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Abstract

As a generalization of public key encryption with keyword search, public key encryption
with equality test was proposed (Yang et al. (CT-RSA 2010)), and identity-based encryption
with equality test (IBEET) is its identity-based variant. As a variant of IBEET, IBEET against
insider attacks (IBEETIA) was proposed (Wu et al. (ACISP 2017)), where a token is defined
for each identity and is used for encryption, and current concrete IBEETIA schemes (Lee et al.
(ACISP 2018) and Duong et al. (ProvSec 2019)) are constructed by identity-based encryption
(IBE) related complexity assumptions, and Emura and Takayasu (IEICE Transactions 2023)
demonstrated that symmetric key encryption and pseudo-random permutations are sufficient
to construct IBEETIA which is secure in the previous security definition. In this paper, we
demonstrate a sufficient condition that IBEETIA implies IBE. We define one-wayness against
chosen-plaintext/ciphertext attacks for the token generator (OW-TG-CPA/CCA) and for token
holders (OW-TH-CPA/CCA), which were not considered in the previous security definition. We
show that OW-TG-CPA secure IBEETIA with additional conditions implies OW-CPA secure IBE.
On the other hand, we propose a generic construction of OW-TH-CCA secure IBEETIA from
public key encryption. Our results suggest a design principle to efficiently construct IBEETIA
without employing IBE-related complexity assumptions.

Keywords. Identity-based encryption with equality test against insider attacks, Searchable En-
cryption, Generic Construction

1 Introduction

As a generalization of public key encryption with keyword search [5], public key encryption with
equality test (PKEET) was proposed [34], where anyone can check whether two ciphertexts of
distinct public keys are encryptions of the same plaintext or not using trapdoors. Identity-based
encryption with equality test (IBEET) is its identity-based variant, where anyone can check whether
two ciphertexts of distinct identities are encryptions of the same plaintext or not using trapdoors.
Wu at al. [32] proposed a lattice-based IBEET scheme based on the Tsabary IBE scheme [27]. Lee et
al. [24] demonstrated that IBEET can generically be constructed from 3-level hierarchical identity-
based encryption (HIBE).1 Asano et al. [2] further improved the Lee et al. generic construction to

∗An extended abstract appeared at ACISP 2024.
†The main part of study was done when the author was with the National Institute of Information and Commu-

nications Technology (NICT), Japan.
1Lee et al. [24] also demonstrated that PKEET can generically be constructed from 2-level HIBE.
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capture state-of-the-art lattice-based IBE schemes [22,33]. Lee [23] gave an attack against the Zhu
et al’s IBEET scheme [35].

IBEET cannot provide any indistinguishability-based security for insiders who have a trapdoor
due to the test functionality of IBEET. Concretely, two security notions are defined against two
types of adversaries called Type-I and Type-II. The Type-I adversary is allowed to obtain trapdoors
for the challenge identity, and thus the one-wayness against the Type-I adversary was defined.
The Type-II adversary is not allowed to obtain trapdoors for the challenge identity, and thus the
indistinguishability against the Type-II adversary was defined.2

IBEET against insider attacks. Since IBEET does not provide any indistinguishability security
against insiders who have trapdoors (the Type-I adversary above), Wu et al. [31] introduced IBEET
against insider attacks (IBEETIA). We briefly introduce IBEETIA as follows. The setup algorithm
outputs a master token key MTK, in addition to a master public key MPK and a master secret key
MSK. As in IBE, MSK is used for generating a secret key skID for an identity ID. MTK is used
for generating a token tokID for an identity ID. The encryption algorithm takes tokID in addition
to MPK, ID, a plaintext M , and outputs a ciphertext ct. The decryption algorithm takes MPK,
ct, and both skID and tokID, and outputs M . Anyone can run the test algorithm that takes MPK
and two ciphertexts without using trapdoors. IBEETIA can provide an indistinguishability when an
adversary A is not allowed to obtain a token tokID∗ and a secret key skID∗ for the challenge identity
ID∗ (and it is required that A did not query (ID,M∗

0 ) or (ID,M∗
1 ) for any ID and the challenge

plaintexts (M∗
0 ,M

∗
1 ) as an encryption query).

Lee et al. [25] pointed out a security flaw of the Wu et al. scheme [31], and proposed a pairing-
based IBEETIA scheme. Moreover, Duong et al. [15] proposed a lattice-based IBEETIA scheme
based on the Agrawal-Boneh-Boyen (ABB) IBE scheme [1]. That is, they employed IBE-related
complexity assumptions. According to the implication result shown by Boneh et al. [7], IBE is
recognized as a strong cryptographic primitive because no black-box construction of IBE from
trapdoor permutations (TDPs) exist.3 At the first place, these selections are reasonable because
HIBE is employed to construct IBEET [2,24]. However, Emura and Takayasu [18] demonstrated that
symmetric key encryption and pseudo-random permutations are sufficient to construct IBEETIA
which is secure in the security definition given in [15, 25, 31]. They paid attention to the syntax
that a token tokID is used for both encryption and decryption, as in symmetric key encryption, and
they set tokID as a key SKE.sk of a symmetric encryption scheme. Interestingly, skID = ⊥ in the
Emura-Takayasu construction because skID is not used for decryption. Emura and Takayasu [18]
mentioned that:

One may wonder whether our construction provides the same functionality of previous
IBEETIA schemes since skID = ⊥. More precisely, because the Dec algorithm takes both
skID and tokID as input, anyone who has tokID can decrypt all ciphertexts generated by
ID in our construction, whereas one who has tokID but does not have skID cannot decrypt
such ciphertexts in the previous schemes. We emphasize that this difference does not
violate not only the correctness but also the wIND-CCA security.

Here, wIND-CCA stands for weak indistinguishability against chosen ciphertext attacks. According
to this observation, it is natural to consider a security notion against token holders who have tokID
but do not have skID, as in the Type-I adversary in IBEET.

Our Contribution. In this paper, we demonstrate a sufficient condition that IBEETIA implies
IBE. We define one-wayness against chosen-plaintext/ciphertext attacks for the token generator

2Chosen-ciphertext attack (CCA) is considered against both types of adversaries. See [2, 24] for more details.
3As a remark, some techniques can be employed to bypass the impossible result, e.g., [9, 14, 30].
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(OW-TG-CPA/CCA), where an adversary has MTK, and for token holders (OW-TH-CPA/CCA),
where an adversary is allowed to issue token queries for any identity. Our main results are explained
as follows.

