
ParBFT: Faster Asynchronous BFT Consensus with a Parallel
Optimistic Path

Xiaohai Dai*†

Huazhong University of Science and Technology
Wuhan, China

Bolin Zhang*

Zhejiang University
Hangzhou, China

Hai Jin†

Huazhong University of Science and Technology
Wuhan, China

Ling Ren
University of Illinois at Urbana-Champaign

Urbana, USA

ABSTRACT
To reduce latency and communication overhead of asynchronous
Byzantine Fault Tolerance (BFT) consensus, an optimistic path is
often added, with Ditto and BDT as state-of-the-art representatives.
These protocols first attempt to run an optimistic path that is typi-
cally adapted from partially-synchronous BFT and promises good
performance in good situations. If the optimistic path fails to make
progress, these protocols switch to a pessimistic path after a time-
out, to guarantee liveness in an asynchronous network. This design
crucially relies on an accurate estimation of the network delay Δ to
set the timeout parameter correctly. A wrong estimation of Δ can
lead to either premature or delayed switching to the pessimistic path,
hurting the protocol’s efficiency in both cases.

To address the above issue, we propose ParBFT, which employs
a parallel optimistic path. As long as the leader of the optimistic
path is non-faulty, ParBFT ensures low latency without requiring an
accurate estimation of the network delay. We propose two variants
of ParBFT, namely ParBFT1 and ParBFT2, with a trade-off between
latency and communication. ParBFT1 simultaneously launches the
two paths, achieves lower latency under a faulty leader, but has a
quadratic message complexity even in good situations. ParBFT2
reduces the message complexity in good situations by delaying the
pessimistic path, at the cost of a higher latency under a faulty leader.
Experimental results demonstrate that ParBFT outperforms Ditto or
BDT. In particular, when the network condition is bad, ParBFT can
reach consensus through the optimistic path, while Ditto and BDT
suffer from path switching and have to make progress using the
pessimistic path.

*Work was done when the first two authors were at University of Illinois at Urbana-
Champaign.
†Xiaohai Dai and Hai Jin are with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and System Lab, Cluster
and Grid Computing Lab, School of Computer Science and Technology, Huazhong
University of Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623101

CCS CONCEPTS
• Blockchain and Distributed Systems→ Consensus protocols.

KEYWORDS
Byzantine fault tolerance, Byzantine generals, consensus, blockchain

ACM Reference Format:
Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren. 2023. ParBFT: Faster Asyn-
chronous BFT Consensus with a Parallel Optimistic Path. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’23), November 26–30, 2023, Copenhagen, Denmark. ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/3576915.3623101

1 INTRODUCTION
Over the past decade, the increasing popularity of blockchain [37,
54, 65] has brought considerate attention back to the Byzantine Fault
Tolerance (BFT) consensus protocols [33, 64, 66]. In general, a
BFT consensus protocol ensures multiple replicas reach agreement,
even if a fraction of them may behave arbitrarily (called Byzantine
replicas) [43]. BFT consensus protocols can be roughly divided into
three categories based on their timing assumptions: synchronous
ones, partially synchronous ones, and asynchronous ones. Among
the three categories, asynchronous protocols offer the strongest ro-
bustness to unpredictable network conditions [26, 36, 49]. However,
asynchronous BFT protocols are rarely deployed in production for
performance reasons [45]. More specifically, compared to their syn-
chronous and partially synchronous counterparts, asynchronous BFT
protocols have higher latency (larger number of rounds) and higher
communication overheads, even when all replicas are non-faulty and
the network condition is good.

To remedy the inferior performance of asynchronous BFT, a num-
ber of works introduce an optimistic path [42, 56], with Ditto [32]
and BDT [45] as recent representatives. At a high level, these proto-
cols typically have two paths: an optimistic partially synchronous
path driven by a leader and a pessimistic path that works in asyn-
chrony. The system first attempts to run the optimistic path, which
has low latency and smaller communication overhead. If the opti-
mistic path fails to make progress, the protocol falls back to the
pessimistic path after a timeout event. After one or more agreement
instances on the pessimistic path, the protocol will switch back to
the optimistic path. Since only one path is being executed at any
given time, we call this design the serial-path paradigm.

The serial-path paradigm has several drawbacks. First, it requires
a good estimation of network latency, usually denoted Δ, to set the

https://doi.org/10.1145/3576915.3623101
https://doi.org/10.1145/3576915.3623101

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

Table 1: Consensus performance comparison. As for the serial-path protocols (i.e., Ditto and BDT), the performance is measured with
the protocol starting from the optimistic path, which is the default in these protocols. The number of total replicas is denoted as 𝑛, and

the actual number of faulty replicas is denoted as 𝑡 .

