
Study of Arithmetization Methods for STARKs

Tiago Martins
tiago.martins@threesigma.xyz

João Farinha
joao.farinha@threesigma.xyz

Three Sigma - Academic Research

May 23, 2023

Abstract

This technical paper explores two solutions for arithmetization of computational integrity statements in
STARKs, namely the algebraic intermediate representation, AIR, and is preprocessed variant, PAIR. The work
then focuses on their soundness implications for Reed-Solomon proximity testing. It proceeds by presenting a
comparative study of these methods, providing their theoretical foundations and deriving the degree bounds
for low-degree proximity testing. The study shows that using PAIR increases the degree bound for Reed-
Solomon proximity testing, which affects its soundness and complexity. However, the possibility of reducing the
degree bound with multiple selector columns is also explored, namely by following an approach based on the
decomposition of the selector values. Focusing on performance optimization, the work proceeds by qualitatively
comparing computational demands of the components of both arithmetization methods, particularly their impact
on the low-degree extensions. The paper concludes that, while PAIR might simplify constraint enforcement, it
can be easily translated to AIR, and system testing with benchmarks is necessary to determine the application-
specific superiority of either method. This work should provide insight into the strengths and limitations of each
method, helping researchers and practitioners in the field of STARKs make informed design choices.
Key words. STARKs, Arithmetization, AIR, Preprocessed AIR, RPT, Degree bound, Selector columns.

1 Introduction

As the volume of transactions in blockchain technology continues to grow, scalability and performance optimiza-
tion have become critical concerns. STARKs, which stands for Scalable Transparent Arguments of Knowledge, offer
a promising solution for achieving scalability by allowing for efficient verification of complex computations on large
amounts of data. However, to fully realize the benefits of STARKs, it is essential to consider the security implica-
tions and computational requirements of the underlying protocols, such as to promote soundness and optimizing
performance for adequate scalability.

This technical work delves into two solutions for polynomial arithmetization of computational integrity state-
ments, namely the AIR (Algebraic Intermediate Representation) and PAIR (Preprocessed AIR) protocols. The
focus of the analysis is on the soundness implications of these two methods concerning low-degree proximity test-
ing. The study examines how these solutions perform and promote tolerable soundness, which is a critical factor
for smaller proof-sizes in STARKs. Additionally, this document briefly discusses the importance of optimizing
performance for these methods given their varying computational requirements.

In this context, it is essential to demonstrate with high probability that a given function is close to a low-degree
polynomial, which is typically achieved using Reed-Solomon arguments of proximity. Interactive Oracle Proofs of
Proximity (IOPP) such as FRI (Fast Reed-Solomon IOPP) have been developed for this purpose, but exploring
them is beyond the scope of this paper—for detailed descriptions, see [14, 3]. However, the establishment of tight
degree bounds for Reed-Solomon proximity testing of the AIR and PAIR polynomials is critical in assuring the
security of STARKs.

This paper compares the tightness of the degree bounds of these two methods, after providing their theoretical
foundations. It then briefly explores computational complexity and performance characteristics of AIR versus PAIR.
Hence, this document aims to offer researchers and professionals in the field of STARKs valuable information to
make knowledgeable design decisions.
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1.1 Background Analysis of the Arithmetization Process

Arithmetization is a technique adapted to interactive proof systems [1, 16]. It consists in the reduction of
computational problems to algebraic problems, involving “low-degree” polynomials over a finite field—i.e. the
degree is significantly smaller than the field size [5]. The arithmetization process employed in STARKs is comprised
by different stages of algebraic transformations, which are typically distinguished as follows:

(a) An Algebraic Intermediate Representation (AIR) is a representation of a computational integrity statement
given by a public instance, shared between the verifier and the prover, and a private witness, known only by
the prover [4]. In the AIR, Boolean circuits are represented using strongly “structured” arithmetic circuits [17]
that employ field algebraic operations on polynomials, such that the truth values in the circuit’s wires describe
whether these polynomials evaluate to zero on a given input 1. AIRs were previously known as constraint
satisfaction problems (ACSPs) in prior works like [9, 2].

(b) Subsequently, the Algebraic Placement and Routing (APR) reduction transforms the AIR instance and
witness into a set of Reed-Solomon membership problems, with perfect completeness, soundness and knowledge
extraction. After the APR reduction, instead of verifying satisfiability of the AIR instance (with the arithmetic
circuit), the verifier checks whether some functions are members of particular Reed-Solomon codes [4].

(c) Finally, the Algebraic Linking IOP (ALI) is the last step of arithmetization and consists in combining the
APR’s Reed-Solomon membership problems into a smaller number of Reed-Solomon proximity problems, using
public randomness [5, 4]. The public randomness helps to ensure that the final Reed-Solomon proximity
testing (RPT) problems are well-formed and avoid any biases or security weaknesses that could arise from
private-coins. Canonically, the public-coins come from additional interaction steps (the I in IOP, Interactive
Oracle Proof), but these may be substituted by practically equivalent non-interactive procedures [11, 7].
Additionally, the ALI hinders dishonest provers from passing proximity tests with high-degree codes that are
very close to low-degree in Hamming distance [8], since all the tested codes are random combinations of the
APR codes, which decreases the likelihood of said vulnerability. The ALI reduction has perfect completeness,
and almost perfect soundness and knowledge extraction.

Note that this document defines (section 3) and employs AIRs in alignment with the definition in [21], being a
well acknowledged implementation of constraint arithmetization in STARKs, specifically. Nevertheless, this work
will deal with all three distinct stages, since a change in the way that the constraints are represented by polynomials
forces the adjustment of all subsequent stages including the Reed-Solomon proximity testing procedure, after the
arithmetization.

1.2 The Discovery of PAIR

The primary motivation for this document arose from the analysis of the source [12], whose underlying concept—
Preprocessed AIR (PAIR)—is also explored in [18]. This arithmetization notion appeared to be quite promising
within the context of an execution trace subject to disjoint AIR constraints.

Both articles detailed how one could simplify the application of two such constraints by combining them into
a single larger constraint, subject to an extra data input: the binary selector column. The final constraint would
take the form:

Constraint0(x)×
(
1− selector(x)

)
+Constraint1(x)× selector(x) = 0 ,

where x represents an execution trace domain point—further explained in section 2.1. This construction would
enforce Constraint0 when the selector assumes the value 0, and likewise for Constraint1. However, both sources
abstained from expanding on this idea, or rigorously inspecting its benefits and drawbacks; this sparked our interest
in formalizing and generalizing the concept to more than two disjoint constraints, and analytically examine how
this method would fare in the later stages of a STARK, namely concerning the degree bounds of the resulting
polynomials for the RPT.

