
CLAASP: a Cryptographic Library for the
Automated Analysis of Symmetric Primitives

Emanuele Bellini , David Gerault , Juan Grados , Yun Ju Huang ,
Mohamed Rachidi, and Sharwan Tiwari

Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
{emanuele.bellini,david.gerault,juan.grados,yunju.huang,

mohamed.rachidi,sharwan.tiwari}@tii.ae

Abstract. This paper introduces CLAASP, a Cryptographic Library
for the Automated Analysis of Symmetric Primitives. The library is de-
signed to be modular, extendable, easy to use, generic, efficient and fully
automated. It is an extensive toolbox gathering state-of-the-art tech-
niques aimed at simplifying the manual tasks of symmetric primitive
designers and analysts. CLAASP is built on top of Sagemath and is
open-source under the GPLv3 license.
The central input of CLAASP is the description of a cryptographic
primitive as a list of connected components in the form a directed acyclic
graph. From this representation, the library can automatically: (1) gener-
ate the Python or C code of the primitive evaluation function, (2) execute
a wide range of statistical and avalanche tests on the primitive, (3) gener-
ate SAT, SMT, CP and MILP models to search, for example, differential
and linear trails, (4) measure algebraic properties of the primitive, (5)
test neural-based distinguishers.
In this work, we also present a comprehensive survey and comparison of
other software libraries aiming at similar goals as CLAASP.

Keywords: Cryptographic library · Automated analysis · Symmetric
primitives

1 Introduction

The security targets for cryptographic primitives are well-defined, and relatively
stable, after decades of cryptanalysis. In particular, a symmetric cipher should
behave like a random keyed permutation, a hash function should behave like a
random function, and a MAC scheme should be unforgeable. Testing a crypto-
graphic primitive for these properties is, on the other hand, a vastly difficult task
that relies on testing for known weaknesses. Such a process generally involves
determining the most likely differential or linear characteristic, evaluating the
resistance of the primitive to various cryptanalysis techniques such as integral at-
tacks, and running generic randomness tests. Fortunately, automatic techniques
exist to help designers and cryptographers run such evaluations; for instance,
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SAT/SMT, Mixed Integer Linear Programming (MILP) or Constraint Program-
ming (CP) are frequently used to find optimal differential and linear characteris-
tics. These tools have, over time, become more accessible to non-experts, through
libraries such as [52], that generate models (in this case, SMT) automatically
from a description of the cipher. However, such tools generally focus on a single
aspect, such as generating models in a given paradigm, and there is currently no
single-stop toolkit that combines automated model generation, statistical test-
ing and machine learning based analysis. We aim to fill this gap with CLAASP,
a Cryptographic Library for the Automated Analysis of Symmetric Primitives.
This paper introduces the first public version of CLAASP; the ambition of the
project is to keep adding analysis tools in line with the state of the art, to provide
cryptanalysts with a click-of-a-button solution to run all the standard analysis
tools and gain an overview of the security of a given primitive.

We first present existing cryptanalysis libraries in Section 1.1, before intro-
ducing the building blocks of CLAASP: the cipher object in Section 2, and
the evaluators in Section 3. We then present the battery of tests and tools im-
plemented in CLAASP in Section 4, and finish with a comparison with other
cryptographic libraries in Section 5.

The library’s source code has been made available to the wider community
and is publicly accessible at (Github: https://github.com/Crypto-TII/claasp).
Also, in (Github: https://github.com/peacker/claasp_white_paper), you can
find the scripts used to accompany this paper.

1.1 Related works

Automated tools to support cryptanalysts have become a cornerstone for the
design of new primitives. Over time, such tools were made more generic and
gathered into libraries; we describe the most prominent ones in this section.

The lineartrails library [30] is dedicated to the search for linear characteristics
on SPN ciphers. ARX toolkit [42,43] and YAARX [63] focus on ARX ciphers,
the former testing conditions for trails to be possible, and the latter performing
various analysis techniques on the components.

On the algebraic cryptanalysis side, the Automated Algebraic Cryptanalysis
tool [60] tests properties of block and stream ciphers; in particular, it evaluates
the randomness of a cipher through Maximum Degree Monomial tests [61].

Autoguess [37] is a tool to automate the technique guess-and-determine. This
technique involves making a calculated guess of a subset of the unknown vari-
ables, which enables the deduction of the remaining unknowns using the infor-
mation obtained from the guessed variables and some given relations. In order to
automate this technique, SAT/SMT, MILP, and Gröbner basis solvers are used
and several new modeling techniques to exploit these solver proposed. For in-
stance, the authors of the library introduce new encodings in CP and SAT/SMT
to solve the problem of determining the minimal guess, i.e., the subset of guessed
variables from which the remaining variables can be deduced. Autoguess also
allows to automate the key-bridging technique. This technique is utilized in key-
recovery attacks on block ciphers, wherein the attacker seeks to determine the
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minimum number of sub-key guesses needed to deduce all the involved sub-keys
through the key schedule. The significant contribution of this work lies in in-
tegrating key-bridging techniques into tools that were previously only capable
of searching for distinguishers. As a result, these enhanced tools can now be
utilized as fully automatic methods for recovering keys.

CryptoSMT [62] is the first large-scale solver-based library dedicated to
cryptanalysis. Based on SMT and SAT solvers, it provides an extensive toolkit,
permitting the search for optimal differential and linear trails, the evaluation
of the probability of a differential, the search for hash function preimages, and
secret key search.

Another SMT-based library, based on ArxPy [52] is the CASCADA frame-
work [53], which also implements techniques to search for rotational-XOR differ-
entials, impossible-rotational-XOR, but also related-key impossible-differentials,
linear approximations, and zero-correlation characteristics. The generated SMT
models are expressed through the theory of bit-vectors [8], and follow the general
methodology of Mouha and Preneel [47] for differential properties, Sasaki’s [55]
technique for impossible differentials, an SMT-based miss-in-the middle search
for related-key impossible differentials of ARX ciphers [5], and a novel method
proposed for zero-probability global properties. If a search can not use the pre-
vious methods, then a generic method, based on the constructions of statistical
tables, such as the Differential Distribution Table (DDT), is used. Depending
on the sizes of the inputs of the block cipher, these generic models could be
costly, so they also proposed heuristic models by relaxing the accuracy of their
properties; they called them weak models. Finally, their framework implements
methods to check the properties mentioned above experimentally.

