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Abstract. Isogeny-based cryptography is an active area of research in post-quantum public
key cryptography. The problem of proving knowledge of an isogeny is a natural problem that
has several applications in isogeny-based cryptography, such as allowing users to demonstrate
that they are behaving honestly in a protocol. It is also related to isogeny-based digital
signatures. Over the last few years, there have been a number of advances in this area, but
there are still many open problems. This paper aims to give an overview of the topic and
highlight some open problems and directions for future research.
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1 Introduction

Let E0 and E1 be elliptic curves. An isogeny is a mapping φ : E0 → E1 (see Section 2.1
for technical background). In particular, an isogeny is a group homomorphism. If there is
an isogeny φ : E0 → E1 then there is also an isogeny φ̂ : E1 → E0, called the dual isogeny.
Two curves are called isogenous if there is an isogeny between them. Given two isogenous
elliptic curves E0 and E1 over a finite field Fq it is believed to be computationally hard
(even for quantum computers) to compute an isogeny between them. A natural problem
is therefore for an entity to prove that they know an isogeny φ : E0 → E1 between two
public elliptic curves E0 and E1 without revealing the isogeny.

Tate’s isogeny theorem (due to Deuring in the elliptic curve case) states that two elliptic
curves E0 and E1 over a finite field Fq are isogenous over Fq if #E0(Fq) = #E1(Fq).
Since there are polynomial time algorithms to compute #E0(Fq) it follows that one can
determine in polynomial time whether two curves are isogenous. However, this is not the
end of the story, since for cryptographic applications one often wants to prove knowledge
of an isogeny between E0 and E1, possibly with some additional restrictions, e.g., on its
degree.

Indeed, there are (at least) six relations that have been studied in the setting of isogeny-
based cryptography. These relations are defined as sets of pairs (x,w) where x is the
statement and w is a witness. Each relation defines a language L = {x : ∃w, (x,w) ∈ R}.
For simplicity, we define the relations for a fixed field Fq. In each of the relations below



E0, E1 denote elliptic curves (usually supersingular in this paper) and φ denotes an isogeny
(the witness), all defined over Fq. We implicitly assume that witnesses can be represented
in polynomial space and evaluated in polynomial time.

Rtriv =
{(

(E0, E1),⊥
) ∣∣#E0(Fq) = #E1(Fq), so E0, E1 isogenous over Fq

}
;

Risog =
{(

(E0, E1), φ
) ∣∣φ : E0 → E1 is an arbitrary isogeny

}
;

Rdeg =
{(

(E0, E1, d), φ
) ∣∣φ : E0 → E1 is an isogeny of degree d

}
;

RSIDH =
{(

(E0, E1, d,D, P0, Q0, P1, Q1), φ
)∣∣φ : E0 → E1 is an isogeny of degree d

and P1 = φ(P0), Q1 = φ(Q0)

where E0[D] = 〈P0, Q0〉 and gcd(D, d) = 1
}

;

RM−SIDH =
{(

(E0, E1, d,D, P0, Q0, P1, Q1), φ
)∣∣φ : E0 → E1 is an isogeny of degree d

and P1 = λφ(P0), Q1 = λφ(Q0)

and λ2 = 1 mod D

where E0[D] = 〈P0, Q0〉 and gcd(D, d) = 1
}

;

RCSIDH =
{(

(E0, E1), φ
)∣∣E0, E1 supersingular,

j(E0), j(E1) ∈ Fp, φ defined over Fp
}

See Definition 3 in Section 2.4.

As we just said, the language (E0, E1) of isogenous curves can be decided in polynomial
time, hence the trivial witness ⊥ in Rtriv. The relations Risog and Rdeg are the main focus
of this survey. These two relations are believed to be hard in the sense that there is no
efficient algorithm known to compute a witness when given an arbitrary element of the
language. For Rdeg even deciding the language is usually hard (depending on d).

The relation RSIDH is no longer relevant due to the devastating attacks discovered in 2022
by Castryck and Decru [CD23], Maino and Martindale [MMP+23] and Robert [Rob23].
However, we briefly mention SIDH in a few places for historical reasons, and since some
aspects of it are used to build protocols for the other relations. The relation RM−SIDH

is equivalent to RSIDH when D is a power of a prime, indeed in this case there are only
two or four possibilities for the square root of unity λ. When D contains many prime
factors, however RM−SIDH is believed to be harder than RSIDH, and has been proposed as
an alternative foundation for an SIDH-like key exchange [FMP23].

Motivation. The main motivation for zero-knowledge proofs of knowledge of an isogeny
is in ensuring that public keys in a system are correctly formed and that the owner of a
public key does know the corresponding private key. Some systems require such “proof of
possession” checks when a user registers their public key, to prevent malicious behaviour
such as a user registering another user’s public key as their own. For discussion see Section
4.3 of the X.509 RFC [AFKM05], and [BFPW07].
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Zero-knowledge proofs are also useful to defeat active attacks in cryptographic protocols.
A passively secure protocol can indeed be turned into an actively secure one by requiring
all parties to accompany each message they send with a zero-knowledge proof that the
message has been generated correctly as specified by the protocol. A recent example of
this is given in [BCC+23]. An earlier example of this (now obsolete) is that the SIDH
protocol [DFJP14] is vulnerable to the GPST attack [GPST16], in which an attacker
deviates from the protocol to progressively learn the secret key of its victim. In the key
encapsulation mechanism SIKE based on SIDH [JAC+17], this attack was defeated using a
variant of the Fujisaki-Okamoto transform, but this involved generating and communicat-
ing ephemeral keys. In contrast, a solution based on a non-interactive proof of knowledge
would have allowed static keys and non-interactive key exchange.

Proofs of knowledge have other applications as well, most notably they give digital sig-
nature schemes through the Fiat-Shamir transform and variants. The RSA and ECDSA
signature schemes currently in use are based on the hardness of integer factoring and
the elliptic curve discrete logarithm problem, which will be solved efficiently when large-
scale quantum computers are available. It is important to develop new signature schemes
with post-quantum security. Isogeny-based cryptography is believed to resist quantum
computers, hence it is a natural and important question to build efficient digital signa-
tures from isogeny problems. A natural way to build those signatures is to first develop
zero-knowledge proofs of knowledge for isogeny relations.

A simple approach that does not work. To introduce some of the challenges in
developing zero-knowledge proofs for the relations above, we first describe a simple idea
for the second relation, namely to adapt the classic Goldreich, Micali, Wigderson (GMW)
zero-knowledge proof of graph isomorphism [GMW91] (see Section 3.3). We then explain
why a straightforward adaptation does not work.

Let φ : E0 → E1 be an Fq-isogeny, which is the witness known to the prover. The natural
idea is to choose a random isogeny ψ : E1 → E2. Due to the expansion properties of isogeny
graphs (discussed in Section 2.2), if ψ corresponds to a long enough walk in the graph
then E2 is uniformly distributed in the set of supersingular curves. Set the commitment to
be E2. The challenger sends a challenge chall ∈ {0, 1}. When chall = 0 the prover responds
with a description of ψ, and when chall = 1 the prover responds with ρ := ψ ◦ φ. The
verifier checks that the response is an isogeny from E1−chall to E2, and accepts if this is
the case.

One might think this could be zero-knowledge since E2 is distributed uniformly and so
can be simulated without knowing the witness. But the problem is that ψ ◦φ can leak the
witness φ. The details depend on how the isogeny ψ◦φ is represented (see Section 2.1). If it
is represented as a sequence of j-invariants, then the receiver will note that j(E1) appears
on the list and so the sequence of j-invariants up to that point represents the isogeny φ. If
it is represented using a kernel point (or a set of generators for the kernel) then the leakage
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depends on whether deg(φ) is known (or guessable) and how this relates to deg(ψ). In any
case, because the composition factors through E1 we have ker(φ) ⊆ ker(ρ).

Solutions to the zero-knowledge issue. While the above simple approach fails as
such, it still underlies all proofs of knowledge of an isogeny, with the zero-knowledge issue
solved in the following ways:

– In CSIDH-based protocols as well as in GPS and SQISign signatures, the response
isogeny in the above sketch is replaced by a canonical or randomized isogeny in the same
class (i.e. connecting the same two curves). This is done efficiently using the KLPT
algorithm in the GPS case [GPS20], after a big precomputation in CSI-FiSh [BKV19],
or using blinding and rejection sampling in SeaSign [DFG19]. On the other hand,
SQISign [DFKL+20] relies on an ad-hoc computational assumption to guarantee that
the isogeny returned does not leak information on the secret.

– In SIDH-like protocols, the triple of isogenies in the above sketch is replaced by a four-
tuple corresponding to an SIDH commutative diagram, with the secret isogeny being
one of the four edges (see Section 5.1). The response isogeny is made of either the only
“parallel” isogeny in this commutative diagram, or one of the two “orthogonal” ones.
Zero-knowledge relies on an ad hoc computational assumption, essentially stating that
“parallel” pairs of isogenies are indistinguishable from random pairs with the same
degrees. However, we briefly mention in Section 5.3 some recent work that allows
statistical zero-knowledge.

Note that we will later introduce CSIDH-based protocols separately from GPS and SQISign
because the two sets of protocols differ significantly in the mathematical machinery that
they use.

Soundness. In addition to the zero-knowledge issue, the simple protocol above only offers
limited soundness guarantees, as a cheating prover can correctly predict the challenge bit
with a probability of one out of two. A simple solution to this is iterating the protocol; this
however brings a large efficiency cost, both in proof/signature sizes and in computation
times. One of the biggest open problems in this area is to develop more efficient protocols
by lowering the probability of successful cheating (the soundness error) by a user who
does not know a witness. In SeaSign and CSI-FiSh signatures those costs can be traded
for larger key sizes by relying on multiple instances of the basic isogeny problem. Currently,
the most efficient scheme is the SQISign protocol. It uses a large challenge space, and may
therefore only be run once, resulting in very short proofs/signatures.

Outline. Our paper aims to explore these topics in detail and to list some open problems
and directions for future research. Our focus is exactly on the issues raised above: How
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to achieve (and prove) soundness; what computational assumptions are required for zero-
knowledge; how to get more efficient systems.

We provide background on isogeny-based cryptography and zero-knowledge proofs of
knowledge in Sections 2 and 3 respectively. We then describe proofs based on group actions
(SeaSign, CSI-FiSh) in Section 4, proofs for Rdeg based on ideas from SIDH in Section 5,
and finally GPS and SQISign in Section 6. Specifically, we discuss proofs for the relation
Risog in Section 5.1 and Section 6.1, and for the relation Rdeg in Section 5.2. Proofs for
the CSIDH relation RCSIDH are discussed in Section 4. We conclude the paper and list
open problems in Section 7.
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Fund UOAX1933. Luca De Feo was supported by SNSF grant TMCG-2 213766, Cryp-
tonIs. Christophe Petit was supported by EPSRC award EP/V011324/1. Ward Beullens
holds a Junior Post-Doctoral fellowship 1S95620N from the Research Foundation Flanders
(FWO).

