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Abstract. With the escalating demand for lightweight ciphers as well as side channel protected
implementation of those ciphers in recent times, this work focuses on two aspects. First, we
present a tool for automating the task of finding a Threshold Implementation (TI) of a given
Substitution Box (SBox). Our tool returns ‘with decomposition’ and ‘without decomposition’
based TI. The ‘with decomposition’ based implementation returns a combinational SBox;
whereas we get a sequential SBox from the ‘without decomposition’ based implementation.
Despite being high in demand, it appears that this kind of tool has been missing so far. Second,
we show an algorithmic approach where a given cipher implementation can be tweaked (without
altering the cipher specification) so that its TI cost can be significantly reduced. We take the
PRESENT cipher as our case study (our methodology can be applied to other ciphers as well).
Indeed, we show over 31 percent reduction in area and over 52 percent reduction in depth
compared to the basic threshold implementation.
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1 Introduction

Over the last few years, we have observed a surge of research works dedicated to finding new
lightweight ciphers and/or low-cost implementation of those ciphers. Recently we have also
seen side channel protected implementation of the lightweight ciphers gaining traction [11,18].
While the community is proactive in advocating side channel protected implementation,
surprisingly, a systematic and generic study on how to do that appears to be missing from
the literature. There is an overall theory, but for the most part, a detailed study is required
to be undertaken for better understanding of the context. The authors seem to come up
with some ad-hoc approach (see, e.g., [18]) for the implementation. This further hinders the
overdue tasks such as, finding proper algorithms, easy-to-use and publicly available tools,
and various optimisations that can be employed to reduce the cost.

This work makes a humble attempt to look into the problem of finding a Threshold
Implementation (TI) of a given SBox. The TI is a well-known concept that aims at protecting
against the most common type of side channel attack which relies on power or electromagnetic
leakage [6, 7, 18, 19]. Such SBoxes are probably most common choice for the non-linear
component in the modern lightweight ciphers, thus an automated tool to find TI of those
SBoxes is of prime importance.

Further, we observe that with a slight modification in the implementation, it is possible
to reduce the cost for a TI of cipher. This does not alter the actual description of the cipher,
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hence there is no need to redo the security analysis. We show how to adopt a systematic
approach with the lightweight cipher PRESENT [9], and how it successfully reduces the TI cost,
by more than 31% in terms of area or by more of 52% in terms of depth. This methodology
is generic, hence it can be applied to other ciphers that use a similar structure.

Our Contributions

The side channel attack is considered among the major threats, though, the field of studying
the protected implementations seems less than developed at multiple levels. While working
on this general area, we find ourselves in a situation where we need/want to find threshold
implementation of a fairly large pool of SBoxes. Effectively, we look for automated tools to
do the batch processing, but to our dismay, cannot find anything suitable (except for the
tool by Petkova-Nikova mentioned in Section 4). Parallel to this, the problem of finding
some optimisations at the algorithmic level is another interesting direction, which seems
underdeveloped too.

Ultimately, we decide to make our own tool for this purpose. As we go along, we discover
a proper algorithm is missing. For the most part, the previous authors such as [18, Section
III] or [6, Chapter 3] convey the idea behind threshold through examples, instead of a well-
formed algorithm. Naturally, several pertinent issues remain unexplored, such as automating
the process or dealing with the corner cases. We therefore look further down with adequate
clarity to come up with an algorithm as well as an open-source implementation of it1.
Our tool has two segments, one segment returns ‘without decomposition’ based threshold
implementation (Section 3), and the other segment returns ‘with decomposition’ based
threshold implementation (Section 4).

On the other hand, better understanding of TI motivates us to find other avenues for
cost reduction. With the lightweight block cipher PRESENT [9], we show an optimisation
strategy (Section 5) that uses a less resources. The basic idea stems from the concept of
affine equivalence (Section 2.2) of SBoxes, i.e., by opting for another SBox than specified by
the designers. This SBox is chosen in such as a way that the netlist optimisation tool can
leverage on the new SBox’s algebraic properties. However, our approach does not change the
overall cipher specification (so one does not need to carry out the usual security analysis).
Thus, our analysis reveals, some alternative representations are indeed more efficient to
implement than the näıve implementation (which used as a baseline). Further, this strategy
can be applied to any other cipher with a similar structure.

2 Background

2.1 Möbius Transform

The Möbius transform is used to find the coordinate function representation (in ANF) of a
given (bijective) SBox. For the sake of better clarity, it is described here. Given an n× n
SBox S, we first need to define the corresponding 2n × 2n Möbius matrix (see Definition 1).

1The URL to the repository will be linked in a future revision.
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Definition 1 (Möbius Matrix). The 2n × 2n Möbius matrix M2n takes elements from

F2 and is recursively defined as: M20 =
[
1
]
, M21 =

[
1 1
0 1

]
, and M2n =

[
M2n−1 M2n−1

0 M2n−1

]
for

n ≥ 2.

Remark 1. The Möbius matrix is self-inverse.

