
Protostar: Generic Efficient Accumulation/Folding for

Special Sound Protocols

Benedikt Bünz
Espresso Systems

Binyi Chen
Espresso Systems

May 3, 2023

Abstract

We provide a generic, efficient accumulation (or folding) scheme for any (2k − 1)-
move special sound protocol with a verifier that checks ℓ degree-d equations. The
accumulation verifier only performs k+d−1 elliptic curve multiplications and k+1 field
operations. Alternatively the accumulation verifier performs just k EC multiplications
at the cost of 1 additional hash and O(k+d+log ℓ) field operations. Using the compiler
from BCLMS21 (Crypto 21), this enables building efficient IVC schemes where the
recursive circuit only depends on the number of rounds and the verifier degree of the
underlying special-sound protocol but not the proof size or the verifier time. We use our
generic accumulation compiler to build Protostar. Protostaris a non-uniform IVC
scheme for Plonk that supports high-degree gates and (vector) lookups. The recursive
circuit is dominated by 3 group scalar multiplications and hashes and O(d∗ + log n)
field operations, where d∗ is the degree of the highest gate and n is the number of gates
in a supported circuit. The scheme does not require a trusted setup or pairings, and
the prover does not need to compute any FFTs. The prover in each accumulation/IVC
step is also only logarithmic in the number of supported circuits and independent of
the table size in the lookup.

1

Contents

1 Introduction 3
1.1 Technical overview . 7

2 Preliminaries 9
2.1 Special Sound Protocols and Fiat-Shamir Transform 9
2.2 Adaptive Fiat-Shamir transform . 11
2.3 Incremental Verifiable Computation (IVC) 11
2.4 Simple Accumulation . 12
2.5 Commitment Scheme . 13

3 Protocols 14
3.1 Special Sound Protocols . 14
3.2 Commit and Open . 15
3.3 Fiat-Shamir transform . 16
3.4 Accumulation Scheme for VNARK . 16
3.5 Efficiency optimizations for high-degree verifiers 22

4 Low-degree special-sound protocols for toolbox relations 26
4.1 Permutation relation . 26
4.2 High-degree custom gate relation . 27
4.3 Lookup relation . 27
4.4 Vector-valued lookup . 30

5 Special sound protocols for Plonkup relations 34

6 Special sound protocols for non-uniform Plonkup relations 35

7 Protostar 37

2

1 Introduction

Incrementally Verifiable Computation[Val08] is a powerful primitive that enables a possibly
infinite computation to be run, such that the correctness of the state of the computation
can be verified at any point. IVC, and it’s generalization to DAGs, PCD[CT10], have many
applications, including distributed computation[BCCT13; CTV15], blockchains[BMRS20;
KB20], verifiable delay functions [BBBF18], verifiable photo editing [NT16], and SNARKs
for machine-computations[BCTV14]. An IVC-based VDF construction is the current can-
didate VDF for Ethereum[KMT22]. One of the most exciting applications of IVC and PCD
is the ZK-EVM. This is an effort to build a proof system that can prove that Ethereum
blocks, as they exist today, are valid[But22].

Accumulation and folding. Historically, IVC was built from recursive SNARKs, prov-
ing that the previous computation step had a valid SNARK that proves correctness up
to that point. Recently, an exciting new approach was initiated by Halo[BGH19] and has
led to a series of significant advances[BCMS20; BCLMS21; KST22]. The idea is related
to batch verification. Instead of verifying a SNARK at every step of the computation, we
can instead accumulate the SNARK verification check with previous checks. We define
an accumulator1 such that we can combine a new SNARK and an old accumulator into
a new accumulator. Checking or deciding the new accumulator implies that all previ-
ously accumulated SNARKs were valid. Now the recursive statement just needs to ensure
the accumulation was performed correctly. Amazingly, this accumulation step can be sig-
nificantly cheaper than SNARK verification[BGH19; BCMS20]. Even more surprising,
this process does not even require a SNARK but instead can be instantiated with a non-
succinct NARK[BCLMS21], as long as there exists an efficient accumulation scheme for
that NARK. The most efficient accumulation (aka folding) scheme constructions yield IVC
constructions, where the recursive circuit is dominated by as few as 2 elliptic curve scalar
multiplications[BCLMS21; KST22]. These constructions only require the discrete loga-
rithm assumption in the random oracle model and, unlike many efficient SNARK-based
IVCs, do not require a trusted setup, pairings, or FFTs. These constructions build an ac-
cumulation scheme for one fixed (but universal) R1CS language by taking a random linear
combination between the accumulator and a new proof. R1CS is a minimal expression of
NP, defined by three matrices A,B,C, that close resembles arithmetic circuits with addi-
tion and multiplication gates. However, it has limited flexibility, especially as the current
constructions require fixing R1CS matrices that are used for all computation steps. These
limitations are especially problematic for ZK-EVMs. In a ZK-EVM, each VM instruction
(OP-CODE) is encoded in a different circuit. Each circuit uses high-degree gates, instead of
just multiplication, and so-called lookup gates [GWC19]. These lookup gates enable look-
ing up that a circuit value is in some table, simplifying range proofs and bit-operations.

1Unrelated to set accumulators.

3

These R1CS-based accumulation schemes contrast non-IVC SNARK developments, with
an increased focus on high-degree gate[GWC19; CBBZ22] and lookup support[GW20]. For
lookups, a recent line of work has shown that if the table can be pre-computed, we can
perform n lookups in a table of size T in time O(n log n), independent of T [ZBKMNS22;
PK22; ZGKMR22; EFG22].

More expressive accumulation. There have been efforts to build accumulation schemes
that overcome the limitations of fixed R1CS. SuperNova[KS22] enables selecting the ap-
propriate R1CS instance at runtime without a recursive circuit that is linear in all R1CS
instances. The approach, however, still has limitations. The recursive circuit is linear in
the number of R1CS circuits, and additionally, the accumulator, and thus the final proof,
is still linear in the total size of all instances. Sangria[Moh23] describes an accumulation
scheme for a Plonk-like[GWC19] constraint system with degree-2 gates. It also proposes
a solution for higher-degree gates in the future work section but without security proof.
These accumulation schemes are built from simple underlying protocols performing a linear
combination between an accumulator and a proof. However, the constructions seem ad hoc
and need individual security proof. This leads us to our main research questions:

Recipe for accumulation Is there a general recipe for building accumulation schemes?
Can we formalize this recipe, simplifying the task of constructing secure and efficient
accumulation schemes?

Efficient accumulation for ZK-EVM Can we build an accumulation/folding scheme
for a language that combines the benefits of the most advanced proof systems today?
Can we support multiple circuits, high-degree, and lookup gates?

We answer both questions positively. Firstly we show a general compiler that takes any
(2k − 1)-move special sound interactive argument for an NP-complete relation RNP with
an algebraic degree d verifier and construct an efficient IVC-scheme from it. This is done
in 4 simple steps.

1. We compress the prover message by committing to them in a homomorphic commit-
ment scheme.

2. Then we apply the Fiat-Shamir transform to yield a secure NARK. [AFK22; Wik21]

3. We build a simple and efficient accumulation scheme that samples a random challenge
α and takes a linear combination between the current accumulator and the new
NARK.

4. We apply the compiler by [BCLMS21] to yield a secure IVC scheme.

4

The recursive circuit of this transformation is dominated by only d + k − 1 scalar
multiplications in the additive group of the commitment scheme2 for a protocol with k
prover messages and a degree d verifier. For R1CS, where k = 1 and d = 2, this yields
the same protocol and efficiency as Nova[KST22]. We also provide an optimization that
reduces the size of the recursive circuit to only k group scalar multiplication, at the cost
of extra field multiplications, in the message space field.

Efficient simple protocols for Rmplkup. Equipped with this compiler, we design
Protostar, a simple and efficient IVC scheme for a highly expressive language Rmplkup

that supports multiple non-uniform circuits and enables high degree and lookup gates. The
schemes can be instantiated from any linearly homomorphic vector commitment, e.g., the
discrete logarithm-based Pedersen commitment[Ped92], and do not require a trusted setup
or the computation of large FFTs. The protocol has several advantages over prior schemes:

Non-uniform IVC without overhead. Each iteration has a program counter pc that
selects one out of I circuits. Part of the circuit constraints pc; e.g., pc could depend
on the iteration or indicate which instruction within a VM is executed. The IVC-
prover, including the recursive statement, only requires one exponentiation per non-
zero bit in the witness. The prover’s computation is independent of I.

Flexible high degree gates. Our protocol supports Plonk-like constraint systems with
degree d gates instead of just addition and multiplication. The recursive statement
consists of d+ 1 group scalar multiplications. Using an optimization, we can reduce
this to 3 group scalar multiplications at the cost of 1 additional hash and O(d) field
operations. Unlike in traditional Plonk, there is no additional cost for additional gate
types (of degree less than d) and additional selectors. This enables a high level of
non-uniformity, even within a circuit.

Lookups, linear and independent of table size. Protostar supports lookup gates
that ensure a value is in some precomputed table T . In each computation step, the
prover commits to 2 vectors of length ℓlk, where ℓlk is the number of lookups. The
prover, in each step, is independent of the table size (assuming free indexing in T).
We also support tables that store tuples of size v using log2(v) additional challenge
computations within the recursive circuit.

Our protocols are built of multiple small building blocks. In the protocol for high-degree
gates, the prover simply sends the witness, and the degree d verifier checks the circuit
with degree d gates. For lookup, we leverage an insight by Haböck [Hab22] on logarithmic
derivates. This yields a protocol where a prover performing ℓlk in a table of size T only
needs to commit to two vectors of length ℓlk, independent of T . This is the most efficient

2When instantiated with elliptic curve Pedersen commitments, this translates to d+ k− 1 elliptic curve
multiplications. This is usually the largest component of the recursive statement.

5

Protostar SuperNova HyperNova

Language Degree d gates R1CS (degree 2) Degree d gates

Non-uniform yes yes no

P native
|w|G

+O(|w|d log2 d)F |w|G |w|G
+O(|w|d log2 d)F

extra P native
w/ lookup

O(|ℓlk|)G N/A O(T)F

P recursive
1G+ 2H

O(d+ log n)F 2G+ 1H+ I
1G+ log nH
O(d log n)F

extra P recursive
w/ lookup

2G+ 1H N/A
O(log T)H

O(ℓlk log T)F

Table 1: The comparison between IVCs.

lookup protocol today. While the verification is linear time, it is low degree (2) and thus
compatible with our generic compiler. Combining all these yields Protostar, a new IVC-
scheme for Rmplkup. We compare Protostar, with Super-Nova, in Table 1 (for more
detail see Corollary 1): In the table, |w| is the size of the witness for circuit i, I is the
number of circuits, and ℓlk is the number of lookups in a table of size T . G is the cost of a
group scalar multiplication. F is the cost of a field multiplication.

Remark 1. A more fine-grained number of field operations of P native is O(|w|(d +
log n) log2 (d+ log n)) if we want to achieve 1G+2H+O(d+log n)F in P recursive circuit.
Note O(|w|(d+ log n) log2 (d+ log n)) = O(|w|d log2 d) when d ≈ log n. It’s an interesting
open question on whether we can achieve optimal complexity for both the P native and P
recursive complexities when d is much less than log n.

Concurrent work. In a paper concurrent with this work, Kothapalli and Setty [KS23]
introduce an IVC for high degree relations. They use a generalization of R1CS called
customizable constraint systems (CCS) [STW23] that covers the Plonkish relations. It
also enables gates with a high additive fan-in. Protostar also has no restriction to the
fan-in an individual gate has, so it is an interesting, open question whether it can directly be
applied to CCS. HyperNova is based on so-called multi-folding schemes. They also provide a
lookup argument suitable for recursive arguments. However, they do not explicitly explain
how to integrate lookup to Plonk in their IVC scheme or provide any explicit constructions
for non-uniform computations. Their scheme is built using sumchecks [LFKN92] and the
resulting IVC recursive circuit is dominated by 1 group scalar multiplication, 2 log n hashes
and O(d log n+ℓin) field multiplications where d is the custom gate degree, n is the number
of gates and ℓin is the public input length. In comparison, our IVC recursive circuit (without
lookup or non-uniformity support) is dominated by d group scalar multiplications, 1 hash
and 1 + ℓin field operations for low-degree gates; or only 1 group scalar multiplications, 2

6

hashes and O(log n+ℓin+d) field multiplications for high-degree gates after an optimization.
A detailed comparison is given in Table 1.

