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Collatz conjecture is also known as 3x+1 conjecture, which states that each

positive integer will return to 1 after Collatz computations that are either

(3x+1)/2 when x is odd or x/2 when x is even. They can be denoted as ‘I’

computation and ‘O’ computation, respectively. Given a starting integer, the

computation sequence from the integer to 1 consists of ‘I’ and ‘O’. The main

results in the paper are as follows: (1) We randomly select an extremely large

integer and verify whether it can return to 1. The largest one has been verified

has length of 6000000 bits, which is overwhelmingly much larger than cur-

rently known and verified, e.g., 128 bits, and its Collatz computation sequence

consists of 28911397 ‘I’ and ‘O’, only by an ordinary laptop. (2) We propose

an dedicated algorithm that can compute 3x+1 for extremely large integers

in million bit scale, by replacing multiplication with bit addition, and further

only by logical condition judgement. (3) We discovery that the ratio - the count

of ‘O’ over the count of ‘I’ in computation sequence goes to 1 asymptotically

with the growth of starting integers. (4) We further discover that once the

length of starting integer is sufficient large, e.g., 500000 bits, the correspond-
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ing computation sequence (in which ‘I’ is replaced with 1 and ‘O’ is replaced

with 0), presents sufficient randomness as a bit sequence. We firstly obtain the

computation sequence of randomly selected integer with L bit length, where L

is 500000, 1000000, 2000000, 3000000, 4000000, 5000000, 6000000, by our pro-

posed algorithm for extremely large integers. We evaluate the randomness of

all computation sequences by both NIST SP 800-22 and GM/T 0005-2021. All

sequences can pass the tests, and especially, the larger the better. (5) We thus

propose an algorithm for random bit sequence generator by only using logical

judgement (e.g., logic gates) and less than 100 lines in ANSI C. The through-

put of the generator is about 625.693 bits/s over an ordinary laptop with Intel

Core i7 CPU (1.8GHz).

1 Introduction

The Collatz conjecture is a mathematical conjecture that is first proposed by Lothar Collatz in

1937. It is also known as the 3x+1 conjecture, the Ulam conjecture, the Kakutani’s problem,

the Thwaites conjecture, or the Syracuse problem.

The Collatz conjecture is very simple to state: Take any positive integer x. If x is even,

divide it by 2 to get x/2. If x is odd, multiply it by 3 and add 1 to get 3x+1. Repeat the process

again and again. The Collatz conjecture is that no matter what the integer (i.e., x) is taken, the

process will always eventually reach 1.

The conjecture is so easy to understand with only required concept of addition, multiplica-

tion and division, but the study for the conjecture is quite a few due to its well-known hardness.

M. Chamberland reviews the works on Collatz conjecture in 2006 (1), and some aspects in avail-

able analysis results are surveyed. J. C. Lagarias edits a book on 3x + 1 problem and reviews

the problem in 2010 (2). He also provides the historical review of the problem by annotated
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bibliography in 1963-1999 (3) and 2000-2009 (4).

Currently, the maximal checked integer is about 593∗260 (5), which is no more than 70 bits.

D. Barina proposed a new algorithmic approach for computational convergence verification of

the Collatz problem (6), which can verify much more number of integers in 128 bits per second.

In this paper, we only discuss positive integers (denoted as Z+). Any odd x will iterate

to 3x + 1, which is always even. Collatz computation afterward is always x/2. If combing

these two as (3x + 1)/2, then the Collatz computation T (x) can be defined as follows: T (x) =

(3x + 1)/2 if x is odd; Otherwise, T (x) = x/2. For the convenience in presentation, we denote

(3x + 1)/2 as ‘I(x)’ (or just ‘I’) and x/2 as ‘O(x)’ (or just ‘O’). Indeed, ‘I’ is named from

“Increase” due to (3x + 1)/2 > x, and ‘O’ is named from “dOwn” due to x/2 < x.

T (k+1)(T (k)(x)) (k is a positive integer) means two successive Collatz computations, where

T (k+1) = I if T (k)(x)%2 = 1, and T (k+1) = O if T (k)(x)%2 = 0. For simplicity by using

less parentheses, we can rewrite it as T (k)T (k+1)(x). Iteratively, T (k)(T (k−1)(...(T (1)(x)))) k ≥
2, k ∈ Z+ can be written as T (1)...T (k−1)T (k)(x), and T (k) = I if T (1)...T (k−1)(x)%2 = 1 and

T (k) = O if T (1)...T (k−1)(x)%2 = 0.