Example 1. One of the most commonly used Möbius matrix that corresponds to a 4-bit
SBox is given by:

M24 =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




⊓⊔
Definition 2 (Coordinate Function). Suppose F : Fn

2 → Fn
2 is defined as F (x) =

(f0(x), . . . , fn−1(x)) for all x ∈ Fn
2 , where fi : Fn

2 → F2 for i = 0, . . . , n− 1. Then each fi is
called a coordinate function of F .

We also use the following two terms, bit-slice matrix and coordinate matrix. Informally,
these two can be defined as follows. The bit-slice matrix of an n×n SBox is a n× 2n matrix
where column i stores the ith look-up entry as a binary column vector. The coordinate
matrix is the n× 2n binary matrix which is the result of post-multiplying the Möbius matrix
M2n to the bit-slice matrix.

The coordinate matrix plays an important role in representing the SBox in its coordinate
functions (Definition 2) in Algebraic Normal Form (ANF). The rows indicate the coordinate
functions, while the columns indicate which product of the input variables is present. This
is shown in Example 2 with respect to the SBox used in PRESENT [9].

Example 2 (PRESENT SBox). The bit-slice matrix of the PRESENT SBox (C56B90AD3EF84712)
is given as follows:

BPRESENT =




0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0
0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1
1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0
1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0
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For instance, the last column of this matrix, (0, 1, 0, 0)⊤, is the last look-up entry (2)
written as the binary column vector. After post-multiplying the Möbius matrix with this
matrix, one gets the following as the coordinate matrix of the PRESENT SBox:

CPRESENT = BPRESENT ×M24 =




0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0
1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0
1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0




Following the conventional notation, we denote the input variables as x0, x1, x2, x3 and
the coordinate functions as y0, y1, y2, y3. Then the rows of the CPRESENT denote (in sequence)
y0, y1, y2, y3, and the columns denote (in sequence) whether or not (1, x0, x1, x0x1, x2, x0x2,
x1x2, x0x1x2, x3, x0x3, x1x3, x0x1x3, x2x3, x0x2x3, x1x2x3, x0x1x2x3) is present. For instance,
consider the top row, where 1 is present corresponding to columns {x0, x2, x1x2, x3}, it
means that: y0 = x0 ⊕ x1x2 ⊕ x2 ⊕ x3.

In this way, all the coordinate functions of the PRESENT SBox can be computed:

y1 = x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3 ⊕ x1x3 ⊕ x1 ⊕ x2x3 ⊕ x3,

y2 = x0x1x3 ⊕ x0x1 ⊕ x0x2x3 ⊕ x0x3 ⊕ x1x3 ⊕ x2 ⊕ x3 ⊕ 1,

y3 = x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3 ⊕ x0 ⊕ x1x2 ⊕ x1 ⊕ x3 ⊕ 1.

Note that the algebraic degree of the three coordinate functions is 3 and some of the
monomials are common (indeed reducing the number of monomials of algebraic degree 3 is
the working factor in our work at Section 5).

⊓⊔

Remark 2. The bit-slice matrix (and consequently the coordinate matrix too) of a bijective
SBox is of full row-rank.

Remark 3. Sometimes the coordinate functions of an SBox (written in algebraic normal
form) are called “SBox to ANF” in the literature.

Remark 4. For a bijective SBox, the last column of its coordinate matrix is null.

Remark 5. The maximum of the algebraic degrees of the coordinate functions of an SBox is
termed as the algebraic degree of the SBox.

2.2 Affine Equivalence of SBoxes

We call SBoxes S0 and S1 Affine Equivalent (AE) if there exist two non-singular binary
matrices A0, A1 (each with compatible dimension) such that S1 = A0 ◦ S0 ◦A1; i.e., S1(x) =
A0S0(A1(x ⊕ c0)) ⊕ c1, for all inputs x and for some binary vectors c0, c1 of compatible
dimension.

To find affine equivalent SBoxes of a given n× n SBox, binary non-singular matrices are
required. The General Linear group over Fq of degree n, denoted by GL(n,Fq), consists of
n× n non-singular matrices with each entry is from Fq. It is known thanks to Euler that,
the order of GL(n,Fq) is,

∏n−1
k=0 (q

n − qk). Therefore, the number of 3× 3 and 4× 4 binary
(so, q = 2) non-singular matrices are 168 and 20160, respectively.
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2.3 Side Channel Attack and Countermeasure

Side channel attacks, particularly those relying on information from power consumption or
electromagnetic emanation, are of prominent concern while dealing with the physical security
of the ciphers [6, 20,24,31]. It has been systematically shown that a cipher with sufficient
classical security claims falls short against an adversary equipped with a side channel attack
set-up. It therefore goes without saying, understanding the attacks and finding low-cost
countermeasures are among the top research priorities by/for the community.

Side-channel attacks are based on the connection between a (a priori or learned) model
and any intermediate variable in the implementation that might be leaking. Therefore, the
countermeasures attempt to destroy the linkage of the model and the intermediate variables.
Masking [24, Chapter 9] is considered a prominent countermeasure. A masking scheme
randomly distributes each intermediate to introduce randomness in a way that the overall
algorithmic flow in the cipher is unchanged, but the randomised operations makes the side
channel leakage free from the intermediate variables. Depending on the strength of the
attacker, various degrees of masking can be adopted.