For a lookup relation with table size T and ℓlk lookup gates, their accumulation/folding
scheme leads to an accumulation prover whose work is dominated by O(T) field operations
and an accumulation verifier whose work is dominated by O(ℓlk log T) field operations and
O(log T) hashes. This is undesirable when the table size T ≫ ℓlk. In comparison, our
scheme has prover complexity O(ℓlk) and the verifier is only dominated by 3 group scalar
multiplications, 2 hashes and 2 field multiplications. Lastly, their lookup scheme does
not support vector-valued lookups, which is essential for applications like ZK-EVM and
encoding bit-wise operations in circuits.

1.1 Technical overview

Given an NP-complete relation R, we introduce a generic framework for constructing
efficient incremental verifiable computation (IVC) schemes with predicates expressed in R.
For R being the non-uniform Plonkup circuit satisfiability relation, we obtain an efficient
(non-uniform) IVC scheme for proving correct program executions on stateful machines
(e.g., EVM). The framework starts by designing a simple special-sound protocol Πsps for
relation R, which is easy to analyze. Next, we use a generic compiler to transform Πsps into
a Non-interactive Argument of Knowledge Scheme (NARK) whose verification predicate is
easy to accumulate/fold. Finally, we build an efficient accumulation/folding scheme for the
NARK verifier, and apply the generic compiler from [BCLMS21] to obtain the IVC/PCD
scheme for relation R.

The paper begins by describing the compiler from special-sound protocols to NARKs
in Section 3, and presents an efficient accumulation scheme for the compiled NARK verifier
in Section 3.4. Next, we describe simple and efficient special-sound protocols for Plonkup
circuit-satisfiability relations in Section 5, and extend it to support non-uniform computa-
tion in Section 6. We give an overview of our approach below.

Efficient IVCs from special sound protocols. Let Πsps be any multi-round special
sound protocol for some relation R, in which the verifier is algebraic, that is, the verifier
algorithm only checks algebraic equations over the input and the prover messages. E.g.,
the following naive protocol for the Hadamard product relation over vectors a,b, c ∈ Fn

is special-sound and has a degree-2 algebraic verifier: The prover simply sends the vectors
a, b, c to the verifier, and the verifier checks that ai · bi = ci for all i ∈ [n]. However,
as shown in the example, the prover message can be large in Πsps and the folding scheme
can be expensive if we directly accumulate the verifier predicate. Inspired by the splitting
accumulation scheme [BCLMS21], to enable efficient accumulation/folding, we split each
prover message into a short instance and a large opening, where the short instance is built
from the homomorphic commitment to the prover message. Next, we use the Fiat-Shamir
transform to compile the protocol into a NARK where the verifier challenges are generated

7

from a random oracle.
Now we can view the NARK transcript as an accumulator (or a relaxed NP instance-

witness pair in the language of folding schemes), where the accumulator instance consists of
the prover message commitments and the verifier challenges; while the accumulator witness
consists of the prover messages (i.e., the opening to the commitments). Note we also need
to introduce an error vector/commitment into the accumulator witness/instance to absorb
the “noise” that arises after each accumulation/folding step.

In the accumulation scheme, given two accumulators (or NARK proofs), the prover folds
the witnesses and the instances of both accumulators via a random linear combination and
generates a list of d “error-correcting terms” as accumulation proof (d is the degree of the
NARK verifier); the verifier only needs to check that the folded accumulator instance is
consistent with the accumulation proof and the original instances being folded, both of
which are small. After finishing all the accumulation steps, a decider applies a final check
to the accumulator, scrutinizing that (i) the accumulator witness is consistent with the
commitments in the accumulator instance, and (ii) the “relaxed” NARK verifier check still
passes. Here by “relaxed” we mean that the algebraic equation also involves the error vector
in the accumulator. If the decider accepts, this implies that all accumulated NARKs were
valid and thus that all accumulated statements are in R (and the prover knows witnesses
for these statements).

Finally, given the accumulation scheme, if the relation R is NP-complete, we can apply
the compiler in [BCLMS21] to obtain an efficient IVC scheme with predicates expressed in
R.

In Theorem 4, we show that for any (2k−1)-move3 special-sound protocols with degree-
d verifiers, the resulting IVC recursive circuit only involves k hashes, k + 1 non-native
field operations and k + d − 1 commitment group scalar multiplications. For verifiers
with high degree d ≫ k, we introduce a generic approach in Section 3.5 to optimize the
IVC complexity, which might be of independent interest. The number of group scalar
multiplications in the recursive circuit is only k, with the tradeoff of 1 additional hash and
O(d+log ℓ) additional non-native field operations, where ℓ denotes the number of algebraic
equations checked in the verifier algorithm (e.g., ℓ = n in the Hadamard product example).

Special sound protocols for (non-uniform) Plonkup relations. Given the generic
compiler above, our ultimate goal of constructing a (non-uniform) IVC scheme for zkEVM
becomes much easier . It is now sufficient to design a multi-round special sound protocol
for the (non-uniform) Plonkup relation. Recall that a Plonkup circuit-satisfiability relation
consists of three modular relations, namely, (i) a high-degree gate relation checking that
each custom gate is satisfied; (ii) a permutation (wiring-identity) relation checking that dif-
ferent gate values are consistent if the same wire connects them, and (iii) a lookup relation
checking that a subset of gate values belongs to a preprocessed table. The special-sound

3k prover messages, k − 1 challenges

8

protocols for the permutation and high-degree gate relations are trivial, where the prover
directly sends the witness to the verifier, and the verifier checks that the permutation/high-
degree gate relation holds. The degree of the permutation check is only 1, and the degree
of the gate-check is the highest degree in the custom gate formula.

The special-sound protocol for the lookup relation RLK is more interesting as the
statement of the lookup relation is not algebraic. Inspired by the log-derivative lookup
scheme [Hab22], in Section 4.3, we design a simple 3-move special sound protocol ΠLK for
RLK, in which the verifier degree is only 2. A great feature of ΠLK is that the number of
non-zero elements in the prover messages is only proportional to the number of lookups, but
independent of the table size. Thus the IVC prover complexity for computing the prover
message commitments is independent of the table size, which is advantageous when the
table size is much larger than the witness size. Moreover, we extend ΠLK in Section 4.4 to
further support vector-valued lookup, where each table entry is a vector of elements. This
feature is useful in applications like zkEVM and for simulating bit operations in circuits.

Given the special sound protocols for permutation/high-degree gate/lookup relations,
the special sound protocol Πplonkup for Plonkup is just a parallel composition of the three
protocols. Furthermore, in Section 6, we apply a simple trick to support non-uniform
IVC. More precisely, let {Ci}Ii=1 be I different branch circuits (e.g., the set of supported
instructions in EVM), let pi := (pc, pi′) be the public input where pc ∈ [I] is a program
counter indicating which instruction/branch circuit is going to be executed in the next
IVC step. Our goal is to prove that (pi,w) is in the relation Rmplkup in the sense that
Cpc(pi,w) = 0 for witness w. The relation statement can also add additional constraints
on pc depending on the applications. The special sound protocol for Rmplkup is almost
identical to Πplonkup for the Plonkup relation, except that the prover further sends a bool
vector b ∈ FI , and the verifier uses a degree-log(I) check to guarantee that bpc = 1 and
bi = 0∀i ̸= pc. Additionally, each algebraic equation G checked in Πplonkup is replaced with∑I

i=1 Gi ·bi where Gi (1 ≤ i ≤ I) is the corresponding equation in the protocol for the i-th
branch circuit. The resulting special sound protocol has 3 moves, and the verifier degree is
max(log(I), d+1), where d is the highest degree of the custom gates. This means that the
IVC scheme for the non-uniform Plonkup relation adds only negligible overhead to that
for the Plonkup relation, as long as the custom gate degree is no less than the logarithm
of the number of supported instructions.

2 Preliminaries

2.1 Special Sound Protocols and Fiat-Shamir Transform

We define special-soundness and non-interactive arguments according to the definitions by
[AFK22].

Definition 1 (Public-coin interactive proof). An interactive proof Π = (P,V) for relation

9

R is an interactive protocol between two probabilistic machines, a prover P, and a polyno-
mial time verifier V. Both P and V take as public input a statement pi and, additionally,
P takes as private input a witness w ∈ R(pi) . The verifier V outputs 0 if it accepts and a
non-zero value otherwise. It’s output is denoted by (P(w),V)(pi). Accordingly, we say the
corresponding transcript (i.e., the set of all messages exchanged in the protocol execution)
is accepting or rejecting. The protocol is public coin if the verifier randomness is public.
The verifier messages are referred to as challenges. Π is a (2k − 1)-move protocol if there
are k prover messages and k − 1 verifier messages.

Definition 2 (Tree of transcript). Let µ ∈ N and (a1, . . . , aµ) ∈ Nµ. An (a1, . . . , aµ)-tree
of transcript for a (2µ + 1)-move public-coin interactive proof Π is a set of a1 · a2 · · · aµ
accepting transcripts arranged in a tree of depth µ and arity a1, . . . , aµ respectively. The
nodes in the tree correspond to the prover messages and the edges to the verifier’s challenges.
Every internal node at depth i − 1 (1 ≤ i ≤ µ) has ai children with distinct challenges.
Every transcript corresponds to one path from the root to a leaf node. We simply write the
transcripts as an (aµ)-tree of transcript when a = a1 = a2 = · · · = aµ.

Definition 3 (Special Sound Interactive Protocol). Let µ,N ∈ N and (a1, . . . , aµ) ∈ Nµ.
A (2µ + 1)-move public-coin interactive proof Π for relation R where the verifier samples
its challenges from a set of size N is (a1, . . . , aµ)-out-of-N special-sound if there exists a
polynomial time algorithm that, on input pi and any (a1, . . . , aµ)-tree of transcript for Π
outputs w ∈ R(pi). We simply denote the protocol as an aµ-out-of-N (or aµ) special sound
protocol if a = a1 = a2 = · · · = aµ.

Definition 4 (Random-Oracle Non-Interactive Argument of Knowledge (RO-NARK)). A
non-interactive random oracle proof for relation R is a pair (P,V) of probabilistic random-
oracle algorithms, such that: Given (pi,w) ∈ R and access to a random oracle ρNARK, the
prover PρNARK(pi,w) outputs a proof π. Given pi, a proof π, and access to the same random
oracle ρNARK, the verifier VρNARK(pi, π) outputs 0 to accept or any other value to reject.

Perfect Completeness: The NARK has perfect completeness if for all (pi,w) ∈ R

P [VρNARK(pi,PρNARK(pi,w)) = 0] = 1

Knowledge Soundness: The NARK has adaptive knowledge-soundness with knowledge
error κ : N × N → [0, 1] if there exists a knowledge extractor Ext, with the following
properties: The extractor, given input n, and oracle-access to any polynomial-time Q-query
random oracle prover P∗ that outputs statement of size n, runs in an expected polynomial
time in |pi| + Q, and outputs {(pi, π, aux, v;w)} such that a) (pi, π, aux, v) is identically
distributed to {(pi, π, aux, v)} : (pi, π, aux)← P∗,ρNARK , v ← VρNARK(pi, π) and b)

Pr

[
(pi;w) ∈ R

VρNARK(pi, π) = 0
: {(pi, π, aux, v;w)} ← ExtP

∗
]
≥ ϵ(P∗)− κ(n,Q)

poly(n)
,

10

where ϵ(P∗) is P’s success probability, i.e. ϵ(P∗) = P [VρNARK(pi, π) = 0 : (pi, π)← P∗,ρNARK].
Here, Ext implements ρNARK for P∗; in particular, it can arbitrarily program the random
oracle.

Definition 5 (Fiat-Shamir Transform (adaptive)). The Fiat-Shamir transform FS[Π] =
(Pfs,Vfs) is a RO-NARK, where PρNARK(pi;w) runs P(pi;w) but instead of receiving chal-
lenge ci, on message mi, from the verifier, it computes it as follows:

ci = ρNARK(ci−1,mi) (1)

and c0 = ρNARK(pi). P
ρNARK
fs outputs π = (m1, . . . ,mµ). The verifier VρNARK

fs accepts, if V ac-
cepts the transcript (m1, c1, . . . ,mµ, cµ,mµ+1) for input pi and the challenges are computed
as per equation (1).

2.2 Adaptive Fiat-Shamir transform

Lemma 1 (Fiat-Shamir transform of Special Sound Protocols [AFK22]). The Fiat-Shamir
transform of a (α1, . . . , αµ)-out-of-N special-sound interactive proof Π is knowledge sound
with knowledge error

κfs(Q) = (Q+ 1)κ

where κ = 1−
∏
(1− αi

N) is the knowledge error of the interactive proof Π.

