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Abstract. Homomorphic encryption can perform calculations on en-
crypted data, which can protect the privacy of data during the usage
of data. Functional Bootstraps algorithm proposed by I. Chillotti et al.
can compute arbitrary functions represented as lookup table whilst boot-
strapping, but the computational efficiency of Functional Bootstraps
with large lookup table or highly precise functions is not high enough.
To tackle this issue, we propose a new Tree-BML algorithm. Our Tree-
BML algorithm accelerates the computation of Functional Bootstraps
with large LUT by compressing more LWE ciphertexts to a TRLWE
ciphertext and utilizing the PBSmanyLUT algorithm which was pro-
posed by I. Chillotti et al. in 2021. The Tree-BML algorithm reduces the
running time of LUT computation by 72.09% compared to Tree-based
method(Antonio Guimarães et al., 2021). Additionally, we introduce a
new TLWE-to-TRLWE Packing Key Switching algorithm which reduces
the storage space required and communication overhead of homomor-
phic encryption algorithm by only generating one of those key-switching
key ciphertexts of polynomials with the same non-zero coefficient values
but only those values located in different slots. Our algorithm reduces
the key-switching key size by 75% compared to Base-aware TLWE-to-
TRLWE Key Switching algorithm. Finally, we obtained that our algo-
rithms does not introduce new output error through theoretical and ex-
periment result.

Keywords: Homomorphic Encryption · Lookup Table · Key Switch-
ing · TFHE

1 Introduction

Homomorphic encryption(HE) makes it possible to perform calculations on en-
crypted data, the security of the existing HE algorithms is based on the Learning
With Errors(LWE) [1] or its ring variant(RLWE) [2, 3] problem which is to en-
sure the security of the message by adding an error to the ciphertext. In the
process of homomorphic calculation, the error will inevitably accumulate, and
in order to successfully decrypt and restore the plaintext, the error needs to
be controlled. Therefore, only a limited number of homomorphic calculations
can be performed, which is called Leveled homomorphic encryption(LHE). It



was not until 2009 that Gentry first proposed a fully homomorphic encryp-
tion(FHE) [4], which made it possible to perform any number of homomorphic
calculations on encrypted data. The Gentry’s algorithm reduces the error by
performing bootstrapping operations when the error reaches a given boundary,
that is, performing homomorphic decryption operations using the secret key
under homomorphic encrypted which called bootstrapping key. However, the
bootstrapping algorithm is very expensive for time and memory.

In order to improve the efficiency and reduce memory requirements of FHE,
many homomorphic encryption cryptosystem have been proposed, such as BGV
[5], B/FV [6,7], CKKS [8], GSW [9], FHEW [10] etc. I. Chillotti et al. proposed
the TFHE [11–13] homomorphic encryption cryptosystem based on torus, which
is the most efficient homomorphic encryption cryptosystem, bootstrapping 1-
bit message only takes 13ms, and can calculate arbitrary functions encoded on
lookup table(LUT) while performing bootstrapping calculations, usually called
programmable bootstrapping(PBS) [14,15] or functional Bootstraps(FBT) [16].
Informally, taking a ciphertext of m(called a selector), test vector(TV , whose
coefficient is the value of the function f encoded as LUT) and bootstrapping keys
as inputs, the FBT algorithm can output a ciphertext of f(m), and the error
contained in the output ciphertext is independent with the error contained in
the input ciphertext(refreshing the error). The traditional functional bootstrap-
ping only supports the calculation of plaintext with limited precision, generally
no more than 8 bits [17], when the size or precision of m or f(m) increase,
the parameters of homomorphic encryption should be increased to ensure the
correctness of the algorithm, which can lead to performance degradation, For
example, in the experiment of Carpov et al. [18] using TFHE’s FBT, 1.5 seconds
is needed to calculate 6-bit-to-6-bit LUT.

In 2019, Carpov et al. proposed Multi-value Bootstrapping(MVB) algorithm
[18]. For a selector input, they obtained the output of multiple LUTs by per-
forming only one bootstrapping. In their experiments, it takes 1.6s to calculate
6-to-6-LUTs.

In 2021, Antonio Guimarães et al. introduced a Tree-based method to com-
bine functional Bootstraps(TreeFB) [19] to accelerate the computational of FBT
with large LUT. It takes about 378ms to compute the 6-bit-to-6-bit LUT in
their experiments. Antonio Guimarães et al. also proposed Base-aware TLWE-
to-TRLWE Key Switching(abbreviation Base-aware-KS in the following) to ac-
celerate the Packing Key Switching. Moreover, through pre-computation, their
algorithm can execute the Packing Key Switching by using addition only.

Subsequently, I. Chillotti et al. proposed multi-output programmable boot-
strapping [20] to optimize FBT. By compressing multiple LUT results into a
TRLWE ciphertext as TV , so that multiple LUTs can be computed at one boot-
strapping and without adding error variance or calculation complexity, called
PBSmanyLUT(BML).

Contribution In this paper, We propose two new algorithms to optimize
calculation of FBT with large LUT and TLWE-to-TRLWE Packing Key Switch-



ing respectively. We analyze the error variance and rate of the new algorithms.
Finally, we give the experiment results and compare them with others.