Threshold Implementation

The threshold implementation (TI) is a form of masking, and is among the top recommen-
dations against the side channel attacks [6, 8, 18, 19, 25, 27, 28, 29] specially for protecting the
hardware implementation. Aside from a protection against the hardware implementation,
TI is also claimed to work with the software implementation of a cipher [16,33].

Typically, the TI of an affine function is considered straightforward, while that of a
non-linear (in most block ciphers, the only non-linear component is the SBox) function is
considered a strenuous task to accomplish. The TI of a given SBox can be realised either
through without decomposition (the SBox is implemented as a combinational circuit) or
with decomposition (the SBox is implemented as a sequential circuit, typically it allows for
smaller and more shallow netlists at the expense of pipelining) [18].

3 Threshold without Decomposition (Combinational SBox)

In essence, the without decomposition based threshold implementation takes the coordinate
function (in ANF) form of an SBox, then converts into a suitable implementation satisfying
a set of conditions. We consider the usual notation here, i.e., for an n× n SBox S we denote
the input variables as x0, x1, . . . , xn−1 and the output variables as y0, y1, . . . , yn−1. Then it
substitutes each xi and each yj by d+1 shares (where d ≥ the algebraic degree of the SBox).
In the process, each the xi and yi variables are respectively replaced by the new variables
xi,j and yi,j ; where i ∈ {0, 1, . . . , n − 1} and j ∈ {0, 1, . . . , d}. For simplicity, we write an
SBox S in terms of its coordinate functions (in this case, y0, y1, . . . , yn−1) as:

S :





y0

y1
...

yn−1
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Based on the existing literature [6, 12, 18,19,29], the ‘without decomposition’ based TI
of S satisfies the following conditions:

(α) Sharing of input variables.
⊕d

j=0 xi,j = xi, for i = 0, 1, . . . , n− 1.

(β) Sharing of output variables/Correctness.
⊕d

j=0 yi,j = yi for i = 0, 1, . . . , n− 1.
(γ) Non-completeness. xi,j is missing in yk,j for j = 0, 1, . . . , d; for all i, k ∈ {0, 1, . . . , n−1};

where i ̸= k.
(δ) Uniformity. All non-zero entries in the ‘xi (∀i) versus yi,j (∀i, j) frequency distribution

table’ are equal.

After this, d+ 1 separate SBoxes S0, S1, . . . , Sd are implemented in parallel, where these
SBoxes are given by the following arrangement of the coordinate functions:

S0 :





y0 = y0,0

y1 = y1,0
...

yn−1 = yn−1,0

S1 :





y0 = y0,1

y1 = y1,1
...

yn−1 = yn−1,1

...

Sd :





y0 = y0,d

y1 = y1,d
...

yn−1 = yn−1,d

Thanks to the ingenious arrangement, each of the SBoxes (S0, . . . , Sd) computes some
share of the original SBox (S). When combined, the coordinate functions of S (namely,
y0, . . . , yn−1) can be realised even if one xi,j variable in each S0, . . . , Sd is randomised. Since
one input variable xi,j is randomised, it makes the corresponding side channel leakage
random, making it hard for the attacker to exploit secret information from the leakage (this
outlines the philosophy of the side channel protection). At the beginning of the (protected)
cipher execution, some input variables are fed random inputs and at the end all the shares
are combined to get the intended cipher output. In other words the fundamental concept
can be described as running multiple randomised modules (each is a bit different from the
others) among which the inputs to the cipher are distributed. One module does not give
exploitable information to the attacker, still the combined output from the modules results
in the desired cipher output.

Remark 6 (Note on uniformity). As stated in [6, Chapter 3.3], the absence of the uniformity
property (Condition (δ)) in a threshold circuit does not leak side channel information by
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itself; but if it is used to drive another circuit, this second circuit may leak side channel
information. However, we could not find any experimental evaluation in the literature, and
this could be an interesting problem for future study.

3.1 Need for a Well-developed Algorithm

As noted (Section 1), the corresponding engineering methods to apply TI does not ap-
pear to be developed enough. No specific algorithm is available to the best of our un-
derstanding/finding, rather the concept is described mostly through some cherry-picked
examples [6, 7, 18]. This is somewhat surprising, specially given the state-of-the-art explores
advanced side channel attack (e.g., [21, 22]). The problems that arise from explaining a
concept through examples instead of a developing a proper algorithm can be manifested in
a number of ways, as listed next.

Problem 1 (Ambiguous sharing). Since the concept is mostly communicated through ex-
amples, it is in general hard to come up with a proper algorithm. To illustrate the point,
we look into the example given in [18, Section III.A]. The 3-variable quadratic function
f(x, y, z) = xy ⊕ z is shown with the following 3-shares:

f1 = z2 ⊕ x2y2 ⊕ x2y3 ⊕ x3y2,

f2 = z3 ⊕ x1y3 ⊕ x3y1 ⊕ x3y3,

f3 = z1 ⊕ x1y1 ⊕ x1y2 ⊕ x2y1.

This sharing is not unique. For instance, the following is also a valid sharing of f1 and
f2 (f3 is unchanged):

f1 = z3 ⊕ x2y2 ⊕ x2y3 ⊕ x3y2,

f2 = z2 ⊕ x1y3 ⊕ x3y1 ⊕ x3y3.