• We show that OW-TG-CPA secure IBEETIA implies OW-CPA secure IBE. Here, we assume
the following additional conditions hold, where skID is related to MSK and is independent to
MTK, and tokID is related to MTK and is independent to MSK.

– This structure was employed in the previous constructions [15, 18, 25, 31]. For example,
in the Lee et al. scheme [25], tokID is a pseudo-random permutation key and a message
authenticated code (MAC) key, and skID is a secret key of the Boneh-Franklin IBE
scheme [6] with the form H(ID)α. In the Duong et al. scheme [15], tokID is a trapdoor
for a matrix A′ of the Agrawal-Boneh-Boyen (ABB) IBE scheme [1] and skID is a secret
key of the ABB IBE scheme generated by a trapdoor for a matrix A. Here, two matrices
A′ and A are independently chosen.

– This structure and the OW-TG-CPA security allow us to construct IBE from IBEETIA.
Intuitively, (MPK,MTK) is set as a master public key of IBE. Revealing MTK allows
anyone to generate a ciphertext by computing tokID and supports exponentially many
identities.

• On the other hand, we propose a generic construction of OW-TH-CCA secure IBEETIA from
CCA-secure public key encryption (PKE), pseudo-random permutations, and a hash function.
Because the encryption algorithm takes a token tokID as input and the number of tokens are
bounded by a polynomial of the security parameter, there is room for constructing an OW-
TG-CCA secure IBEETIA scheme from cryptographic primitives which are weaker than IBE.

– Unlike to the previous constructions, skID and tokID are related. Let (PKE.pk,PKE.dk)
be a pair of public and decryption key of a PKE scheme. tokID contains a pseudo-random
permutation key k and PKE.pk, and skID = PKE.dk. Since revealing PKE.pk does not
affect the security, this structure provides the OW-TH-CPA security.4 Moreover, CCA
security of the underlying PKE scheme provides OW-TH-CCA security.

Briefly, OW-TG-CPA guarantees that a plaintext is not recovered from a ciphertext even against
the token generator that has MTK and issues tokens to users similar to the key generation center
of IBE. OW-TG-CPA is a stronger notion because it considers a kind of the key escrow problem
of IBE [11, 16, 17]. In other words, IBEETIA implies IBE when such a stronger security notion
is considered. OW-TH-CPA guarantees that a plaintext is not recovered from a ciphertext even
against token holders who have tokens, as in the Type-I adversary in IBEET, and seems sufficient in
practice. Our results suggest a design principle to efficiently construct IBEETIA without employing
IBE-related complexity assumptions.

Remark. The term “Insider attackers” refers to a security aspect, and does not refer the func-
tionality of IBEETIA, i.e., a token is defined for each identity and is used for encryption. In
this perspective, IBEETIA could be renamed, e.g., token-controlled identity-based encryption with
equality test (TCIBEET) because token-controlled encryption [4, 10, 19] supports the functionality
where plaintexts are encrypted by a public key together with a secret token, and a ciphertext is

4We inspired the construction of fully anonymous group signatures with verifier-local revocation [21] where PKE.pk
is set as a part of a signing key and PKE.dk is set as a revocation token. Then, revealing a signing key does not affect
the anonymity.
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decrypted by the corresponding private key after the token is released. Nevertheless, we employ
the naming IBEETIA in this paper because changing the name of a cryptographic primitive would
obscure its relevance to past researches, and could lead readers to mistakenly decide that a different
cryptographic primitive is analyzed in this paper.

2 Preliminaries

SKE. An symmetric key encryption scheme SKE consists of the following three algorithms (SKE.KeyGen,
SKE.Enc, SKE.Dec). The key generation algorithm SKE.KeyGen takes a security parameter λ ∈ N,
and outputs a secret key SKE.sk. The encryption algorithm SKE.Enc takes SKE.sk and a plaintext
M as input, and outputs a ciphertext ctSKE. The decryption algorithm SKE.Dec takes SKE.sk and
ctSKE as input, and output M or ⊥.

PKE. An public key encryption scheme PKE consists of the following three algorithms (PKE.KeyGen,
PKE.Enc,PKE.Dec). The key generation algorithm PKE.KeyGen takes a security parameter λ ∈ N,
and outputs a public key PKE.pk and a decryption key PKE.dk. The encryption algorithm PKE.Enc
takes PKE.pk and a plaintext M as input, and outputs a ciphertext ctPKE. The decryption algo-
rithm PKE.Dec takes PKE.pk, PKE.dk, and ctPKE as input, and output M or ⊥. For all λ ∈ N,
(PKE.pk,PKE.dk) ← PKE.KeyGen(1λ) and M ∈ M, it is required that Pr[M ← PKE.Dec(PKE.pk,
PKE.dk,PKE.Enc(PKE.pk,M))] = 1− negl(λ) holds.

Next, we define the indistinguishability against chosen-ciphertext attacks (IND-CCA) as follows.
Let A be a PPT adversary and C be the challenger. C runs (PKE.pk,PKE.dk)← PKE.KeyGen(1λ)
and sends PKE.pk to A. A is allowed to issue decryption queries. A sends ctPKE to C. C returns the
result of PKE.Dec(PKE.pk,PKE.dk, ctPKE). In the challenge phase, A declares two equality-length
challenge plaintexts (M∗

0 ,M
∗
1 ). C flips a coin b ∈ {0, 1}, runs ct∗PKE ← PKE.Enc(PKE.pk,M∗

b ), and
sends ct∗PKE to A. A is allowed to issue decryption queries. A sends ctPKE ̸= ct∗PKE to C. C returns
the result of PKE.Dec(PKE.pk,PKE.dk, ctPKE). Finally, A outputs b′ ∈ {0, 1}. The advantage of
A is defined as AdvIND-CCA

PKE,A (1λ) := |Pr[b = b′] − 1/2|. We say that PKE is IND-CCA secure if

AdvIND-CCA
PKE,A (1λ) is negligible.

IBE. An identity-based encryption scheme IBE consists of the following four algorithms (IBE.Setup,
IBE.Extract, IBE.Enc, IBE.Dec). The setup algorithm IBE.Setup takes a security parameter λ ∈ N,
and outputs a master public key MPK and a master secret key MSK. The key extraction algorithm
IBE.Extract takesMPK, MSK, and an identity ID ∈ ID as input, and outputs a secret key skID. Here,
ID is the identity space which is implicitly included in MPK. The encryption algorithm IBE.Enc
takes MPK, ID, and a plaintext M ∈ M as input, and outputs a ciphertext ctIBE. Here,M is the
message space which is implicitly included in MPK. The decryption algorithm IBE.Dec takes MPK,
ctIBE, and skID, and outputs M or ⊥. For all λ ∈ N, (MPK,MSK) ← IBE.Setup(1λ), ID ∈ ID, and
M ∈ M, it is required that Pr[M ← IBE.Dec(MPK, IBE.Enc(MPK, ID,M), IBE.Extract(MPK,MSK,
ID))] = 1− negl(λ) holds.

