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Abstract. End-to-end authenticity in public networks plays a significant role. Namely, without
authenticity, the adversary might be able to retrieve even confidential information straight away by
impersonating others. Proposed solutions to establish an authenticated channel cover pre-shared key-
based, password-based, and certificate-based techniques. To add confidentiality to an authenticated
channel, authenticated key exchange (AKE) protocols usually have one of the three solutions built
in. As an amplification, hybrid AKE (HAKE) approaches are getting more popular nowadays and
were presented in several flavors to incorporate classical, post-quantum, or quantum-key-distribution
components. The main benefit is redundancy, i.e., if some of the components fail, the primitive still
yields a confidential and authenticated channel. However, current HAKE instantiations either rely
on pre-shared keys (which yields inefficient end-to-end authenticity) or only support one or two of
the three above components (resulting in reduced redundancy and flexibility).
In this work, we present an extension of a modular HAKE framework due to Dowling, Brandt
Hansen, and Paterson (PQCrypto’20) that does not suffer from the above constraints. While their
instantiation, dubbed Muckle, requires pre-shared keys (and hence yields inefficient end-to-end au-
thenticity), our extended instantiation called Muckle+ utilizes post-quantum digital signatures.
While replacing pre-shared keys with digital signatures is rather straightforward in general, this
turned out to be surprisingly non-trivial when applied to HAKE frameworks (resulting in adapted
proof techniques).
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1 Introduction

Authenticated key exchange (AKE) is an essential cryptographic building block [DH76,Mau93,BR95].
From user-to-user to server-to-server communication, data exchanged between any two parties is expected
to be confidential even in the event of potentially active attacks on the communication channel. Ensuring
confidentiality between two parties first requires that one can distinguish friend from foe. Specifically, if
an adversary can impersonate a party in the system, all confidentiality guarantees are void since in that
case the communication with the adversary is secured against outsiders, but the adversary itself may
gain access to all data. Therefore, authenticity is a necessary requirement for achieving confidentiality
on any level in any system and in the specific context of communication we thus require end-to-end
authenticity. That is, both parties can directly verify the authenticity of the other party regardless of how
many untrusted network links are located between them.

For network protocols on public or untrusted networks, well-established protocols such as Transport
Layer Security (TLS) [Res18], IPsec [Kau05], QUIC [IT21], WireGuard [Don17] employ various forms of
an end-to-end AKE [BR95]; on the one hand to authenticate the other peer and on the other hand to
establish an ephemeral session key to secure the communication channel. Depending on the concrete appli-
cation, AKE protocols offer certificate-based authentication, password-based authentication, pre-shared
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key-based authentication whereas the secret keys are exchanged often using an ephemeral Diffie-Hellman
key exchange or – on a more abstract level – with a key exchange using ephemeral key encapsulation
mechanism (KEM) keys. Authentication in those protocols may be unilateral, e.g., only the initiator ver-
ifies the authenticity of the responder which is the default deployment mode of TLS on the web as the
authentication of users is managed on the application layer, or mutual.

End-to-End Authentication Techniques. We will now discuss different techniques to achieve authen-
ticity for key-exchange protocols: in a key exchange with pre-shared keys (PSK), both peers are required
to agree on a secret key off-channel. This key is then part of the key-exchange protocol (e.g., is used as
input in the key derivation function to derive the session keys) and only if the key is known, the protocol
can be completed successfully. As a folklore consequence, networks with n peers necessitate the initial
setup of O(n2) PSKs to uniquely identify each peer. Otherwise, i.e., where 3 or more peers share the
same PSK, peers would be unable to distinguish one communication partner from the other. Moreover,
dynamically changing the network components becomes inefficient, e.g., if a new peer is added to the
network, fresh PSKs have to be distributed to all other peers off-channel.

Password-based authenticated key exchanges [BPR00,BMP00] are of interest in a multi-client, single-
sever scenario where each client is uniquely identified using a (low-entropy) password. Similar to the PSK
approach, the password is an intrinsic part of the exchange which cannot be completed without knowledge
of the specific password. As the scenario we are considering is not a multi-client single-server scenario
and, more importantly, the password-based authentication is related to a PSK authentication scenario,
we will omit further discussions of this type of key exchange.

Finally, with certificate-based protocols, peers have long-term public keys (typically of a digital sig-
nature scheme) whereas certificate authorities ensure the authenticity of these keys and establish a chain
of trust. During a protocol run, peers are then required to sign certain messages to authenticate the
exchange. A prominent example of such a protocol is SIGMA [Kra03] which serves as a prototype for
the key exchange deployed in IPsec [Kau05], for example. Recently, due to the bandwidth requirements
of post-quantum signature schemes, variants with long-term KEM keys such as KEMTLS [SSW20] are
also gaining interest as such variants are able to provide implicit server-to-client authentication. In this
protocol, instead of signing the handshake transcript, after establishing an ephemeral secret, the client
encapsulates another secret using the long-term KEM key embedded in the server’s certificates. The server
can only provide a valid key confirmation message if it is able to decapsulate the ciphertext with respect
to the long-term key and thereby implicitly proves knowledge of the corresponding long-term secret key.
This change in the protocol incurs the cost of an additional message but KEMTLS benefits from reduced
runtime and bandwidth requirements.

While PSK key exchanges can be implemented solely from symmetric-key primitives, managing the
required keys is a complex task. As no key material is available during system setup, those keys need to be
securely exchanged via trusted couriers, installed on devices in the fab, or other methods are required to
allow the keys be installed without relying on a yet unsecured communication channel. This task becomes
more complex as the network grows and infeasible if parties have no trivial way to securely exchange the
PSK.

Authenticated Key Exchanges Resilient Against Quantum Attacks. End-to-end post-quantum
AKE protocols have already been studied, e.g., most prominently in the area of Transport Layer Security
(TLS) [BCNS15,Lan16,KSL+19,PST20,SSW20]. Moreover, standardization efforts towards post-quantum
(hybrid) key exchanges are already in progress while NIST is expected to publish the first standards on
post-quantum key-exchange mechanisms and digital signatures soon.3 For most practical use-cases that
require security against cryptographically relevant quantum computers, the post-quantum cryptography
(PQC) paradigm seems to be a strong fit, although some techniques are rather recent and severe attacks
are happening [Beu22,CD23].
3 https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-05.html, https://csrc.nist.gov/
projects/post-quantum-cryptography
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For highly secure use-cases, quantum-key distribution (QKD) [ABB+14,MNR+20] is gaining quite
some attention recently with an expected market growth of 12 billion USD in 10 years.4 Moreover, the
European initiative for a quantum communication infrastructure named EuroQCI was recently estab-
lished.5 The benefit of a QKD system is that it guarantees information-theoretic security (ITS) compared
to conjectured computational security of post-quantum primitives. However, QKD comes with significant
limitations such as range and costly hardware.

To achieve ITS, QKD must use ITS authentication mechanisms [PAL+16] which can be enforced by
relying on PSK-based authentication methods. Noteworthy, the PSKs for the individual QKD links are not
enough to establish authenticity for the full path through the network as they only ensure authenticity
for one link. Moreover, given the limited range of QKD link transmissions, all nodes in between are
turned into so-called trusted nodes [MNR+20]. With trusted nodes, however, deployment in large-scale
networks may become even more complex.6 Hence, practical end-to-end authenticity guarantees for the
to-be-anticipated QKD networks are still under investigation.

Since both, the PQC and QKD paradigms, have benefits and downsides, and following the approach
“Don’t put all your eggs in one basket,” we are interested in how to achieve end-to-end authentication
and confidentiality for key exchanges with the best possible security guarantees against future threats.
One promising approach is using hybrid7 techniques.

Hybrid Authenticated Key Exchanges (with Forward and Post-Compromise Security). Hy-
brid AKE (HAKE) approaches are getting more popular nowadays and were presented in several flavors to
incorporate classical (or, non-quantum-safe), PQC, or QKD components [MSU13,BFG19,BBF+19,DHP20].
The main benefit is redundancy, i.e., if some of the components fail, the primitive still yields a con-
fidential and authenticated channel. Moreover, HAKE provides an approach towards the transition of
non-quantum-secure networks to quantum-secure ones.