2 Isogeny-based cryptography background

2.1 Elliptic curves and isogenies

An elliptic curve over a field Fq is a non-singular projective algebraic curve of genus 1 with
a designated point that we call O. A typical example is the projective closure of the affine
Montgomery model y2 = x(x2 + Ax + 1), where the point O is the point at infinity. An
elliptic curve is defined up to isomorphism by its j-invariant.

An isogeny φ : E1 → E2 (see Chapter 12 of Washington [Was08] or Section III.4 of
Silverman [Sil09]) is a morphism and has finite kernel. Given a finite subgroup G ⊆ E1(Fq)
there is a (unique separable) isogeny φG : E1 → E2 with kernel G, and it is possible to
compute φG using Vélu formulae [Vél71] in time linear in #G using operations in Fqt ,
where G is defined over Fqt . For more details see Proposition III.4.12 of Silverman [Sil09],
Section 12.3 of Washington [Was08], or Section 25.1 of Galbraith [Gal12]. We sometimes
write E2 = E1/G.

The degree of an isogeny is its degree as a morphism of curves (see Section II.2 of Sil-
verman [Sil09] or Section 12.2 of Washington [Was08]). A separable isogeny with kernel
G has degree equal to #G. If φ1 : E1 → E2 and φ2 : E2 → E3 are isogenies then
deg(φ2 ◦ φ1) = deg(φ2) deg(φ1).

Theorem 1. (Corollary III.4.11 of [Sil09]; Theorem 9.6.18 of [Gal12]) Let E1, E2, E3

be elliptic curves over Fq and φ : E1 → E2, ψ : E1 → E3 isogenies over Fq. Suppose
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ker(φ) ⊆ ker(ψ) and that ψ is separable. Then there is a unique isogeny λ : E2 → E3

defined over Fq such that ψ = λ ◦ φ.

The above facts show that an isogeny φ1 : E1 → E2 of composite degree can always be
factored as the composition of isogenies of prime degree (see Theorem 25.1.2 of [Gal12]).
In many applications, this is the most efficient way to represent and compute an isogeny.

Isogenies are naturally represented as rational maps between concrete models of elliptic
curves; however for large-degree isogenies this representation may not be efficient. When
the degree is a smooth number one can instead represent the large degree isogeny as a
composition of low degree isogenies. Alternatively, such an isogeny can be represented by
a sequence of j-invariants that are the codomains of the successive (low-degree) isogeny
steps. Any isogeny can also alternatively be represented by its kernel, or more precisely a
kernel generator.

While computing a rational map representation of an isogeny of prime degree ` requires
O(`) time just to write the output, evaluating this isogeny on a domain point can be done
more efficiently with the so-called “square root Vélu” formulae [BDFLS20].

We denote by #E(Fq) the number of points on an elliptic curve E defined over Fq (in-
cluding O). The Tate isogeny theorem states that if E1 and E2 are elliptic curves over Fq
with #E1(Fq) = #E2(Fq) then there is an isogeny φ1 : E1 → E2 defined over Fq.

If t = q + 1 − #E(Fq), then |t| ≤ 2
√
q. An elliptic curve is called supersingular if p | t,

where q is a power of the prime p, and is called ordinary otherwise. It follows that E
is supersingular if #E(Fq) ≡ 1 (mod p), and in fact for supersingular curves one has
#E(Fqn) ≡ 1 (mod p) for all n ∈ N.

2.2 Endomorphism rings and isogeny graphs

The endomorphism ring of E (see Section III.9 of Silverman [Sil09]) is the set of isogenies
from E to itself, together with the zero map [0] : E → E given by [0](P ) = O. In other
words

End(E) = {φ : E → E} ∪ {[0]}.

This is a ring where addition of isogenies is defined pointwise using the elliptic curve
addition (φ1 + φ2)(P ) = φ1(P ) + φ2(P ) and multiplication is composition of isogenies.
Note that Z ⊂ End(E) from the map n 7→ [n].

When E is a supersingular curve then a theorem of Deuring states that End(E) is a
maximal order in the quaternion algebra ramified at p and infinity (see Theorem III.9.3
of [Sil09] or Theorem 42.1.9 of Voight [Voi21]). When E is ordinary the situation is much
simpler, as End(E) is an order in the imaginary quadratic field Q(

√
t2 − 4q).
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Our main focus in this survey is supersingular curves, as they are the ones currently used
in cryptographic applications.

For any supersingular elliptic curve E in characteristic p and any prime ` 6= p, there are
exactly `+ 1 isogenies of degree ` with E as their domain (up to isomorphisms of the co-
domain curves). To any prime numbers p and `, one can associate a supersingular isogeny
graph where each vertex corresponds to a supersingular curve (up to isomorphism) and
each edge to an isogeny of degree ` between the corresponding curves. Ignoring at most
two exceptional points, this is an undirected (` + 1)-regular graph. In the supersingular
case, the graph is Ramanujan, meaning it has optimal expansion properties (see Section 4
of [CLG09]). The expansion properties imply that any two curves are connected by a path
of length O(log p), and that random walks on the graph quickly converge to the uniform
distribution (apart from at most 2 special vertices). All supersingular curves are defined
over Fp2 .

Given two elliptic curves (E0, E1) over Fq that are isogenous over Fq, there are infinitely
many isogenies between them. In the ordinary case, where for simplicity we assume that
the endomorphism ring of both curves is the maximal order in the imaginary quadratic
field, the set of isogenies from E0 to E1 corresponds to an ideal class. In the supersingular
case the set of isogenies from E0 to E1 corresponds to a rank-4 Z-module in a quaternion
algebra.

When the endomorphism ring of an elliptic curve is known, one may instead represent
an isogeny from that curve in terms of a module in the endomorphism ring, namely an
ideal of a quadratic imaginary number field in the ordinary case, and a (left or right)
ideal of a maximal order in a quaternion algebra in the supersingular case. Modulo some
restrictions on parameters (such as requiring smooth or power-smooth norms for ideals,
and working with special orders), one can transform this representation into the other
standard representations (sequences of j-invariants, or kernel generators) in polynomial-
time, and vice versa. We give further details in Section 2.5.

2.3 SIDH

Supersingular Isogeny Diffie-Hellman (SIDH) [JDF11,DFJP14] is a key exchange proto-
col based on isogenies between supersingular curves defined over Fp2 . It is the basis for
SIKE [JAC+17], an isogeny based KEM that was submitted to the NIST post-quantum
standardization process. Of course, due to recent cryptanalysis [CD23,MMP+23,Rob23]
SIDH and SIKE are no longer considered secure. Nevertheless, it is necessary for some of
the schemes mentioned in our paper to introduce some concepts from SIDH.

SIDH is built around a commutative square constructed as the push-out of two isogenies of
coprime degrees. We will use the same squares in the proofs of knowledge of supersingular
isogenies in Section 5. For efficiency, SIDH restricts to pairs of isogenies of degree 2n and
3m, where 2n ≈ 3m and the finite field characteristic is an “SIDH prime” p = 2n3mf − 1.
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Given such a prime, there exists over Fp2 an isogeny class of supersingular curves with
group structure

E(Fp2) ∼= (Z/(p+ 1)Z)2 ∼= (Z/2nZ)2 × (Z/3mZ)2 × (Z/fZ)2.

Let E be one such curve. For example, choose the curve y2 = x3 + x of j-invariant 1728,
which is always supersingular modulo p ≡ 3 (mod 4). Furthermore, End(E) is known for
this curve.

Let A ⊂ E[2n] and B ⊂ E[3m] be cyclic groups of order 2n, 3m, respectively. They define
isogenies φA : E → E/A and ψB : E → E/B. The “SIDH square” on (A,B) is the
commutative diagram

E E/A

E/B E/〈A,B〉

φA

ψB ψ′B
φ′A

(1)

where ker(ψ′B) = φA(B), ker(φ′A) = ψB(A), and 〈A,B〉 denotes the group generated by A
and B. We say that (φA, φ

′
A) (and (ψB, ψ

′
B)) are “parallel” isogenies.

Definition 1 (Parallel isogenies). Let φ : E0 → E1 and φ′ : E2 → E3 be separable
isogenies of degree d. We say that (φ, φ′) are parallel with respect to a separable isogeny
ψ : E0 → E2 of degree coprime to d if ker(φ′) = ψ(ker(φ)).

Lemma 1. Let φ : E0 → E1 and φ′ : E2 → E3 be parallel with respect to some ψ,
then there exists an isogeny ψ′ : E1 → E3 parallel to ψ with respect to φ, defined by
ker(ψ′) = φ(ker(ψ)).

Proof. By comparing kernels it is clear that φ′ ◦ ψ = ψ′ ◦ φ, up to composing ψ′ with an
isomorphism, and thus the image curve of ψ′ is E3. Then ψ′ is parallel to ψ by definition.

ut

Given generators for A and B, the curves E/A and E/B can be efficiently computed using
Vélu’s formulae. The bottom-right curve E/〈A,B〉 can then be computed in two ways as

(E/A)/φA(B) ∼= E/〈A,B〉 ∼= (E/B)/ψB(A). (2)

This is as much as we need for defining proofs of knowledge of isogenies.

Other base fields. The setup we presented above is the most common and the most efficient
one for SIDH-like proofs of knowledge. However, the paper that introduced SIDH also
considered primes of the form p = `nA`

m
Bf ± 1 for any small primes `A, `B. A variant

named B-SIDH [Cos20] used primes such that p2−1 = Nf , where N is a sufficiently large
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smooth integer. Finally, variants of the SIDH key exchange designed to resist the recent
attacks consider p = 4N − 1, where N is a product of sufficiently many distinct small
primes [FMP23]. In this work, we will focus on the basic SIDH case, but the ideas are
easily generalized to all other settings. Ultimately we will see in Section 5.3 that, with some
loss of efficiency, SIDH-like commutative squares can be constructed in any characteristic.

2.4 CSIDH

Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) [CLM+18] was proposed by
Castryck, Lange, Martindale, Panny, and Renes. It is an example of a cryptographic group
action, and it builds on ideas of Couveignes [Cou06], Rostovtsev and Stolbunov [RS06],
and De Feo, Kieffer and Smith [DFKS18]. Let G be a finite abelian group and X a set of
size |X| = |G|. The group G acts on X if there is a binary operation G ×X → X which
we write as (g, x) 7→ g ∗ x. We require g ∗ (g′ ∗ x) = (gg′) ∗ x for all g, g′ ∈ G and x ∈ X.