Δ is needed

Latency Message complexity

Non-faulty leader
Faulty leader

Non-faulty leader
Faulty leader

𝛿 ≤ Δ 𝛿 > Δ 𝛿 ≤ Δ¶ 𝛿 > Δ

Ditto [32] Yes 5𝛿 2Δ + 16𝛿 2Δ + 16𝛿 𝑂 (𝑡𝑛) 𝑂 (𝑛2) 𝑂 (𝑛2)
BDT [45] Yes 5𝛿 2Δ + 25𝛿 2Δ + 25𝛿 𝑂 (𝑡𝑛) 𝑂 (𝑛2) 𝑂 (𝑛2)
ParBFT1 No 5𝛿 5𝛿 22𝛿 𝑂 (𝑛2) 𝑂 (𝑛2) 𝑂 (𝑛2)
ParBFT2 Yes 5𝛿 5𝛿 2Δ + 25𝛿 𝑂 (𝑡𝑛) 𝑂 (𝑛2) 𝑂 (𝑛2)

* Both BDT and ParBFT can be implemented using various protocols for the two paths. We use provable broadcast protocols to implement the optimistic path,
which is identical to Bolt-sCAST described in [45], and choose sMVBA [35] for the pessimistic path. We use an ABA protocol adapted from [1], whose
worst-case latency is 9𝛿 in expectation.

** When the optimistic path uses the chain structure, the timeout parameter in Ditto/BDT/ParBFT2 is set to 2Δ, an upper bound on the round trip delay.

timer accordingly. It is quite challenging to get the parameter Δ
right. When the leader is Byzantine, the optimistic path cannot make
any progress, and the fallback to the pessimistic path should ideally
be launched as soon as possible. A large value of Δ will delay the
fallback and hurt latency. On the contrary, if Δ is mistakenly set too
small, the timeout and fallback events will be triggered prematurely,
potentially disrupting a non-faulty leader on the optimistic path who
is about to make progress.

Moreover, when to switch back to the optimistic path is also a
tough decision. If the switch is performed too late since the network
has healed, the protocol has unnecessarily stayed on the pessimistic
path for too long. Conversely, switching back too hastily while the
network condition remains poor is meaningless and wasteful as the
optimistic path still cannot make progress. This may even cause
frequent back-and-forth switches, making the protocol even slower
than simply running the pessimistic path alone. For some contexts,
Ditto [32] opts for the hasty approach and performs the switch back
whenever a single agreement instance on the pessimistic path is
finished. BDT [45] similarly uses a hasty switch in their pseudocode.
Although BDT mentions that other heuristics can be used for the
switch back, designing these heuristics is also a tricky task.

To address these challenges regarding path switches, we propose
an alternative paradigm for adding optimistic paths to asynchronous
BFT: running the two paths in parallel. At a high level, by running
the two paths in parallel, replicas can reach a decision as soon as
one of the two paths succeeds. This enables the protocol to grace-
fully handle both good and bad network conditions and avoid the
drawbacks of the serial-path paradigm. To be more concrete, we
propose ParBFT that runs a partially synchronous optimistic path
and an asynchronous pessimistic path in parallel. The two paths may
each produce an output (called candidates). ParBFT then leverages
an Asynchronous Binary Agreement (ABA) algorithm to reach an
agreement between these two candidates. The last key design ele-
ment of ParBFT is a shortcut mechanism: if the leader is non-faulty
and the network is good, all replicas will decide at the end of the
optimistic path and directly advance to the next instance, without
the need to execute the ABA algorithm or even the pessimistic path.
This makes ParBFT’s performance in the good situation similar to
the serial-path paradigm.

We present two variants of ParBFT, which we call ParBFT1 and
ParBFT2, that give a trade-off between latency and communica-
tion. ParBFT1 launches the two paths simultaneously; this variant
offers better latency under a Byzantine leader but suffers from qua-
dratic message complexity even in a good situation. On the contrary,
ParBFT2 delays the launch of the pessimistic path, and as a result,
reduces the message complexity to linear in a good situation at the
cost of higher latency under a Byzantine leader.

As shown in Table 1, prior works Ditto [32] and BDT [45] achieve
a low latency of 5𝛿 (𝛿 represents the actual network delay) only when
the leader is non-faulty and the parameter Δ is estimated correctly
(i.e., 𝛿 ≤ Δ). In contrast, ParBFT1 and ParBFT2 achieve a good
latency of 5𝛿 as long as the leader of the optimistic path is non-faulty,
regardless of whether Δ is estimated correctly or not. As mentioned,
ParBFT1 makes a sacrifice on the message complexity in the good
situation: when the leader is non-faulty and the estimation of Δ is
correct, ParBFT1 incurs quadratic communication. ParBFT2 avoids
this problem by delaying the launch of the pessimistic path by 5Δ
time: this reduces the communication complexity in the good case
back to𝑂 (𝑡𝑛)1 (𝑡 and 𝑛 represent the number of actual faulty replicas
and total replicas, respectively) but increases the latency under a
Byzantine leader by that amount.

