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We explore some connections between classical substitution ciphers, both 
monoalphabetic and polyalphabetic, and mathematical group theory. We try to do this in 
a way that is accessible to cryptographers who are not familiar with group theory, and to
mathematicians who are not familiar with classical ciphers.

Introduction

This article explores some of the connections between classical substitution ciphers and mathematical 
group theory. The ciphers that concern us are both monoalphabetic (i.e., always making the same 
substitution whenever the same letter is encountered) and polyalphabetic (using a collection of 
monoalphabetic substitutions in some determined order). It is our hope that the material presented here 
is understandable both to amateur cryptographers who have never studied modern algebra, and to 
mathematicians who have no familiarity with classical ciphers. The goal is to acquire the ability to use 
some concepts of group theory to help in understanding the analysis of the ciphers.

The ciphers that we consider are well explained in [1] and [2]. An introduction to modern 
algebra, including group theory, can be found in many textbooks, such as [3]. We will not, however, 
assume that the reader is familiar with any of these materials. Many of the ideas presented here are in a 
much more compact and obtuse format in a short series of articles [4]. Modular arithmetic and its 
connection to some ciphers are also treated in [5] and [6].

Groups

In order to understand what we mean by “group,” we have first to discuss sets and operators. A set is 
simply a collection of things. Those things can be numbers, letters, email addresses, mathematical 
functions, or even other sets. The things in a set are its elements. To say that some thing x is in a set S, 
we often use a symbol, like this: x ∊ S. Two very important sets for us are the set of integers, which we 
denote with a fancy :ℤ

ℤ  =  {..., −3, −2, −1, 0, 1, 2, 3, ...}

and the alphabet of 26 letters:

{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

Later on, we will be looking at subsets of  and ℤ sets comprised of cipher keys.



Now that we have sets, we need to know what to do with them. A binary operator is a 
prescription for taking two things and giving back a third. Addition (+), subtraction (−), and 
multiplication (∙ or ×) are familiar binary operators on numbers. Division (÷ or ∕ ), however, is not, 
since we cannot divide by zero. When we are not sure of the nature of a binary operator, we can denote 
it by some other symbol, such as ▪ or ⋄ or ⭑.

We are now ready to define a group. A group is a set S with a binary operator • such that

1.  the set S is closed under the binary operator, i.e., for every x and y in S, x • y is also in S;

2.  the binary operator is associative:

(x • y) • z  =  x • (y • z)

for every x, y, z in S;

3.  S contains an identity element e such that

x • e  =  e • x  =  x

for every x in S;

4.  every x in S has an inverse y, such that

x • y  =  y • x  =  e

When we talk about groups, we usually write a set with its binary operator as a doublet, like 
this: (S, •). The idea of closure may seem obvious, but we need to mention it to exclude such 
possibilities as the inner vector product. The inner vector product, also called the dot product, takes two
vectors and returns a scalar (just a number); so the set of vectors is not closed under this operation. The 
associative property is another one that we usually assume holds; in this article we will not see any 
examples in which it does not.

Be aware that we did not include the commutative property. An operator is commutative if for 
every x and y in the set,

x • y  =  y • x

If a group’s operation is commutative, we say that the group is commutative or abelian. Otherwise, we 
call it noncommutative or nonabelian. In general, a group is not commutative, so be careful not to make
an assumption that it is.

A quick example may make things clearer. (ℤ, +) is a group. Clearly, if we take any two 
integers m and n, then m + n is also an integer (closure). Also, for any three integers,

(k + m) + n  =  k + (m + n)

so we have associativity. The identity element e is zero (0):



0 + n  =  n + 0  =  n

for any n in . And the inverse of any ℤ n is simply −n:

n + (−n)  =  (−n) + n  =  0

Finally, we note that ( , +) is a commutative group, sinceℤ

m + n  =  n + m

for any integers m and n.

Now let us think about a counterexample. ( , ℤ ∙) is not a group. It is closed, since the product of 
any two integers is also an integer. It is associative. It has an identity element: one (1). But where it 
fails is in the lack of inverses. There is no integer n such that

3 ∙ n  =  n ∙ 3  =  1

for example. In other words, 3−1 is not in the set of integers.

With addition, we will usually write inverses as −x, as we did above with (ℤ, +). For any other 
binary operator, we will usually write the inverse of x as x−1, as we do for multiplication.

To help us get accustomed to thinking abstractly, let us consider a group of emojis. Take the set

E  =  {☺, ☹, ⚇}

and define a binary operator ✶ by its “multiplication table”:

  ✶     │     ☺        ☹        ⚇      
☺ │ ☹ ⚇ ☺
☹ │ ⚇ ☺ ☹
⚇ │ ☺ ☹ ⚇

Closure of (E, ✶) is obvious. If we check, we will find that we have associativity and commutivity. The

identity element is ⚇:

                  ⚇ ✶ ⚇  =  ⚇
⚇ ✶ ☺  =  ☺ ✶ ⚇  =  ☺
⚇ ✶ ☹  =  ☹ ✶ ⚇  =  ☹

The symbols ☺ and ☹ are inverses of each other:

☺ ✶ ☹  =  ☹ ✶ ☺  =  ⚇



The Caesar shift cipher and modular addition

The first cipher we want to consider is one of the simplest: the Caesar shift cipher. The key for this 
cipher is an integer from 0 to 25 (although 0 results in no encryption). To encrypt a text, we merely 
shift each letter along the alphabet to the right by the number of steps given by the key. If we run off 

the end of the alphabet, we wrap around to the beginning. For example, if the key is 7, then A→H, 

B→I, C→J, ..., Y→F, Z→G. Decryption is the inverse process.

One useful way to think about this cipher, especially if we are writing computer programs to 
implement it, is to assign an integer to each of the letters: A = 0, B = 1, ..., Z = 25. The action of the 
cipher is to add the key to each of these integers, with one twist: if the sum is ever larger than 25, then 
we subtract 26 to bring it back into the range 0, 1, ..., 25. Addition with this new property is called 
modular addition, and we say that we are adding numbers modulo 26. The number 26 is the modulus. 
We can think of it as identifying the modulus with zero, i.e., 26 = 0. To decrypt, we subtract the key, 
again with the twist that if we get a result outside the range, we must adjust it. For subtraction, we must
add 26 to bring us back in. Now let us think about this in the context of groups.

The group (ℤ26, + mod 26)

Let us consider the set of integers that are used in the Caesar shift cipher. It is a subset of the integers 
ranging from 0 to 25. Since the modulus for this subset is 26, we denote it as ℤ26:

ℤ26  =  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

On this set we are defining a binary operation that is addition modulo 26, where if the result is ever 
outside of the set, we subtract 26 until we get a number in it. So, for example,

15 + 18  =  33 → 7

In this new way of adding, we simply write

15 + 18  =  7

I made a table for addition modulo 26, so now you have to look at it:



  +     mod   26  │        0       1       2       3       4       5       6       7       8       9     10     11     12     13     14     15     16     17     18     19     20     21     22     23     24     25    
        0 │   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
        1 │   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0
        2 │   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1
        3 │   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2
        4 │   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3
        5 │   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4
        6 │   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5
        7 │   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6
        8 │   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7
        9 │   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8
       10 │ 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9
       11 │ 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10
       12 │ 12 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11
       13 │ 13 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12
       14 │ 14 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13
       15 │ 15 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14
       16 │ 16 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15
       17 │ 17 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16
       18 │ 18 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17
       19 │ 19 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18
       20 │ 20 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19
       21 │ 21 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20
       22 │ 22 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21
       23 │ 23 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22
       24 │ 24 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
       25 │ 25   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

The set ℤ26 with addition modulo 26 is a group. Closure is guaranteed by the way that we 
defined modular addition. Associativity is present, although we will not prove it. The identity element 
is zero (0), as we would expect. But now we have to think of inverses differently that with regular 
addition. We can write the inverse of n as −n, but keep in mind that negative numbers are not in the set. 
What we call “−5,” for example, is actually 21, since

5 + 21  =  21 + 5  =  0

modulo 26. Thus, the inverse of 5 is 21.

This group has more structure hidden in it. To see it, we first define the order of an element. Its 
order is the smallest number of times we combine that element with itself using the binary operation of 
the group so that the result is the identity element. For this group, the operation is a form of addition, so
the order is the smallest number of times we must add an element to get 0. For example, the order of 4 
is 13, since

4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4  =  0

in addition modulo 26 (in regular addition, the result is 52, but 52 − 26 − 26 = 0). Here is a table of the 
elements of ℤ26 and their orders:



                          element(s)                                                 order       
       0     1
      13     2

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24    13
1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25    26

Now, 26 = 2 ∙ 13. Notice that if an element shares one of these factors, its order is reduced by that 
factor. We say that (ℤ26, + mod 26) is a cyclic group, because it contains at least one element whose 
order is the same as the size of the set. Because of this feature, an order-26 element is able to generate 
the whole group by successive operations using that element. Such an element is called a generator. 
For example, 1 is obviously a generator, since we can obtain any element in the set by adding some 1’s.
Less obvious is 9. By adding 9’s, we can also generate the group:

      9  =   9
9 + 9  =  18

      9 + 9 + 9  =   1
9 + 9 + 9 + 9  =  10

      9 + 9 + 9 + 9 + 9  =  19
9 + 9 + 9 + 9 + 9 + 9  =   2

           ...

If we check, we will find that the orbit of 9 reaches every element in the set before coming to 0.

The orbit of 13 has only two elements: 0 and 13. In this way, 13 generates a cyclic two-element 
subgroup, ({0, 13}, + mod 26). In a similar manner, any of the order-13 elements generates a cyclic 
subgroup with thirteen elements, ({0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}, + mod 26).

This might be a good time to introduce the idea of isomorphism. An isomorphism is a mapping 
from one group to another, such that every element in the first group is mapped to exactly one element 
in the second group, every element in the second group is mapped from an element in the first, and the 
structure of the binary operation is the same. That last condition can be expressed as follows: Suppose 

the two groups are (S, ▪) and (T, ⋄). An isomorphism is a map φ: S→T such that

φ (x ▪ y)  =  φ (x) ⋄ φ (y)

for any x and y in S. Notice that the binary operation ▪ is for S, and ⋄ is for T. With an isomorphism, it 
does not matter if we operate before (in S with ▪) or after mapping (in T with ⋄). When two groups are 
isomorphic, we write

(S, ▪)  ≅  (T, ⋄)
The subgroup generated by any of the even-numbered elements of ℤ26 is isomorphic to the 

group using addition modulo 13:

({0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}, + mod 26)  ≅  (ℤ13, + mod 13)

One possible mapping is the obvious one:



0 → 0

2 → 1

4 → 2
...

However, there are eleven other mappings that also work, such as

0 → 0

4 → 1

8 → 2
...

2 → 7

6 → 8
...

The other subgroup of (ℤ26, + mod 26) is isomorphic to a group with addition modulo 2:

({0, 13}, + mod 26)  ≅  (ℤ2, + mod 2)

There is only one mapping for this isomorphism:

 0  → 0

13 → 1

An isomorphism from a group to itself is called an automorphism. What are the automorphisms 
of (ℤ26, + mod 26)? Suppose we multiply every element by 5, and keep the convention of subtracting 
26 until the result is back in ℤ26. This is an automorphism:

5 (x + y)  =  5x + 5y

The same argument works for multiplication by any of the order-26 element of (ℤ26, + mod 26). 
However, it fails for any element that shares a factor with 26. For example, if we multiply every 
element by 13, we find that for half of them we obtain 0, which is a violation of the rule that the 
mapping of an isomorphism takes only one element to an element in the target. This motivates us to 
examine the set of order-26 elements, and we shall do so below.

The multiplication cipher

Suppose now that we employ a cipher in which the letters are not shifted by a constant, but are 
multiplied by the key number [5]. Like before, we assign numbers 0, ..., 25 to the letters, as A = 0, B = 
1, ..., Z = 25. We must keep the convention that if the result of the multiplication exceeds 26, then we 
subtract 26 repeatedly until we are in the range 0, ..., 25. If the key is 7, for example, then during 
encryption



A =  0 →  0   = A

B =  1 →  7   = H

C =  2 → 14  = O
...

Z = 25→ 19  = T

We must now consider whether every multiplier is acceptable for this cipher. If k = 0, clearly the
result is always 0 = A, and the cipher becomes useless. If k is even, then we have the problem that only 
even-numbered letters can appear in the ciphertext. Decrypting cannot unambiguously be done in this 
case. And if k = 13, the ciphertext is a series of As and Ns. The rule is that the key may not share a 
factor with 26 = 2∙13. The set of acceptable multipliers has a name, ℤ26

*, and it is the set of all integers 
that have an inverse under multiplication modulo 26. More on it below.

The group (ℤ26
*, ∙ mod 26)

The binary operation that concerns us here is multiplication modulo 26. It is worth repeating that this 
means that any time we multiply two elements of ℤ26, if the result is greater than 26, then we must 
subtract 26 repeatedly until the result fall within the range 0, ..., 25. The relevant question is which 
elements have an inverse under multiplication modulo 26. To get a handle on this question, let us build 
the multiplication table:

∙     mod 26  │       0       1       2       3       4       5       6       7       8       9     10     11     12     13     14     15     16     17     18     19     20     21     22     23     24     25    
        0 │   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
        1 │   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
        2 │   0   2   4   6   8 10 12 14 16 18 20 22 24   0   2   4   6   8 10 12 14 16 18 20 22 24
        3 │   0   3   6   9 12 15 18 21 24   1   4   7 10 13 16 19 22 25   2   5   8 11 14 17 20 23
        4 │   0   4   8 12 16 20 24   2   6 10 14 18 22   0   4   8 12 16 20 24   2   6 10 14 18 22
        5 │   0   5 10 15 20 25   4   9 14 19 24   3   8 13 18 23   2   7 12 17 22   1   6 11 16 21
        6 │   0   6 12 18 24   4 10 16 22   2   8 14 20   0   6 12 18 24   4 10 16 22   2   8 14 20
        7 │   0   7 14 21   2   9 16 23   4 11 18 25   6 13 20   1   8 15 22   3 10 17 24   5 12 19
        8 │   0   8 16 24   6 14 22   4 12 20   2 10 18   0   8 16 24   6 14 22   4 12 20   2 10 18
        9 │   0   9 18   1 10 19   2 11 20   3 12 21   4 13 22   5 14 23   6 15 24   7 16 25   8 17
       10 │   0 10 20   4 14 24   8 18   2 12 22   6 16   0 10 20   4 14 24   8 18   2 12 22   6 16
       11 │   0 11 22   7 18   3 14 25 10 21   6 17   2 13 24   9 20   5 16   1 12 23   8 19   4 15
       12 │   0 12 24 10 22   8 20   6 18   4 16   2 14   0 12 24 10 22   8 20   6 18   4 16   2 14
       13 │   0 13   0 13   0 13   0 13   0 13   0 13   0 13   0 13   0 13   0 13   0 13   0 13   0 13
       14 │   0 14   2 16   4 18   6 20   8 22 10 24 12   0 14   2 16   4 18   6 20   8 22 10 24 12
       15 │   0 15   4 19   8 23 12   1 16   5 20   9 24 13   2 17   6 21 10 25 14   3 18   7 22 11
       16 │   0 16   6 22 12   2 18   8 01 14   4 20 10   0 16   6 22 12   2 18   8 24 14   4 20 10
       17 │   0 17   8 25 16   7 24 15   6 23 14   5 22 13   4 21 12   3 20 11   2 19 10   1 18   9
       18 │   0 18 10   2 20 12   4 22 14   6 24 16   8   0 18 10   2 20 12   4 22 14   6 24 16   8
       19 │   0 19 12   5 24 17 10   3 22 15   8   1 20 13   6 25 18 11   4 23 16   9   2 21 14   7
       20 │   0 20 14   8   2 22 16 10   4 24 18 12   6   0 20 14   8   2 22 16 10   4 24 18 12   6
       21 │   0 21 16 11   6   1 22 17 12   7   2 23 18 13   8   3 24 19 14   9   4 25 20 15 10   5
       22 │   0 22 18 14 10   6   2 24 20 16 12   8   4   0 22 18 14 10   6   2 24 20 16 12   8   4



       23 │   0 23 20 17 14 11   8   5   2 25 22 19 16 13 10   7   4   1 24 21 18 15 12   9   6   3
       24 │   0 24 22 20 18 16 14 12 10   8   6   4   2   0 24 22 20 18 16 14 12 10   8   6   4   2
       25 │   0 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10   9   8   7   6   5   4   3   2   1

As expected, 1 is the identity element for multiplication, as we can see in the row or column for 1. 
However, 1 only appears twelve times in the bulk of the table. The rows (or columns) in which it 
appears are those for which an inverse exists. For example, 7 ∙ 15 = 1, so 7 has an inverse, which is 15. 
The invertible elements form a special set:

ℤ26
*  =  {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

These are the elements of ℤ26 that are coprime to the modulus 26, i.e., they do not share any prime 
factors with the modulus.

Together with multiplication modulo 26, this set forms a group. To see that it is closed, we can 
take the table and remove the rows and columns for the numbers not in the set:

      ∙     mod 26  │        1       3       5       7       9     11     15     17     19     21     23     25    
        1 │   1   3   5   7   9 11 15 17 19 21 23 25
        3 │   3   9 15 21   1   7 19 25   5 11 17 23
        5 │   5 15 25   9 19   3 23   7 17   1 11 21
        7 │   7 21   9 23 11 25   1 15   3 17   5 19
        9 │   9   1 19 11   3 21   5 23 15   7 25 17
       11 │ 11   7   3 25 21 17   9   5   1 23 19 15
       15 │ 15 19 23   1   5   9 17 21 25   3   7 11
       17 │ 17 25   7 15 23   5 21   3 11 19   1   9
       19 │ 19   5 17   3 15   1 25 11 23   9 21   7
       21 │ 21 11   1 17   7 23   3 19   9 25 15   5
       23 │ 23 17 11   5 25 19   7   1 21 15   9   3
       25 │ 25 23 21 19 17 15 11   9   7   5   3   1

Since only the elements of ℤ26
* appear in the table, we have closure. It is associative, but we will not 

prove it. From the symmetry of the multiplication table about the main diagonal, we know that this 
group is commutative. The identify element, as we noted above, is 1, and every element in ℤ26

* has an 
inverse. In general, whenever we have an additive group ℤm with modulus m, then the set of elements 
that are coprime with the modulus is called ℤm

*, and with multiplication modulo m it forms its own 
group.

Finally, we want to note that the elements of ℤ26
* are the automorphisms of ℤ26. We can see in the 

full 26×26 multiplication table, that those rows corresponding to the elements of ℤ26
* contain all 

twenty-six numbers 0, 1, ..., 25. And, without checking every possibility, we state that for any a in ℤ26
* 

and any x and y in ℤ26, we can define the automorphism by

φ (x)  =  a ∙ x

so that

φ (x + y)  =  a ∙ (x + y)  =  (a ∙ x) + (a ∙ y)  =  φ (x) + φ (y)



where all of the multiplications and additions are performed modulo 26.

General monoalphabetic substitution cipher

We saw the Caesar shift cipher and the multiplication cipher, but their keyspaces are very small. So 
now we move on to the general monoalphabetic substitution cipher. Here, the key is a rearrangement (a
permutation) of the alphabet. Letters of the plaintext are replaced by their corresponding letters in the 
key. For example, if our key is

k  =  FLYINGSAUCERBDHJKMOPQTVWXZ

then letters are replaced as follows:

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
ciphertext: FLYINGSAUCERBDHJKMOPQTVWXZ

We will sometimes write the substitution cipher as a function S, and write the encryption process that 
takes plaintext P to ciphertext C as

C  =  S (k, P)

The decryption process is the inverse function:

P  =  S−1 (k, C)

The group of permutations

There are 26! permutations of the twenty-six letters; let us put them into a set and call it Π. How can we
take two of these permutations and combine them? The most reasonable approach for an amateur 
cryptographer is to consider the two permutations k1 and k2 as keys for the substitution cipher, and 
encrypt a text twice:

S (k2, S (k1, P))

We can then think of the final output as having resulted from a single equivalent key k3:

S (k2, S (k1, P))  =  S (k3, P)

This operation we call composition, and we write it like this:

k3  =  k2 ◦ k1

Notice that the first key is on the right, and the second is to its left. This is the normal way in which 
mathematicians write things, since things usually act on other things to the right.