Finally, TAGADA [44] is a tool which generates Minizinc [50] models for the
search for differential properties on word-based SPN ciphers, such as the AES.
The search for such ciphers is typically divided into two steps, one where the word
variables are abstracted as boolean values denoting the presence or absence of a
difference, and one where the abstracted solutions from step 1 are instantiated
to word values, when possible. The models generated by TAGADA implement
the first step, including optimisations based on inferred equalities through XOR
operators, in order to drastically reduce the number of incorrect solutions to
be passed to step 2. Such constraints are deduced naturally from a Directed
Acyclic Graph (DAG) representation of the cipher under study. The genericity
of Minizinc models enables solving with a range of CP, SAT and SMT solvers, in
particular, the ones participating in the MiniZinc competition, that provide an
interface to MiniZinc. On the other hand, solver-specific optimisations and perks
are abstracted away by the Minizinc interface, compared to models developped
in the native language of a solver.

A summary of the functionalities of these libraries is presented in Table 1.

1.2 Our contribution

We introduce CLAASP, a Cryptographic Library for the Automated Analysis
of Symmetric Primitives. CLAASP has been designed to simplify the manual
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TAGADA CASCADA CryptoSMT lineartrails YAARX Autoguess CLAASP

Cipher types SPN All All SPN ARX All All

Cipher representation DAG Python code Python code C++ code C code Algebraic
representation DAG

Statistical/Avalanche
tests - - - - - - Yes

Continuous
diffusion tests - - - - - - Yes

Components
analysis tests - - - - - - Yes

Constraint
solvers

Differential
trails Truncated Yes Yes - Yes - Yes
Differentials - Yes Yes - Yes - Yes
Impossible
differential - Yes -* - - - Yes
Linear trails - Yes Yes Yes - - Yes
Linear hull - -∗ -∗ - - - Yes
Zero
correlation
approximation

- Yes -∗ - - - Yes

Supported
solvers

CP,
(MiniZinc) SMT SMT - -

SAT/SMT,
MILP,CP
Groebner

basis

SAT, SMT,
MILP, CP,
Groebner

basis

Supported
Scenarios

single-key
related-key

single-key
related-key

single-key
related-key single-key single-key

single-key
related-key
single-tweak
related-tweak

single-key
related-key
single-tweak
related-tweak

Algebraic tests - - - - - -

Yes
(algebraic

model
for cipher
preimages)

Neural-based tests - - - - - - Yes
State Recovery - - - - - Yes -
Key-bridging - - - - - Yes -

Table 1: Comparison of cryptanalysis libraries features with CLAASP. -∗ means that
the functionality is not supported, but could easily be added from the existing code.

tasks of symmetric cipher designers and analysts. CLAASP has been designed
with the following goals:

– Be open-source with a GPLv3 licence.
– Be modular. For this reason it is built on top of Sagemath, thus inheriting

Python modularity.
– Be extendable. The Python/Sagemath environment allows to easily integrate

other powerful libraries: constraint solvers such as Cryptominisat, Cadical or
Gurobi, machine learning engines such as Tensorflow, Grobner basis solvers,
parallelization packages such as NumPy, etc..

– Be usable. Much effort has been dedicated to provide a smooth user experi-
ence for both designing and analyzing a cipher. This includes a comprehen-
sive documentation for users and developers, and a Docker image to easily
start with the library without the need of installing all the dependencies.

– Be generic. The wide range of pre-defined components, allows to implement a
wide range of iterated symmetric ciphers, ranging from block ciphers (possi-
bly with a tweak), cryptographic permutations, hash functions, and covering
several design types such as Feistel, SPN, ARX, etc..

– Be automated. The concept of the library revolves around providing a cipher
design as the input and getting an analysis of the cipher design as the output
with respect to some desired property.
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– Be efficient. In spite of being the most generic and fully automated tool of
its kind, this library is competitive in terms of efficiency with similar tools
targeting specific sectors.

The central objects of CLAASP are symmetric ciphers. They are described
as directed acyclic graphs whose nodes are components (S-Boxes, linear layers,
constants, Input/Output, etc.) and whose edges are input/output component
connections. From this representation, the library can automatically:

1. generate the Python or C code of the evaluation function;
2. execute a wide range of statistical and avalanche tests on the primitive,

including continuous diffusion tests;
3. generate a report containing the main properties of the cipher components

(e.g. S-Box differential uniformity or algebraic degree, linear layer order or
branch number, etc.);

4. generate SAT, SMT, CP and MILP models and feed them to most open-
source and commercial solvers, in order to search, for example, differential
and linear trails;

5. measure algebraic properties of the primitive;
6. test neural-based distinguishers.

Beside the presentation of the library, important contributions of this work
are a survey and a comparison (where possible) of the main software tools trying
to achieve the same goals as CLAASP.

2 Symmetric primitives in CLAASP

In this section, we describe how a symmetric primitive is represented in CLAASP.
We also present the main pre-implemented primitives that are available for test-
ing and give some indications on how to build a custom cipher.

2.1 The Component class

Informally, in CLAASP, a symmetric cipher is represented as a list of "con-
nected components". By the term cipher component (or simply component) we
refer to the building blocks of symmetric ciphers (S-Boxes, linear layers, word
operations, etc.). Two components are connected when the output bits of the
first component become the input bits of the second component, in a one-to-one
correspondence. The library supports the following primitive components: the
S-Box component, linear layer components (fixed and variable rotation, fixed
and variable shift, bit and word permutation, multiplication by a binary or word
matrix), word operations components (NOT, AND, OR, XOR, modular addi-
tion and subtraction), and the constant component. It also supports composite
components, which are a combination of primitive components: the sigma func-
tion used in ASCON, the theta function used in Keccak, and the theta function
used in Xoodoo. For example, the linear layer in ASCON can be presented by
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the combination of several XOR and ROTATE components, or as a composite
component. Composite components can also be created at a user level.