– We speed up the calculation of FBT with large LUT or highly precise func-
tions in fully homomorphic setting by optimizing the TreeFB algorithm.
We accelerate the calculation of TreeFB by compressing 2ϑ ·B instead of B
TLWE ciphertext into one TRLWE ciphertext after the first layer in TreeFB.
Therefore, we can extract the 2ϑ instead of one samples required for the next
layer in only one bootstrapping by using the BML algorithm. So we reduce
the number of bootstrappings and Key Switching required for the TreeFB
algorithm and without adding the error variance of output. We call it Tree-
BML algorithm.

– We propose a new TLWE-to-TRLWE Packing Key Switching algorithm that
reduces the key-switching key size of the Base-aware-KS. We have observed
that it is necessary to generate key-switching key ciphertexts of polynomi-
als with the same non-zero coefficient values but only those values located
in different slots in the Base-aware-KS algorithm. Therefore, for these key-
switching key ciphertexts, we only generate one ciphertext and perform ho-
momorphic rotation operations when needed, which effectively reducing the
ciphertext size of the key-switching key. We call it the Base-rotate TLWE-
to-TRLWE Packing Key Switching(Rotate-based KS) algorithm.

– We analyze the error variance and rate of our Tree-BML algorithm and
Rotate-based KS algorithm and compare with others. The Tree-BML and
Rotate-based KS algorithm does not add error variance of output. We verify
our conclusion about error variance and rate through experiment. We also
experiment for different functions, such as LUT, 32-bit integer comparison
and Relu, and compared the performance results of our algorithms with
existing algorithms. Our Tree-BML algorithm reduce the running time of
the TreeFB algorithm by 72.09% and Rotate-based KS algorithm reduce the
key-switching key size of Base-aware-KS by 75%.

2 Background and Notations

TFHE [11–13] is a fully homomorphic encryption cryptosystem based on torus
and the security based on (R)LWE [2, 3, 21]. We review related works and the
necessary knowledge required for this paper in this section.

Notations The Zq is a ring Z/qZ where q ∈ Z, and B = Z2 = {0, 1}. The
torus T = R/Z. For two elements a, b ∈ T, addition is defined as (a+ b) mod 1.
T is not a ring because it is undefined multiplication of a with b, but it has
external multiplication, for k ∈ Z, a ∈ T, k · a = a + · · · + a(k times). We
note ZN [X] = Z[X]/(XN + 1) and TN [X] = T[X]/(XN + 1) where N is a
power of 2 ordinary. When the torus precision increases, that is, the size of bits
of the plaintext increases, which would rapidly deteriorate the performance of
the algorithm. Therefore, the method based on torus base decomposition for
plaintext is generally adopted, so that the parameters of the algorithm only
need to ensure that the size of torus base can run successfully rather than the



size of the entire plaintext size. We note B for torus base which is a power of
2 ordinary. Since floating point values are typically stored in 32-bit or 64-bit
lengths in computers, it is necessary to modulo conversion to q = 232 or 264 in
actual execution [20] although the TFHE bases in T. We denote χσ to represent
the Gaussian distribution with an mean of 0 and a standard variance of σ.
We use variables with underbars to represent input variables and overbars to
represent output variables.

TLWE We call (a, b) ∈ Tn+1 is a TLWE ciphertext of the plaintext m ∈ T
under the secret key s ∈ Bn which is uniformly sampled, if and only if b−〈a, s〉 =
m + e, where a is a vector uniformly sampled from Tn, e ∈ T is sampled from
χσ and 〈 , 〉 denotes the inner product.

TRLWE We call (a, b) ∈ Tk+1
N [X] is a TRLWE ciphertext of the plaintext

m ∈ TN [X] under the secret key S ∈ Bk
N [X], if and only if b − a · S = m + e,

where a is uniformly sampled from Tk
N [X] and e ∈ TN [X] is a polynomial which

coefficients are sampled from χσ.
TRGSW A TRGSW ciphertext is a matrix where each row is a TRLWE

ciphertext. Since we do not need it in this paper, please refer to TFHE [13] for
more details.

Encryption To encrypt a messagem ∈ ZB into TLWE ciphertext, we should
use the private key to generate ciphertext (a, b) of 0 , then calculate (a, b)+(0,∆·
m), where ∆ is a salar factor in order to perform modulo conversion ZB to T.
The encryption method of TRLWE ciphertext is similar to it.

Decryption For a given TLWE sample c = (a, b), we use secret key calculate
ϕ(c) = b − 〈a, s〉 and approximating the result to the closest plaintext value on
T, the decryption method for TRLWE ciphertext is similar to it. It can be seen
that the result of ϕ(c) = ∆ · m + e is a plaintext value with error. In order to
correctly approximate the plaintext value m, we need to control the error to be
less than half the distance between two consecutive plaintext values on T.

Homomorphic Arithmetic We set T(R)LWE samples c0 = (a0, b0) of
plaintext m0 and c1 = (a1, b1) of plaintext m1. Then c0 + c1 = (a0 + a1, b0 + b1)
is a T(R)LWE ciphertext of plaintext m0 +m1. We can calculate the multipli-
cation between cleartext k ∈ Z(or ZN[X]) and a T(R)LWE ciphertext c = (a, b)
just by calculating (k · a, k · b). We need to note that the initial TFHE cryp-
tosystem does not support the product between T(R)LWEs, but only supports
the External product, that is, the product between TRGSW ciphertext with
TRLWE ciphertext(referred to TFHE [13] for details). In the full homomorphic
setting, in order to perform the product of two TRLWE ciphertexts we need
to perform circuit bootstrapping to conversion between TRLWE and TRGSW.
Although I. Chillotti et al. introduced the T(R)LWE * T(R)LWE algorithm sim-
ilar to BFV in the 2021 [20], its efficiency is far less than External product, it
requires relinearization operation similar to BFV.