A quick example shows how we can find the composition of two permutations. Consider our 
key from above:

k1  =  FLYINGSAUCERBDHJKMOPQTVWXZ

A second key can be chosen as

k2  =  SPACEFLIGHTZYXWVURQONMKJDB

It is helpful to write out how letters are replaced using these permutations:

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
ciphertext: FLYINGSAUCERBDHJKMOPQTVWXZ

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
ciphertext: SPACEFLIGHTZYXWVURQONMKJDB

The combined key must take, for example, M to B when the first permutation acts, and then that B 

becomes P under the action of the second permutation; so M→P in the composition. When we trace 
through each of the twenty-six letters, we find

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
ciphertext: FZDGXLQSNAERPCIHTYWVUOMKJB

Thus, the composition is

k3  =  k2 ◦ k1  =  FZDGXLQSNAERPCIHTYWVUOMKJB

Composition of this sort is a binary operation on the set Π. This operation is associative: for all x, y, 
and z in Π,

(x ◦ y) ◦ z  =  x ◦ (y ◦ z)

For this reason, we will often drop parentheses and simply write this combination as x ◦ y ◦ z. Be 
careful, however, because this operation is not commutative; in general,

x ◦ y  ≠  y ◦ x

There is a special permutation that does not change any of the letters. It is the identity element 
in Π, and we call it e:

e  =  ABCDEFGHIJKLMNOPQRSTUVWXYZ



Can we find the inverse of a permutation? Of course, we can. In terms of the substitution cipher,
the inverse of a key is the key that is used to decrypt a text:

P  =  S−1 (k, C)  =  S (k−1, C)

For example, let us take the permutation we used above:

k  =  FLYINGSAUCERBDHJKMOPQTVWXZ

The inverse of this key does the opposite, so we write its action with upward arrows:

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑
ciphertext: FLYINGSAUCERBDHJKMOPQTVWXZ

Next we take the columns are rearrange them so that the bottom row is the straight alphabet. The upper 
row is then the inverse permutation:

plaintext: HMJNKAFODPQBRESTULGVIWXYCZ

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑
ciphertext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

k−1  =  HMJNKAFODPQBRESTULGVIWXYCZ

The reader can check that

k−1 ◦ k  =  k ◦ k−1  =  e

Putting it all together, we see that (Π, ◦) is a noncommutative group. The binary operation is the 
composition of permutations, there is an identity element, and every permutation has an inverse.

Cycles

Every permutation can be factored into a product of disjoint cycles. A cycle is permutation that cycles 
through some letters; it permutes them as though they were attached to a wheel. Letters that do not 

participate in the cycle remain fixed. So, for example, the cycle (ADG) takes A→D, D→G, and G→A, 
and all other letters remain themselves. (Notice the special notation for a cycle. Also note that we can 
write this one as (DGA) or (GAD).)

Let us see how to factor a permutation into cycles with an example. Recall our favorite key:

k  =  FLYINGSAUCERBDHJKMOPQTVWXZ

and remember that it acts on letters as follows:

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ



↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
ciphertext: FLYINGSAUCERBDHJKMOPQTVWXZ

If we start with A, we see that it is replaced by F. But F is replaced by G, and G by S, etc. When the 
chain comes back around to A, we have found the complete cycle:

A→F→G→S→O→H→A

Thus, k has (AFGSOH) as a factor. If we start new chains on letters that we have not used already, and 
continue the process, then will find that k has these five cycles:

k  =  (AFGSOH) (BLRM) (CYXWVTPJ) (DIUQKEN) (Z)

In this notation, we leave out the ◦ symbol. Notice that the last cycle (a 1-cycle) does nothing; it takes Z
to itself. We call these cycles disjoint because they do not share any letters. A cycle involving n letters, 
and therefore having order n, is called an n-cycle.

The order of a cycle is the number of letters that participate in it. In our example, the cycle 
(AFGSOH) has six letters, and therefore has order 6. Thus, the composition of six of them gives the 
identity permutation:

(AFGSOH) ◦ (AFGSOH) ◦ (AFGSOH) ◦ (AFGSOH) ◦ (AFGSOH) ◦ (AFGSOH)  =  e

When a permutation is factored into disjoint cycles, the order of the permutation is the least common 
multiple (lcm) of the orders of the cycles. For our example, then,

ord (k) = lcm (6, 4, 8, 7, 1)  =  168

and
k168  =  e

The inverse of a cycle is simply written in reverse order. It does not matter on which letter we 
begin the cycle, so for our example, the inverse of (AFGSOH) can be written (HOSGFA) or (AHOSGF) 
or one of four other ways. The inverse of a permutation that has been factored into cycles can be 
written as the product of the inverse cycles. For our example,

k−1  =  (AHOSGF) (BMRL) (CJPTVWXY) (DNEKQUI) (Z)

The Vigenère cipher

The Vigenère cipher [1] [2] [7] is a polyalphabetic substitution and is usually described using the 
following tableau. The key is a word or phrase, and the encryptor cycles repeatedly through the key as 
the text is encrypted. For a given plaintext letter and a given key letter, the ciphertext letter is found on 
the row of the tableau corresponding to the key letter and in the column corresponding to the plaintext 
letter. For example, if the plaintext letter is E and the key letter is J, then the ciphertext letter is N.



       shift key  │                                plaintext letters                   │    label of
         letters    │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │permutation

    ──────┼────────────────────────────────────── ┼────────
  A  │   ABCDEFGHIJKLMNOPQRSTUVWXYZ   │      R0 = e
  B  │   BCDEFGHIJKLMNOPQRSTUVWXYZA   │      R1

  C  │   CDEFGHIJKLMNOPQRSTUVWXYZAB   │      R2

  D  │   DEFGHIJKLMNOPQRSTUVWXYZABC   │      R3

  E  │   EFGHIJKLMNOPQRSTUVWXYZABCD   │      R4

  F  │   FGHIJKLMNOPQRSTUVWXYZABCDE   │      R5

  G  │   GHIJKLMNOPQRSTUVWXYZABCDEF   │      R6

  H  │   HIJKLMNOPQRSTUVWXYZABCDEFG   │      R7

  I  │   IJKLMNOPQRSTUVWXYZABCDEFGH   │      R8

  J  │   JKLMNOPQRSTUVWXYZABCDEFGHI   │      R9

  K  │   KLMNOPQRSTUVWXYZABCDEFGHIJ   │      R10

  L  │   LMNOPQRSTUVWXYZABCDEFGHIJK   │      R11

  M  │   MNOPQRSTUVWXYZABCDEFGHIJKL   │      R12

  N  │   NOPQRSTUVWXYZABCDEFGHIJKLM   │      R13

  O  │   OPQRSTUVWXYZABCDEFGHIJKLMN   │      R14

  P  │   PQRSTUVWXYZABCDEFGHIJKLMNO   │      R15

  Q  │   QRSTUVWXYZABCDEFGHIJKLMNOP   │      R16

  R  │   RSTUVWXYZABCDEFGHIJKLMNOPQ   │      R17

  S  │   STUVWXYZABCDEFGHIJKLMNOPQR   │      R18

  T  │   TUVWXYZABCDEFGHIJKLMNOPQRS   │      R19

  U  │   UVWXYZABCDEFGHIJKLMNOPQRST   │      R20

  V  │   VWXYZABCDEFGHIJKLMNOPQRSTU   │      R21

  W  │   WXYZABCDEFGHIJKLMNOPQRSTUV   │      R22

  X  │   XYZABCDEFGHIJKLMNOPQRSTUVW   │      R23

  Y  │   YZABCDEFGHIJKLMNOPQRSTUVWX   │      R24

  Z  │   ZABCDEFGHIJKLMNOPQRSTUVWXY   │      R25

To be sure that we understand this cipher, let us work an example. Suppose that our plaintext is

LAUNCHFROMSPACEPORTSEVEN

and that our key is ALIEN. We make as many copies of the key as we need to encrypt the entire text. 
For each letter of the text, we look for the letter in the table at the intersection of its column with the 
row specified by the key letter. The column of the first letter, L, meets the row of the first key letter, A, 
at L. The column of the second letter, A, meets the row of the second key letter, L, also at L. The 
column of the third letter, U, meets the row of the third key letter, I, at C. We continue in this fashion 
until the entire text is encrypted.

plaintext: LAUNCHFROMSPACEPORTSEVEN
key: ALIENALIENALIENALIENALIE
ciphertext: LLCRPHQZSZSAIGRPZZXFEGMR



Another way to implement the cipher is to work with numerical values. Again, we can assign A 
= 0, B = 1, ..., Z = 25. Then, if the key is a list of letters/numbers ki for i = 0, ..., L−1 when the length of 
the key is L, and the plaintext letters are pi for i = 0, 1, 2, ..., then the ciphertext letters are

ci  =  (ki mod L + pi)  mod 26

However, they way we want to envision the Vigenère cipher is as a periodic set of 
monoalphabetic substitution ciphers. And each of those monoalphabetic substitutions is a Caesar shift 
cipher. Earlier, we looked at the Caesar shift in terms of the numerical equivalents of the letters. But 
now, let us reinterpret the cipher in terms of permutations of the alphabet. For example, if the key is 7, 
then the permutation is

R7  =  HIJKLMNOPQRSTUVWXYZABCDEFG

We have decided to call it “R7” because it is a rotation of the alphabet leftward by seven steps. In the 
Vigenère tableau each row is one such rotation. The rotation of zero steps is the identity permutation.

The collection of the twenty-six rotations is a set we will call

V   =  {Rn}

Let us now examine how elements in this set behave under the binary operation that is composition of 
permutations. The composition of two rotations is another rotation,

Rm ◦ Rn  =  Rm+n

where the addition in the subscript is performed modulo 26. Since R0 = e, this means that each rotation 
has an inverse, which is

Rn
−1  =  R−n

where “−n” in the subscript means the additive inverse of n modulo 26 (the same as 26 − n). We have 

now essentially shown that (V, ◦) is a group.

Earlier we saw that the set of possible keys for the Caesar shift cipher was ℤ26. Now we claim 
that the Vigenère group is isomorphic to it:

(V, ◦)  ≅  (ℤ26, + mod 26)

There are several (twelve) possible ways to define the mapping, but the most natural way is

φ (Rn)  =  n

so that

φ (Rm ◦ Rn)  =  φ (Rm+n)  =  m + n  =  φ (Rm) + φ (Rn)



where all of the addition is done modulo 26. The twelve possibilities for the mapping correspond to the 
twelve elements of ℤ26

*; if a is such an element, then the mapping

φ (Rn)  =  a ∙ n

is a perfectly good isomorphism, when the multiplication is done modulo 26.

It will be useful later to know the orders of the elements of V. Since R0 is already the identity 
element, it has order 1. There is one element with order 2, and it is R13. The remaining odd-numbered 
rotations have order 26, while all of the even-numbered rotations have order 13.

It will also be useful later to know the factorization into cycles for the elements of V. It is 
tedious but not difficult for the reader to work them out. We will merely tabulate the results:

        elements │    order │          cycles
───────────────────────────── ┼─────── ┼──────────

 R0 │        1 │    26    1-cycles
 R13 │        2 │    13    2-cycles

R2, R4, R6, R8, R10, R12, R14, R16, R18, R20, R22, R24 │      13 │      2  13-cycles
R1, R3, R5, R7, R9, R11, R15, R17, R19, R21, R23, R25 │      26 │      1  26-cycle

The multiplication cipher, revisited

Earlier we looked at the multiplication cipher in terms of numbers and multiplication modulo 26. But 
like the Caesar shift cipher, we can instead find alphabetic permutations to represent the action of the 
cipher. Here we list those permutations for the valid choices of the multiplier:

    M1    =  ABCDEFGHIJKLMNOPQRSTUVWXYZ  =  e
M3    =  ADGJMPSVYBEHKNQTWZCFILORUX    
M5    =  AFKPUZEJOTYDINSXCHMRWBGLQV    
M7    =  AHOVCJQXELSZGNUBIPWDKRYFMT    
M9    =  AJSBKTCLUDMVENWFOXGPYHQZIR    
M11  =  ALWHSDOZKVGRCNYJUFQBMXITEP    
M15  =  APETIXMBQFUJYNCRGVKZODSHWL    
M17  =  ARIZQHYPGXOFWNEVMDULCTKBSJ    
M19  =  ATMFYRKDWPIBUNGZSLEXQJCVOH    
M21  =  AVQLGBWRMHCXSNIDYTOJEZUPKF    
M23  =  AXUROLIFCZWTQNKHEBYVSPMJGD    
M25  =  AZYXWVUTSRQPONMLKJIHGFEDCB    

We can put these twelve permutations into a set which we call M . Like V, it is a subset of the full set 
of permutations of the alphabet, Π. This new set is closed under composition of permutations:

Mm ◦ Mn  =  Mm·n



where the multiplication in the subscript is done modulo 26. We can see that the identity element e = 
M1 is a member of the set. What is less obvious is that the inverse of each Mn in also in the set. The 
reader can easily verify that

M1
−1   =  M1 

M3
−1   =  M9 

M5
−1   =  M21

M7
−1   =  M15

M11
−1  =  M19

M17
−1  =  M23

M25
−1  =  M25

Notice that M1 and M25 are self-reciprocal (also called involutory), and that M25 takes the role of −1 
(modulo 26) in this system. Another way to express the inverse of Mm is

Mm
−1  =  M1/m

where we have written 1/m in the subscript to mean m−1 for convenience.

We now know that (M, ◦) is a group, and that it is commutative. Furthermore, it is isomorphic to
(ℤ26

*, ∙ mod 26). The natural mapping is

φ (Mn)  =  n

so that

φ (Mm ◦ Mn)  =  φ (Mm·n)  =  m · n  =  φ (Mm) · φ (Mn)

where all of the multiplications are performed modulo 26.

The set M  is the set of automorphisms of V, just as we saw earlier that the elements of ℤ26
* are 

the automorphisms of ℤ26. Here, however, the automorphism takes the form

φm (Rn)  =  Mm ◦ Rn ◦ Mm
−1

Recall that earlier we saw that an automorphism of (ℤ26, + mod 26) takes any element x to a∙x mod 26, 

where a is an element of ℤ26
*. An automorphism on V  does something similar. We state without 

proving it that

Mm ◦ Rn  =  Rm∙n ◦ Mm

where the multiplication in the subscript is performed modulo 26 (the reader can convince oneself of 
the truth of this statement by simply trying all 312 possibilities). Therefore,

φm (Rn)  =  Mm ◦ Rn ◦ Mm
−1  =  Rm∙n ◦ Mm ◦ Mm

−1  =  Rm∙n ◦ e  =   Rm∙n

And to see that it is an automorphism,



φm (Rn ◦ Rp)  =  Mm ◦ Rn ◦ Rp ◦ Mm
−1           

                   =  Mm ◦ Rn ◦ e ◦ Rp ◦ Mm
−1

                                   =  Mm ◦ Rn ◦ (Mm
−1 ◦ Mm) ◦ Rp ◦ Mm

−1

                                      =  (Mm ◦ Rn ◦ Mm
−1) ◦ (Mm ◦ Rp ◦ Mm

−1)
         =  φm (Rn) ◦ φm (Rp)

The affine cipher

The key for an affine cipher is a pair of integers. One, say m, is from ℤ26
* so that it has a multiplicative 

inverse, and the other, say n, is from ℤ26. Letters are converted to numbers in the usual way, A = 0, B = 
1, ..., Z = 25, and each letter is encrypted according to the formula

ci  =  m ∙ pi + n

where all of the arithmetic is done modulo 26. Clearly, the affine cipher is equivalent to a multiplication
cipher followed by a Caesar shift. Decryption must be done in the reverse order:

pi  =  m−1 ∙ [ci + (−n)]

If we now treat the affine cipher in terms of alphabetic permutations, then a generic key Am,n can

be written as a composition of a multiplication from M and a rotation from V:

Am,n  =  Rn ◦ Mm

Remember that the permutation on the right acts first. Next consider the set of all such keys:

A  =  {Am,n}  =  {Rn ◦ Mm | m ∊ ℤ26
*, n ∊ ℤ26}

This set has 312 members, including the one that leaves the plaintext unchanged (R0 ◦ M1).

Is (A, ◦) a group? In order to answer this question, we need to learn a bit more about how its 
members behave when composed with one another. In particular, we need to know how to handle Mm ◦ 
Rn. First of all, we note that for any permutation π, π ◦ Rn is the rotation of π leftward by n steps. When 
we rotate one of the Mm by n steps, what happens? Earlier, we stated without proving that

Mm ◦ Rn  =  Rm∙n ◦ Mm

where the multiplication in the subscript is done modulo 26. If there is any doubt, there are only 312 
cases that need to be checked. Now we can check for closure. Take any two keys and find their 
composition:

Ac,d ◦ Aa,b  =  (Rd ◦ Mc) ◦ (Rb ◦ Ma)
              =  Rd ◦ (Mc ◦ Rb) ◦ Ma

             =  Rd ◦ Rb∙c ◦ Mc ◦ Ma

   =  Rb∙c+d ◦ Ma∙c

     =  Aa∙c, b∙c+d        



where all arithmetic in the subscripts is performed modulo 26. This agrees with what we already know 
about the affine cipher; here we take two sequential encryptions,

pi → a ∙ pi + b → c ∙ (a ∙ pi + b) + d  =  (a ∙ c) ∙ pi + (b ∙ c + d)

which are equivalent to one encryption with multiplier a ∙ c and shift b ∙ c + d. The identity element is 
contained in the set:

e  =  M1 ◦ R0

The inverse of Am,n = Rn ◦ Mm is Mm
−1 ◦ Rn

−1:

Mm
−1 ◦ Rn

−1 ◦  Rn ◦ Mm  =  Mm
−1 ◦ (Rn

−1 ◦  Rn) ◦ Mm  =  Mm
−1 ◦ e ◦ Mm  =  Mm

−1 ◦ Mm  =  e

but

Mm
−1 ◦ Rn

−1  =  M1/m ◦ R−n  =  R−n/m ◦  M1/m

where we have written 1/m in place of m−1 for convenience. Therefore,

Am,n
−1  =  A1/m,−n/m

i.e., the key with multiplier m−1 and shift −m−1 ∙ n (all done modulo 26). This also agrees with the 
numerical interpretation of the affine cipher:

m−1 ∙ (m ∙ pi + n) + m−1 ∙ (−n)  =  (m−1 ∙ m) ∙ pi + m−1 ∙ n + m−1 ∙ (−n)  =  1 ∙ pi + 0  =  pi

We now have everything we need (assuming associativity holds) to declare that (A, ◦) is a group. This 
group is not commutative.

There is a construction in mathematics called the one-dimensional affine group. It is the set of 
functions

{f(x) = ax + b}

where a is invertible, together with composition of functions as its binary operation. If we take our 

coefficients from ℤ26, then the invertible coefficients are found in ℤ26
*. The group (A, ◦) is isomorphic 

to this affine group:

(A , ◦)  ≅  ({f(x) = ax + b | a ∊ ℤ26
*, b ∊ ℤ26}, ◦)

We pause here to make a comment about the versatility of the composition operation in the 

group of permutations. With the rotations of V  we had a subgroup that was isomorphic to an additive 

group. The set M of keys for the multiplication cipher we saw was a group isomorphic to a 
multiplicative group. And now, we have an isomorphism to a group whose operation is the composition
of functions.



Do the elements of A  give automorphisms of V, as did the elements of M ? Let us find out:

Am,n ◦ Rp ◦ Am,n
−1  =  (Rn ◦ Mm) ◦ Rp ◦ (Rn ◦ Mm)−1

                      =  Rn ◦ Mm ◦ Rp ◦ M1/m ◦ R−n

                        =  Rn ◦ Rm∙p ◦ Mm ◦ M1/m ◦ R−n

           =  Rn ◦ Rm∙p ◦ e ◦ R−n

      =  Rn ◦ Rm∙p ◦ R−n

        =  Rm∙p+n−n  =  Rm∙p

where all arithmetic in the subscripts is done modulo 26. Thus,

Am,n ◦ Rp ◦ Am,n
−1  =  Mm ◦ Rp ◦ Mm

−1

and A  contains a redundant set of automorphisms of V.