Finally, some special components are used to represent the inputs of the
cipher, and cipher intermediate and final outputs.

In CLAASP, each component requires the following minimal information to
be defined:

– a unique component ID (e.g. "sbox_0_0");
– a component type (e.g. "sbox", "word_operation", "linear_layer", etc.);
– the input and output bit size of the component;
– a list of the components that are connected to the input of the component

(a list of IDs);
– a list of lists of bits positions specifying which output bits of the input

components are connected to the component;
– a description containing the necessary information to finalize the definition of

the component (e.g., the list of integers defining an SBox, the binary matrix
defining a linear layer, the amount of a rotation, etc.).

More precisely, in CLAASP, a component is represented as a Python class
with the following constructor:
def __init__(self , component_id , component_type , component_input ,

↪→ output_bit_size , description):

The component input is represented as another class defined by the following
constructor:
def __init__(self , input_bit_size , id_links , bit_positions):

2.2 The Cipher class

Ciphers as directed acyclic graphs In CLAASP, a symmetric cipher is
represented as a list of connected components, forming a directed acyclic graph,
and a list of basic properties, listed in Table 2.

Property Description

id unique identifier of the cipher, composed by cipher name and parameters
family_name name of the cipher family, such as AES ASCON, etc.
type type of the cipher (block cipher, permutation, hash or stream cipher)
inputs inputs of the cipher, such as key and plaintext.
inputs_bit_size list of number of bits of each input parameters.
output_bit_size number of bits of the cipher output
number_of_rounds number of rounds in the cipher
rounds list of rounds each containing a list of components
reference_code [optional] Python reference code (as a string) of the cipher evaluation

function, used to verify the cipher correctness.

Table 2: Parameters that are used to define a cipher in CLAASP.

CLAASP supports iterated symmetric ciphers, based on the composition of
several round functions, which are themselves a list of connected components;
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each cipher must have at least one round. The round decomposition is useful
and common in symmetric cipher design and cryptanalysis; in most tests, a
given property is studied round by round.

CLAASP natively implements a range of well-known block ciphers, permu-
tations and hash functions, listed in Table 3.

Block ciphers Permutations Hash functions

AES [59] TEA [64] ASCON [31] Xoodoo [27] SHA-1
DES [49] XTEA [65] ChaCha [17] Spongent-π [22] SHA-2
LEA [39] Twofish [56] GIFT-128 [7] TinyJAMBU [66] MD5
LowMC [1] Threefish [32] GIMILI [18] BLAKE [4]
Midori [6] HIGHT [40] Grain core [38] BLAKE2 [4]
PRESENT [21] SKINNY [13] KECCAK-p [19]
Raiden [51] Sparx [29] PHOTON [36]
SIMON [11] Speck [11] SPARKLE [12]

Table 3: Primitives supported in CLAASP v1.0.0.

How to create the cipher object Native support for more primitives will
be added over time, but CLAASP exposes a simple interface for users to add
new ones as well. This process is illustrated through a toy example of a 2-rounds
cipher with 6-bit block, 6-bit key injected in every round with a XOR operation,
2 3-bit S-boxes, and a linear layer made of a left rotation of 1 bit, shown in
Figure 2, and the corresponding CLAASP implementation in Figure 1.

The main concern of a user implementing a primitive is to correctly link the
components at a bit level, and mark which component or group of components
need to be reported in the output of the tests. This is because a user might be
interested not only in getting reports at every round, but, for example, after the
linear and the nonlinear layer of an SPN.

Cipher inputs It is important to notice that, in order to be generic, the library
has been designed to accept multiple inputs which can be labeled with different
names: for example, a key, a plaintext and a tweak, or a message and a nonce. On
the other hand, to better exploit the features of some tests, a naming convention
has been introduced for inputs such as "key" or "plaintext".

The cipher representation is not unique The cipher representation as a
list of connected components is not unique. For example, the nonlinear layer of
ASCON permutation can be represented as a circuit made of word operation
components (XOR, AND and NOT) or with a layer of parallel S-boxes. This is
detailed in Appendix A.

Different cipher representations may affect the output of tests; for instance,
a differential cryptanalysis model built for an ASCON implementation using the
circuit representation is less accurate than one using a S-Box representation. In
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from claasp.cipher import Cipher

class ToySPN(Cipher):
def __init__(self):

super ().__init__(family_name="toyspn",
cipher_type="block_cipher",
cipher_inputs =["plaintext", "key"],
cipher_inputs_bit_size =[6, 6],
cipher_output_bit_size =6)

sbox = [0, 5, 3, 2, 6, 1, 4, 7]
self.add_round ()
xor = self.add_XOR_component (["plaintext", "key"

↪→ ],[[0,1,2,3,4,5],[0,1,2,3,4,5]],6)
sbox1 = self.add_SBOX_component ([xor.id], [[0, 1,

↪→ 2]], 3, sbox)
sbox2 = self.add_SBOX_component ([xor.id], [[3, 4,

↪→ 5]], 3, sbox)
rotate = self.add_rotate_component ([ sbox1.id,

↪→ sbox2.id],[[0, 1, 2], [0, 1, 2]], 6, 1)
self.add_round_output_component ([ rotate.id], [[0,

↪→ 1, 2, 3, 4, 5]], 6)

self.add_round ()
xor = self.add_XOR_component ([ rotate.id, "key"

↪→ ],[[0,1,2,3,4,5],[0,1,2,3,4,5]],6)
sbox1 = self.add_SBOX_component ([xor.id], [[0, 1,

↪→ 2]], 3, sbox)
sbox2 = self.add_SBOX_component ([xor.id], [[3, 4,

↪→ 5]], 3, sbox)
rotate = self.add_rotate_component ([ sbox1.id,

↪→ sbox2.id],[[0, 1, 2], [0, 1, 2]], 6, 1)
self.add_cipher_output_component ([ rotate.id], [[0,

↪→ 1, 2, 3, 4, 5]], 6)

toyspn = ToySPN ()
hex(toyspn.evaluate ([0x3F ,0x3F]))

Fig. 1: ToySPN class definition.
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Fig. 2: ToySPN diagram.

general, the circuit model is useful when a user wishes to monitor the action
of every gate (i.e. word operation) on a single bit. On the other hand an S-
Box-based model often allows a faster evaluation function, and more precise
automated search for differential and linear trails for some constraint solvers
such as CP, where the search can have a preliminary filter to identify all possible
active S-Boxes configurations. Another example of different representation is the
use of binary matrices as opposed to word-based matrices in linear layers.