CUMX For a TRGSW ciphertext C ofm′ ∈ {0, 1} as the control line and two
TRLWE ciphertext d0, d1 of two plaintext m0, m1 inputs, the CUMX algorithm
outputs C · (d1 − d0) +d0. If m′ = 0, the output is a TRLWE ciphertext of m0,
otherwise it is a TRLWE ciphertext of m1.



2.1 Functional Bootstraps(FBT)

Inputing a TLWE ciphertext of m(called a selector), a TRLWE ciphertext(or
unencrypted) of test vector v(sometimes we call it TV , whose coefficients are
the values of LUT which encodes the function f), and bootstrapping key(a set
of TRGSW ciphertexts), then FBT algorithm can output a TLWE ciphertext of
f(m) and refresh the error in TLWE ciphertext of m. FBT is mainly composed
of three algorithms: ModSwitch, BlindRotate, and SampleExtract. We have only
provided a brief introduction, complete FBT algorithm see Appendices A and
please refer to the TFHE [13] for more details.

2.2 Public Functional Key Switching(PublicKS)

The main purpose of key switching is to switch between different keys. I. Chillotti
et al. proposed Public Functional Key Switching algorithm(abbreviation Pub-
licKS in the following) which can calculate public linear morphisms f meanwhile
switch key, see Algorithm 1.

Algorithm 1 TLWE-to-T(R)LWE Public Functional Key Switching(PublicKS)
Input: B TLWE samples c(z) =

(
a(z), b(z)

)
∈ TLWEs (µz) , z ∈ J1, BK, a precision

parameter t ∈ Z∗, R-Lipschitz morphism f : TB → TN [X], a list of Key Switching
key KSi,j ∈ T(R)LWES̄

( si
2j

)
, for i ∈ J1, nK, j ∈ J1, tK

Output: a T(R)LWE sample c̄ ∈ T(R)LWEs̄ (f (µ1, . . . , µB))
1: for i = 1 to n do
2: ai ← f

(
a
(1)
i , a

(2)
i , . . . , a

(B)
i

)
3: Let ãi = daic 1

2t
be the closest multiple of 1

2t
to ai

4: Decompose each ãi =
∑t

j=1 ãi,j · 2−j , where ãi,j ∈ BN [X]
5: end for
6: return

(
0, f

(
b
(1)
i , b

(2)
i , . . . , b

(p)
i

))
−

∑n
i=1

∑t
j=1 ãi,j ·KSi,j

2.3 Multi-value Bootstrapping(MVB)

The algorithm proposed by Sergiu Carpov [18] can calculate the output of mul-
tiple values of LUTs for a selector. Inputing a selector, their MVB algorithm
perform the BlindRotate algorithm on a constant polynomial instead of on the
TV . Then the BlindRotate result multiply with several TV s finally performing
SampleExtract algorithm. We have only provided a brief introduction, please
refer to the paper [18] for more details.

2.4 PBSmanyLUT(BML)

In 2021, I. Chillotti et al. proposed a multi-output functional bootstrapping
algorithm [20]. For example, assuming the message m ∈ ZB , when we need to



calculate the value of 2ϑ functions fi, i ∈ J1, 2ϑK about m, encoding the 2ϑB
LUT’s values of functions fi(j), j ∈ J0, B − 1K to TV

TV(f1,...,f2ϑ)
=

B−1∑
j=0

Xj N
B

N

B2ϑ
−1∑

k=0

Xk·2ϑ
2ϑ−1∑
i=0

fi+1(j)X
i

During ModSwitch, we need ModSwitch to the start place of each 2ϑ code block,
that is X0, X2ϑ , X2·2ϑ , . . . , XN−2ϑ . Therefore, we only need to continuously ex-
tract 2ϑ TLWE ciphertexts from TV after the BlindRotation algorithm. Here,
we have slightly changed the algorithm because we fix the parameter κ = 0 in
the BML algorithm, see Algorithm 2.

Algorithm 2 PBSmanyLUT(BML)
Input: a TLWE sample c = (a = [a1, a2, . . . , an] , b) ∈ TLWEs (m ·∆in) ∈ Zn+1

q ,
m ∈ ZB , a TRLW sample CT of TV(f1,...,f2ϑ)

, bootstrapping key BSK ={
BSKi = TRGSW

(Bg ,ℓ)

S′ (si)
}

1≤i≤n
, a integer ϑ ∈ N such that q2ϑ

∆in
< 2N

Output: ct1, . . . , ct2ϑ such that ctj = LWES̄ (fj (m) ·∆out), S̄ is a vector interpreta-
tion of S′

1: for i = 1 to n+ 1 do
2: a′

i ←
[⌊

ai·2N
q·2ϑ

⌉
· 2ϑ

]
2N

3: end for
4: CT← BlindRotate

(
CT, {a′

i}1≤i≤n+1 ,BSK
)

5: for j = 1 to 2ϑ do
6: ctj ← SampleExtractj−1(CT)
7: end for
8: return {ct1, . . . , ct2ϑ}