Quagmire 1 cipher

We are now ready to move on to other polyalphabetic ciphers. We begin with the quagmire ciphers. The
traditional way to envision the quagmire 1 (Q1) is to start with the Vigenère tableau, and permute the 
list of plaintext letters across the top [1] [2]. For our favorite “base key,” we have this table:

       shift key  │                                plaintext letters                   │ 
         letters    │   FLYINGSAUCERBDHJKMOPQTVWXZ  │

    ──────┼────────────────────────────────────── ┤
  A  │   ABCDEFGHIJKLMNOPQRSTUVWXYZ   │
  B  │   BCDEFGHIJKLMNOPQRSTUVWXYZA   │
  C  │   CDEFGHIJKLMNOPQRSTUVWXYZAB   │
  D  │   DEFGHIJKLMNOPQRSTUVWXYZABC   │
  E  │   EFGHIJKLMNOPQRSTUVWXYZABCD   │
  F  │   FGHIJKLMNOPQRSTUVWXYZABCDE   │
  G  │   GHIJKLMNOPQRSTUVWXYZABCDEF   │ 
  H  │   HIJKLMNOPQRSTUVWXYZABCDEFG   │
  I  │   IJKLMNOPQRSTUVWXYZABCDEFGH   │ 
  J  │   JKLMNOPQRSTUVWXYZABCDEFGHI   │
  K  │   KLMNOPQRSTUVWXYZABCDEFGHIJ   │
  L  │   LMNOPQRSTUVWXYZABCDEFGHIJK   │
  M  │   MNOPQRSTUVWXYZABCDEFGHIJKL   │
  N  │   NOPQRSTUVWXYZABCDEFGHIJKLM   │
  O  │   OPQRSTUVWXYZABCDEFGHIJKLMN   │
  P  │   PQRSTUVWXYZABCDEFGHIJKLMNO   │
  Q  │   QRSTUVWXYZABCDEFGHIJKLMNOP   │
  R  │   RSTUVWXYZABCDEFGHIJKLMNOPQ   │
  S  │   STUVWXYZABCDEFGHIJKLMNOPQR   │
  T  │   TUVWXYZABCDEFGHIJKLMNOPQRS   │
  U  │   UVWXYZABCDEFGHIJKLMNOPQRST   │



  V  │   VWXYZABCDEFGHIJKLMNOPQRSTU   │
  W  │   WXYZABCDEFGHIJKLMNOPQRSTUV   │
  X  │   XYZABCDEFGHIJKLMNOPQRSTUVW   │
  Y  │   YZABCDEFGHIJKLMNOPQRSTUVWX   │
  Z  │   ZABCDEFGHIJKLMNOPQRSTUVWXY   │

Encryption works the same way as with the Vigenère. For example, if the plaintext letter is E and the 
shift key letter is S, then the ciphertext letter is C.

It should be obvious that encryption is performing an inverse monoalphabetic substitution (the 
permutation of the plaintext letters at the top of the tableau) followed by a Vigenère cipher. So the 
quagmire 1 cipher can be factored into these two ciphers [8] [9]:

C  =  Q1 (kalpha, kshift, P)  =  V (kshift, (S−1 (kalpha, P))

If we straighten out the plaintext alphabet at the top of the table, for the example above, by 
shifting the columns, we obtain this tableau:

       shift key  │                                plaintext letters                   │ 
         letters    │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │

    ──────┼────────────────────────────────────── ┤
  A  │   HMJNKAFODPQBRESTULGVIWXYCZ   │
  B  │   INKOLBGPEQRCSFTUVMHWJXYZDA   │
  C  │   JOLPMCHQFRSDTGUVWNIXKYZAEB   │
  D  │   KPMQNDIRGSTEUHVWXOJYLZABFC   │
  E  │   LQNROEJSHTUFVIWXYPKZMABCGD   │
  F  │   MROSPFKTIUVGWJXYZQLANBCDHE   │
  G  │   NSPTQGLUJVWHXKYZARMBOCDEIF   │ 
  H  │   OTQURHMVKWXIYLZABSNCPDEFJG   │
  I  │   PURVSINWLXYJZMABCTODQEFGKH   │ 
  J  │   QVSWTJOXMYZKANBCDUPERFGHLI   │
  K  │   RWTXUKPYNZALBOCDEVQFSGHIMJ   │
  L  │   SXUYVLQZOABMCPDEFWRGTHIJNK   │
  M  │   TYVZWMRAPBCNDQEFGXSHUIJKOL   │
  N  │   UZWAXNSBQCDOERFGHYTIVJKLPM   │
  O  │   VAXBYOTCRDEPFSGHIZUJWKLMQN   │
  P  │   WBYCZPUDSEFQGTHIJAVKXLMNRO   │
  Q  │   XCZDAQVETFGRHUIJKBWLYMNOSP   │
  R  │   YDAEBRWFUGHSIVJKLCXMZNOPTQ   │
  S  │   ZEBFCSXGVHITJWKLMDYNAOPQUR   │
  T  │   AFCGDTYHWIJUKXLMNEZOBPQRVS   │
  U  │   BGDHEUZIXJKVLYMNOFAPCQRSWT   │
  V  │   CHEIFVAJYKLWMZNOPGBQDRSTXU   │
  W  │   DIFJGWBKZLMXNAOPQHCRESTUYV   │
  X  │   EJGKHXCLAMNYOBPQRIDSFTUVZW   │
  Y  │   FKHLIYDMBNOZPCQRSJETGUVWAX   │



  Z  │   GLIMJZENCOPAQDRSTKFUHVWXBY   │

The first thing to notice is that, like in the original table, each column contains exactly one of each 
letter. For lack of a better name, we call this the “column property.” Below we will find that the other 
quagmires share this property. Each row of the tableau above is a permutation of the alphabet. Because 
the action of the quagmire 1 cipher is an inverse monoalphabetic substitution followed by a Vigenère 
cipher, each of these permutations has the form Rn ◦ k−1. We can form a set such permutations, give a 
base key k:

Q 1 [k]  =  {Rn ◦ k−1}

Mathematicians define a coset of a subgroup as follows. Suppose we have a group (G, •) and a 
subgroup of G that is (S, •). Take any element h in G that is not also in S. Then for any x in S, the 
product x • h will typically not be in S. If we collect all such products into a new set,

H  =  {x • h  |  x ∊ S, h ∊ G, h ∉ S}

we call it a right coset of S. The set H cannot be a group. For one thing, it is not closed, since typically 
the product x • h • y • h is not also in H. For another, the identity element e cannot be in H, since e must
be S (it is a group), and for any x in S, x−1 is also in S, so h cannot be x−1. If instead we take the products
with h on the left, we call the resulting set a left coset.

Since each member of the set Q 1 [k] has the form Rn ◦ h, where h is some fixed member of Π 

and is “multiplied” on the right, we say that Q 1 [k] is a right coset of V.  Below we will see that the 

quagmire 2 forms a left coset of V.

Quagmire 2 cipher

To implement the quagmire 2 (Q2) we begin with the Vigenère tableau and replace the rotated 
alphabets in the body of the table with shifted versions of our base key [1] [2]:

       shift key  │                                plaintext letters                   │ 
         letters    │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │

    ──────┼────────────────────────────────────── ┤
  A  │   AUCERBDHJKMOPQTVWXZFLYINGS   │
  B  │   BDHJKMOPQTVWXZFLYINGSAUCER   │
  C  │   CERBDHJKMOPQTVWXZFLYINGSAU   │
  D  │   DHJKMOPQTVWXZFLYINGSAUCERB   │
  E  │   ERBDHJKMOPQTVWXZFLYINGSAUC   │
  F  │   FLYINGSAUCERBDHJKMOPQTVWXZ   │
  G  │   GSAUCERBDHJKMOPQTVWXZFLYIN   │ 
  H  │   HJKMOPQTVWXZFLYINGSAUCERBD   │
  I  │   INGSAUCERBDHJKMOPQTVWXZFLY   │ 
  J  │   JKMOPQTVWXZFLYINGSAUCERBDH   │
  K  │   KMOPQTVWXZFLYINGSAUCERBDHJ   │



  L  │   LYINGSAUCERBDHJKMOPQTVWXZF   │
  M  │   MOPQTVWXZFLYINGSAUCERBDHJK   │
  N  │   NGSAUCERBDHJKMOPQTVWXZFLYI   │
  O  │   OPQTVWXZFLYINGSAUCERBDHJKM   │
  P  │   PQTVWXZFLYINGSAUCERBDHJKMO   │
  Q  │   QTVWXZFLYINGSAUCERBDHJKMOP   │
  R  │   RBDHJKMOPQTVWXZFLYINGSAUCE   │
  S  │   SAUCERBDHJKMOPQTVWXZFLYING   │
  T  │   TVWXZFLYINGSAUCERBDHJKMOPQ   │
  U  │   UCERBDHJKMOPQTVWXZFLYINGSA   │
  V  │   VWXZFLYINGSAUCERBDHJKMOPQT   │
  W  │   WXZFLYINGSAUCERBDHJKMOPQTV   │
  X  │   XZFLYINGSAUCERBDHJKMOPQTVW   │
  Y  │   YINGSAUCERBDHJKMOPQTVWXZFL   │
  Z  │   ZFLYINGSAUCERBDHJKMOPQTVWX   │

Again, the column property holds.

Again it should be obvious how to factor the Q2 cipher. Since each row in the Vigenère tableau 
is replaced by a shifted base key, we see that the Q2 is equivalent to a Vigenère cipher followed by a 
monoalphabetic substitution [8] [9]:

C  =  Q2 (kalpha, kshift, P)  =  S (kalpha, (V (kshift´, P))

Here the alphabet key is the base key, but the shift key kshift´ here is not the same as the keyword kshift 
that was input into the Q2 cipher, but rather the string of characters given by

kshift´  =  S−1 (kalpha, kshift)

The factorization of the cipher means that each alphabetic permutation in its tableau is has the form k ◦ 
Rn, and the so the set

Q 2 [k]  =  {k ◦ Rn}

is a left coset of the Vigenère set V. Again, this set does not form a group and is not closed under 
composition of permutations. We pause here to point out that to rotate a permutation, we compose with 
the rotation on the right; this is worth remembering.

Quagmire 3 cipher

The quagmire 3 (Q3) cipher shares the features of both the Q1 and Q2 ciphers. The plaintext alphabet 
across the top of the table is mixed as the base key, and the rows in the table’s body are shifted versions
of that base key [1] [2]. For our example:

       shift key  │                                plaintext letters                   │ 
         letters    │   FLYINGSAUCERBDHJKMOPQTVWXZ  │



    ──────┼────────────────────────────────────── ┤
  A  │   AUCERBDHJKMOPQTVWXZFLYINGS   │
  B  │   BDHJKMOPQTVWXZFLYINGSAUCER   │
  C  │   CERBDHJKMOPQTVWXZFLYINGSAU   │
  D  │   DHJKMOPQTVWXZFLYINGSAUCERB   │
  E  │   ERBDHJKMOPQTVWXZFLYINGSAUC   │
  F  │   FLYINGSAUCERBDHJKMOPQTVWXZ   │
  G  │   GSAUCERBDHJKMOPQTVWXZFLYIN   │ 
  H  │   HJKMOPQTVWXZFLYINGSAUCERBD   │
  I  │   INGSAUCERBDHJKMOPQTVWXZFLY   │ 
  J  │   JKMOPQTVWXZFLYINGSAUCERBDH   │
  K  │   KMOPQTVWXZFLYINGSAUCERBDHJ   │
  L  │   LYINGSAUCERBDHJKMOPQTVWXZF   │
  M  │   MOPQTVWXZFLYINGSAUCERBDHJK   │
  N  │   NGSAUCERBDHJKMOPQTVWXZFLYI   │
  O  │   OPQTVWXZFLYINGSAUCERBDHJKM   │
  P  │   PQTVWXZFLYINGSAUCERBDHJKMO   │
  Q  │   QTVWXZFLYINGSAUCERBDHJKMOP   │
  R  │   RBDHJKMOPQTVWXZFLYINGSAUCE   │
  S  │   SAUCERBDHJKMOPQTVWXZFLYING   │
  T  │   TVWXZFLYINGSAUCERBDHJKMOPQ   │
  U  │   UCERBDHJKMOPQTVWXZFLYINGSA   │
  V  │   VWXZFLYINGSAUCERBDHJKMOPQT   │
  W  │   WXZFLYINGSAUCERBDHJKMOPQTV   │
  X  │   XZFLYINGSAUCERBDHJKMOPQTVW   │
  Y  │   YINGSAUCERBDHJKMOPQTVWXZFL   │
  Z  │   ZFLYINGSAUCERBDHJKMOPQTVWX   │

After we straighten the plaintext alphabet by moving the columns, we have this tableau:

       shift key  │                                plaintext letters                   │ 
         letters    │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │

    ──────┼────────────────────────────────────── ┤
  A  │   HPKQMABTEVWUXRZFLODYJINGCS   │
  B  │   PXTZVBMFJLYDIKNGSWOAQUCEHR   │
  C  │   KTOVPCHWBXZEFDLYIQJNMGSARU   │
  D  │   QZVFWDOLKYIHNMGSAXPUTCERJB   │
  E  │   MVPWQEJXDZFRLHYINTKGOSAUBC   │
  F  │   ABCDEFGHIJKLMNOPQRSTUVWXYZ   │
  G  │   BMHOJGEPUQTSVCWXZKRFDLYIAN   │ 
  H  │   TFWLXHPYMINJGOSAUZQCVERBKD   │
  I  │   EJBKDIUMSOPNQATVWHCXRZFLGY   │ 
  J  │   VLXYZJQIONGKSPAUCFTEWRBDMH   │
  K  │   WYZIFKTNPGSMAQUCELVRXBDHOJ   │
  L  │   UDEHRLSJNKMYOGPQTBAVCWXZIF   │
  M  │   XIFNLMVGQSAOUTCERYWBZDHJPK   │



  N  │   RKDMHNCOAPQGTUVWXJEZBFLYSI   │
  O  │   ZNLGYOWSTAUPCVERBIXDFHJKQM   │
  P  │   FGYSIPXAVUCQEWRBDNZHLJKMTO   │
  Q  │   LSIANQZUWCETRXBDHGFJYKMOVP   │
  R  │   OWQXTRKZHFLBYJINGVMSPAUCDE   │
  S  │   DOJPKSRQCTVAWEXZFMBLHYINUG   │
  T  │   YANUGTFCXERVBZDHJSLKIMOPWQ   │
  U  │   JQMTOUDVRWXCZBFLYPHIKNGSEA   │
  V  │   IUGCSVLEZRBWDFHJKAYMNOPQXT   │
  W  │   NCSEAWYRFBDXHLJKMUIOGPQTZV   │
  X  │   GEARUXIBLDHZJYKMOCNPSQTVFW   │
  Y  │   CHRJBYAKGMOIPSQTVDUWEXZFNL   │
  Z  │   SRUBCZNDYHJFKIMOPEGQATVWLX   │

Constructed in this manner, the tableau is symmetric about the main diagonal. And again we have the 
column property: each letter appears exactly once in each column.

As we can see from its construction, the quagmire 3 cipher can be factored into a Vigenère 
cipher between two monoalphabetic substitutions [9]:

Q3 (kalpha, kshift, t)  =  S (kalpha, V (kshift′, S−1 (kalpha, t)))

As with the Q2, the shift key is modified as

kshift´  =  S−1 (kalpha, kshift)

From this factorization we can see that each of the permutations of the Q3 has the form k ◦ Rn ◦ k−1, 
where k is our base key.

The set of permutations in the quagmire 3 tableau we denote as

Q 3 [k]  =  {k ◦ Rn ◦ k−1}

The base key k is part of its name, since each base key has its own set of twenty-six permutations. This 
set is, in fact, a group under the composition of permutations. We have closure:

qm ◦ qn  =  (k ◦ Rm ◦ k−1) ◦ (k ◦ Rn ◦ k−1)           
=  k ◦ Rm ◦ (k−1 ◦ k1) ◦ Rn ◦ k−1

=  k ◦ Rm ◦ e ◦ Rn ◦ k−1            
=  k ◦ (Rm ◦ Rn) ◦ k−1              
=  k ◦ Rm+n ◦ k−1                     

The addition in the subscript is done modulo 26, and therefore we obtain another element of Q 3 [k]. 
The identity element is present:

k ◦ R0 ◦ k−1  =  k ◦ e ◦ k−1  =  k ◦ k−1  =  e



And we have inverses:

qn
−1  =   k ◦ R−n ◦ k−1

qn ◦ qn
−1  =  (k ◦ R−n ◦ k−1) ◦ (k ◦ Rn ◦ k−1)           

=  k ◦ R−n ◦ (k−1 ◦ k) ◦ Rn ◦ k−1

=  k ◦ R−n ◦ e ◦ Rn ◦ k−1                 

=  k ◦ (R−n ◦ Rn) ◦ k−1                      

=  k ◦ R0 ◦ k−1                                          

=  e                                       

The transformation

φ (Rn)  =  k ◦ Rn ◦ k−1

is actually an isomorphism from the Vigenère set to Q 3 [k]. We see that this is so because it preserves 
the group structure:

φ (Rm ◦ Rn)  =  k ◦ (Rm ◦ Rn) ◦ k−1                                  
=  k ◦ Rm ◦ e ◦ Rn ◦ k−1             
=  k ◦ Rm ◦ (k−1 ◦ k) ◦ Rn ◦ k−1   
=  (k ◦ Rm ◦ k−1) ◦ (k ◦ Rn ◦ k−1)
=  φ (Rm) ◦ φ (Rn)                    

So (Q 3 [k], ◦) is isomorphic to (V, ◦), which in turn, as we saw, is isomorphic to (ℤ26, + mod 26). We 

can rightly conclude that (Q 3 [k], ◦) is therefore also isomorphic to (ℤ26, + mod 26). Important 

consequences of the isomorphism to V  include the orders of the elements (1, 2, 13, and 26), and the 
factorization of the elements into cycles (twenty-six 1-cycles, thirteen 2-cycles, two 13-cycles, or one 
26-cycle). Furthermore, we now know without checking all 26×26 possibilities that the quagmire group

is commutative, since both (V, ◦) and (ℤ26, + mod 26) are. And still further, we now know that the 
quagmire 3 group is cyclic, so that the entire tableau can be generated by taking powers of any one of 
the order-26 elements (“power” meaning taking successive compositions).

Quagmire 4 cipher

The quagmire 4 (Q4) cipher extends the Q3 by using a different base key for the mixed plaintext 
alphabet and for the shifted key in the bulk of the table [1] [2]. As an example, we consider these two 
base keys:

kP  =  FLYINGSAUCERBDHJKMOPQTVWXZ
kC  =  SPACEFLIGHTBDJKMNOQRUVWXYZ

       shift key  │                                plaintext letters                   │ 
         letters    │   FLYINGSAUCERBDHJKMOPQTVWXZ  │

    ──────┼────────────────────────────────────── ┤



  A  │   ACEFLIGHTBDJKMNOQRUVWXYZSP   │
  B  │   BDJKMNOQRUVWXYZSPACEFLIGHT   │
  C  │   CEFLIGHTBDJKMNOQRUVWXYZSPA   │
  D  │   DJKMNOQRUVWXYZSPACEFLIGHTB   │
  E  │   EFLIGHTBDJKMNOQRUVWXYZSPAC   │
  F  │   FLIGHTBDJKMNOQRUVWXYZSPACE   │
  G  │   GHTBDJKMNOQRUVWXYZSPACEFLI   │ 
  H  │   HTBDJKMNOQRUVWXYZSPACEFLIG   │
  I  │   IGHTBDJKMNOQRUVWXYZSPACEFL   │ 
  J  │   JKMNOQRUVWXYZSPACEFLIGHTBD   │
  K  │   KMNOQRUVWXYZSPACEFLIGHTBD J  │
  L  │   LIGHTBDJKMNOQRUVWXYZSPACEF  │
  M  │   MNOQRUVWXYZSPACEFLIGHTBD JK  │
  N  │   NOQRUVWXYZSPACEFLIGHTBD JKM  │
  O  │   OQRUVWXYZSPACEFLIGHTBD JKMN  │
  P  │   PACEFLIGHTBDJKMNOQRUVWXYZS   │
  Q  │   QRUVWXYZSPACEFLIGHTBDJKMNO  │
  R  │   RUVWXYZSPACEFLIGHTBDJKMNOQ  │
  S  │   SPACEFLIGHTBDJKMNOQRUVWXYZ   │
  T  │   TBDJKMNOQRUVWXYZSPACEFLIGH   │
  U  │   UVWXYZSPACEFLIGHTBDJKMNOQR  │
  V  │   VWXYZSPACEFLIGHTBDJKMNOQRU  │
  W  │   WXYZSPACEFLIGHTBDJKMNOQRUV  │
  X  │   XYZSPACEFLIGHTBDJKMNOQRUVW  │
  Y  │   YZSPACEFLIGHTBDJKMNOQRUVWX  │
  Z  │   ZSPACEFLIGHTBDJKMNOQRUVWXY  │

After we straighten out the plaintext alphabet, we have a tableau of alphabetic permutations:

       shift key  │                                plaintext letters                   │ 
         letters    │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │

    ──────┼────────────────────────────────────── ┤
  A  │   HKBMDAINFOQCRLUVWJGXTYZSEP   │
  B  │   QXUYVBNZKSPDAMCEFWOLRIGHJT   │
  C  │   TMDNJCGOLQREUIVWXKHYBZSPFA   │
  D  │   RYVZWDOSMPAJCNEFLXQIUGHTKB   │
  E  │   BNJOKEHQIRUFVGWXYMTZDSPALC   │
  F  │   DOKQMFTRGUVLWHXYZNBSJPACIE   │
  G  │   MUOVQGJWBXYHZDSPARKCNEFLTI   │ 
  H  │   NVQWRHKXDYZTSJPACUMEOFLIBG   │
  I  │   KRNUOIDVTWXGYBZSPQJAMCEFHL   │ 
  J  │   UZWSXJQPNACKEOFLIYRGVHTBMD   │
  K  │   VSXPYKRAOCEMFQLIGZUHWTBDNJ   │
  L  │   JQMRNLBUHVWIXTYZSODPKACEGF   │
  M  │   WPYAZMUCQEFNLRIGHSVTXBDJOK   │
  N  │   XAZCSNVERFLOIUGHTPWBYDJKQM   │



  O  │   YCSEPOWFULIQGVHTBAXDZJKMRN   │
  P  │   GJTKBPLMENOAQFRUVDIWHXYZCS   │
  Q  │   ZEPFAQXLVIGRHWTBDCYJSKMNUO   │
  R  │   SFALCRYIWGHUTXBDJEZKPMNOVQ   │
  S  │   IDHJTSFKCMNPOEQRUBLVGWXYAZ   │
  T  │   OWRXUTMYJZSBPKACEVNFQLIGDH   │
  U  │   PLCIEUZGXHTVBYDJKFSMANOQWR   │
  V  │   AIEGFVSHYTBWDZJKMLPNCOQRXU   │
  W  │   CGFHLWPTZBDXJSKMNIAOEQRUYV   │
  X  │   EHLTIXABSDJYKPMNOGCQFRUVZW   │
  Y  │   FTIBGYCDPJKZMANOQHERLUVWSX   │
  Z  │   LBGDHZEJAKMSNCOQRTFUIVWXPY   │

The factorization of the Q4 is similar to the Q3, except that the keys of the two substitution ciphers are 
different [9]:

Q4 (kP, kC, kshift, t)  =  S (kC, V (kshift′, S−1 (kP, t)))

Again the shift key is modified:

kshift´  =  S−1 (kP, kshift)

From this factorization we can see that each of the permutations of the Q4 has the form kC ◦ Rn ◦ kP
−1.