Next, we define the one-wayness against chosen-plaintext attacks (OW-CPA) as follows. Let
A be a PPT adversary and C be the challenger. C runs (MPK,MSK) ← IBE.Setup(1λ) and sends
MPK to A. A is allowed to issue key extraction queries. A sends ID to C. C runs skID ←
IBE.Extract(MPK,MSK, ID) and sends skID to A. In the challenge phase, A declares the challenge
identity ID∗ which was not sent as a key extraction query. C randomly choose M∗ ← M, runs
ct∗IBE ← IBE.Enc(MPK, ID∗,M∗), and sends ct∗IBE to A. Finally, A outputs M̂ . The advantage of

A is defined as AdvOW-CPA
IBE,A (1λ) := |Pr[M∗ = M̂ ] − 1/|M||. We say that IBE is OW-CPA secure if

AdvOW-CPA
IBE,A (1λ) is negligible.
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IBEETIA [15, 18, 25, 31]. An IBEETIA scheme IBEETIA consists of the following five algo-
rithms (IBEETIA.Setup, IBEETIA.Extract, IBEETIA.Enc, IBEETIA.Dec, IBEETIA.Test) defined below.
A master token key MTK is used for generating a token tokID for ID, and tokID is required in
the encryption algorithm. Anyone can run the test algorithm against two ciphertexts without
using trapdoors. By restricting who can run the encryption algorithm, IBEETIA can provide the
indistinguishability security against non-insiders who do not have tokID.

IBEETIA.Setup: The setup algorithm takes a security parameter λ ∈ N, and outputs a master
public key MPK, a master secret key MSK, and a master token key MTK.

IBEETIA.Extract: The key extraction algorithm IBE.Extract takes MPK, MSK, and MTK, and an
identity ID ∈ ID as input, and outputs a secret key skID and a token tokID. Here, ID is the
identity space which is implicitly included in MPK.

IBEETIA.Enc: The encryption algorithm takes MPK, tokID, ID, and a plaintext M ∈ M as input,
and outputs a ciphertext ctIBEETIA. Here,M is the message space which is implicitly included
in MPK.

IBEETIA.Dec: The decryption algorithm takes MPK, skID, tokID, and ctIBEETIA, and outputs M or
⊥.

IBEETIA.Test: The test algorithm takes MPK and two ciphertexts ctIBEETIA and ct′IBEETIA, and
outputs 1 or 0.

The correctness of an IBEETIA scheme is defined as follows. Here, a probability space is random
coins to run IBEETIA.Setup, IBEETIA.Extract, and IBEETIA.Enc. We note that the first condition
is employed in our security proof.

1. For all λ ∈ N, ID ∈ ID, and M ∈ M, M ′ = M holds with overwhelming probabil-
ity where (MPK,MSK,MTK) ← IBEETIA.Setup(1λ), (skID, tokID) ← IBEETIA.Extract(MPK,
MSK,MTK, ID), ctIBEETIA ← IBEETIA.Enc(MPK, tokID, ID,M), andM ′ ← IBEETIA.Dec(MPK,
skID, tokID, ctIBEETIA).

2. For all λ ∈ N, ID, ID′ ∈ ID, and M ∈ M, IBEETIA.Test(MPK, ctIBEETIA, ct
′
IBEETIA) =

1 holds with overwhelming probability, where (MPK,MSK,MTK) ← IBEETIA.Setup(1λ),
(skID, tokID)← IBEETIA.Extract(MPK,MSK,MTK, ID), (skID′ , tokID′)← IBEETIA.Extract(MPK,
MSK,MTK, ID′), ctIBEETIA ← IBEETIA.Enc(MPK, tokID, ID,M), and ct′IBEETIA ← IBEETIA.Enc
(MPK, tokID′ , ID′,M).

3. For all λ ∈ N, ID, ID′ ∈ ID, and M,M ′ ∈ M such that M ̸= M ′, IBEETIA.Test(MPK,
ctIBEETIA, ct

′
IBEETIA) = 1 holds with negligible probability, where (MPK,MSK,MTK)← IBEETIA.Setup(1λ),

(skID, tokID)← IBEETIA.Extract(MPK,MSK,MTK, ID), (skID′ , tokID′)← IBEETIA.Extract(MPK,
MSK,MTK, ID′), ctIBEETIA ← IBEETIA.Enc(MPK, tokID, ID,M), and ct′IBEETIA ← IBEETIA.Enc
(MPK, tokID′ , ID′,M ′).

Next, we define the weak indistinguishability against chosen ciphertext attacks (wIND-CCA).
Unlike to IBE, the encryption algorithm takes tokID as input. Thus, an adversary A is allowed to
issue an encryption query. If A declares the challenge identity ID∗ before the setup phase, we call it
selectively wIND-CCA secure. Due to the nature of IBEETIA, it is required that A did not query
(ID,M∗

0 ) or (ID,M
∗
1 ) for any ID and the challenge plaintexts (M∗

0 ,M
∗
1 ) as an encryption query.
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Definition 1 (wIND-CCA [18, 25, 31]). Let A be a PPT adversary and C be the challenger. C
runs (MPK,MSK,MTK)← IBEETIA.Setup(1λ) and sends MPK to A. A is allowed to issue queries
below.

Key Extraction: A sends ID to C. C runs (skID, tokID)← IBEETIA.Extract(MPK,MSK,MTK, ID)
and sends skID to A. Here C does not send tokID to A.

Encryption: A sends (ID,M) to C. C runs (skID, tokID)← IBEETIA.Extract(MPK,MSK,MTK, ID)
and ctIBEETIA ← IBEETIA.Enc(MPK, tokID, ID,M), and sends ctIBEETIA to A.

Decryption: A sends (ID, ctIBEETIA) to C. C runs (skID, tokID)← IBEETIA.Extract(MPK,MSK,MTK,
ID) and return the result of IBEETIA.Dec(MPK, skID, tokID, ctIBEETIA).