Another interesting property of the PAIR is that it eliminates the need for interactions in the arithmetization,
when applied to all constraints, since its inherent algebraic linking already merges multiple algebraic problems

1Polygon [17] for example, introduced for their zkEVM the variation Extended Algebraic Intermediate Representation, eAIR, as an
extension of the typical AIR: by imposing the simplifications that the constraint polynomials only apply at most to two consecutive
trace domain points, and all constraints must evaluate to zero over the entire evaluation domain (instead of a subset of it), this method
allows to define more broader constraint types, that may not only be represented by a polynomial (identity constraints), but by a set
of polynomials and integers (non-identity constraints).
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into a single one. In other words, if the PAIR combines all constraints without requiring external public-coins,
then the algebraic linking of the constraints is non-interactive and the ALI is absent. In this case, PAIR would
be characterized by perfect soundness and knowledge extraction [4], as it would become a perfect reduction of
computational integrity problems, without associated error2. However, keep in mind that using the ALI will
help separate high and low degree polynomials, prior to Reed-Solomon proximity testing—i.e. if the codes from
arithmetization are of high degree, then the ALI transforms them into new codes that are likely far from those
of low-degree [8, Section 1.4]. In this regard, performing the ALI promotes soundness in the subsequent RPT
procedures, even if it introduces a small soundness error in the arithmetization.

At this point, it is relevant to unambiguously distinguish the designation PAIR - Preprocessed AIR, as in
articles [12, 18] and as it will be used henceforth - from the also studied Permuted AIR, defined in [4]. The latter
is a form of memory-consistency check, applied to a permutation of the steps of the execution trace.

Polygon Miden, for instance, in their recently developed constraint description language, AirScript [19], makes
use of preallocated trace columns to serve as selectors. These selectors are implemented as “periodic columns”,
and although the application of the selector column is not completely akin to the description in section 4, the
fundamental mechanic remains: the extra columns of information appended to the trace specify the constraints
enforced in each row. StarkWare also describes, in the ethSTARK documentation [21], the use of periodic columns
to address cyclic constants that are appended to the trace, employing two periodic columns per trace column.

2 Execution Trace

The execution trace of a program is a register of successive states of computation of a particular program/machine.
These are typically distinguished by clock cycles and are assigned values that specifically encode the relevant pa-
rameters. In accordance, the states may either be represented by a collection of state variables (several different
values), or a single value unequivocally determined from the aggregation of the different state variables. Minding
the discrete nature of computational operation, finite fields are typically used for state variable assignments—also
resolving the concern of numeric overflow and underflow. As such, the analysis below ensues within this context.

2.1 Formalizing the Execution Trace

Let F be a finite field. The vector-valued trace function will be defined as f : F → FW , where W ∈ N. The
execution trace domain G is a multiplicative subgroup of F× generated by an element g. The execution trace is
defined as a tuple constructed from the evaluation of the restriction of f to G. Expressly, the execution trace is the

finite sequence
(
f(gk)

)|G|−1

k=0
, which constitutes a |G|-tuple. To achieve zero-knowledge, the computational integrity

statement only restricts part of the execution trace, leaving some evaluation points to be randomly or freely filled-in
by the prover [4].

In this context, all F to F functions are polynomial functions and this can be shown using Lagrange interpolation
(see chapter 05.04 of [15]). The trace function f should be uniquely defined from its restriction to G, i.e. from
the execution trace. Moreover, each of the components of f is an F → F function and may be generated from the
polynomial interpolation of |G| data points, thus having polynomial degree3 at most |G| − 1. Therefore it is also
natural to state that the degree of f satisfies deg(f) ≤ |G| − 1.

3 Algebraic Intermediate Representation (AIR)

In STARKs, an algebraic intermediate representation is a high-level description of arithmetic constraints for
computations. The computational integrity statement is enforced via constraints which are expressed as polynomials
composed over the execution trace. In this work, the AIR is defined based on previous AIR definitions, like [4, 21],
and is stated using multiplicative groups.

When building a specific proof, the utilized AIR must be defined upon agreement between the verifier and the
prover, implying that it is public. The corresponding constraints express certain conditions which, composed over
the execution trace, hold if and only if there is computational integrity. Ultimately, an AIR is a collection of

(i) a large finite field F,

(ii) a number W ∈ N, specifying the dimension of the codomain of the trace function,

2This does not remove the error introduced in further stages: for instance, when executing IOPs for RPT, such as FRI.
3Recall that the degree of an univariate polynomial is the highest occurring exponent, disregarding those associated to null coefficients.
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(iii) a multiplicative subgroup G < F×, used as the execution trace domain,

(iv) a generator g of G, and

(v) a set of constraints, with index set B ⊂ F, where, for i ∈ B, the ith constraint, (Gi,Mi, Ci), is a tuple of

(a) the ith constraint enforcement domain, the set Gi ⊂ G,

(b) the ith mask, Mi, which is a tuple of length Li, and

(c) the multivariate polynomial of the ith constraint, Ci : FLi → F.

Moreover, the mapping (x0, . . . , xLi−1) 7→ Ci(x0, . . . , xLi−1) is a multivariate polynomial, whose degree, deg(Ci), is
defined as the degree of the univariate polynomial x 7→ Ci(x, . . . , x), for each i ∈ B.

In order to compute the constraints in a well determined and concise manner, let us define the ith mask Mi as
the finite tuple that is used to evaluate the ith constraint. Expressly, the ith mask is the tuple:

Mi =
(
(mi,j ,ui,j)

)Li−1

j=0

where mi,j ∈ G and ui,j ∈ FW for all j ∈ {0, . . . , Li − 1} .

Regarding the jth argument of Ci, the scalar mi,j is the x offset for the evaluation of f , and ui,j is utilized to
linearly transform the vector f(xmi,j) into a scalar—that is, it forms a linear combination of vector components.
Subsequently, the ith mask may be used to express the ith constraint:

Ci

(
f(xmi,0) · ui,0, . . . , f(xmi,Li−1) · ui,Li−1

)
= 0 for all x ∈ Gi ,

where · stands for the dot product. For further conciseness, define the mapping

x 7→ ψi(x) = Ci

(
f(xmi,0) · ui,0, . . . , f(xmi,Li−1) · ui,Li−1

)
.

Since the AIR expresses the computational integrity conditions, when evaluating ψi at the corresponding en-
forcement domain, the constraint will hold if and only if the result is zero. As such, the representation of the
constraints (rules) for the execution trace function f are statements of the form: ψi(x) = 0 for all x ∈ Gi.

Now, the tuple (Gi,Mi, Ci) unambiguously defines the mathematical expression of the ith constraint. In short,
the AIR assignment satisfies the algebraic intermediate representation if and only if

ψi(x) = 0 for all x ∈ Gi , for all i ∈ B .

Note that, if the function f is indeed a polynomial of degree deg(f) ≤ |G| − 1, then ψi(x) is a polynomial of
degree deg(ψi) ≤ deg(Ci)×

(
|G| − 1

)
, as the degree of the composition of two non-constant polynomials over a field

is the product of their degrees.
The prover is the only one that knows the function f , thus they are the only ones that can independently evaluate

ψi and determine its exact degree. However, the verifier is also aware of the definition of the AIR, hence they will
be able to compute ψi(x) if they have knowledge of the scalars f(xmi,j) · ui,j for all j ∈ {0, . . . , Li − 1}.