In the case of CSIDH, the group G is the ideal class group of the order O = Z[
√
−p] in the

imaginary quadratic field Q(
√
−p). The set X is the set of isomorphism classes of elliptic

curves over Fp with endomorphism ring End(E) ∼= O, which are necessarily supersingular.
Alternatively, one could work with supersingular curves whose Fp-endomorphism ring is
Z[(1 +

√
−p)/2], see [CD20].

The use of supersingular curves over Fp is for efficiency reasons. In fact, we choose the
prime p to have the special form p = 4`1 · · · `r − 1, for some integer r, where the `i are
distinct small odd primes. Let E0/Fp be the supersingular curve defined by y2 = x3 + x.
The endomorphism ring of E0 is a maximal order in a quaternion algebra, but the sub-
ring of endomorphisms that are defined over Fp (we call this the Fp-endomorphism ring)
is isomorphic to a ring containing Z[

√
−p]. It is known that the ideal class group of the

Fp-endomorphism ring acts on the set of supersingular elliptic curves defined over Fp,
where each ideal corresponds to an isogeny [Wat69].

We make the reasonable assumption that the class group cl(Z[
√
−p]) is generated by the r

ideals li = (`i, 1+
√
−p) for i from 1 to r. The class group cl(Z[

√
−p]) acts freely and tran-

sitively on the set E`` of Fp-isomorphism classes of elliptic curves with Fp-endomorphism
ring Z[

√
−p]. We can efficiently compute the action of the ideal classes l1, · · · , lr, and their

inverses.

For a vector x ∈ Zr and E ∈ E`` we define

[x]E :=

(
r∏
i=1

li
xi

)
∗ E ,

where ∗ is the action of the ideal class group. This is known as the CSIDH action.
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Technically, we have defined the infinite group Zr to act on the finite set E``, which does
not match our earlier definition of a group action. In fact, one can define a lattice

L = {x ∈ Zr : [x]E = E}

such that the class group cl(Z[
√
−p]) is isomorphic to Zr/L and we really have an action

of Zr/L on E``.

We can now define the relation R as

RCSIDH = {(E,x) ∈ E``× Zr | [x]E0 = E} .

The CSIDH key exchange protocol works by Alice choosing random xA and sending EA =
[xA]E0 to Bob. Similarly, Bob chooses random xB and sends EB = [xB]E0 to Alice. The
shared key that both of them can compute is

[xA]EB = [xA + xB]E0 = [xB]EA.

2.5 Quaternion algorithms and the KLPT algorithm

Kohel, Lauter, Petit, and Tignol (KLPT) [KLPT14] introduced important algorithmic
ideas for computing with quaternion algebras and computing isogenies of smooth degree.
We will not cover all the mathematics. Instead, we sketch the basic functionalities provided
by their work (and extended by other authors).

For this section, we always assume E0 is a very particular supersingular curve (namely, it is
supersingular, defined over Fp, and has a non-scalar endomorphism of very small degree).
The canonical example when p ≡ 3 (mod 4) is y2 = x3 + x, which has the non-trivial
automorphism ι(x, y) = (−x, iy) where i ∈ Fp2 satisfies i2 = −1. The p-power Frobenius
map π(x, y) = (xp, yp) satisfies π ◦ ι = −ι ◦ π and π2 = [−p]. It follows that End(E0)
contains a subring isomorphic to Z ⊕ iZ ⊕

√
−pZ ⊕ i

√
−pZ. The norm of an element

w + ix+
√
−p(y + iz) is w2 + x2 + p(y2 + z2), and the KLPT algorithm heavily relies on

norm forms that can be written as Q(w, x) + pQ(y, z) where Q is a binary quadratic form
of small discriminant.

The KLPT algorithm and other results we need all rely on the Deuring correspondence,
which says that the endomorphism ring of a supersingular elliptic curve is a maximal order
O in a quaternion algebra, and that an isogeny φ : E0 → E1 corresponds to an ideal I
such that the left-order of I is O0 = End(E0) and the right-order of I is O1 = End(E1).
Furthermore, the degree of φ is equal to the reduced norm of I. Key points are that
maximal orders are defined up to conjugation αOα−1 by a non-zero element α in the
quaternion algebra, and that the module I is also defined up to equivalence I ≡ αI ≡ Iα,
since I having left-order O means αI has left-order αOα−1. Hence the infinitely many
choices of isogeny φ : E0 → E1 correspond to the infinitely many equivalent ideals I.
General references for this topic include [EHL+18,KLPT14].
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The KLPT algorithm allows to replace ideals by power-smooth degree ones in the same
class. More precisely, let O0 be a maximal order in the quaternion algebra Bp,∞ whose
norm is of the form Q(w, x) + pQ(y, z), and let O1 be another maximal order. The KLPT
algorithm takes as input a small prime ` and a sufficiently large integer n (the original
KLPT paper requires n > 7

2 log`(p)), and returns an ideal I of norm `n that is a left O0-
ideal and whose right order is isomorphic to O1. The algorithm was adapted in [GPS20] to
produce ideals of B-powersmooth norm (meaning the norm is of the form N =

∏
i `
ei
i where

the `i are distinct primes and `eii ≤ B). One takes B = c log p for a suitable constant c.
The heuristic analyses in [GPS20] suggest that this can be done for any choice of N of size
log(N) ≈ 7

2 log(p). This is improved to log(N) ≈ 3 log(p) with another small modification
to the KLPT algorithm proposed in [PS18].

Because their norms are powersmooth, ideals output by the KLPT algorithm can be
efficiently converted into isogenies using standard techniques based on kernel identifica-
tion [Wat69]. The KLPT algorithm has this way enabled efficient solutions to several
algorithmic problems related to supersingular curves, their endomorphisms and isogenies,
including:

– Given a maximal order O, to compute an elliptic curve E1 with End(E1) ∼= O (namely
by constructing an isogeny φ : E0 → E1).

– Given E0 and End(E1) to compute a (random or canonical) smooth or semi-smooth
degree isogeny from E0 to E1.

– Given E0 and an isogeny φ : E0 → E1, to compute End(E1).

We refer to [KLPT14,GPS20,EHL+18,DFKL+20,DFLLW23] for details.

3 Zero-knowledge proofs of knowledge

In this section, we recall standard definitions for sigma protocols (an important class of
zero-knowledge protocols), the GMW protocol for graph isomorphism, and the connections
between sigma protocols and signatures.

3.1 Sigma protocols

Many zero-knowledge proof protocols (e.g., Schnorr proofs) fall in the so-called framework
of sigma protocols for hard relations. A hard relation is one where there is an efficient
algorithm to generate pairs (x,w), but it is computationally infeasible to compute w given
only x. A sigma protocol is a type of proof of knowledge protocol between a prover P
and a verifier V, where the prover wants to convince the verifier that for some statement
x known to P and V, he knows a witness w, such that (x,w) ∈ R, for some relation R.
Informally, we want the sigma protocol to be complete, which means that an honest prover
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can always convince the verifier that he knows a witness; we want the sigma protocol to
be sound, which means that if a prover does not know a witness, he can only convince the
verifier with a limited probability, and we want the protocol to be zero-knowledge, which
means that the prover does not reveal anything about the witness. More formally, a sigma
protocol is defined as follows:

Definition 2. We say Σ = (P1, P2, V2) is a sigma protocol with challenge space C, for a
relation R if the following properties are satisfied:

– Three-round public coin. The prover P starts the protocol by generating a first mes-
sage com ← P1(x,w) (often called a commitment), and sending it to the verifier V.
Then, the verifier chooses a challenge chall ← C uniformly at random from the chal-
lenge space C, and sends it to P. Finally, P computes a response resp ← P2(chall)
(P1 and P2 share a state) and sends it to V, who runs the verification algorithm
V2(x, com, chall, resp), which outputs 1 or 0, signalling that V accepts or rejects the
proof respectively. (See Fig. 1)

– Completeness/correctness. The completeness (sometimes called correctness) prop-
erty says that if both parties follow the protocol, and if the prover uses a valid witness
w such that (x,w) ∈ R, then the verifier will accept the proof with probability 1. In
other words, for all (x,w) ∈ R, we have

Pr

V2(x, com, chall, resp) = 1

∣∣∣∣∣∣
com← P1(x,w)
chall← C
resp← P2(chall)

 = 1 .

– n-Special Soundness. A sigma protocol has n-special soundness if there exists an
efficient extractor algorithm that given n transcripts of the form (x, com, challi, respi)
for 1 ≤ i ≤ n, with V2(x, com, challi, respi) = 1 for all i, and challi 6= challj for all
1 ≤ i < j ≤ n, outputs a witness w such that (x,w) ∈ R.

– Special honest-verifier zero-knowledge. A sigma protocol is called special honest-
verifier zero-knowledge if there exists an efficient simulator S that given x and chall ∈ C
outputs transcripts (x, com, chall, resp) that are indistinguishable from transcripts of
honest executions of the protocol. More precisely, for every (x,w) ∈ R, and every
chall ∈ C we require that

S(x, chall) ≈
{

(x, com, chall, resp)

∣∣∣∣com← P1(x,w)
resp← P2(chall)

}
.

If the distributions are identical, we say the sigma protocol has perfect special honest-
verifier zero-knowledge (sHVZK), if the distributions are statistically close, we say
the protocol has statistical sHVZK, and if the distributions are only computationally
indistinguishable, then we say the sigma protocol is computationally sHVZK.

Section 4.3 of Goldreich [Gol01] gives a stronger formulation of computational zero knowl-
edge that considers malicious verifiers.
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Prover(x,w) Verifier(x)

com← P1(x,w)
com−−−−−−→

chall← C
chall←−−−−−−

resp← P2(chall)
resp−−−−−−→

Return V2(x, com, chall, resp)

Fig. 1. The structure of a general sigma protocol.

Remark 1. The existence of the simulator implies that, for any sigma protocol that is
special honest-verifier zero-knowledge, there is always a cheating prover who does not
know a witness but who guesses the challenge and can respond correctly if their guess is
correct. Hence one can always cheat with probability at least 1/|C|. We call the successful
cheating probability the soundness error. A protocol with soundness error ε should be
computed k times, so that the overall soundness error εk is negligible (usually < 2−128).
The ideal case is when the soundness error is equal to 1/|C| and |C| is large.

Suppose the sigma protocol is n-special sound where n > 2. Suppose further that, for a
statement x and a commitment com, a cheating prover can respond to n distinct challenges.
Then the prover can generate n transcripts, and by the n-special soundness property can
compute a witness w such that (x,w) ∈ R. It follows that the cheating prover must only
be able to answer up to n − 1 distinct challenges. Hence if a protocol is n-special sound
then the soundness error should be at most (n− 1)/|C|.

Remark 2. The special honest-verifier zero-knowledge property implies that an honest
execution of the protocol does not reveal any additional information about w, because ev-
erything that could be learned by inspecting a transcript (x, com, chall, resp) could also be
learned directly from x alone, by first running the simulator S(x, chall) and then inspecting
the simulated transcript.

