (Ac-
cessed on 01/09/2022).

[16] R. Baruch, “How i reverse engineer a chip,”
https://www.youtube.com/watch?v=r8Vq5NV4Ens, 2017.

[17] “Chipworks,” https://www.chipworks.co.uk/, (Accessed on 04/02/2022).
[18] T. Perez and S. Pagliarini, “Hardware trojan insertion in finalized lay-

outs: From methodology to a silicon demonstration,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2022.

[19] A. Vakil, F. Behnia, A. Mirzaeian, H. Homayoun, N. Karimi, and
A. Sasan, “Lasca: Learning assisted side channel delay analysis for
hardware trojan detection,” in 2020 21st International Symposium on
Quality Electronic Design (ISQED). IEEE, 2020, pp. 40–45.

[20] H. S. Choo, C. Y. Ooi, M. Inoue, N. Ismail, M. Moghbel, and
C. H. Kok, “Register-transfer-level features for machine-learning-based
hardware trojan detection,” IEICE TRANSACTIONS on Fundamentals of
Electronics, Communications and Computer Sciences, vol. 103, no. 2,
pp. 502–509, 2020.

[21] T. F. Wu, K. Ganesan, Y. A. Hu, H.-S. P. Wong, S. Wong, and S. Mitra,
“Tpad: Hardware trojan prevention and detection for trusted integrated
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 4, pp. 521–534, 2015.

[22] M. Xue, R. Bian, J. Wang, and W. Liu, “Building an accurate hardware
trojan detection technique from inaccurate simulation models and un-
labelled ics,” IET Computers & Digital Techniques, vol. 13, no. 4, pp.
348–359, 2019.

[23] K. G. Liakos, G. K. Georgakilas, S. Moustakidis, N. Sklavos, and
F. C. Plessas, “Conventional and machine learning approaches as
countermeasures against hardware trojan attacks,” Microprocessors and
Microsystems, vol. 79, p. 103295, 2020.

[24] Z. Huang et al., “A survey on machine learning against hardware trojan
attacks: Recent advances and challenges,” IEEE Access, vol. 8, pp.
10 796–10 826, 2020.

[25] T. Han et al., “Hardware trojans detection at register transfer level based
on machine learning,” in IEEE ISCAS, 2019.

[26] K. Hasegawa et al., “Hardware trojans classification for gate-level
netlists using multi-layer neural networks,” in IEEE IOLTS, 2017, pp.
227–232.

[27] F. Zareen et al., “Detecting rtl trojans using artificial immune systems
and high level behavior classification,” in IEEE AsianHOST, 2018, pp.
68–73.

[28] K. Hasegawa et al., “Trojan-feature extraction at gate-level netlists
and its application to hardware-trojan detection using random forest
classifier,” in IEEE ISCAS, 2017, pp. 1–4.

[29] ——, “Hardware trojans classification for gate-level netlists based on
machine learning,” in IEEE IOLTS, 2016.

[30] R. Yasaei et al., “Gnn4tj: Graph neural networks for hardware trojan
detection at register transfer level,” in DATE, 2021, pp. 1504–1509.

[31] H. Zeng et al., “Graphsaint: Graph sampling based inductive learning
method,” arXiv preprint arXiv:1907.04931, 2019.

[32] L. Alrahis et al., “Gnn-re: Graph neural networks for reverse engineering
of gate-level netlists,” IEEE TCAD, pp. 1–1, 2021.

[33] K. Krishna et al., “Genetic k-means algorithm,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 3, pp.
433–439, 1999.

[34] “NanGate FreePDK45 Open Cell Library,” Nangate Inc, 2011. [Online].
Available: http://www.nangate.com/?page id=2325

[35] S.-Y. Yu et al., “Hw2vec: A graph learning tool for automating hardware
security,” in IEEE HOST, 2021, pp. 13–23.