⊓⊔

Problem 2 (Corner case: Low algebraic degree of a coordinate function). Consider the 3-bit
SBox, 03214756, which is given by the following coordinate functions:

y0 = x0 ⊕ x1x2,

y1 = x0 ⊕ x1x2 ⊕ x1,

y2 = x2.

Note that the coordinate function y2 is of algebraic degree 1 whereas the rest are of algebraic
degree 2 (i.e., not every coordinate function has the maximum algebraic degree). Thus, it
is possible to consider 3-share masking for y0 and y1, but only 2-share is sufficient for y2.
Based on the existing literature this (3, 3, 2)-share is not considered valid. However, to the
best of our understanding, this unequal sharing can thwart side channel leakage and will
incur lower cost than the usual 3-sharing.

The same problem appears with some of the mainstream SBoxes, like PRESENT (given in
Example 2), PICCOLO (E4B238091A7F6C5D) [34], PYJAMASK-128 (2D397BA6E0F4851C) [17],
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which are respectively given by the following coordinate functions (parenthesised numbers
indicate the algebraic degree):

y0 = x0x1x2 ⊕ x0x1 ⊕ x0x2 ⊕ x0x3 ⊕ x1x2x3 ⊕ x1x3 ⊕ x1 ⊕ x2 ⊕ x3 (3),

y1 = x0x1 ⊕ x0 ⊕ x1x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x3 ⊕ 1 (3),

y2 = x1x2 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ 1 (2),

y3 = x0 ⊕ x2x3 ⊕ x2 ⊕ x3 ⊕ 1 (2);

and

y0 = x0x1x2 ⊕ x0x1 ⊕ x0x2 ⊕ x0x3 ⊕ x0 ⊕ x1 ⊕ x2x3 ⊕ x2 (3),

y1 = x0x2 ⊕ x0 ⊕ x2x3 ⊕ 1 (2),

y2 = x0x1x2 ⊕ x0x1 ⊕ x0 ⊕ x1x2x3 ⊕ x1x2 ⊕ x2 ⊕ x3 (3),

y3 = x0 ⊕ x1x2 ⊕ x3 (2).

⊓⊔

Problem 3 (No automation). In a private communication, it is made known by the authors
of [18] that the without decomposition based threshold implementation for the GIFT SBox
(1A4C6F392DB7508E) [4] is computed manually. It is a laborious task, as it requires to
compute the entire expression consisting of a few hundred to a few thousands (if not more)
of monomials. In general, this task is tedious to carry out manually beyond 3-bit SBoxes
and borderline impossible starting from 5-bit SBoxes.

⊓⊔

Problem 4 (Lack of further optimisation). In certain cases, there could be opportunity to
further optimise the threshold expressions. For example, one may look for factorisation so
that the netlist can be further optimised (without compromising the side channel protection).
Other logic gates than {AND, XOR} can also be used to reduce hardware cost.

⊓⊔

3.2 Our Approach

We adopt a deterministic sharing approach, which we refer to as “unequal sharing”. Here
‘unequal’ indicates that the assigned shares do not have (roughly) equal number of monomials.
We would like to note that, there is prevailing theory that requires the number of monomials
have to (roughly) equal. From we understand after going through the existing literature,
having unequal number of monomials does not leak any secret information through side
channel. This is based on a greedy algorithm (we try to assign as many monomials without
running into a conflict to the initial shares) for simplicity and a basic overview of of our
approach can be found in Algorithm 1.

It is possible to construct equal sharing, where all the shares of a coordinate function
gets (roughly) equal number of monomials, although it is somewhat complex and hard to
do in a deterministic way. However, equal sharing may have the advantage that the overall
circuit depth/latency can be reduced.
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Overall, the algorithm first generates the sharing of the input variables (Step 2), then
substitutes it to the original coordinate functions (Step 4) to compute Y . After this, it
iterates over all the monomials of Y to see if some shared input variable xi,j can be used in
the expression of yi,j (Steps 9 to 17). Note that, the näıve AND count in the coordinate
functions of the SBox directly affects the total number of monomials in the shares (more
näıve AND count means more monomials in the coordinate functions of the SBox, this in
turn leads to more monomials in the shares).

Since the underlying algorithm is greedy, i.e., an assignment is done as long as it does
not cause any problem, the coordinate functions of the shared SBoxes with lexicographic
priority get more monomials (which we call unbalanced sharing). In general, an algorithm
which attempts to make balanced sharing gets quite complex (specially if the algorithm is
deterministic) and it apparently does not provide any extra side channel security, hence this
is kept as future work.

Because of the algorithm itself, the conditions required for TI are automatically satisfied
(an additional sanity check is performed in Step 18), possibly except for uniformity (Condition
(δ)). Hence, we provide a separate code that checks for uniformity, and if needed, some
monomial rearrangement is done.