Stopping time of n ∈ Z+ is defined as the minimal number of steps needed to iterate to 1:

s(n) = inf{k : T (1)...T (k−1)T (k)(n) = 1}.

T (x) is usually either (3x + 1)/2 or x/2 (i.e., T ∈ {I, O}), the s(n) is thus the count of

(3x + 1)/2 computation plus the count of x/2 computation. (If T (x) is looked as either 3x + 1

or x/2, then s(n) should be double the count of (3x + 1)/2 computation plus the count of x/2

computation.)

The Collatz computation sequence (i.e., original dynamics) of n ∈ Z+ is the sequence of

Collatz computations that occurs from starting integer to 1:
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d(n) = T (1)...T (k−1)T (k),

where T (1)...T (k−1)T (k)(n) = 1, k = s(n), T (i) ∈ {I, O}, i = 1, ..., k.

For example, Collatz computation sequence from starting integer 3 to 1 is IIOOO, because

3 → 10 → 5 → 16 → 8 → 4 → 2 → 1. Thus, s(3) = 5. d(3) = IIOOO.

The ratio of n ∈ Z+ is the count of x/2 over the count of (3 ∗ x + 1)/2 in the Collatz

computation sequence of n (|{...}| returns the number of elements in a set):

r(n) =
|{i|T (i) = O, i = 1, ..., s(n), T (1)...T (k−1)T (k) = d(n)}|
|{i|T (i) = I, i = 1, ..., s(n), T (1)...T (k−1)T (k) = d(n)}| .

E.g., r(3) = 3/2 = 1.5.

The hight of n ∈ Z+ is the maximal integer (i.e., highest point) to which n iterates:

h(x) = sup{T (1)...T (k−1)T (k)(n) : k ∈ Z+.

Note that, here T (i) (i = 1, ..., k) is either 3 ∗ x + 1 or x/2. That is, h(x) is selected from

integers that includes the even integers 3 ∗ x + 1 before x/2 (i.e., (3 ∗ x + 1)/2 is separated into

two integers 3 ∗ x + 1 and x/2).

E.g., h(3) = 16.

2 Results

The Largest Integer being Checked has 6000000 Bits - Only by
a Laptop

Currently, the maximal checked integer is 128 bits. In contrast, we can verify much larger

integers, e.g., any randomly selected odd integers with extremely large bit lengths, e.g., 6000000

bits, which is much larger than current scale, by only ordinary laptops. (Their objectives are
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to verify all integers less than 128 bits; we only verify any randomly selected integers with

6000000 bits.)

We checked a randomly selected odd integer n that has length of 6000000 bits. The stopping

time s(n) is 28911397, in which the count of computation (3x + 1)/2 is 14455482 and the

count of x/2 is 14455915. The ratio that is the count of ‘x/2’ over the count of ‘(3x + 1)/2’ is

1.0000299215316772.

Note that, above result is only computed by a laptop, instead of any high performance com-

puters, i.e., Lenovo Thinkpad X1 Carbon, with following configurations: Intel(R) Core(TM)

i7-10510U, CPU 1.80GHz 2.30GHz, 8.00GB RAM, X86 processor, 64 bit OS Window 10.

The compiler is MinGW Developer Studio 2.05 that uses GNU GCC, and source code of our

proposed algorithm is ANSI C with no more than 100 lines.

Table 1 shows stopping times of extremely large integers. It also shows the efficiency of the

algorithm (proposed later).

Table 1: The Timing Cost for Computing Collatz Computation Sequence of Extremely Large
Starting Integers (s: second, m: minute, h: hour, d: day, ‖(x)2‖ returns the bit length of x).