To test the properties mentioned above, CLAASP already contains some
primitives with both circuit and S-Box-based representation, such as ASCON,
Xoodoo, Keccak and Gimli, as well as the bit-based and word-based such as
TinyJambu representations.

3 Library: evaluation modules

The most basic functionality of CLAASP is to evaluate a cryptographic prim-
itive on a given input. This can be easily achieved in few lines of Python code.
However, some statistical tests require the evaluation of millions of inputs, and
looping over all inputs is not practical, due to Python’s well-known sluggish-
ness with loops. In CLAASP, this issue is tackled through different options,
namely vectorized implementations, and C code generation. A further speedup,
to appear in future versions, is CUDA-based parallel evaluation with GPUs.
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3.1 Base Evaluator in Python and C

One essential functionality for a cryptographic primitive is being able to evaluate
it over some input. In CLAASP, users can create a cipher object and call an
evaluation method to evaluate a particular input. This functionality is also used
internally in CLAASP by some of the modules, to run, for example, avalanche
or statistical tests. By inserting output components in the cipher, users may
also intercept and visualize the intermediate output of any desired component or
group of components during the evaluation. Both the Python code or the C code1

to evaluate a cipher are generated automatically by scanning the list of the cipher
components, generating the corresponding block of code and linking each block in
the correct order. The automatically generated code is not optimized. However,
it provides an easy way for users to export the code for quick prototyping. The
optimization of the automatically generated code is planned for future versions
of the library.

3.2 Vectorized Implementations

A vectorized implementation of a function handles multiple inputs, presented as
a vector, at the same time. In Python, the NumPy library allows to parallelize
function evaluations, by running the function on an array of inputs, rather than
a single input. NumPy arrays are typed and homogeneous, which, combined
with NumPy’s optimisations, enables significant performance gains compared to
Python native lists.

The cipher object provides the NumPy-based evaluate_vectorized function,
which can be used for the fast evaluation of an array of inputs. The inputs are
specified as NumPy arrays, of 8-bit unsigned integer values, arranged as one
column per data point. The return value is encoded as a list containing a single
NumPy array of 8-bit unsigned integer values, this time arranged as one row per
data point. The choice of using bytes stems from NumPy’s lack of support for
integers over 64 bits, and the ease to generate such format automatically.

3.3 Performance Evaluation

For examples of how to easily use the Python, C and vectorized evaluation
method, please refer to the script evaluation_benchmark.sage in the repository
accompanying this publication. The performance of the primitives’ evaluators are com-
pared in Table 4. Note that since the code are auto-generated and not optimized, the
table does not indicate the efficiency of the specified primitives. Note that single eval-
uation in NumPy is usually faster than the single evaluation using Python or even C.
Yet, it is convenient to keep Python and C for very few evaluations as the input/output
format is more intuitive as it is represented by an integer. Finally note that the time
reported for C also include the time to compile the C program.

1 When possible a word-oriented implementation is used, opposed to a slower bit-
oriented implementation for primitives with mixed type of components.
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block round Python C Vectorized
size 1 103 1 103 1 103 106

SKINNY 128 40 4.32 3546.98 2.87 1545.29 1.22 1.10 14.27
AES 128 10 0.80 739.26 1.59 765.86 0.27 0.28 2.79
HIGHT 64 32 0.83 848.06 1.53 627.53 0.11 0.22 1.33
LEA 128 24 1.51 1391.93 1.70 771.62 0.08 0.08 4.77
LowMC 128 20 3.05 2922.92 2.50 1710.59 1.80 2.24 907.42
Midori 128 20 1.53 2093.48 2.24 1204.19 0.64 0.80 105.55
SIMON 128 68 3.19 3163.11 1.37 755.87 0.09 0.10 8.18
Speck 128 32 1.46 1467.64 0.95 432.67 0.05 0.06 6.09
Raiden 64 16 0.78 770.91 0.94 433.65 0.05 0.08 7.75
Sparx 128 8 1.68 1726.98 1.24 810.48 0.22 0.24 5.89
TEA 64 32 1.12 1127.31 0.99 439.49 0.09 0.09 8.66
XTEA 64 32 1.00 1052.29 0.94 443.84 0.06 0.07 7.20
Threefish 256 72 3.76 3883.64 0.84 778.91 0.19 0.19 29.57
ASCON 320 12 3.05 2050.94 7.23 416.29 0.17 0.07 4.25
Gift 128 40 1.85 1565.64 1.40 799.74 0.17 0.18 8.38
Keccak 200 18 2.20 1989.07 1.63 605.79 0.26 0.24 2.80
PHOTON 256 12 1.18 942.26 1.28 703.64 0.31 0.28 22.46
Spongent-π 160 80 7.77 7916.27 3.97 3715.62 5.07 6.80 2300.32
TinyJAMBU 128 32 0.43 411.65 1.02 533.11 0.08 0.07 3.51
Xoodoo 384 12 2.06 2096.78 1.23 701.80 0.20 0.20 4.32
SPARKLE 256 10 1.75 1874.37 1.38 780.80 0.09 0.09 6.05
GIMILI 384 24 3.31 3053.50 1.03 558.23 0.17 0.16 7.05
Grain core 80 160 0.93 909.32 1.57 847.19 0.23 0.22 11.03
ChaCha 512 20 1.19 1144.58 1.19 517.94 0.06 0.07 5.42
SHA-1 160 80 2.14 1926.06 1.34 418.85 0.12 0.13 10.45
SHA-2 256 65 4.20 4515.25 0.97 545.93 0.18 0.20 20.68
MD5 64 64 1.36 1453.34 1.11 610.73 0.08 0.09 7.27
BLAKE 512 28 5.26 4651.17 1.62 545.44 0.32 0.31 22.79
BLAKE2 1024 12 5.49 5719.36 0.90 528.41 0.27 0.32 39.54

Table 4: Primitives evaluator performance in CLAASP with 1, 103 and 106

inputs. The timings are in seconds.