2.5 TreeFB

In 2021, Antonio Guimarães et al. proposed a Tree-based method to combine
FBT algorithm(TreeFB) to accelerate the calculation of FBT with large LUT
[19]. For a d-bit plaintext m =

∑d−1
i=0 miB

i, where B is torus base. First, en-
coding function F about m as a LUT of size Bd, then the TreeFB algorithm
encodes LUT into Bd−1 TV s and executes Bd−1 bootstrappings to extract Bd−1

TLWE ciphertexts by using the TLWE ciphertext of m0 as a selector. The plain-
texts of these TLWE ciphertexts are values of F (M) where the last bit of M is
m0. Finally, the TreeFB algorithm performs the PublicKS algorithm to package
these TLWE ciphertexts to Bd−2 TRLWE ciphertexts as TV s for next layer, see
Algorithm 3.



Algorithm 3 TreeFB
Input: a list of TLWE samples ci ∈ TLWEs

(
mi
2B

)
, such that

∑d−1
i=0 miB

i = m, a set
L of Bd−1 polynomials ∈ ZN [X] encoding the LUT of an arbitrary function F ,
a bootstrapping key BKi ∈ TRGSWS (si), for i ∈ J1, nK, a Key Switching key
KSi,j ∈ T(R)LWEs̄

(
si
2j

)
, for i ∈ J1, nK and j ∈ J1, tK

Output: A TLWE sample c̄ ∈ TLWES̄

(
F (m)
2B

)
where S̄ ∈ BN is a vector (TLWE)

interpretation of S ∈ BN [X]
1: TV← L
2: f : TB 7→ TN [X] = (a1, . . . , aB) 7→ a1 + . . .+ aBX

N−1

3: for i = 0 to d− 1 do
4: c̄← MultiValueBoostrap (ci, TV,BK)
5: for j = 1 to Bd−i−2 do
6: TVj−1 ← PublicKS

((
c̄(j−1)×B , . . . , c̄j×B

)
, f,KS

)
7: end for
8: end for
9: return c̄0

2.6 Base-aware-KS Switching

Antonio Guimarães et al. proposed Base-aware-KS Switching to accelerate the
process of packing KeySwitching [19] by replacing polynomial multiplication
polynomials by the inner product of a B-size vector of digits with a B-size vec-
tor of TRLWE ciphertext. Moreover, they use a larger base for decomposition
to improve efficiency. Specifically, when packaging B TLWE ciphertexts, they
generate key-switching key KSi,j,b ∈ TRLWES̄

(
si

basej ·
∑(b+1)N/B−1

q=bN/B Xq
)
, and

replace the product of polynomial ãi,j and TRLWE ciphertext KSi,j(Line 6,
Algorithm 1) with the inner product of torus vector ã′i,j = (ãi,j,1, . . . , ãi,j,B)

and TRLWE samples vector KS′i,j = (KSi,j,0,KSi,j,1, . . . ,KSi,j,B−1), see in Al-
gorithm 4.

3 Optimization of PBS with Large LUT

TreeFB algorithm is a relatively effective PBS with large LUT calculation al-
gorithm. The algorithm uses MVB to reduce the Bd−1−i bootstrappings of ith
layer to one bootstrapping(Line 4, Algorithm 3). However, TV exists in clear
text format only during the first layer calculation, which can directly using MVB
algorithm to optimize TreeFB algorithm, in subsequent calculations, TV is in
TRLWE ciphertext format. As we mentioned before, MVB algorithm bases on
multiplying the results of BlindRotate with TV s but TRLWE * TRLWE is not
directly supported in TFHE, only TRLWE * TRGSW is supported, an expen-
sive circuit bootstrap must be performed(about 130ms for 1-bit) to conversion
from TRLWE to TRGSW ciphertext in order to utilize MVB algorithm. Oth-
erwise, it is necessary to perform B(d−1−i) bootstrapping one by one. Regard-
less of which method is selected, the actual efficiency of the algorithm will be



Algorithm 4 Base-aware-KS Switching
Input: B TLWE samples c(z) =

(
a(z), b(z)

)
∈ TLWEs (µz) , z ∈ J1, BK, a precision pa-

rameter t ∈ Z, a Key-Switching key KSi,j,b ∈ TRLWES̄

(
si

basej
·
∑(b+1)N/B−1

q=bN/B Xq
)

,
for i ∈ J1, nK, j ∈ J1, tK, b ∈ J0, B)

Output: a TRLWE sample c̄ ∈ TRLWEs̄ (f (µz)), for z ∈ J1, pK.
1: f : TB 7→ TN [X] = (a1, . . . , aB) 7→ a1 + . . .+ aBX

N−1

2: for i = 1 to n do
3: for b = 1 to B do
4: ãi,b ←

⌈
a
(b)
i

⌋
1
2t

, i.e., the closest multiple of 1
2t

to a
(b)
i

5: Decompose each ãi,b =
∑t

j=1 ãi,j,b · base−j

6: end for
7: end for
8: return

(
0, f

(
b
(1)
i , b

(2)
i , . . . , b

(p)
i

))
−

∑n
i=1

∑t
j=1

⟨
ã′
i,j ,KS′

i,j

⟩

seriously affected. Antonio Guimarães et al. only use MVB algorithm in 1th
layer calculation in their experiment. I. Chillotti et al. introduced the method of
vertical packing [13] to accelerate calculation of LUT, which based on CUMX-
tree. Its selector need to be a TRGSW ciphertext, this is a very efficient way in
a level homomorphic setting but it is necessary to perform TRLWE to TRGSW
conversion(circuit bootstrapping) in the full homomorphic encryption setting.