‖(n)2‖ ‖(h(n))2‖ s(n) Timing Cost
1000 1002 5016 <1s
10000 10003 49017 2s
100000 100002 485260 2m34s
500000 500004 2420805 1h4m29s
1000000 1000004 4812415 4h25m51s
2000000 2000003 9644913 23h12m31s
3000000 3000001 14473280 1d22h11m7s
4000000 4000004 19275810 3d5h13m32s
5000000 5000007 24081026 5d7h55m35s
6000000 6000004 28911397 8d1h40m44s
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How to Compute (3x+1)/2 for Extremely Large Integers in
6000000 Bit Scale - an Ultra-lightweight Algorithm

Simply speaking, the main heuristics in the algorithm is that we change numerical multiplication

into bit addition. That is, we change (3x + 1)/2 computation into a simple bit addition over the

binary representation of x (note that, hereby x is odd). More specifically, x is represented as a

bit string (in computer programs it could be an array of bits). E.g., suppose the bit length of x

is n. 3x + 1 can be computed by (2x + 1) + x. 2x can be computed simply by left shifting 1

bit of x. Indeed, it can be computed simply by append 0 at LSB (Least Significant Bit) of x.

2x + 1 can be computed by change the LSB of 2x from 0 to 1. (2x + 1) + x can be computed

by adding a bit string with length of n + 1 (i.e., (2x + 1)) to a bit string with length of n (i.e.,

x), note that, bit by bit. The LSB of the summation (i.e., (2x + 1) + x) must be 0, because x is

odd. Then, simply removing this 0 can obtain a bit string directly, which is the division of the

summation by 2 (i.e, (3x + 1)/2).

In our computer programs a bit string is represented by a character array so that it becomes

possible to represent and compute extremely large integers. Represent x as an array A[i], i =

0, ..., n − 1, A[i] ∈ {0, 1}, where A[n − 1] is LSB and A[0] is MSB (Most Significant Bit) of

x. 3x + 1 thus can be looked as A[i] + A[i + 1] + c for each i (i = n − 2, ..., 0) where c is

current carrier (partially). (3x+1)/2 can be computed just by removing the LSB of 3x+1 that

is always 0. Therefore, numerical computation of (3x + 1)/2 is simplified as bit addition. That

is, adding A[i], A[i + 1], and current carrier c obtains a summation in [0, 3]. The LSB of the

summation is assigned to A[i]; the MSB of the summation is assigned to the next carrier.

Suppose 3x+1 is represented by B[0]‖B[1]‖...‖B[n−1] (partially). Fig.1 depicts the design

rationale as follows:

Eq.1 summarizes bit computation procedures in the computation of 3x + 1 as follows
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A[n-1]=1A[n-2]A[n-3]A[1]A[0]=1

B[n-1]=0B[n-2]B[n-3]B[1]B[0]

2x+1

x

1

+ c=1

3x+1

1

01

(if c=0)

(if c=1)

c=1/0

A[n-1]=1A[n-2]A[2]A[1]A[0]=1

c=1/0 c=1/0 c=1/0

Figure 1: Computation for 3 ∗ x + 1 to support extremely large integers x via bit addition or
even by logic condition judgement, instead of numerical computation such as multiplication.
3x + 1 = {10/1}‖B[0]‖B[1]‖...‖B[n− 2]‖B[n− 1]. If B[n− 1] is removed, then the result is
(3x + 1)/2.

(LSB(x) and MSB(x) returns the LSB and MSB of x, respectively):





B[n− 1] ⇐ LSB(A[n− 1] + 0 + 1) = LSB(1 + 0 + 1) = 0

c ⇐ MSB(A[n− 1] + 0 + 1) = MSB(1 + 0 + 1) = 1,

B[n− 2] ⇐ LSB(A[n− 1] + A[n− 2] + c)

c ⇐ MSB(A[n− 1] + A[n− 2] + c),

...

B[n− k] ⇐ LSB(A[n− k + 1] + A[n− k] + c)

c ⇐ MSB(A[n− k + 1] + A[n− k] + c),

...

B[1] ⇐ LSB(A[1] + A[2] + c)

c ⇐ MSB(A[1] + A[2] + c),

B[0] ⇐ LSB(A[0] + A[1] + c) = LSB(1 + A[1] + c)

c ⇐ MSB(A[0] + A[1] + c) = MSB(1 + A[1] + c).

(1)

The MSB (or leftmost two bits) in the binary representation of 3x + 1 (recall Fig. 1),
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depends on whether last c = 0 or c = 1. If c = 0, then MSB(3x + 1) = 1 because A[0] + c =

1 + 0 = 1. If c = 1, then the leftmost two bits are “10” because A[0] + c = 1 + 1 = 2.