Remark 3. Perfect ZK and statistical ZK provide an information-theoretic guarantee that
a verifier learns nothing about the witness from the proof. Hence they are preferable to
computational ZK. Computational ZK usually requires introducing new computational
assumptions (typically decisional assumptions) beyond what is needed for the hardness of
the relation, and this leads to increased complexity and possible weaknesses. The sigma
protocols in the case of CSIDH have perfect or statistical ZK. The original protocols for
Rdeg that we describe in Section 5 are only computational ZK, but recent work surveyed
in Section 5.3 gives a statistical ZK protocol. In Section 6, the sigma protocol underlying
GPS has statistical ZK, while SQISign requires a computational assumption for ZK.
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3.2 Generic solutions

It is well-known since Goldreich, Micali, and Widgerson [GMW91] that any NP statement
can be proved in zero-knowledge, assuming the existence of one-way functions. This is
achieved by reducing the NP statement to an instance of 3-coloring and applying a zero-
knowledge protocol for the 3-coloring problem.

All the statements listed in the introduction are in NP (at least if we restrict the isogeny
degrees d to be smooth), thus we trivially obtain zero-knowledge proofs for each of them.
Additionally, we may use isogenies to instantiate the one-way function, e.g., the CGL
hash function [CLG09], thus basing the security of the zero-knowledge proof entirely on
the computational hardness of computing isogenies between random supersingular elliptic
curves.

We stress that while this approach gives a feasibility result in theory, it would not be prac-
tical: the 3-coloring problem obtained by translating any one of the relations of the intro-
duction will be huge, and the zero-knowledge protocol for 3-coloring provided in [GMW91]
requires to commit to all vertices with a one-way function and repeat this and other op-
erations a number of times quadratic in the number of vertices.

The research on more efficient generic ZK-proof systems has been extremely active lately,
producing several systems capable of proving real-world-sized statements. However, these
tend to be based on stronger assumptions than the existence of one-way functions, such
as the Random Oracle Model.

In the context of proving knowledge of isogenies, generic proof systems were first applied
in [CSRHT22], with the goal of defining Verifiable Delay Functions (VDF). We don’t
cover VDFs in this article, but we nevertheless quickly summarize the main techniques
of [CSRHT22], as they may be useful in other contexts.

Let ` be prime. The classic modular polynomial Φ` is a bivariate polynomial with integer
coefficients such that Φ`(j, j

′) = 0 if and only if there exists an isogeny of degree ` between
curves of j-invariant j and j′. The degree and the size of the coefficients of Φ` grow
polynomially in `, thus it cannot be used to decide whether two curves are `-isogenous
when ` grows exponentially large. However, the typical case we encounter in cryptography
is when two curves are d-isogenous with d being smooth. Thus, the isogeny of degree d
can be written as a composition of isogenies E0 → E1 → · · · → En of degrees `1, . . . , `n.
Since the `i are polynomially small, from the sequence of j-invariants one can extract the
isogenies Ei → Ei+1 efficiently. Hence, proving knowledge of an isogeny E0 → En of degree
d is equivalent to proving knowledge of j0, j1, . . . , jn such that

Φ`1(j0, j1) = Φ`2(j1, j2) = · · · = Φ`n(jn−1, jn) = 0. (3)

The proof becomes even simpler when d = `n, then only one modular polynomial is needed
to prove the statement.
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The proof of knowledge of [CSRHT22] is based on proving the polynomial identities above
using a tailored Sumcheck protocol [LFKN92], an interactive protocol that lets a prover
convince a verifier that ∑

~x∈{0,1}s
P (~x) = 0, (4)

where P is a polynomial in s variables with coefficients in a finite field, and the values 0,1
are understood as finite field elements.

The way Eq. (3) is reduced to a Sumcheck equation is by arithmetization. Assume that
n < 2s. First, the sequence j0, . . . , jn is interpolated to an s-variate polynomial j such
that

j(~i) = ji, (5)

where ~i denotes the integer i written in binary. Second, interpolate the 2s-variate polyno-
mial

L(~x, ~y) =

{
1 if x+ 1 = y,

0 otherwise.
(6)

Finally, Eq. (3) is equivalent to

Φ`
(
j(~x), j(~y)

)
· L(~x, ~y) = 0 ∀~x, ~y ∈ {0, 1}s. (7)

To convince the verifier, the prover commits to the polynomial in the left-hand side above.
The receiver responds with a random weighting polynomial w(x, y), and the prover uses
the Sumcheck protocol to prove that∑

~x∈{0,1}s

∑
~y∈{0,1}s

w(~x, ~y) · Φ`
(
j(~x), j(~y)

)
· L(~x, ~y) = 0. (8)

The fact that w(x, y) was chosen randomly after the prover had committed to Φ`(j(x), j(y))·
L(x, y) is enough to convince the verifier that Eq. (7) holds.

The actual protocol in [CSRHT22] is slightly more involved because it also convinces the
verifier that the sequence of j-invariants is chosen pseudo-randomly from a seed. Their
main motivation is to have a verifier that only takes O(log(n)) time to verify, thus their
last step is converting the Sumcheck to a SNARG [Mic00].

So far, we have only achieved soundness: the only difference between this protocol and
simply handing the list j0, . . . , jn to the verifier is the better asymptotic complexity of
verification. Adding zero-knowledge to a Sumcheck protocol can be done in a standard
way using polynomial commitments [KZG10], but this step is not analyzed in [CSRHT22]
because VDFs do not require it.

The concrete cost of the non-ZK protocol above is not analyzed in [CSRHT22]. Recent
work by Cong, Lai, and Levin [CLL23] shows how to express the conditions in equation (3)
as a rank-1 constraint system (R1CS). They then show how existing proof systems for
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R1CS can be applied, and give implementation results. Such systems give statistical zero-
knowledge and are post-quantum secure. Very practical results are obtained from using
the Aurora system of Ben-Sasson et al [BCR+19].

3.3 GMW protocol for graph isomorphism

Apart from the generic techniques in the previous section, all existing zero-knowledge
proofs of knowledge of an isogeny can be seen as variations of the classical [GMW91]
sigma protocol that proves knowledge of a graph isomorphism, i.e., a relabeling of the
vertices that turns one graph into another one (see Section 3.3). (Do not confuse the
graphs in this analogy with isogeny graphs; the graphs are replaced with elliptic curves
and the graph isomorphisms are replaced by isogenies.) More precisely, this is a sigma
protocol for the relation

R = {((G,H), φ) | φ is a graph isomorphism from G to H} .

1

2

34

5
φ−−−−−−−−→

A

B

C D

E

Fig. 2. Example of two isomorphic graphs. An isomorphism is given by the map φ that sends 1 to A, 2 to
B, and so on.

We denote the vertex sets of G and H by V (G) and V (H), and the set of edges of G and
H by E(G) and E(H). The sigma protocol goes as follows:

– Commitment phase. The prover picks a random bijection ρ from V (G) to a new
vertex set V ′ = {1, . . . , l} of size l = |V (G)| = |V (H)|. Then he computes a new set of
edges

E′ = {(ρ(x), ρ(y)) | ∀(x, y) ∈ E(G)} .
He sends the new graph G′ = (V ′, E′) to the verifier.

– Challenge phase. The verifier chooses a random challenge bit chall ∈ {0, 1} and sends
it to the prover.

– Response phase. If chall = 0 the prover sends ρ, otherwise the prover sends ρ′ =
ρ ◦ φ−1.

– Verification. The verifier accepts the proof if ρ(G1) = G′ in case chall = 0, and he
accepts if ρ′(G2) = G′ in case chall = 1.

It is relatively straightforward to check that this protocol satisfies the completeness, special
soundness, and perfect honest-verifier zero-knowledge properties.
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G1 G2φ

G′

ρ ρ ◦ φ−1

Fig. 3. The classic zero-knowledge proof of knowledge of a graph isomorphism.

3.4 Non-interactive ZK and signatures

Sigma protocols are interactive protocols between a prover and a verifier, and an important
feature of them is that the challenge is chosen by the verifier after the commitment has been
sent. In many applications, it is inconvenient to work with interactive protocols and so we
want non-interactive versions of these. One important application of non-interactive sigma
protocols for hard relations is the construction of digital signatures that are existentially
unforgeable under adaptive chosen-message attacks.

The best-known approach to making sigma protocol non-interactive is the Fiat-Shamir
heuristic. The basic idea of the Fiat-Shamir transform is to use a cryptographic hash
function H to compute the challenge, as chall = H(com). This can only be secure when
the challenge is a bit string of sufficient length such that the soundness error is negligible.
In this case, the protocol should still be sound, as the prover cannot choose chall in advance
and compute a commitment that hashes to that value.

In the context of digital signatures, the Fiat-Shamir transform is as follows. The public key
of the signature scheme is an instance x for a hard relation, and the secret key is a witness
w for the relation. To sign a message m, the prover runs the sigma protocol, except that
it replaces the challenge by the hash value chall = H(m,x, com), where m is the message
to sign. A signature then consists of the commitment and response messages. To verify
a signature, one simply recomputes the hash value and runs the verification algorithm
for the sigma protocol. Intuitively, this is secure because the security properties of the
hash function force the challenge to be a randomly distributed value generated after the
commitment, as in the normal execution of the sigma protocol. The n-special soundness of
the sigma protocol provides an extractor that, by re-winding a forger in the random oracle
model, allows to compute a witness from the signatures which are output by the forger.
The zero-knowledge property of the sigma protocol provides a simulator that allows to
generate signatures in the random oracle model on messages queried by the forger to the
signing oracle. Hence we have security against chosen message attacks.

In the context of post-quantum cryptography, the random oracle model should be replaced
by the quantum random oracle model. Fiat-Shamir signatures have also been proven secure
in this model under certain conditions [KLS18], and otherwise the Unruh transform offers
an alternative, albeit less efficient construction [Unr15].
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While the Fiat-Shamir heuristic allows to construct a signature from any sigma protocol
for a hard relation, not every Fiat-Shamir-style signature corresponds to a special-sound
sHVZK sigma protocol. There are two reasons for this. First, the computational assump-
tion(s) required for the hardness of forgery are not necessarily the same as the computa-
tional assumption of extracting a witness for a statement x. Second, in the case where the
signature scheme requires a computational assumption for zero-knowledge, there is a sub-
tle difference between the definition of computational zero-knowledge for sigma protocols
and the requirements for the simulator to generate signatures in the random oracle model
to answer signing queries. Precisely, computational ZK requires computational indistin-
guishability for every fixed x, whereas for signatures the probability space in the security
definition includes the random generation of x.

4 The CSIDH setting

In this section, we discuss two sigma protocols for the natural relation coming from group
actions in the specific case of CSIDH [CLM+18] (see Definition 3 below).