We write the set of twenty-six permutations for given kP and kC as

Q 4 [kP, kC]  =  {kC ◦ Rn ◦ kP
−1}

This set does not form a group. Rather, it is a coset of a quagmire 3 set. More than that, it is the right 
coset of one Q3 and the left coset of another Q3. The multiplier is the same for both cases:

h  =  kC ◦ kP
−1

The Q 4 [kP, kC] is a left coset of Q 3 [kP]. To see this, we take an arbitrary element of the Q3 and 
combine on the left with h to obtain an element of the Q4:

h ◦ (kP ◦ Rn ◦ kP
−1)  =  (kC ◦ kP

−1) ◦ (kP ◦ Rn ◦ kP
−1)

                          =  kC ◦ (kP
−1 ◦ kP) ◦ Rn ◦ kP

−1

             =  kC ◦ e ◦ Rn ◦ kP
−1

       =  kC ◦ Rn ◦ kP
−1

At the same time, Q 4 [kP, kC] is a right coset of Q 3 [kC] with the same multiplier:

(kC ◦ Rn ◦ kC
−1) ◦ h  =  (kC ◦ Rn ◦ kC

−1) ◦ (kC ◦ kP
−1)

                            =  kC ◦ Rn ◦ ( kC
−1 ◦ kC) ◦ kP

−1

              =  kC ◦ Rn ◦ e ◦ kP
−1

        =  kC ◦ Rn ◦ kP
−1



Now, the identity element always appears in the tableau of a Q3 cipher. Therefore, h is a member of the
Q4 tableau. Suppose we are in possession of a Q4 tableau; can we find h? Is is easier than that: every 
member of the Q4 table can act as an h. We can verify this by taking the inverse of an arbitrary element

of the Q4 and composing it with another arbitrary element to get an element of Q 3 [kP] (remember that 
the inversion of a composition of permutations is a composition of the inverses in reverse order):

qm
−1 ◦ qn  =  (kC ◦ Rm ◦ kP

−1)−1 ◦ (kC ◦ Rn ◦ kP
−1)

                      =  ((kP
−1)−1 ◦ Rm

−1 ◦ kC
−1) ◦ (kC ◦ Rn ◦ kP

−1)
         =  kP ◦ R−m ◦ kC

−1 ◦ kC ◦ Rn ◦ kP
−1

=  kP ◦ R−m ◦ e ◦ Rn ◦ kP
−1   

=  kP ◦ R−m ◦ Rn ◦ kP
−1        

  =  kP ◦ Rn−m ◦ kP
−1                

Likewise, we can compose on the right to get an element of Q 3 [kC]:

qn ◦ qm
−1  =  (kC ◦ Rn ◦ kP

−1) ◦ (kC ◦ Rm ◦ kP
−1)−1

                      =  (kC ◦ Rn ◦ kP
−1) ◦ ((kP

−1)−1 ◦ Rm
−1 ◦ kC

−1)
         =  kC ◦ Rn ◦ kP

−1 ◦ kP ◦ R−m ◦ kC
−1

=  kC ◦ Rn ◦ e ◦ R−m ◦ kC
−1  

=  kC ◦ Rn ◦ R−m ◦ kC
−1       

  =  kC ◦ Rn−m ◦ kC
−1               

The effect of using a different element of Q 4 [kP, kC] in place of h is merely to reorder the permutations 

in the Q 3 [kP] or Q 3 [kC]. But order is irrelevant in sets, including these.

Atbash cipher

The atbash cipher may very well be the oldest cipher in the world. It is a monoalphabetic substitution 
with only one possible key. We only mention this cipher because its permutation is a useful one. To 
encipher a text with atbash, we replace each letter according to this guide:

ABCDEFGHIJKLM

↕↕↕↕↕↕↕↕↕↕↕↕↕
ZYXWVUTSRQPON

The alphabetic permutation for this cipher, which we call z for no good reason whatsoever, is

z  =  ZYXWVUTSRQPONMLKJIHGFEDCBA

Encryption and decryption are the same process; the cipher is involutory. In other words,

z ◦ z  =  e

If we want to think about this cipher numerically by assigning A = 0, B = 1, ..., then the action 
of the cipher is to take letter number n to −(n + 1) modulo 26.



Notice, too, that z is the same as the affine permutation A25,25, which we may also write as A−1,−1.

Beaufort cipher

The Beaufort cipher [1] [2] is a periodic polyalphabetic substitution cipher whose tableau is completely
known, like the Vigenère. Here is its tableau:

          key      │                                plaintext letters                   │    label of
         letters    │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │permutation

    ──────┼────────────────────────────────────── ┼────────
  A  │   AZYXWVUTSRQPONMLKJIHGFEDCB   │      b25

  B  │   BAZYXWVUTSRQPONMLKJIHGFEDC   │      b24

  C  │   CBAZYXWVUTSRQPONMLKJIHGFED   │      b23

  D  │   DCBAZYXWVUTSRQPONMLKJIHGFE   │      b22

  E  │   EDCBAZYXWVUTSRQPONMLKJIHGF   │      b21

  F  │   FEDCBAZYXWVUTSRQPONMLKJIHG   │      b20

  G  │   GFEDCBAZYXWVUTSRQPONMLKJIH   │      b19

  H  │   HGFEDCBAZYXWVUTSRQPONMLKJI   │      b18

  I  │   IHGFEDCBAZYXWVUTSRQPONMLKJ   │      b17

  J  │   JIHGFEDCBAZYXWVUTSRQPONMLK   │      b16

  K  │   KJIHGFEDCBAZYXWVUTSRQPONML   │      b15

  L  │   LKJIHGFEDCBAZYXWVUTSRQPONM   │      b14

  M  │   MLKJIHGFEDCBAZYXWVUTSRQPON   │      b13

  N  │   NMLKJIHGFEDCBAZYXWVUTSRQPO   │      b12

  O  │   ONMLKJIHGFEDCBAZYXWVUTSRQP   │      b11

  P  │   PONMLKJIHGFEDCBAZYXWVUTSRQ   │      b10

  Q  │   QPONMLKJIHGFEDCBAZYXWVUTSR   │      b9

  R  │   RQPONMLKJIHGFEDCBAZYXWVUTS   │      b8

  S  │   SRQPONMLKJIHGFEDCBAZYXWVUT   │      b7

  T  │   TSRQPONMLKJIHGFEDCBAZYXWVU   │      b6

  U  │   UTSRQPONMLKJIHGFEDCBAZYXWV   │      b5

  V  │   VUTSRQPONMLKJIHGFEDCBAZYXW   │      b4

  W  │   WVUTSRQPONMLKJIHGFEDCBAZYX   │      b3

  X  │   XWVUTSRQPONMLKJIHGFEDCBAZY   │      b2

  Y  │   YXWVUTSRQPONMLKJIHGFEDCBAZ   │      b1

  Z  │   ZYXWVUTSRQPONMLKJIHGFEDCBA   │      b0   = z

If we prefer to work with numbers rather than a tableau, and assign A = 0, B = 1, ..., Z = 25, then
the action of the cipher is

ci  =  (ki mod L − pi)  mod 26
pi  =  (ki mod L − ci)  mod 26

where L is the length of the key and pi and ci are the numbers of the ith plaintext and ciphertext letters.



We return now to the tableau. The first thing to notice is that the last permutation is z, the atbash
key. Like it, all of the permutations in the table are self-reciprocal (involutory), and hence so is the 
entire cipher. Each of the permutations is also a rotation of z. With the labels that we have assigned 
them,

bn  =  z ◦ Rn

Each of the bn is also an affine permutation:

bn  =  A−1, −n−1

or

b−n  =  A−1, n−1

Had we numbered them from the top down, these last two equations would have been a bit cleaner.

Since every member of the Beaufort set B  of permutations is a rotation of the same base key z, 
we see that the Beaufort cipher is a quagmire 2:

B   =  {bn}  =  {z ◦ Rn}  =  Q 2 [z]

Without proving it, we state here that to reverse a permutation, we compose with z on the right. Now, a 
rightward rotation by n steps is the same as a leftward rotation by −n steps (modulo 26). To make a 
leftward rotation, we can reverse, take a rightward rotation, then reverse again:

Rn  =  z ◦ R−n ◦ z

Compose with z on the left on both sides of the equation:

            z ◦ Rn  =  z ◦ (z ◦ R−n ◦ z)
             z ◦ Rn  =  (z ◦ z) ◦ R−n ◦ z

     z ◦ Rn  =  e ◦ R−n ◦ z
z ◦ Rn  =  R−n ◦ z

Now it is possible to see self-reciprocity by

bn ◦ bn  =  (z ◦ Rn) ◦ (z ◦ Rn)
             =  (z ◦ Rn) ◦ (R−n ◦ z)

          =  z ◦ (Rn ◦ R−n) ◦ z
                   =  z ◦ e ◦ z  =   z ◦ z  =  e

Furthermore, since we now know that each Beaufort permutation can be written as a rotation composed

with z on the right, we see that B  is also a quagmire 1 set (note that {R−n} is the same as {Rn}; they 
contain the same twenty-six permutations):

B   =  {bn}  =  {z ◦ Rn}  =  {R−n ◦ z}  =  {Rn ◦ z}  =  Q 1 [z]



Let us digress for a bit and look more at the permutations bn and their products. Since each bn 
has the form of the composition of z with a rotation, it should be no surprise that the product of a b with
an R is another b:

bm ◦ Rn  =  (z ◦ Rm) ◦ Rn                                              =  z ◦ Rm+n  =  bm+n

Rn ◦ bm  =  Rn ◦ (z ◦ Rm)  =  Rn ◦ (R−m ◦ z)  =  Rn−m ◦ z  =  z ◦ Rm−n  =  bm−n

As usual, all of the arithmetic in the subscripts is performed modulo 26. The composition of the 
Beaufort permutations is a rotation:

bm ◦ bn  =  (z ◦ Rm) ◦ (z ◦ Rn)
              =  (R−m ◦ z) ◦ (z ◦ Rn)

            =  R−m ◦ (z ◦ z) ◦ Rn

     =  R−m ◦ e ◦ Rn

            =  R−m ◦ Rn =  Rn−m

There is a sort of antisymmetry in that last equation: if we reverse the order of the factors, the result is a
rotation in the opposite direction.

Since each bn is one of the affine permutations, the composition of a Beaufort with an affine 
permutation will give another affine permutation. Recall that

Ac,d ◦ Aa,b  =  Aa∙c, b∙c+d

and

bn  =  A−1, −n−1

So

bm ◦ An,p  =  A−1, −m−1 ◦ An,p  =  A−n, −p−m−1

and

An,p ◦ bm  =  An,p ◦ A−1, −m−1  =  A−n, p−n−m∙n

If we compose with bm
−1 = bm on the left of both sides of the first of these, we have

An,p  =  bm ◦ A−n, −p−m−1

Doing so on the right of both sides of the second equation gives

An,p  =  A−n, p−n−m∙n ◦ bm

Equating the two gives

bm ◦ A−n, −p−m−1  =  A−n, p−n−m∙n ◦ bm



Changing variables n→−n (if n is invertible, then so is −n) and p→−p−m−1 allows us to write

bm ◦ An,p  =  An, m∙n−m+n−p−1 ◦ bm

A different change of variables in the subscripts allows us to also write

An,p ◦ bm  =  bm ◦ An, m∙n−m+n−p−1

The subscripts may have become somewhat complicated, but the result is relatively simple, and will be 
useful later.

Periodic affine ciphers

Recall that the permutation for the multiplication cipher with multiplier 1 is M1 = e, and that affine 
permutations are

Am,n  =  Rn ◦ Mm

So each of the rotations can be written as

Rn  =  A1,n

Then the Vigenère set is the set of all affine permutations with multiplier 1:

V   =  {Rn}  =  {A1,n}

In the previous section, we also saw that each Beaufort permutation is one of the affine permutations 
with multiplier 25 = −1. So

B   =  {bn}  =  {A25,n}

We can, of course, build a periodic polyalphabetic substitution cipher from any set of twenty-six 
permutations. Let us therefore consider a generic set of affine permutations that share the same 
multiplier m ∊ ℤ26

*:

A [m]  =  {Am,n}

The two extrema of this group of sets are V  = A [1] and B  = A [25].

An interesting property of these periodic affine ciphers is that they are each simultaneously 
quagmire 1 and quagmire 2 ciphers. That each is a quagmire 1 is obvious from the factorization of the 
affine permutations into the composition of a rotation and a multiplication:

A [m]  =  {Am,n}  =  {Rn ◦ Mm}  =  Q 1 [Mm
−1]



To see that they are also Q2 ciphers, remember that

Mm ◦ Rn ◦ Mm
−1  =  Rm∙n

Compose both sides of the equation with Mm on the right:

Mm ◦ Rn ◦ Mm
−1 ◦ Mm  =  Rm∙n ◦ Mm

               Mm ◦ Rn ◦ e                =  Rm∙n ◦ Mm               
                      Mm ◦ Rn                     =  Rm∙n ◦ Mm                      

A change in variable n→m−1 ∙ n  (mod 26)  takes  m ∙ n→m−1 ∙ m ∙ n = n. So

Mm ◦ Rn/m  =  Rn ◦ Mm

and

A [m]  =  {Am,n}  =  {Rn ◦ Mm}  =  {Mm ◦ Rn/m}

But the set {Rn/m} is the same as the set {Rn}, since m is invertible and multiplication by m modulo 26 is
an automorphism of ({Rn}, ◦). We can now conclude that

A [m]  =  {Mm ◦ Rn/m}  =  {Mm ◦ Rn}  =  Q 2 [Mm]

Porta/Bellaso cipher

The cipher known to us as the “Porta cipher” [1] [2] is one of Giovan Battista Bellaso’s polyalphabetic 
ciphers that was misattributed to another cryptographer. Bellaso’s tableau [10] employs the 22-letter 
Italian alphabet of his time:

          key      │                             plaintext letters                         │
         letters    │   ABCDEFGHILMNOPQRSTUXYZ     │

    ──────┼───────────────────────────────── ┤
A/B  │   NOPQRSTUXYZABCDEFGHILM   │
C/D  │   TUXYZNOPQRSFGHILMABCDE   │
E/F  │   ZNOPQRSTUXYBCDEFGHILMA   │
G/H  │   STUXYZNOPQRGHILMABCDEF   │
I/L  │   YZNOPQRSTUXCDEFGHILMAB   │
M/N  │   RSTUXYZNOPQHILMABCDEFG   │
O/P  │   XYZNOPQRSTUDEFGHILMABC   │
Q/R  │   QRSTUXYZNOPILMABCDEFGH   │
S/T  │   PQRSTUXYZNOLMABCDEFGHI   │
U/X  │   UXYZNOPQRSTEFGHILMABCD   │
Y/Z  │   OPQRSTUXYZNMABCDEFGHIL   │



Recently, an earlier cipher of Bellaso from 1552 was uncovered in Venice, Italy [11]. Its tableau 
is a superset of the above:

          key      │                             plaintext letters                         │
         letters    │   ABCDEFGHILMNOPQRSTUXYZ     │

    ──────┼───────────────────────────────── ┤
 A   │   NOPQRSTUXYZABCDEFGHILM   │
 E   │   ZNOPQRSTUXYBCDEFGHILMA   │
 I   │   YZNOPQRSTUXCDEFGHILMAB   │
 O   │   XYZNOPQRSTUDEFGHILMABC   │
 U   │   UXYZNOPQRSTEFGHILMABCD   │
 B   │   TUXYZNOPQRSFGHILMABCDE   │
 C   │   STUXYZNOPQRGHILMABCDEF   │
 D   │   RSTUXYZNOPQHILMABCDEFG   │
 F   │   QRSTUXYZNOPILMABCDEFGH   │
 G   │   PQRSTUXYZNOLMABCDEFGHI   │
 H   │   OPQRSTUXYZNMABCDEFGHIL   │
 L   │   MLIHGFEDCBAZYXUTSRQPON   │
 M   │   AMLIHGFEDCBYXUTSRQPONZ   │
 N   │   BAMLIHGFEDCXUTSRQPONZY   │
 P   │   CBAMLIHGFEDUTSRQPONZYX   │
 Q   │   DCBAMLIHGFETSRQPONZYXU   │
 R   │   EDCBAMLIHGFSRQPONZYXUT   │
 S   │   FEDCBAMLIHGRQPONZYXUTS   │
 T   │   GFEDCBAMLIHQPONZYXUTSR   │
 X   │   HGFEDCBAMLIPONZYXUTSRQ   │
 Y   │   IHGFEDCBAMLONZYXUTSRQP   │
 Z   │   LIHGFEDCBAMNZYXUTSRQPO   │

The modern version, which we now call the “Porta cipher,” comes in two varieties, the choice 
between which depends on one’s continent. Their tableaux are combined here:

       key letters   │                                plaintext letters                       │
      ver. 1  ver. 2  │   ABCDEFGHIJKLMNOPQRSTUVWXYZ    │

    ────────┼─────────────────────────────────────  ┤
      A/B A/B  │   NOPQRSTUVWXYZABCDEFGHIJKLM    │
      C/D Y/Z  │   OPQRSTUVWXYZNMABCDEFGHIJKL    │
      E/F W/X  │   PQRSTUVWXYZNOLMABCDEFGHIJK    │
      G/H U/V  │   QRSTUVWXYZNOPKLMABCDEFGHIJ    │
      I/J S/T  │   RSTUVWXYZNOPQJKLMABCDEFGHI    │
      K/L Q/R  │   STUVWXYZNOPQRIJKLMABCDEFGH    │
      M/N O/P  │   TUVWXYZNOPQRSHIJKLMABCDEFG    │
      O/P M/N  │   UVWXYZNOPQRSTGHIJKLMABCDEF    │
      Q/R K/L  │   VWXYZNOPQRSTUFGHIJKLMABCDE    │
      S/T I/J  │   WXYZNOPQRSTUVEFGHIJKLMABCD    │
      U/V G/H  │   XYZNOPQRSTUVWDEFGHIJKLMABC    │



      W/X E/F  │   YZNOPQRSTUVWXCDEFGHIJKLMAB    │
      Y/Z C/D  │   ZNOPQRSTUVWXYBCDEFGHIJKLMA    │

It is only natural that we should modernize the original Bellaso 1552 cipher in a similar 
fashion. The result is a superset of the Porta. While it is arbitrary to assign key letters to each 
permutation, and they have no correlation to those of the the Porta cipher, we do so anyway.

          key      │                                plaintext letters                   │
         letters    │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │

    ──────┼────────────────────────────────────── ┤
  A  │   AMLKJIHGFEDCBYXWVUTSRQPONZ   │
  B  │   BAMLKJIHGFEDCXWVUTSRQPONZY   │
  C  │   CBAMLKJIHGFEDWVUTSRQPONZYX   │
  D  │   DCBAMLKJIHGFEVUTSRQPONZYXW   │
  E  │   EDCBAMLKJIHGFUTSRQPONZYXWV   │
  F  │   FEDCBAMLKJIHGTSRQPONZYXWVU   │
  G  │   GFEDCBAMLKJIHSRQPONZYXWVUT   │
  H  │   HGFEDCBAMLKJIRQPONZYXWVUTS   │
  I  │   IHGFEDCBAMLKJQPONZYXWVUTSR   │
  J  │   JIHGFEDCBAMLKPONZYXWVUTSRQ   │
  K  │   KJIHGFEDCBAMLONZYXWVUTSRQP   │
  L  │   LKJIHGFEDCBAMNZYXWVUTSRQPO   │
  M  │   MLKJIHGFEDCBAZYXWVUTSRQPON   │
  N  │   NOPQRSTUVWXYZABCDEFGHIJKLM   │
  O  │   OPQRSTUVWXYZNMABCDEFGHIJKL   │
  P  │   PQRSTUVWXYZNOLMABCDEFGHIJK   │
  Q  │   QRSTUVWXYZNOPKLMABCDEFGHIJ   │
  R  │   RSTUVWXYZNOPQJKLMABCDEFGHI   │
  S  │   STUVWXYZNOPQRIJKLMABCDEFGH   │
  T  │   TUVWXYZNOPQRSHIJKLMABCDEFG   │
  U  │   UVWXYZNOPQRSTGHIJKLMABCDEF   │
  V  │   VWXYZNOPQRSTUFGHIJKLMABCDE   │
  W  │   WXYZNOPQRSTUVEFGHIJKLMABCD   │
  X  │   XYZNOPQRSTUVWDEFGHIJKLMABC   │
  Y  │   YZNOPQRSTUVWXCDEFGHIJKLMAB   │
  Z  │   ZNOPQRSTUVWXYBCDEFGHIJKLMA   │

The first thing to notice that, like all of the ciphers in this section, this modernized Porta/Bellaso
cipher is self-reciprocal (involutory). Each of its permutations is its own inverse, and the processes of 
encipherment and decipherment are the same.