In the challenge phase, A declares two plaintexts (M∗
0 ,M

∗
1 ) and the challenge identity ID∗. It is

required that ID∗ was not sent as a key extraction query. Moreover, it is required that A did not query
(ID,M∗

0 ) or (ID,M∗
1 ) for any ID as an encryption query. C randomly flips a coin b← {0, 1}, runs

(skID∗ , tokID∗) ← IBEETIA.Extract(MPK,MSK,MTK, ID), ct∗IBEETIA ← IBEETIA.Enc(MPK, tokID∗ ,
ID∗,M∗

b ), and sends ct∗IBEETIA to A. In addition to the restrictions above, A is not allowed to issue
(ID∗, ct∗IBEETIA) as a decryption query. Finally, A outputs b′ ∈ {0, 1}. The advantage of A is defined
as

AdvwIND-CCA
IBEETIA,A(1

λ) := |Pr[b = b′]− 1/2|

We say that IBEETIA is wIND-CCA secure if AdvwIND-CCA
IBEETIA,A(1

λ) is negligible.

3 OW-CPA Security of IBEETIA

In this section, we define one-wayness against chosen-plaintext attacks for the token generator
(OW-TG-CPA) which guarantees that a plaintext is not recovered from a ciphertext even against
the token generator. A is allowed to obtain MTK in addition to MPK. Thus, no encryption oracle
is defined. If A declares the challenge identity ID∗ before the setup phase, we call it selectively
secure. OW-TG-CCA security can also be defined. We remark that OW-TG-CPA is sufficient to
show our implication result.

Definition 2 (OW-TG-CPA). Let A be a PPT adversary and C be the challenger. C runs (MPK,
MSK,MTK) ← IBEETIA.Setup(1λ) and sends (MPK,MTK) to A. A is allowed to issue queries
below.

Key Extraction: A sends ID to C. C runs (skID, tokID)← IBEETIA.Extract(MPK,MSK,MTK, ID)
and sends skID to A. Here C does not send tokID to A.

In the challenge phase, A declares the challenge identity ID∗ which was not sent as a key
extraction query. C randomly chooses M∗ ← M, runs (skID∗ , tokID∗) ← IBEETIA.Extract(MPK,
MSK,MTK, ID∗), ct∗IBEETIA ← IBEETIA.Enc(MPK, tokID∗ , ID∗,M∗), and sends ct∗IBEETIA to A. Fi-

nally, A outputs M̂ . The advantage of A is defined as

AdvOW-TG-CPA
IBEETIA,A (1λ) := |Pr[M∗ = M̂ ]− 1/|M||

We say that IBEETIA is OW-TG-CPA secure if AdvOW-TG-CPA
IBEETIA,A (1λ) is negligible.

6



Next, we define one-wayness against chosen-ciphertext attacks for token holders (OW-TH-
CCA), where an adversary is allowed to issue token queries for any identity which guarantees
that a plaintext is not recovered from a ciphertext even against token holders who have tokens.
OW-TH-CPA is also defined when no decryption oracle is considered. The token extraction oracle
can be simulated when MTK is given. Thus, the OW-TG-CPA security implies the OW-TH-CPA
security.

Definition 3 (OW-TH-CCA). Let A be a PPT adversary and C be the challenger. C runs (MPK,
MSK,MTK)← IBEETIA.Setup(1λ) and sends MPK to A. A is allowed to issue queries below.

Key Extraction: A sends ID to C. C runs (skID, tokID)← IBEETIA.Extract(MPK,MSK,MTK, ID)
and sends skID to A. Here C does not send tokID to A.

Token Extraction: A sends ID to C. C runs (skID, tokID)← IBEETIA.Extract(MPK,MSK,MTK, ID)
and sends tokID to A. Here C does not send skID to A.

Decryption: A sends (ID, ctIBEETIA) to C. C runs (skID, tokID)← IBEETIA.Extract(MPK,MSK,MTK,
ID) and return the result of IBEETIA.Dec(MPK, skID, tokID, ctIBEETIA).

In the challenge phase, A declares the challenge identity ID∗ which was not sent as a key
extraction query. Note that A is allowed to obtain tokID∗ . C randomly chooses M∗ ← M, runs
(skID∗ , tokID∗) ← IBEETIA.Extract(MPK,MSK,MTK, ID∗), ct∗IBEETIA ← IBEETIA.Enc(MPK, tokID∗ ,
ID∗,M∗), and sends ct∗IBEETIA to A. A is not allowed to issue (ID∗, ct∗IBEETIA) as a decryption query.

Finally, A outputs M̂ . The advantage of A is defined as

AdvOW-TH-CCA
IBEETIA,A (1λ) := |Pr[M∗ = M̂ ]− 1/|M||

We say that IBEETIA is OW-TH-CCA secure if AdvOW-TH-CCA
IBEETIA,A (1λ) is negligible.

4 Our IBE Construction from IBEETIA

In this section, we construct an OW-CPA secure IBE scheme from an OW-TG-CPA secure IBEETIA
scheme. In addition to the OW-TG-CPA security, we assume the following additional conditions,
where skID is related to MSK and is independent to MTK, and tokID is related to MTK and is
independent to MSK. This is a sufficient condition that IBEETIA implies IBE. Concretely, the
IBEETIA.Extract algorithm is divided to two sub-algorithms as follows.

IBEETIA.ExtractSK: The secret key extraction algorithm takes as MPK, MSK, and ID ∈ ID as
input, and outputs a secret key skID.

IBEETIA.ExtractTK: The token extraction algorithm takes as MPK, MTK, and ID ∈ ID as input,
and outputs a token tokID.

Then, the IBEETIA.Extract algorithm is defined as follows.

IBEETIA.Extract(MPK,MSK,MTK, ID): Run skID ← IBEETIA.ExtractSK(MPK,MSK, ID) and tokID ←
IBEETIA.ExtractTK(MPK,MTK, ID), and output (skID, tokID).

7



We give our IBE construction as follows. Here, the test functionality of IBEETIA is not used.
Importantly, IBE must support exponentially many identities, i.e., there are exponentially many
public keys.5 If IBE supports only polynomially many identities, IBE can be constructed from PKE
by assigning a public key of PKE to each identity. Due to the OW-TG-CPA security, an adversary
is allowed to obtain MTK. This allows us to contain MTK to the master public key of IBE. Then,
unlike to IBEETIA, anyone can generate a ciphertext by internally computing tokID using MTK
and by running the IBEETIA.Enc algorithm. Thus, as in IBE, exponentially many identities are
supported. This publicly-executable encryption algorithm is mandatory to construct IBE.