Recall that the action of a vector x ∈ Zr on E ∈ E`` is defined by

[x]E :=

(
r∏
i=1

li
xi

)
∗ E ,

where ∗ is the action of the ideal class group. Note that ∗ is computed using a sequence
of isogenies of degree `i corresponding to the prime ideals li.

Definition 3. The CSIDH relation is

RCSIDH = {(E,x) ∈ E``× Zr | [x]E0 = E} .

We now describe two sigma protocols for the relation RCSIDH. The first protocol is sim-
pler and more efficient, but it requires knowledge of the structure of the class group
cl(Z[

√
−p]) and the relations between the ideal classes li. This is a big disadvantage be-

cause (pre)computing this information is expensive, which means the first protocol can
only be used for small parameters, e.g., when the order of the class group is ≈ 2256,
see [BKV19].4 The second protocol is less efficient, but it does not require knowledge of
the class group, and can thus be used for larger class group actions.

4 The structure of a class group can be computed in quantum polynomial time, so this protocol could
be used with large class groups if anyone with access to a quantum computer is willing to compute a
class group and publish the result (which can be verified efficiently with classical algorithms). However,
unlike SeaSign, the asymptotic performance is not thought to be polynomial time.
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4.1 CSI-FiSh sigma protocol

We will call the first protocol the CSI-FiSh protocol, even though a variant was already
known well before the CSI-FiSh paper. It is a straightforward generalization of the graph
isomorphism protocol from Section 3.3 and was already described in the group actions
setting by Couveignes [Cou06], Rostovstev and Stolbunov [RS06], and in more detail by
De Feo and Galbraith in the CSIDH setting [DFG19]. An optimization of the protocol
that uses quadratic twists was added to the protocol in the CSI-FiSh paper [BKV19].

In this section, we assume5 for simplicity that the class group cl(Z[
√
−p]) is cyclic with

a generator g of known order N , and that we know the discrete logarithms a1, . . . , ak
of the ideal classes l1, . . . , lr with respect to g. This includes the case of the CSIDH-512
parameter set, proposed by [CLM+18], with r = 74, and where the first 73 small primes
`1, . . . , `73 are the first 73 odd primes, and where `74 = 587. For this choice of prime p, the
class group was computed by Beullens, Kleinjung, and Vercauteren [BKV19]. It turned
out that the class group is cyclic of order

N = 254652442229484275177030186010639202161620514305486423592570860975597611726191 ,

and that the ideal class of the first ideal l1 = (3,
√
−p−1) generates the entire class group.

The discrete logarithms of the remaining li with i > 1, as well as a reduced basis for the
relation lattice are publicly available.

Given an integer x ∈ Z/NZ and a curve E ∈ E`` we want to compute the action of gx

on E. Naively computing the action of g a total of x times would require an exponential
amount of time, so this is not efficient. Instead, since we know the discrete logarithms ai
such that gai = li for all i from 1 to r, we can use lattice algorithms to find a short vector
x ∈ Zr such that

∑r
i=1 aixi = x mod N . Once we have such a vector we can evaluate [x]E

efficiently. Asymptotically, this could be inefficient, because the lattice algorithms are too
slow or produce vectors that are too large, but in practice (at least for the CSIDH-512
parameter set) this is not a problem: for CSIDH-512 the lattice algorithms are much faster
than the isogeny computations, and the resulting vector x is close to optimal. In total,
computing the action of gx on E ∈ E`` for a random x ∈ Z/NZ is only 15% slower than
computing [x]E for a random x ∈ [−5, 5]74 (which is done in the CSIDH-512 key exchange
protocol). For more details, we refer to [BKV19].

With these details out of the way, we have a group action of Z/NZ on E`` (instead of a
group action of Zr). With a mild abuse of notation, we denote the action of x ∈ Z/NZ on
E ∈ E`` also by [x]E. Figure 4 shows the CSI-FiSh sigma protocol, which is an adaptation
of the sigma protocol for graph isomorphism to this group action (replacing the action of
Sn on graphs of order n by the action of Z/NZ on E``). However, a difference is that we
can make the challenge space slightly larger ({−1, 0, 1} instead of {0, 1}), by exploiting
the fact that if Et is the quadratic twist of E = [x]E0, then Et is Fp-isomorphic to [−x]E0.
A cheating prover who does not know x can win each round with a probability of 1/3.

5 All the results generalize to the more general case where the class group is not necessarily cyclic.
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The proofs that this sigma protocol is complete, 2-special sound for the relation RCSIDH,
and honest-verifier zero-knowledge are straightforward; we refer to [BKV19].

Prover((E, x)) Verifier(E)

b← Z/NZ
E′ ← [b]E0

E′
−−−−−→

c← {−1, 0, 1}
c←−−−−

r ← b− cx mod N
r−−−−→

If c = −1:
return E′ = [r]Et

If c = 0:
return E′ = [r]E0

If c = 1:
return E′ = [r]E

Fig. 4. The CSI-FiSh sigma protocol. Here, and in subsequent figures, the equal sign denotes the equality
predicate and the return statements return either true or false.

4.2 CSI-FiSh non-interactive proofs/signatures

We can obtain a non-interactive proof for the CSIDH relation by applying the Fiat-Shamir
transform to the sigma protocol of Fig. 4, after amplifying the soundness. The resulting
protocol is called CSI-FiSh (Commutative Supersingular Isogeny Fiat-Shamir). Since the
base sigma protocol has a challenge space of size 3 and is 2-special sound, the soundness
error is 1/3. This means we need to repeat the protocol k = dλ/ log 3e times to get λ bits
of security. Note that the verifier can compute the E′ himself, so they do not need to be
included in the proof. Therefore, a proof is of the form σ = {c(i), r(i)}i∈[k]. For λ bits of

classical security, we need N ≈ 22λ, so the total proof size is

k(2 + 2λ) ≈ 1.26λ2 bits .

We can use this non-interactive proof as a signature scheme. However, if the goal is to
obtain efficient signatures, it is possible to significantly reduce the signature size at the
cost of increasing the size of the public keys.

Protocol with larger challenge space. In a nutshell, the idea is that instead of
letting the public key be a single curve E, we let the public key consist of S curves
E1 = [x1]E0, . . . , ES = [xS ]E0, where the x1, . . . , xS are the new secret key. The new
sigma protocol is similar to that of Fig. 4, but has a challenge space {−S, . . . , S} (of size
2S+1), and in response to challenge c, the prover sends a response r, such that [r]Ec = E′
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if (c ≥ 0), or such that [r]Et−c = E′ in case c ≤ 0. One can show in the random oracle
model that a forger against this protocol can be turned into an algorithm that takes as
input the curves E1, . . . , ES and outputs a triple (i, j, x) such that 1 ≤ i < j ≤ S and
[x]Ei = Ej ; this is believed to be a hard problem but it is not the problem of computing
a witness for the relation RCSIDH so the protocol is not a proof of knowledge for this
relation. The advantage of this sigma protocol is that the challenge space is larger, so
the protocol only needs to be repeated λ/ log(2S + 1) times for soundness error 2−λ. The
signature size of the new signature is approximately

2

log(2S + 1)
λ2 bits .

However, the size of the public key is now 4Sλ. So the parameter S gives a trade-off
between small signatures (large S) and small public keys (small S). For more details (and
a technique based on Merkle trees to reduce the size of the public key) we refer to the
SeaSign or CSI-FiSh papers [DFG19,BKV19].

4.3 SeaSign sigma protocol

If the structure of the class group of Z[
√
−p] is not known, then we cannot efficiently

compute the action of Z/NZ on E``, so we cannot directly use the CSI-FiSh protocol.
The naive way to solve this problem would be to just work with the action of Zr instead:
To prove knowledge of x such that E = [x]E0, the prover picks b ∈ [−B,B]r uniformly
at random and sends [b]E0 to the verifier, who responds with a challenge c ∈ {−1, 0, 1},
and then the prover sends his response r = b− cx. Unfortunately, this sigma protocol is
not zero knowledge, because in the case c = 1, the response is biased towards −x, and if
c = −1, the response is biased towards x. After observing a number of executions of the
protocol, an attacker could just compute the average of −cr to get a good estimate of x.

In the CSI-FiSh case we chose b uniformly at random, so the response r = b+ cx mod N
does not reveal information about x. In the new protocol, since Zr is infinite, we cannot
choose b uniformly at random, so the response r = b + cx leaks information about x.

One approach to the problem is to sample b from a box [−δB, δB]r where δ > 1, which
is larger than the box [−B,B]r from which the secret x is sampled. The hope is that if
δB is much larger than B, then the distribution of b + x is close to the distribution of
b, so it does not leak information about x. Unfortunately, to make the two distributions
indistinguishable δB would need to be exponentially larger than B. This is impractical
because then evaluating the action of [b]E0 would take an exponential amount of time.

However the following observation can help us: The response r = b−cx can take values in
[−(δ+ 1)B, (δ+ 1)B], but r only leaks information about x if r is close to the boundary of
this box. For example, if in the c = 1 case one of the coefficients ri is equal to −(δ + 1)B,
then this reveals that xi = −B. Conversely, if r is sufficiently far away from the boundary,
then it does not leak information: If r ∈ [−(δ − 1)B, (δ − 1)B]r (which happens with
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probability
(
2(δ−1)B+1

2δB+1

)r
≈
(
1− 1

δ

)r
), then all values of x are consistent with r, and

the probability of seeing the response r is independent of x, so r does not reveal any
information about x.

Using this observation, we can design a sigma protocol with aborts (a concept introduced
by Lyubashevsky [Lyu09]) as follows: we pick δ large enough such that with reasonably
large probability (e.g. at least 1/2), the response r lies in the “safe” box [−(δ − 1)B, (δ −
1)B]r. Before the prover sends a response r they first check if r lies in [−(δ−1)B, (δ−1)B]r.
If this is the case, then the prover sends the response to the verifier, and otherwise, the
prover aborts the sigma protocol to avoid leaking information. This way, we guarantee that
the responses do not leak any information about x. We refer to [DFG19] for asymptotic
families of parameters that result in a polynomial-time protocol.

The protocol is summarized in Fig. 5. We can prove that the protocol aborts with prob-
ability ε close to 1 −

(
1− 1

δ

)r
, that the protocol is correct (i.e. if in an honest execution

the prover does not abort, then the verifier will accept), that the protocol has special
soundness, and that the protocol has non-abort honest verifier zero-knowledge, meaning
that non-aborting transcripts of the protocol can be simulated without knowledge of x.