3.1 Algebraic Placement and Routing in AIR

In APR, the AIR instance and witness are directly mapped to a set of Reed-Solomon membership problems. To
build this new framework, define the vanishing polynomial of a set S as the unique monic polynomial of degree |S|
whose set of roots is precisely S (each root having multiplicity one). Thus, the vanishing polynomial of S is

x 7→ VS(x) =
∏
y∈S

(x− y) . (1)

If the function ψi has a root for every element of Gi (an honest prover situation), then the expression

x 7→ Qi(x) =
ψi(x)

VGi(x)

defines a polynomial Qi of degree:

deg(Qi) = deg(ψi)− |Gi| ≤ deg(Ci)×
(
|G| − 1

)
− |Gi| = dQi , (2)

yielding a tight upper bound for the degree of Qi, acknowledged by both the verifier and the prover. Introducing
this new polynomial Qi seems to add unnecessary complexity into the previous mathematical expression; however,
Qi is now suitable for Reed-Solomon membership testing, as follows.
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(i) In the case of an honest prover, the numerator will have factors that cancel the vanishing polynomial in the
denominator, since ψi(x) = 0 for any x ∈ Gi, effectively resulting in a Qi with degree at most dQi .

(ii) For a dishonest prover, at least one of the constraints will fail somewhere in its enforcement domain, therefore,
the denominator of that Qi will not be cancelled, resulting in a rational function that is not a polynomial of
degree at most dQi [4].

Thus, APR yields constraints that are practically equivalent to the corresponding original computational integrity
constraints.

3.2 Algebraic Linking IOP in AIR

ALI, the last step of arithmetization, reduces the amount of Reed-Solomon proximity tests by building the
composition polynomial. The overall idea is that public randomness is used to combine the Qi polynomials into a
single low-degree polynomial [4]. This induces a new verifier-prover interaction to exchange this public-coin, which
may be made non-interactive using the Fiat-Shamir transform [11, 7].

ALI also removes some of the prover’s influence on the proximity testing, by making it computationally unfeasible
and probabilistically unlikely that the prover is able to manipulate the APR polynomials such that the final ALI
polynomials lie within a desired outcome for the subsequent proximity testing—i.e. it hampers RPT satisfiability
of high-degree codes that resemble those of low-degree, in the APR stage. To put it differently, when the input
instance is unsatisfiable, the ALI generates RPT problem instances that are significantly far from the relevant
Reed-Solomon codes [8].

The APR constraints are combined once the prover has committed to the trace low degree extension4. The
degree of Qi is bounded as deg(Qi) ≤ dQi

, therefore, considering all constraints, the maximum degree bound is
dCP = maxj∈B{dQj

}. For the simplest ALI without degree-adjustment, for each Qi constraint the verifier provides
a random scalar αi in the extension field5 K. In this manner, the composition polynomial becomes

x 7→ CP(x) =
∑
i∈B

αiQi(x) ,

and the Reed-Solomon proximity test must check whether deg(CP) ≤ dCP with high probability.
In a more sophisticated approach [section D.1 of 4], the Qi constraints are instead multiplied by a degree-

adjustment polynomial in order to ensure that all of the constraints are treated equally in the low-degree analysis.
In this case, the verifier provides random polynomials [10] αi, that are utilized to adjust the degree of Qi [21].
Expressly, αi is now a publicly-random polynomial over K such that

deg(αi) = dCP − dQi
,

which adjusts the degree-bound of the corresponding constraint as

deg(αiQi) = dCP − dQi + deg(Qi) ≤ dCP . (3)

In short, all the degree-adjusted constraints will have the same tight degree bound. However, the verifier should
not provide polynomials αi with roots in Gi, expressly αi(Gi) ∩ {0} = ∅ for any i ∈ B, since wrong choices of the
random polynomial αi will undermine the whole proof, as any additional common factors between the denominator
and numerator of αiQi make it impossible to conclude that those same factors were common to ψi and VGi . In
ethSTARK Version 1.1 for example, αi is a polynomial with just the lowest and highest degree terms (all others
are zero) [Section 3.6.1 of 21].

As a result, if the new function αiQi is a polynomial of degree at most dCP, then the original function Qi

has degree at most dQi , as desired. The composition polynomial CP then sums all αiQi polynomials into a
unidimensional univariate polynomial:

CP : K → K

x 7→ CP(x) =
∑
i∈B

αi(x)Qi(x) ,

4The trace low degree extension is the evaluation of f over a large domain, disjoint from G [21]. The former is commonly a non-trivial
coset of an overgroup of G. This will be further explained in section 7.

5The field K is an an algebraic extension of F, i.e. all the elements of K are roots of polynomials over F ⊂ K. Moreover, selecting
uniformly random elements from a larger field helps promote security in the protocol [21].
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which should have degree deg(CP) ≤ dCP, yielding a Reed-Solomon proximity test.
Succinctly, once the prover has committed to the trace low degree extension4, the verifier provides random scalars

(or random coefficients in the degree-adjustment case) for creating a random linear combination of the constraints,
resulting in the composition polynomial. Instead of performing a low-degree test on each of the constraints, it
suffices to test the composition polynomial. If the composition polynomial CP has degree at most dCP, then there
is a high probability (over the choice of the random αi polynomials) that the assignment satisfies the computational
integrity statement. It is very unlikely that a random linear combination of high-degree polynomials yields a
polynomial of lower degree. However, that may occur due to the small but non-null probability of the higher
degree terms cancelling6. Nonetheless, if the final summation is of low-degree, then the same is likely about the
individual polynomial summands. And naturally, if there is computational integrity, CP has degree at most dCP,
accomplishing perfect completeness. Theorem 3.1 will now clarify which AIR constraints determine dCP.

Theorem 3.1. The degree bound for the composition polynomial, dCP, will be determined by a Qi rational polyno-
mial whose Ci polynomial has maximal degree. Equivalently,

dCP = max
j∈B

{dQj} = dQi , for some i ∈ B satisfying deg(Ci) = max
j∈B

{
deg(Cj)

}
.

Proof. Firstly, choose i ∈ B such that deg(Ci) = maxj∈B{deg(Cj)}. For any k ∈ B such that deg(Ck) < deg(Ci)
one has deg(Ck) ≤ deg(Ci)− 1, since polynomial degrees are natural numbers. Furthermore, for all j ∈ B, the
enforcement domain satisfies 1 ≤ |Gj | ≤ |G|. Consequently,

dCP ≥ dQi
=deg(Ci)×

(
|G| − 1

)
− |Gi| ≥ deg(Ci)×

(
|G| − 1

)
− |G| =

=
[
deg(Ci)− 1

]
×
(
|G| − 1

)
− 1 ≥ deg(Ck)×

(
|G| − 1

)
− |Gk| = dQk

.