In 2022, Antonio et al. mentioned using the full TRGSW bootstrap algorithm
to accelerate the TreeFB algorithm [22], but this method also requires a circuit
bootstrapping and increases the storage space requirement during the calculation
process.

Therefore, we reduce the number of bootstrapping and key switching algo-
rithms required for each layer in TreeFB algorithmby compressing 2ϑ ·B instead
of B TLWE ciphertexts in a TRLWE ciphertext and using the BML algorithm to
extract 2ϑ TLWE ciphertext in a single bootstrapping. Due to the fact that the
BML algorithm can only extract 2ϑ consecutive TLWE ciphertexts, while the
TreeFB algorithm needs to extract one result from every B consecutive TLWE
ciphertexts. Therefore, we divide each B consecutive TLWE ciphertexts from
2ϑB TLWE ciphertexts into a group and compress the TLWE ciphertexts at
the same position in each group into consecutive polynomial slot positions(see
Figure 3).

The key-switching key has been determined before executing the algorithm,
that is, the value of ϑ needs to be determined. Hence, we use “copy” and “filling
zero” method when the number of ciphertext needs to be compressed is less than
2ϑB(Line 12 and Line 14, Algorithm 5), refer to Appendices B for more details.

We show the optimized TreeFB algorithm in Algorithm 5, which we call as
the Tree-BML algorithm, where

fϑ : T2ϑB 7→ TN [X] = (a1, . . . , a2ϑB) 7→
B−1∑
e=0

N

2ϑB
−1∑

j=0

2ϑ−1∑
i=0

ae+i·BX
e·NB +j·2ϑ+i



Algorithm 5 Tree-BML
Input: a set of TLWE samples ci ∈ TLWEs

(
mi
2B

)
, such that

∑d−1
i=0 miB

i = m, a set
L of Bd−1

2ϑ
polynomials ∈ ZN [X] encoding the LUT of an arbitrary function F ,

a bootstrapping key BKi ∈ TRGSWS (si), for i ∈ J1, nK, a Key Switching key
KSi,j ∈ T(R)LWEs̄

(
si
2j

)
, for i ∈ J1, nK and j ∈ J1, tK

Output: A TLWE sample c̄ ∈ TLWES̄

(
F (m)
2B

)
where S̄ ∈ BN is a vector (TLWE)

interpretation of S ∈ BN [X]
1: TV← L
2: c̄← MultiValueBoostrap (c0, TV,BK)
3: for i = 1 to d− 1 do
4: Fu← bB

d−i−1

2ϑ
c

5: R← Bd−i mod 2ϑB
6: for j = 0 to Fu− 1 do
7: TVj ← PublicKS(c̄j2ϑB , . . . , c̄(j+1)2ϑB−1, fϑ,KS)
8: (c̄j2ϑ , . . . , c̄(j+1)2ϑ−1)← PBSmanyLUT(ci,TVj ,BK, ϑ)
9: end for

10: if R 6= 0 then
11: if R | 2ϑB then
12: TVFu ← PublicKS((c̄Fu·2θB , . . . , c̄Fu·2θB+R−1), flog(R

B
),KS)

13: else
14: TVFu ← PublicKS((c̄Fu·2θB , . . . , c̄Fu·2θB+R−1, 0, . . . , 0), f⌈log(R

B
)⌉,KS)

15: end if
16: (c̄Fu2ϑ , . . . , c̄Fu2ϑ+⌈log(R

B
)⌉−1)← PBSmanyLUT(ci,TVFu,BK, dlog(R

B
)e)

17: end if
18: end for
19: return c̄0

Fig. 1. compression of 2ϑB TLWE ciphertexts



Remark: for convenience, our Tree-BML and the TreeFB algorithm does
not mention that the LUT values of F (m) is stored based on B decomposi-
tion because the parameter of the algorithm supports the plaintext space of
size B to successfully perform. Therefore, for example, set m ∈ J0, Bd − 1K and
maxdlogB f(m)e = l, the actual LUT size is l ·Bd. Then the algorithm outputs
l TLWE ciphertexts corresponding to the lth bit(based B) of result.

4 Optimization of Base-aware-KS

Although the Base-aware-KS algorithm can effectively reduce the running time
of the packing key switching process, it significantly increases the size of the key-
switching key. Moreover, if we package TLWE ciphertexts by using the Base-
aware-KS algorithm, the more TLWE ciphertexts packaged the larger size of
key-switching key will expand. To avoid this expansion, we observe that in these
Key-Switching key ciphertexts KSi,j,b ∈ TRLWES̄

(
si

basej ·
∑(b+1)N/B−1

q=bN/B Xq
)
, if

we need to pack B TLWE samples then b ∈ J1, BK, which encrypted polyno-
mial coefficient values are the same except these values slot positions. Therefore,
we only generate the key-switching key KSi,j,0. We reduce the storage space
consumed by rotating the key-switching key to the appropriate position in sub-
sequent calculations. Therefore we replace ith inner product(Line 8, Algorithm
4) by 〈

ã′i,j , (KSi,j,0, X
N
B ·KSi,j,0, . . . , X

(B−1)·NB ·KSi,j,0)
〉

However, in our Tree-BML algorithm, the 2ϑB ciphertexts to be compressed
are not continuously stored, which mean that there is only one redundant value
every 2ϑ slots(see Figure 3). Therefore, we generate key-switching key which
inserts si every 2ϑ slots in the first N

B slots in the polynomial of N order, that

is, KSi,j ∈ TRLWES̄

(
si

basej ·
∑ N

2ϑB
−1

q=0 Xq·2ϑ
)
.