Now for something surprising: This Porta/Bellaso cipher is a quagmire 4. To demonstrate that 
this is true, we simply give the base keys for the Q4 that will produce the tableau above. Consider this 
permutation:

x  =  AYCWEUGSIQKOMZBXDVFTHRJPLN



and its reversal:

x ◦ z  =  NLPJRHTFVDXBZMOKQISGUEWCYA

The set P  of Porta/Bellaso permutations is exactly the set of Q4 permutations using these base keys:

P   =  {pn}  = {x ◦ z ◦ Rn ◦ x−1}  =  Q 4 [x, x ◦ z]

We leave it to the reader to work them all out and verify that they are the same as those in the tableau 
shown above (but not necessarily in the same order).

Next consider that each permutation of the Porta/Bellaso has the form

k  =  x ◦ z ◦ Rn ◦ x−1  =  x ◦ (z ◦ Rn) ◦ x−1  =   x ◦ bn ◦ x−1

where bn is a member of the Beaufort set. The transformation

π → φ (π)  =  x ◦ π ◦ x−1

for each permutation π in the group of alphabetic permutations Π, is an automorphism of Π. This is 
clear because

φ (π ◦ σ)  =  x ◦ π ◦ σ ◦ x−1

                     =  x ◦ π ◦ e ◦ σ ◦ x−1

                               =  x ◦ π ◦ (x−1 ◦ x) ◦ σ ◦ x−1

                                  =  (x ◦ π ◦ x−1) ◦ (x ◦ σ ◦ x−1)
               =  φ (π) ◦ φ (σ)

Under this automorphism, the Beaufort set B  is mapped to the Porta/Bellaso set P.

The choice of x is not unique. Any permutation of the form x ◦ Am,p will also work:

(x ◦ Am,p) ◦ bn ◦ (x ◦ Am,p)−1  =  x ◦ Am,p ◦ bn ◦ Am,p
−1 ◦ x−1

                                              =  x ◦ Am,p ◦ bn ◦ A1/m, −p/m ◦ x−1

                                                           =  x ◦ bn ◦ Am, m∙n+m−n−p−1 ◦ A1/m, −p/m ◦ x−1

                                             =  x ◦ bn ◦ A1, m∙n+m−n−p−p−1 ◦ x−1

                                           =  x ◦ bn ◦ Rm∙n+m−n−p−p−1 ◦ x−1

                                  =  x ◦ bm∙n+m−p−p−1 ◦ x−1

where we used these earlier results:

Am,p ◦ bn  =  bn ◦ Am, m∙n+m−n−p−1

Ac,d ◦ Aa,b  =  Aa∙c, b∙c+d



It does not matter that the subscript on b has changed. This merely means that the new transformation 
has shuffled the Porta/Bellaso permutations around; the set is still the same.

The final question we might ask about the Porta/Bellaso cipher is about the quagmire 3 ciphers 
to which it is a left and right coset. As we saw earlier, to find such Q3 sets we take the inverse of any of
the elements of a Q4 and compose it with each of the Q4 permutations. If we do so with the Porta/
Bellaso set, we obtain the following quagmire 3. We leave off the key letters, since our choices can 
affect the order in which the permutations are listed, and therefore the key letters are arbitrary.

│                                plaintext letters                   │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │
├────────────────────────────────────── ┤
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ   │
│   BCDEFGHIJKLMAZNOPQRSTUVWXY   │
│   CDEFGHIJKLMABYZNOPQRSTUVWX   │
│   DEFGHIJKLMABCXYZNOPQRSTUVW   │
│   EFGHIJKLMABCDWXYZNOPQRSTUV   │
│   FGHIJKLMABCDEVWXYZNOPQRSTU   │
│   GHIJKLMABCDEFUVWXYZNOPQRST   │
│   HIJKLMABCDEFGTUVWXYZNOPQRS   │
│   IJKLMABCDEFGHSTUVWXYZNOPQR   │
│   JKLMABCDEFGHIRSTUVWXYZNOPQ   │
│   KLMABCDEFGHIJQRSTUVWXYZNOP   │
│   LMABCDEFGHIJKPQRSTUVWXYZNO   │
│   MABCDEFGHIJKLOPQRSTUVWXYZN   │
│   NZYXWVUTSRQPOLKJIHGFEDCBAM   │
│   ONZYXWVUTSRQPKJIHGFEDCBAML   │
│   PONZYXWVUTSRQJIHGFEDCBAMLK   │
│   QPONZYXWVUTSRIHGFEDCBAMLKJ   │
│   RQPONZYXWVUTSHGFEDCBAMLKJI   │
│   SRQPONZYXWVUTGFEDCBAMLKJIH   │
│   TSRQPONZYXWVUFEDCBAMLKJIHG   │
│   UTSRQPONZYXWVEDCBAMLKJIHGF   │
│   VUTSRQPONZYXWDCBAMLKJIHGFE   │
│   WVUTSRQPONZYXCBAMLKJIHGFED   │
│   XWVUTSRQPONZYBAMLKJIHGFEDC   │
│   YXWVUTSRQPONZAMLKJIHGFEDCB   │
│   ZYXWVUTSRQPONMLKJIHGFEDCBA   │

You may notice that the first is the identity permutation e, which must be present in every Q3, and that 
the last one in the list is z, the reversal of e. Looking closer, you may also notice that for every 
permutation in the list, its reversal also appears. What may be surprising is that the Porta/Bellaso is 

both the right and left coset of this Q3. Any of the members of P  can serve as the multiplier h; we 
leave it to the reader to verify this.



The Fuer GOD cipher

The Fuer GOD cipher, also know as the Wilhelm cipher, was used by the Germans in World War I [12] 
[13]. It gets its first name from the fact that all messages sent in this cipher were addressed to the radio 
receiving station known by its call-letters as GOD. Everything we know about it comes from 
cryptanalysts opposing the Germans, so we do not have an original description of the cipher from a 
German source. In the literature, there are a few errors in its tableau; namely, there are duplicate letters 
in some rows. Errors such as these make an unambiguous decipherment impossible. From the 
requirement that each row should be a true permutation of the alphabet, and from the observation that 
letters occur in smaller permuted groups, this is our best educated guess of the correct tableau (subject 
to future corrections, of course):

            key      │                                plaintext letters                   │
         letters    │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │

    ──────┼────────────────────────────────────── ┤
  A  │   ECDBAFJIGHLKONMSPQTRZUXVWY   │
  B  │   BADCFGEIHJNOKMLSRPTQWXVYUZ   │
  C  │   CDABGHEJFIKMPOLNTRQSXUZWVY   │
  D  │   BACHDJFEGILONPKMSQRUZTYVWX   │
  E  │   ACDBHJFIGEMNLKOTRSPQYZVUXW   │
  F  │   WYZVXABCEFDMJIGKHPLNSROQUT   │
  G  │   VYXUZWCABEDIHGFLKNMJQOTPSR   │
  H  │   UXZWYVAEBCFDIHGJNKMLSPORTQ   │
  I  │   XUVZYWACBEDGIHJFKMONLTRSQP   │
  J  │                               │
  K  │   SQRYVXUZTWBDCAEJHKIFGPMONL   │
  L  │   RTSWVYZUXFACBEDJKIGHONMPQL   │
  M  │   TRSQYWXZVUEBACDKFJIGHMLPNO   │
  N  │   RQPSZWTVUXYDBCAGIEJHKFONLM   │
  O  │   LOPNMQSRTUVZXYWCABHEDGJFKI   │
  P  │   MOLNPSRQXTYWZUVADCBHFIKEJG   │
  Q  │                               │
  R  │   PONMRTSQWYUXZVCABEDFJGKHIL   │
  S  │   LMONTQRPSZXUYVWBACDEGJHFKI   │
  T  │   MOKNLQSRPWZTVUXYDBACEFJGIH   │
  U  │   HFIGNMJKOLQPSRVTZUWXYBEDCA   │
  V  │   EDIGHFLMKPONRQJSUXTZWVYCAB   │
  W  │   IEHFGLOMJKNQPTRSXWYUZVBADC   │
  X  │                               │
  Y  │                               │
  Z  │   IFHJGNKLMPOTSRQVYUXZWDBCAE   │

There is no information about the rows for J, Q, X, and Z, since no German messages using those key 
letters have been intercepted.



The Fuer GOD cipher is not a quagmire cipher. It is enough to notice that it does not have the 
column property to reach this conclusion. And its set of permutations do not form a group. We have 
presented it here as an example of a periodic polyalphabetic substitution cipher that is not a quagmire, 
and to remind us that it is always possible to construct such ciphers with arbitrary permutations.

Classification of periodic polyalphabetic substitution ciphers

We saw from the example of the Fuer GOD cipher that not all periodic polyalphabetic substitution 
ciphers are quagmires. However, we will now show why all quagmires are quagmire 4 ciphers. Every 
permutation in a Q1 cipher has the form Rn ◦ k−1. But we can compose on the right with the identity 
element to have e ◦ Rn ◦ k−1. So

Q 1 [k]  =  {Rn ◦ k−1}  =  {e ◦ Rn ◦ k−1}  =  Q 4 [k, e]

and thus the set of Q1 ciphers is a subset of the Q4 ciphers:

{Q 1}  ⊂  {Q 4}

Likewise, every Q2 cipher is a quagmire 4:

Q 2 [k]  =  {k ◦ Rn}  =  {k ◦ Rn ◦ e}  =  Q 4 [e, k]

so that

{Q 2}  ⊂  {Q 4}

A quagmire 3 is simply a quagmire 4 in which both base keys are the same:

Q 3 [k]  =  {k ◦ Rn ◦ k−1}  =  Q 4 [k, k]

and

{Q 3}  ⊂  {Q 4}

Next we should ask if there are any overlaps among the sets {Q 1}, {Q 2}, and {Q 3}. The 
Vigenère is the most special case in that it is in all three of these sets, and therefore also a member of 

{Q 4}:

V   =  {Rn}  =  {Rn ◦ e}  =  {e ◦ Rn}  =  {e ◦ Rn ◦ e}

V   ∊  {Q 1} ∩ {Q 2} ∩ {Q 3}  ⊂  {Q 4}

The Vigenère, Beaufort, and other periodic affine ciphers, as we saw earlier, belong to the intersection 

of {Q 1} and {Q 2}:



A [m]  ∊  {Q 1} ∩ {Q 2}

Remember also that we said

A [m]  =  Q 1 [Mm
−1]  =  Q 2 [Mm]

The Vigenère cipher is special, since it is a degenerate (its base keys are the identity permutation) 

member also of {Q 3}, and because 1 is its own inverse modulo 26. The Beaufort cipher shares the 
latter of these properties: as a periodic affine cipher, its multiplier (25) is also its own inverse. 
Furthermore, of all the periodic affine ciphers, the Beaufort is the only one that is its own reciprocal. 
But it is not the only one of its kind. Recall that

B   =  {bn}  =  {z ◦ Rn}

We can insert some identity permutations and write this as

B   =  {e ◦ z ◦ Rn ◦ e}  =  {(e ◦ z) ◦ Rn ◦ e}  =  Q 4 [e, e ◦ z]

It turns out that for any base permutation k, Q 4 [k, k ◦ z] is an involutory quagmire 4 cipher. The base 
permutations for such a cipher are reversals of each other, as we see here for the Beaufort and we saw 
earlier for the Porta/Bellaso cipher. This class in a sense mirrors the set of quagmire 3 ciphers, whose 

members are all of the form Q 4 [k, k], where the base permutations are identical.

Here is a summary of our classification of periodic polyalphabetic substitution ciphers:





Application: key amplification in crib-based attacks

When we find ourselves attacking a ciphertext, and we have been able to correctly place a crib (some 
snippet of known plaintext) alongside the ciphertext, then we can identify some of the letters in the 
permutations used to encrypt it. Henceforth, we call the set of permutations used to encrypt a text the 
“key table,” to distinguish it from the full tableau; the key table contains a subset of the permutations in
the tableau, and may have some duplicates. But how much information do we need before we can 
decrypt the entire text? In the thinking of [14], information is measured in bits and calculated as the 
logarithm to base two of the number of possible keys. However, we want to measure the information in
the keys of a cipher in terms of letters, rather than bits; therefore, we use logarithms with base twenty-
six. Each of the base keys (one for quagmire 1, 2, or 3; two for quagmire 4) introduces a factor of 26! 
to the number of possible keys, while each shift key of length L introduces a factor of 26L. For a 
Vigenère or Beaufort or Fuer GOD cipher, or any for which the tableau is fully known, the only key is 
the shift key, and so the information in it is

I  =  log26 26L  =  L

letters. For a Q1, Q2, or Q3 cipher, we have one base permutation and a shift key, so the information in 
them is

I  =  log26 (26L ∙ 26!)  =  L + 18.8

letters. For the Q4, we have two base permutations, so

I  =  log26 (26L ∙ 26! ∙ 26!)  =  L + 37.6

letters of information. The key table contains 26∙L letters, so you may be wondering how to reconcile 
this number with such small amounts of information. The resolution of this apparent paradox is that the
information contained in the table is highly redundant—each letter in a base key affects many letters in 
the bulk of the table.

The above are the theoretical lower limits to how many letters we must know in the tableau in 
order to completely reconstruct it. In practice, however, we find that we will need somewhat more, 
since the ones we have may be poorly placed and may therefore provide overlapping information. 
Nevertheless, we will see how a sparsely filled tableau can provide enough information to nearly fill it 
completely and solve the cipher.

Since we will be dealing with permutations for which we know only some of their letters, we 
need to be able to take compositions and find inverses for permutations with missing letters. Consider 
our two favorite base keys, with some holes in them:

k1  =  FLYIN.S..CERB...KM..QT.WXZ

k2  =  SP..EF.IGHTZ.X.VUR...MKJD.

Remember that this means encryption using k1 makes these substitutions:

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ



↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
ciphertext: FLYIN?S??CERB???KM??QT?WXZ

and using k2 these:

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
ciphertext: SP??EF?IGHTZ?X?VUR???MKJDB

When we act with k1 first, followed by k2, M→B→P, for example, so the overall substitution is M→P.

However, for cases in which we encounter a hole, the result is uncertain. For example, F→? under the 

permutation k1, and S→M→? under the combined permutation. The complete list for our example is

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
ciphertext: FZDGX?????ERP???T???U??KJ?

and we write

k2 ◦ k1  =  FZDGX.....ERP...T...U..KJ.

The result has more holes than either of the two factors, but there is nothing we can do about that.

Finding the inverse is done by the same method as before, simply with holes in the permutation.
To find the inverse of k1, write it under the unmixed alphabet:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
FLYIN.S..CERB...KM..QT.WXZ

Then rearrange the columns so that letters in the lower row are in the positions they would have in the 
unscrambled alphabet:

FMJHKAINDOQBREPSULGVTWXYCZ
.BC.EF..I.KLMN..QRST..WXYZ

Letters in the upper row above a gap are uncertain, so we replace them with gaps as well:

.MJ.KA..D.QBRE..ULGV..XYCZ

.BC.EF..I.KLMN..QRST..WXYZ

The upper row is now the inverse, which we know only partially:

k1
−1  =  .MJ.KA..D.QBRE..ULGV..XYCZ

We are now ready to start with the Vigenère cipher and work our way to amplifying our 
knowledge of the keys in the quagmire 3 and 4 ciphers.



Key amplification in the Vigenère cipher

As we saw earlier, a Vigenère cipher with period L only has L letters of information in its shift key. For 
that reason, we only need a crib that has length L to fully complete its key table. This is one of only a 
few cases in which the theoretical information content matches our practical needs. The reader may 
suspect that what is needed is full knowledge of the tableau and the column property, i.e., the property 
that each letter appears only once in each column of the tableau. For the Vigenère we do indeed have 
both of these requirements. We simply need to find the subset of permutations that are used in a 
particular encipherment.

Here, and for the rest of this article, we will assume that we have already found the period of 
our cipher. The interested reader can investigate the Kasiski method [1] [15], methods using the index 
of coincidence [16] [17] [18], or the twist method [19].

At the risk of appearing overly pedantic, let us work an example. It is, after all, better to be clear
on the fundamentals before advancing to more complicated issues. Here is a ciphertext that has been 
enciphered with period five:

SAIGR IDIVR AWTCO IRXPN CP

As a crib, take the first five letters of the plaintext to be  SPACE:

SPACE                     
SAIGR IDIVR AWTCO IRXPN CP

Using this crib allows us to place five letters in the key table:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   ..................S.......  │
k2 │   ...............A..........  │
k3 │   I.........................   │
k4 │   ..G.......................   │
k5 │   ....R.....................   │

We know that every permutation in the tableau of the Vigenère cipher is one of the rotations Rn of the 
unmixed alphabet. So we can fill in each permutation in our key table so that the known letters remain 
where we have placed them; they fix the rotation of each row.

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │
k2 │   LMNOPQRSTUVWXYZABCDEFGHIJK  │
k3 │   IJKLMNOPQRSTUVWXYZABCDEFGH   │



k4 │   EFGHIJKLMNOPQRSTUVWXYZABCD   │
k5 │   NOPQRSTUVWXYZABCDEFGHIJKLM   │

We now know the entire key table and can completely decrypt the text. This very simple example 
shows how we were able to amplify our knowledge of the key table by using what we know about the 
structure of the cipher. As we move on to more complicated ciphers, things will become more 
interesting.

Key amplification in quagmire 2

You read that correctly. We will come back to the quagmire 1 later.

Recall that the permutations in the Q2 tableau all have the form k ◦ Rn, where k is the base key 
of the cipher, and the {Rn} are the rotations of the Vigenère cipher. Permutations of this form are 
merely rotations of the base key. It has been known for a long time that this allows us to fill in missing 
letters in our key table by requiring that two letters always maintain the same distance from one another
when they appear in the same row [1] [20] [21]. Another way to look at the procedure is to rotate each 
row of the key table until they have all aligned (have the same letter in the same column), merge them 
all, then rotate back to their original positions.

While this procedure is not highly technical, and in fact rather simple, we will work through an 
example. Here we have encrypted the opening lines of The War of the Worlds by H. G. Wells with 
period six:

UZMSVC CGHVZD KJNWIT ZSAVFF HOANOG HCAPCG CKVFVF IXABVM 
UNETVF HGQMRQ TNVFFG MZQNTC TINWFF LAIBQQ ZHDWVF SCISTJ 
SZTWIR VCRSRM SVRZVF WJTZCM TNAERQ TXJPGG TXSMVS TIJACS 
TVIRZT DZZSRQ TNIRNM UBWRFM XNEWNG ZVXWED VZWBRQ ZPQHON 
IZWRQL UDAEGG HOAMHM BJTTCA HPKLEM XRKVES JHRWTY ZYEPAG 
TVJAES TIKPCN CAHMOG TWISHT HOIGFJ BZTTSY ZWRZZS DDQDRT 
UPTWRQ ZNQPGG IJKBQN ZRVDCM DNEPRG MRQGOF XWWNRT EVLLGD 
XYMUSO MRVWC

Our crib is the first forty-eight letters of the plaintext, which we write above its corresponding portion 
of the ciphertext:

NOONEW OULDHA VEBELI EVEDIN THELAS TYEARS OFTHEN INETEE
UZMSVC CGHVZD KJNWIT ZSAVFF HOANOG HCAPCG CKVFVF IXABVM

By matching plaintext and ciphertext letters, we get this information about the keys:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   ....Z...I....UC....H.K....  │
k2 │   ....JK.O.....XZ.....GS..C.   │
k3 │   .N..A......H..M....V......   │



k4 │   P..VW..F...N.S.....B......  │
k5 │   O...V..ZF..I.....C........   │
k6 │   D...M...T....F....G...C...   │

If we try to decrypt the entire text with this little information, we obtain

NOONEWOULDHAVEBELIEVEDINTHELASTYEARSOFTHENINETEEN...ENTU...
...THIS.O.L.W..BEIN...T..E..EEN.Y.N...O.EL..Y.N.E....EN.E..
RE..E....N.A.S.N..E.....R.....HI.O.N.......EN...IE...E.SE..
E.A.O.T..E...A.IO....N.E..STHE..E.E..R.T....E...D.....E..E.
.A.S.........AR.O.L.AS...N.ITH..I..O....E...H......IN..E..E
..A.SIE.T..E.T.RE...A.S....AN...L.I.....A..O.....TER

To amplify the keys, we take the first one as it is, but rotate the others until they are aligned:

....Z...I....UC....H.K....    (rotation   0)

...XZ.....GS..C.....JK.O..    (rotation 10)

.V.......N..A......H..M...    (rotation 18)

.VW..F...N.S.....B......P.    (rotation   2)

.V..ZF..I.....C........O..    (rotation   3)
T....F....G...C...D...M...    (rotation   8)

They can all now be merged into a single permutation:

TVWXZF..INGSAUC..BDHJKMOP.