(2)2 = 10. The final computation result of 3 ∗ x + 1 can be represented as a binary string like

{10/1}‖B[0]‖B[1]‖...‖B[n− 2]‖B[n− 1], where ‖ is concatenation. Obviously, if last c = 0,

then (3x + 1)/2 has the same bit length of x (i.e., n); if last c = 1, then the bit length of

(3x + 1)/2 is 1 more than x (i.e., n + 1).

After above preparations, we propose algorithm Alg.1 as follows:

Alg.1 can be revised for computing (3x + 1)/2 by simply setting the LSB of (3x + 1) to the

terminal symbol instead of ‘0′ (e.g., ‘\0′ in C language).

Alg.1 is more easier to understood than following enhancement. Especially, it can be easily

extended for computing other related 3x + 1 conjectures (or general cases) such as qx + 1 or

3x + q (q ∈ [1]2).

Enhancement Method 1.

Indeed, we can further improve Alg.1 by using logical condition judgement to replace bit

addition, in Alg.2 as follows (i.e., the distinction of two algorithms are only operations in the

loop):

Enhancement Method 2.

Indeed, B[i] can be omitted and corresponding value can be stored in A[i + 1] where i =

n−2, ..., 0, thus only one array rather than two is required in the computation (see Alg.3). (This

enhancement will be helpful for further hardware design for random bit stream generator.)

As static memory allocated for an array is much less than heap space (virtual memory)

dynamically allocated. E.g., by using “malloc()” function in C language, we can store and

compute an integer whose bit length is about 232 = 4 ∗ 1024 ∗ 1024 ∗ 1024 ≈ 4 ∗ 109 in 32 bit

operating systems or 264 in 64 bit operating systems theoretically.
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Data: x
Result: 3 ∗ x + 1.
B[n− 1] ⇐ ‘0′;
c ⇐ 1;
for (i = n− 2; i >= 0; i−−) do

sum ⇐ A[i + 1] + A[i] + c;
if sum == 2||sum == 3 then

c ⇐ 1;
end
if sum == 0||sum == 1 then

c ⇐ 0;
end
if sum == 0||sum == 2 then

B[i] ⇐ ‘0′;
end
if sum == 1||sum == 3 then

B[i] ⇐ ‘1′;
end

end
if c == 1 then

result ⇐ “10′′‖B;
end
else

result ⇐ ‘1′‖B;
end
return result;

Algorithm 1: Input an extremely large integer x that is represented in binary like
A[0]‖...‖A[n − 1]. Output result = 3 ∗ x + 1. In code “||” means “or”. “‖” is con-
catenation.

Ratio Goes to 1 Asymptotically - with the Growth of Starting
Integers

We observe and conjecture that the ratio goes to 1 asymptotically with the growth of starting

integers, by empirical analysis. That is,

lim
n→∞

r(n) = 1.
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Data: x
Result: 3 ∗ x + 1.
B[n− 1] ⇐ ‘0′;
c ⇐ 1;
for (i = n− 2; i >= 0; i−−) do

if (A[i + 1], A[i], c) == (‘0′, ‘0′, 0) then
c ⇐ 0, B[i] ⇐ ‘0′, continue;

end
if (A[i + 1], A[i], c) == (‘0′, ‘0′, 1)||(‘0′, ‘1′, 0)||(‘1′, ‘0′, 0) then

c ⇐ 0, B[i] ⇐ ‘1′, continue;
end
if (A[i + 1], A[i], c) == (‘0′, ‘1′, 1)||(‘1′, ‘0′, 1)||(‘1′, ‘1′, 0) then

c ⇐ 1, B[i] ⇐ ‘0′, continue;
end
if (A[i + 1], A[i], c) == (‘1′, ‘1′, 1) then

c ⇐ 1, B[i] ⇐ ‘1′, continue;
end

end
if c == 1 then

result ⇐ “10′′‖B;
end
else

result ⇐ ‘1′‖B;
end
return result;

Algorithm 2: Input an extremely large integer x. Output result = 3 ∗ x + 1. In this
enhancement, bit addition is replaced by logical condition judgement.

Table 2 shows the trend of ratio.