IBE.Setup(1λ): Run (MPK′,MSK,MTK) ← IBEETIA.Setup(1λ) and output MPK = (MPK′,MTK)
and MSK.

IBE.Extract(MPK,MSK, ID): Parse MPK = (MPK′,MTK). Run skID ← IBEETIA.ExtractSK(MPK′,
MSK, ID) and output skID.

IBE.Enc(MPK, ID,M): Parse MPK = (MPK′,MTK). Run tokID ← IBEETIA.ExtractTK(MPK,MTK,
ID) and ctIBEETIA ← IBEETIA.Enc(MPK′, tokID, ID,M). Output ctIBE = ctIBEETIA.

IBE.Dec(MPK, ctIBE, skID): Parse MPK = (MPK′,MTK) and ctIBE = ctIBEETIA. Run tokID ←
IBEETIA.ExtractTK(MPK,MTK, ID). Output the result of IBEETIA.Dec(MPK′, skID, tokID,
ctIBEETIA).

Correctness of the IBE scheme is directly followed by the first condition of the correctness of
the underlying IBEETIA scheme.

Theorem 1. The proposed IBE scheme is OW-CPA secure if the underlying IBEETIA is OW-TG-
CPA secure.

Proof. Let A be the adversary of the OW-CPA security of IBE and C be the challenger of the
OW-TG-CPA security of IBEETIA. We construct an algorithm B that breaks the OW-TG-CPA
security using A as follows.

First, C runs (MPK′,MSK,MTK) ← IBEETIA.Setup(1λ) and sends (MPK′,MTK) to B. B sets
MPK = (MPK′,MTK) and sends MPK to A. When A issues a key extraction query ID, B forwards
ID to C. C runs (skID, tokID) ← IBEETIA.Extract(MPK,MSK,MTK, ID) and sends skID to B. In
the challenge phase, A declares ID∗. B sends ID∗ to C. C randomly chooses M∗ ← M, runs
(skID∗ , tokID∗) ← IBEETIA.Extract(MPK,MSK,MTK, ID∗), ct∗IBEETIA ← IBEETIA.Enc(MPK, tokID∗ ,
ID∗,M∗), and sends ct∗IBEETIA to B. B sets ct∗IBE = ct∗IBEETIA and sends ct∗IBE to A. Finally, A
outputs M̂ and B outputs the same M̂ . Then, B breaks the OW-TG-CPA security with the
advantage at least AdvOW-CPA

IBE,A (1λ).

5 Proposed Generic Construction of IBEETIA

In this section, we propose a generic construction of IBEETIA that provides the OW-TH-CCA secu-
rity, in addition to the wIND-CCA security and correctness. The proposed construction basically
follows the Emura-Takayasu construction, except that a PKE scheme is employed. Unlike to the
OW-TG-CCA security, an adversary is not allowed to obtain MTK, and is allowed to issue token

5Boneh et al. [7] wrote that “Our proof brings to light the essential property of IBE systems: an IBE system
creates an exponential number of public keys (identities) and compresses all of them into a short string called the
public parameters. This ability to represent exponentially many public keys using a short string is not possible with
a generic PKE or TDP.”
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queries. Because the number of tokens is bounded by a polynomial of the security parameter and
the encryption algorithm takes a token tokID as input, the number of identities are also bounded
by a polynomial of the security parameter. Thus, there is room for constructing an OW-TG-CCA
secure IBEETIA scheme from cryptographic primitives which are weaker than IBE.

5.1 Emura-Takayasu IBEETIA Construction

Before giving the proposed construction, we revisit the Emura-Takayasu construction [18]. Let π
be a pseudo-random permutation with a key space K and SKE = (SKE.KeyGen, SKE.Enc, SKE.Dec)
be a CCA-secure SKE scheme. We denote R as a randomness space for key generation. That is,

we denote SKE.sk← SKE.KeyGen(1λ; r) for r
$←− R.

IBEETIA.Setup(1λ): Choose k
$←− K. Output MPK = ⊥, MSK = ⊥, and MTK = k.

IBEETIA.Extract(MPK,MSK,MTK, ID): Parse MTK = k. Choose rID
$←− R and SKE.skID ←

SKE.KeyGen(1λ; rID) and output skID = ⊥ and tokID = (SKE.skID, k).

IBEETIA.Enc(MPK, tokID, ID,M): Parse tokID = (SKE.skID, k). Run xM ← π(k,M) and ctSKE ←
SKE.Enc(SKE.skID,M) and outputs ctIBEETIA = (xM , ctSKE).

IBEETIA.Dec(MPK, skID, tokID, ctIBEETIA): Parse tokID = (SKE.skID, k) and ctIBEETIA = (xM , ctSKE).
Run M ′ ← SKE.Dec(SKE.skID, ctSKE) and xM ′ ← π(k,M ′). If xM = xM ′ , then output M ′,
and ⊥ otherwise.

IBEETIA.Test(MPK, ctIBEETIA, ct
′
IBEETIA): Parse ctIBEETIA = (xM , ctSKE) and ct′IBEETIA = (xM ′ , ct′SKE).

If xM = xM ′ , then output 1, and 0 otherwise.

Since π is permutation, if M = M ′, then xM = xM ′ holds and if M ̸= M ′, then xM ̸= xM ′ holds.
Moreover, the IBEETIA construction is wIND-CCA secure if π is a pseudo-random permutation
and SKE is CCA secure. Intuitively, if MTK = k is hidden, then xM is indistinguishable from a
value generated by a random function due to the pseudo-randomness. We remark that k is not
revealed in the definition of the wIND-CCA security. Moreover, no information of M is revealed
from ctSKE due to the IND-CCA security of the SKE scheme. We briefly explain how to prove that
the construction is wIND-CCA secure as follows. In the security proof, a simulator B obtains the
challenge ciphertext ct∗SKE from the challenger of the SKE scheme. Then B randomly chooses xM∗

b

from M and sets (xM∗
b
, ct∗SKE) as the challenge ciphertext of IBEETIA. One may wonder how to

respond a decryption query (xM , ct∗SKE) ∧ xM ̸= xM∗
b
since B is not allowed to issue a decryption

query ct∗SKE to C. Because π is permutation, there is only one valid xM∗
b
. Thus, B simply returns

⊥ if (xM , ct∗SKE) ∧ xM ̸= xM∗
b
.

Obviously, the Emura-Takayasu construction does not provide the OW-TH-CPA security be-
cause tokID = (SKE.sk, k) and revealing tokID immediately breaks the security of the underlying
SKE scheme. In other words, symmetric key primitives are sufficient if no security against token
holders is required.