Particularly interesting is the recently proposed HAKE framework with its instantiation dubbed
Muckle due to Dowling, Brandt Hansen, and Paterson [DHP20]. Muckle combines secret keys obtained
from a QKD network with session keys obtained from a classical and post-quantum secure key encapsula-
tion mechanisms (KEMs). The combination of the keys is performed using a sequence of pseudo-random
function evaluations.

Importantly, Muckle inherits desirable advanced security guarantees which are de-facto standard fea-
tures nowadays for key exchanges, namely, forward and post-compromise security. Forward security is
an important security feature in several domains. Besides being of interest in interactive key-exchange
protocols [Gün90,DvOW92,DDG+20,RSS23], such a security features was studied for public-key encryp-
tion [CHK03,Gro21], digital signatures [BM99,DGNW20], search on encrypted data [BMO17], 0-RTT
key exchange [GHJL17,DJSS18,CRSS20,DGJ+21], updatable cryptography [SS21], mobile Cloud back-
ups [DCM20], proxy cryptography [DKL+18], Tor [LGM+20], and content-delivery networks [DRSS21],
among others.

Forward security allows to evolve secret key material over epochs which particularly mitigates “store-
now-decrypt-later” attacks (such that access to prior ciphertexts or signing capabilities can be restricted
for older epochs). Nowadays, over 99% of Internet sites8 support (some form of) forward security.

4 https://www.reuters.com/article/us-toshiba-cyber-idUSKBN2730KW
5 https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-
infrastructure-euroqci

6 Interestingly, while some approaches even backed by patents (https://www.ipo.gov.uk/p-ipsum/Case/
PublicationNumber/GB2590064) claim to provide long-range QKD networks without trusted nodes (i.e., es-
tablishing a secure channel between any two nodes), a recent work [HAD+22] demonstrates that such claim
cannot be met.

7 We are sticking to the term “hybrid” here as it was coined in prior work on AKEs [DHP20] in the meaning
of combining classical (or, non-quantum-safe), QKD, and post-quantum cryptographic primitives. Other works
may use the term “quantum-safe” to combine QKD and PQC primitives, or different terms.

8 Due to Qualys SSL Labs, https://www.ssllabs.com/ssl-pulse/, accessed in August 2023.
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In the concrete hybrid key-exchange setting, forward security guarantees that prior session keys cannot
be retrieved even if the current session and long-term keys leak. Moreover, even if all classic KEM key
material is leaked (e.g., in the event of a cryptographically relevant quantum computer), old session keys
stay safe due to the PQC and QKD guarantees. Moreover, if additionally all post-quantum KEM keys
should leak, an adversary cannot retrieve old sessions keys due to the QKD guarantees. Conversely, if all
QKD keys leak, the security features of the post-quantum KEM component prevent an adversary from
retrieving old session keys.

Moreover, post-compromise security guarantees that future sessions are safe again (even against adver-
saries that gained access to an old key but do not compromise the system anymore). Thereby, we strictly
require that at least one of the classic, PQC, or QKD components stays secure against a then-passive
attacker.

The Muckle authentication, however, solely relies on the presence of pre-shared keys. Consequently,
Muckle inherits the key management problem of PSKs in large-scale networks discussed above. In this
work, we present an extension of the HAKE framework in [DHP20] via an amplification of their Muckle
scheme with end-to-end authenticity and better efficiency (given that we can rely on multi-path QKD)
while no sacrifices on the security guarantees have to be made.

1.1 Contribution

Our contribution can be summarized as follows:

– We extend Muckle with a certificate-based authentication mechanism via digital signatures and dub it
Muckle+. While replacing pre-shared keys with digital signatures is rather straightforward in general,
this turned out to be surprisingly non-trivial when applied to HAKE frameworks (resulting in adapted
proof techniques). The benefits are that we avoid the usage of PSKs (with its inherent quadratic blow-
up to achieve end-to-end authenticity) which results in more efficient end-to-end HAKE instantiation
than previously known. While gaining significant efficiency and flexibility with our approach compared
to Muckle, to retrieve the same security guarantees, we need that the QKD keys are distributed via
multi-path techniques.

– We implement the Muckle+ protocol and validated its functionality using a small QKD network in
the field. To the best of our knowledge, such a proof-of-concept experiment for HAKEs is the first one
with QKD hardware. Thereby, we can demonstrate the added authenticity guarantees that ensure an
end-to-end secure connection between the initiator and responder.

More on Muckle+ and the Differences to Muckle. The Muckle protocol uses a hybrid approach
combining classical, PQC, and QKD keys through the use of a key derivation function. Muckle requires
a classical and post-quantum KEM as well as data from a QKD channel to create the final shared secret.
Additionally, the protocol relies on a secure pseudorandom function and a message authentication code
(MAC). The latter is used in combination with a QKD pre-shared key to ensure the authenticity of the
key exchange. To avoid such pre-shared keys for authentication, we carefully extend Muckle to allow
certificate-based authentication. Technically, we use digital signatures as a building block instead of PSKs
for authentication.

However, replacing PSKs with digital signatures in HAKE is not straightforward. Using PSKs yield
an interesting cryptographic feature, namely, it guarantees that a sender and a receiver share a common
secret key for end-to-end authentication (leaving the quadratic blow-up in that case on the side for a
moment). Now, if digital signatures are used, we cannot build on such guarantee anymore (as we are in
the public-key setting).

The key observation in the HAKE realm is that in the latter case, we either require a post-quantum
KEM or we need multi-path approaches for the QKD part to guarantee end-to-end authenticity again. As
we want to allow the post-quantum KEM components to fail (as in Muckle), we need that the QKD keys
are distributed using a multi-path approach (essentially, by distributing key components via mutually
disjoint paths from the initiator to the responder such that no individual trusted node knows all of the
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key material depending on some bound of colluding nodes). This is different to Muckle where Muckle
only requires a “single path” to distribute the QKD key. However, as Muckle+ shows its full potential in
larger-scale quantum-secure networks with many nodes, we assume that multiple paths between initiators
and responders are available.

Through this alteration, we achieve the desired security properties, i.e., we are able to endure all
security claims from original Muckle (in particular, forward and post-compromise security) while avoiding
PSKs, which we show by formally proving our variant Muckle+ secure in the HAKE framework. Moreover,
our instantiation allows for an efficient approach to achieve end-to-end security which we justify via an
implementation.

Implementing Muckle+. The implementation of Muckle+ to demonstrate its efficacy follows the typ-
ical structure of both a QKD security application in the sense of the ETSI QKD GS standard documents
(and in particular, ETSI QKD GS 014 [ETS19]) and an authenticated key exchange using application
well-understood from their use on the modern web. Thereby, the initiator of the connection obtains a key
ID and the corresponding key material from a QKD device and transmits the key ID as part of the initial
authenticated key exchange message to the receiver.

By providing an interface the applications that follow the structure of deployed authenticated key
exchanges, we expect to reduce the required effort to integrate the use of QKD keys into applications
that are already using TLS [Res18], QUIC [LRW+17], or similar protocols. Except for configuring the
connection to the local QKD end-point, no further configuration will be necessary to establish secure
channels with any service deployed on the QKD network.

On Further Directions to Achieve End-to-End HAKEs. We expect that end-to-end HAKEs can
be built using further directions. Notably, Schwabe, Stebila and Wiggers proposed KEMTLS [SSW20],
a unilaterally authenticated key exchange protocol where authentication of the responders is performed
using a long-term KEM key. The basic idea is, that after establishing an ephemeral key, the initiator
encapsulates a secret with respect to the responder’s long-term KEM key. The responder can only produce
the authentication tags for session authentication if it can decapsulate using its long term KEM key.
Thereby, the responder is implicitly authenticated via its knowledge of the corresponding private key. We
chose to build Muckle+ with digital signatures for end-to-end authentication as a natural first step and
leave extending Muckle+ with KEMTLS approaches for future work.