Randomness Evaluation of Computation Sequence - by NIST
Test Suite and GM/T

We discover that d(n) is random for sufficient large n. Of course, ‘I’ (or ‘O’) in the sequence

d(n) should be replaced by ‘1’ (or ‘0’), respectively. That is, each computation in the sequence

is deterministic, but the computation sequence overall presents randomness.
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Data: x
Result: 3 ∗ x + 1.
c ⇐ 1;
for (i = n− 2; i >= 0; i−−) do

if (A[i + 1], A[i], c) == (‘0′, ‘0′, 0) then
c ⇐ 0, A[i + 1] ⇐ ‘0′, continue;

end
if (A[i + 1], A[i], c) == (‘0′, ‘0′, 1)||(‘0′, ‘1′, 0)||(‘1′, ‘0′, 0) then

c ⇐ 0, A[i + 1] ⇐ ‘1′, continue;
end
if (A[i + 1], A[i], c) == (‘0′, ‘1′, 1)||(‘1′, ‘0′, 1)||(‘1′, ‘1′, 0) then

c ⇐ 1, A[i + 1] ⇐ ‘0′, continue;
end
if (A[i + 1], A[i], c) == (‘1′, ‘1′, 1) then

c ⇐ 1, A[i + 1] ⇐ ‘1′, continue;
end

end
if c == 1 then

A[0] = ‘0′, result ⇐ ‘1′‖A;
end
else

result ⇐ A;
end
result ⇐ A‖‘0′;
return result;

Algorithm 3: Input an extremely large integer x. Output result = 3 ∗ x + 1. In this
enhancement, B[i] is omitted by using A[i + 1].

The observation that the r(n) goes to 1 when n grows in above section provides a witness

on d(n) is a random sequence when n is sufficient large in this section. The evaluation on

randomness of d(n) in this section confirm again the empirical analysis on r(n) in above section.

The NIST Test Suite (7,8) is applied to verify the randomness of an inputting bit sequence.

Here inputting bit sequence is Collatz computation sequence for a randomly selected large

integer, after ‘I/O’ in the sequence is replaced by ‘1/0’, respectively. The evaluation metrics by

NIST Test Suite have two folders as follows: (1) The proportion of inputting sequences that pass
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Table 2: r(n) is the count of ‘O’ over the count of ‘I’. abs(x) returns the absolute value of x.
‖(n)2‖ s(n) ‘I’ ‘O’ r(n) abs(1− r(n))

10 83 46 37 0.8043478131294251 0.1956521868705749
20 83 40 43 1.0750000476837158 0.0750000476837158
30 166 86 80 0.9302325844764710 0.0697674155235290

100 550 284 266 0.9366196990013123 0.0633803009986877
500 2197 1071 1126 1.0513539314270020 0.0513539314270020

1000 5016 2534 2482 0.9794790744781494 0.0205209255218506
10000 49017 24617 24400 0.9911849498748779 0.0088150501251221
100000 485260 243072 242188 0.9963632225990295 0.0036367774009705
500000 2420805 1211893 1208912 0.9975402355194092 0.0024597644805908

1000000 4812415 2405366 2407049 1.0006996393203735 0.0006996393203735
2000000 9644913 4823403 4821510 0.9996075630187988 0.0003924369812012
3000000 14473280 7238834 7234446 0.9993938207626343 0.0006061792373657
4000000 19275810 9637963 9637847 0.9999879598617554 0.0000120401382446
5000000 24081026 12038787 12042239 1.0002866983413696 0.0002866983413696
6000000 28911397 14455482 14455915 1.0000299215316772 0.0000299215316772

a statistical test. (2) The distribution of P-values that checks whether the being tested sequences

are uniformly distributed.

The significance level is 0.01. The length of testing samples is suggested to 1000000 bits.

The other parameters are by default. The test results on existing 15 test metrics by NIST Test

Suite are listed in Table 3. The distribution of P-values can be evaluated by a P-value of the

P-values (P − valueT ), which is larger than 0.0001 (if applicable), thus the sequences can be

considered to be uniformly distributed. (The details on the test files are provided in supplemen-

tary materials such as many files named finalAnalysisReport.txt.)