2.3 Incremental Verifiable Computation (IVC)

We adapt and simplify the definition from [BCLMS21; KST22].

Definition 6 (IVC). An incremental verifiable computation (IVC) scheme for function
predicates expressed in a circuit-satisfiability relation RNP is a tuple of algorithms IVC =
(PIVC,VIVC) with the following syntax and properties:

• PIVC(m, zm,wloc, z0, zm−1, πm−1]) → πm. The IVC prover PIVC takes as input an
output zm at step m, local data wloc, initial input z0, previous output zm−1 and proof
πm−1 and outputs a new IVC proof πm.

• VIVC(m, z0, zm, πm)→ b. The IVC verifier VIVC takes the initial input z0, the output
zm at step m, and an IVC proof πm, ‘accepts’ by outputting b = 0 and ‘rejects’
otherwise.

The scheme IVC has perfect completeness if for any function predicate ϕ expressible in
RNP, and any (m, zm,wloc, z0, [zi, πi]

m−1
i=1) such that

ϕ(zm,wloc, z0, zm−1) ∧ (VIVC(i, z0, zi, πi) = 0∀i ∈ [m− 1])

it holds that VIVC(m, z0, zm, πm) accepts for proof πm ← PIVC(m, zm,wloc, z0, zm−1, πm−1).

11

The scheme IVC has knowledge soundness if for every expected polynomial-time adver-
sary P∗, there exists an expected polynomial-time extractor ExtP∗ such that

Pr

 VIVC(m, z0, z, πm) = 0∧
([∃i ∈ [m] ,¬ϕ(zi,wi, z0, zi−1)]

∨z ̸= zm)

∣∣∣∣∣∣ [ϕ, (m, z0, z, πm)]← P∗

[zi,wi]
m
i=1 ← ExtP∗

 ≤ negl(λ) .

Here m is a constant.

2.4 Simple Accumulation

We take definitions and proofs from [BCLMS21].

Definition 7 (Accumulation Scheme). An accumulation scheme for a NARK (PNARK,VNARK)
is a triple of algorithms acc = (Pacc,Vacc, D), all of which have access to the same random
oracle ρacc as well as ρNARK, the oracle for the NARK. The algorithms have the following
syntax and properties:

• Pacc(pi, π = (π.x, π.w), acc = (acc.x, acc.w)) → {acc′ = (acc′.x, acc′.w), pf}. The
accumulation prover Pacc takes as input a statement pi, NARK proof π, and an
accumulator acc and outputs a new accumulator acc′ and correction terms pf.

• Vacc(pi, π.x, acc.x, acc
′.x, pf)→ v. The accumulation verifier takes as input the state-

ment pi, the instances of the NARK proof, the old and new accumulator, and ‘accepts’
by outputting 0 and ‘rejects’ otherwise.

• D(acc) → v. The decider on input acc ‘accepts’ by outputting 0 and ‘rejects’ other-
wise.

An accumulation scheme has knowledge-soundness with knowledge error κ if the RO-
NARK (P′,V′) has knowledge error κ for the relation

Racc((pi, π.x, acc.x); (π.w, acc.w)) : (VNARK(pi, π) = 0 ∧D(acc) = 0) ,

where P′ outputs acc′, pf and V′ on input ((pi, π.x, acc.x), (acc′, pf)) accepts if D(acc′) and
Vacc(pi, π.x, acc.x, acc

′.x, pf) = 0.
The scheme has perfect completeness if the RO-NARK (P′,V′) has perfect completeness

for Racc.

Theorem 1 (IVC from accumulation[BCLMS21]). Given a standard-model NARK for
circuit-satisfiability and a standard-model accumulation scheme (Definition 7) for that
NARK, there exists an efficient transformation that outputs an IVC scheme (see Section
3.2 of [BCLMS21]) for constant-depth compliance predicates, assuming that the circuit
complexity of the accumulation verifier Vacc is sub-linear in its input.

12

Random Oracle. Note that both the NARK and accumulation scheme we construct are
in the random oracle model. However, Theorem 1 requires a NARK and an accumulation
scheme in the standard model. It remains an open problem to construct such schemes.
However, we can heuristically instantiate the random oracle with a cryptographic hash
function and assume that the resulting schemes still have knowledge soundness.

Complexity. The IVC transformation from [BCLMS21] recursively proves that the ac-
cumulation was performed correctly. To do that, it implements Vacc as a circuit and proves
that the previous accumulation step was done correctly. Note that this recursive circuit is
independent of the size of π.w, acc.w and the runtime of D. The IVC prover is linear in
the size of the recursive circuit plus the size of the IVC computation step expressed as a
circuit. The final IVC verifier and the IVC proof size are linear in these components. This
can be reduced using an additional SNARK as in [KST22].

PCD. IVC can be generalized to arbitrary DAGs instead of just path graphs in a
primitive called proof-carrying data[BCCT13]. Accumulation schemes can be compiled
into full PCD if they support accumulating an arbitrary number of accumulators and
proofs[BCMS20; BCLMS21]. For simplicity, we only build accumulation for one proof and
one accumulator, as well as for two accumulators. This enables PCD for DAGs of degree
two. By transforming higher degree graphs into degree two graphs (by converting each
degree d node into a log2(d) depth tree), we can achieve PCD for these graphs.

Outsourcing the decider In the accumulation to IVC transformation, the IVC proof
is linear in the accumulator, and the IVC verifier runs the decider. The accumulation
schemes we construct are linear in the witness of a single computation step. However,
we can outsource the decider by providing a SNARK that, given acc.x, proves knowledge
of acc.w, such that D(acc) = 0. Nova[KST22] constructs a custom, concretely efficient
SNARK for their accumulation/folding scheme.

2.5 Commitment Scheme

Definition 8 (Commitment Scheme). cm = (Setup,Commit) is a binding commitment
scheme, consisting of two algorithms:
Setup(1λ)→ ck takes as input the security parameter and outputs a commitment key ck.
Commit(ck,m ∈M)→ C ∈ C, takes as input the commitment key ck and a message m in
M and outputs a commitment C ∈ C.
The scheme is binding if for all polynomial-time randomized algorithms P∗:

Pr

 Commit(ck,m) = Commit(ck,m′)
∧

m ̸= m′

∣∣∣∣∣∣ ck← Setup(1λ)
m,m′ ← P∗(ck)

 = negl(λ)

13

Homomorphic commitment. We say the commitment is homomorphic if (C,+) is an
additive group of prime order p.

3 Protocols

3.1 Special Sound Protocols

In this section, we describe a class of special sound protocols whose verifier is algebraic. The
protocol Πsps has 3 essential parameters k, d, ℓ ∈ N, meaning that Πsps is a (2k − 1)-move
protocol with verifier degree d, and the output length of the verifier is ℓ (i.e., the verifier
checks ℓ algebraic equations). In each round i (1 ≤ i ≤ k), the prover Psps(pi,w, [mj , rj]

i−1
j=1)

generates the next message mi on input the public input pi, the witness w, and the current
transcript [mj , rj]

i−1
j=1, and sends mi to the verifier; the verifier replies with a random

challenge ri ∈ Mi (the challenge can also be a vector). After the final message mk, the
verifier computes the algebraic map Vsps and checks that the output is a zero vector of
length ℓ. More precisely, deg(Vsps) = d, s.t.

Vsps(pi, [mi]
k
i=1, [ri]

k−1
i=1) :=

d∑
j=0

fR
j (pi, [mi]

k
i=1, [ri]

k−1
i=1) ,

where fR
j is a homogeneous degree-j algebraic map that outputs a vector of ℓ field elements.

The definition of fR
j depends on the structure of proved relation R.

We describe the special sound protocol Πsps below.

Special Sound Protocol Πsps = (Psps,Vsps) for relation R with low-degree Verifier

Prover Psps(pi,w) Verifier Vsps(pi)

mi ← Psps(pi,w, [mj , rj]
i−1
j=1)

mi

ri ri ←$Mi

Repeat k − 1 time Repeat k − 1 time

Final message mk

Vsps(pi, [mi]
k
i=1, [ri]

k−1
i=1)

?
= 0ℓ

14

3.2 Commit and Open

For a commitment scheme cm = (Setup,Commit), consider the following relation RR
cm =

(x;w,m ∈ M,m′ ∈ M) : {(x,w) ∈ R ∨ (Commit(m) = Commit(m′) ∧m ̸= m′)}. The
relation’s witness is either a valid witness for R or a break of the commitment scheme cm.
We now design a special sound protocol Πcm = (Pcm,Vcm) for RR

cm given Πsps = (Psps,Vsps),
a special sound protocol for R. Pcm runs Psps to generate the ith message and then
commits to the message. Along with the final message, Pcm sends the opening to the
commitment. The verifier Vcm checks the correctness of the commitments and runs Vsps

on the commitment openings.

Special Sound Protocol Πcm for RR
cm as a cm transform of Πsps = (Psps,Vsps)

Prover Pcm(ck, pi,w) Verifier Vcm(ck, pi)

mi ← Psps(pi,w, [mj , rj]
i−1
j=1)

Ci ← Commit(ck,mi)
Ci

ri ri ←$Mi

Repeat k − 1 time Repeat k − 1 time

Ck ← Commit(ck,mk)
Ck

Opening [mi]
k
i=1

Commit(ck,mi)
?
= Ci∀i ∈ [k]

Vsps(pi, [mi]
k
i=1, [ri]

k−1
i=1)

?
= 0ℓ

Lemma 2 (Πcm is aµ-special-sound). Let Πsps be an aµ special-sound protocol for relation
R, where the prover messages are all in a set M. Let (Setup,Commit) be a binding com-
mitment scheme for messages inM. For ck← Setupcm(1

λ) let Rcm = (pi;w,m ∈M,m′ ∈
M) : (pi;w) ∈ R ∨ (Commit(ck,m) = Commit(ck,m′) ∧m ̸= m′). Then Πcm = cm[Πsps] is
an aµ special sound protocol for RR

cm.

Proof. Let Extsps be the extractor for Πsps. We will construct Extcm for Πcm that computes
a witness for Rcm, i.e., a witness for R or a collision for cm given an aµ-transcript tree
for Πcm. The extractor Extcm first checks whether there exist two transcripts that have
inconsistent final messages. That is, the final message opening is different for the nodes
in the intersection of the root-to-leaf paths of these two transcripts. This means we have
mi and m′

i, such that Commit(mi) = Commit(m′
i) and mi ̸= m′

i. This is a break for

15

cm, i.e., a valid witness for Rcm. Otherwise Extcm builds a transcript tree for Πsps by
replacing all commitments with the openings and use Extsps to compute w ∈ R(pi), such
that (w,⊥,⊥) ∈ Rcm(pi).

3.3 Fiat-Shamir transform

Let ρNARK be a random oracle. Let Πcm be the commit-and-open protocol for the special
sound protocol Πsps = (Psps,Vsps). The Fiat-Shamir Transform of the protocol Πcm is the
following. By Lemma 1, FS[Πcm] is knowledge sound if Πsps is special-sound.

Fiat-Shamir Transform FS of Special Sound Protocol Π for relation RR
cm: FS[Πcm]

Prover PρNARK

NARK(ck, pi,w) Verifier VρNARK

NARK(ck, pi)

r0 ← ρNARK(pi)

For i ∈ [k − 1] :

mi ← Psps(pi,w, [mj , rj]
i−1
j=1)

Ci ← Commit(ck,mi)

ri ← ρNARK(ri−1, Ci)

mk ← Psps(pi,w, [mj , rj]
k−1
j=1)

Ck ← Commit(ck,mi) π.x = [Ci]
k
i=1

π.w = [mi]
k
i=1

r0 ← ρNARK(x)

ri ← ρNARK(ri−1, Ci)∀i ∈ [k − 1]

Commit(ck,mi)
?
= Ci∀i ∈ [k]

Vsps(pi, π.x, π.w, [ri]
k−1
i=1)

?
= 0ℓ

Remark 2. We slightly abuse the notation of ri ← ρNARK(ri−1, Ci) as ri are in different
message spaces Mi. Fortunately, we can assume that the cardinality of each Mi is the
same (say M). Let k ∈ [M] be the output of ρNARK(ri−1, Ci). ri is denoted as the k-th
element inMi. In practice, ri is usually a deterministic function g of a random element r′i
in F, so we can set ri ← g(r′i := ρNARK(r

′
i−1, Ci)) given a hash function ρNARK that outputs

a field element.