Hence, for any i, k ∈ B such that deg(Ck) < deg(Ci) = maxj∈B{deg(Cj)} one has dCP ≥ dQi ≥ dQk
, which implies

the existence of i ∈ B such that dQi
= maxj∈B{dQj

} = dCP and deg(Ci) = maxj∈B{deg(Cj)}.

Table 1 summarizes the distribution of knowledge, among the proof intervenients, of the composition polynomial
components. Naturally, the prover is aware of all information.

Table 1: Knowledge of CP components. The comparison applies to all i ∈ B.

F G f Gi Mi Ci ψi Qi dQi
αi CP dCP

Verifier (public) yes yes no yes yes yes no no yes yes no yes
Prover (private) yes yes yes yes yes yes yes yes yes yes yes yes

The key takeaway is that, as expected, the execution trace itself is the sole concern of privacy; consequently, the
full representation of the objects that derive from it is also concealed from the verifier, namely ψi, Qi, and CP.

4 Preprocessed AIR (PAIR)

Preprocessed AIR is an algorithm that aims to simplify the construction of an AIR in the particular case of
disjoint constraints: if two constraints are never meant to operate simultaneously (i.e. their enforcement domains
are disjoint), then they can be combined into a single constraint. This is achieved by appending an extra column
of data to the trace matrix (hence preprocessed), that will act as a selector for the constraint. The typical example
would be the situation where specific state variables in the execution trace must be the sum of a set of state variables
from the previous domain element, where others would be the product, as illustrated in [12] using a binary selector
(for two disjoint constraints).

4.1 Generalization for |B| Constraints

It is possible to generalize the idea of the binary selector in order to combine multiple constraints. Choose B
as the index set of the disjoint AIR constraints to be combined into a single “larger” constraint. The generalized
combined constraint joins |B| disjoint AIR constraints, for which Gi ∩Gj = ∅ if i ̸= j where i, j ∈ B. In this case,

6This is described in lemma 3.2 of [8], without degree-adjustment.
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the selector function s will take values in the set B such that it selects just one of the possible Qi∈B for activation,
namely

s : GB → B with GB =
⊔
i∈B

Gi ,

where GB is the enforcement domain of the combined constraint. Recall that, originally, the constraints indexed
by B were of the form ψi(x) = 0 for all x ∈ Gi for all i ∈ B. To suppress the need for the constraint enforcement
domains, define the selector function such that it yields

s(x) = i for all x ∈ Gi for all i ∈ B.

Moreover, this may be accomplished by defining the selector function (of lowest polynomial degree) as

s(x) =
∑
i∈B

i
∑
z∈Gi

l(x | z) such that s(x) = i for all x ∈ Gi for all i ∈ B , (4)

where the Lagrange basis for polynomial interpolation in GB is given by

l(x | z) =
VGB\{z}(x)

VGB\{z}(z)
which yields l(x | z) =

{
1 , x = z

0 , x ̸= z
for x, z ∈ GB ,

recalling that VGB\{z} is defined in accordance with equation (1). Also, the polynomials of the selector function
may be computed with a fast Fourier transform algorithm (the same as f) (see chapter 9 of [22]).

With the selector function unambiguously defined, by constructing the polynomial ψB the combined constraint
is expressed as

ψB(x) =
∑
i∈B

[
βi(x)ψi(x)VB\{i}

(
s(x)

)]
= 0 for all x ∈ GB , (5)

where βi is the degree adjustment polynomial for the ith constraint, in PAIR. Optionally, as was the case with
the composition polynomial in section 3.2, the degree of the constraints may be individually adjusted before
they are combined, to guarantee that these are treated equally in the RPT. The degree of ψi is bounded as
deg(ψi) ≤ deg(Ci)×

(
|G| − 1

)
, hence, for each constraint, the verifier provides a random polynomial [10] βi over K,

that is utilized to adjust the degree of ψi. Expressly, the verifier chooses a random polynomial βi such that

deg(βi) =
(
max
j∈B

{
deg(Cj)

}
− deg(Ci)

)
×

(
|G| − 1

)
,

and, for all i ∈ B, the new (degree-adjusted) polynomial becomes βiψi, with tight public degree-bound

deg(βiψi) ≤ max
j∈B

{
deg(Cj)

}
×
(
|G| − 1

)
.

As before, the verifier should guarantee that βi(Gi) ∩ {0} = ∅ for any i ∈ B. This constitutes an additional interac-
tive step in the overall protocol, and increases the complexity of the arithmetization. Moreover, executing a random
combination of the polynomials, decreases the soundness of the arithmetization. As previously explained, randomly
combining polynomials under Reed-Solomon membership testing may negatively affect the final proof soundness,
as there is a chance of high-degree terms cancelling, in the case of corrupt computational proofs [4].

If the degree adjustment is overlooked, the βi polynomials will have degree deg(βi) = 0, for all i ∈ B, making
them equivalent to non-zero constants. Note that, recalling the benefits of algebraic linking, completely omitting all
βi (by setting them to the same constant) could be detrimental, as it avoids all randomness in the linear combination
of constraint satisfaction problems.

Most importantly (with or without degree adjustments), the function ψB displays the following property:
ψB(x) = 0 ⇐⇒ ψi(x) = 0 for s(x) = i ∈ B. Keeping in mind that the enforcement domain of ψB is GB, the corre-
sponding combined constraint becomes: ψB(x) = 0 for all x ∈ GB.

The combined constraint guarantees the enforcement of the individual AIR constraints in their respective en-
forcement domains, with the advantage of effectively employing only a single constraint. Nevertheless, ψB clearly
requires a much more complex formulation, which presents implications for the computational efficiency and pro-
tocol security that should not be overlooked. One should also keep in mind that the above merging of constraints
is only useful for constraints with disjoint enforcement domains.
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4.2 Algebraic placement and routing in PAIR

To obtain a tight degree-bound for this method, note that, if the function f is indeed a polynomial of degree
deg(f) ≤ |G| − 1, then, in accordance with equation (5), the degree of ψB yields

deg(ψB) ≤ max
j∈B

{
deg(Cj)

}
×

(
|G| − 1

)
+ deg(s)×

(
|B| − 1

)
.

Next, if the function ψB has a root for every element of GB (an honest prover situation), then

x 7→ QB(x) =
ψB(x)

VGB(x)
(6)

defines a new polynomial suitable for low-degree proximity testing. Hence, the new constraint becomes

deg(QB) ≤ max
j∈B

{
deg(Cj)

}
×
(
|G| − 1

)
+ deg(s)×

(
|B| − 1

)
− |GB| = dQB , (7)

which utilizes the tightest degree upper bound known by the verifier. Concerning completeness, this constraint
holds if the original computational integrity statement is valid. Pertaining to soundness, if random algebraic linking
is not utilized, the reverse implication is also true; otherwise, the equivalence is “merely” very likely.

Table 2 summarizes the distribution of knowledge, among the proof intervenients, of the PAIR components.
Again, the prover is aware of all information.

Table 2: Knowledge of PAIR components. The comparison applies to all i ∈ B.