We show the optimized Base-aware-KS algorithm in Algorithm 6, we call it
Rotate-based Packing KS, where ã′i,j = (ãi,j,1, . . . , ãi,j,2ϑB) and

KS′i,j = KSi,j · (1, X
N
B , . . . , X(B−1)N

B , X,X
N
B +1, . . . , X(B−1)N

B +1,

. . . , X2ϑ−1, X
N
B +2ϑ−1, . . . , X

N
B +2ϑ−1)

5 Error analysis

In this section, we analyze the error variance and error rate of our algorithms.



Algorithm 6 Rotate-based Packing KS
Input: 2ϑB TLWE samples c(z) =

(
a(z), b(z)

)
∈ TLWEs (µz) , z ∈J1, 2ϑBK, a precision parameter t ∈ Z, a Key Switching key KSi,j ∈

TRLWES̄

(
si
2j
·
∑ N

2ϑB
−1

q=0 Xq·2ϑB

)
, for i ∈ J1, nK, j ∈ J1, tK

Output: a TRLWE sample c̄ ∈ TRLWEs̄ (f (µ1, µ2, . . . , µ2ϑB))

1: fk : T2kB 7→ TN [X] = (a1, . . . , a2kB) 7→
∑B−1

e=0

∑ N
B2k

−1

j=0

∑2k−1
i=0 ae+i·BX

eN
B

+j2ϑ+i

2: for i = 1 to n do
3: for b = 1 to 2ϑB do
4: ãi,b ←

⌈
a
(b)
i

⌋
1
2t

, i.e., the closest multiple of 1
2t

to a
(b)
i

5: Decompose each ãi,b =
∑t

j=1 ãi,j,b · 2−j

6: end for
7: end for
8: return

(
0, fk

(
b
(1)
i , b

(2)
i , . . . , b

(2ϑB)
i

))
−

∑n
i=1

∑t
j=1

⟨
ã′
i,j ,KS′

i,j

⟩

5.1 Error Variance of the Rotate-based Packing KS

We first provide the error variance analysis result of the PublicKS and Base-
aware-KS algorithm, as shown in Equation 1. ϑKS represent the error variance
of key-switching keys and R is related with public function(R2 = 1 in TreeFB
because we only use TLWE-to-TRLWE packing function).

Var(Err(c)) ≤ R2 Var(Err(c)) + ntNϑKS +
1

12
nbase−2t (1)

The differences of our Rotate-based Packing KS compare to Base-aware-KS
algorithm are mainly that the error of each TRLWE samples in KS′i,j is not
independent and additionally calculated ·Xi(Line 8, Algorithm 6). In Equation
1, the second term represents the error variance of TRLWE samples KSi,j sums,
so we need to change the second term.

First, ·Xi does not increase the norm of error, see in Equation 2.∥∥XiA
∥∥
2
≤
∥∥Xi

∥∥
2
‖A‖2 = ‖A‖2 (2)

Then, according to the relevant knowledge of statistical probability theory,
when variables E(a) = 0 and E(b) = 0 then Var(a+b) = Var(a)+Var(b) although
variables a and b are not mutually independent. Due to E(error(KSi,j)) = 0,
then thier sum(Line 8, Algorithm 6) do not introduce new error.

So, our Rotate-based Packing KS algorithm did not introduce new error.

5.2 Error Variance of the Tree-BML

We can obtain that the int. coefficients input a1, . . . , ap, b ∈ Z/(2NZ) do not
affect the output error variance of the BlindRotate algorithm through the anal-
ysis process of I. Chillotti et al. [20], which means the ModSwitch process do



not affect the output error variance of the bootstrapping algorithm. Because
the differences between the BML algorithm and the FBT algorithm lies in the
ModSwitch process and the SampleExtract process(the SampleExtract process
does not add new error), the output error variance of the BML algorithm is the
same as the FBT algorithm. So compared to TreeFB, our Tree-BML algorithm
does not introduce additional output error. We show the out error variance of
Tree-BML in Equation 3, refer Appendices C for more detials.

Var(TreeFB) ≤ (d− 1 + ‖TVf‖22)(n(k + 1)ℓN

(
Bg

2

)2

ϑBK + n(1 + kN)ϵ2)+

(3)

(d− 1)(ntNϑKS +
1

12
nbase−2t)

5.3 Eerror rate

In this section, we analyze the error rate of Tree-BML. We need the BlindRota-
tion algorithm to output appropriate values during the bootstrapping process.
So it is necessary to ensure the correctness of the ModSwitch results. We refer
the analysis method and result of I. Chillotti et al. [20], for the correctness of the
ModSwitch probability P = erf

(
Γ√
2

)
, where erf is the Gaussian error function,

σin denote error variance of the input LWE ciphertext and w = 2N · 2−ϑ.
Although our Tree-BML algorithm does not increase the error variance of

the output, for the same successful probability of ModSwitch, our Tree-BML
algorithm has stricter error requirements for the TLWEs input than TreeFB
algorithm, see Equation 4.