4 Library: test modules

In this section, we describe all automated analysis modules that are currently supported
in CLAASP.

4.1 Component analysis

This module allows the visualization of the "quality" of certain properties of the com-
ponents used in a cipher, by means of radar charts. These properties include:

– Boolean function properties, such as number of terms, algebraic degree, number of
variables, wheter the Boolean function is APN or balanced;

– vectorial Boolean function properties such as differential uniformity, boomerang
uniformity, nonlinearity, etc.;

– linear layer properties such as order, linear and differential branch number.

An example of 2 rounds AES-128 is illustrated in the method component_analysis_tests
of the library. This method outputs a list of dictionaries, each of them containing infor-
mation about an operation of the cipher. In this particular example, the first element
of this list contains the following:
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{’type’: ’word_operation ’,
’input_bit_size ’: 256,
’output_bit_size ’: 128,
’description ’: [’XOR’, 2],
’number_of_occurrences ’: 3,
’component_id_list ’: [’xor_0_0 ’, ’xor_0_36 ’, ’xor_1_31 ’],
’properties ’: {’degree ’: {’value’: 1.0,

’min_possible_value ’: 1,
’max_possible_value ’: 256},

’nterms ’: {’value’: 2.0, ’min_possible_value ’: 1, ’max_possible_value ’: 2},
’nvariables ’: {’value’: 2.0,
’min_possible_value ’: 1,
’max_possible_value ’: 256}}}

We can see that it corresponds to a XOR operation between 2 inputs of 128 bits.
This operation occurs 3 times in the 2 rounds AES and the IDs of these occurrences
are also reported. Other properties we can observe are the algebraic degree of the
component output bits expressed as a Boolean function, the number of terms, and the
number of variables, respectively 1, 2, 2.

For a better visualization, this module can also plot the results of the observation
in a radar chart, such as the one presented in Figure 3 for the sbox of AES A full list of
the radar charts of the components of 2 rounds of AES is given in the Appendix C. The
method to generate these charts is print_component_analysis_as_radar_charts.

Fig. 3: Observation of the open-source of AES s a radar chart

4.2 Statistical and avalanche tests

Statistical tests Statistical tests aim at evaluating the randomness of a set of bit
strings. Such tests were applied to evaluate AES candidates [57,58,10] through the NIST
Statistical Test Suite (NIST STS) [54,9]. In addition, tools such as Diehard [45], or its
successor Dieharder [24], provide additional statistical tests. CLAASP integrates both
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the NIST STS and Dieharder suites within the statistical test module. The statistical
test process is divided into two phases, dataset generation and analysis, as shown
in Figure 4.

Fig. 4: Illustration of the process of statistical test.

Dataset generator The predefined datasets of CLAASP are defined in [57], which
only covers keyed primitives. Keyless primitives datasets are some how special cases of
the keyed ones. As an example, the illustration of the avalanche dataset generator is
shown in Appendix B. For details of other dataset generators, please refer to [57]. The
dataset generator is based on CLAASP’s vectorized evaluation method, which returns
a set of bit strings, as shown in Figure 4.

Statistical test tools The use of NIST STS and Dieharder in CLAASP is illustrated in
the run_statistical_test.sage script. The results are exported as a report, and ad-
ditionally returned as a Python dictionary for easy integration. CLAASP also features
visualization of the results, as shown in Figure 5.

Fig. 5: CLAASP plot for the 188 NIST statistical tests pass rate of ASCON
round 3 and round 4.

Performance and experiments To generate the plaintext avalanche test for all sup-
ported primitives (191 Gigabits), it takes 4 hours. For a 100 Mbits dataset, it takes
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Fig. 6: Randomness graphs of ASCON generated by CLAASP. Left side is the
statistical test result of avalanche dataset. Right side are all the statistical results
of ASCON compared with other primitives.

around 30 minutes to finish the NIST statistical tests. Figure 6 shows the number of
tests that pass for each round of ASCON (left) and the percentage of the rounds needed
to pass all statistical tests with respect to the 9 possible datasets for several primitives.

Avalanche tests This module focuses on the avalanche properties, presented in [27],
of a symmetric iterated primitive. These tests evaluate the cipher with respect to three
different metrics that represent what usually the literature call full diffusion, avalanche
and strict avalanche criteria. The goal of the tests is to compare how these metric evolve
with respect to the computational cost of the round function; each metric is expected
to satisfy a certain criterion (namely to pass a threshold) after a few rounds.

Usage. CLAASP exposes the diffusion_tests method for avalanche tests. The results
are returned as a dictionary, from which a user can:

– check if a criterion is satisfied at a certain round for a specific input bit difference.
– obtain the worst input bit differences, that are the input differences for which the

criterion is satisfied the latest.
– obtain the value of the criterion for a specific round and a specific input bit differ-

ence.
– obtain the average value of the criterion among all the input bit differences for a

specific round.

For a better visualization, CLAASP can generate a heatmap graph from the dictio-
nary returned by the avalanche tests using the method generate_heatmap_graphs_for_avalanches_tests.
This is illustrated for 5 rounds of ASCON320 in Appendix D, which represents the
heatmap graphs for the entropy criterion when the input bit difference has been in-
jected in position 0. Each cell of this figure is greener if the entropy based on the
probability of flipping of the underlying bit is close to 1, with a darker shade of red
otherwise.