5.2 Proposed Construction

We tweak the Emura-Takayasu construction to provide the OW-TH-CCA security. Basically, we
employ a PKE scheme, and set skID = PKE.dk and tokID = (PKE.pk, k). Then, revealing PKE.pk
does not affect the security of PKE. We need to care the fact that no security of π can be assumed

9



if k is revealed. Especially, M may be recovered from π(k,M) without contradicting the security
of π. For example, when a block cipher is employed as π, revealing the key k immediately recovers
M . As the first attempt, we employ a hash function H and set xM ← π(k,H(M)). Due to
the collision resistance of H, if M ̸= M ′, then H(M) ̸= H(M ′). Thus, employing H does not
affect the correctness. Moreover, due to the one-wayness of H, M is not recovered from H(M).

Informally, for M∗ $←− M, the challenge ciphertext is (x∗, ct∗PKE) where x∗ = π(k,H(M∗)) and
ct∗PKE ← PKE.Enc(PKE.pk,M∗). First, we replace ct∗PKE such that ct∗PKE ← PKE.Enc(PKE.pk, 0|M

∗|)
due to the IND-CCA security of PKE, and second we break the one-wayness of H using the output
of the OW-TH-CCA adversary. Here, we need to consider that usually PKE does not hide the
plaintext size. Thus, if we set x∗ = π(k,H(M)) where H(M) is given from the challenger of the
one-wayness of H, the simulator has no way to generate ct∗PKE ← PKE.Enc(PKE.pk, 0|M |). Thus,
we assume that the size of all plaintexts are the same, e.g., by adding a padding to each plaintext.
We further need to consider the case that an adversary sends (xM , ct∗PKE) where x

∗ ≠ xM . Since H
is deterministic, H(M) is uniquely determined when M is fixed. Thus, we can reject a decryption
query (xM , ct∗PKE) if x

∗ ̸= xM .
Let H : M → {0, 1}λ be a hash function and PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) be a

CCA-secure PKE scheme. We denote R as a randomness space for key generation. That is, we

denote (PKE.pk,PKE.dk)← PKE.KeyGen(1λ; r) for r
$←− R.

IBEETIA.Setup(1λ): Specify a hash function H and choose k
$←− K. Output MPK = H, MSK = ⊥,

and MTK = k.

IBEETIA.Extract(MPK,MSK,MTK, ID): ParseMTK = k. Choose rID
$←− R and (PKE.pkID,PKE.dkID)

← PKE.KeyGen(1λ; rID) and output skID = PKE.dkID and tokID = (PKE.pkID, k).

IBEETIA.Enc(MPK, tokID, ID,M): ParseMPK = H and tokID = (PKE.pkID, k). Run xM ← π(k,H(M))
and ctPKE ← PKE.Enc(PKE.pkID,M) and outputs ctIBEETIA = (xM , ctPKE).

IBEETIA.Dec(MPK, skID, tokID, ctIBEETIA): ParseMPK = H, skID = PKE.dkID, tokID = (PKE.pkID, k),
and ctIBEETIA = (xM , ctPKE). Run M ′ ← PKE.Dec(PKE.dkID, ctPKE) and xM ′ ← π(k,H(M ′)).
If xM = xM ′ , then output M ′, and ⊥ otherwise.

IBEETIA.Test(MPK, ctIBEETIA, ct
′
IBEETIA): Parse ctIBEETIA = (xM , ctPKE) and ct′IBEETIA = (xM ′ , ct′PKE).

If xM = xM ′ , then output 1, and 0 otherwise.

Due to the correctness of the underlying PKE scheme, π is a permutation, and H is a de-
terministic hash function, the first and second conditions of the correctness hold. Since π is a
permutation, and H is collision resistant, xM ̸= xM ′ holds if M ̸= M ′. Thus, the third condition
of the correctness holds.

Theorem 2. The proposed IBEETIA construction is wIND-CCA secure if the underlying PKE is
IND-CCA secure and π is a pseudo-random permutation.

Proof. The proof proceeds with the following sequence of games.

Game0: This game is a real wIND-CCA security game. Queries issued by A is answered as follows.

Key Extraction: A sends ID to C. If ID has been issued as a query, C retrieves rID. Oth-

erwise, C chooses rID
$←− R and preserves (ID, rID) locally. C runs (PKE.pkID,PKE.dkID)

← PKE.KeyGen(1λ; rID) and returns skID = PKE.dkID to A.
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Encryption: A sends (ID,M) to C. If ID has been issued as a query, C retrieves rID and

preserves (ID, rID) locally. Otherwise, C chooses rID
$←− R. C runs (PKE.pkID,PKE.dkID)

← PKE.KeyGen(1λ; rID), runs xM ← π(k,H(M)) and ctPKE ← PKE.Enc(PKE.pkID,M),
and returns ctIBEETIA = (xM , ctPKE) to A.

Decryption: A sends (ID, ctIBEETIA) to C. If ID has been issued as a query, C retrieves rID and

preserves (ID, rID) locally. Otherwise, C chooses rID
$←− R. C runs (PKE.pkID,PKE.dkID)

← PKE.KeyGen(1λ; rID). C runsM ′ ← PKE.Dec(PKE.dkID, ctPKE) and xM ′ ← π(k,H(M ′)).
If xM = xM ′ , then return M ′, and ⊥ otherwise.

Game1: This game is the same as Game0 except that C replaces the permutation π with a random
function.

Game2: This game is the same as Game1 except that C randomly chooses xM
$←−M instead of using

the random function and stores (M,xM ) locally. If the same M is queried, then C retrieves
xM .

Game3: Let qID denote the number of distinct identities that are chosen when the A queries the
oracles, and r1, r2, . . . , rqID are random coins for running the PKE.KeyGen algorithm. This

game is the same as Game2 except that C randomly chooses q∗
$←− {1, 2, . . . , qID} at the

beginning of the game, and aborts the game if there exists i ∈ {1, 2, . . . , qID} \ {q∗} such that
rq∗ = ri holds.

By Lemma 1 in [18], Game0 and Game1 are computationally indistinguishable if π is a pseudo-
random. By Lemma 2 in [18], Game1 and Game2 are statistically indistinguishable. By Lemma 3
in [18], Game2 and Game3 are statistically indistinguishable.

Lemma 1 (A’s advantage in Game3). For any PPT adversary A, there exists a reduction algorithm
B for breaking the IND-CCA security of PKE.