3.4 Accumulation Scheme for VNARK

Let ρacc and ρNARK be two random oracles, and let VNARK be the verifier in Section 3.3,
whose underlying special sound protocol is Πsps = (Psps,Vsps) for a relation R. We describe

16

the accumulation scheme for VNARK.

The accumulated predicate. The predicate to be accumulated is the “relaxed” verifier
check of the NARK scheme FS[Π] for relation R. Namely, given public input pi ∈ Mℓin ,
random challenges [ri]

k−1
i=1 ∈M1 × · · · ×Mk−1, a NARK proof

π.x = [Ci]
k
i=1, π.w = [mi]

k
i=1

where [Ci]
k
i=1 ∈ Ck are commitments and [mi]

k
i=1 are prover messages in the special sound

protocol Πsps, the predicate checks that (i) ri = ρNARK(ri−1, Ci) for all i ∈ [k − 1] (where
r0 := ρNARK(pi)), (ii) Commit(ck,mi) = Ci for all i ∈ [k], and (iii)

Vsps(pi, π.x, π.w, [ri]
k−1
i=1) :=

d∑
j=0

µd−j · fR
j (pi, π.w, [ri]

k−1
i=1) = e

where e = 0ℓ and µ = 1 for the NARK verifier VNARK. Here f
R
j is a degree-j homogeneous

algebraic map that outputs ℓ field elements. Degree-j homogeneity says that each monomial
term of fR

j has degree exactly j.

Remark 3. Without loss of generality, we assume that the public input pi is of constant
size, as otherwise, we can set it as the hash of the original public input.

Accumulator. The accumulator has the following format:

• Accumulator instance acc.x := {pi, [Ci]
k
i=1, [ri]

k−1
i=1 , E, µ}, where pi ∈ Mℓin is the ac-

cumulated public input, [Ci]
k
i=1 ∈ Ck are the accumulated commitments, [ri]

k−1
i=1 ∈

M1 × · · · ×Mk−1 are the accumulated challenges, E ∈ C is the accumulated com-
mitment to the error terms, and µ ∈ F is a slack variable.

• Accumulator witness acc.w := {[mi]
k
i=1}, where [mi]

k
i=1 are the accumulated prover

messages.

Accumulation prover. On input commitment key ck (which can be hardwired in the
prover’s algorithm), accumulator acc, an instance-proof pair (pi, π) where

acc := (acc.x = {pi′, [C ′
i]
k
i=1, [r

′
i]
k−1
i=1 , E, µ}, acc.w = {[m′

i]
k
i=1}) ,

π := (π.x = [Ci]
k
i=1, π.w = [mi]

k
i=1),

the accumulation prover Pacc works as in Figure 1.

Accumulation verifier. On input public input pi, NARK proof instance π.x, accu-
mulator instance acc.x, accumulation proof pf, and the updated accumulator instance
acc′.x := {pi′′, [C ′′

i]
k
i=1, [r

′′
i]

k
i=1, E

′, µ′}, the accumulation verifier Vacc works as in Figure 2.

17

Pρacc,ρNARK
acc (ck, acc, (pi, π))
1. ri ← ρNARK(ri−1, Ci)∀i ∈ [k − 1] where r0 := ρNARK(pi).

2. Compute [ej]
d−1
j=1 ∈ (Fℓ)d−1, such that

d∑
j=0

(X + µ)d−j · fR
j (X · pi+ pi′, [X ·mi +m′

i]
k
i=1, [X · ri + r′i]

k−1
i=1)

=

d∑
j=0

µd−jfR
j (pi′, [m′

i]
k
i=1, [r

′
i]
k−1
i=1) +Xd · VNARK(pi, [mi]

k
i=1, [ri]

k−1
i=1) +

d−1∑
j=1

ejX
j

=e+

d−1∑
j=1

ejX
j

3. Ej ← Commit(ck, ej)∀j ∈ [d− 1]
4. α← ρacc(acc.x, pi, π.x, [Ej]

d−1
j=1) ∈ F

5. Set vectors

v :=
(
1, pi, [ri]

k−1
i=1 , [Ci]

k
i=1, [mi]

k
i=1

)
, v′ :=

(
µ, pi′, [r′i]

k−1
i=1 , [C

′
i]
k
i=1, [m

′
i]
k
i=1

)
.

6. v′′ :=
(
µ′, pi′′, [r′′i]

k−1
i=1 , [C

′′
i]

k
i=1, [m

′′
i]

k
i=1

)
← α · v + v′.

7. E′ ← E +
∑d−1

j=1 α
j · Ej .

8. Set acc′.x := {pi′′, [C ′′
i]

k
i=1, [r

′′
i]

k
i=1, E

′, µ′}, acc′.w := {[m′′
i]

k
i=1}.

9. Set accumulation proof pf := [Ej]
d−1
j=1

Figure 1: Accumulation Prover for low-degree Fiat-Shamired NARKs

Vρacc,ρNARK
acc (pi, π.x = [Ci]

k
i=1, acc.x = (pi′, [C ′

i]
k
i=1, [r

′
i]
k−1
i=1 , E, µ), pf = [Ej]

d−1
j=1 , acc

′.x)
1. ri ← ρNARK(ri−1, Ci)∀i ∈ [k − 1] where r0 := ρNARK(pi).
2. α← ρacc(acc.x, pi, π.x, pf)
3. Set vectors

v :=
(
1, pi, [ri]

k−1
i=1 , [Ci]

k
i=1

)
, v′ := acc.x.

(
µ, pi′, [r′i]

k−1
i=1 , [C

′
i]
k
i=1

)
.

4. Check acc′.x.
(
µ′, pi′′, [r′′i]

k−1
i=1 , [C

′′
i]

k
i=1

)
?
= α · v + v′.

5. Check acc′.x.E′ ?
= acc.x.E +

∑d−1
j=1 α

j · Ej .

Figure 2: Accumulation Verifier for low-degree Fiat-Shamired NARKs

18

Dacc(acc = (acc.x = {pi, [Ci]
k
i=1, [ri]

k−1
i=1 , E, µ}, acc.w = {[mi]

k
i=1}))

1. Ci
?
= Commit(ck,mi) for all i ∈ [k].

2. e ←
∑d

j=0 µ
d−jfR

j (pi, [mi]
k
i=1, [ri]

k−1
i=1) where fR

j is the degree-j homogeneous
algebraic map described in the accumulated predicate.

3. E
?
= Commit(ck, e).

Figure 3: Accumulation Decider for low-degree Fiat-Shamired NARKs

Decider. On input the commitment key ck (which can be hardwired) and an accumulator

acc = (acc.x = {pi, [Ci]
k
i=1, [ri]

k−1
i=1 , E, µ}, acc.w = {[mi]

k
i=1}) ,

the decider does the checks described in Figure 3.

Remark 4. The accumulation scheme for VNARK is also naturally a folding scheme as
defined in Nova [KST22], where we can view an accumulator as a relaxed NP instance
with error terms. A NARK proof π is an accumulator with µ = 1 and E = 0 ∈ G. We
can use the same accumulation scheme to fold two accumulators (acc, acc′) into a new
accumulator acc′′. The scheme is identical to the one presented above but with non-trivial
µ, e, E terms for acc. The verifier performs one additional group scalar multiplication. In
the language of folding schemes, we can fold two NARK instances into an accumulator;
or fold a NARK instance and an accumulator into an updated accumulator; or fold two
accumulators into an updated accumulator.

Complexity. Let Πsps be a (2k − 1)-move special sound protocol with degree-d verifier
whose output length is ℓ. Denote by |M | the number of elements in prover messages and
|M∗| the number of non-zero elements in the prover messages. Assume that pi is a hash
with length 1 (this saves the call r0 := ρNARK(pi)), and let |R| be the number of elements
in verifier’s challenges. We analyze the computational complexity of the accumulation
scheme:

• The accumulation prover

– asks k − 1 queries to ρNARK and 1 query to ρacc;

– computes Ej = Commit(ck, ej) for all j ∈ [d− 1], where ej ∈ Fℓ;

– performs |R|+ |M∗|+ 2 F-ops to combine (µ, pi, [ri]
k−1
i=1 , [mi]

k
i=1);

– performs k G-ops to combine [Ci]
k
i=1;

– computes the coefficient forms of ℓ degree-d polynomials for [ej]
d−1
j=1 .

• The accumulation verifier performs

– asks k − 1 queries to ρNARK and 1 query to ρacc;

19

– |R|+ 2 F-ops to combine (µ, pi, [ri]
k−1
i=1);

– k G-ops to combine [Ci]
k
i=1;

– d− 1 G-ops to add [Ej]
d−1
j=1 onto E.

• The decider

– computes Ci = Commit(ck,mi) for i ∈ [k] and E = Commit(ck, e), with total
complexity around |M |+ ℓ G-ops.

– evaluate ℓ degree-d multivariate polynomials to compute vector e.

Theorem 2. Let (PNARK,VNARK) be the RO-NARK defined in Section 3.3. The accu-
mulation scheme (Pacc,Vacc, Dacc) for VNARK satisfies perfect completeness as defined in
Definition 7.

Proof. Consider any tuple ((pi, π), acc) ∈ Racc, that is, VNARK(pi, π) and D(acc) both ac-
cept. Let (acc′, pf) denote the output of the accumulation prover Pacc(ck, acc, (pi, π)). We
argue that both the deciderD(acc′) and the accumulation verifier Vacc(pi, π.x, acc.x, pf, acc

′.x)
will accept, which finishes the proof of perfect completeness by Definition 7.

Vacc accepts as Pacc and Vacc go through the same process of computing challenges
[ri]

k−1
i=1 and α, thus the linear combinations of acc.x and (pi, π.x; pf, [ri]

k−1
i=1) via α will be

consistent.
We prove that D(acc′) accepts by scrutinizing the following decider checks.

The check acc′.Ci
?
= Commit(ck, acc′.mi) succeeds for all i ∈ [k]. This is because

acc′.{Ci,mi} = acc.{Ci,mi}+ α · π.{Ci,mi}

for all i ∈ [k], where π.Ci = Commit(ck, π.mi) because VNARK(pi, π) accepts, and acc.Ci =
Commit(ck, acc.mi) because D(acc) accepts. Thus the check succeeds by the homomor-
phism of the commitment scheme.

The decider computes e′ ←
∑d

j=0(acc
′.µ)d−jfR

j (acc′.{pi, [mi]
k
i=1, [ri]

k−1
i=1 }) such that for

e =
∑d

j=0 acc.µ
(d−j) · fR

j (acc.{pi, [mi]
k
i=1, [ri]

k−1
i=1 }), it holds that

e′ = e+
d−1∑
j=1

αj · pf.ej

=
d∑

j=0

(α+ acc.µ)d−j · fR
j (α · {pi, π.[mi]

k
i=1, [ri]

k−1
i=1 }+ acc.{pi, [mi]

k
i=1, [ri]

k−1
i=1 }) .

By the definition of pf.ej and the homomorphism of the commitment scheme, and because
D(acc) accepts and checks E = Commit(ck, e), we have that E′ = Commit(ck, e′).

20

Theorem 3. Let (PNARK,VNARK) be the RO-NARK defined in Section 3.3. Let cm =
(Setup,Commit) be a binding, homomorphic commitment scheme. Let ρacc be another ran-
dom oracle. The accumulation scheme for VNARK has knowledge error (Q+1)d+1

|F| +negl(λ)
against any randomized polynomial-time Q-query adversary.

Proof. We show that the scheme is secure by showing that there exists an underlying
(d+ 1)-special-sound protocol and then applying the Fiat-Shamir transform to show that
the accumulation scheme is knowledge sound. Consider the public-coin interactive protocol
ΠI = (PI(pi, π, acc),VI(pi, π.x, acc.x)) where PI sends pf = [Ej]

d−1
j=1 ∈ Gd−1 as computed by

Pacc to VI . The verifier sends a random challenge α ∈ F, and the prover PI responds with
acc′ as computed by Pacc. VI accepts if Dacc(acc

′) = 0 and Vacc(pi, π.x, acc.x, pf, acc
′.x) = 0

using the random challenge α, instead of a Fiat-shamir challenge.

Claim 1: ΠI is (d+1)-special-sound Consider the relation Racc where Racc is defined
in Definition 7. Consider d+ 1 accepting transcripts for ΠI :

{Ti := (pi, π.x, acc.x; acc′i, pfi)}d+1
i=1 .