1.2 Related Work

Authenticated key exchanges have a long history and are still a very active area of research as they
represent the core component of any protocol for secure communication. Notably, Krawczyk’s Sign-and-
MAC (SIGMA) protocols [Kra03] serve as a template for many of the protocols used in practice. The basic
idea of this template is to combine an ephemeral key exchange using key encapsulation methods (KEMs)
to exchange a fresh shared secret, a signature scheme for authentication of the communication parties
as well as a MAC to authenticate the shared secret. Keys are derived using a pseudorandom function
(PRF). One execution then runs roughly as follows: the initiator produces a new ephemeral KEM key
and sends the public key to the responder. The responder then performs the key encapsulation using
the received public key, signs the produced ciphertext together with the first message to authenticate
itself, and derives a shared secret to authenticate the session using the MAC. Ciphertext, authentication
tag and signature are sent to the initiator. The initiator then decapsulates the shared secret key, verifies
the received signature as well as the authentication tag. In a mutual authentication setting, the initiator
also authenticates itself using the signature scheme, but the session is also always authenticated by the
initiator using the MAC. This information is sent to the responder for verification. Afterwards, the two
parties share an authenticated and fresh secret key.

While SIGMA was originally proposed using Diffie-Hellman for the ephemeral key exchange, presenting
it in terms of KEMs allows us to consider it in a post-quantum setting as we then can instantiate all build
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blocks using post-quantum secure schemes. It can also be extended with responder or initiator privacy
features [Zha16,SSL20,RSW21], whereas the latter be observed in practice as part of the TLS handshake.
With the migration towards post-quantum secure protocols, work on adapting and improving key exchange
protocols based on the performance and bandwidth characteristics of post-quantum secure key encap-
sulation mechanisms and digital signature schemes has commenced [BCNS15,SM16,HKSU20,HNS+21],
though.

In the area of QKD networks, proposals exist to address the trusted-node problem with secret-sharing-
based multipath protocols, e.g. [RK11,RKJ+21], to exchange the secret key. In a similar vein, multipath
authentication protocols have been proposed too, whereas those are built on the assumption that an ad-
versary is unable to compromise multiple nodes in the network. When considering network topologies with
many routes available for connecting any two nodes, it is therefore possible to split sensitive information
into parts (e.g., via secret sharing) and to send the shares via multiple paths instead of one.

For example, Rass and Schartner [RS10] introduced a MAC-based multipath authentication protocol
specifically for the application in quantum networks. In the scenario they consider, two nodes wanting to
communicate in a QKD network may not necessarily establish pre-shared keys. There are however shared
QKD secrets between every node and each of its immediate neighbors. The protocol uses those secrets
in combination with a multipath approach to share an authenticated message between the nodes and
relies on the assumptions that (a) keys created by two adjacent nodes via the QKD channel are secure,
and (b) every node shares a secret key with its neighboring nodes. While the protocol is secure against
k < n compromised paths when executed with n disjoint paths, it does not fit into the typical notion of
an authenticated key exchange and it lacks end-to-end authenticity.

Finally, secure multipath key exchange (SMKEX) [CCG+18] utilizes two disjoint paths to facilitate
authentication and key exchange. The protocol is based on a typical key exchange, but in addition the
second channel is used to send a random nonce that is authenticated using the secret key exchanged via
the first channel. SMKEX therefore ensures unilateral authenticity and computational security against
an active adversary as long as only one path is compromised.

2 Preliminaries

In this section, we briefly recall notions related to (hybrid) authenticated key exchanges.

2.1 Cryptographic Primitives and Schemes

Definition 1 (Pseudo-Random Function). Let F : S ×D → R be a family of functions and let Γ be
the set of all functions D → R. For a PPT distinguisher D we define the advantage function as

AdvPRFD,F (κ) =
∣∣∣Pr [s R←− S : DF(s,·)(1κ) = 1

]
− Pr

[
f

R←− Γ : Df(·)(1κ) = 1
]∣∣∣ .

F is a pseudorandom function (family) if it is efficiently computable and for all PPT distinguishers D
there exists a negligible function ε(·) such that

AdvPRFD,F (κ) ≤ ε(κ).

A PRF F is a dual PRF [BL15], if G : D × S → R defined as G(d, s) = F(s, d) is also a PRF.
We recall the notion of message authentication codes (MACs) as well as digital signature schemes,

and the standard unforgeability notions below.

Definition 2 (Message Authentication Codes). A message authentication code MAC is a triple
(KGen,Sign,Ver) of PPT algorithms, which are defined as:

KGen(1κ) : This algorithm takes a security parameter κ as input and outputs a secret key sk.
Auth(sk,m) : This algorithm takes a secret key sk ∈ K and a m ∈M, and outputs an authentication tag

τ .
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Ver(sk,m, τ) : This algorithm takes a secret key sk, a message m ∈ M, and an authentication tag τ as
input, and outputs a bit b ∈ {0, 1}.

A MAC is correct if for all κ ∈ N, for all sk← KGen(1κ) and for all m ∈M, it holds that

Pr [Ver(sk,m,Auth(sk,m)) = 1] = 1,

where the probability is taken over the random coins of KGen and Auth.

Definition 3 (EUF-CMA security of MAC). For a PPT adversary A, we define the advantage function
in the sense of existential unforgeability under chosen message attacks (EUF-CMA) as

Adveuf-cma
A,MAC (1

κ) = Pr
[
Expeuf-cma
A,MAC (1

κ) = 1
]
,

where the corresponding experiment is depicted in Experiment 1. If for all PPT adversaries A there is a
negligible function ε(·) such that Adveuf-cma

A,MAC (1
κ) ≤ ε(κ), we say that MAC is EUF-CMA secure.

Expeuf-cma
A,MAC(1

κ):

sk← KGen(1κ), Q ← ∅

(m∗, τ∗)← AAuth′,Ver′(1κ)

where oracle Auth′(m):
Q ← Q∪ {m}
return Auth(sk,m)

where oracle Ver′(m, τ):
return Ver(sk,m, τ)

return 1, if Ver(sk,m∗, τ∗) = 1 ∧ m∗ /∈ Q, return 0, otherwise

Experiment 1: EUF-CMA security experiment for a MAC MAC.

Definition 4 (Signature Scheme). A signature scheme Σ is a triple (KGen,Sign,Ver) of PPT algo-
rithms, which are defined as follows:

KGen(1κ) : This algorithm takes a security parameter κ as input and outputs a secret (signing) key sk and
a public (verification) key pk with associated message space M (we may omit to make the message
space M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈M as input, and outputs a signature
σ.

Ver(pk,m, σ) : This algorithm takes a public key pk, a message m ∈ M and a signature σ as input, and
outputs a bit b ∈ {0, 1}.

For correctness, we require that for all κ ∈ N, for all (sk, pk)← KGen(1κ) and for all m ∈M it holds that

Pr [Ver(pk,m,Sign(sk,m)) = 1] = 1,

where the probability is taken over the random coins of KGen and Sign.

Definition 5 (EUF-CMA of Σ). For a PPT adversary A, we define the advantage function in the sense
of existential unforgeability under chosen message attacks (EUF-CMA) as

Adveuf-cma
A,Σ (1κ) = Pr

[
Expeuf-cma
A,Σ (1κ) = 1

]
,

where the corresponding experiment is depicted in Experiment 2. If for all PPT adversaries A there is a
negligible function ε(·) such that Adveuf-cma

A,Σ (1κ) ≤ ε(κ), we say that Σ is EUF-CMA secure.
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Expeuf-cma
A,Σ (1κ):

(sk, pk)← KGen(1κ), Q ← ∅
(m∗, σ∗)← ASign(pk)

where oracle Sign′(m):
Q ← Q∪ {m}
return Sign(sk,m)

return 1, if Ver(pk,m∗, σ∗) = 1 ∧ m∗ /∈ Q, return 0, otherwise

Experiment 2: EUF-CMA security experiment for a digital signature scheme Σ.

We recall the notion of key-encapsulations mechanisms (KEMs), and the standard chosen-plaintext
and chosen-ciphertext notions below.

Definition 6 (Key-Encapsulation Mechanism). A key-encapsulation mechanism scheme KEM with
key space K consists of the three PPT algorithms (KGen,Enc,Dec):

KGen(1κ) : This algorithm takes a security parameter κ as input, and outputs public and secret keys
(pk, sk).