Prover((E,x)) Verifier(E)

b← [−δB, δB]r

E′ ← [b]E0

E′
−−−−−→

c← {−1, 0, 1}
c←−−−−

r← b− cx
If r 6∈ [−(δ − 1)B, (δ − 1)B]r:

Prover aborts
r−−−−→

If c = −1:
return E′ = [r]Et

If c = 0:
return E′ = [r]E0

If c = 1:
return E′ = [r]E

Fig. 5. The SeaSign sigma protocol with abort.

4.4 SeaSign non-interactive proofs/signatures

Just like with a normal sigma protocol, the soundness of a sigma protocol with aborts can
be amplified by repeating the protocol k times in parallel. In this case, since the protocol
is 2-special sound we have k = dλ/ log 3e. However, this increases the probability of an
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abort from ε to 1 − (1 − ε)k. We can choose δ = kr, such that the probability that none
of the k repetitions of the sigma protocols abort is approximately (1− 1

δ )kr ≈ 1/e.

Then, we can transform the amplified sigma protocol into a signature scheme with the
Fiat-Shamir transform. If during the generation of a signature the prover aborts, then the
signer can just restart the signing algorithm. As long as the success probability is not too
small (e.g., ≈ 1/e if δ = kr) the signing algorithm will succeed after a reasonable number
of attempts.

Optimizing SeaSign. The technique of using multiple curves in the public key, which
we described in Section 4.2 can also be used to reduce the signature size of SeaSign (at
the cost of larger keys). In fact, this technique was introduced in the SeaSign paper.

Note that if c = 0, then the response is just r = b, which does not leak information about
x. Therefore, the prover does not need to abort if r lies outside of the “safe” box [−(δ −
1)B, (δ− 1)B]r. This optimization reduces the rate of aborts, which means we can reduce
δ, which in turn makes the signing algorithms faster (and the signatures slightly smaller).
This optimization was described in a paper by Decru, Panny, and Vercauteren [DPV19],
along with some additional optimizations which are beyond the scope of this survey.

5 The generic supersingular setting

We now move to settings that are specific to supersingular curves. We focus on the relations
Risog and Rdeg. As mentioned in Section 2.2 it suffices to consider elliptic curves defined
over a finite field Fp2 . Lacking a well behaved group action on the set of supersingular
curves, we have to get more creative in order to define secure protocols.

Along with the SIDH key exchange, De Feo, Jao and Plût [DFJP14] sketched the first
sigma protocol to prove knowledge of an isogeny between two supersingular curves over
Fp2 , provided p is an “SIDH prime”. We start by presenting this simple protocol, which
we refer to as DFJP. We highlight some issues with its soundness and zero-knowledge, and
explain how to fix them, following De Feo, Dobson, Galbraith and Zobernig [DFDGZ22].
Then, we present a recent generalization of DFJP which applies to any characteristic and
achieves statistical zero-knowledge [BCC+23]. Finally, we discuss some open questions.

5.1 The DFJP protocol

We are in the SIDH setting, hence p = 2n3mf − 1 and supersingular curves over Fp2
have group structure isomorphic to (Z/(p+ 1)Z)2. We can thus efficiently construct SIDH
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squares

E0 E1

E2 E3

φ

ψ ψ′

φ′
(9)

where the degrees of φ and ψ are coprime (usually degrees 2n and 3m respectively).

Suppose a prover wants to prove knowledge of an isogeny φ : E0 → E1 of degree d = 2n.
The idea of DFJP is simply to choose a random ψ of degree co-prime to the degree of
φ, commit to (E2, E3), and then reveal some, but not all, of ψ,ψ′, φ′. They observe that
revealing (ψ, φ′) or (ψ′, φ′) is insecure, as that would immediately reveal the secret φ by
pushing φ′ (or its dual) through ψ (or ψ′). However they note that revealing φ′ or (ψ,ψ′)
only appears to leak a limited amount of information on φ, and thus suggest the following
protocol:

1. The prover chooses a random cyclic group G = ker(ψ) of order D = 3m, sets E2 =
E0/G and E3 = E1/φ(G) and so constructs the commutative diagram (9), and sends
(E2, E3) to the verifier;

2. The verifier challenges with a random bit chall ∈ {0, 1};
3. The prover responds with (ker(ψ), ker(ψ′)) if chall = 0, and with ker(φ′) otherwise;

4. If chall = 0 the verifier checks that E2
∼= E0/ ker(ψ) and E3

∼= E1/ ker(ψ′), otherwise
it checks that E3

∼= E2/ ker(φ′).

There are two issues with the above idea. First, having binary challenges, it must be
repeated λ times to achieve a soundness error of 2−λ, and is thus not particularly efficient.
Second, as we explain next, it is not zero-knowledge, at least not for the Rdeg relation.

Remark 4. DFJP represent φ (resp. ψ) by a generator Kφ (resp. Kψ) of its kernel, and
then represent φ′ (resp. ψ′) by ψ(Kφ) (resp. φ(Kψ)). This representation conveys more in-
formation than necessary, and makes the protocol provably less secure. We instead assume
isogenies are represented by their whole kernel, which in practice is done by transmitting
a kernel generator chosen at random, or deterministically in a way that only depends on
the isogeny.

Zero Knowledge. The reason the DFJP protocol is not zero-knowledge is that the
pair (ker(ψ), φ(ker(ψ))) revealed when chall = 0 leaks enough information to recover the
witness φ. Indeed, thanks to [FP22, Lemma 1], three such pairs are sufficient to compute
a torsion basis 〈P,Q〉 = E0[D] and points P ′ = λφ(P ), Q′ = λφ(Q) for some λ such
that λ2 = 1 mod D. But λ = ±1 because D = 3m, hence the attacks of Castryck and
Decru [CD23], Maino and Martindale [MMP+23], and Robert [Rob23] apply and recover
φ.
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Note that D = 3m is important here. If, instead, D is taken to contain many distinct prime
factors, like in [FMP23], there are exponentially many possibilities for λ, and it is not cur-
rently known how to systematically apply the SIDH attacks to this case. Indeed, (roughly)
following De Feo, Jao and Plût, we can prove that their protocol is zero-knowledge for
the RM−SIDH relation, and is thus a non-trivial proof of knowledge for instances where
RM−SIDH is still believed to be hard.

There is also a second, less dramatic issue associated to the chall = 1 case. Indeed, the
response ker(φ′) = ψ(ker(φ)) appears to be correlated to φ, and thus hard to simulate
without knowledge of the witness. DFJP simulate ker(φ′) with a randomly chosen group,
thus reducing zero-knowledge to the hardness of the following computational problem,
stating that it is difficult to distinguish pairs of “parallel” isogenies from random pairs of
isogenies of the same degree.

Definition 4 (Decisional Supersingular Product Problem (DSSP)). Let E0 and
E1 be supersingular curves over Fp2 and let φ : E0 → E1 be an isogeny of degree d. Let D
be an integer coprime to d. The DSSP problem is, knowing φ, to distinguish between the
two following distributions:

– D0 = {φ′ : E2 → E3}, where ψ : E0 → E2 is uniformly sampled among all cyclic
D-isogenies starting from E0, and ker(φ′) = ψ(ker(φ)); and

– D1 = {φ′ : E2 → E3}, where ψ : E0 → E2 is sampled as above, and φ′ is a uniformly
sampled cyclic d-isogeny starting from E2.

Soundness. DFJP claim their protocol is sound for the weaker relation Rdeg. Unfortu-
nately, this claim was independently shown to be wrong by De Feo, Dobson, Galbraith
and Zobernig [DFDGZ22] and by Ghantous, Pintore and Veroni [GPV21], with explicit
counterexamples presented in both papers.

It is possible, and in fact very simple, to show that DFJP is 2-special sound for Risog, i.e.
that it is a proof of knowledge of an isogeny, without any further qualifications.

Lemma 2. The DFJP protocol is a 2-special-sound proof of knowledge for the relation
Risog =

{(
(E0, E1), φ

) ∣∣φ : E0 → E1 is an arbitrary isogeny
}

.

Proof. Consider an extractor that is given responses to two challenges for the same com-
mitment (E2, E3). The extractor has isogenies ψ : E0 → E2, ψ

′ : E1 → E3 and the isogeny
φ′ : E2 → E3. Then the isogeny ψ̂′ ◦ φ′ ◦ ψ is an isogeny from E0 to E1.

Additionally, Ghantous, Pintore, and Veroni [GPV21] prove that, in some circumstances,
DFJP is sound for Rdeg according to a weaker definition of 2-special soundness that
assumes the existence of a witness. In summary DFJP is a sound protocol for Risog, and
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is computationally ZK for RM−SIDH, which may or may not be a hard relation. While this
may be enough for some applications, e.g., signatures, it falls short in many ways.

5.2 A sigma protocol for Rdeg

De Feo, Dobson, Galbraith and Zobernig [DFDGZ22] modified the DFJP protocol to
achieve both soundness and ZK for the relation Rdeg.

The first fix concerns ZK: to avoid leaking the action of φ on E0[D], they move from
binary to ternary challenges, revealing only one of ψ, ψ′ or φ′ at a time. The idea of ternary
challenges for isogeny problems originates in the work of Boneh, Kogan and Woo [BKW20].
This is not sufficient: the commitment (E2, E3) still leaks information. To prevent this
leakage they resort to a statistically hiding commitment scheme C, to securely hide the
values of E2 and E3 until the response step.6

The second fix concerns soundness, and is more involved. The main obstacle to extracting
φ in DFJP is that the three sides ψ,ψ′, φ′ of a diagram do not necessarily imply the
existence of a fourth side of degree d:

E0 E1

E2 E3

??

ψ ψ′

φ′

The existence of φ parallel to φ′ is guaranteed if and only if ψ̂ and ψ̂′ are proven to be
parallel with respect to φ′. The key idea then is to “flip the SIDH square” and to treat
φ′ : E2 → E3 as the base for the square. By publishing torsion point information associated
to E2 and E3, one can prove that ψ̂ and ψ̂′ are indeed parallel.

Putting all ideas together gives the following protocol (also see Figure 6):

1. The prover:

– Chooses a random cyclic group G = ker(ψ) in E0 of order D, and constructs
the commutative diagram (9) (meaning: constructs φ′ : E2 → E3 with ker(φ′) =
ψ(ker(φ))).

– Chooses a random basis P2, Q2 of E2[D], computes P3 = φ′(P2), Q3 = φ′(Q2).

– Computes integers (a, b) such that ker(ψ̂) = 〈[a]P2 + [b]Q2〉.
– Sends commitments CL = C(E2, P2, Q2; rL), CR = C(E3, P3, Q3; rR) and C =

C(a, b; r) to the verifier;

2. The verifier challenges with a random value chall ∈ {−1, 0, 1};
6 Such a commitment scheme can be easily instantiated as C(m; r) = H(m‖r), where H is a hash function

and r is a sufficiently long random string.
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3. The prover opens:

– CL and C if chall = −1,

– CR and C if chall = 0,

– CL and CR if chall = 1, and additionally sends ker(φ′). Note that in practice one
usually sends a generator for ker(φ′), in which case this generator should be sampled
uniformly from the set of all generators of the subgroup;

4. The verifier checks that the opened commitments are well formed, and:

– that E0 = E2/〈[a]P2 + [b]Q2〉 if chall = −1,

– that E1 = E3/〈[a]P3 + [b]Q3〉 if chall = 0,

– that E3 = E2/ ker(φ′) and that P3 = φ′(P2), Q3 = φ′(Q2) if chall = 1.