Proof. We show that A’s advantage in Game3 is negligible. Concretely, we construct an algorithm
B that breaks the IND-CCA security of the PKE scheme. Let C be the IND-CCA challenger. First,
C runs (PKE.pk,PKE.dk)← PKE.KeyGen(1λ) and sends PKE.pk to B. B specifies a has function H

and chooses k
$←− K. B sends MPK = H to A. During the game, B aborts if IDq∗ ̸= ID∗. From now

on, we assume that B’s guess is correct.
B responds A’s queries as follows.

Key Extraction: A sends ID ̸= ID∗ to B. If ID has been issued as a query, B retrieves rID.

Otherwise, B chooses rID
$←− R and preserves (ID, rID) locally. B runs (PKE.pkID,PKE.dkID)

← PKE.KeyGen(1λ; rID) and returns skID = PKE.dkID to A.

Encryption: A sends (ID,M) to B. B randomly chooses xM
$←−M if (M,xM ) is not stored locally.

Otherwise, B retrieves xM and preserves (M,xM ) locally.

• If ID ̸= ID∗ (i.e., this is the i-th query where i ̸= q∗), if ID has been issued as a query,

B retrieves rID. Otherwise, B chooses rID
$←− R and preserves (ID, rID) locally. B runs

(PKE.pkID,PKE.dkID) ← PKE.KeyGen(1λ; rID), runs ctPKE ← PKE.Enc(PKE.pkID,M),
and returns ctIBEETIA = (xM , ctPKE) to A.
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• If ID = ID∗ (i.e., this is the q∗-th query), then B runs ctPKE ← PKE.Enc(PKE.pk,M),
and returns ctIBEETIA = (xM , ctPKE) to A.

Decryption: A sends (ID, ctIBEETIA) to B. Parse ctIBEETIA = (xM , ctPKE).

• If ID ̸= ID∗ (i.e., this is the i-th query where i ̸= q∗), if ID has been issued as a

query, B retrieves rID. Otherwise, B chooses rID
$←− R and preserves (ID, rID) locally. B

runs M ′ ← PKE.Dec(PKE.dkID, ctPKE). B randomly chooses xM ′
$←− M and preserves

(M ′, xM ′) locally if (M ′, xM ) is not stored locally. Otherwise, B retrieves xM , and returns
M ′ if xM = xM ′ , and ⊥ otherwise.

• If ID = ID∗ (i.e., this is the q∗-th query), B sends ctPKE to C as a decryption query, and

obtains M ′. B randomly chooses xM ′
$←−M and preserves (M ′, xM ′) locally if (M ′, xM )

is not stored locally. Otherwise, B retrieves xM and returns M ′ if xM = xM ′ , and ⊥
otherwise.

When A declares (ID∗,M∗
0 ,M

∗
1 ), then B sends (M∗

0 ,M
∗
1 ) to C. C randomly chooses b

$←− {0, 1},
computes ct∗PKE ← PKE.Enc(PKE.pk,M∗

b ), and sends ct∗PKE to B. B randomly chooses x∗
$←−M and

sends ct∗IBEETIA = (x∗, ct∗PKE) to A.
B responds A’s queries as follows.

Key Extraction: B responds the query as in the pre-challenge phase.

Encryption: B responds the query as in the pre-challenge phase.

Decryption: A sends (ID, ctIBEETIA) to B. Parse ctIBEETIA = (xM , ctPKE).

• If ID ̸= ID∗ (i.e., this is the i-th query where i ̸= q∗), B responds the query as in the
pre-challenge phase.

• If ID = ID∗ (i.e., this is the q∗-th query), if ctPKE ̸= ct∗PKE, then B sends ctPKE to C
as a decryption query, and obtains M ′. B randomly chooses xM ′

$←− M and preserves
(M ′, xM ′) locally if (M ′, xM ) is not stored locally. Otherwise, B retrieves xM and returns
M ′ if xM = xM ′ , and ⊥ otherwise. If ctPKE = ct∗PKE (and then xM ̸= x∗), then B returns
⊥ because x∗ is deterministically fixed when the challenge plaintext is fixed and thus
(xM , ct∗PKE) is an invalid ciphertext.

Finally, A outputs a bit b′. B outputs the same b′. If the guess q∗ is correct (with the probability
at least 1/(qext+qenc+qdec) where qext, qenc, and qdec are the number of key extraction, encryption,
and decryption queries, respectively), then B’s simulation is perfect and B can break the IND-CCA
security.

This concludes the proof of Theorem 2.

Theorem 3. The proposed IBEETIA construction is OW-TH-CCA secure if the underlying PKE is
IND-CCA secure and H is a one-way hash function.

Proof.

Game0: This game is a real OW-TH-CCA security game. Queries issued by A is answered as
follows.
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Key Extraction: A sends ID to C. If ID has been issued as a query, C retrieves rID. Oth-

erwise, C chooses rID
$←− R and preserves (ID, rID) locally. C runs (PKE.pkID,PKE.dkID)

← PKE.KeyGen(1λ; rID) and returns skID = PKE.dkID to A.
Token Extraction: A sends ID to C. If ID has been issued as a query, C retrieves rID. Oth-

erwise, C chooses rID
$←− R and preserves (ID, rID) locally. C runs (PKE.pkID,PKE.dkID)

← PKE.KeyGen(1λ; rID) and returns tokID = (PKE.pkID, k) to A.
Decryption: A sends (ID, ctIBEETIA) to C. If ID has been issued as a query, C retrieves rID and

preserves (ID, rID) locally. Otherwise, C chooses rID
$←− R. C runs (PKE.pkID,PKE.dkID)

← PKE.KeyGen(1λ; rID). C runsM ′ ← PKE.Dec(PKE.dkID, ctPKE) and xM ′ ← π(k,H(M ′)).
If xM = xM ′ , then return M ′, and ⊥ otherwise.

Game1: Let qID denote the number of distinct identities that are chosen when the A queries the
oracles, and r1, r2, . . . , rqID are random coins for running the PKE.KeyGen algorithm. This

game is the same as Game0 except that C randomly chooses q∗
$←− {1, 2, . . . , qID} at the

beginning of the game, and aborts the game if there exists i ∈ {1, 2, . . . , qID} \ {q∗} such that
rq∗ = ri holds.