We also use GM/T 0005-2021 (9) for evaluating the randomness of Collatz computation

bit sequences. Some of test items, namely, 7, 8, 14, 15 in NIST SP800-22 are not included in

the GM/T 0005-2021 specification, but 4 other test items are included - the Poker test, Runs

Distribution Test, Binary Derivative Test, the Autocorrelation Test. The significance level is

0.01. The length of testing samples should be 1000000 bits. All testing sequences pass the
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Table 3: Test Results. Pass rate 1: The minimum pass rate for each statistical test with the
exception of the random excursion (variant) test. Pass rate 2: The minimum pass rate for the
random excursion (variant) test.

Length of Length of Number Length The Minimum The Minimum
Staring Collatz of of Pass Rate 1 Pass Rate 2
Integer Computation Samples a

Sequence Sample
500000 2420805 100 24208 96% NA
500000 2420805 100 24200 96% NA
500000 2420805 100 24000 96% NA
1000000 4812415 200 24062 193/200=96.5% NA
1000000 4812415 160 30070 154/160=96.25% NA
1000000 4812415 100 48000 96/100=96% NA
2000000 9644913 400 24112 390/400=97.5% NA
2000000 9644913 300 32149 291/300=97% NA
2000000 9644913 100 96449 96/100=96% 7/8=87.5%
2000000 9644913 60 160748 57/60=95% 8/9=88.89%
3000000 14473280 700 20676 685/700=97.86% NA
3000000 14473280 400 36183 390/400=97.5% NA
3000000 14473280 100 144732 96/100=96% 15/17=88.24%
3000000 14473280 90 160814 86/90=95.56% 9/11=81.82%
3000000 14473280 10 1447328 8/10=80% 5/6=83.33%
4000000 19275810 1000 19275 980/1000=98% NA
4000000 19275810 500 38551 488/500=97.6% 8/9=88.89%
4000000 19275810 100 192758 96/100=96% 28/30=93.33%
4000000 19275810 19 1014516 17/19=89.47% 11/13=84.62%
5000000 24081026 1000 24081 980/1000=98% NA
5000000 24081026 700 34401 685/700=97.86% NA
5000000 24081026 440 54729 429/440=97.5% 10/12=83.33%
5000000 24081026 100 240810 96/100=96% 29/31=93.55%
5000000 24081026 24 1003376 22/24=91.67% 15/17=88.24%
6000000 28911397 1000 28911 980/1000=98% NA
6000000 28911397 700 41301 685/700=97.86% 12/14=85.71%
6000000 28911397 440 65707 429/440=97.5% 13/15=86.67%
6000000 28911397 100 289113 96/100=96% 31/34=91.18%
6000000 28911397 28 1032549 26/28=92.86% 16/18=88.89%

evaluation of GM/T 0005-2021 (Indeed, for starting integer with 100000 bits, all tests pass. For

10000 bits, only one test, i.e., Universal Test, fails). The source code for GM/T 0005-2021 test
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suite can be downloaded from GitHub (10).

Random Bit Sequence Generator - by only Logic Gates

Due to the evaluations in above section, we thus can propose a method for random bit sequence

generator. The rationale is quite simple - randomly select x ∈ Z+ whose (x)2 is sufficient large.

Do following steps iteratively: if x%2 = 1, then output 1 and x ⇐ (3x + 1)/2; if x%2 = 0,

then output 0 and x ⇐ x/2.

Random bit sequence generator algorithm Alg.4 is proposed as follows:

The proposed algorithm relies on only logical condition judgement, which is much more

lightweight than Chaos-based algorithms for random bit sequence generator, e.g., Logistics,

Tent, Chebyshev. The other algorithms relying on number theory computation such as modular

exponentiation are also computation-intensive.

From the viewpoint of Chaos, the simplest mapping for Chaos is discovered in this paper

(only by logical computation).

The proposed algorithm does not rely on any dedicated hardware such as LSFR (Linear

Shift Feedback Register). It is suitable for software implementation for random bit sequence

generator. Note that, the C language for implementing the algorithm is less than 100 lines (see

Data S7.).

The staring integer x that is imported into the algorithm can be looked as a seed for the

random bit sequence generator. The bit length of x and T are both security thresholds.

In ordinary laptop, the throughput (i.e., generated bits per second) of random bit sequence

generator is 2420805/(64 ∗ 60 + 29) = 2420805/3869 = 625.693bits/s = 78.2bytes/s (recall

Table 1, ‖(x)2 = 500000‖, s(n) = 2420805, timing cost is 1h4m29s).