Enc(pk) : This algorithm takes a public key pk as input, and outputs a ciphertext c and key K.
Dec(sk, c) : This algorithm takes a secret key sk and a ciphertext c as input, and outputs K or {⊥}.

We call a KEM correct if for all κ ∈ N, for all (pk, sk)← KGen(κ), for all (c,K)← Enc(pk), we have that

Pr[Dec(sk, c) = K] = 1,

where the probability is taken over the random coins of KGen and Enc.

Definition 7 (IND-CPA and IND-CCA security of KEM). For a PPT adversary A, we define the
advantage function in the sense of indistinguishability under chosen-plaintext attacks (IND-CPA) and
indistinguishability under chosen-ciphertexts attacks (IND-CCA) as

Advind-cpaA,KEM(1
κ) =

∣∣∣∣Pr [Expind-cpaA,KEM(1
κ) = 1

]
− 1

2

∣∣∣∣ , and

Advind-ccaA,KEM(1
κ) =

∣∣∣∣Pr [Expind-ccaA,KEM(1
κ) = 1

]
− 1

2

∣∣∣∣
where the corresponding experiments are depicted in Experiment 3. If for all PPT adversaries A there is
a negligible function ε(·) such that

Advind-cpaA,KEM(1
κ) ≤ ε(κ) or Advind-ccaA,KEM(1

κ) ≤ ε(κ),

then we say that KEM is IND-CPA or IND-CCA secure, respectively.

2.2 Hybrid Authenticated Key Exchange

We recall the hybrid authenticated key exchange (HAKE) security model due to Dowling et al. [DHP20]
which already foresees the use of long-term post-quantum digital signature keys. For a general treatment
of authenticated key exchanges (AKE), we refer the reader to [DvOW92,KL14]. The HAKE security
experiment Exphake,cleanA,Π,nP ,nS ,nT

is described as follows:
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Expind-TA,KEM(κ):

(pk, sk)← KGen(1κ)

(c∗,K0)← Enc(pk),K1
R←− K

Q ← ∅, b R←− {0, 1}κ

b∗ ← AO(pk, c∗,Kb)

where O = {Dec′} if T = cca with oracle Dec′(c):
Q ← Q∪ {c}
return Dec(sk, c)

return 1, if b = b∗ ∧ c∗ /∈ Q, return otherwise 0

Experiment 3: IND-CPA and IND-CCA security experiments for KEM with T ∈ {cpa, cca}.

Execution environment. We consider a set of nP parties P1, . . . , PnP
which are able to run up to nS

sessions of a key-exchange protocol between them, where each session may consist of nT different stages
of the protocol. Each party Pi has access to its long-term key pair (pki, ski) and to the public keys of all
other parties. Each session is described by a set of session parameters:

– ρ ∈ {init, resp}: The role (initiator or responder) of the party during the current session.
– pid ∈ nP : The communication partner of the current session.
– stid ∈ nT : The current stage of the session.
– α ∈ {active, accept, reject,⊥}: The status of the session. Initialized with ⊥.
– mi[stid], i ∈ {s, r}: All messages sent (i = s) or received (i = r) by a session up to the stage stid.

Initialized with ⊥.
– k[stid]: All session keys created up to stage stid. Initialized with ⊥.
– exk[stid], x ∈ {q, c, s}: All ephemeral post-quantum (q), classical (c) or symmetric (s) secret keys

created up to stage stid. Initialized with ⊥.
– pss[stid]: The per-session secret state (SecState) that is created during the stage stid for the use in

the next stage.
– st[stid]: Storage for other states used by the session in each stage.

We describe the protocol as a set of algorithms (f,KGenXY,KGenZS):

– f(κ, pki, ski, pskidi, pski, π,m) → (m′, π′): A probabilistic algorithm that represents an honest ex-
ecution of the protocol. It takes a security parameter κ, the long-term keys (pki, ski), the session
parameters π representing the current state of the session, and a message m, and outputs a response
m′ and the updated session state π′.

– KGenXY (κ) → (pk, sk): A probabilistic asymmetric key-generation algorithm that takes a security
parameter κ and creates a public-secret-key pair (pk, sk). X ∈ {E,L} determines whether the created
key is an ephemeral (E) or a long-term (L) secret key. Y ∈ {Q,C} determines whether the key is
classical (C) or post-quantum (Q).

– KGenZS(κ)→ (psk, pskid): A probabilistic symmetric key-generation algorithm that takes a security
parameter κ and outputs symmetric keying material (psk). Z ∈ {E,L} determines whether the created
key is an ephemeral (E) or a long-term (L) secret key.

For each party P1, . . . , PnP
, classical as well as post-quantum long-term keys are created using the

corresponding KGenXY algorithms. The challenger then queries a uniformly random bit b← {0, 1} that
will determine the key returned by the Test query. From this point on, the adversary may interact with
the challenger using the queries defined in the next section. At some point during the execution of the
protocol, the adversary A may issue the Test query and present a guess for the value of b. If A guesses
correctly and the session satisfies the cleanness predicate, the adversary wins the key-indistinguishability
experiment.
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Adversarial Interaction. The HAKE framework defines a range of queries that allow the attacker to
interact with the communication:

– Create(i, j, role)→ {(s),⊥}: Initializes a new session between party Pi with role role and the partner
Pj . If the session already exists, then the query returns ⊥, otherwise the session (s) is returned.

– Send(i, s,m) → {m′,⊥}: Enables A to send messages to sessions and receive the response m′ by
running f for the session πs

i . Returns ⊥ if the session is not active.
– Reveal(i, s, t): Provides A with the session keys corresponding to a session πs

i if the session is in the
accepted state. Otherwise, ⊥ is returned.

– Test(i, s, t) → {kb,⊥}: Provides A with the real (if b = 1) or random (b = 0) session key for the
key-indistinguishably experiment.

– CorruptXY (i)→ {key,⊥}: Provides A with the long-term XY ∈ {SK,QK,CK} keys for Pi. If the key
has been corrupted previously, then ⊥ is returned. Specifically:
• CorruptSK: Reveals the long-term symmetric secret (if available).
• CorruptQK: Reveals the post-quantum long-term key (if available).
• CorruptCK: Reveals the classical long-term key (if available).

– CompromiseXY (i, s, t) → {key,⊥}: Provides A with the ephemeral XY ∈ {QK,CK,SK,SS} keys
created during the session πs

i prior to stage t. If the ephemeral key has already been compromised,
then ⊥ is returned. Specifically:
• CompromiseQK: Reveals the ephemeral post-quantum key.
• CompromiseCK: Reveals the ephemeral classical key.
• CompromiseSK: Reveals the ephemeral quantum key.
• CompromiseSS: Reveals the ephemeral per session state (SecState).

Matching sessions. Furthermore, we recall the definitions of matching sessions [LKZC07] and origin
sessions [CF12] which covers that the two parties involved in a session have the same view of their
conversation.

Definition 8 (Matching sessions). We consider two sessions πs
i and πr

j in stage t to be matching if all
messages sent by the former session πs

i .ms[t] match those received by the later πr
j .mr[t] and all messages

sent by the later session πr
j .ms[t] are received by the former πs

i .mr[t].
πs
i is considered to be prefix-matching with πr

j if πs
i .ms[t] = πr

j .mr[t]
′ where πr

j .mr[t] is truncated to
the length of πs

i .ms[t] resulting in πr
j .mr[t]

′.

Definition 9 (Origin sessions). We consider a session πs
i to have an origin session with πr

j if πs
i

matches πr
j or if πs

i prefix-matches πr
j .

HAKE security. Dowling et al. [DHP20] define key indistinguishability (i.e., what we dub HAKE security)
with respect to a predicate clean. However, their predicate is specific to Muckle and, hence, we therefore
only give the formal security definition next and postpone the discussion of the predicate to Section 3.3.

Definition 10 (HAKE security). Let Π be a key-exchange protocol and nP , nS , nT ∈ N. For a predicate
clean and an adversary A, we define the advantage of A in the HAKE key-indistinguishability game as

Advhake,cleanA,Π,nP ,nS ,nT
(κ) =

∣∣∣Pr [Exphake,cleanA,Π,nP ,nS ,nT
(κ) = 1

]∣∣∣ .
We say that Π is HAKE-secure if Advhake,cleanA,Π,nP ,nS ,nT

(κ) is negligible in the security parameter κ for all A.