σ2
in <

q2

16B2Γ 2
− q2

12w2
+

1

12
− nq2

24w2
− n

48
(4)

Alternatively, for the same security level i.e. the same input error variance,
our Tree-BML algorithm has a slightly lower probability of ModSwitch success
than TreeFB algorithm, see Equation 5.

Γ <
q

B
√

(16σ2
in + 4q2

3w2 − 4
3 + 2nq2

3w2 + n
3 )

(5)

We will validate our results about error variance and rate by experiments in
the next section.

6 Experimental results

We conducted experiments on the Ubuntu 20.0 virtual machine on a computer
with i7-10700F @ 2.90GHZ, and comparisons with others on LUT, integer com-
parison, and Relu function. Fortunately, the code for the TreeFB algorithm was
completely open source, and we fully implemented the author’s code.



For the code that has not been implemented, we will make appropriate scaling
based on the proportion of the implemented parts. In order to compare with the
TreeFB algorithm, we adopted the parameters set by Antonio Guimarães et
al. as shown in Table 1. We take the average time after running 10 times for
each function. However, due to different hardware conditions, the experimental
results are slightly different such as 6-bit-to-6-bit LUT in the author’s paper
were 378.2ms, 409.9ms in our environment. It should be noted that there may
be slight differences in the results of each running(about 10%) even in the same
environment.

Table 1. Experiment parameters

Security Level B LWE RLWE Bootstrap Key Switch
n σ N k σ l log2(Bg) Base t

127 4 630 2−15 1024 1 2−25 5 5 64 2

6.1 Calculation of LUT

We conducted experiment about 6-bit, 8-bit, 10-bit, and 12-bit LUT calculations
by useing Tree-BML algorithm with parameter ϑ = 1, 2, 3 and TreeFB algorithm,
see Figure 2, where Tree-BML algorithm utilizes Rotate-based Packing KS and
TreeFB algorithm utilizes Base-aware-KS for reducing key-switching key size.
The detailed data results are shown in the Table 2. We can abtain that as ϑ
increases, the algorithm consumes less time. However, in the calculation of 6-bit
LUT, the speed increase is not significant when ϑ increases from 2 to 3. This is
because even if we can output more results in one calculation, we still only need
one LUT value in the end.

Table 2. Time consumption of LUT calculation

Method Security 6-bit 8-bit 10-bit 12-bit Reduced time
TreeFB 127 0.409s 2.203s 23.667s 51.085s 1

ϑ = 1 127 0.215s 1.026s 5.013s 24.291s 51.20%

ϑ = 2 127 0.135s 0.586s 2.805s 13.181s 72.09%

ϑ = 3 127 0.124s 0.409s 1.779s 8.092s 79.66%

6.2 32-bit integer comparison

We compared the Rotate-based Packing KS with Base-aware-KS algorithm in
the integer comparison function experiment. The experimental results are shown



Fig. 2. Calculation of LUT

in Table 3. It can be obtained that our Rotate-based Packing KS algorithm
only requires approximately 700MB for storage key-switch key, while the Base-
aware-KS algorithm requires approximately 2GB and our Rotate-based Packing
KS algorithm almost no increasing runtime compare with the Base-aware-KS
algorithm.

Table 3. Experimental result of 32-bit integer comparison

KeySwitching Method Security time key-switching key size Reduced key Size
Base-aware-KS 127 343.5ms ≈ 2.113GB 1

Ours 127 343.7ms ≈ 0.528GB 75.01%

6.3 8-bit Relu

One of the activation function widely used in neural networks is the Rectified
Linear Unit(Relu). Due to B = 4, the LUT results are also decomposed based
on B(as mentioned earlier), we need to output 4 result bits in the calculation of
the 8-bit Relu function. Therefore, when ϑ = 2, the efficiency of the algorithm
is the highest. The results are shown in the Table 4.



Table 4. Experimental result of 8-bit Relu

Method Security time consumption Reduced time
[LJ19] [23] 127 603.10ms No

[ZLPL20] [24] 127 103.10ms No
TreeFB 127 89.03ms 1

Ours 127 25.74ms 71.09%

6.4 Error result

We counted the values of output error of using the TreeFB and our Tree-
BML(when ϑ = 2) algorithms to calculate the 6-bit-to-6-bit LUT 3000 times
respectively, then conducted interval statistics(step length 100000), see Figure
3. The probability distribution of the output error of the two algorithms is simi-
lar, which proof our conclusion that the output error variance of Tree-BML and
TreeFB algorithm is the same.

Fig. 3. interval statistics of values of output error

We calculated the successful probability of ModSwitch of the Tree-BML and
TreeFB algorithm under different input error variances using Equation 5, see
Picture 4. When ϑ = 1 or 2, our Tree-BML algorithm almost no reduces the
successful probability compared to TreeFB algorithm. However, when ϑ = 3,
our Tree-BML algorithm’s probability decreases significantly, but also reaches
99.8%.