This single permutation is then rotated in reverse into the six original positions and placed back into the
key table:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   TVWXZF..INGSAUC..BDHJKMOP.  │
k2 │   .BDHJKMOP.TVWXZF..INGSAUC.   │
k3 │   INGSAUC..BDHJKMOP.TVWXZF..   │
k4 │   P.TVWXZF..INGSAUC..BDHJKMO  │
k5 │   OP.TVWXZF..INGSAUC..BDHJKM   │
k6 │   DHJKMOP.TVWXZF..INGSAUC..B   │

This is a large increase in our knowledge of the keys. With these (still incomplete) keys, we can decrypt
most of the full ciphertext:

NOONEWOULDHAVEBELIEVEDINTHELASTYEARSOF.HENINETEENT.CENTU.Y.
.AT.HISWO.LDWASBEIN.WAT..EDKEENLYANDCLO.EL.BY.N.ELL.GENCE.G
REATE...ANMANSANDYETASMORTALA.HISO.N..ATA.MENB..IEDT.EMSEL.
E.ABO.T..EI.VARIO....NCE.NSTHEYWERE.CRUTIN..ED.ND.TUD.ED.E.
.APSALMO.TASNARROWLYASAMANWITHAMICRO.CO.EM.GHTSC.U.INI.E..E
T.ANSIENT.RE..UREST.A.SW..MANDM.L.I.L..NAD.OPOFW..ER



From this point, it would be easy to recognize words and fill in more letters in the plaintext and key 
table, until the entire plaintext is decrypted.

Key amplification in quagmire 1

Like the Q2, there is a method of key amplification that involves constant distances between letters [1] 
[21], using the fact that the bulk of the key table contains rotations of the unmixed alphabet. We, 
however, are going to try something different. Remember that every permutation in the quagmire 1 
tableau have the form Rn ◦  k−1 where k is the base key. If we take the inverse of these permutations we 
have

(Rn ◦ k−1)−1  =  k ◦ R−n

In other words, the inverses of Q1 permutations have the form of Q2 permutations. So our strategy for 
key amplification will be to find the inverse of each partial key, apply the technique for the Q2, then 
invert back to the original key table.

An example always helps to clarify. Here is a ciphertext encrypted with period six:

QCTMRT ESCVVD IUNSIZ WGLVKA HYLJOC HMLPSC EKWWRA POLDRG 
QFPRRA HSMKCK TFWWKC JCMJUT TQNSKA RHIDQK WXRSRA NMIMUF 
NCHSIY YMEMCG NLENRA VUHNSG TFLTCK TOSPLC TOOKRR TQSASR 
TLIOVZ SCYMCK TFIOYG QWJOKG ZFPSYC WLXSND YCJDCK WNMEOH 
PCJOQO QTLTLC HYLKEG XUHRSE HNFLNG ZRFVNR UXESUP WVPPAC 
TLSANR TQFPSH EHCKOC TBIMEZ HYIZKF XCHRZP WBENVR STMQCZ 
QNHSCK WFMPLC PUFDQH WRWQSG SFPPCC JRMZOA ZBJJCZ FLDLLD 
ZVTBZW JRWSS

Again, we will take the first forty-eight characters of the plaintext as a crib and write them above the 
corresponding part of the ciphertext:

NOONEW OULDHA VEBELI EVEDIN THELAS TYEARS OFTHEN INETEE
QCTMRT ESCVVD IUNSIZ WGLVKA HYLJOC HMLPSC EKWWRA POLDRG

From this we have the following knowledge of the key table:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   ....W...P....QE....H.I....  │
k2 │   ....UK.Y.....OC.....SG..M.   │
k3 │   .N..L......C..T....W......   │
k4 │   P..VS..W...J.M.....D......  │
k5 │   O...R..VK..I.....S........   │
k6 │   D...G...Z....A....C...T...   │



The inverses of these six permutations are

             ─────┬────────────────────────────────────── ┐
k1

−1 │   ....O..TV......IN.....E...  │
k2

−1 │   ..O...V...F.Y.N...U.E...H.   │
k3

−1 │   ..L........E.B.....O..T...   │
k4

−1 │   ...T.....L..N..A..E..DH...  │
k5

−1 │   ........L.I...A..ER..H....   │
k6

−1 │   N.SA..E............W.....I   │

We rotate all but one and align their columns:

....O..TV......IN.....E...    (rotation   0)
H...O...V...F.Y.N...U.E...    (rotation 24)
....O..T.....L........E.B.    (rotation 15)
H......T.....L..N..A..E..D    (rotation 22)
H............L.I...A..ER..    (rotation 21)
.........W.....IN.SA..E...    (rotation 10)

Merge them all into one:

H...O..TVW..FLYIN.SAU.ERBD

Reverse the rotations and put them back into the table of inverses:

             ─────┬────────────────────────────────────── ┐
k1

−1 │   H...O..TVW..FLYIN.SAU.ERBD  │
k2

−1 │   ..O..TVW..FLYIN.SAU.ERBDH.   │
k3

−1 │   .FLYIN.SAU.ERBDH...O..TVW.   │
k4

−1 │   O..TVW..FLYIN.SAU.ERBDH...  │
k5

−1 │   ..TVW..FLYIN.SAU.ERBDH...O   │
k6

−1 │   N.SAU.ERBDH...O..TVW..FLYI   │

Take inverses and place the results in the original key table:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   TY.ZWM.AP..N.QE..XSHUIJ.O.  │
k2 │   RW.XUK.YN..L.OC..VQFSGH.M.   │
k3 │   IN.OLB.PE..C.FT..MHWJXY.D.   │
k4 │   PU.VSI.WL..J.MA..TODQEF.K.  │
k5 │   OT.URH.VK..I.LZ..SNCPDE.J.   │
k6 │   DI.JGW.KZ..X.AO..HCREST.Y.   │

Notice that we now have the ability to decrypt the most common plaintext letters, no matter where they
appear in the text.



Key amplification in quagmire 3

A method already exists for amplifying our knowledge of the permutations in the key table that exploits
the fact that in the original table (in which the plaintext alphabet is deranged according to the base key) 
for the cipher contains rotated versions of the base key [21]. We, however, want to explore how the 
group structure of a Q3 cipher can be used.

Because the set of permutations Q 3 [k] in the quagmire 3 tableau form a group isomorphic to the

Vigenère group V, we have the following features to help us amplify our knowledge of the key table 
and of the tableau. Keep in mind that the key table has the permutations used to encrypt a text; it is a 
subset of the tableau and may contain duplicate rows. The tableau contains twenty-six distinct 
permutations.

• Each letter of the alphabet appears exactly once in each row (permutation) in the tableau. This is
the case because each row is a permuted version of the alphabet.

• The column property: each letter of the alphabet appears exactly once in each column of the 
tableau. This means that if we ever find two rows that share a letter in the same position, then 
they are the same permutation and can be merged. Note that in the key table, some rows may be
the same permutation, so the column property will allow us to merge those rows, but not to 
remove duplicate rows.

• The set of permutations in the tableau is a group, therefore the identity element e is a member of
the tableau. Combined with the column property, this means that whenever we find a 
permutation in which a letter of the plaintext is encrypted to itself, then that permutation is e. 
Furthermore, e has order 1 and is the only permutation with that order in the tableau.

• Because the tableau is a group, for any two permutations k1 and k2 in it,  k1 ◦ k2 is also in it.

• The group is commutative, so we can gain knowledge about a product by looking at both k1 ◦ k2 
and k2 ◦ k1.

• Because the tableau is a group, for any permutation k in it, k−1 is also in it.

• There is exactly one member of the tableau with order 2. It can be factored into thirteen 2-
cycles.

• There are exactly twelve members of the tableau with order 13. They can each be factored into 
two 13-cycles. Since they form a cyclic subgroup, the composition of any two of them will also 
be one of them.

• There are exactly twelve members of the tableau with order 26. Each is a 26-cycle. Any one of 
these can be used to generate the entire tableau.

Our strategy for key amplification will be to use these features and attempt to reconstruct the entire Q3 
tableau. We will take compositions of rows and inverses of rows and add them to the tableau. As we 



work, we will merge rows as determined by the column property. The requirements that each row and 
each column contain exactly one of each letter may help to add missing letters or eliminate 
possibilities. Since knowing the structure of the permutations as products of cycles can be helpful, we 
will keep track of the order of each element, as we are able to determine it.

An example will be quite lengthy, but instructive. We will skip over some of the tedium. Begin 
with a ciphertext encrypted with a quagmire 3 with period six:

ZITWYE DPNSSQ MTJIPK GADSTM KZDQZP KDDFIP DRXAYM XJDHYW 
ZSMYYM KPHTDL YSXATP OIHQGE YMJITM FUEHLL GXPIYM VDEWGV 
VICIPJ ADSWDW VBSXYM NTCXIW YSDNDL YJQFVP YJKTYU YMQRIU 
YBEZSK LIFWDL YSEZCW ZWRZTW USMICP GBZIXQ AIRHDL GHHJZX 
XIRZLG ZQDNVP KZDTJW STCYIT KHAVXW UOASXU IXSIGS GVMFRP 
YBQRXU YMAFIX DUNTZP YYEWJK KZEETV SICYES GYSXSU LQHLDK 
ZHCIDL GSHFVP XTAHLX GOXLIW LSMFDP OOHEZM UYRQDK HBGVVQ 
UVTBED OOXII

As usual, we present the first forty-eight letters of the plaintext as the crib, above the corresponding 
ciphertext:

NOONEW OULDHA VEBELI EVEDIN THELAS TYEARS OFTHEN INETEE
ZITWYE DPNSSQ MTJIPK GADSTM KZDQZP KDDFIP DRXAYM XJDHYW

Here is what we can glean about the keys:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   ....G...X....ZD....K.M....  │
k2 │   ....TR.Z.....JI.....PA..D.   │
k3 │   .J..D......N..T....X......   │
k4 │   F..SI..A...Q.W.....H......  │
k5 │   Z...Y..ST..P.....I........   │
k6 │   Q...W...K....M....P...E...   │

Immediately we can add the identity element to our budding tableau. It is clear that it is not one of the 
existing permutations, since none of them map a plaintext letter to itself. Furthermore, notice that in k6  

E→W and W→E. The presence of a 2-cycle indicates that k6 has order 2 and can be factored into 

thirteen 2-cycles. This allows us to add some missing letters; for example, S→P so we can add P→S.

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │ order

        ───────┼────────────────────────────────────── ┼─────
k1 │   ....G...X....ZD....K.M....  │
k2 │   ....TR.Z.....JI.....PA..D.   │
k3 │   .J..D......N..T....X......   │
k4 │   F..SI..A...Q.W.....H......  │



k5 │   Z...Y..ST..P.....I........   │
k6 │   Q...W...K.I.NM.SA.P...E...   │     2

        ───────┼────────────────────────────────────── ┼─────
k7 │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │     1

Now, let us add the inverses of the permutations that we have. It is not necessary to take inverses of k6 
or k7, as they are their own inverses.

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │ order

   ─────────┼────────────────────────────────────── ┼─────
k1 │   ....G...X....ZD....K.M....  │
k2 │   ....TR.Z.....JI.....PA..D.   │
k3 │   .J..D......N..T....X......   │
k4 │   F..SI..A...Q.W.....H......  │
k5 │   Z...Y..ST..P.....I........   │
k6 │   Q...W...K.I.NM.SA.P...E...   │     2

   ─────────┼────────────────────────────────────── ┼─────
k7 │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │     1
k8   = k1

−1     │   ...O..E...T.V..........I.N  │
k9   = k2

−1     │   V..Y....ON.....U.F.E.....H  │
k10 = k3

−1     │   ...E.....B...L.....O...T..  │
k11 = k4

−1     │   H....A.TE.......L.D...N...  │
k12 = k5

−1     │   ........R......L..HI....EA  │

Remember that the Q3 group is commutative. Since there are missing letters in our permutations, we 
may gain different knowledge from composing two of them in one order that in the other. For k1 and k2 
we find that

k1 ◦ k2  =  ....K.........X...........

but

k2 ◦ k1  =  ..........................

which is unfortunate. For k1 and k4 we obtain

k1 ◦ k4  =  ....X.....................
k4 ◦ k1  =  ..............S...........

These must be the same permutation, so we can say that

k1 ◦ k4  =  ....X.........S...........

As we add compositions of permutations, we will take them in both orders and merge the results. So we
proceed. Since k1 ◦ k1 yields nothing new, we do not need to add it to the table.



   ─────────┬────────────────────────────────────── ┬─────
k13 = k1 ◦ k2    │   ....K.........X...........  │
k14 = k1 ◦ k3    │   ...........Z..K...........  │
k15 = k1 ◦ k4    │   ....X.........S...........  │
k16 = k1 ◦ k5    │   ........K........X........  │

Let us pause for a moment to notice that k16 shares a K under the plaintext letter I with k6. Therefore, 
they are the same permutation. We can then merge the X from k17 into k6 and add an R to complete that 
2-cycle.

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │ order

   ─────────┼────────────────────────────────────── ┼─────
k6 │   Q...W...K.I.NM.SAXP...ER..   │     2

   ─────────┴────────────────────────────────────── ┴─────

We continue:

   ───────── ┬────────────────────────────────────── ┬─────
k17 = k1 ◦ k6   │   ........R.X.Z......I.NG...  │

Now, k17 shares two letters with k12, so we merge its letters into k12.

   ───────── ┬────────────────────────────────────── ┬─────
k12                         │   ........R.X.Z..L..HI.NG.EA  │

This process continues for a very long time, and should be automated. We take compositions and 
inverses of permutations that are already in the table. Whenever possible, we merge rows. The result 
for this example is a complete reconstruction of the tableau (we got lucky that forty-eight was enough):

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

                           ├────────────────────────────────────── ┤
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │
│   BMHOJGEPUQTSVCWXZKRFDLYIAN  │
│   CHRJBYAKGMOIPSQTVDUWEXZFNL  │
│   DOJPKSRQCTVAWEXZFMBLHYINUG  │
│   EJBKDIUMSOPNQATVWHCXRZFLGY  │
│   FGYSIPXAVUCQEWRBDNZHLJKMTO  │
│   GEARUXIBLDHZJYKMOCNPSQTVFW  │
│   HPKQMABTEVWUXRZFLODYJINGCS  │
│   IUGCSVLEZRBWDFHJKAYMNOPQXT  │
│   JQMTOUDVRWXCZBFLYPHIKNGSEA  │
│   KTOVPCHWBXZEFDLYIQJNMGSARU  │
│   LSIANQZUWCETRXBDHGFJYKMOVP  │
│   MVPWQEJXDZFRLHYINTKGOSAUBC  │



│   NCSEAWYRFBDXHLJKMUIOGPQTZV  │
│   OWQXTRKZHFLBYJINGVMSPAUCDE  │
│   PXTZVBMFJLYDIKNGSWOAQUCEHR  │
│   QZVFWDOLKYIHNMGSAXPUTCERJB  │
│   RKDMHNCOAPQGTUVWXJEZBFLYSI  │
│   SRUBCZNDYHJFKIMOPEGQATVWLX  │
│   TFWLXHPYMINJGOSAUZQCVERBKD  │
│   UDEHRLSJNKMYOGPQTBAVCWXZIF  │
│   VLXYZJQIONGKSPAUCFTEWRBDMH  │
│   WYZIFKTNPGSMAQUCELVRXBDHOJ  │
│   XIFNLMVGQSAOUTCERYWBZDHJPK  │
│   YANUGTFCXERVBZDHJSLKIMOPWQ  │
│   ZNLGYOWSTAUPCVERBIXDFHJKQM  │

The fully reconstructed key table is

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   YANUGTFCXERVBZDHJSLKIMOPWQ  │
k2 │   OWQXTRKZHFLBYJINGVMSPAUCDE   │
k3 │   EJBKDIUMSOPNQATVWHCXRZFLGY   │
k4 │   FGYSIPXAVUCQEWRBDNZHLJKMTO  │
k5 │   ZNLGYOWSTAUPCVERBIXDFHJKQM   │
k6 │   QZVFWDOLKYIHNMGSAXPUTCERJB   │

Had we only used the first forty-three letters as our crib, we would only have been able to reconstruct 
this much of the key table:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   Y..UGTF.X.RV.ZDH.SLKIMOPWQ  │
k2 │   O..XTRKZH.L.Y.INGVMSPAU.DE   │
k3 │   EJ.KDIUMS.PNQATVWH.XRZFLGY   │
k4 │   F..SIPXAV..QEWR.DNZHL.KMTO  │
k5 │   Z..GYOWST.UP.VER.IXDFH.KQM   │
k6 │   Q..FWDOLK.IHNMGSAXPUT.ER..   │

While not perfect, it is still a very good result.

Key amplification in quagmire 4

It is possible to expand our knowledge of the permutations in the key table by looking at differences 
between rows, remembering that in the original table (where kP appears in place of the plaintext 



alphabet) for the cipher contains rows that are rotated versions of kC [21]. In the following, we look at 
how the group structure of the Q3 ciphers that are related to the Q4 can be used.

Recall that if we take two elements from Q 4 [kP, kC], say k1 and k2, we obtain an element of Q 3 

[kP] by taking the composition k1
−1 ◦ k2, and an element of Q 3 [kC] by taking the composition k2 ◦ k1

−1. 
Our strategy for key amplification in the Q4 is to take such compositions to find elements of the two 
associated Q3 tableaux, and to reconstruct those two tableaux as much as possible with the tools of the 
previous section of this article. Knowledge will pass from one Q3 to the other via the Q4 tableau. If we 
automate the process, then we focus on one Q3, use what we learn to fill in missing letters in the Q4, 
then use that new knowledge to improve the other Q3; focus will move across the three tableaux until it
is no longer possible to glean any more missing letters. Because the quagmire 4 keys are a shift key and
two alphabetic permutations, we require more information to reconstruct the tableau than we needed 
for the other quagmires.

As expected, we now work an example. Here we have a ciphertext encrypted with a quagmire 4 
with period six:

KBZFPH APGKFR LCRBQM UMOKUN FIOAYQ FVOGAQ ARAMPN JXOWPW 
KKVTPN FPQCDS OKAMUQ IBQAEH OZRBUN MNKWSS ULXBPN BVKFEV 
BBJBQK WVTFDW BUTLPN RCJLAW OKODDS OXYGVQ OXUCPI OZYRAI 
OUKIFM NBEFDS OKKIGW KFMIUW XKVBGQ UUCBXR WBMWDS UWQXYX 
JBMISE KAODVQ FIOCKW VCJTAU FWBEXW XSBKXI QLTBEF UEVGTQ 
OUYRXI OZBGAX ANGCYQ OTKFKM FIKQUV VBJTHF UTTLFI NAQHDM 
KWJBDS UKQGVQ JCBWSX USAHAW NKVGDQ ISQQYN XTMADM CUHEVR 
XEZUHD ISABA

Since we need more material, let us try the first eleven groups of letters of the plaintext as crib:

NOONEW OULDHA VEBELI EVEDIN THELAS TYEARS OFTHEN INETEE NTHCEN TURYTH ATTHIS
KBZFPH APGKFR LCRBQM UMOKUN FIOAYQ FVOGAQ ARAMPN JXOWPW KKVTPN FPQCDS OKAMUQ

From this crib we know this much of the key table:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   O...U...J....KA....F.L....  │
k2 │   ....CR.I.....XB....KPM..V.   │
k3 │   .R..O..V...G..Z..Q.A......   │
k4 │   G.TKB..M...A.F.....W....C.  │
k5 │   Y...P..FU..Q.....A.D......   │
k6 │   R...W..SM....N....Q...H...   │

So that we can make a comparison later, we decrypt the remainder of the ciphertext with only the parts 
of the keys found from the crib directly:

NOONEWOULDHAVEBELIEVEDINTHELASTYEARSOFTHENINETEENTHCENTURYT
HATTHIS.ORL.WA.BEIN...T.HE..EEN.Y.N...O.EL..Y.NTE....EN.E..