Algorithm 1: Unequal (deterministic) sharing

Input: An n× n SBox given as coordinate functions (y0, . . . , yn−1 with input variables x0, . . . , xn−1)
Output: Assignment of d+ 1 SBoxes given as coordinate functions
1: for i← 0 to n− 1 do ▷ Iterate over all input variables
2: Xi ← xi,0 ⊕ xi,1 ⊕ · · · ⊕ xi,d ▷ Share input variables

3: for i← 0 to n− 1 do ▷ Iterate over all output variables
4: Yi ← Substitute xj = Xj in yi for all j ▷ Share output variables

5: for i← 0 to n− 1 do
6: Zi ← [0, 0, . . . , 0︸ ︷︷ ︸

d+1 times

]

7: for s← 0 to d do ▷ Iterate over all shares
8: z ← 0
9: for each monomial m ∈ Yi do
10: flag ← False

11: for each u ∈ {x0,s, x1,s, . . . , xn−1,s} do
12: if u ∈ m then
13: flag ← True

14: if flag = False then
15: z ← z ⊕m
16: Yi ← Yi ⊕m

17: Zi[s]← Zi[s]⊕ z

18: assert Yi = 0 ▷ Sanity check
19: warn if (at least) one of the coordinate functions Zi is a constant
20: return sharing of yi as Zi

Warning for Zero-sharing Our algorithm (Step 19) throws a warning if some yi,j is a
constant (happens if some coordinate function has less algebraic degree). As an illustration,
reconsider the SBox described in Problem 2 (03214756). By exactly following Algorithm 1,
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the sharing is given as (notice that a warning is given for y2,2):

y2,0 = x2,1 ⊕ x2,2,

y2,1 = x2,0,

y2,2 = 0.

Since this violates the uniformity condition (Condition (δ)), this can be resolved, e.g., by
changing to the following sharing:

y2,0 = x2,1,

y2,1 = x2,0,

y2,2 = x2,2.

The resolution to zero-sharing is not enforced (to have future compatibility with unequal
number of shares, as outlined in Problem 2). Rather, our source code contains an optional
argument which can be set should the user wish resolution.

3.3 Results

Minimal Order (Algebraic Degree + 1) Sharing Our approach can deal with 3× 3
and 4× 4 SBoxes without any difficulty. Further, 5× 5 SBoxes, such as that of ASCON’s [14]
works well (one may note from [30] that ASCON is recently selected as the primary choice
in the LWC project run by NIST). Results with some SBoxes are summarised in Table 1,
where we show the number of monomials along with STM 130nm ASIC cost in terms of
gate equivalent (rounded off to nearest integer). Each of the SBoxes is used in a cipher, save
for 048AFC691EBD7532 which is presented in [15, Section 3.4]. The number of shares are
taken as the algebraic degree of the SBox plus 1.

Higher Order (≥ Algebraic Degree + 2) Sharing Our tool can work with higher
number of shares as well, without any actual change in the algorithm flow. We show some
examples in Table 2, where the number of shares is taken as the algebraic degree of the
SBox plus 2. It is worth noting that ASCON has recently been selected as the NIST LWC
winner [30].

Detailed Example with DEFAULT LS SBox (Minimal Order) We take the DEFAULT LS
SBox (037ED4A9CF18B265) [2,3] and show its miniaml order sharing as obtained by running
through Algorithm 1. The coordinate functions are given by:

y0 = x0 ⊕ x1 ⊕ x2,

y1 = x0x1 ⊕ x0x2 ⊕ x0 ⊕ x1x3 ⊕ x1 ⊕ x2x3,

y2 = x1 ⊕ x2 ⊕ x3,

y3 = x0x1 ⊕ x0x2 ⊕ x1x3 ⊕ x2x3 ⊕ x2 ⊕ x3.
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Table 1: Threshold (without decomposition) cost of some SBoxes

Shares # Monomials Hardware

GIFT [4] 1A4C6F392DB7508E 4 265 526

PRESENT [9] C56B90AD3EF84712 4 666 1132

PRINCE [10] BF32AC916780E5D4 4 731 991

PICCOLO [34] E4B238091A7F6C5D 4 399 645

SKINNY-64 [5] C6901A2B385D4E7F 4 398 723

TWINE [35] C0FA2B9583D71E64 4 626 723

PYJAMASK-128 [17] 2D397BA6E0F4851C 4 373 640

QARMA [1] ADE6F735980CB124 4 562 826

NOEKEON Gamma [13] 7A2C48F0591E3DB6 4 387 697

DEFAULT [2, 3]
LS 037ED4A9CF18B265 3 102 60

Non-LS 196F7C82AED043B5 4 213 412

Gao-Roy-Oswald [15] 048AFC691EBD7532 4 988 1658

ASCON [14] 3 160 85

: Gate equivalent in STM 130nm ASIC library (HCMOS9GP)
: Used in [18, Appendix B]
: 4b1f141a15921b58121d361c1e137e0d111810c11916af17

Table 2: Higher order threshold (without decomposition) cost of some SBoxes
Shares # Monomials Hardware

GIFT [4] 1A4C6F392DB7508E 5 451 432

SKINNY-64 [5] C6901A2B385D4E7F 5 682 681

QARMA [1] ADE6F735980CB124 5 967 983

ASCON [14] 4 257 142

: Gate equivalent in STM 130nm ASIC library (HCMOS9GP)
: 4b1f141a15921b58121d361c1e137e0d111810c11916af17