Fig. 4. error rate of Tree-BML and TreeFB algorithm

7 Conclusion

In this paper, we accelerated the calculation of TreeFB algorithm by compressing
2ϑB TLWE ciphertexts into one TRLWE ciphertext and utilizing the BML algo-
rithm, which reduces the number of functional bootstrapping and key switching
times required by the algorithm. When ϑ = 1, 2, and 3, our Tree-BML algorithm
reduce the runtime of TreeFB algorithm by 51.20%, 72.09% and 79.66% re-
spectively. Plus, we proposed Rotate-based Packing KS algorithm that reduces
the size of the key-switching key compare with the Base-aware-KS algorithm
and almost no increasing the runtime. When B = 4, our algorithm reduce the
storage requirement of the key-switching key by 75%. We analyzed the output
error variance and error rate of our algorithms and obtained that the Rotate-
based Packing KS and Tree-BML algorithm does not introduce new error. We
conducted experiments on 6-bit, 8-bit, 10-bit, 12-bit LUTs, 32-bit integer com-
parisons, 8-bit Relu functions, error variance and error rate about our algorithms
and compared our results with others. It can be obtained that as the ϑ value
increases the efficiency of the algorithm increases, while the efficiency improve-
ment rate gradually slows down. This is because that although we reduced the
number of Bootstraps required in each for loop of the TreeFB algorithm, we did
not reduce the depth of the algorithm. An interesting open problem is to reduce
the depth of the TreeFB algorithm.
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Appendices

A Functional Bootstraps(FBT) Algorithm

https://eprint.iacr.org/2022/515


Algorithm 7 Functional Bootstraps(FBT)
Input: a TLWE sample c = (a, b) ∈ TLWEs(

m
2B

) ∈ Zn+1
q , for m ∈ ZB , an integer

LUT L = [l0, l1, . . . , lB−1] ∈ ZB
B , a set of bootstrapping key BKi ∈ TRGSWS (si),

for i ∈ J1, nK
Output: c̄ ∈ TLWES̄(

L[m]
2B

), where S̄ ∈ BN is a vector (TLWE) interpretation of
S ∈ BN [X]

1: b← b 2Nb
q
e and ai ←

⌊
2Nai

q

⌉
∈ Z2N for each i ∈ J1, nK

2: v ←
∑N−1

i=0
1
2B
· lb iBN cX

i ∈ TN [X]

3: ACC ← BlindRotate ((0, v), (a1, . . . , an, b+
1
4B

), (BK1, . . . ,BKn))
4: return SampleExtract0(ACC)

B Method of Compressing Ciphertexts in Tree-BML
Assuming the number of TLWE ciphertexts we need to compress is K ·B.
1. When K | 2ϑ, we copy these ciphertexts to achieve 2ϑB. Since we only need

to extract K TLWE ciphertexts in the corresponding BML algorithm, we
need to change the corresponding ModSwitch and SampleExtract process
parameter ϑ = log(k).

2. When K cannot divide 2ϑ, we fill K ·B TLWEs with (2⌈log k⌉ − k) ·B zeros
in the high position. Then execute the algorithm for the “divisible” method
mentioned above. Moreover, filling the high position with 0 does not affect
the correctness of the result because the extracted ciphertext at the backer of
the position corresponds to the higher position of the result after decryption.

C Error Variance of Tree-BML
We first introduce two equations from paper [19], Equation 6 is the error variance
of FBT algorithm and Equation 7 is the error variance of MVB algorithm, where
ϑBK represent the error variance of bootstrapping key and ϵ = 1

2Bl
g
.

Var(Err(c)) ≤ Var(Err(TV )) + n(k + 1)ℓN

(
Bg

2

)2

ϑBK + n(1 + kN)ϵ2 (6)

Var(Err(c)) ≤ ‖TVf‖22

(
n(k + 1)ℓN

(
Bg

2

)2

ϑBK + n(1 + kN)ϵ2

)
(7)

For a m ∈ Bd, the TreeFB algorithm requires to perform d layers FBT and
d− 1 layers PublicKS algorithms(Line 3 and Line 5, Algorithm 3). The output
of FBT is the input of PublicKS, that is, the output error of FBT algorithm are
the input error Var(Err(c)) in Equation 1 of PublicKS algorithm. so after the
first layer of PublicKS algorithm, the output error variance is

‖TVf‖22

(
n(k + 1)ℓN

(
Bg

2

)2

ϑBK + n(1 + kN)ϵ2

)
+ ntNϑKS +

1

12
nbase−2t



Then, the results enter the next layer of FBT, which mean that the above equa-
tion is the new Var(Err(TV )) in Equation 6. Finally, the output error variance
of the TreeFB algorithm as shown in Equation 8.

Var(TreeFB) ≤ (d− 1 + ‖TVf‖22)(n(k + 1)ℓN

(
Bg

2

)2

ϑBK + n(1 + kN)ϵ2)+

(8)

(d− 1)(ntNϑKS +
1

12
nbase−2t)

Due to our Rotate-based Packing KS do not introduce new error, the main
difference between our Tree-BML algorithm and TreeFB algorithm lies in the
difference between FBT and BML algorithms. So we only need to analyze the
difference of error variance between FBT and the BML algorithm. It can be
obtained that the values of int. coefficients input do not affect the output error
variance of FBT or BML algorithm form Equation 6, hence the output error
variance of our Tree-BML algorithm is the same as the TreeFB algorithm.
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