F G f Gi Mi Ci ψi βi s QB dQB

Verifier (public) yes yes no yes yes yes no yes yes no yes
Prover (private) yes yes yes yes yes yes yes yes yes yes yes

Comparing with table 1, the components βi, QB, and dQB are analogous to αi, CP, and dCP respectively, in
the AIR method, with the selector column being the only additional element that must be shared. Effectively, this
method does not in itself predicate any further compromise concerning the privacy of the execution trace by the
prover.

5 Reed-Solomon Proximity Testing: AIR versus PAIR

The degree bounds of the AIR’s composition polynomial, CP, and the PAIR’s combined constraint polynomial,
QB, will now be compared. Reducing the degree upper bounds is critical in increasing the soundness of the low-
degree proximity testing protocols; for instance, the work [14] verifies that increasing the degree bound for low-degree
testing increases the FRI soundness error (fixing the batched FRI proximity parameter θ, and rate parameter ρ).

Regarding the FRI in more detail, the soundness of the query phase is determined solely by the proximity
parameter and number of query phase iterations (one for each random sample at layer zero). On the other hand,
the FRI commit phase error accumulates, over all FRI layers, the systematic error of the degree respecting projection
rounds. In other words, if the fractional Hamming distance between the original function (at layer zero) and the
relevant low-degree codes surpasses the proximity parameter, then the distance from the oracles produced during
the commit phase (the subsequent FRI layers) to the corresponding low-degree codes also exceeds the proximity
parameter, unless with probability bounded above by the commit phase error. The commit phase error depends
directly on the degree bound for RPT [Theorem 8.2 of 6].

Therefore, comparing the degree bounds of CP and QB is essential to determine the most adequate option for
optimized Reed-Solomon proximity testing in STARKs. To have a fair comparison, the Ci constraints used in both
cases will be the same and indexed by the set B.

5.1 Deriving dQB ≥ dCP

To state the relation between the degree bounds, lemma 5.1 is required. Also, recall that s(GB) = B and
Gi = {x ∈ G : s(x) = i}.

Lemma 5.1. Let s be a polynomial over a finite field F of degree deg(s) > 0, and Gi a subset of F defined as
Gi = {x : s(x) = i}. Then |Gi| ≤ deg(s) for all i ∈ F.
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Proof. By contradiction, if this statement were false, then:

∃ i ∈ F :
∣∣{x : s(x) = i}

∣∣ > deg(s) ⇐⇒
∣∣{x : s(x)− i = 0}

∣∣ > deg(s). (8)

Because the polynomial x 7→ s(x)− i has degree deg(s), it cannot have more than deg(s) roots7, rendering inequal-
ity (8) impossible. Hence, lemma 5.1 is true.

Theorem 5.2. The degree bound of the PAIR combined constraint polynomial is larger than or equal to the degree
bound of the AIR composition polynomial. Expressly: dQB ≥ dCP.

Proof. Firstly, the difference between the degree bounds may be expanded as

dQB − dCP =
[
max
j∈B

{
deg(Cj)

}
×
(
|G| − 1

)
+ deg(s)×

(
|B| − 1

)
− |GB|

]
−max

j∈B

{
deg(Cj)×

(
|G| − 1

)
− |Gj |

}
=

= deg(Ci)×
(
|G| − 1

)
+ deg(s)×

(
|B| − 1

)
− |GB| −

[
deg(Ci)×

(
|G| − 1

)
− |Gi|

]
=

= deg(s)×
(
|B| − 1

)
+ |Gi| − |GB| where i satisfies dQi

= dCP and deg(Ci) = max
j∈B

{
deg(Cj)

}
.

Note that theorem 3.1 guarantees the existence of such i ∈ B. Moreover, since Gi ∩Gj = ∅ for all i ̸= j, the enforce-
ment domain of the combined constraint is the disjoint union of the AIR enforcement domains, and consequently

GB =
⊔
j∈B

Gj =⇒ |GB| =
∑
j∈B

|Gj | .

Hence, by applying lemma 5.1, for i ∈ B and deg(s) > 0 one has

|GB| =
∑
j∈B

|Gj | =
∑
j∈B\{i}

|Gj |+ |Gi| ≤
∑
j∈B\{i}

deg(s) + |Gi| = deg(s)
(
|B| − 1

)
+ |Gi| ⇐⇒

⇐⇒ deg(s)
(
|B| − 1

)
+ |Gi| − |GB| = dQB − dCP ≥ 0 ⇐⇒ dQB ≥ dCP .

Finally, if deg(s) = 0 then the polynomial is constant, hence s(GB) = {i} = B for some i. In that case,
Gi = {x ∈ G : s(x) = i} = GB and |B| = 1. Therefore,

deg(s)
(
|B| − 1

)
+ |Gi| − |GB| = 0 ≥ 0 =⇒ dQB ≥ dCP .

Theorem 5.2 thus shows that the degree bound for the PAIR low-degree constraint, using QB, will always
be greater than or equal to the degree bound for the AIR low-degree constraint, using CP, regardless of the total
amount of disjoint constraints a particular execution trace is subject to. This includes the example of two elementary
constraints for addition and multiplication [12, 18]. Therefore, in terms of optimizing low-degree proximity testing,
it is not advantageous to construct a selector function to merge all constraints into a single one, rather than using
separate AIR constraints with corresponding enforcement domains.

Concerning security implications for Reed-Solomon proximity testing, fixing all other parameters, AIR thus
results in a better or equal soundness than PAIR.

5.2 Slicing for Batched RPT with Lower Rate

It is possible to lower the degree of the codes for Reed-Solomon proximity testing in both AIR and PAIR by using
the slicing technique (also known as interlacing or segmenting). Namely, for a polynomial p of degree deg(p) ≤ dp,
and slicing step c, it is possible to construct new polynomials pi with i ∈ {0, . . . , c− 1} of degree deg(pi) ≤ dp/c,
such that

p(x) =

c−1∑
i=0

xi pi(x
c) .

7This property is proved in corollary 3 of theorem 16.2 of the document [13].
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Subsequently, using random elements zi ∈ K provided by the verifier, a new polynomial p̃ is built as a random
linear combination of the pi polynomials, yielding

x 7→ p̃(x) =

c−1∑
i=0

zi pi(x) with degree deg(p̃) ≤ dp/c .

Finally, by converting high degree-bound polynomials into polynomials of lower degree through slicing it is possible
to perform batched RPT [14, 6] with a lower rate. Noticeably, this approach is common in the industry and is
performed, for instance, in [21]. Using public-coins from the verifier to randomly combine the pi polynomials yields
a new Reed-Solomon proximity test with a smaller degree-bound, dp/c.

Naturally, the analysis of section 5.1 does not consider the application of this procedure since it may be per-
formed for either AIR or PAIR. Nonetheless, slicing might require significant computation and introduces another
interaction between the prover and the verifier, which, again, can be simulated by a non-interactive procedure [7].