Since the algebraic degree is 2, minimum 3 shares are needed (based on the state-of-the-art
literature). A 3-share implementation following Algorithm 1 (with the coordinate functions
as 0 are resolved by taking one monomial from its previous coordinate function) is given as:

y0,0 = x0,1 ⊕ x0,2 ⊕ x1,1 ⊕ x1,2 ⊕ x2,1 ⊕ x2,2,

y0,1 = x0,0 ⊕ x1,0,

y0,2 = x2,0,

y1,0 = x0,1x1,1 ⊕ x0,1x1,2 ⊕ x0,1x2,1 ⊕ x0,1x2,2 ⊕ x0,1 ⊕ x0,2x1,1 ⊕ x0,2x1,2 ⊕ x0,2x2,1

⊕ x0,2x2,2 ⊕ x0,2 ⊕ x1,1x3,0 ⊕ x1,1x3,1 ⊕ x1,1x3,2 ⊕ x1,1 ⊕ x1,2x3,0 ⊕ x1,2x3,1

⊕ x1,2x3,2 ⊕ x1,2 ⊕ x2,1x3,0 ⊕ x2,1x3,1 ⊕ x2,1x3,2 ⊕ x2,2x3,0 ⊕ x2,2x3,1 ⊕ x2,2x3,2,

y1,1 = x0,0x1,0 ⊕ x0,0x1,2 ⊕ x0,0x2,0 ⊕ x0,0x2,2 ⊕ x0,0 ⊕ x0,2x1,0 ⊕ x0,2x2,0 ⊕ x1,0x3,0

⊕ x1,0x3,1 ⊕ x1,0x3,2 ⊕ x1,0 ⊕ x2,0x3,0 ⊕ x2,0x3,1 ⊕ x2,0x3,2,

y1,2 = x0,0x1,1 ⊕ x0,0x2,1 ⊕ x0,1x1,0 ⊕ x0,1x2,0,

y2,0 = x1,1 ⊕ x1,2 ⊕ x2,1 ⊕ x2,2 ⊕ x3,0 ⊕ x3,1 ⊕ x3,2,

y2,1 = x1,0,

y2,2 = x2,0,
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y3,0 = x0,1x1,1 ⊕ x0,1x1,2 ⊕ x0,1x2,1 ⊕ x0,1x2,2 ⊕ x0,2x1,1 ⊕ x0,2x1,2 ⊕ x0,2x2,1

⊕ x0,2x2,2 ⊕ x1,1x3,0 ⊕ x1,1x3,1 ⊕ x1,1x3,2 ⊕ x1,2x3,0 ⊕ x1,2x3,1 ⊕ x1,2x3,2

⊕ x2,1x3,0 ⊕ x2,1x3,1 ⊕ x2,1x3,2 ⊕ x2,1 ⊕ x2,2x3,0 ⊕ x2,2x3,1 ⊕ x2,2x3,2 ⊕ x2,2

⊕ x3,0 ⊕ x3,1 ⊕ x3,2,

y3,1 = x0,0x1,0 ⊕ x0,0x1,2 ⊕ x0,0x2,0 ⊕ x0,0x2,2 ⊕ x0,2x1,0 ⊕ x0,2x2,0 ⊕ x1,0x3,0⊕
x1,0x3,1 ⊕ x1,0x3,2 ⊕ x2,0x3,0 ⊕ x2,0x3,1 ⊕ x2,0x3,2 ⊕ x2,0,

y3,2 = x0,0x1,1 ⊕ x0,0x2,1 ⊕ x0,1x1,0 ⊕ x0,1x2,0.

4 Threshold with Decomposition (Sequential SBox)

The theory for a decomposition based TI requires finding two other SBoxes such that the
composition of these SBoxes is the target SBox. Given an n× n SBox S, we want to find
two n× n SBoxes F and G such that

(i) F ◦G ≡ S (i.e., F (G(x)) = S(x) ∀x);
(ii) the algebraic degrees of both F and G are less than or equal to the algebraic degree of S

(preferably the algebraic degrees of both F and G are less than the algebraic degree of
S).

For instance, consider [18, Section III.A]; where given S = 1A4C6F392DB7508E (cubic), the
authors find F = 4DF71A285CE60B39 (quadratic) and G = 5638127C9EF0DAB4 (quadratic).

Despite being quite popular [18,26,32], it appears that there exists only one (publicly
available) tool which is a courtesy of Petkova-Nikova2. This tool, available exclusively as
executable files, can find decomposition based threshold for a given 3× 3 or 4× 4 SBox.

Here we describe a simple idea to find such decomposition in Algorithm 2. In short, we
generate F and G in a way that F ◦G ≡ S is always satisfied (by randomly constructing
F , then adjusting G according to F and S); then we decide whether to keep or discard
depending on the algebraic degree requirement. The algorithm is inherently randomised, so
we continue from the beginning until the algebraic degree requirement is satisfied.