Timings. Figure 7 reports the timings of the avalanche tests for 5 rounds of some
popular ciphers, using the vectorized evaluation function, up to 50,000 samples; all
tests run globally in less than 5 minutes.
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Fig. 7: Timings of the avalanche tests for
five rounds of popular ciphers
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Fig. 8: Time comparison of the
CAF computation for Speck128-
128, AES-128, the iterated per-
mutation in ASCON320 cipher,
and the iterated permutation in
ChaCha cipher, fixed to 5 rounds
each for several random samples.

4.3 Continuous diffusion tests

In [25], Coutinho et. al, describe a framework to construct continuous functions from
Boolean ones. Assuming independence, these functions provide the probability or cor-
relation between the output bits being 1 based on an input of real numbers that
represent the probability of each input bit being 1. For example, the authors con-
struct the continuous version of the AND operator (⊙): Suppose we want to com-
pute p3 = Pr[a ⊙ b = 1], where a and b ∈ F2 are independent random variables. If
Pr[a = 1] = p1 and Pr[b = 1] = p2, then p3 = p1p2. By using this expression, they
define a continuous operator from ⊙, called “continuous generalization of ⊙”. Specifi-
cally, they provide the definitions using the correlation of the random variables instead
of probabilities. More precisely, let Pr(E) be the probability of occurrence of an event
E and b ∈ F2 be a bit, then we can write Pr(b = 1) in terms of its correlation ϵ as
Pr(b = 1) = p = 1

2
(1+ ϵ). In our example, expressing p1, p2 and p3 as functions of their

correlations, we have p1 = 1
2
+

ϵp1
2

and p2 = 1
2
+

ϵp2
2

, where the correlations ϵp1 and ϵp2
belong to B = {x ∈ R:−1 ≤ x ≤ 1}. Then, they define the continuous generalization of
⊙ as ϵx⊙Cϵp2 = ϵp3 =

ϵp1 ϵp2+ϵp1+ϵp2−1

2
. By assuming similar independence properties

among the input variables, they were able to generalize various cryptographic opera-
tions, leading to the creation of continuous versions of entire cryptographic algorithms.

Upon these continuous versions of cryptographic algorithms, they construct three
metrics, namely Continuous Avalanche Factor (CAF), Continuous Neutrality Measure
(CNM), and Diffusion Factor (DF). The CAF is the continuous equivalent of the
avalanche factor [28], which measures the proportion of output bits that change for
input Hamming distances equal to 1 on average; this proportion is expected to be
0.5 for a random permutation. In the continuous version, since there is no concept of
Hamming distance, the Euclidean Distance (ED) is used to evaluate CAF. The idea
behind CAF is to measure how much the output of a continuous version of an algo-
rithm changes, on average, when the input bit’s probability of being equal to 1 of a
chosen random bit is slightly altered by a small real number λ. In other words, we need
to evaluate, on average, the behavior of the ED between the outputs y0 = f(x0) and
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y1 = f(x1) for x0, x1 ∈ B, when the ED of x0 and x1 is lesser than λ. It is expected
for “good ciphers" that even with small values of λ, higher values on the ED of the
propagation of these alterations, on average. For more information on the other two
metrics (CNM and DF), see [25].

Within the continuous diffusion test module, CLAASP implements the continuous
versions of several cryptographic operations, following Theorem 1 and Definitions 1
to 12 from [25], which can be combined to obtain the continuous version of entire
primitives. For instance, the CAF can be evaluated on 8 rounds of Speck128-128, using
10,000 random samples and a Euclidean distance of 0.001 on each input bit, as follows:

sage: from claasp.ciphers.block_ciphers.speck_block_cipher import
↪→ SpeckBlockCipher

sage: speck_cipher = SpeckBlockCipher(number_of_rounds =8, block_bit_size =128,
↪→ key_bit_size =128)

sage: caf = speck_cipher.continuous_avalanche_factor (0.001 , 10000)
sage: caf[’plaintext ’][’cipher_output ’][’continuous_avalanche_factor ’][’

↪→ values ’][0][ ’value’]
0.067

caf['plaintext']['cipher_output']['continuous_avalanche_factor'] is an ar-
ray of dictionaries, where index 0 contains the CAF for Speck128-128 reduced to 1
round, index 1 contains the CAF for Speck128/128 reduced to 2 rounds, and so on. In
this case, we obtained a value of 0.067 for CAF at round 8.

The performance of Speck128-128, AES-128, the iterated permutations in AS-
CON320 and the iterated permutation in ChaCha with respect to CAF, subject to
λ = 0.001, is presented in Table 5. For the iterated permutation in ChaCha, a single
round is equivalent to four half-quarter rounds in the table. Figure 8 displays the tim-
ing comparison of these ciphers for various sample sizes used in computing CAF. The
experiments were conducted on a Ubuntu 22.04.1 machine equipped with 256 AMD
core processors and 1TB of memory.

When comparing Table 5 to Table 2 in [25], we observed slight variations in the CAF
values reported in Figure 8 compared to the values presented in [25]. This difference
is due to our use of the Python Decimal package to handle small numbers, while the
implementation of Table 2 in [25] employed the Relic library [3]. For instance, for five
rounds of AES-128, we obtained a value of 0.777, whereas [25] reports 0.734.

Rounds AES ASCON ChaCha Speck

1 to 4 0 0 0 0
5 0.777 0.008 0 0
6 0.971 0.761 0.019 0
7 0.999 0.962 0.257 0.002
8 - 0.998 0.694 0.067
9 - 0.999 0.939 0.318
10 - - 0.993 0.613
11 - - - 0.828
12 - - - 0.941
13 - - - 0.98
14 - - - 0.997

Table 5: Continuous Avalanche Factor comparison for AES-128, ASCON320 per-
mutation, ChaCha permutation, and Speck128-128 using λ = 0.001.
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4.4 Constraint solvers

In the previous section, we mention differential propagation through avalanche prop-
erties. While these properties give information on the diffusion of the cryptographic
primitive, cryptographers are also interested in properties that cover more rounds,
but with lower probability, such as differential or linear characteristics. Finding such
characteristic is a difficult combinatorial problem, traditionally handled with Matsui’s
algorithm [46] variations. In recent years, Matsui’s algorithm has been less widely used,
in favor of automatic search paradigms, such as Mixed Integer Linear Programming
(MILP), SAT, SMT, and more recently Constraint Programming (CP). These tools
have the benefit of being extensively studied and optimized by the AI and OR commu-
nities, so that the focus shifts from implementing a search algorithm to modeling the
problem properly. CLAASP can automatically generate MILP, SAT, SMT and CP
models for differential and linear cryptanalysis, from a primitive’s description.