We construct an extractor Extacc that extracts a witness for Racc(pi.π.x, acc.x) given T .
For all i ∈ [d+ 1],

(acc′i) = (µ′
i, pi

′
i, [C

′
i,j]

k
j=1, [ri,j]

k−1
j=1 , E

′
i, [m

′
i,j]

k
j=1)

and pfi = pf = [Ej]
d−1
j=1 .

Given that the transcripts are accepting, i.e. both Vacc and Dacc accept, we have that
Commit(ck, e′i) = E′

i = acc.E +
∑d−1

j=1 α
j
iEj for all i ∈ [d+ 1], whereas

e′i :=
d∑

j=0

µ′
i
d−j

fR
j (π′

i, [m
′
i,j]

k
j=1, [ri,j]

k−1
j=1) .

Using a Vandermonde matrix of the challenges α1, . . . , αd we can compute e, [ej]
d−1
j=1 such

that Ej = Commit(ck, ej) and acc.E = Commit(ck, e) from the equations above. Therefore

we have that e′i = e+
∑d−1

j=1 α
j
iej for all i ∈ [d+ 1].

Additionally using two challenges (α1, α2), Extacc can compute π.w = [mj]
k
j=1 =

[
acc′.m1,j−acc′.m2,j

α1−α2
]kj=1. It holds that acc.mj = acc′.m1,j − α1 · π.mj∀j ∈ [k], such that

π.Cj = Commit(ck, π.mj) and acc.Cj = Commit(ck, acc.mj). If for any other challenge
and any j, acc′.mj ̸= απ.mj + acc.mj , then this can be used to compute a break of the
commitment scheme cm. This happens with negligible probability by assumption.

21

Otherwise, we have that
∑

j=0 µ
d−j
i fR

j (πj , [mi,j]
k
i=1, [ri,j]

k−1
i=1)−ei = 0 for all i ∈ [d+1].

Together this implies that the degree d polynomial

p(X) =
d∑

j=0

(X + acc.µ)d−j · fR
j (X · pi+ acc.pi, [X ·mi + acc.mi]

k
i=1, [X · ri + acc.ri]

k−1
i=1)

− e−
d−1∑
j=1

ejX
j , (2)

is zero on d + 1 points (α1, . . . , αd+1), i.e. is zero everywhere. The constant term of this
polynomial is

d∑
j=0

acc.µd−j · fR
j (acc.pi, [acc.mi]

k
i=1, [acc.ri]

k−1
i=1)− e .

It being 0 implies that D(acc) = 0. Additionally, the degree d term of the polynomial is

d∑
j=0

fR
j (pi, [π.mi]

k
i=1, [π.ri]

k−1
i=1) .

Together with Vacc checking that the challenges ri are computed correctly this implies
that VNARK(pi, π) = 0. Ext thus outputs a valid witness (π.w, acc.w) ∈ Racc(pi, π.x, acc.x)
and thus ΠI is (d + 1)-special sound. Using Lemma 1, we have that ΠAS = FS[ΠI] is a
NARK for Racc with knowledge soundness Q · d+1

|F| + negl(λ). This implies that acc is an

accumulation scheme with (Q · d+1
|F| + negl(λ))-knowledge soundness.

3.5 Efficiency optimizations for high-degree verifiers

Observe that the accumulation prover needs to perform Ω(dℓ) group operations to commit
to the d− 1 error vectors ej ∈ Fℓ (1 ≤ j < d); and the accumulation verifier needs to check
the combination of d error vector commitments. This can be a bottleneck when the verifier
degree d is high. In this circumstance, we can optimize the accumulation complexity by
transforming the underlying special sound protocol Πsps into a new special sound protocol
OPTd∗(Πsps) for the same relationR. This optimization reduces the verifier’s output length
to ℓ/d∗ with verifier degree d+ log(d∗). We describe the generic transformation below.

Generic transform to a verifier with smaller outputs. For a tunable parameter
d∗ ≤ ℓ, we can transform Πsps into a special sound protocol OPTd∗(Πsps) where the output
vector length in Vsps reduces from ℓ to ℓ/d∗. Essentially, instead of checking the output
of Vsps to be ℓ zeroes, we split the output vector of Vsps into d∗ chunks, and check that
a random linear combination of the d∗ chunks equals to a zero vector of length ℓ/d∗. For
example, if the map is Vsps(x1, x2) := (f1(x1, x2), f2(x1, x2)) = (x1 + x2, x1x2) we can set

22

Transformed Protocol OPTd∗(Πsps) = (Psps,V
′
sps) for relation R

Prover Psps(pi,w) Verifier V′
sps(pi)

mi ← Psps(pi,w, [mj , rj]
i−1
j=1)

mi

ri ri ←$Mi

Repeat k − 1 time Repeat k − 1 time

Message mk

[βi = β2i−1

]log d∗

i=1 β ←$ F

⊥

V′
sps(pi, [mi]

k
i=1, ([ri]

k−1
i=1 , [βi]

log d∗

i=1))

?
= 0ℓ/d∗

Figure 4: Generic Transformed Protocol to Πsps.

the new algebraic map as V′
sps(x1, x2, r) := f1(x1, x2) + r · f2(x1, x2) = (x1 + x2) + rx1x2

for a random r. The output length becomes 1 while the degree of the map increases by 1.
To minimize degree increase without introducing many new random challenges, we

define function eq∗ where for a ∈ Fκ and b ∈ {0, 1}κ,

eq∗(a,b) :=
κ∏

i=1

abi
i . (3)

For simplicity, we assume that d∗ is a power of two that divides ℓ. Let

Vsps(pi, [mi]
k
i=1, [ri]

k−1
i=1) :=

[
Vsps,0(pi, [mi]

k
i=1, [ri]

k−1
i=1), . . . ,Vsps,d∗−1(pi, [mi]

k
i=1, [ri]

k−1
i=1)

]
denote the original algebraic map where Vsps,i−1 (1 ≤ i ≤ d∗) is the i-th chunk of Vsps’s
output with length ℓ/d∗. We describe the transformed protocol in Figure 4, where

V′
sps(pi, [mi]

k
i=1, ([ri]

k−1
i=1 , [βi]

log d∗

i=1)) :=
d∗−1∑
j=0

L([βi]
log d∗

i=1 , ⟨j⟩log d∗) · Vsps,j(pi, [mi]
k
i=1, [ri]

k−1
i=1)

=

d∗−1∑
j=0

βi · Vsps,j(pi, [mi]
k
i=1, [ri]

k−1
i=1)

23

and ⟨j⟩log d∗ denotes the log d∗-bit binary representation of j.
The transformed protocol is a (2k+1)-move special sound protocol for the same relation

R. The verifier check now has output length ℓ/d∗, and the degree is d + log(d∗) because

Vsps has degree d and eq∗([βi]
log d∗

i=1 , ⟨j⟩log d∗) has maximal degree log d∗.

Lemma 3. Let Πsps be a (2k − 1)-move protocol for relation R with (a1, . . . , ak−1)-special
soundness, in which the verifier outputs ℓ elements. Let d∗ ≤ ℓ and for simplicity we
assume that d∗ is a power of two and that divides ℓ. The transformed protocol OPTd∗(Πsps)
of Πsps is (a1, . . . , , ak−1, d

∗)-special sound.

Proof. Let Extsps be the extractor for Πsps. We construct a extractor Extopt of OPTd∗(Πsps)
for the same relation R. Given an (a1, . . . , , ak−1, d

∗)-tree T of accepting transcripts, Extopt
invokes Extsps on input the depth-(k − 1) transcript subtree of T , and return what Extsps
outputs.

We prove that the extractor succeeds. For each internal node u at depth k − 1, it has
d∗ children where each child maps to a distinct vector (β, β2, β4, . . . , βd∗/2) ∈ Flog d∗ . Fix
the messages msg = (pi, [mi]

k
i=1, [ri]

k−1
i=1) at node u and let Vsps := (Vsps,1, . . . ,Vsps,d∗) be

the verifier of Πsps. Define the degree d∗ − 1 univariate polynomial

p(X) :=
d∗−1∑
j=0

Xj · cj

where cj := Vsps,j(msg) ∈ Fℓ/d∗ is Vsps,j ’s output on message msg. Since the transcripts are
accepting, it holds that p evaluates to zero on the d∗ different values of β that correspond
to the d∗ children of node u. Thus the univariate polynomial p is a zero polynomial, which
implies that Vsps outputs zero vector on message msg. Therefore for every node u at depth
k− 1, the sub-transcript from root to node u is an accepting transcript to Πsps. Therefore
the input to Extsps is a valid (a1, . . . , , ak−1)-tree of accepting transcripts, and Extsps will
output the correct witness.

Improve accumulation efficiency. By setting the parameter d∗ := ℓ, the error vectors
ej become single field elements, and we can use the trivial commitment Ej := Commit(ck, ej) :=
ej without group operations. The prover needs to perform only k group operations (to
combine [Ci]

k
i=1) and compute one more hash, but needs to evaluate a degree-(d+ log(ℓ))

multivariate polynomial with O(ℓ) monomials. The accumulator instance needs to include
log(ℓ) additional values (β, β2, β4, . . . , βℓ/2). The accumulator verifier needs to do only k
(rather than k+d−1) group scalar multiplications, with the tradeoff of computing 1 more
hash and doing log(ℓ) + d− 1 more field operations.

Theorem 4 (IVC for low-degree special sound protocols). Let F be a finite field and
cm = (Setup,Commit) be a binding homomorphic commitment scheme for vectors in F.
Given a (2k − 1)-move (a1, . . . , ak−1)-out-of-|F| special-sound protocol Πsps = (Psps,Vsps)

24

for an NP-complete relation RNP with inputs in Fℓin and a degree-d verifier with output in
Fℓ, there exists a secure IVC schemes IVC = (PIVC,VIVC) with predicates expressed in RNP

with the following efficiencies:

d∗ = 1 d∗ = ℓ

PIVC native

∑k
i=1 |m∗

i |+ (d− 1)ℓG
Psps + L(Vsps, d, 1)

∑k
i=1 |m∗

i |G
Psps + L(Vsps, d, ℓ)

PIVC recursive
d+ k − 1G
k + ℓinF
kH

kG
k − 1 + ℓin + d+ 2 log ℓF

k + 1H

VIVC:
ℓ+

∑k
i=1 |mi|G
Vsps

∑k
i=1 |mi|G

ℓ+ d+ Vsps

|πIVC| :
k + ℓinF
k + 1G∑k
i=1 |mi|

k + 1 + ℓin + log ℓF
kG∑k

i=1 |mi|
d∗ is a parameter; the first row displays the native operations of the IVC prover. The second
row describes the size of the recursive statement expressed as an instance of RNP for which
PIVC creates a proof. The third row is the computation of VIVC, and the last row is the size
of the proof.

In the table, |mi| denotes the prover message length; |m∗
i | is the number of non-zero

elements in mi; G for rows 1-3 is the total length of the messages committed using Commit.
F are field operations and H are calls to the random oracle. Psps (and Vsps) is the cost of
running the prover (and the algebraic verifier) of the special sound protocol, respectively,
and L(V, d, d∗) is the cost of computing the coefficients of the degree d+ log d∗ polynomial

e(X) :=

d∗−1∑
i=0

eq∗
(
[X · π.βk + acc.βk]

log d∗

k=1 , ⟨i⟩log d∗
) d∑

j=0

(µ+X)d−j · fR
j,i(acc+X · π) , (4)

where all inputs are linear functions in a formal variable X.4 eq∗ is defined in Equation 3,
and fR

j,i is the ith (0 ≤ i ≤ d∗ − 1) chunk of fR
j ’s output. For the proof size, G and F are

the number of commitments and field elements, respectively.

Proof. The construction first defines the NARK

ΠNARK = (PNARK,VNARK) = FS[cm[OPTd∗(Πsps)]] .

Then it uses the transformation from Theorem 1 to construct an IVC scheme ΠIVC =
(PIVC,VIVC).

4For example if fd =
∏d

i=1(ai + bi ·X) then a naive algorithm takes O(d2) time but using FFTs it can
be computed in time O(d log2 d)[CBBZ22].