3 Extending Muckle with Signature-Based Authentication

In this section, we recap Muckle [DHP20] and present our novel variant Muckle+.
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3.1 Muckle

The Muckle protocol combines classical, PQC, and QKD keys through the use of a key derivation function.
More concretely, Muckle requires classical and post-quantum key encapsulation mechanisms (KEMs) as
well as data from a QKD channel (i.e., a symmetric key kq) to create the final shared secret between
communication partners.

Muckle is a multi-stage protocol. While a Muckle instance is active between two parties, a single stage
is run repeatedly, creating a pair of session keys during each execution. The communication that occurs
during one stage of the protocol is detailed in Figure 1.

Initiator Responder
PSK, headerI , SecState, ℓI , ℓR, ℓc, ℓpq, kq PSK, headerR, SecState, ℓI , ℓR, ℓc, ℓpq, kq

(pkc, skc)← KEMc.KGen(1
κ)

(pkpq, skpq)← KEMpq.KGen(1
κ)

m0 ← (headerI , pkc, pkpq)
mkeyI ← F(F(PSK, SecState), ℓI) mkeyI ← F(F(PSK, SecState), ℓI)

τ0 ← MAC.Auth(mkeyI ,m0) MAC.Ver(mkeyI ,m0, τ0)
?
= 1

m0, τ0−−−−−−−−−−→ cc, rkeyc ← KEMc.Enc(pkc)
cpq, rkeypq ← KEMpq.Enc(pkpq)

m1 ← (headerR, cc, cpq)
mkeyR ← F(F(PSK, SecState), ℓR) mkeyR ← F(F(PSK, SecState), ℓR)

MAC.Ver(mkeyR,m1, τ1)
?
= 1 τ1 ← MAC.Auth(mkeyR,m1)

rkeyc ← KEMc.Dec(skc, cc)
m1, τ1←−−−−−−−−−−

rkeypq ← KEMpq.Dec(skpq, cpq)
kc ← F(rkeyc, ℓc)

kpq ← F(rkeypq, ℓpq)

k0 ← F(kpq,m0∥m1)
k1 ← F(kc, k0)
k2 ← F(kq, k1)

k3 ← F(SecState, k2)
SecState′, kI , kR ← F(k3,m0∥m1∥ctr)

SecState← SecState′

ctr ← ctr + 1

Fig. 1. One stage of the Muckle protocol [DHP20] with a classical KEM KEMc, a post-quantum KEM KEMpq, a
MAC MAC, and a PRF F whereas kq represents the symmetric key from the QKD component (provided out-of-
band).

The Muckle key exchange requires a symmetric pre-shared key PSK and unique party identifiers
(implicit in ℓI and ℓR) to be distributed to the communication partners before the key exchange. The
parties also have to set an initial value for the session secret state SecState. To begin a new session, the
initiator uses the classical KEM KEMc and post-quantum KEM KEMpq to create a classical key pair
(pkc, skc) and a post-quantum key pair (pkpq, skpq), respectively. Both public keys are then combined with
a header containing meta-data into the message m0. The PRF F is applied over PSK and SecState to
create a unique value for the current session, which is then used as an input in another round of the PRF
with the value ℓI resulting in the message key mkeyI . The key mkeyI is used as the MAC key to create
a tag τ0 for the message m0. The message m0 and the tag τ0 are then sent to the responder.

Receiving the transmission, the responder will check the authenticity of the message m0 by verifying
the tag τ0 with its mkeyI (where mkeyI is derived via PSK, shared SecState, and ℓI). If the verification
succeeds, the responder can now use the encapsulation functions of the KEMs to create the keys rkeyc
and rkeypq as well as the ciphertexts cc and cpq, respectively. The responder proceeds to create a message
m1 and a tag τ1 analogously to the initiator’s MAC procedure, but using the ciphertexts instead of the
public keys and the responder value headerR.

m1 and τ1 are then transmitted to the initiator, who can use them in the KEM decapsulation function
to get the keys rkeyc and rkeypq (after successful verification of m1). From this point on, the initiator
and responder share the same information and proceed with the same steps.
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Table 1. Comparison of the protocols in terms of provided security guarantees: KC (key confirmation), PFS
(perfect forward secrecy; synonymously to forward security), and PCS (post-compromise security).

protocol authentication KC PFS PCS

multipath MAC-based [RS10] initiator
SMKEX [CCG+18] responder ∗ ∗

post-quantum
SIGMA [Kra03] explicit mutual ✓ ✓
KEMTLS [SSW20] explicit1 responder/mutual ✓2 ✓ ?3

Muckle [DHP20] explicit mutual ✓ ✓ ✓4

∗ not applicable (no long-term secret)
1 implicit for client during mutual authentication
2 only for responder authentication
3 PCS is not explicitly shown
4 under the conditions discussed in Section 3.1

Table 2. Values for the contexts used in the Muckle+ key schedule. The context inputs follow the choices in the
TLS 1.3 handshake [DFGS21].

Label Context Input Label Context Input

Hε “” H0 H(“”)
H1 H(m1∥m2) H2 H(m1∥ . . . ∥m3)
H3 H(m1∥ . . . ∥m4)

First, the both keys are entered into the PRF F together with labels ℓc and ℓpq to create the further
keys. Then, the key schedule starts combining all the keys into a final shared secret kI , kR and setting a
new session state as well as incrementing the session counter.

Muckle offers mutual authentication, forward security, and post-compromise security. Post-compromise
security is guaranteed under the condition that at least one previous stage has been completed without
the attacker compromising all the ephemeral (classical, QKD, post-quantum and session secret) secrets,
and that the attacker has been only acting passively since then.

3.2 Extending Muckle with Signature-Based Authentication

In Table 1, we compare the security properties of the protocols we have discussed in the introduction
and Muckle. From this comparison, we can conclude that Muckle offers the most features and is therefore
a suitable candidate for realizing end-to-end secure hybrid authenticated key exchanges. However, the
protocol relies on PSKs for end-to-end authentication. As the other components including the QKD-
layer do not provide end-to-end authentication (cf. Section 3.1), we extend Muckle to also offer mutual
signature-based authentication. Through this alteration, we preserve the desirable security whilst avoiding
the issues associated with PSKs (given that we can rely on multi-path QKD). We will from now on refer
to this new protocol as Muckle+.

Like Muckle, Muckle+ is a multi-stage protocol. One such stage is detailed in Figure 2. The basic
structure of Muckle+ is very similar to the original Muckle protocol. Up to the computation of the
final chaining key, the PSK-based authentication is replaced with signature-based authentication and the
addition of two random nonces nI and nR to avoid issues with the reuse of signatures. We note that the
modifications essentially correspond to changing to a SIGMA-style key exchange with multiple KEMs
and an additional ephemeral secret that is provided by the QKD link. We note that the correctness of
the protocol follows directly from the correctness of the employed primitives.
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Initiator Responder
skI , SecState skR, SecState

nI
R←− {0, 1}κ

pkc, skc ← KEMc.KGen()
pkpq, skpq ← KEMpq.KGen()

m1 : pkc, pkpq, nI
−−−−−−−−−−−−−→ nR

R←− {0, 1}κ
cc, ssc ← KEMc.Enc(pkc)

cpq, sspq ← KEMpq.Enc(pkpq)
m2 : cc, cpq, nR←−−−−−−−−−−−−−

ssc ← KEMc.Dec(skc, cc)
sspq ← KEMpq.Dec(skpq, cpq)

kc ← F(ssc, ℓ0∥H1)
kpq ← F(sspq, ℓ1∥H1)

k0 ← F(kpq, ℓ2∥H1)
k1 ← F(kc, ℓ3∥k0)
k2 ← F(kq, ℓ4∥k1)

k3 ← F(SecState, ℓ5∥k2)

CHTS ← F(k3, ℓ7∥H1)
SHTS ← F(k3, ℓ8∥H1)
dHS ← F(k3, ℓ6∥H0)
tkchs ← F(CHTS)
tkshs ← F(SHTS)

fkC ← F(CHTS, ℓ9∥Hε)
fkS ← F(SHTS, ℓ9∥Hε)