6 Tweaking the PAIR Selector—Optimization of the Bound

By analyzing equation (7), one observes that dQB varies linearly with the cardinality of the image of GB through
the selector s; expressly, it increases linearly with |B|. This section will provide a method for mitigating this factor
in the PAIR selector, without compromising the previously defined AIR.

Instead of using a single selector function, one could append multiple selector columns to the trace—still derived
from (4)—so that these would be combined to uniquely represent a selecting value as before. The advantage here
would arise from the decrease in the size of the images of each selector, albeit the added constraint columns would
reflect in further processing and memory requirements.

6.1 Example: Binary Selection of 23 Constraints

Suppose the case of merely eight disjoint ψi constraints, that is, |B| = 8. To subserve representation, admit that
B = {0, . . . , 7}—any different set of 8 constraint could simply be reindexed to this one. Without loss of generality,
PAIR may be structured as in table 3, where k indexes the elements of the trace evaluation domain (not necessarily
in a consecutive manner). The selector column s shows the approach of the regular PAIR described so far, expressing
the disjoint application of different constraints; the remaining selectors s0, s1 and s2 uniquely encode s in a binary
representation, forming a separate but equivalent preprocessed trace.

Table 3: Preprocessed execution trace tables subject to |B| = 8 different constraints, with the regular selector, and
the binarily decomposed selector. The rows are ordered as 0 ≤ k0 < k1 < . . . < k7 < |G|, without loss of generality,
and x = gk.

regular base a = 2
Constraint k f(x) s f(x) s2 s1 s0
ψ0(x) = 0 k0 · · · 0 · · · 0 0 0
ψ1(x) = 0 k1 · · · 1 · · · 0 0 1
ψ2(x) = 0 k2 · · · 2 · · · 0 1 0
ψ3(x) = 0 k3 · · · 3 · · · 0 1 1
ψ4(x) = 0 k4 · · · 4 · · · 1 0 0
ψ5(x) = 0 k5 · · · 5 · · · 1 0 1
ψ6(x) = 0 k6 · · · 6 · · · 1 1 0
ψ7(x) = 0 k7 · · · 7 · · · 1 1 1

Regarding the regular PAIR method: (i) the low-degree extension applies only to one selector function,
and (ii) the polynomial of the APR combined constraint, as shown in equation (7), has a degree bound
dQB = maxj∈B

{
deg(Cj)

}
× |G|+ 7× deg(s)− |GB|. On the other hand, when decomposing a single selector into

a multitude of binary selectors, the low-degree extension occurs for more functions (three instead of one, in the
example of table 3), and the combined constraint polynomial may be expressed as:

ψ′
B = (1− s2) ·

[
(1− s1) ·

{
(1− s0) · ψ0 + s0 · ψ1

}
+ s1 ·

{
(1− s0) · ψ2 + s0 · ψ3

}]
+s2 ·

[
(1− s1) ·

{
(1− s0) · ψ4 + s0 · ψ5

}
+ s1 ·

{
(1− s0) · ψ6 + s0 · ψ7

}]
.
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Recalling equation (6), the difference between the degree bounds of QB and Q′
B = ψ′

B/VGB will be

dQB − dQ′
B
= 7× deg(s)− 3× deg(sj) ,

where the overline denotes the average. Therefore, for this particular instance, there is an improvement in the
degree-bound if the average degree of the three binary selectors is smaller than 7/3 ≈ 2.3 of the degree of the
regular selector. In fact, one would expect the degree of s0, s1 and s3 to be larger than the degree of s, due
to the greater amount of repeated values, which, by lemma 5.1, increases the lower bound for the degree of the
interpolating polynomial. So when would this decomposition method be serviceable?

6.2 Generalizing the Representation Base and Number of Constraints

When utilizing a generic representation base a, each of the multiple selector functions maps the union of the
constraint enforcement domains, GB, to the set A = {0, . . . , a− 1}. To represent |B| disjoint constraints, the number
of selector columns, ns, will be given by ns =

⌈
loga |B|

⌉
. Hence, one may express the corresponding PAIR combined

constraint as

ψ′
B(x) =

∑
i∈B

βi(x) ψi(x)

ns−1∏
j=0

VA\{ij}
(
sj(x)

) = 0 for all x ∈ GB with sj(x) =
∑
i∈B

ij
∑
z∈Gi

l(x|z) ,

where ij ∈ A is the jth digit (starting from zero) in the representation of i base a 8. This leads to the degree bound

deg(ψ′
B) ≤ max

j∈B

{
deg(Cj)

}
×
(
|G| − 1

)
+

(
|A| − 1

)
×

ns−1∑
j=0

deg(sj) .

Therefore, considering Q′
B = ψ′

B/VGB , for the APR constraint one has

deg(Q′
B) ≤ max

j∈B

{
deg(Cj)

}
×
(
|G| − 1

)
+

(
a− 1

)
×

⌈
loga |B|

⌉
× deg(sj)− |GB| = dQ′

B
. (9)

Noticeably, it is not trivial to guarantee a degree-bound improvement since the value deg(sj) has a higher lower
bound than deg(s), induced by the pigeonhole principle. Namely, it implies that

∣∣{x ∈ GB : sj(x) = i}
∣∣ ≥ ⌈

|GB|
|sj(GB)|

⌉
for some i ∈ sj(GB) for all j ∈ {0, . . . , ns − 1} .

Therefore, by lemma 5.1, one has deg(sj) ≥
⌈
|GB|/a

⌉
, since sj(GB) ⊂ A. Not much else can be predicted about the

degree of general selector functions. However, comparing equations (7) and (9), establishes that this last approach
will lead to a lower degree bound for Reed-Solomon proximity testing whenever the average degree of the selectors
sj is below a threshold ζ that depends on the base a and number of constraints |B|. Expressly,

dQ′
B
< dQB ⇐⇒ deg(sj)

deg(s)
<

ln(a)

a− 1

|B| − 1

ln
(
|B|

) = ζ .

Noting now that the function x 7→ ln(x)/(x− 1) is strictly decreasing, one infers that, if the base a is small, there
is a larger margin for improvement of the low-degree bound. On the other hand, increasing |B| has the opposite
effect on ζ, which makes this approach more desirable when employing a larger amount of constraints.

Figure 1a illustrates that decreasing the representation base a increases the number of selector functions that
must undergo the low-degree extension, an undesirable effect. Conversely, it also increases the low-degree improve-
ment threshold ζ, an advantageous impact (figure 1b). To optimize computational performance, one must balance
these two opposite trends: whether to incur in further arithmetization expenses by adding selector columns (decrease
a) while optimizing the degree bound for the subsequent Reed-Solomon proximity testing, or do the reciprocal. The
number of constraints, |B|, must also be taken into consideration in this optimization, inducing effects opposite to
those of a. Nonetheless, besides affecting the PAIR, changing |B| has other significant effects on arithmetization,
namely on the degree of the AIR polynomials, Ci, and on the size of the execution trace.