25

Security: By Lemmas 1,2 and 3, we have that ΠNARK has Q · (1 − d
|F|)
∏k−1

i=1 (1 −
ai
|F|)

knowledge error for relation RRNP
cm for a polynomial-time Q-query RO-adversary. Witnesses

for RRNP
cm are either a witness for RNP or a break of the binding property of cm. Assuming

that cm is a binding commitment scheme, the probability that a polynomial time adversary
and a polynomial time extractor can compute such a break is negl(λ). Thus ΠNARK has
knowledge error Q · (1 − 2d

|F|)
∏
(1 − ai

|F|) + negl(λ) for RNP. Using Theorem 1, this yields
that ΠIVC is a secure IVC scheme with predicates expressed in RNP.

Efficiency: The IVC-prover runs Psps to compute all prover messages. It also commits to
all the Psps messages using cm. Finally, it needs to compute and commit to all error terms
e1, . . . , ed+log2(d

∗)−1 and commit to them. The error terms are computed by symbolically
evaluating the polynomial e(X) in Equation 4 with linear functions as inputs. If d∗ = ℓ,
then the error terms are only one element in F, so we can use the identity function as the
trivial commitment scheme. Thus, there is no cost for committing to the error terms when
d∗ = ℓ. The recursive circuit combines a new proof π.x with an accumulator acc.x. The
size of the accumulator is ℓin field elements for the input, k − 1 + log2(d

∗) field elements
for the interactive-proof challenges, 1 field element for the accumulator challenge, and k
commitments for the Psps messages and 1 responsibility for the error term (if d∗ = ℓ this is
a trivial commitment, i.e., a field element). The IVC verifier checks the correctness of the
commitments and runs OPTd∗(Vsps).

Remark 5. For simplicity, we assume that the public input, the prover messages, and the
verifier challenges are all in the same field F. This isn’t strictly necessary; for example,
the challenges could be drawn from a subset of F. More generally, we can also allow prover
messages to be group elements in G given a homomorphic commitment scheme to group
elements(e.g. [AFGHO10]).

4 Low-degree special-sound protocols for toolbox relations

In this section, we present special-sound protocols for permutation, high-degree gate, and
lookup relations, which are the building blocks for the (non-uniform) Plonkish circuit-
satisfiability relations. We can build accumulation schemes for (and thus IVCs from) these
special-sound protocols via the framework presented in Section 3.

4.1 Permutation relation

Definition 9. Let σ : [n] → [n] be a permutation, the relation Rσ is the set of tuples
w ∈ Fn such that wi = wσ(i) for all i ∈ [n].

26

Special sound protocol Πσ for permutation relation Rσ

Prover P(σ,w ∈ Fn) Verifier V(σ)

w

Check wi −wσ(i) = 0∀i ∈ [n]

Complexity. Πσ is a 1-move protocol (i.e. k = 1); the degree of the verifier is 1.

4.2 High-degree custom gate relation

Definition 10. Given configuration CGATE := (n, c, d, [si ∈ Fn, Gi]
m
i=1) where n is the

number of gates, c is the arity per gate, d is the gate degree, [si]
m
i=1 are the selector vectors,

and [Gi]
m
i=1 are the gate formulas, the relation RGATE is the set of tuples w ∈ Fcn such

that
∑m

j=1 sj,i ·Gj(wi,wi+n, . . . ,wi+(c−1)·n) = 0 for all i ∈ [n].

Special sound protocol ΠGATE for relation RGATE

Prover P(CGATE,w ∈ Fcn) Verifier V(CGATE)

w

m∑
j=1

sj,i ·Gj(wi,wi+n, . . . ,wi+(c−1)·n)

?
= 0∀i ∈ [n]

Complexity. ΠGATE is a 1-move protocol (i.e. k = 1); the degree of the verifier is d.

4.3 Lookup relation

Definition 11. Given configuration CLK := (T, ℓ, t) where ℓ is the number of lookups and
t ∈ FT is the lookup table, the relation RLK is the set of tuples w ∈ Fℓ such that wi ∈ t
for all i ∈ [ℓ].

We recall a useful lemma for lookup relation from [Hab22], and present a special sound
protocol for the lookup relation.

27

Lemma 4 (Lemma 5 of [Hab22]). Let F be a field of characteristic p > max(ℓ, T). Given
two sequences of field elements [wi]

ℓ
i=1 and [ti]

T
i=1, we have {wi} ⊆ {ti} as sets (with

multiples of values removed) if and only if there exists a sequence [mi]
T
i=1 of field elements

such that
ℓ∑

i=1

1

X +wi
=

T∑
i=1

mi

X + ti
. (5)

Special sound protocol ΠLK for RLK

Prover P(CLK,w ∈ Fℓ) Verifier V(CLK)

Compute m ∈ FT such that

mi :=

ℓ∑
j=1

1(wj = ti)∀i ∈ [T] w,m

r r ←$ F

Compute h ∈ Fℓ, g ∈ FT

hi :=
1

wi + r
∀i ∈ [ℓ]

gi :=
mi

ti + r
∀i ∈ [T] h,g

ℓ∑
i=1

hi
?
=

T∑
i=1

gi

hi · (wi + r)
?
= 1∀i ∈ [ℓ]

gi · (ti + r)
?
= mi∀i ∈ [T]

Achieving perfect completeness. Note that the protocol does not have perfect com-
pleteness. If there exists an wi or ti such that wi+r = 0 ti+r = 0 then the prover message
is undefined. We can achieve perfect completeness by having the verifier set hi = 0 or gi = 0
in this case and changing the verification equations to

(wi + r) · (hi · (wi + r)− 1) = 0

and
(ti + r) · (gi · (ti + r)−mi) = 0 .

These checks ensure that either hi =
1

wi+r or wi + r = 0. The checks increase the verifier
degree to 3. Without these checks, the protocol has a negligible completeness error of

28

ℓ+T
|F| . This completeness error can likely be ignored in practice, and these checks do not

need to be implemented. However, to achieve the full definition of PCD (which has perfect
completeness) and use Theorem 1 by [BCLMS21], we require that all protocols have perfect
completeness.

Complexity. ΠLK is a 3-move protocol (i.e. k = 2); the degree of the verifier is 2; the
number of non-zero elements in the prover message is at most 4ℓ.

Accumulation with O(ℓ) prover complexity. The prover complexity of ΠLK is due to
the sparseness of g ∈ FT and m ∈ FT . However, there is no guarantee that when building
an accumulation scheme for ΠLK, the accumulated acc.g and acc.m are sparse. This is an
issue, as the prover needs to compute the error term e1. If we expand the accumulation
procedures, we see that the three verification checks lead to three components of the error
term e1:

e
(1)
1 =

(
ℓ∑

i=1

acc.hi −
T∑
i=1

acc.gi

)
+ µ

(
ℓ∑

i=1

π.hi −
T∑
i=1

π.gi

)
∈ F

e
(2)
1 = acc.h ◦ (π.w + π.r · 1ℓ) + π.h ◦ (acc.w + acc.r · 1ℓ)− 2µ · 1ℓ ∈ Fℓ

e
(3)
1 = acc.g ◦ (t+ π.r · 1T) + π.g ◦ (µ · t+ acc.r · 1T)− µ · π.m− acc.m ∈ FT .

We examine all three components below.

For e
(1)
1 , we see that (

∑ℓ
i=1 π.hi −

∑T
i=1 π.gi) = 0 by the assumption that π is valid,

and (
∑ℓ

i=1 acc.hi −
∑T

i=1 acc.gi) = acc.e(1)/acc.µ (where acc.e(1) is the first component of

the error vector for acc). Thus e
(1)
1 = acc.e(1)/acc.µ. We observe that since in IVC the

accumulator acc.e(1) is initiated with 0, this implies that for all iterations e
(1)
1 = 0.

For e
(2)
1 , it is computed from terms of size ℓ, so can be computed in time O(ℓ).

For e
(3)
1 , note that acc.µ, acc.r and π.r are all scalars. Also note that the accumulation

prover only needs to compute the commitment E1 = Commit(ck, e1) = Commit(ck, e
(1)
1) +

Commit(ck, 0||e(2)1) + Commit(ck,0ℓ+1||e(3)1), not the actual vector e1. We will compute

E
(3)
1 = Commit(ck, e

(3)
1) homomorphically from the commitments below (dropping the zero

padding for readability):
1. G = Commit(ck, π.g),
2. G′ = Commit(ck, acc.g),
3. M = Commit(ck, π.m),
4. M ′ = Commit(ck, acc.m),
5. GT = Commit(ck, π.g ◦ t),
6. GT ′ = Commit(ck, acc.g ◦ t).

29

Given these commitments, we can compute

E
(3)
1 = GT ′ + π.r ·G′ + acc.µ ·GT + acc.r ·G− acc.µ ·M −M ′ .

This reduces the problem to the problem of efficiently computing and updating the commit-
ments. G,M and GT are all commitments to ℓ-sparse vectors, thus can be efficiently com-
puted. The prover can cache the commitments G′,M ′, and GT ′ and efficiently update them
during accumulation. That is G′′ ← G′ + αG, M ′′ ← M ′ + αM and GT ′′ ← GT ′ + αGT .
Additionally, we need to update the accumulation witnesses: acc′.m← acc.m+απ.m and
acc′.g← acc.g+ απ.g. Again because π.g, π.m are sparse this can be done in time O(ℓlk)
independent of T = |t|.

When ΠLK is used in composition with another special sound protocol with a higher
degree d, the accumulation is made homogeneous using a (X+µ)d−2 factor when computing
the error terms. The contribution to the error terms ei (1 ≤ i ≤ d − 1) is still a linear
function in acc.g, acc.m and acc.g ◦ t, and thus can be computed homomorphically from
commitments to these values.

Special-soundness. We prove special-soundness for the perfect complete version of ΠLK,
the proof for ΠLK is almost identical (but even simpler).

Lemma 5. The perfect complete version of ΠLK is 2(ℓ+ T)-special-sound.

Proof. We construct an extractor Ext that outputs w. To show that the witness is valid,
we look at the 2(ℓ + T) transcripts that all have w,m as the first message but different
(r(j),h(j) ∈ Fℓ,g(j) ∈ FT) as the second message. Note that by the pigeonhole principle,
there must exist a subset of S ⊆ [2(ℓ+T)] transcripts such that |S| = ℓ+T andwi+r(j) ̸= 0
for all i ∈ [ℓ] and j ∈ S, and ti + r(j) ̸= 0 for all i ∈ [T] and j ∈ S. For these transcripts,
we have that hi =

1
wi+r(j)

and gi =
mi

ti+r(j)
. Define the degree ℓ+ T − 1 polynomial

p(X) =
ℓ∏

k=1

(X +wk) ·
T∏

j=1

(X + tj) ·

(
ℓ∑

i=1

1

X +wi
−

T∑
i=1

mi

X + ti

)
.

If p(X) is the zero polynomial then
∑ℓ

i=1
1

X+wi
=
∑T

i=1
mi

X+ti
and by Lemma 4 (CLK;w) ∈

RLK. Since we have ℓ+ T points r(j) at which p(rj) = 0 we get that p = 0 and thus that
the extracted witness w is valid.

4.4 Vector-valued lookup

In some applications (e.g., simulating bit operations in circuits), we need to support lookup
for a vector, i.e., each table value is a vector of field elements. In this section, we adapt
the scheme in Section 4.3 to support vector lookups.

30

Definition 12. Consider configuration CVLK := (T, ℓ, v := 2ν ∈ N, t) where ℓ is the number
of lookups, and t ∈ (Fv)T is a lookup table in which the ith (1 ≤ i ≤ T) entry is

ti := (ti,1, . . . , ti,v) ∈ Fv .

A sequence of vectors w ∈ (Fv)ℓ is in relation RVLK if and only if for all i ∈ [ℓ],

wi := (wi,1, . . . ,wi,v) ∈ t .

As noted in Section 3.4 of [Hab22], we can extend Lemma 4 and replace Equation 5 with

ℓ∑
i=1

1

X + wi(Y1, . . . , Yν)
=

T∑
i=1

mi

X + ti(Y1, . . . , Yν)
(6)

where let ⟨b⟩ν :=
∑ν−1

i=0 2i · bi, the polynomials are defined as

wi(Y1, . . . , Yν) :=
∑

b∈{0,1}ν
wi,1+⟨b⟩ν · Y

b1
1 · · ·Y

bν
ν ,

ti(Y1, . . . , Yν) :=
∑

b∈{0,1}ν
ti,1+⟨b⟩ν · Y

b1
1 · · ·Y

bν
ν ,

which represent the witness vector wi ∈ Fv and the table vector ti ∈ Fv. We, therefore,
can describe a special-sound protocol for the vector lookup relation as follows.