Game2: This game is the same as Game1 except that C prepares the challenge ciphertext as follows.
In the challenge phase, A declares ID∗. Let PKE.pk be the public key used in the q∗-th

query. C randomly chooses M∗ $←− M, runs ct∗PKE ← PKE.Enc(PKE.pkID, 0
|M∗|), computes

x∗ ← π(k,H(M∗)), and sends ct∗IBEETIA = (x∗, ct∗PKE) to A.

By Lemma 3 in [18], Game0 and Game1 are statistically indistinguishable.

Lemma 2 (Indistinguishability between Game1 and Game2). For any PPT adversary A, there
exists a reduction algorithm B1 for breaking the IND-CCA security of PKE.

Proof Sketch. The proof is almost the same as that of Lemma 1, except that A declares ID∗

and B1 sends (ID∗,M∗, 0|M
∗|) to the IND-CCA challenger. If M∗ is encrypted, then B1 simulates

Game1 and if 0|M
∗| is encrypted, then B1 simulates Game2.

Lemma 3 (A’s advantage in Game2). For any PPT adversary A, there exists a reduction algorithm
B2 for breaking the one-wayness of H.

Proof. Let C be the challenger of the one-wayness of H. We construct the algorithm B2 as follows.
First, C sends the description of H to B2. B2 sets MPK = H and sends MPK to A. B2 prepares all
public keys and decryption keys of PKE and thus B2 can respond to all queries. In the challenge

phase, B2 randomly chooses M∗ $←−M and runs ct∗PKE ← PKE.Enc(PKE.pkID, 0
|M∗|). C sends H(M)

to B2. If H(M∗) = H(M), then B2 outputs M∗. Otherwise, B2 computes x∗ ← π(k,H(M)) and
sends ct∗IBEETIA = (x∗, ct∗PKE) to A. We remark that, for M , which is not known by B2, |M | = |M∗|
holds because we assume that the size of all plaintexts are the same. Thus, B2 properly simulates
the challenge ciphertext in Game2. Finally, A outputs M̂ . B2 outputs the same M̂ and breaks the
one-wayness of H with the advantage of A.

This concludes the proof of Theorem 3.
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Table 1: Comparison: STD stands for standard model and ∗ stands for selective security.
Scheme Tools/Assumptions IND OW STD

Emura-Takayasu [18] SKE wIND-CCA No Yes
Lee et al. [25] Pairing wIND-CCA OW-TG-CPA No
Duong et al. [15] LWE wIND-CPA∗ OW-TG-CPA∗ Yes
Proposed Construction PKE wIND-CCA OW-TH-CCA Yes

6 Discussion

In this section, we discuss the efficiency and security level of the proposed construction. We give
the comparisons in Table 1. We can employ any CCA-secure PKE scheme, e.g., the Cramer-Shoup
scheme [12] (which is IND-CCA secure under the decisional Diffie-Hellman assumption) or the
CRYSTALS-Kyber key encapsulation mechanism [8] (which is IND-CCA secure under the learn-
ing with errors (LWE) assumption over module lattices) with an appropriate data decapsulation
mechanism, and so on.

Of course, the Emura-Takayasu construction [18] is more efficient than Lee et al. and Duong
et al. schemes and the proposed construction since it employs only symmetric key primitives.
However, it does not provide the OW-TH-CPA security.

The Lee et al. scheme [25] is wIND-CCA secure under the bilinear Diffie-Hellman (BDH)
assumption in the random oracle model. The form of ciphertext is:

• C1 = F (K1,H1(M)), C2 = gr, C3 = (M ||r)⊕H2(T ||C2||e(Ppub,H(ID))r)

where F is a permutation, T is a MAC (message authentication code) on C1 such that T =
MAC(K2, C1), H, H1, and H2 are hash functions modeled as random oracles, e is a bilinear pairing,
and tokID = (K1,K2). Because the MAC part has the role of rejecting an invalid decryption query,
it is not clear whether the Lee et al. scheme provides the OW-TH-CCA security after K2 is given
to the adversary. However, the Lee et al. scheme is at least OW-TH-CPA secure due to the
one-wayness of H1 and the fact that e(Ppub,H(ID))r can be regarded as a solution of the BDH
problem. In the Lee et al. scheme, tokID = MTK. Thus, the Lee et al. scheme is OW-TG-CPA
secure when it is OW-TH-CPA secure. Thus, we state that the Lee et al. scheme is OW-TG-CPA
secure in Table 1. Due to our implication result, employing pairings in the Lee et al. scheme is
reasonable. On the other hand, proposed construction does not employ pairings, e.g., when the
Cramer-Shoup scheme is employed. In this perspective, our constriction is more efficient than the
Lee et al. scheme.

The Duong et al. scheme [15] is wIND-CPA secure under the LWE assumption over integer
lattices. The form of ciphertext for M ∈ {0, 1}t for some t ∈ N is:

• C1 = TA′s⊤ +H(M ||TA′), C2, and C3.

where H is a one-way and collision-resistant hash function, A′ ∈ Zn×m is a matrix (we omit the
explanations of n and m here), TA′ is the trapdoor, and tokID = TA′ . (C2, C3) can be regarded as
a ciphertext of the ABB IBE scheme [1], and is independent to A′. In the OW-TH-CPA security
definition, the trapdoor TA′ is leaked. Thus, C1 may leak H(M ||TA′). Since the ABB IBE is
selectively IND-CPA secure under the LWE assumption, the Duong et al. scheme provides the
selective OW-TH-CPA security after tokID = TA′ is given to the adversary. In the Duong et al.
scheme, tokID = MTK. Thus, we state that the Duong et al. scheme is selectively OW-TG-CPA
secure in Table 1. The proposed construction provides the wIND-CCA security which is stronger
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than the wIND-CPA security. That is, a post-quantum instantiation of the proposed construction,
e.g., from the CRYSTALS-Kyber scheme, provides the first IBEETIA scheme which is wIND-CCA
secure under a post-quantum complexity assumption.

7 Conclusion

In this paper, we introduced OW security notions, OW-TG-CPA and OW-TH-CCA/CPA, and
demonstrated OW-TG-CPA secure IBEETIA implies IBE, and proposed a generic construction of
OW-TH-CCA secure IBEETIA from PKE.

As an extension of IBEET, attribute-based encryption with equality test (ABEET) has been
proposed [3, 13, 26, 28, 29, 36]. However, ABEET against insider attacks (ABEETIA) has not been
considered so far, to the best of our knowledge. Because ABE implies IBE [20], it would be interest-
ing to explore whether a similar separation holds or not, i.e., whether OW-TH-CCA/CPA secure
ABEETIA can be constructed from PKE/IBE or not.
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