8As an example, in base a = 3, for the i = 7 element of the summation, and the j = 1 product element, the vanishing polynomial is
x 7→ VA\{2}(x) = x(x− 1), since 7 = 2× 31 + 1× 30 = (21)3.
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(a) Number of columns, ns =
⌈
loga |B|

⌉
. (b) Threshold for improvement of dQ′

B
for RPT.

Figure 1: Influence of the base a and number of constraints |B| on the number of selector columns ns and on ζ, the
threshold for improvement of the degree bound for Reed-Solomon proximity testing, dQ′

B
.

Appendix A compares the specific case of 9 disjoint constraints, when represented by either base 2 or base 3
selectors, analysing the resulting degree bounds.

7 Scalability and Complexity

Ensuring that STARKs enhance scalability by efficiently verifying computations on large batches requires tak-
ing into account the computational requirements of their underlying components. This section briefly analyzes
the computational demands of the two protocols—PAIR and AIR—and explores how they impact performance
optimization, specifically, the low-degree extension (LDE).

The LDE of f , CP and QB is the prover-executed evaluation of said functions over the evaluation domain wH,
with G < H and w ∈ F×—it is common to enforce a proper coset wH with w ̸∈ H. The evaluation domain for the
LDE has these properties for multiple reasons:

(i) G < H, the proper subgroup specification

(a) facilitates the LDE by allowing the use of efficient FFT-based algorithms for multi-point polynomial
evaluation (section 3.4 of [21]), and

(b) introduces a blow-up factor (a rate reduction) that increases soundness in Reed-Solomon proximity
testing (figure 1 of [8]);

(ii) G ∩ wH = ∅, the disjunction condition

(a) prevents the verifier from querying the rational functions from the APR at undefined points, namely,
those in the enforcement domains Gi (section 3.3.3 of [21]), and

(b) ensures that the verifier will not sample the private execution trace in query phases, promoting zero-
knowledge (section 3.7 of [14]).

The LDE is a relevant performance assessment point because it is the dominant function evaluation step in the
arithmetization phase, prior to RPT, and occurs in the entirety of the evaluation domain, wH, yielding a significant
computational effort [5]. Preceding the LDE, the arithmetization involves algebraic transformations that can largely
exist in abstraction with minimal computational demands. As a remark, given a predetermined AIR instance, the
arithmetization phase places the majority of the computational workload on the prover, as the verifier’s role is
limited to supplying randomness, at most (in the case of an IOP).

There are several methods available for performing the low-degree extension of a polynomial p over F. One
option is executing multiple fast Fourier transforms [22], each applied to an array of length |A|, where A is the
smallest multiplicative subgroup of H with order greater than deg(p). In total, considering all the cosets of A in
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H, one must perform |H|/|A| FFTs of size |A|. When evaluating cosets instead of groups, the array of polynomial
coefficients of p needs to be modified with proper adjustment factors. Namely, (i) regarding the cosets of A in
H, the factors will vary between all FFTs and between all coefficients, and (ii) if wH is a proper coset of H, the
FFT requires additional factors that differ from coefficient to coefficient. If these factors are precomputed, the
adjustment operations total O

(
H
)
field multiplications. Futhermore, each fast Fourier transform outputs |A| new

point evaluations and has complexity O
(
|A| log(|A|)

)
, resulting in a total complexity of O

(
|H| log(|A|)

)
for the

LDE, after acknowledging all cosets of A in H. Employing the FFT is a nicely scalable solution for computing the
low-degree extension of p.

If the array of polynomial coefficients of p is sparse, then polynomial evaluation is much simpler, and, at best,
computing a single point evaluation scales as O

(
log(deg(p))

)
. For multi-point evaluation, the sparsity of p will also

accelerate the FFT. Another fringe optimal case occurs when the function is periodic over wH, expressly if there
exists y ∈ H \ {1} such that p(yx) = p(x) for all x ∈ wH. At best, the order9 of y will be |H|/deg(p), resulting in
a period of the same length, and hence, only that many points need to be function-evaluated. These observations
might yield some optimizations for polynomial evaluation, when applicable.

After the arithmetization, one will undertake the Reed-Solomon proximity testing. However, the PAIR method
may experience increased complexity or reduced soundness compared to AIR, due to its generally higher low-
degree bounds. Specifically, for FRI using the PAIR method, the higher low-degree bounds may result in a larger
soundness error and more layers per batch, which adds to the complexity. Consequently, to meet the fixed security
requirements, the Reed-Solomon proximity testing proof-size will increase for the PAIR method compared to AIR.

7.1 Direct Comparison of Components

To optimize the low-degree extension of the polynomials CP and QB, it is crucial to have a clear understanding of
the individual components of each function, so that one may develop efficient procedures for this function evaluation
step. It is essential to avoid omitting details in the mathematical expressions, as these could be significant in the
optimization process. To reiterate, the formulation for the composition polynomial is

x 7→ CP(x) =
∑
i∈B

[
αi(x)ψi(x)

VGi
(x)

]
,

and for the PAIR, the polynomial of the APR constraint is

x 7→ QB(x) =
1

VGB(x)
×

∑
i∈B

βi(x) ψi(x)

ns−1∏
j=0

VA\{ij}
(
sj(x)

) .

Table 4 illustrates which components must be computed in the AIR and PAIR protocols. Again, for the comparison
to be meaningful, the AIR and PAIR refer to the same set of disjoint constraints.

Table 4: Comparison of elements that must be computed between the AIR and PAIR methods. The regular PAIR
is derived by defining A = B = {0, . . . , |B| − 1}, which implies ns = 1.

Compute AIR PAIR

αi(x) for all x ∈ wH for all i ∈ B optional no

VGi
(x) for all x ∈ wH for all i ∈ B yes no

ψi(x) for all x ∈ wH for all i ∈ B yes yes

βi(x) for all x ∈ wH for all i ∈ B no optional

VA\{ij}(y) for all y ∈ sj(wH) for all j ∈ [0, ns) for all i ∈ B no yes

sj(x) for all x ∈ wH for all j ∈ [0, ns) no yes

VGB(x) for all x ∈ wH no yes

The utilization of degree adjustment polynomials, αi and βi, is not a requirement in arithmetization. However,
their usage can be customized to fit specific needs, allowing for flexibility in degree adjustment. Depending on the

9The multiplicative order of y is the smallest natural number k such that yk = 1.

13



arithmetization instance, all αi can either have a higher degree than all βi, the reverse, or the degrees can vary in
between. The construction of the degree adjustment polynomials will depend on the degrees of the Ci polynomials
and the sizes of the enforcement domains.

The main computational disadvantage of the LDE in PAIR arises from the necessity of interpolating and eval-
uating the selector polynomials. Also, if the method described in section 6 is used, then one may need to consider
the system requirements for supporting the extended trace table formed by appending multiple selector columns.
Finally, PAIR requires the evaluation of the vanishing polynomials, VA\{ij}, for all the constraints (indexed by i)
and all the selectors columns (indexed by j). Naturally, AIR without selectors does not have these issues.