REATE.THAN.A.SAN.YE.A...R.A...HI.O.NTHAT...EN...IE.THE.SE..
E.A.O.TTHE.R.A.IO....N.E..STHEY.E.E.CR.T....E...D.....E..E.
HA.SA.....A..AR.O.LYASA..N.ITH..I..O.C..E...H...R.TIN..ETHE
TRA.SIE.T..E.T.RE.THATS..R.AN...LTI.....A..O.....TER

Using all combinations of ki
−1 ◦ kj using the partial permutations in the key table, we get this partial 

tableau for Q 3 [kP]:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

                           ├────────────────────────────────────── ┤
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │
│   B.................R.......  │
│   E.............T...........  │
│   F.......V.................  │
│   L..........T..............  │
│   .A...............S........  │
│   .F.....Y..................  │
│   ...N.......O.T............  │
│   ...TO..V................E.  │
│   ....A..............O......  │
│   ....I.........R....H......  │
│   ....T...H.................  │
│   ....U.....................  │
│   ....Y.........E....D.H....  │
│   .....A...............I....  │
│   .....B..................H.  │
│   .......I...........E......  │
│   .......N.........L.R......  │
│   .......TE........O........  │
│   ...........A.......L......  │
│   ...........R.H...T........  │
│   ...........S..............  │
│   .............DL....N......  │
│   ..................L.......  │
│   ....................E.....  │

After undergoing the procedure from the previous section, we can add some letters and rows to this 
tableau. Some of the rows are duplicates; we simply do not know yet which can be merged.

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

                           ├────────────────────────────────────── ┤
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │
│   B.................R.......  │
│   E...D......N..T..H........  │



│   F.......V............... T.  │
│   L...N......T..............  │
│   .A...............S........  │
│   .F.....Y.............E....  │
│   ...NL......O.T............  │
│   ...TO..VR.....F.........E.  │
│   ...EA..R.....L.....O......  │
│   ....I.........R..N.H......  │
│   O...T...H........V......D.  │
│   ....U.....................  │
│   ....YO........E..I.D.H....  │
│   .....A.............Y.I....  │
│   ....VB..................H.  │
│   ...Y...I......A....E.R....  │
│   ...I...N.........L.R......  │
│   .......TE....R...O........  │
│   ...........A.E.....L......  │
│   ........D..R.H...T........  │
│   ...........S..............  │
│   ...........E.DL....N......  │
│   ..................L.......  │
│   ....................E.....  │
│   I....V........H...........   │
│   R...H.........V...........   │
│   SR........................   │
│   Y....T........D...........   │
│   .H...Y....................   │
│   .V...E........Y...........   │
│   ...HR...N..........V....I.   │
│   ...L.........O............   │
│   ...O...............F....A.   │
│   ...R....L.................   │
│   ....F................B..O.   │
│   .....L.....Y..............   │
│   .....R........I...........   │
│   .......B................F.   │
│   .......DY....I...E...T....   │
│   .......E.........A...O....   │
│   .......OA............F....   │
│   ........O........F........   │
│   ........T....V............   │
│   ...........D..N...........   │
│   ...........F............L.   │
│   ...........I.....D........   │
│   .................BA.......   │



│   .................Y...D....   │
│   ...................I.N....   │

We bring them back to the Q4 by composing each of these on the left with k1, ..., k6. After we merge the
results into the Q4 key table we find some new letters:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   O..XU...J..B.KA..V.F.L....  │
k2 │   ....CR.I...U.XB....KPM..V.  │
k3 │   .R.UO..V...G.BZ..Q.A.C....  │
k4 │   G.TKB..M...A.FR..D.W....C.  │
k5 │   Y...P..FU..Q.V...A.D......  │
k6 │   R...W..SM....N....Q...H. K.  │

We then repeat the process for Q 3 [kC], by using what we now know about the Q4 key table. And then 

back to the Q 3 [kP]. After a very long and tedious process, we finally reach the point at which no new 
knowledge can be extracted. At this point the key table looks like this:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   OW.XU...J..B.KA..V.FQL..D.  │
k2 │   .F.LCR.IW..U.XB...ZKPM..V.   │
k3 │   .R.UO..V...G.BZ..Q.A.C....   │
k4 │   GJTKBP.M...A.FR..D.W.X..C.  │
k5 │   YC..PO.FU..Q.V...A.DZJ..R.   │
k6 │   R...WD.SM..J.N...XQIU.H.K.   │

We see definite improvement, from about 30% knowledge of the key table to about 50%. For 
comparison, we can decrypt the full text with this new knowledge:

NOONEWOULDHAVEBELIEVEDINTHELASTYEARSOFTHENINETEENTHCENTURYT
HATTHIS.ORL.WASBEIN...T.HED.EENLY.N..LO.ELYBY.NTELL..EN.E..
REATERTHAN.ANSANDYETAS.ORTAL..HI.O.NTHAT...ENB..IEDTHE.SELV
E.ABO.TTHEIRVARIO....N.ERNSTHEY.ERE.CRUTIN..ED.ND.TUD.E..E.
HA.SAL.O.TASNARRO.LYASA..N.ITH..I.RO.C..E...HT..R.TINI.ETHE
TRANSIENT.RE.T.RE.THATS..R.AND..LTI.L..NAD.O..F..TER

With more crib material, we can do better. With ninety letters of crib, we get

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   OWRXUTMYJ.SB.KA..VNFQLI.D.  │
k2 │   SFALCRYIW.HU.XB..EZKPMN.V.   │



k3 │   KRNUOIDVT.XG.BZ..QJAMCE.H.   │
k4 │   GJTKBPLME.OA.FR..DIWHXY.C.  │
k5 │   YCSEPOWFU.IQ.VH..AXDZJK.R.   │
k6 │   RYVZWDOSM.AJ.NE..XQIUGH.K.   │

And we can see how the resulting decryption is improved:

NOONEWOULDHAVEBELIEVEDINTHELASTYEARSOFTHENINETEENTHCENTURYT
HATTHISWORLDWASBEINGWATCHEDKEENLYANDCLOSELYBYINTELLIGENCESG
REATERTHAN.ANSANDYETAS.ORTALASHISOWNTHATAS.ENBUSIEDTHE.SELV
ESABOUTTHEIRVARIOUSCONCERNSTHEYWERESCRUTINISEDANDSTUDIED.ER
HA.SAL.OSTASNARROWLYASA.ANWITHA.ICROSCO.E.IGHTSCRUTINISETHE
TRANSIENTCREATURESTHATSWAR.AND.ULTI.LYINADRO.OFWATER

Application: identification of the cipher

For this and the next application, we assume that we have (nearly) completely reconstructed the key 
table, or at least two distinct permutations in it (call them k1 and k2). Here we discuss clues to the 
identification of the cipher; later we discuss keyword recovery.

If the column property does not hold, i.e., there is a column in the key table in which a letter 
appears more than once but in distinct permutations, then the cipher is not in the quagmire family. 
While otherwise we are not guaranteed to have a quagmire, we will assume that we have for the 
following tests.

If the cipher is one of Vigenère, Beaufort, or Porta/Bellaso, then we should immediately 
recognize the permutations as belonging to the appropriate tableau, since those tableaux are fixed. For 
example, all permutations of the Vigenère are rotations.

All permutations of a quagmire 1 have the form Rn ◦ k−1 for base key k. Therefore, we can test 
for Q1 by taking k1 ◦ k2

−1 and looking for a rotation:

k1 ◦ k2
−1  =  (Rm ◦ k−1) ◦ (Rn ◦ k−1) −1 =  Rm ◦ k−1 ◦ k ◦ R−n  =  Rm ◦ e ◦ R−n  =  Rm ◦ R−n  =  Rm−n

The permutations of a quagmire 2 are of the form k ◦ Rn for base key k. So in this case, we can 
test for Q2 by taking k1

−1 ◦ k2 and looking for a rotation:

k1
−1 ◦ k2  =  (k ◦ Rm)−1 ◦ (k ◦ Rn)  =  R−m ◦ k−1 ◦ k ◦ Rn  =  R−m ◦ e ◦ Rn  =  R−m ◦ Rn  =  Rn−m

If we have not yet identified the cipher by any of the above tests, then we find the order of the 
permutations. If they are both 1, 2, 13, or 26 (not necessarily the same), then we are confident that we 
have a quagmire 3. We can be even more confident if we find that one of them is in the orbit of the 
other; in other words, if we can find an n such that

k1
n  =  k2



Be aware that in a cyclic group like Q3, such an n can be found only if the order of k1 is larger or equal 
to the order of k2.

If all of the above tests have failed, then we look at k1 ◦ k2
−1 and k1

−1 ◦ k2. If they both pass the 
Q3 tests, then the cipher is most likely quagmire 4.

Application: keyword recovery

The keys of the polyalphabetic substitution ciphers in the Vigenère-quagmire family are typically 
specified by a set of keywords. The keyword that we call a “shift key” specifies the rows of the tableau 
that are used to encipher the text. This is the only key needed for the Vigenère and Beaufort ciphers. 
For the quagmires, we also need one or two additional keywords, from which the base keys are formed.
Our favorite example uses the keyword  FLYINGSAUCER, to form this base key:

k  =  FLYINGSAUCERBDHJKMOPQTVWXZ

In the next few sections, we explain how to recover the keywords from the (completely filled) 
key table. We begin with the easier ciphers and work our way to the quagmire 3 and 4.

Keyword recovery in the Vigenère cipher

The Vigenère is a trivially easy cipher for keyword recovery, once the key table is known. The shift 
keyword appears in the leftmost column of the table. From our earlier example:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │
k2 │   LMNOPQRSTUVWXYZABCDEFGHIJK  │
k3 │   IJKLMNOPQRSTUVWXYZABCDEFGH   │
k4 │   EFGHIJKLMNOPQRSTUVWXYZABCD   │
k5 │   NOPQRSTUVWXYZABCDEFGHIJKLM   │

Keyword recovery in quagmire 2

With a quagmire 2 key table, finding the keywords is also easy. The shift key appears in the first 
column, and since every permutation is a rotation of the base key, we can see the keyword immediately.
For example, here is the key table from our example above regarding key amplification:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   TVWXZFLYINGSAUCERBDHJKMOPQ  │
k2 │   RBDHJKMOPQTVWXZFLYINGSAUCE   │
k3 │   INGSAUCERBDHJKMOPQTVWXZFLY   │



k4 │   PQTVWXZFLYINGSAUCERBDHJKMO  │
k5 │   OPQTVWXZFLYINGSAUCERBDHJKM   │
k6 │   DHJKMOPQTVWXZFLYINGSAUCERB   │

Keyword recovery in quagmire 1

Recall that the permutations of a Q1 cipher have the form Rn ◦ k−1, and that if we invert them we have 
permutations of the form k ◦ R−n. We will therefore find the shift key in the first column of the key 
table, but the alphabetic keyword in the inverse permutations.

Here is the key table from our example for key amplification. The shift key is in the first 
column:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   TYVZWMRAPBCNDQEFGXSHUIJKOL  │
k2 │   RWTXUKPYNZALBOCDEVQFSGHIMJ   │
k3 │   INKOLBGPEQRCSFTUVMHWJXYZDA   │
k4 │   PURVSINWLXYJZMABCTODQEFGKH  │
k5 │   OTQURHMVKWXIYLZABSNCPDEFJG   │
k6 │   DIFJGWBKZLMXNAOPQHCRESTUYV   │

Here are the inverses, from which we readily see the other keyword:

             ─────┬────────────────────────────────────── ┐
k1

−1 │   HJKMOPQTVWXZFLYINGSAUCERBD  │
k2

−1 │   KMOPQTVWXZFLYINGSAUCERBDHJ   │
k3

−1 │   ZFLYINGSAUCERBDHJKMOPQTVWX  │
k4

−1 │   OPQTVWXZFLYINGSAUCERBDHJKM  │
k5

−1 │   PQTVWXZFLYINGSAUCERBDHJKMO   │
k6

−1 │   NGSAUCERBDHJKMOPQTVWXZFLYI   │

Keyword recovery in quagmire 3 with an element of order 26

Before we get to the complicated parts, let us first consider the shift key. The shift key is found in a 
column of the key table, but not necessarily the first. The plaintext letter under which it appears is the 
first letter of the base key. Looking at the key table from our key-amplification example, we see the 
shift key  TRIPOD  under the letter F:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │ order

             ─────┼────────────────────────────────────── ┼─────
  k1 │   YANUGTFCXERVBZDHJSLKIMOPWQ  │   26
  k2 │   OWQXTRKZHFLBYJINGVMSPAUCDE  │   26



  k3 │   EJBKDIUMSOPNQATVWHCXRZFLGY  │   26
  k4 │   FGYSIPXAVUCQEWRBDNZHLJKMTO  │   26
  k5 │   ZNLGYOWSTAUPCVERBIXDFHJKQM  │   13
  k6 │   QZVFWDOLKYIHNMGSAXPUTCERJB  │     2

Automating the search for the shift key is possible if that key is a recognizably English word or set of 
words, and we have the ability to discriminate good from bad text. Knowing with which letter to begin 
the base key is useful, as we will see below, where we do examples in which we do not know it a priori.

Gains [1] has a method for finding the base key from an order-26 element of the Q3 tableau. 
She first rewrites the permutation as a 26-cycle. If the keyword is not apparent, she then takes every 
third letter of the cycle, or every fifth letter, etc., but not every thirteenth. These choices should look 
familiar to us, as they avoid the factors of 26 = 2∙13. Let us see the process in action with k1 from our 
key table. Written as a cycle, it is

k1  =  (AYWODUIXPHCNZQJEGFTKRSLVMB)

We know from above that the base key begins with F, so we can rewrite the cycle beginning with that 
letter:

k1  =  (FTKRSLVMBAYWODUIXPHCNZQJEG)

Writing every nth letter of this cycle gives us these possibilities:

      n │ 
             ─────┼────────────────────────────────────── ┐

      1 │   FTKRSLVMBAYWODUIXPHCNZQJEG   │
      3 │   FRVAOIHZETSMYDXCQGKLBWUPNJ   │
      5 │   FLYINGSAUCERBDHJKMOPQTVWXZ  │
      7 │   FMUZKAXJSWHGVDNTBIQRYPELOC   │
      9 │   FAHTYCKWNROZSDQLUJVIEMXGBP   │
     11 │   FWQMHRUGYZVPKDEANLXTOJBCSI   │
     15 │   FISCBJOTXLNAEDKPVZYGURHMQW   │
     17 │   FPBGXMEIVJULQDSZORNWKCYTHA   │
     19 │   FCOLEPYRQIBTNDVGHWSJXAKZUM   │
     21 │   FZXWVTQPOMKJHDBRECUASGNIYL   │
     23 │   FJNPUWBLKGQCXDYMSTEZHIOAVR   │
     25 │   FGEJQZNCHPXIUDOWYABMVLSRKT   │

And we have found the base key when n = 5.

To see why this method works, we look back on the original way in which the Q3 cipher is 
implemented. The plaintext alphabet across the top of the table is deranged according to the base key, 
and each row in the table is a rotated version of the base key. For our example we only write three of 
the rows here:

│                                plaintext letters                        │



│   FLYINGSAUCERBDHJKMOPQTVWXZ     │
             ─────┼────────────────────────────────────── ┤

k ◦ R1 │   LYINGSAUCERBDHJKMOPQTVWXZF   │
k ◦ R3 │   INGSAUCERBDHJKMOPQTVWXZFLY   │
k ◦ R21 │   TVWXZFLYINGSAUCERBDHJKMOPQ   │

Enciphering with the first row takes F→L, L→Y, Y→I, etc. This row gives us the cycle

(FLYINGSAUCERBDHJKMOPQTVWXZ)

The third row takes F→I, I→S, S→C, etc., giving us this cycle, which runs across every third letter
in the base key:

(FISCBJOTXLNAEDKPVZYGURHMQW)

The third row runs across every twenty-first letter:

(FTKRSLVMBAYWODUIXPHCNZQJEG)

This is the cycle for k1 from our key table. Taking every fifth letter of it gives the base key, since 21−1 = 
5 modulo 26. The reason that we have to take every nth letter, for the invertible values of n, is that we 

have chosen to work with an order-26 member of the set Q 3 [k], but we do not know which one. Taking

every nth letter is the equivalent of applying one of the automorphisms of (V, ◦), which as we recall, 
were the permutations of the multiplication cipher {Mm}, which take R1 to Rm, so there is a 

corresponding automorphism of (Q 3 [k], ◦) that takes k ◦ R1 ◦ k−1 to k ◦ Rm ◦ k−1.

Now let us investigate a more group-theoretic way to find the base key from an order-26 
permutation. The order-26 permutation (call it q[26]) is of the form k ◦ Rn ◦ k−1, where n is one of the 
invertible numbers modulo 26, and we do not yet know the base key k or the value of n. Because of the 
automorphisms mentioned above, we can assume that n = 1 provisionally, and make the correction 
later. So what we need to do is find a transformation k′ that maps R1 to our order-26 permutation:

R1 → k′ ◦ R1 ◦ k′−1  =  q[26]  =  k ◦ Rn ◦ k−1

The base key k and provisional key k′ are related by one of the automorphisms:

k ◦ Rn ◦ k−1  =  k ◦ (Mn ◦ R1 ◦ Mn
−1) ◦ k−1

                      =  (k ◦ Mn) ◦ R1 ◦ (Mn
−1 ◦ k−1)

                      =  (k ◦ Mn) ◦ R1 ◦ (k ◦ Mn
−1)−1

so that

k′  =  k ◦ Mn

Thus, if we can find a provisional base key under the assumption that our order-26 permutation was 
built from R1, then we can find the true base key among the twelve possibilities



k  =  k′ ◦ Mn
−1

where n is 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 25.

The question is then how to find the provisional base key. We state without proving that any 
permutation can be found as a product of exchanges. An exchange is a permutation that simply swaps 
two items, i.e., a 2-cycle. For example, the exchange that swaps the first two letters is

E0,1  =  BACDEFGHIJKLMNOPQRSTUVWXYZ  =  (AB)

Whereas before we saw that the order-2 permutations were products of disjoint 2-cycles, here the 2-
cycles will be overlapping when we form the product. Since any permutation is a product of exchanges,
we can get from the identity permutation to any other permutation by a series of exchanges. Therefore, 
we can get from any permutation to any other by a series of exchanges; one possible series takes us 
from one to the identity and then to the other. With alphabetic permutations, we can get from one to 
another with twenty-five or fewer steps. Our strategy then is to find a series of exchanges that takes q[26]

to R1. The product of those exchanges is k′. To be clear, every time we act with an exchange, we must 
do so from the left, and also apply its inverse on the right. Since exchanges are self-reciprocal, the 
inverse of an exchange is itself. What we are saying is

q[26]  =  Eij ◦ ... ◦ Ecd ◦ Eab ◦ R1 ◦ Eab ◦ Ecd ◦ ... ◦ Eij

and

k′  =  Eij ◦ ... ◦ Ecd ◦ Eab

Because of the application of the exchanges to both sides, each will move more that two letters. 
Therefore it is practical to start at the beginning of the permutation and work our way to the end. In 
practice, it is easier to go from q[26] to R1 and then invert the order of the exchanges. The example below
will make this more clear. Also, a mathematician may prefer to diagonalize some matrices as an 
alternative method to find k′.