The models generated by CLAASP follow state-of-the-art techniques for each of
the components, which we cannot enumerate here for space reasons, but will be detailed
in a separate work. Our goal is to include further techniques, following the state of the
art as new approaches are published, to enable easy comparison.

In practice, the library currently exposes functions that generate models in either
paradigm to:

– find one optimal differential or linear trail;
– enumerate all differential or linear trail with a fixed objective value;
– enumerate all differential or linear trails with an objective value better than a given

bound.

These functions allow to easily search for optimal trails. In addition, CLAASP
implements

– fix_variables_value_xor_differential_constraints and
– fix_variables_value_xor_linear_constraints,

which permits to specify fixed values for some of the variables. These, combined with
the enumeration of trails with conditions on the objective value, permit the evaluation
of the probability of differentials, as in [2] for instance. Furthermore, fixing the input
and output difference, or linear masks, permits to exhibit impossible differentials or
zero-correlation linear approximations, in a similar fashion to [26].

The provided script, find_differential_related_trails.sage, demonstrates these
functionalities for differential properties, while the corresponding functions for linear
properties adhere to the same pattern.

4.5 Algebraic module

The objective of this module is to study the algebraic properties of a specified cipher
and test if it is secure against algebraic attacks. In algebraic cryptanalysis, breaking
a block or stream cipher, essentially involves solving a set of multivariate polynomial
equations over a finite field Fq, which often has one or a few solutions in Fq. But solving
a system of multivariate random polynomials is generally a hard task.

This module generates a multivariate algebraic polynomial system corresponding to
the “sbox”, “linear_ layer”, “mix_column", and “constant" components, together with
the “XOR”, “AND”, “OR”, “SHIFT”, “ROTATE”, and “NOT” operations. It provides a
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set of polynomials representing the components and operations involved in a particular
input cipher along with connection polynomials, which represent the links between the
various components. From the polynomial system, it is possible to retrieve its algebraic
degree, number of polynomials, and number of variables in order to analyze its algebraic
features and the difficulty of solving the system. The security of a cipher (up to a
particular number of rounds) against algebraic attacks could be evaluated by solving
the corresponding algebraic system up to that many rounds. The module now offers a
method to test it by solving the system in a time limit using only the Gröbner basis
computation [23] available on the SAGE platform. Consider the following example, for
instance:

sage: from claasp.ciphers.block_ciphers.present_block_cipher import
↪→ PresentBlockCipher

sage: from claasp.cipher_modules.models.algebraic.algebraic_model import
↪→ AlgebraicModel

sage: from claasp.cipher_modules.algebraic_tests import algebraic_tests
sage: algebraic_tests( PresentBlockCipher(number_of_rounds =1), 120)
{’input_parameters ’: {’timeout ’: 120},
’test_results ’: {’number_of_variables ’: [1183] ,
’number_of_equations ’: [1328] ,
’number_of_monomials ’: [1660] ,
’max_degree_of_equations ’: [2],
’test_passed ’: [False ]}}

The test results in False, indicating that the system can be solved in the time limit
given and that the cipher is not algebraically secure. Note that the test result of True
does not guarantee that the encryption is secure for that many rounds. The algebraic
module is currently in its preliminary stage and will be improved in upcoming releases.

4.6 Neural aided cryptanalysis module

Following Aron Gohr’s seminal paper at CRYPTO’19 [35], improving the state-of-
the-art differential cryptanalysis result on the SPECK32-64 cipher, neural-based ap-
proaches to cryptanalysis have gained traction in the community. In Gohr’s approach, a
neural network is trained to distinguish, from an input composed of 2 ciphertexts in bi-
nary format, whether they correspond to the encryption of two unrelated plaintexts, or
of two plaintexts with a given XOR difference. CLAASP implements such approaches,
and other neural-based analysis tools, in claasp.cipher_modules.neural_network_tests.

Single ciphertext approach: Neural Network Black box Distinguisher
Tests Differential neural cryptanalysis examines pairs of plaintexts. The black box
test implemented by CLAASP takes a step back, and focuses on single ciphertexts.
Built from [15], this test investigates whether a neural network can find a relation
between the inputs of a primitive and its output. The neural network is trained to
label samples [P,C] as 0 (if Y is random) or 1 if Y is the output of a given com-
ponent of the primitive. This test returns a dictionary containing the test parame-
ters, and, for each pair (in ∈ [plaintext, key], out), the obtained accuracy, for each
round output and round key output out. After a certain amount of rounds, the ac-
curacy will converge to 0.5, meaning that the black box distinguisher is not able
to distinguish the cipher output from random. The corresponding library function
is neural_network_blackbox_distinguisher_tests.
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Pairs of Ciphertexts: Neural Network Differential Distinguisher Tests
This test implements the neural distinguisher described by Gohr in [35], with the sim-
plified training pipeline described in [14], where a depth-1 neural distinguisher trained
on n rounds is iteratively retrained for n + 1, . . . n + t rounds, where n + t is the
first round where the neural distinguisher fails to learn. Specifically, the neural distin-
guisher is trained to label samples [C0 = EK(P0), C1 = EK(P1)] as 0 (if P0 ⊕ P1 is
random) or 1 if P0 ⊕P1 is a given, fixed value δ. The corresponding library function is
neural_staged_training.

Helper Function: Truncated Differential Search For Neural Distin-
guishers The previous test relies on an input difference with good propagation prop-
erties. It has been observed [35] that the input difference that starts the most likely
differential does not result in the best neural distinguishers. Further research [16] sug-
gested differential-linear properties, based on highly likely truncated differentials a few
rounds before the studied round, may be at play. This assumption was used as the
basis to an input difference search technique [14], where a genetic algorithm explores
potential input differences and ranks them based on the cumulative biases of the re-
sulting output difference bits. This algorithm is implemented by CLAASP, and can
be used to retrieve Gohr’s original input difference. It is implemented in the library
function find_good_input_difference_for_neural_distinguisher.