Conversely, the main drawback of the AIR method will be its necessity to compute the vanishing polynomial, VGi
,

for each individual constraint. In contrast, the PAIR method combines all these into a single “larger” constraint,
requiring the computation of only one vanishing polynomial. As a remark, evaluating a vanishing polynomial
becomes much easier if its set of roots is very close to the set of a multiplicative group [20]—for example, if
GB = G \ {g2}, then VGB(x) = (x|G| − 1)/(x− g2), which avoids explicitly computing a lengthy product.

It is important to examine the specific application context of each project when evaluating the advantages
and disadvantages mentioned above. Determining how these subtle computational differences impacts the actual
performance of an implementation requires (i) criteria to balance tasks between the prover and the verifier, (ii) an
evaluation of said chores regarding processing power, memory and network requirements, with suitable benchmark
testing, and (iii) real-world practical testing. Once the computational requirements for the arithmetization stage
are taken into account, it is also relevant to conduct a similar analysis for the RPT. A methodical approach must
be adopted to study how the varying degree bounds of AIR and PAIR impact the complexity and proof-length of
the RPT, while maintaining a fixed level of soundness. The final decisions balancing the two approaches should be
made based on the results of system integration testing. Further exploration of this topic would be valuable for
advancing research in this area.

8 Transitioning from PAIR to AIR

This section will provide some general guidelines on how one could easily convert a PAIR implementation into
a corresponding AIR, with each constraint individually defined alongside its enforcement domain, rather then the
unique combined PAIR constraint polynomial, QB.

Table 4 shows that there are at most two components of the AIR that are not components of the PAIR, expressly:
(i) the vanishing polynomials of the enforcement domains, and (ii) the optional degree-adjustment polynomials,
which require public randomness. As in section 4, when the PAIR approach is initially undertaken, the selector
values must be publicly defined along the execution trace, since these determine the constraint being enforced at the
corresponding execution trace row. To initiate the transitioning process, these selector values are used to generate
the enforcement domains, Gi, as level-sets of s. Once this is done, the procedure is akin to section 3, as follows.

(i) Perform the APR on the individual constraint polynomials with the newly defined Gi’s.

(ii) Conduct the ALI reduction with public-randomness provided by the verifier 10 to build the composition
polynomial.

Overall, the transition from PAIR to AIR is simpler than the reverse, with the only major addition of an optional
interaction step.

9 Hybrid Approach

In section 5 it was shown that the degree bound for the RPT after an AIR will always be less than or equal to the
degree bound of the corresponding (regular) PAIR. However, it might be possible to enjoy some of the advantages
of PAIR (like those suggested in section 7) without deteriorating the degree bound. Specifically, a hybrid strategy
would avoid this issue, if there exists a proper subset of constraints which combined using the PAIR approach leads
to a degree bound which is at most the degree bound of the composition polynomial CP. In that case, the PAIR
procedure could be used without affecting the final low-degree bound.

10This interaction can be simulated by a non-interactive procedure [7].
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Formally, if there exists E ⊂ B such that QE , the PAIR combined constraint of the AIR constraints index by E ,
has degree

deg(QE) ≤ dQE ≤ max
j∈B

{dQj} = dCP , then x 7→ C̃P(x) = αE(x)QE(x) +
∑

i∈B\E

αi(x)Qi(x)

defines a new composition polynomial with the same degree bound, namely maxj∈B{dQj} = dCP = d
C̃P

. Addi-
tionally, αE is a random polynomial chosen by the verifier with degree deg(αE) = dCP − dQE ≥ 0, if performing
degree-adjustment. Contrarily, the degree of αE is set to zero.

To sum things up, one could build a composition polynomial using the PAIR combined constraint for better
performance—mostly, by reducing the amount of vanishing polynomials in the final RPT assignment—while still
optimizing low-degree proximity testing by benefiting of the same low-degree bound as in the corresponding AIR.

10 Conclusions

This paper discussed two constraint arithmetization methods: AIR and its preprocessed variant PAIR, that
employs selector columns for constraint enforcement. The document explained the application of these methods
within a proving system and derived the degree bounds for Reed-Solomon proximity testing (RPT), for either
approach.

The study showed that using PAIR increases the degree bound for RPT—due to the need to interpolate and
represent the selectors as polynomials—which can lessen the soundness or complexity of the low-degree testing.
However, the paper also explored the possibility of reducing the degree bound of PAIR by representing the selector
using multiple selector columns, albeit with additional computational demands in the arithmetization phase.

While PAIR simplifies constraint enforcement, it can be easily translated to AIR, and both methods can be used
simultaneously for disjoint sets of constraints. This study suggests that PAIR may have computational advantages
over AIR, but system testing with benchmarks is necessary to determine the application-specific superiority of each
method.
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Appendix A

Example: Choosing the PAIR Selector Base for 32 Constraints

This appendix expands on the case of 9 disjoint constraints, to illustrate how one could still choose different
bases for the selector columns, while balancing the setbacks and benefits of each.

Table 5 shows this decomposition in both base 2 and 3. Because 9 = 32, the base 3 selector needs only 2
columns, while the base 2 selector requires an entire new column to be able to encode just one additional constraint
compared to table 3, adding up to 4 total columns that must be appended to the trace.
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Table 5: Preprocessed execution trace tables subject to 9 different constraints, with the regular selector, when the
selector base is a = 3, and when a = 2. The rows are ordered as 0 ≤ k0 < k1 < . . . < k8 < |G|, without loss of
generality, and x = gk.

regular base a = 3 base a = 2
Constraint k f(x) s f(x) s1 s0 f(x) s3 s2 s1 s0
ψ0(x) = 0 k0 · · · 0 · · · 0 0 · · · 0 0 0 0
ψ1(x) = 0 k1 · · · 1 · · · 0 1 · · · 0 0 0 1
ψ2(x) = 0 k2 · · · 2 · · · 0 2 · · · 0 0 1 0
ψ3(x) = 0 k3 · · · 3 · · · 1 0 · · · 0 0 1 1
ψ4(x) = 0 k4 · · · 4 · · · 1 1 · · · 0 1 0 0
ψ5(x) = 0 k5 · · · 5 · · · 1 2 · · · 0 1 0 1
ψ6(x) = 0 k6 · · · 6 · · · 2 0 · · · 0 1 1 0
ψ7(x) = 0 k7 · · · 7 · · · 2 1 · · · 0 1 1 1
ψ8(x) = 0 k8 · · · 8 · · · 2 2 · · · 1 0 0 0

By equation (9), we can infer the upper bounds for both bases as:

(dQ′
B
)3 = max

j∈B

{
deg(Cj)

}
× |G|+ 4× deg (sj)3 − |GB| ,

(dQ′
B
)2 = max

j∈B

{
deg(Cj)

}
× |G|+ 4× deg(sj)2 − |GB| .

This illustrates that base 2 might not yield the lowest degree bound if deg(sj)2 > deg(sj)3. However, the four base
2 selector columns could encode 7 additional constraints, while the two base 3 columns have been entirely used.
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