σR ← Σ.Sign(skR, ℓ13∥H2)
τR ← MAC.Auth(fkS , H2)

Σ.Ver(pkR, ℓ13∥H2)
?
= 1

m3 : {certR, σR, τR}tkshs←−−−−−−−−−−−−−
MAC.Ver(fkS , H2, τR)

?
= 1

MS ← F(dHS, 0)
CATS ← F(MS, ℓ10∥H2)
SATS ← F(MS, ℓ11∥H2)
SecState← F(MS, ℓ12∥H2)

σI ← Σ.Sign(skI , ℓ14∥H3)
τI ← MAC.Auth(fkC , H3)

m4 : {certI , σI , τI}tkchs−−−−−−−−−−−−−→ Σ.Ver(pkI , ℓ14∥H3, σI)
?
= 1

MAC.Ver(fkC , H3, τI)
?
= 1

Fig. 2. One stage of the Muckle+ protocol. Messages m : {m1, . . .}k denote that m1, . . . is encrypted with an
authenticated encryption scheme using the secret key k. The various contexts and labels are given in Tables 2
and 3.
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Table 3. Values for the labels used in the Muckle+ key schedule for domain separation. Some of these labels are
directly based on the corresponding labels in the TLS 1.3 handshake [DFGS21]. The concrete value of these labels
is unimportant as long as they are unique.

Label Label Input Label Label Input

ℓ0 “derive k c” ℓ1 “derive k pq”
ℓ2 “first ck” ℓ3 “second ck”
ℓ4 “third ck” ℓ5 “fourth ck”
ℓ6 “derived” ℓ7 “c hs traffic”
ℓ8 “s hs traffic” ℓ9 “finished”
ℓ10 “c ap traffic” ℓ11 “s ap traffic”
ℓ12 “secstate” ℓ13 “TLS 1.3, server CertificateVerify”
ℓ14 “TLS 1.3, client CertificateVerify”

3.3 Security of Muckle+

Similar to Muckle, Muckle+ achieves the same security properties including forward security, or, mostly
called perfect forward secrecy (PFS) in the AKE regime, and post-compromise security (PCS). In this
section, we formally proof this claim. The presented security analysis of the Muckle+ protocol is based on
the HAKE framework as introduced by Dowling et al. [DHP20]. We will use the definitions and notations
use in the HAKE framework in this analysis unless stated otherwise.

An adversary A has access to all queries defined in the HAKE framework. As no pre-shared key exists
in the Muckle+ protocol, the query CorruptSK will return ⊥ if called. As multiple sessions keys are created
in the new protocol, we specify that the key to be guessed during the Test query is the master secret MS.

We define a new cleanness predicate cleanMuckle+ for our protocol that captures the same goals – post-
compromise security and perfect forward secrecy – but adapt it to match our setting. As our protocol
does not require a long term PSK, we can omit handling compromise of the PSK in our predicate. We
however have to take care of long-term signature keys instead. Hence, we consider their compromise in
cleanMuckle+ as well. Overall, the goal of the cleanness predicate is to handle the compromise of as many
combinations as possible as long as one set of keys – the post-quantum secure keys or the keys obtained
from the QKD link – stay secure.

More formally, we define the cleanness of a session as follows. A session πs
i in stage t is considered

clean under the predicate cleanMuckle+ if:

– Reveal(i, s, t) has not been issued for session πs
i .

– Reveal(j, r, t) has not been issued for all sessions πr
j matching πs

i at stage t.
– If πs

i has a matching session πr
j , at least one of the following conditions has been met:

• No CompromiseQK(i, s, t) or CompromiseQK(j, r, t) have been issued.
• No CompromiseSK(i, s, t) or CompromiseSK(j, r, t) have been issued.
• No CompromiseQK(i, s, t′) or CompromiseQK(j, r, t) have been issued with πs

i matching πr
j in stages

u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been issued.
• No CompromiseSK(i, s, t′) or CompromiseSK(j, r, t′) have been issued with πs

i matching πr
j in stages

u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been issued.
– If there exists no (j, r, t) ∈ [nP ] × [nS ] × [nT ] such that πr

j is an origin session of πs
i in stage t, then

either CompromiseSK(i, j, t) and CompromiseSK(j, i, t) or CorruptQK(i) and CorruptQK(j) have not
been issues before πs

i .α[t]← accept. If there exists (j, r, t) ∈ [nP ]× [nS ]× [nT ] such that πr
j is an origin

session of πs
i in stage t, then either CompromiseSK(i, j, t) and CompromiseSK(j, i, t) or CorruptQK(i)

and CorruptQK(j) have not been issued before πr
i .α[t]← accept.

The first condition ensures, that the session key of the session used in the Test query has not been revealed
to the adversary through the use of the Reveal query. Similarly, the second condition specifies that no
session matching the test session may have been targeted by a Reveal query either, as any matching session
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will own the same session key as the test session. The third condition ensures that at least one ephemeral
secret is not compromised by A or that the secret session state in the multi-stage setting. Finally, the
forth case restricts access to one of the long-term secrets for the first round without origin session to
exclude otherwise trivial impersonation attacks.

We note that similar to cleanMuckle, we can define classical and quantum variants of the predicate
to also reflect compromise of the classical keys. In that case, cleancMuckle+ is extended to include the
following two conditions for matching sessions πs

i and πr
j :

– No CompromiseCK(i, s, t) or CompromiseCK(j, r, t) have been issued.
– No CompromiseCK(i, s, t′) or CompromiseCK(j, r, t′) have been issued with πs

i matching πr
j in stages u

where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been issued.

We will now prove that the proposed protocol is secure with the cleanness predicate cleanMuckle+. In
order to do so, we analyze the five cases corresponding to the conditions that are necessary to fulfil the
cleanMuckle+ predicate.

Theorem 1. The Muckle+ key exchange protocol is HAKE-secure with the cleanness predicate cleanMuckle+
assuming that the PRF F is a dual PRF, the MAC MAC is EUF-CMA secure, the KEMs KEMc and KEMpq

are IND-CPA secure and the signature scheme Σ is EUF-CMA secure. If the security of F , MAC, KEMpq

and Σ or of QKD hold against a quantum adversary, then so does the security of Muckle+.

Proof. We divide the proof into different cases where the query Test(i, s, t) has been issued and prove
them separately:

1. The session πs
i (where πs

i .ρ = init) has no origin session in stage t.
2. The session πs

i (where πs
i .ρ = resp) has no origin session in stage t.

3. The session πs
i in stage t has a matching session.

Similar to the proof of Muckle, we show the first and the third case. The second case follows analogously
to the first case.

Case 1: Test init session without origin session. In case 1, we show that A has negligible chance of getting
a session to reach the accept state if a CorruptQK or a CompromiseSK query has been issued. If the session
does not reach the accept stage, the Test query will always return ⊥, preventing A from winning the
indistinguishability game. First we consider the case that no CorruptQK query has been issue.

Game 0: Standard HAKE-experiment with advantage

Adv
HAKE,cleanMuckle+,C1

A,Muckle+,nP ,nS ,nT
(κ) = Pr[S0].

Game 1: In Game 1, the parameters (i, s, t) for a session and its matching session (j, r, t) are guessed.
If a Test(i′, s′, t) query is issued for any session πs′

i′ that is not the test session πs
i , the game aborts.

The advantage is
Pr[S0] ≤ n2

PnSnT · Pr[S1].

Game 2: Game 2 aborts, if the test session πs
i ever reaches the status reject. As the Test query will

always return ⊥ is the session reaches this status, the advantage gained by A is 0. The advantage is

Pr[S0] ≤ n2
PnSnT · Pr[S2].

Game 3: Game 3 aborts, if the session reaches the status accept. The advantage is

Pr[S0] ≤ n2
PnSnT · Pr[S3].
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We now bound the probability of A reaching the abort event. Assuming that the session reaches the status
accept, we construct an EUF-CMA adversary against Σ. The challenge pk is used as the party’s public key.
For all other sessions, the signing oracle is used to produce the corresponding signatures. Now, if the test
session reaches accept stage, we output the signature σI as forgery on the message ℓ14∥H3. The signature
verifies since accept stage was reached and has not been queried to the signing oracle (except for collisions
of the hash function H). Hence, we obtain:

Pr[S0] ≤ n2
PnSnT ·

(
Adveuf-cma

A,Σ (κ)
)
.