31

Special sound protocol Πv
VLK for RVLK

Prover P(CVLK,w ∈ (Fv)ℓ) Verifier V(CVLK)

Compute m ∈ FT such that

mi :=

ℓ∑
j=1

1(wj = ti)∀i ∈ [T] w,m

β1, . . . , βν (β1, . . . , βν)←$ Fν=⌈log(v)⌉

⊥

r r ←$ F

Compute h ∈ Fℓ, g ∈ FT

hi :=
1

wi(β1, . . . , βν) + r
∀i ∈ [ℓ]

gi :=
mi

ti(β1, . . . , βν) + r
∀i ∈ [T] h,g

ℓ∑
i=1

hi
?
=

T∑
i=1

gi

hi · (wi(β1, . . . , βν) + r)
?
= 1∀i ∈ [ℓ]

gi · (ti(β1, . . . , βν) + r)
?
= mi

∀i ∈ [T]

Achieving perfect completeness. We can use the same trick in Section 4.3 to achieve
perfect completeness for Πv

VLK. Namely, the verifier sets hi = 0 or gi = 0 when wi(β1, . . . , βν)+
r = 0 or ti(β1, . . . , βν) + r = 0 respectively. The verification equations become

(wi(β1, . . . , βν) + r) · (hi · (wi(β1, . . . , βν) + r)− 1) = 0

and
(ti(β1, . . . , βν) + r) · (gi · (ti(β1, . . . , βν) + r)−mi) = 0 .

The degree of the verifier increases to 2+ 2 log(v). In practice, the negligible completeness
error can likely be ignored without implementing these checks.

Prover complexity. ΠVLK is a 5-move protocol (i.e. k = 3) with the 2nd prover message
being empty; the degree of the verifier is 2+log(v) where v is the vector length; the number

32

of non-zero elements in the prover message is at most (v + 3)ℓ.

Accumulation complexity To ensure that the accumulation procedure only requires
O(ℓlk) operations independent of T , we can apply the same trick as in Section 4.3 and
compute all error terms from homomorphic commitments to g and m. This works because
the error terms are a linear function of g and m and scalars. This means the contribu-
tions of the not necessarily sparse acc.g, acc.m to e1, . . . , ed−1 can be computed using the
commitment homomorphism.

Special soundness. We prove that the perfect complete version of Πv
VLK is special sound.

Lemma 6. For any constant v = 2ν ∈ N, the perfect complete version of Πv
VLK is [(ℓ +

T)ν+1, ℓ+ T + 1]-special-sound.

Proof. We construct an extractor Ext that outputs w. To show that the witness is valid,
we look at the [(ℓ + T)ν+1, ℓ + T + 1]-tree of accepting transcripts. Note that for each
depth-(ν + 1) internal node u that fixes the message (w,m, β1, . . . , βν), it has ℓ + T + 1
different choices of challenge r(j). By the pigeonhole principle, there exists at least one
challenge r such that ti(β1, . . . , βν) + r ̸= 0 for all i ∈ [T] and wi(β1, . . . , βν) + r ̸= 0
for all i ∈ [ℓ]. Let h,g be the last prover message in the corresponding leaf node. Since
the transcript is accepting, we have that hi = 1/(wi(β1, . . . , βν) + r) for all i ∈ [ℓ], gi =
mi/(ti(β1, . . . , βν) + r) for all i ∈ [T], and

∑ℓ
i=1 hi =

∑T
i=1 gi.

Define the (ν+1)-variate polynomial where the individual degree of each variable is at
most ℓ+ T − 1,

p(X,Y1, . . . , Yν) =

ℓ∏
k=1

(X + wk(Y1, . . . , Yν)) ·
T∏

j=1

(X + tj(Y1, . . . , Yν))·(
ℓ∑

i=1

1

X + wi(Y1, . . . , Yν)
−

T∑
i=1

mi

X + ti(Y1, . . . , Yν)

)
.

For every depth-(ν +1) internal node u, we denote by (r, β1, . . . , βν) the partial transcript
for one of the u’s children whose challenge r satisfies ti(β1, . . . , βν)+r ̸= 0 for all i ∈ [T] and
wi(β1, . . . , βν)+ r ̸= 0 for all i ∈ [ℓ]. As argued in the previous paragraph, we observe that∑ℓ

i=1
1

r+wi(β1,...,βν)
−
∑T

i=1
mi

r+ti(β1,...,βν)
= 0, hence p evaluates to zero at point (r, β1, . . . , βν).

Since there are (ℓ + T)ν+1 depth-(ν + 1) internal nodes, it holds that p evaluates to zero
on (ℓ + T)ν+1 different points, which implies that p is the zero polynomial. Therefore,∑ℓ

i=1
1

X+wi(Y1,...,Yν)
=
∑T

i=1
mi

X+ti(Y1,...,Yν)
. Then by the extension of Lemma 4 described in

Equation 6, we have (CVLK,w) ∈ RVLK and thus the extracted witness is valid.

33

5 Special sound protocols for Plonkup relations

Definition 13. Consider configuration Cplonkup := (n, T ;σ; c, d, [si, Gi]
m
i=1;L, t) where σ :

[cn]→ [cn] is a permutation, (c, d, [si, Gi]
m
i=1) are the parameters for the high-degree custom

gates, L ⊆ [cn] is the subset of indices for variables that have a lookup gate, t ∈ FT is the
lookup table. The relation Rplonkup is the set of tuples (pi ∈ Fℓin ,w ∈ Fcn) such that

w ∈ Rσ ∧w ∈ RGATE ∧wL ∈ RLK ∧w[1..ℓin] = pi .

We present the special sound protocol for the Plonkup relation Rplonkup below.

Special sound protocol Πplonkup for relation Rplonkup

Prover P(Cplonkup, pi,w) Verifier V(Cplonkup, pi)
Compute m ∈ FT such that

mi :=
∑
j∈L

1(wj = ti)∀i ∈ [T] w,m wi −wσ(i)
?
= 0∀i ∈ [cn]

m∑
j=1

sj,i ·Gj(wi, . . . ,wi+cn−n)

?
= 0∀i ∈ [n]

wi
?
= pii∀i ∈ [ℓin]

r r ←$ F

Compute h ∈ F|L|, g ∈ FT

hi :=
1

wLi + r
∀i ∈ [|L|]

gi :=
mi

ti + r
∀i ∈ [T] h,g

|L|∑
i=1

hi
?
=

T∑
i=1

gi

hi · (wLi
+ r)

?
= 1∀i ∈ [|L|]

gi · (ti + r)
?
= mi∀i ∈ [T]

Complexity. Πplonkup is a 3-move protocol (i.e. k = 2); the degree of the verifier is d;
the number of non-zero elements in the prover message is at most cn+ 3|L|.

Completeness and security. We need to add the checks described in Section 4.3 to
achieve perfect completeness. This changes the verification degree to max(d, 3). Without
these checks, the protocol still has all but negligible completeness.

34

Lemma 7. Πplonkup is 2(T + |L|)-special sound.

Proof. The protocol is a parallel composition of Πσ,ΠGATE and ΠLK plus a public input
check. In Πσ and ΠGATE, the prover simply sends the witness, and the verifier checks it
is in the relation. These protocols are thus trivially 1-special sound. The public input
relation also trivially holds as the verifier checks wi = pii for all i ∈ [ℓin]. By Lemma 5
ΠLK is 2(T + |L|)-special sound. Thus Πplonkup is 2(T + |L|)-special sound.

6 Special sound protocols for non-uniform Plonkup relations

In this section, we describe a special sound protocol for capturing non-uniform Plonkup
circuit computations. In particular, the relation is checking that one of the I circuits is
satisfied, where the index of the target circuit is determined by a part of the public input
called program counter pc. The non-uniform Plonkup circuit can add arbitrary constraints
on input pc. For example, the list of I circuits can be the opcodes supported by EVM, the
program counter pc can be computed from the pc′ and the register state in the previous
step, and the circuit will further check that opcode[pc] is executed correctly in the current
step. For another application, we can consider the I circuits as the predicates of I smart
contracts (or transaction types), a user can call one of the smart contracts/transaction types
by specifying the index pc, and the cost of proving correct execution is only proportional
to the size of an individual smart contract/transaction type rather than the sum of the
sizes of the supported smart contracts/transaction types.

For ease of exposition, we assume that the I circuits have the same
• number of gates n;
• gate arity c;
• maximum gate degree d;
• number of gate types m;
• number of public inputs ℓin;
• number of lookup gates ℓlk.

The scheme naturally extends when different branch circuits have different parameters.

Definition 14. Consider configuration Cmplkup := (pp = (n, T, c, d,m, ℓin, ℓlk); [Ci]Ii=1; t))
where the ith (1 ≤ i ≤ I) branch circuit has configuration Ci := (pp, σi, [si,j , Gi,j]

m
j=1, Li),

and t ∈ FT is the global lookup table. For a public input pi := (pc, pi′) ∈ Fℓin where pc ∈ [I]
is a program counter, we say that a instance-witness pair (pi,w ∈ Fcn) is in the relation
Rmplkup if and only if (pi,w) ∈ Rplonkup w.r.t. circuit configuration (Cpc, t).

Notation. For an integer x ∈ [0, 2κ), we denote by ⟨x⟩κ the κ-bit binary representation
of x. For vector a,b ∈ Fκ, we define

eq(a,b) :=

κ∏
i=1

(aibi + (1− ai)(1− bi)) .

35

For simplicity, we assume that the number of branch circuits I is a power of two. We
present the special-sound protocol Πmplkup for the multi-circuit Plonkup relation.

Protocol Πmplkup = ⟨P(Cmplkup, pi,w),V(Cmplkup, pi = (pc ∈ [I], pi′))⟩:

1. P computes and sends V vector pc = (i1, . . . , ilog I) ∈ {0, 1}log I where the pro-

gram counter pc satisfies pc = 1 +
∑log I

j=1 2j−1 · ij .

2. V checks that ij · (1− ij)
?
= 0∀j ∈ [log I] and pc

?
= 1 +

∑log I
j=1 2j−1 · ij .

3. P sends V vector b = (0, . . . , 0, bpc = 1, 0, . . . , 0) ∈ FI .

4. V checks that bi
?
= eq(⟨i− 1⟩log I ,pc) for all i ∈ [I].

5. P computes vector m ∈ FT such that mi :=
∑

j∈Lpc
1(wj = ti)∀i ∈ [T].

6. P sends V vectors w,m.

7. V checks that

Permutation check:
∑I

j=1 bj(wi −wσj(i))
?
= 0 for all i ∈ [cn].

Public input check: w[1..ℓin]
?
= pi.

Gate check: for all i ∈ [n], it holds that

I∑
j=1

bj · GTj(sj,1[i], . . . , sj,m[i],wi, . . . ,wi+cn−n) = 0

where GTj(s1, . . . , sm, x1, . . . , xc) :=
∑m

i=1 si ·Gj,i(x1, . . . , xc) .

8. V samples and sends P random challenge r ←$ F.

9. P computes vectors h ∈ Fℓlk , g ∈ FT such that

hi :=
1

wLpc[i] + r
∀i ∈ [ℓlk] , gi :=

mi

ti + r
∀i ∈ [T] .

10. V checks that
∑ℓlk

i=1 hi
?
=
∑T

i=1 gi and

I∑
j=1

bj ·
[
hi · (wLj [i] + r)

]
?
= 1 ∀i ∈ [ℓlk] ,

gi · (ti + r)
?
= mi ∀i ∈ [T]

36

Remark 6. By the public input check w[1..ℓin]
?
= pi, we guarantee that w[1] = pc, and the

circuit relation can add arbitrary constraints on pc depending on the applications (like the
ones described in the header of Section 6).

Complexity. Πmplkup is a 3-move protocol (i.e. k = 2); the degree of the verifier is
max(d+ 1, log I); the number of non-zero elements in the prover message is at most cn+
3ℓlk + 1 + log I; the prover message length is log I + I + cn + 3T . Hence in the resulting
accumulation scheme, the accumulation prover complexity is only O(n+ ℓlk+log I) that is
independent of the table size, and the accumulator size is O(n+T + I) that is independent
of the sum of the sizes of the branch circuits. The decider still runs in time O(I · c · n) as
it needs to evaluate all circuits at the accumulator.

Special soundness. We prove the special soundness property of Πmplkup below.

Lemma 8. Πmplkup is 2(T + ℓlk)-special sound.