Prover((E0, E1, d,D), φ) Verifier(E0, E1, d,D)

Choose random order-D cyclic group G ⊆ E0

Define ψ : E0 → E2 with kernel G and con-
struct the diagram (9)
Choose a random basis P2, Q2 of E2[D]
Set P3 ← φ′(P2), Q3 ← φ′(Q2)

Compute integers (a, b) such that ker(ψ̂) =
〈[a]P2 + [b]Q2〉
Choose random rL, rR, r
Set C ← C(a, b; r), CL ← C(E2, P2, Q2; rL),
CR ← C(E3, P3, Q3; rR)

CL,CR,C−−−−−−−−−→
chall← {−1, 0, 1}

chall←−−−−−−
If chall = −1: resp← opening of CL,C
If chall = 0: resp← opening of CR,C
If chall = 1: resp ← opening of CL,CR, and
ker(φ′)

resp−−−−−−→
Check that opened commitments are well
formed, and (P2, Q2) and/or (P3, Q3) are D-
torsion bases, and gcd(D, a, b) = 1
If chall = −1:

return E0 = E2/〈[a]P2 + [b]Q2〉
If chall = 0:

return E1 = E3/〈[a]P3 + [b]Q3〉
If chall = 1:

Check that # ker(φ′) = d
Construct φ′ from ker(φ′)
return E3 = E2/ ker(φ′)

and P3 = φ′(P2)
and Q3 = φ′(Q2)

Fig. 6. The sigma protocol for Rdeg.
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Proposition 1. The protocol of Figure 6 is a computationally ZK 3-special sound proof
of knowledge for the relation

Rdeg =
{(

(E0, E1, d), φ
) ∣∣φ : E0 → E1 is an isogeny of degree d

}
,

assuming DSSP is hard and C is a statistically hiding and computationally binding com-
mitment scheme.

Proof. (Sketch) Correctness is similar to DFJP. The only additional property to check
is that, if the SIDH square is generated honestly, one can efficiently find integers (c, d)
such that ker(ψ̂) = 〈[a]P2 + [b]Q2〉 and ker(ψ̂′) = 〈[a]P3 + [b]Q3〉. A generator for ker(ψ̂)
can be found by pushing E0[D] through ψ, then the integers (a, b) can be computed by
solving a generalized discrete logarithm in E2[D], which is easy because D is smooth.
Then ker(ψ̂′) = 〈[a]P3 + [b]Q3〉 follows from the fact that ψ and ψ′ are parallel, and thus
ker(ψ̂′) = φ′(ker(ψ̂)).

Zero Knowledge. The simulator for the case chall = −1 picks a random isogeny ψ : E0 →
E2, a random basis (P2, Q2), computes (a, b), and finally computes the commitments CL
and C as in the protocol. As the commitment CR will not be opened, it is replaced by a
random value.

The case chall = 0 is nearly identical, but with the goal of ensuring CR and C can be
opened in the protocol.

Finally, the case chall = 1 is simulated by taking a random ψ : E0 → E2, then a random
φ′ : E2 → E3 not necessarily parallel to φ, a random basis 〈P2, Q2〉 = E2[D], and points
P3 = φ′(P2) and Q3 = φ′(Q2). The commitment C will not be opened and is replaced by
a random value. Like in DFJP, this part of the simulation is only indistinguishable from
the real protocol assuming DSSP is hard.

Soundness. Because the protocol uses ternary challenges, we show it is 3-special sound.
Since the commitment scheme C is computationally binding, the openings of the commit-
ments match in each of the three valid transcripts. Hence, we extract ψ̂, ψ̂′ and φ′, with
the additional property that ker(ψ̂′) = φ′(ker(ψ̂)). Hence ψ̂ and ψ̂′ are parallel, proving
the existence of a d-isogeny φ with kernel ψ̂(ker(φ′)) parallel to φ′. ut

Note that a cheating prover can correctly answer any two of the challenges without knowing
the witness, so the soundness error for this protocol is 2/3.

Sigma protocols for RSIDH and RM−SIDH. In the same work [DFDGZ22], De Feo, Dobson,
Galbraith and Zobernig further modify the previous protocol to achieve a ZK proof of
knowledge for the relation RSIDH, i.e. the knowledge of an SIDH secret key. The idea
is, roughly, to run two correlated instances of the protocol, and to let the verifier check
that they are both consistent with the torsion point information that is part of the public
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key. While this protocol is not anymore relevant for SIDH/SIKE, a simple tweak yields a
proof of knowledge for RM−SIDH (see Basso [Bas23]), which is non-trivial in cases where
RM−SIDH is thought to be hard.

5.3 From computational to statistical zero-knowledge

The last obstacle standing between the protocol above and a fully zero-knowledge one is
the DSSP problem. To avoid such an assumption we would need to be able to simulate
the distribution of isogenies φ′ : E2 → E3 parallel to the witness φ : E0 → E1, without
having the knowledge of φ. This is difficult for the protocol of Figure 6 because the pair
(E2, E3) is far from being well distributed among all pairs of supersingular curves. More
precisely, the isogenies φ and φ′ are parallel with respect to an isogeny ψ of degree D � p.
Because D is so small, ψ is almost always uniquely determined by E2, and so is φ′. Hence,
after having chosen E2, computing the right φ′ is as hard as computing φ, thus we cannot
expect a simulator to be able to do it, if we believe Rdeg is hard.

In a recent work [BCC+23], a host of authors introduce a modification to the ternary-
challenge DFJP protocol that makes the distribution of φ′ : E2 → E3 easy to simulate.
The intuition is quite simple: by the expansion properties of the isogeny graph, if we
increase the degree D of ψ, the number of isogenies E0 → E2 also increases. Eventually,
we expect the number to become so large that any isogeny φ′ of degree d starting from
E2 becomes parallel to φ for many isogenies ψ.

To prove this formally, [BCC+23] defines a new 3-isogeny graph whose vertices are pairs
(E,G), where E is a supersingular curve and G ⊂ E a cyclic subgroup of order d. For
example, (E0, ker(φ)) represents φ (up to post-composition with an isomorphism), and
(E2, ker(φ′)) represents φ′. Two vertices (E,G) and (E′, G′) are connected if there is a
3-isogeny ψ : E → E′ such that ψ(G) = G′. Such graphs are called isogeny graphs with
Borel level structure in [BCC+23], and it is proved they are Ramanujan, which is exactly
what is needed to make the intuition above work.

Putting it all together yields the “meta-protocol” of Figure 7. For technical reasons that
will be explained below, this protocol cannot use the “flipping the SIDH square” trick of
Figure 6, and is thus only a proof of knowledge for Risog, like the DFJP protocol. However,
the response to challenge chall = 1 contains the degree d = deg(φ), thus the protocol can
only be zero-knowledge for Rdeg, as the authors show.

Proposition 2. The protocol of Figure 7 is a 3-special sound proof of knowledge for Risog,
assuming C is computationally binding. Furthermore, if C is statistically hiding, there
exists an explicit constant γ > 1, depending only on the security parameter, such that it is
statistically zero-knowledge for Rdeg.

One obstacle to efficient implementation of this idea in practice is that the degree D = 3m

is way too large for the curves to have rational points of order D defined over Fp2 , or even
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Prover((E0, E1, d, γ, φ)) Verifier(E0, E1, d, γ)

Let m be such that m/ log(m) ≥ γpd
Choose random cyclic group G ⊆ E0

of order D = 3m

Define ψ : E0 → E2 with kernel G and con-
struct the diagram (9)
Choose random rL, rR
CL ← C(E2; rL), CR ← C(E3; rR)

CL,CR−−−−−−−−→
chall← {−1, 0, 1}

chall←−−−−−−
If chall = −1:

resp← opening of CL, and ker(ψ)
If chall = 0:

resp← opening of CR, and ker(ψ′)
If chall = 1:

resp← opening of CL,CR, and ker(φ′)
resp−−−−−−→

Check that opened commitments are well
formed and kernels have the expected size
If chall = −1:

return E2 = E0/ ker(ψ)
If chall = 0:

return E3 = E1/ ker(ψ′)
If chall = 1:

return E3 = E2/ ker(φ′)

Fig. 7. A “meta-protocol” for Risog.
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over an extension field of polynomial degree. Instead of using a single kernel generator to
represent and compute isogenies, [BCC+23] observes that SIDH squares can be efficiently
“glued” together to form what they call SIDH ladders. The protocol response provides
information about the intermediate curves and isogenies in the left or right hand sides of
the ladder. This is the reason why the “flipping the SIDH square” idea cannot be used
anymore. We picture such a ladder in Figure 8.

E0 E1

• •

• •

E2 E3

φ

φ′

ψ ψ′

Fig. 8. An SIDH ladder.

Additionally, one may glue SIDH squares both vertically and horizontally, thus freeing the
protocol from the constraint of having the isogeny degrees divide p+ 1.

5.4 SIDH signatures

The Fiat-Shamir heuristic can be used to make sigma protocols non-interactive. The basic
DFJP protocol from Section 5.1 has been used to construct a signature scheme in Yoo et
al [YAJ+17] and [GPS20], based on the hardness of DSSP and SIDH key exchange. These
schemes are no longer secure, due to the attacks on SIDH, but it is fairly straightforward
to construct secure signatures based on any of the protocols with ternary challenges above.

5.5 Questions and perspectives

We now discuss some of the limitations of the protocols above.

Efficiency. A 3-special sound protocol comes at a cost: to achieve soundness error of 2−λ,
one needs λ/(log2(3)− 1) iterations, each iteration computing one or more SIDH squares.
A major open problem is whether there exist protocols for any of these relations with
small soundness error, possibly exponentially small. SQISign, presented in Section 6.2,
will provide a beginning of an answer for the relation Risog.
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Statistical ZK for Rdeg. Currently, there appears to be a tension between soundness
and zero-knowledge for Rdeg: the “flipping the SIDH square” technique of Section 5.2
is incompatible with the “SIDH ladders” of Section 5.3. Indeed, in an SIDH ladder the
D-torsion is not anymore defined over the base field, and it is thus not possible to define
the torsion bases (P2, Q2), (P3, Q3) used to prove special soundness for Rdeg.

It is an interesting question to find alternative representations for D-torsion bases that
are compatible with SIDH ladders.