Note that, the processing can be bit-wise parallelization. Check the LSB of the array. If it

is 0, then output random bit 0, remove it, and check next LSB of array. If it is 1, then output

14



Data: x ∈ Z+, bit length of x is n, n ≥ 500000. T is a threshold for ending, e.g., 100.
Result: Random Bit Sequence RBG.
while len(x) > T do

n ⇐ len(x);
if A[n− 1] == 0 then

RBG ⇐ RBG‖‘0′, A[n− 1] ⇐ ‘\0′, x ⇐ A;
end
else

RBG ⇐ RBG‖‘1′, c ⇐ 1;
for (i = n− 2; i >= 0; i−−) do

if (A[i + 1], A[i], c) == (‘0′, ‘0′, 0) then
c ⇐ 0, A[i + 1] ⇐ 0, continue;

end
if (A[i + 1], A[i], c) == (‘0′, ‘0′, 1)||(‘0′, ‘1′, 0)||(‘1′, ‘0′, 0) then

c ⇐ 0, A[i + 1] ⇐ 1, continue;
end
if (A[i + 1], A[i], c) == (‘0′, ‘1′, 1)||(‘1′, ‘0′, 1)||(‘1′, ‘1′, 0) then

c ⇐ 1, A[i + 1] ⇐ 0, continue;
end
if (A[i + 1], A[i], c) == (‘1′, ‘1′, 1) then

c ⇐ 1, A[i + 1] ⇐ 1, continue;
end

end
if c == 1 then

A[0] ⇐ ‘0′, x ⇐ ‘1′‖A;
end
else

x ⇐ A;
end

end
end
return RBG;

Algorithm 4: Random bit sequence generator algorithm. Suppose binary representation
of x is A[0]‖...‖A[n− 1].

random bit 1. The other bits in the array start to update. Once the LSB of the other bits are

updated, the next random bit can be out and the others can start to update. That is, each bits can

be computed in parallel once bit information is available, by full pipelines for all bits.
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Certainly, special hardware can also be designed and constructed for the algorithm for fur-

ther improving the throughput, Fig.2 shows the rationale of possible hardware design. “If-Then”

module can be implemented by dedicated hardware such as only logic gates (e.g., and/or gates).

For example, the register has sufficient redundant units (denoted as “#”) for storing 1 more

bit when last c = 1 in a round of (3x + 1)/2 computation. If LSB(x) = 1 (i.e., A[n− 1] = 1),

then output random bit 1, update and shift right with feedback the register. Otherwise, output

random bit 0 and shift right 1 bit of the register. Besides, in “If-Then” module, if and only if

one input is “#”, there exists one more update line to “#” unit.

A[n-1]A[n-2]A[2]A[1]A[0]

c

If-Then Logic Gates

#

c

If-Then Logic Gates

A[0]#

#
1/0

Figure 2: Possible hardware design of random bit sequence generator.

Conclusion

In this paper, we verify the largest integer with 6000000 bits for Collatz conjecture. It can return

to 1 and much larger than current known integers that is 128 bits. We also propose algorithms

that can verify extremely large integers for Collatz conjecture, by changing multiplication into

bit addition, and further into logical condition judgement. We discover that the ratio (i.e., the

count of x/2 over the count of (3x + 1)/2 in d(n)) goes to 1 asymptotically with the growth of

starting integer n. We discover that the Collatz computation sequence of sufficient large inte-

gers is random (pseudorandom). We randomly select some sufficient large integers and obtain
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their Collatz computation sequence, and all the sequences can pass the evaluation of NIST ran-

domness evaluations and GM/T 0005-2021. We thus propose a random bit sequence generator

algorithm by using the discovery. All source codes to compute Collatz computation sequences

and the data (namely, computation sequences consisting of ‘I’ and ‘O’ which represents ‘1’

and ‘0’ respectively) are available in open accessible venue (and provided as supplementary

materials).

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Sum-

mary linked to this article.

Data availability

Data outputted by our codes and the analysis of the data can be downloaded (11). Some exam-

ples for the data are included as Supplementary Data S1-S9.

Code availability

All codes required for the paper is ANSI C, and can be downloaded (11).
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