Proof. The extractor Ext outputs the witness w sent by the prover. Note that pc =
(i1, . . . , ilog I) ∈ {0, 1}log I is the log I-bit binary representation of pc−1 if the verifier-check
at step 2 passes. Conditioned on this, if the verifier check at step 4 also passes, since for
any a,b ∈ {0, 1}log I , eq(a,b) = 1 if and only if a = b and equals 0 otherwise, it must
be the case that b is a bool vector with a single non-zero element bpc. Also, note that
given 2(T + ℓlk) accepting transcripts with distinct challenges r, the vector b won’t change.
Therefore the sub-transcript between step 5 to step 10 is essentially a transcript for a
Plonkup special sound protocol Πplonkup with configuration Cplonkup := (n, T, c, d, Cpc, t).
By Lemma 7, it holds that Πmplkup is 2(T + ℓlk)-special sound.

7 Protostar

We will now use Πmplkup and our compiler described in Theorem 4 to design Protostar.
Before that, we must address an efficiency issue when combining the high-degree gate and
sparse lookup protocols with the generic transform OPT in Section 3.5.

Efficient accumulation of OPTn(Πmplkup). OPTn(ΠGATE) reduces the number of
verification checks in ΠGATE from n to 1. In the resulting accumulation scheme, the error
terms are, thus, only of length 1. This enables using the trivial identity commitment for the
error terms and thus reduces the number of group operations by the accumulation verifier.
Unfortunately, applying OPT to mplkup seems to have a major tradeoff. The number of
verification checks is n+ℓlk+T+c ·n. This requires using a) OPTℓlk+T+(c+1)·n(mplkup) and
b) is not composable with the sparseness optimizations for lookup described in Sections 4.3
and 4.4. These optimizations make the prover computation independent of T . A closer
look at the verification of mplkup reveals that only n of these verification checks are of high

37

degree d, namely the checks in ΠGATE. The other checks are of degree 2 or lower. With a
slight abuse of notation, we can define OPTn(Πmplkup) as applying the generic transform
OPT only to the ΠGATE part of Πmplkup. This means that there are log2(n) + d− 1 cross
error vectors (each of length 1) for the checks in OPTn(ΠGATE), and 1 cross error vector of
length T + ℓlk + cn for the rest checks. We can use the identity function to commit to the
field elements and a vector commitment to commit to the long error term. We can again
leverage homomorphism as described in Section 4.3 to make the prover independent of T .

Corollary 1 (Protostar protocol). Consider the configuration

Cmplkup := (n, T, c, d,m, ℓin, ℓlk; [Ci]Ii=1; t).

Given a binding homomorphic commitment scheme cm = (Setup,Commit), there exists an
IVC schemes Protostard∗ with parameter d∗ for Rmplkup relations with the following ef-
ficiencies for m = 1 (i.e. each circuit has a single degree-d gate type), public input length
ℓin = 1, and d + 1 ≥ log2(I): (we omit cost terms that are negligible compared to the
dominant parts)

d∗ = 1 d∗ = n

PProtostar

native
O((c+ d) · n+ ℓlk)G
L(Ci, d, 1) + 2ℓlkF

O(c · n+ ℓlk)G
L(Ci, d, log n) + 2ℓlkF

PProtostar

recursive

d+ 1G
2F
2H

3G
d+ 1 + 2 log nF

3H

VProtostar
c · n+ T + ℓlkG∑I
i=1 Ci + T + ℓlkF

c · n+ T + ℓlkG
n+

∑I
i=1 Ci + T + ℓlkF

|πProtostar| O(c · n+ T + ℓlk) O(c · n+ T + ℓlk)

Here
∑I

i=1 Ci is the cost of evaluating all circuits on some random input, and L(Ci, d, d∗)
is the cost of computing the coefficients of (the vector of) polynomials e(X) (with degree
d+ log d∗) defined in Equation 4.5

Proof. Let SPS− IVCd∗ be the transformation from a special sound protocol to an IVC-
scheme described by Theorem 4. Then given a commitment scheme cm by that theo-
rem Protostard∗ = SPS− IVCd∗ [Πmplkup] is an IVC scheme for predicates expressed in
Rmplkup. We apply Theorem 4 to get the efficiencies in the table above.

Acknowledgments. We want to thank Ariel Gabizon for pointing out an elegant opti-
mization to the generic transformation protocol in Section 3.5, which improves the number
of additional hashes executed by the accumulation verifier from log ℓ to 1.

5As noted in Theorem 4, L(Ci, d, d
∗) is bounded by O(n(d + log d∗)2) field operations, and for certain

structures of the gate formula we can do it in O(n(d+ log d∗) log2(d+ log d∗)).

38

References

[AFGHO10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. “Structure-Preserving Signatures and Commitments to
Group Elements”. In: CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS.
Springer, Heidelberg, Aug. 2010, pp. 209–236. doi: 10.1007/978-3-642-
14623-7_12.

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. “Fiat-Shamir Transfor-
mation of Multi-round Interactive Proofs”. In: TCC 2022, Part I. Ed. by
Eike Kiltz and Vinod Vaikuntanathan. Vol. 13747. LNCS. Springer, Hei-
delberg, Nov. 2022, pp. 113–142. doi: 10.1007/978-3-031-22318-1_5.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. “Verifiable
Delay Functions”. In: CRYPTO 2018, Part I. Ed. by Hovav Shacham and
Alexandra Boldyreva. Vol. 10991. LNCS. Springer, Heidelberg, Aug. 2018,
pp. 757–788. doi: 10.1007/978-3-319-96884-1_25.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Re-
cursive composition and bootstrapping for SNARKS and proof-carrying
data”. In: 45th ACM STOC. Ed. by Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum. ACM Press, June 2013, pp. 111–120. doi: 10.1145/
2488608.2488623.

[BCLMS21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and
Nicholas Spooner. “Proof-Carrying Data Without Succinct Arguments”.
In: CRYPTO 2021, Part I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825.
LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 681–710. doi:
10.1007/978-3-030-84242-0_24.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner.
“Recursive Proof Composition from Accumulation Schemes”. In: TCC 2020,
Part II. Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12551. LNCS.
Springer, Heidelberg, Nov. 2020, pp. 1–18. doi: 10.1007/978-3-030-
64378-2_1.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scal-
able Zero Knowledge via Cycles of Elliptic Curves”. In: CRYPTO 2014,
Part II. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617. LNCS.
Springer, Heidelberg, Aug. 2014, pp. 276–294. doi: 10.1007/978-3-662-
44381-1_16.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof Compo-
sition without a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021.
https://eprint.iacr.org/2019/1021. 2019.

39

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://eprint.iacr.org/2019/1021

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda:
Decentralized Cryptocurrency at Scale. Cryptology ePrint Archive, Report
2020/352. https://eprint.iacr.org/2020/352. 2020.

[But22] Vitalik Buterin. The different types of ZK EVM. https://vitalik.ca/
general/2022/08/04/zkevm.html. Accessed: 2023-04-27. 2022.

[CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk:
Plonk with Linear-Time Prover and High-Degree Custom Gates. Cryptol-
ogy ePrint Archive, Report 2022/1355. https://eprint.iacr.org/2022/
1355. 2022.

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay
Arguments from Signature Cards”. In: ICS 2010. Ed. by Andrew Chi-Chih
Yao. Tsinghua University Press, Jan. 2010, pp. 310–331.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. “Cluster Computing
in Zero Knowledge”. In: EUROCRYPT 2015, Part II. Ed. by Elisabeth
Oswald and Marc Fischlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr.
2015, pp. 371–403. doi: 10.1007/978-3-662-46803-6_13.

[EFG22] Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for fast
lookups. Cryptology ePrint Archive, Report 2022/1763. https://eprint.
iacr.org/2022/1763. 2022.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial
protocol for lookup tables. Cryptology ePrint Archive, Report 2020/315.
https://eprint.iacr.org/2020/315. 2020.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over Lagrange-bases for Oecumenical Noninteractive arguments
of Knowledge. Cryptology ePrint Archive, Report 2019/953. https://
eprint.iacr.org/2019/953. 2019.

[Hab22] Ulrich Haböck.Multivariate lookups based on logarithmic derivatives. Cryp-
tology ePrint Archive, Report 2022/1530. https://eprint.iacr.org/
2022/1530. 2022.

[KB20] Assimakis Kattis and Joseph Bonneau. Proof of Necessary Work: Succinct
State Verification with Fairness Guarantees. Cryptology ePrint Archive,
Report 2020/190. https://eprint.iacr.org/2020/190. 2020.

[KMT22] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Tiwari. Min-
Root: Candidate Sequential Function for Ethereum VDF. Cryptology ePrint
Archive, Report 2022/1626. https://eprint.iacr.org/2022/1626. 2022.

[KS22] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal ma-
chine executions without universal circuits. Cryptology ePrint Archive, Re-
port 2022/1758. https://eprint.iacr.org/2022/1758. 2022.

40

https://eprint.iacr.org/2020/352
https://vitalik.ca/general/2022/08/04/zkevm.html
https://vitalik.ca/general/2022/08/04/zkevm.html
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://doi.org/10.1007/978-3-662-46803-6_13
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2020/190
https://eprint.iacr.org/2022/1626
https://eprint.iacr.org/2022/1758

[KS23] Abhiram Kothapalli and Srinath Setty. “HyperNova: Recursive arguments
for customizable constraint systems”. In: Cryptology ePrint Archive (2023).

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recursive
Zero-Knowledge Arguments from Folding Schemes”. In: CRYPTO 2022,
Part IV. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13510. LNCS.
Springer, Heidelberg, Aug. 2022, pp. 359–388. doi: 10.1007/978-3-031-
15985-5_13.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Al-
gebraic methods for interactive proof systems”. In: Journal of the ACM
(JACM) 39.4 (1992), pp. 859–868.

[Moh23] Nicholas Mohnblatt. Sangria: A Folding Scheme for PLONK. https://
github.com/geometryresearch/technical_notes/blob/main/sangria_

folding_plonk.pdf. Accessed: 2023-04-27. 2023.

[NT16] Assa Naveh and Eran Tromer. “PhotoProof: Cryptographic Image Authen-
tication for Any Set of Permissible Transformations”. In: 2016 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society Press, May 2016,
pp. 255–271. doi: 10.1109/SP.2016.23.

[Ped92] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing”. In: CRYPTO’91. Ed. by Joan Feigenbaum.
Vol. 576. LNCS. Springer, Heidelberg, Aug. 1992, pp. 129–140. doi: 10.
1007/3-540-46766-1_9.

[PK22] Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup ar-
guments. Cryptology ePrint Archive, Report 2022/957. https://eprint.
iacr.org/2022/957. 2022.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. “Customizable constraint
systems for succinct arguments”. In: Cryptology ePrint Archive (2023).

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs of Knowl-
edge Imply Time/Space Efficiency”. In: TCC 2008. Ed. by Ran Canetti.
Vol. 4948. LNCS. Springer, Heidelberg, Mar. 2008, pp. 1–18. doi: 10.1007/
978-3-540-78524-8_1.

[Wik21] Douglas Wikström. Special Soundness in the Random Oracle Model. Cryp-
tology ePrint Archive, Report 2021/1265. https://eprint.iacr.org/
2021/1265. 2021.

[ZBKMNS22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca
Nitulescu, and Mark Simkin. “Caulk: Lookup Arguments in Sublinear Time”.
In: ACM CCS 2022. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi. ACM Press, Nov. 2022, pp. 3121–3134. doi: 10.1145/3548606.
3560646.

41

https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/957
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://eprint.iacr.org/2021/1265
https://eprint.iacr.org/2021/1265
https://doi.org/10.1145/3548606.3560646
https://doi.org/10.1145/3548606.3560646

[ZGKMR22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and
Carla Ràfols. Baloo: Nearly Optimal Lookup Arguments. Cryptology ePrint
Archive, Report 2022/1565. https://eprint.iacr.org/2022/1565. 2022.

42

https://eprint.iacr.org/2022/1565

	Introduction
	Technical overview

	Preliminaries
	Special Sound Protocols and Fiat-Shamir Transform
	Adaptive Fiat-Shamir transform
	Incremental Verifiable Computation (IVC)
	Simple Accumulation
	Commitment Scheme

	Protocols
	Special Sound Protocols
	Commit and Open
	Fiat-Shamir transform
	Accumulation Scheme for Vnark
	Efficiency optimizations for high-degree verifiers

	Low-degree special-sound protocols for toolbox relations
	Permutation relation
	High-degree custom gate relation
	Lookup relation
	Vector-valued lookup

	Special sound protocols for Plonkup relations
	Special sound protocols for non-uniform Plonkup relations
	Protostar