ZK for Risog All the protocols we presented so far appear to leak deg(φ) to the verifier
when responding with the isogeny φ′ parallel to φ. It seems thus difficult to make them
zero-knowledge for Risog, rather than Rdeg.

6 GPS and SQISign

The GPS and SQISign protocols we describe in this section work with the full supersingular
isogeny graph (unlike the CSIDH-based protocols of Section 2.4 which only consider curves
defined over Fp), and use the quaternion algorithms described in Section 2.5 to design a
GMW-like protocol which does not rely on a SIDH diagram. The GPS protocol provides
steps towards a general solution to proving the relation Risog. In particular, the GPS
protocol achieves statistical ZK, and no auxiliary points or other information are needed
to obtain zero-knowledge.

6.1 GPS sigma protocol

The GPS protocol, due to Galbraith, Petit, and Silva [GPS20], heavily uses the ideas
of Section 2.5. In particular, we assume that E0 is a special supersingular curve such as
y2 = x3+x. We wish to prove knowledge of an isogeny φ : E0 → E1, and will use properties
of End(E0). So our protocol proves Risog for any field, but in the special case where E0 is
a curve with known endomorphism ring.

To prove knowledge of an isogeny between two “arbitrary” curves E′ and E′′ one can
apply this protocol if one knows an isogeny from E0 to E′ (and hence one can construct
an isogeny from E0 to E′′). However, if E′ and E′′ are curves whose endomorphism ring
is not known to the prover then the methods of this section cannot be applied.

The sigma protocol is as follows. First, fix parameters B, N1, N2 such that Nk =
∏
i `
ek,i
k,i ,

where `
ek,i
k,i < B, gcd(N1, N2) = 1, log(N2) >

7
2 log(p), and for each k ∈ {1, 2}

∏
i

(
2
√
`k,i

`k,i + 1

)ek,i
< (p1+ε)−1.
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This last formula is needed for uniform mixing of random walks in the isogeny graph. We
let I be the left O0-ideal corresponding to the secret isogeny φ : E0 → E1.

To construct the commitment com, perform a random isogeny walk of degree N1 from the
curve E1 to a curve E2 and set com = j(E2). The isogeny ψ : E1 → E2 can be represented
in many ways (e.g., kernel points of order `eii or a sequence of j-invariants). Let J be the
left-End(E1)-ideal corresponding to ψ. Let the challenge be chall ∈ {0, 1}. When chall = 0
respond with ψ. When chall = 1 the KLPT algorithm is needed. We compute the ideal IJ ,
which corresponds to ψ ◦φ. Then run KLPT to get an equivalent O0-ideal J ′ of norm N2.
The response is the isogeny ψ′ : E0 → E2 corresponding to J ′. The verifier checks that
the response is an isogeny from E1−chall to E2. The protocol is repeated until the verifier
is convinced.

The special soundness of the protocol is easy to prove. Given valid responses ψ′ and ρ to
the challenges 0 and 1 for the same commitment, the extractor can compute an isogeny
ρ◦ ψ̂′ from E0 to E1. Note that this isogeny is a priori not the same one used by the prover
to create the responses, but this is irrelevant to special soundness7.

The three key requirements for this to be zero-knowledge and practical are that:

1. E2 is close to uniformly distributed in the isogeny graph.

2. The isogeny ψ′ is independent of φ.

3. The isogenies ψ and ψ′ in the response have a compact representation and can be
computed efficiently.

The first two properties are needed for zero-knowledge. The simulator, who knows the
challenge but who does not know φ or I, will behave as in the honest protocol for the
case chall = 0, but when chall = 1 will take a random isogeny from E0 to E2 and then
run KLPT to get an ideal J ′ as in the real protocol. It is necessary that the curves E2

generated by the simulator when chall = 1 are distributed close to identically as in the
original protocol. This is the purpose of the first requirement. It is also necessary that the
isogenies ψ′ are distributed identically in both cases. We refer to [GPS20] for the details.

As the protocol uses one-bit challenges, it must be repeated λ times to obtain a scheme with
2−λ soundness error. The protocol can be made non-interactive and used as a signature
scheme by the Fiat-Shamir transform. While polynomial time in theory, the resulting
signature scheme is considered impractical.

7 Additionally, both isogenies can in fact be mapped to the same “canonical” one (for example, using LLL
to compute a minimal norm ideal in the ideal class, followed if needed by some deterministic version of
KLPT to get a powersmooth norm ideal).
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6.2 SQISign

A key source of inefficiency in GPS signatures (and other signatures based on isogenies)
is the need to repeat the zero-knowledge protocol multiple times to reduce the soundness
error. This comes from the fact that the protocol has single bit challenges.

To increase the challenge space, the SQISign protocol by De Feo, Kohel, Leroux, Petit,
and Wesolowski [DFKL+20] modifies the basic GMW-based protocol as follows. Given a
secret isogeny φ : E0 → E1, the prover first computes a random isogeny ψ : E0 → E2

and commits to E2. Then instead of challenging the prover with a single bit, the verifier
computes and sends a third random isogeny ϕ : E2 → E3, sends it to the prover, and
challenges the prover to compute an isogeny σ : E1 → E3 (see Figure 9).

E0 E1

E2EA

τ

ψ

ϕ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Fig. 9. A picture of SQIsign’s identification protocol [DFKL+20]

A naive version of this protocol is not secure: A dishonest prover could compute the
commitment by computing a random isogeny ψ′ from E1. Call E2 the image curve. Since
the verifier sends an isogeny ϕ the prover can respond with ϕ ◦ ψ′ : E1 → E3. The way to
prevent this is for the verifier to check that ϕ̂ ◦σ has cyclic kernel; we refer to [DFKL+20]
for the details. The protocol also imposes conditions on the isogeny φ : E0 → E1, namely
that E0 has known endomorphism ring and that φ has “medium” prime degree. Finally,
the protocol is only computationally ZK based on an ad hoc assumption. Hence SQISign
is currently far from a general solution to the relation Risog.

Special soundness relies on the problem of computing an endomorphism of E1, a problem
equivalent to computing an isogeny between two random supersingular curves [GPS20,EHL+18,Wes22].

Indeed, given two valid responses to two challenges for the same commitment, an extrac-
tor can compose both challenges and responses in an appropriate way to compute an
endomorphism of E1 (see [DFKL+20]).8

The astute reader will have noticed that computing σ now requires to re-randomize an
isogeny between two random supersingular curves, whereas the tools described in Sec-
tion 2.5 assumed one of the curves was “special”, i.e. with known and very special endo-
morphism ring. One can trivially generalize these tools to the general case (in fact this was

8 A similar approach in the case of graph isomorphism would provide the extractor with an automorphism
of one graph. This does not immediately solve the graph isomorphism problem.
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already done in [KLPT14]), but in a way that, used in the above signature scheme, will
always leak the secret (the isogeny σ will always go through the curve E0). The key contri-
bution in [DFKL+20] is a new generalization of the KLPT algorithm which conjecturally
avoids this problem.

SQISign signatures are an order of magnitude smaller than all other post-quantum isogeny-
based signature schemes in the signature-plus-public-key metric. Key generation and veri-
fication time are reasonable (at 0.6s and 50ms respectively) but signing takes 2.5s, mostly
because of the conversions between isogenies and ideals (which are polynomial time but
slow in practice). An improved version of the protocol obtained a more than two-fold
speedup on signing time [DFLLW23]. It is an open question whether SQISign can be fast
enough for many applications.

Further work should aim at improving the signing time, but also to address some out-
standing security concerns:

– SQISign is not known to be secure in the quantum oracle model. This is because the
sigma protocol does not have any of the properties that allow proving the security of
Fiat-Shamir signatures in this model [KLS18]. Possible solutions include switching to
the Unruh transform [Unr15] (at some efficiency cost) or developing an ad hoc proof.

– The SQISign security proof does not provide an extractor that outputs an isogeny
from E0 to E1. So it is not technically a proof of knowledge for Risog. However, the
extractor does return a “random” endomorphism on E1.

Heuristically, O(1) independent endomorphisms should generate the whole endomor-
phism ring, and one can build [EHL+20] a k-special sound extractor that computes the
whole endomorphism ring (for k = O(1)). Proving this formally remains an open prob-
lem. Once End(E1) is known then an isogeny from E0 to E1 can be computed [Wes22].

– Some issues with the zero-knowledge of SQISign were pointed out in [DFLLW23], and
tweaks to the algorithms to avoid the issue are provided.

– The security definition for computational honest verifier zero-knowledge in Definition 2
allows the distinguisher to be provided with a witness, but the arguments for the
computational honest verifier zero-knowledge property in [DFKL+20] do not apply in
this case. Indeed with a witness one can easily distinguish between the response isogeny
and a random isogeny of the same degree between the same two curves (as a quick
study of [DFKL+20, Figure 3] shows). One approach to solve this problem could be to
randomize the output of the EquivalentPrimeIdeal and/or the particular secret isogeny
τ used in the generalized KLPT algorithm [DFKL+20]. However, both approaches will
increase the norm of the ideal that is output by this algorithm, and hence they will
further slow down signature generation. We also leave the security analysis of these
approaches to further work.
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7 Conclusion and open problems

We have explained that proving knowledge of an isogeny is an important problem with
several strong motivations in post-quantum cryptography. We have given a number of
sigma protocols for different relations and contexts. Generally, the case of group actions
is simpler than the more general isogeny problems.

One of the biggest open problems in this area is to develop more efficient protocols by
lowering the soundness error. In the CSIDH setting, we have signature schemes that have
improved soundness error, but those approaches do not solve the problem for the original
relation Risog we are interested in. The only example of a protocol with negligible sound-
ness error for a single round is SQISign. Any progress on reducing the soundness error
would have major implications on the efficiency of isogeny signatures.

Another major open problem is to design a protocol for the relation Risog that can be
applied when End(E) is not known and that does not leak the degree of the witness. The
GPS scheme [GPS20] only works when End(E) is known, while SQISign is currently not
a proof of knowledge.

Further open questions that we have discussed in the paper include: How effective are
general tools for ZK proofs when applied to isogeny problems? Can zero-knowledge of
SQISign (or a variant of it) be proved based on more standard assumptions? Are there
ways to get signatures with a tight reduction to (relatively) standard assumptions?
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Normale Supérieure, Ser. 4, 2(4):521–560, 1969. 2.4, 2.5
Wes22. Benjamin Wesolowski. The supersingular isogeny path and endomorphism ring problems are

equivalent. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 1100–1111, 2022. 6.2

YAJ+17. Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev. A
post-quantum digital signature scheme based on supersingular isogenies. In International
Conference on Financial Cryptography and Data Security, volume 10322 of Lecture Notes in
Computer Science, pages 163–181. Springer, Springer, 2017. 5.4

39


	Proving knowledge of isogenies – A survey