Algorithm 2: Decomposition (of a given SBox into two SBoxes)

Input: An n× n SBox S
Output: Two n× n SBoxes F and G such that F ◦G ≡ S
1: R← ∅ ▷ Initialise R as empty set
2: for i← 0 to 2n − 1 do ▷ Iterate over all SBox inputs

3: r
$← {0, 1, . . . , 2n − 1} \R ▷ Select r uniformly without repeat

4: F (i)← r, G(r)← S(i) ▷ F : i 7→ r, G : r 7→ S(i)
5: Insert r to R ▷ R← R ∪ {r}
6: if algebraic degree of F or G > that of S then
7: Discard F and G, and go back to Step 1

8: return F,G

2Hosted at Svetla Petkova-Nikova’s official web-page: https://homes.esat.kuleuven.be/~snikova/ti_
tools.html.

https://homes.esat.kuleuven.be/~snikova/ti_tools.html
https://homes.esat.kuleuven.be/~snikova/ti_tools.html
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Overall, Algorithm 2 hugely simplifies the problem (cf. the complication in [32, Section
3.2] or [18, Section III.A]), and seems to work well for larger (> 4× 4) SBoxes in practice. If
needed, our idea can be extended to more than two decomposed SBoxes.

5 Further Optimisation Based on Affine Equivalence

In this part, we attempt to reduce the cost of an existing TI by optimising its SBox. In essence,
we redesign the cipher with an affine equivalent SBox (so that the cipher specification is
unchanged) which reduces the TI cost. The SBox is implemented as combinational only circuit
(i.e., no register) per coordinate functions. We show our method on the lightweight block
cipher PRESENT [9], though it can be applied to any other cipher with similar construction.

We study in this section the impact of affine equivalence on the SBox to reduce the cost
of TI. Notice that the concept of affine equivalence we propose here is with respect to the
representation of the cipher, not about changing the specification of the cipher. In other
words, only the implementation changes, but the cipher description remains unchanged.

5.1 Motivation and Basic Observation

The complexity of threshold implementations directly relates to the number of monomials
in the coordinate function of the SBox. Let us consider the PRESENT [9] (which is also a
standard, ISO/IEC 29192-2:20123) SBox, C56B90AD3EF84712. From its coordinate functions
given in Example 2, we notice the following properties:

◦ 8 monomials of degree 3,

◦ 7 monomials of degree 2,

◦ 10 monomials of degree 1, and

◦ 2 monomials of degree 0 (constant 1).

Upon a closer inspection, however, we observe some monomials are duplicates. The
following factors contribute to the total cost:

1. Computation: Number of unique monomials of given degree (i.e., each monomial of a
given degree is counted only once even if its multiplicity is higher).

2. Reduction: Number of XORs in the coordinate functions (represented in ANF).

About the PRESENT SBox, the contributing components are:

◦ 3 unique monomials of degree 3 (namely, x0x1x2, x0x1x3, and x0x2x3),

◦ 5 unique monomials of degree 2, (the only absent one being x0x2),

◦ 4 monomials of degree 1, and 1 monomial of degree 0 (constant 1),

◦ 23 XORs.

Since the cost for TI for a higher degree monomial is much higher than a lower degree
monomial, our aim here is to minimise the number of unique monomials of degree 3, then of
degree 2, etc.

3https://webstore.ansi.org/Standards/ISO/ISOIEC291922012-1383736.

https://webstore.ansi.org/Standards/ISO/ISOIEC291922012-1383736
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5.2 Improving Efficiency with Affine Equivalent SBox

From an implementation cost standpoint, it can be beneficial to represent the PRESENT block
cipher in an equivalent notation where the SBox S is traded for one of its affine equivalent
SBox, S′ = A−1 ◦S ◦A, where A is an invertible affine mapping operating in F4

2. We reiterate
that we do not aim at altering the cipher functionality, simply its representation. The usage
of the affine mapping is compensated before and after the SBox application.

While detailed description of the cipher is skipped here for space constraint, an overview
is given in Figure 1 for a quick reference. The use of the affine equivalent SBox is illustrated

Plaintext Key

⊕

SBoxLayer

(C56B90AD3EF84712)

PermutationLayer Key Schedule

⊕ AddRoundKey

(for each round)

Ciphertext

31 rounds

Fig. 1: PRESENT encryption (schematic)

in Figure 2. In the part (a) of the figure, a simplified block diagram of PRESENT is depicted,
with the main components:

• Ports are plaintext (denoted as, “ptx”), round key (denoted as “K”), a selection signal
indicating whether the encryption starts (denoted as, “round = 0?”) or not, and an
output ciphertext denoted as “ctx”).

• Building blocks are the affine equivalent SBox S, the permutation layer P , a multiplexer
allowing to input the plaintext or to iterate, and a DFF barrier storing the result
computed till that particular round.

This can be implemented with a shorter critical path by pushing the conversion to/from
affine representation outside of the main path. This is represented in the Figure 2(b):
Assuming that the plaintext and the round keys are applied the affine transformation, then
a regular datapath can be used, provided finally the ciphertext is applied to inverse affine
mapping. This equivalent representation leverages the fact that all elements in the PRESENT
cipher (permutation layer and multiplexer) are linear. Notice that the scheme in Figure 2(b)
is correct only if A is linear. If it is affine, then the constant of the transformation shall be
adapted for each operation, in particular the outer ones. The critical path, highlighted as
the green box in Figure 2(b), is no different than the original critical path. The architecture
shown in Figure 2 is thus suitable for masked TI with combinational SBox (i.e., without
decomposition).
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round = 0? K S′

ptx 0
1

DFF
⊕

A A−1 S A A−1 P • ctx>
>

(a) PRESENT leveraging S′ = A−1 ◦ S ◦A

round = 0?