The case that no CompromiseSK query has been issued before reaching the accept stage, follows anal-
ogously to [DHP20, Theorem 1, Case 1] and is not repeated here.

Case 3: Test session with matching session. We will show that any adversary A has a negligible chance
of winning the key-indistinguishability game using a sequence of games for each of the four cases. We
denote with Si the event of the adversary winning game i. Note that the proofs are the same regardless
of whether KEM ∈ {KEMc,KEMpq}, whereas security against a quantum adversary can only be achieved
for KEM = KEMpq. We split the proof into several subcases.

Subcase 1: No CompromiseQK(i, s, t) or CompromiseQK(j, r, t) have been issued. Subcase 1 shows, that if
the attacker issues a Test query to a session that is clean due to the secrecy of the ephemeral post-quantum
key, the attacker has a negligible advantage in guessing the test bit. In this scenario, all ephemeral secrets
except the post-quantum key as well as the long-term classical and post-quantum secrets are known to
the attacker.

Game 0: Standard HAKE-experiment with advantage

Adv
HAKE,cleanMuckle+,C2

A,Muckle+,nP ,nS ,nT
(κ) = Pr[S0].

Games 1-7: Games 1 to 7 for Muckle are equivalent to the Games 1 to 7 of the proof of case 3.1 as
described in [DHP20], resulting in the following advantage:

Pr[S0] ≤ n2
Pn

2
SnT ·

(
Advind-cpaA,KEM(κ) + 2 · AdvprfA,F (λ) + 3 · Advdual-prfA,F (λ)

)
.

Game 8: In Game 8, the computation of the derived handshake secret dHS is replaced by a uniformly
random value. To achieve this, ℓ6 is queried together with the context input H0 and a PRF challenger
is initialized for the computation. The output of the challenger is used to replace the dHS secret. As
k3 is uniformly random by Game 7, this is a valid replacement. To distinguish between the case where
dHS ← F(k3, ℓ6, H0) or dH

R←− {0, 1}κ the attacker would have to break the prf security of PRF
and thus has the following advantage:

Pr[S0] ≤ n2
Pn

2
SnT ·

(
Advind-cpaA,KEM(κ) + 3 · AdvprfA,F (λ) + 3 · Advdual-prfA,F (λ)

)
.

Game 9: In Game 9, the derivation of the master secret MS is replaced by a uniformly random value.
A PRF challenger is initialised and its output used to replace MS. Since dHS is already random by
Game 8, this is a valid substitution. To distinguish between the case, where MS ← F(dHS, 0) or
M

R←− {0, 1}κ, A would have to break the prf security of PRF which leafs the attacker with the
following advantage:

Pr[S0] ≤ n2
Pn

2
SnT ·

(
Advind-cpaA,KEM(κ) + 4 · AdvprfA,F (λ) + 3 · Advdual-prfA,F (λ)

)
.

Game 10: In Game 10, the application traffic secrets (CATS,SATS) and the session state SecState
are replaced by a uniformly random value. This is done by initializing a PRF challenger for each
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computation and querying the labels 10,11 and 12 as well as the context input H3 and replac-
ing the corresponding value with the output from the challenger. Since the master secret MS is
already random by Game 9, this is a valid substitution. For A to distinguish between the case where
CATS, SATS,SecState← F(MS, ℓ{10,11,12}, H3) or CATS, SATS,SecState

R←− {0, 1}F , it would have
to break the prf security of PRF.
At this point, the application traffic secrets and the session state are shown to be uniformly random
under the condition of case 2 and A has an advantage of

Pr[S0] ≤ n2
Pn

2
SnT ·

(
Advind-cpaA,KEM(κ) + 5 · AdvprfA,F (λ) + 3 · Advdual-prfA,F (λ)

)
.

Subcase 2: No CompromiseSK(i, s, t) or CompromiseSK(j, r, t) have been issued. This case shows, that if
the attacker issues a Test query to a session that is clean due to the secrecy of the ephemeral quantum
key, the attacker has a negligible advantage in guessing the test bit. In this scenario, all ephemeral secrets
except the quantum key as well as the long-term classical and post-quantum secrets are known to the
attacker.

Game 0: Standard HAKE-experiment with advantage

Adv
HAKE,cleanMuckle+,C3

A,Muckle+,nP ,nS ,nT
(κ) = Pr[S0].

Games 1-3: Games 1 to 3 for Muckle are equivalent to Games 1 to 3 of the proof of case 3.2 as described
in [DHP20], resulting in the following advantage:

Pr[S0] ≤ n2
Pn

2
SnT ·

(
AdvprfA,F (κ) + Advdual-prfA,F (λ)

)
.

Games 4-6: Games 4 to 6 are equivalent to Games 8 to 10 in subcase 1, resulting in the final advantage
of

Pr[S0] ≤ n2
Pn

2
SnT ·

(
4 · AdvprfA,F (κ) + Advdual-prfA,F (λ)

)
.

Subcase 3: No CompromiseQK(i, s, t′) or CompromiseQK(j, r, t′) have been issued with πs
i matching πr

j in
stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been issued. This case
shows, that if a previous session has been completed cleanly under the predicate cleanMuckle+ and A has
not compromised the session state SecState since then, the attacker has a negligible advantage in guessing
the test bit of the current session.

Game 0: Standard HAKE-experiment with advantage

Adv
HAKE,cleanMuckle+,C4

A,Muckle+,nP ,nS ,nT
(κ) = Pr[S0].

Game 1: In Game 1, the parameters (i, s, t) for a session and its matching session (j, r, t), as well as the
stage t′ are guessed. If A issues a Test(i′, s′, t) query for any session πs′

i′ that is not the test session πs
i

the game aborts.
Pr[S0] ≤ n2

Pn
2
Sn

2
T

Games 2-10: Games 2 to 10 are equivalent to Games 2 to 10 in subcase 1. The advantage is

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
Advind-cpaA,KEM(κ) + 5 · AdvprfA,F (λ) + 3 · Advdual-prfA,F (λ)

)
.

After Game 10, the session πs
i has been completed cleanly in stage t′. The following Games take place

in each stage u and are therefore executed not once, but u-times. To represent the worst case scenario
where A has compromised every stage after the first one, we replace the factor u by nT .
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Game 11: In Game 11, the computation of k3 is replaced by a uniformly random value. This is done
by initializing a post-quantum PRF challenger with the value k2 and replacing k3 with the output.
As SecState is uniformly random by Game 10, this is a valid substitution. To distinguish between the
case of k3 ← F(SecState, k2) or k3

R←− {0, 1}F , the attacker would have to break the prf security of
the PRF resulting in the advantage:

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
Advind-cpaA,KEM(κ) + (5 + nT ) · AdvprfA,F (λ) + 3 · Advdual-prfA,F (λ)

)
.

Games 12-14: Games 12 to 14 are equivalent to Games 8 to 10 in case 2:

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
Advind-cpaA,KEM(κ) + (5 + 4nT ) · AdvprfA,F (λ) + 3 · Advdual-prfA,F (λ)

)
.

Subcase 4: No CompromiseSK(i, s, t′) or CompromiseSK(j, r, t′) have been issued with πs
i matching πr

j in
stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been issued. This case
shows, that if a previous session has been completed cleanly under the predicate cleanMuckle+ and A has
not compromised the session state SecState since then, the attacker has a negligible advantage in guessing
the test bit of the current session.

Game 0: Standard HAKE-experiment with advantage

Adv
HAKE,cleanMuckle+,C5

A,Muckle+,np,ns,nt
(κ) = Pr[S0].

Game 1: In Game 1, the parameters (i, s, t) for a session and its matching session (j, r, t), as well as the
stage t′ are guessed. If A issues a Test query for any session that is not the test session πs

i the game
aborts. The advantage is

Pr[S0] ≤ n2
Pn

2
Sn

2
T · Pr[S1].

Games 2-6: Games 2 to 6 are equivalent to Games 2 to 6 in subcase 2. The advantage is

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
4 · AdvprfA,F (κ) + Advdual-prfA,F (λ)

)
.