Return to our example permutation from the Q3 key table:

q[26]  =   YANUGTFCXERVBZDHJSLKIMOPWQ

Here is a series of exchanges that transforms it to R1:

q[26]  = YANUGTFCXERVBZDHJSLKIMOPWQ
→ BWNUGTFCXERVYZDHJSLKIMOPAQ E1,24

→ BCOUGTFWXERVYZDHJSLKIMNPAQ E2,22

→ BCDOGTFWXERVYZUHJSLKIMNPAQ E3,14

→ BCDEUTFWXORVYZGHJSLKIMNPAQ E4,14

→ BCDEFIUWXORVYZGHJSLKTMNPAQ E5,20

→ BCDEFGXWUORVYZIHJSLKTMNPAQ E6,8

→ BCDEFGHPUORVYZIXJSLKTMNWAQ E7,23

→ BCDEFGHIXORVYZPUJSLKTMNWAQ E8,15



→ BCDEFGHIJWRVYZPUXSLKTMNOAQ E9,23

→ BCDEFGHIJKNVYZPUXSLWTMROAQ E10,22

→ BCDEFGHIJKLZYVPUXSNWTMROAQ E11,13

→ BCDEFGHIJKLMQVPUXSNWTZROAY E12,25

→ BCDEFGHIJKLMNXPUVSQWTZROAY E13,16

→ BCDEFGHIJKLMNOXUVSQWTZRPAY E14,23

→ BCDEFGHIJKLMNOPXVSQWTZRUAY E15,23

→ BCDEFGHIJKLMNOPQUSXWTZRVAY E16,23

→ BCDEFGHIJKLMNOPQRTXWSZUVAY E17,20

→ BCDEFGHIJKLMNOPQRSWXTZUVAY E18,19

→ BCDEFGHIJKLMNOPQRSTUWZXVAY E19,22

→ BCDEFGHIJKLMNOPQRSTUVXZWAY E21,22

→ BCDEFGHIJKLMNOPQRSTUVWXZAY E22,23

→ BCDEFGHIJKLMNOPQRSTUVWXYZA  =  R1 E24,25

The provisional base key is (yes, this is the inverted order)

k′  =  E1,24 ◦ E2,22 ◦ E3,14 ◦ ... ◦ E21,22 ◦ E22,23  =  AYWODUIXPHCNZQJEGFTKRSLVMB

The possibilities from which we choose the true base key are

k′ ◦ M1
−1   =  AYWODUIXPHCNZQJEGFTKRSLVMB

k′ ◦ M3
−1   =  AHTYCKWNROZSDQLUJVIEMXGBPF

k′ ◦ M5
−1   =  ASGNIYLFZXWVTQPOMKJHDBRECU

k′ ◦ M7
−1   =  AEDKPVZYGURHMQWFISCBJOTXLN

k′ ◦ M9
−1   =  AOIHZETSMYDXCQGKLBWUPNJFRV

k′ ◦ M11
−1  =  AKZUMFCOLEPYRQIBTNDVGHWSJX

k′ ◦ M15
−1  =  AXJSWHGVDNTBIQRYPELOCFMUZK

k′ ◦ M17
−1  =  AVRFJNPUWBLKGQCXDYMSTEZHIO

k′ ◦ M19
−1  =  ANLXTOJBCSIFWQMHRUGYZVPKDE

k′ ◦ M21
−1  =  AUCERBDHJKMOPQTVWXZFLYINGS

k′ ◦ M23
−1  =  AFPBGXMEIVJULQDSZORNWKCYTH

k′ ◦ M25
−1  =  ABMVLSRKTFGEJQZNCHPXIUDOWY

At this point, we have to pick out the best one; this can be automated if we discriminate orderly 
permutations with recognizable words from the others. The best seems to be

k″  =  k′ ◦ M21
−1  =  AUCERBDHJKMOPQTVWXZFLYINGS

We are almost finished, but first we must mention that a rotation of the base key does not change the set

of permutations Q 3 [k], but it will put them into different rows of the tableau. The resulting cipher is 
equivalent, although the shift key must be adjusted. We can see that the set of permutations remains the
same by considering

k → k ◦ Rm



Then

qn  =  k ◦ Rn ◦ k−1 → (k ◦ Rm) ◦ Rn ◦ (k ◦ Rm)−1

                                  =  k ◦ Rm ◦ Rn ◦ R−m ◦ k−1

                        =  k ◦ Rn+m−m ◦ k−1

                            =  k ◦ Rn ◦ k−1  =  qn

We can harmlessly rotate k″ to obtain k, which begins with F, as we know from above that it should. 
We now have it and the keyword:

k  =  FLYINGSAUCERBDHJKMOPQTVWXZ

Keyword recovery in quagmire 3 with an element of order 13

If we start with an order-13 permutation and want to recover the keyword, your first thought might be 
that we can do so in a way similar to the previous section. However, there are complications.

Gaines [1] explains her method of keyword recovery from an order-13 member of the key table.
The permutation is factored into two 13-cycles. The letters of these cycles are interleaved; there are 
thirteen possibilities here. Then letters are read off every nth one, as we did for the order-26 case; there 
are twelve possibilities here. The total is 13∙12 = 156 possibilities from which we must pick out the 
keyword. As an example, take k5 from our Q3 key table. We can call it q[13] if we like.

k5  =  q[13]  =  ZNLGYOWSTAUPCVERBIXDFHJKQM

Factor it into cycles:

q[13]  =  (AZMCLPRITDGWJ) (BNVHSXKUFOEYQ)

The twelve interleavings are

ABZNMVCHLSPXRKIUTFDOGEWYJQ
ANZVMHCSLXPKRUIFTODEGYWQJB
AVZHMSCXLKPURFIOTEDYGQWBJN
AHZSMXCKLUPFROIETYDQGBWNJV
ASZXMKCULFPOREIYTQDBGNWVJH
AXZKMUCFLOPERYIQTBDNGVWHJS
AKZUMFCOLEPYRQIBTNDVGHWSJX
AUZFMOCELYPQRBINTVDHGSWXJK
AFZOMECYLQPBRNIVTHDSGXWKJU
AOZEMYCQLBPNRVIHTSDXGKWUJF
AEZYMQCBLNPVRHISTXDKGUWFJO
AYZQMBCNLVPHRSIXTKDUGFWOJE
AQZBMNCVLHPSRXIKTUDFGOWEJY



With hindsight we say that the seventh one is the best choice. Taking every nth letter from the seventh 
interleaving gives these twelve possibilities. The keyword is apparent for n = 3.

      n │ 
             ─────┼────────────────────────────────────── ┐

      1 │   AKZUMFCOLEPYRQIBTNDVGHWSJX   │
      3 │   AUCERBDHJKMOPQTVWXZFLYINGS  │
      5 │   AFPBGXMEIVJULQDSZORNWKCYTH   │
      7 │   AOIHZETSMYDXCQGKLBWUPNJFRV   │
      9 │   AEDKPVZYGURHMQWFISCBJOTXLN   │
     11 │   AYWODUIXPHCNZQJEGFTKRSLVMB   │
     15 │   ABMVLSRKTFGEJQZNCHPXIUDOWY   │
     17 │   ANLXTOJBCSIFWQMHRUGYZVPKDE   │
     19 │   AVRFJNPUWBLKGQCXDYMSTEZHIO   │
     21 │   AHTYCKWNROZSDQLUJVIEMXGBPF   │
     23 │   ASGNIYLFZXWVTQPOMKJHDBRECU   │
     25 │   AXJSWHGVDNTBIQRYPELOCFMUZK   │

Now we shall look at the problem through the group theorist’s lenses. In parallel to the previous
section, we will want to find a transformation between q[13] of the Q3 tableau and R2 of the Vigenère 
tableau. But then the complications come in. The order-13 members, together with the order-1 member,
of either of these groups form a subgroup that is isomorphic to (ℤ13, + mod 13). This means that no 
matter how we combine them, group closure guarantees that we cannot obtain a permutation with order
26.

As an aside, we mention that there is another subgroup of (V, ◦), and hence also of (Q 3 [k], ◦). 

Its set consists of the order-1 and order-2 elements. In (V, ◦) that subset is ({R0, R13}, ◦). It is isomorphic

to (ℤ2, + mod 2). There are 12!∙212 quagmire 3 groups that overlap this subgroup of (V, ◦), and for this 
reason, keyword recovery from an order-2 permutation alone is not feasible.

We can solve our problem with q[13] if we can find something like a “square root” of R2, i.e., 
some permutation X such that

X ◦ X  =  R2

The difficulty is that there are thirteen of them. Each of them has order 26 and generates a (Q 3 [X], ◦) 

that contains the same subgroup ({R0, R2, R4, ..., R24}, ◦) of (V, ◦). We will now see how to construct 
them. Consider these thirteen permutations:

D0    =  ABCDEFGHIJKLMNOPQRSTUVWXYZ  =  e
D1    =  ADCFEHGJILKNMPORQTSVUXWZYB
D2    =  AFCHEJGLINKPMROTQVSXUZWBYD
D3    =  AHCJELGNIPKRMTOVQXSZUBWDYF
D4    =  AJCLENGPIRKTMVOXQZSBUDWFYH
D5    =  ALCNEPGRITKVMXOZQBSDUFWHYJ



D6    =  ANCPERGTIVKXMZOBQDSFUHWJYL
D7    =  APCRETGVIXKZMBODQFSHUJWLYN  =  D6

−1

D8    =  ARCTEVGXIZKBMDOFQHSJULWNYP  =  D5
−1

D9    =  ATCVEXGZIBKDMFOHQJSLUNWPYR  =  D4
−1

D10  =  AVCXEZGBIDKFMHOJQLSNUPWRYT  =  D3
−1

D11  =  AXCZEBGDIFKHMJOLQNSPURWTYV  =  D2
−1

D12  =  AZCBEDGFIHKJMLONQPSRUTWVYX  =  D1
−1

They share the same interleaving pattern we saw above. ({Dn}, ◦) forms its own group isomorphic to 
(ℤ13, + mod 13):

Dm ◦ Dn  =  Dm+n

where the addition in the subscript is done modulo 13. We use these Dn to transform R1 into a generator 

of a (Q 3 [Dn], ◦) that contains R2. For example,

X  =  D3 ◦ R1 ◦ D3
−1  =  HWJYLANCPERGTIVKXMZOBQDSFU

This permutation generates the quagmire 3 that has these members:

X = HWJYLANCPERGTIVKXMZOBQDSFU         
X2 = CDEFGHIJKLMNOPQRSTUVWXYZAB  =  R2

X3 = JYLANCPERGTIVKXMZOBQDSFUHW
X4 = EFGHIJKLMNOPQRSTUVWXYZABCD  =  R4

X5 = LANCPERGTIVKXMZOBQDSFUHWJY
X6 = GHIJKLMNOPQRSTUVWXYZABCDEF  =  R6

X7 = NCPERGTIVKXMZOBQDSFUHWJYLA
X8 = IJKLMNOPQRSTUVWXYZABCDEFGH  =  R8

X9 = PERGTIVKXMZOBQDSFUHWJYLANC
X10 = KLMNOPQRSTUVWXYZABCDEFGHIJ  =  R10

X11 = RGTIVKXMZOBQDSFUHWJYLANCPE
X12 = MNOPQRSTUVWXYZABCDEFGHIJKL  =  R12

X13 = TIVKXMZOBQDSFUHWJYLANCPERG
X14 = OPQRSTUVWXYZABCDEFGHIJKLMN  =  R14

X15 = VKXMZOBQDSFUHWJYLANCPERGTI
X16 = QRSTUVWXYZABCDEFGHIJKLMNOP  =  R16

X17 = XMZOBQDSFUHWJYLANCPERGTIVK
X18 = STUVWXYZABCDEFGHIJKLMNOPQR  =  R18

X19 = ZOBQDSFUHWJYLANCPERGTIVKXM
X20 = UVWXYZABCDEFGHIJKLMNOPQRST  =  R20

X21 = BQDSFUHWJYLANCPERGTIVKXMZO
X22 = WXYZABCDEFGHIJKLMNOPQRSTUV  =  R22

X23 = DSFUHWJYLANCPERGTIVKXMZOBQ
X24 = YZABCDEFGHIJKLMNOPQRSTUVWX  =  R24

X25 = FUHWJYLANCPERGTIVKXMZOBQDS
X26 = ABCDEFGHIJKLMNOPQRSTUVWXYZ  =  R0



The members that overlap the Vigenère set have been noted. They are exactly the ones in the subgroup 
isomorphic to (ℤ13, + mod 13).

The strategy for keyword recovery is to find, by whatever means is easiest, a provisional base 
key k′ that transforms R2 to q[13]:

q[13]  =  k′ ◦ R2 ◦ k′−1

Since we do not know which of the thirteen Q3 ciphers k′ ◦ R1 ◦ k′−1 will land in, we must compose with
each of the Dn

−1 on the right. Then, since we also have a twelve order-26 rotations that can stand in for 

R1, we have to take into account the twelve possible automorphisms of (V, ◦) by trying each of the Mm 
and composing on the right. In the end, there may be a harmless rotation, so add an Rr to the mix:

k  =   k′ ◦ Dn
−1 ◦ Mm

−1 ◦ Rr

Before the final rotation, we have 12∙13 = 156 possibilities to examine.

We have an order-13 permutation in our example key table:

q[13]  =  k5  =  ZNLGYOWSTAUPCVERBIXDFHJKQM

A series of exchanges that take us between q[13] and R2 is

k′  =  E2,25 ◦ E3,13 ◦ E4,12 ◦ E5,21 ◦ E6,25 ◦ E8,11 ◦ E9,18 ◦ E10,15 ◦ E11,23 ◦ E12,17 ◦ 
              E13,15 ◦ E14,23 ◦ E15,20 ◦ E16,19 ◦ E17,21 ◦ E18,20 ◦ E19,23 ◦ E20,25 ◦ E23,24 ◦ E24,25

=  ABZNMVCHLSPXRKIUTFDOGEWYJQ                                   

Having already solved this proble, we say with hindsight that the correct Dn is D7. So

k″  =  k′ ◦ D7
−1  =  AKZUMFCOLEPYRQIBTNDVGHWSJX

The best Mm to use is M9:

k‴  =  k″ ◦ M9
−1  =  AUCERBDHJKMOPQTVWXZFLYINGS

And a final rotation gives us the base key:

k  =  k‴ ◦ R19  =  FLYINGSAUCERBDHJKMOPQTVWXZ

Having an order-26 permutation makes keyword recovery relatively easy. If one is not present 
in our key table, an order-13 element is also usable, even if not as easily. The presence of both an order-
13 permutation and the order-2 permutation, however, allows us to construct an order-26 permutation 
by composing the two. For example, in our key table above, the composition of the last two rows is

k5 ◦ k6  =  BMHOJGEPUQTSVCWXZKRFDLYIAN



which has order 26. Another way to understand this is to consider the thirteen different quagmire 3 sets 
that contain the order-13 element. Finding the one that also contains the order-2 element allows us to 
pick out the correct Q3.

Keyword recovery in quagmire 4

Gaines [1] also has a method for finding the keywords of a quagmire 4 cipher. Because there are two 
keywords, it requires two permutations from the key table. In the original Q4 table, the plaintext 
alphabet across the top was still mixed with kP, and the rows were rotated versions of kC. Therefore, 
between two rows there is a constant shift. So we can find cycle(s) by chaining letters from one row to 
another. This does not change after we shuffle the columns of the table to straighten out the plaintext 
alphabet. This will give us a provisional kC. Then, kP is found by comparing to the plaintext alphabet.

Consider our example key table:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
  k1 │   OWRXUTMYJZSBPKACEVNFQLIGDH  │
  k2 │   SFALCRYIWGHUTXBDJEZKPMNOVQ   │
  k3 │   KRNUOIDVTWXGYBZSPQJAMCEFHL   │
  k4 │   GJTKBPLMENOAQFRUVDIWHXYZCS  │
  k5 │   YCSEPOWFULIQGVHTBAXDZJKMRN  │
  k6 │   RYVZWDOSMPAJCNEFLXQIUGHTKB   │

Focus on k1 and k2:

OWRXUTMYJZSBPKACEVNFQLIGDH
SFALCRYIWGHUTXBDJEZKPMNOVQ

Cycle(s) are formed by taking columns, O→S, W→F, R→A, etc. We obtain one 26-cycles, which 
forms our provisional base key kC′:

kC′  =  (ABUCDVEJWFKXLMYINZGOSHQPTR)

Taking every third letter in this cycle gives

kC  =  ACEFLIGHTBDJKMNOQRUVWXYZSP

To recover the other keyword, recall that in the original table for a Q4, the mixed plaintext alphabet (kP)
is written across the top, and rotated versions of kC appear in the rows. So if we put the straight alphabet
above k1:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
OWRXUTMYJZSBPKACEVNFQLIGDH

and rearrange the columns so that the lower row becomes kC:



OPQTVWXZFLYINGSAUCERBDHJKM
ACEFLIGHTBDJKMNOQRUVWXYZSP

then the upper row reveals kP. This is equivalent to finding k1
−1 ◦ kC. (We have ignored some rotations.)

Now let us do it in a way that exploits the structure of a quagmire 4 cipher, in particular the fact 
that it is a right coset and left coset of two quagmire 3 sets. We need two permutations from its tableau; 
call them q1 and q2. There are numbers m and n in 0, 1, 2, ..., 25 such that

q1  =  kC ◦ Rm ◦ kP
−1

q2  =  kC ◦ Rn ◦ kP
−1

where kP and kC are the base keys of the Q4. Then

q1
−1 ◦ q2  =  (kC ◦ Rm ◦ kP

−1)−1 ◦ (kC ◦ Rn ◦ kP
−1)        

=  kP ◦ R−m ◦ kC
−1 ◦ kC ◦ Rn ◦ kP

−1

=  kP ◦ R−m ◦ e ◦ Rn ◦ kP
−1           

=  kP ◦ Rn−m ◦ kP
−1                      

is a member of Q 3 [kP], and we can apply the techniques of the previous two sections to find kP. Our 
only worry is that n−m be not 13. Similarly,

q2 ◦ q1
−1  =  kC ◦ Rn−m ◦ kC

−1

is a member of Q 3 [kC], allowing us to find kC.

Let us look back at our example Q4 key table:

│                                plaintext letters                        │
│   ABCDEFGHIJKLMNOPQRSTUVWXYZ     │

             ─────┼────────────────────────────────────── ┤
k1 │   OWRXUTMYJZSBPKACEVNFQLIGDH  │
k2 │   SFALCRYIWGHUTXBDJEZKPMNOVQ  │
k3 │   KRNUOIDVTWXGYBZSPQJAMCEFHL  │
k4 │   GJTKBPLMENOAQFRUVDIWHXYZCS  │
k5 │   YCSEPOWFULIQGVHTBAXDZJKMRN  │
k6 │   RYVZWDOSMPAJCNEFLXQIUGHTKB  │

The shift key is recognizable and appears in the column under plaintext F. This tells us that kP begins 
with the letter F. We now pick one of these permutations and compose the others with its inverse on the
left:

                                                   │  order
        ───────┬────────────────────────────────────── ┼──────

k1
−1 ◦ k1 │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │     1

k1
−1 ◦ k2 │   KTOVPCHWBXZEFDLYIQJNMGSARU  │   26



k1
−1 ◦ k3 │   NCSEAWYRFBDXHLJKMUIOGPQTZV  │   26

k1
−1 ◦ k4 │   XIFNLMVGQSAOUTCERYWBZDHJPK  │   26

k1
−1 ◦ k5 │   HPKQMABTEVWUXRZFLODYJINGCS  │   26

k1
−1 ◦ k6 │   CHRJBYAKGMOIPSQTVDUWEXZFNL  │   13

The shift key no longer appears, but we do see it after it has undergone a monoalphabetic substitution 
using key k1

−1:

S (k1
−1, TRIPOD)  =  FCWMAY

We are lucky to have some order-26 permutations to use for keyword recovery. From k1
−1 ◦ k2 we obtain

the base key

kP  =  FLYINGSAUCERBDHJKMOPQTVWXZ

as we knew we should. Next we work on kC by composing with k1
−1 on the right.

                                                   │  order
        ───────┬────────────────────────────────────── ┼──────

k1 ◦ k1
−1 │   ABCDEFGHIJKLMNOPQRSTUVWXYZ  │     1

k2 ◦ k1
−1 │   BUDVJKOQNWXMYZSTPAHRCEFLIG  │   26

k3 ◦ k1
−1 │   ZGSHPAFLETBCDJKYMNXIOQRUVW  │   26

k4 ◦ k1
−1 │   RAUCVWZSYEFXLIGQHTOPBDJKMN  │   26

k5 ◦ k1
−1 │   HQTRBDMNKUVJWXYGZSIOPACEFL  │   26

k6 ◦ k1
−1 │   EJFKLITBHMNGOQRCUVADWXYZSP  │   13

The shift key has reappeared, but in the column indicating its own first letter; this will not help us 
resolve kC. Using the techniques for keyword recovery in the Q3, k2 ◦ k1

−1 gives us the other base key:

kC  =  SPACEFLIGHTBDJKMNOQRUVWXYZ

Having both base keys, we now know this Q4 completely.

Conclusions

A well-written article has no need for additional comments, and a well-read article does not need a 
summary. Nevertheless, an article without a concluding section does not get published. So here we are.

We looked at the group theory of the alphabetic permutations used by classical substitution 
ciphers. Surprisingly, we found that the Beaufort and Porta ciphers are members of the quagmire 
family. Our most significant result is the observation that a quagmire 3 is isomorphic to the Vigenère, 
which in turn has the same structure as ℤ26. This allowed us to develop a new way to expand our 
knowledge of the keys in attacks on ciphertexts that are based on cribs, and to understand more deeply 
the process of recovering keywords.

As classical ciphers are little more than recreational in the modern era, the application of group 
theory to them is for the most part an intellectual exercise. Modern cryptography, especially public-key 



cryptography, involves group theory intimately. Extending these ideas to the classical ciphers is an 
interesting field that has so far been overlooked.
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