These functions are illustrated in the neural_network_based_tests.sage script of
the supplementary material. This script first runs the black box test on 1 round of
Speck64, then runs the input difference search for Speck64, and trains Gohr’s neural
network using the optimal difference returned by the optimizer. Note that the optimizer
is not deterministic, and its parameters are adapted for a reasonably fast execution time
for demonstration purposes; therefore, it may, in some rare instance, fail to find the
optimal input difference 0x00400000.

5 Benchmark comparison with other libraries

In this section we provide a comparison with libraries that aims at achieving similar
goals as CLAASP.

5.1 TAGADA

The TAGADA library focuses on the differential cryptanalysis of word-oriented ciphers
with an SPN structure. For such ciphers, it is common (e.g, [20]) to divide the search
into two steps. The first step aims to find truncated differential characteristics through
the minimization of the non-linear operators utilized in this process. The second step
enumerates the truncated differential characteristic passing to the minimum number of
non-linear operators found in the previous step. It was shown [34] that the filtering of
the first step may be insufficient so that too many solutions are left to explore in step
2. More advanced filtering is, therefore, beneficial and enables scaling to more rounds.
This is done through additional constraints that capture linear dependencies between
variables during step 1. The TAGADA library generalizes such constraints, making it
very efficient for word-based ciphers. These techniques are not, at the moment, included
in CLAASP, so TAGADA is expected to perform significantly better on word-based
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characteristics search. We are planning to include these additional constraints in the
next releases of CLAASP.

On the other hand, the basic version of the first step, searching for the minimum
number of active SBoxes of SPN ciphers, is implemented in CLAASP as

CpXorDifferentialTrailSearchFixingNumberOfActiveSboxesModel.

TAGADA implements the option of running the first step search with the basic tech-
nique used in CLAASP; we attempted to run the search for 3 and 4 rounds of AES-128,
but we were not able to reproduce the known results from [41,48,33] with TAGADA,
which reported 2 and 7 SBoxes respectively, rather than the expected 3 and 9. On the
other hand, CLAASP returned the expected solution. Note that TAGADA can only
generate MiniZinc models, while CLAASP allows to directly write the model in the
language supported by the solvers (including a MiniZinc interface).

5.2 CASCADA

We make a comparison between CLAASP and CASCADA by taking the time they
spend searching for optimal characteristics in the single-key scenario and in the follow-
ing ciphers: Speck32-64, Speck64-128 and LEA. Specifically, in Figure 9, we show the
time spent by CASCADA and CLAASP in the search for an optimal characteristic on
across several rounds and using the following SMT solvers: MathSAT, Yices, and Z3. In
order to get timings for every round we take the average amount of five repetitions. The
experiments were conducted on a machine running Ubuntu 22.04.1, equipped with 256
AMD core processors and 1TB of memory. As observed, while using the Yices solver,
the CLAASP library performs similarly to CASCADA. Nevertheless, for MathSAT
and Z3, CLAASP exhibits better performance.

In terms of functionalities, CASCADA includes the search for impossible differen-
tials, in particular through the method of [26]. In this method, the variables corre-
sponding to the input and output differences of a differential are fixed to a value that
the analyst wants to test, and the solver is run. If the solver finds a solution, then the
differential is possible; otherwise, it is impossible. In this method, the analyst usually
tests all the pairs of input and output differences of low hamming weight (typically
1). A similar technique can be used for zero-correlation linear approximations. Using
this method, CLAASP can for instance retrieve the 17-rounds impossible differential
on HIGHT presented in [26] in under 10 minutes on a single core.

6 Conclusion

The fast-paced publication of new cryptanalysis techniques, of improvement of existing
ones, makes it crucial to have an efficient way to test a given property on a large number
of primitives; CLAASP aims to fulfill this need. In its current form, it already offers a
vast array of cipher analysis techniques, from component analysis, to automatic models
building, through neural cryptanalysis. Future releases will add more primitives, as
well as further analysis techniques, such as guess-and-determine or meet-in-the-middle
techniques. More importantly, the CLAASP team is strongly committed to include
new state-of-the-art improvements to automated techniques as it evolves, and provide
a one-stop shop to evaluate, compare and experiment with modifications on existing
methods. Finally, the open-source status of the library is an invitation to researchers
from the community to not only use, but also improve CLAASP as they see fit.
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Fig. 9: Time comparison CLAASP vs CASCADA to search for optimal differ-
ential characteristics on Speck32-64 (left), Speck64-128 (middle) and LEA128-
128(right), using different SMT solvers.
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A Two cipher representations of ASCON

The nonlinear layer of ASCON permutation can be represented as circuit made of word
operation components (XOR, AND and NOT) or with a layer of parallel S-boxes. This
is detailed in Figure 10.
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Fig. 10: Two equivalent cipher representation in ASCON. The left figure is the
circuit that represents ASCON S-Box (as stated in [31]). The circuit can be seen
as NOT, AND and XOR components acting on 64-bit words. The right side is
ASCON 5-bit S-Box as an integer list. The nonlinear layer can be seen as the
application of 64 parallel S-Boxes. Both cipher representations are implemented
in CLAASP.

B Avalanche dataset generation

Given primitive enc, n-bits plaintext P , key K = 0, the mask maski with 1 at i-bit and
others 0, then the avalanche dataset is the concatenation of encK(P )⊕encK(P⊕maski)
with different P as shown in Figure 11.
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Fig. 11: Illustration of avalanche dataset generation.

C AES as radar charts

D Heatmap of avalanche entropy vectors
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Fig. 12: AES main components as radar charts. The outer region of the radar
represents the best value for any property.
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Fig. 13: ASCON320 - avalanche entropy vectors - difference injected in position
0 of plaintext with 10000 samples
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