K

A S′

ptx A 0
1

DFF
⊕

A−1 S A P • A−1 ctx>
>

(b) Equivalent PRESENT leveraging S′ = A−1 ◦ S ◦A

Fig. 2: PRESENT leveraging affine equivalent SBox

5.3 Results

Efficiency Based on Algebraic Property For 1000 random choices of A, we count
the number of monomials in each degree, and we get statistics as depicted in Figure 3.
More specifically, Figure 3(a) shows the relative frequency distribution for number of unique
monomials for each individual degrees. For instance, there exists a unique monomial for
degree 0 (constant 1) 100% of the cases. Figure 3(b) shows the probability distribution of
XOR count.

It can be seen that it is possible to reduce the number of monomials of degree 3 to only
2. We observe that there is no preferred choice for the constant in the affine transformation.

In our case, the transformed SBox is found as follows. The binary matrix multiplied to

obtain the linear part, and the constant binary vector are given respectively by:




1 0 0 0
1 1 1 0
1 1 0 0
1 0 1 1


,




0
1
1
1


. The transformed SBox, 4EC20B1A5F3D9867, has the coordinate functions:

y0 = x0x2 ⊕ x1x2 ⊕ x3,

y1 = x0x2x3 ⊕ x0 ⊕ x1x3,

y2 = x0x1x2 ⊕ x0x1 ⊕ x1x3 ⊕ x2 ⊕ 1,

y3 = x0x2x3 ⊕ x0 ⊕ x1x2 ⊕ x1x3 ⊕ x1 ⊕ x2x3.

Therefore, we manage to get a transformed SBox with the following properties in its
coordinate functions:

◦ 2 unique monomials of degree 3 (x0x2x3 and x0x1x2),
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Fig. 3: Statistics for affine equivalent SBox search for PRESENT

◦ 5 unique monomials of degree 2 (x0x2, x1x2, x1x3, x0x1 and x2x3),

◦ 4 monomials of degree 1, and 1 monomial of degree 0 (constant 1),

◦ only 13 XORs.

Statistics on Netlist Parameters Now we study the real impact of affine transformation
to the property of the netlist; namely, we are interested in the algebraic features that drive
the netlist properties. We study the netlist area (number of monomials vs. GE) and its
logical depth (number of monomials vs. critical path). For the sake of simplicity, every gate
is attributed a unitary area and propagation time.

The goal is to figure out which property of the algebraic expression determines most the
area and/or depth in the netlist. The following features are considered:
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• The number of unique monomials of various degrees (3, 2, 1, and 0) – mostly, the number
of unique monomials of degree 3 is to be minimised.

• XOR count is to be reduced to make area usage low.

15 20 25 30 35 40
Total number of third degree monomials →
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1000

1500

2000

2500

G
E
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Unique

2

3

4

Fig. 4: Area (GE) vs. third degree monomials (SBoxes AE to PRESENT SBox)

The results are summarised in Figures 4, 5 and 6; based on 10000 random selections of
affine transformation A : F4

2 → F4
2; where we group based on number of unique monomials

for better readability. It can be seen that, as expected, reducing the unique number of
monomials of degree 3 is the main parameter to reduce the gate count and the depth of
the netlists. The smallest netlist has 589 gates (of depth 18), and the most shallow one has
depth 11 (and 728 gates). For comparison, the reference netlist (i.e., when A is the identity
matrix) has 863 gates and a depth of 23. Hence an area reduction of more than 31% or a
depth reduction of more than 52% is observed by applying our methodology. Further, as it
can be seen from Figure 6, larger netlists also have (slightly) longer critical path, on average.

6 Conclusion

This work takes a deeper looks into the problem of finding threshold implementation of
SBoxes. The first main contribution of this work is to present an open-source tool for
automating the task for threshold implementation for a large pool of SBoxes. Our tool
returns ‘without decomposition’ (Section 3) and ‘with decomposition’ (Section 4) based
implementations. Despite being quite popular, such a tool seems overdue. The second main
contribution (Section 5) comes from an alternate representation of the PRESENT SBox [9] so
that the TI cost can be reduced. The idea is to replace the original SBox by one of its affine
equivalent SBox (so that the cipher description remains unchanged), but this new SBox
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Fig. 5: Logical depth vs. third degree monomials (SBoxes AE to PRESENT SBox)

has lower threshold cost. Overall, we show over 31% improved area and over 52% improved
depth compared to the näıve implementation.

One interesting follow-up work could be to find SBoxes with lower AND count (but with
other desirable cryptographic properties) so that the cipher is more suitable for adopting
TI. Besides, as noted in Remark 6, it would be interesting to evaluate the amount of side
channel leakage from the circuit which takes input from another circuit not obeying the
uniformity property. As the main objective in Section 5 is to find another SBox, works
like [23] can be incorporated in the search procedure in the future.
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