After Game 6 the session πs
i has been completed cleanly in stage t′. The following Games take place

in each stage u and are therefore executed not once, but u-times. To represent the worst case scenario
where A has compromised every stage after the first one, we replace the factor u by nT .

Games 7-10: Games 7 to 10 are equivalent to Games 11 to 14 in subcase 3. The advantage is

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
(4 + 4nT ) · AdvprfA,F (κ) + Advdual-prfA,F (λ)

)
.

Finally, we obtain the following advantage:

Adv
HAKE,cleanMuckle+
A,Muckle+,nP ,nS ,nT

(κ) ≤
n2
PnSnT · Adveuf-cma

A,Σ (κ)+

n2
Pn

2
SnT ·

(
Advind-cpaA,KEM(κ) + 9 · AdvprfA,F (λ) + 4 · Advdual-prfA,F (λ)

)
+

n2
Pn

2
Sn

2
T ·

(
Advind-cpaA,KEM(κ) + (9 + 8nT ) · AdvprfA,F (κ) + 4 · Advdual-prfA,F (λ)

)
.

3.4 Instantiating Muckle+

Finally, we discuss some possible choices when instantiating the primitives used in Muckle+. Especially in
QKD networks providing high bandwidth communication, the sizes of ciphertexts and signatures might
not be a limiting factor. For the choice of signature schemes, we can thus consider candidates that are
built from hash functions such as XMSS [BDH11,HBG+18] and SPHINCS+ [BHK+19] or block ciphers
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such as Picnic [CDG+17,KKW18] and its variant built from AES [BDK+21]. Considering that in high
bandwidth networks, the use of these symmetric primitives is perfectly valid to reduce the consumption
of QKD keys, the use of these signature schemes does not require the addition of any new hardness
assumptions to the overall system. We however want to note this chance comes with an increased runtime
cost compared to KEM-based authentication as in KEMTLS.

We however want to note, that with the introduction of a signature-based authentication mechanism,
the question arises on how to authenticate the other peer’s public key. Note though, that even if all public
keys are shared a priori, the complexity is reduced to n keys instead of O(n2) pre-shared keys. With the
introduction of a Public Key Infrastructure (PKI) such as PKIX [CSF+08], the amount of pre-installed
public keys that then serve as certificate authority (CA) can be drastically reduced. In a setting with only
one provider, this can be a single CA. With more providers, various different scenarios can be considered
with one external CA or multiple CAs where, for example, each provider handles the certification of the
public keys used by their network components.

For QKD networks with trusted nodes, we note that all trusted nodes have access to the QKD key. In
the HAKE security model, we thus need to assume that CompromiseSK has been queried and therefore
the security of Muckle+ solely relies on the security of the KEM and signature scheme. To achieve
fault tolerance in such a setting, we can consider multipath QKD systems that apply a typical secret-
sharing-based approaches, e.g., [KGSR02,FFGV07]. Thereby, the QKD key is shared on the initiator side
and the shares are transported via mutually disjoint paths in the QKD network to the receiver. Such an
approach has been considered to some extent in the literature specifically for QKD networks, e.g., to boost
throughput [YLL+21] and with semi-trusted and fully-trusted paths [CCCZ23] to increase the security
of the network. The latter focuses specifically on the routing algorithms without going into details on
the method to share the keys. By applying the techniques, e.g., from [KGSR02] to the QKD keys, and
under the assumption that at least one path is non-compromissed or more specifically – similar to the
non-collusion in multiparty computation systems – that none of the nodes on disjunct paths collude, the
risk stemming from trusted nodes can be mitigated.

4 Implementation and Evaluation

In order to evaluate the performance of Muckle+ in practical application, we implemented a prototype
of the protocol. This prototype was implemented in Python using bindings9 of liboqs [SM16] for the
support of post-quantum primitives and the cryptography10 module for all classically-secure schemes. As
displayed Figure 3, the Muckle+ protocol operates on the application layer. The quantum key material is
fetched by all endpoints by their respective key managements services (KMS) that provide key material
to applications via the interfaces from ETSI GS QKD 014 [ETS19].

While the Muckle+ protocol allows for server-only, as well as mutual authentication, we benchmarked
the implementation with mutual authentication. Authentication of both parties is achieved through the
use of hybrid certificates containing both post-quantum and classical long term public keys. Certificates
were signed with classical (EdDSA [BDL+11]) and post-quantum signatures. We assumed a 2-tier certifi-
cate hierarchy to simulate a PKI hierarchy for Muckle+ reflecting current practice, e.g., similar to Let’s
Encrypt [ABC+19].

Our Muckle+ implementation was set up using a small network with three QKD links offering two
mutually disjoint paths between endpoints. Initiator and responder of the protocol were executed on a
notebook running Windows 10 with an Intel i5 2.60GHz CPU and 8 GB of RAM. Several instantiations
of the protocol using different post-quantum KEMs and signature schemes were tested, resulting in the
execution times displayed in Figure 4 for directly linked nodes. For all executions of the protocol, the
remaining primitives have been instantiated with X25519 [Ber06] as KEMc, HKDF-SHA2 as PRF and
HMAC-SHA2 as MAC.
9 https://github.com/open-quantum-safe/liboqs-python

10 https://pypi.org/project/cryptography/
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Fig. 3. Architecture of a Muckle+ Implementation with a single intermediate node.

Figure 4 depicts the runtime of the initiator for various choices of signature schemes and KEMs for
the initiator.11 For the majority of the evaluated schemes, the runtime for a single Muckle+ stage ranged
from 0.4 to 1.6 seconds. An average of ≈ 0.3 seconds of this runtime can be attributed to the retrieval
of the QKD key. Hence, we could demonstrate that the determining factor in the performance of the
Muckle+ protocol is the key rate of the QKD link as in the original Muckle protocol. While the use of
signature-based incurs an overhead compared to Muckle, it is comparatively small in relation to the costs
of accessing QKD keys.

An exception to the observation above is the small and robust SHA256 and SHAKE variants of
SPHINCS+ where the slower runtime is attributed to the lack of support for the AVX2 instruction set in
liboqs for SPHINCS+ on Windows.12 Hence, we expect the performance of SPHINCS+ to be less of an
issue with the availability of optimized implementation on Windows.

In Figure 5, the results of the same experiment with a multi-path setup are depicted. The additional
delay is caused by the intermediate nodes fetching additional key material in a serial manner. The overall
execution time of the protocol is thus influenced by the slowest path which in our setup corresponds to
the longest path. Overall, we can thus conclude that the overhead of our end-to-end secure protocol for
hybrid networks is mainly influenced by the performance of the key rate provided by the QKD network.

5 Conclusion and Outlook

With Muckle+, we extend the hybrid authenticated key exchange protocol Muckle with signature-based
authentication. Thereby, we are able to provide both certificate-based mutual or unilateral authentication
depending on the intended use-case. Our implementation and evaluation of the protocol within a small
QKD network demonstrates its practical feasibility. With our intended message flow of the protocol,
Muckle+ may be integrated in typical scenarios where especially the authenticity of the responder is
essential. We however note that there might be other trade-offs in the order and structure the messages
if different privacy properties are required for an application, e.g., SIGMA with responder privacy or a
protocol with forward privacy [SSL20,RSW21].

Note also that the Muckle+ protocol offers features that are interesting for a wide range of applications
in a similar setting as found in many of today’s applications. Indeed, if one considers classical client-server
uses on the web, it is expected that one can connect to almost any server on the network without additional
configuration. Hence, handling shared state such as the pre-shared keys is not desired due to scalability is-
sues as well as the out-of-band communication. Considering more high-level use-cases that are envisioned
11 We observed no significant differences for the initiator and responder.
12 See https://github.com/open-quantum-safe/liboqs/issues/1476 for some background on this issue.
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Fig. 4. Execution time of a single Muckle+ stage with mutual authentication. Times are in seconds.

in EuroQCI where network-wide key-management systems will provide QKD keys to security applica-
tions, ensuring authenticity with certificate-based mechanisms will provide better scalability especially
considering that nowadays process for certificate management can be fully automated [ABC+19].
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