We also note that while ParBFT1 does not need the parameter
Δ at all, ParBFT2 brings back the parameter of Δ. But unlike prior
works, the penalty for an incorrect estimation of Δ is much smaller.
Concretely, when Δ is set too small, i.e., Δ < 𝛿 , ParBFT2 only
incurs an increase in the communication cost, while prior works
incur much longer latency, increased communication cost, and the
potential problem of back-and-forth switching.

We implement both variants of ParBFT and conduct extensive
experiments to evaluate their performance in comparison with prior
works. Our implementations use the chain-based paradigm in which
different agreement instances are pipelined to improve the through-
put. The experiments are divided into three parts, corresponding
to three different scenarios. The first part mimics a good situation

1A number of prior works [32, 45, 67] claim 𝑂 (𝑛) communication in the good case.
But upon closer inspection, they ignored the cost of retrieving the committed data.
In more detail, a replica that commits on the linear optimistic path has to respond to
retrieval requests from other replicas who have not, or claim to have not, received the
committed data. This adds a factor of 𝑡 to the communication overhead, since each
faulty replica can send such a retrieval request to all non-faulty replicas. See [58, 63]
for a more thorough discussion on this issue.

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path CCS ’23, November 26–30, 2023, Copenhagen, Denmark

where the leader is non-faulty and the network is good. In the second
part, we simulate a slow network by intentionally delaying messages,
while assuming a non-faulty leader. Finally, in the third part, we
introduce a faulty leader by delaying proposals from the leader.

The experimental results demonstrate that, under good situations,
ParBFT2 performs comparably well to Ditto and BDT, as all three
protocols can commit through the optimistic path. As expected, as
the number of replicas increases, the performance of ParBFT1 de-
teriorates due to its quadratic message complexity. In the situation
of a slow network, where the delay is set larger than Δ, ParBFT1
and ParBFT2 exhibit significantly lower latency compared to Ditto
and BDT. ParBFT achieves lower latency because it can commit
through the optimistic path even if the network delay is wrongly
estimated, whereas Ditto or BDT must switch to the pessimistic
path. In the case of a faulty leader, all protocols will commit through
the pessimistic path. However, ParBFT1 offers lower latency than
either Ditto, BDT, or ParBFT2, as it launches the pessimistic path
immediately without waiting for a timeout event.

To sum up, we make the following contributions in this paper. We
first identify major limitations of current serial-path asynchronous
protocols: they rely on accurate estimates of network latency to
appropriately switch between the two paths. We then propose a new
paradigm called ParBFT that runs the two paths in parallel to address
these limitations. Two variants of ParBFT are presented, offering a
trade-off between latency and communication overhead. Finally, we
implement our protocols and conduct comprehensive experiments to
demonstrate their advantages.

The remainder of this paper is structured as follows. In Section 2,
we introduce the model used in our work and present some prelimi-
naries that will serve as building blocks to our protocols. Section 3
outlines the main idea of parallel paths by describing a preliminary
version named ParBFT0. In Section 4 and Section 5, we elaborate on
the two practical variants of ParBFT that provide a trade-off between
latency and communication overhead. More implementation details
(including chain-based versions of ParBFT) and evaluation results
are presented in Section 6. We discuss related work in Section 7 and
conclude the paper in Section 8.

2 MODELS AND PRELIMINARIES
2.1 Models and definitions
We consider a distributed system consisting of 𝑛 = 3𝑓 + 1 replicas,
among which up to 𝑓 can misbehave in an arbitrary manner, i.e.,
they can be Byzantine. Each replica has a unique identity denoted as
𝑝𝑖 (0 ≤ 𝑖 < 𝑛). All the Byzantine replicas are under the control of
an adversary who can coordinate their actions. Each pair of replicas
is connected through a reliable link, which will eventually deliver
every message, but the network is asynchronous, meaning that any
message can be delayed by the adversary arbitrarily. Leaders of the
optimistic path are selected by a predetermined order, e.g., simple
round-robin.

We assume a public-key infrastructure (PKI), which allows each
replica 𝑝𝑖 to be identified by a public key 𝑝𝑘𝑖 , and all the public
keys are known to all replicas. Corresponding to 𝑝𝑘𝑖 , each replica
holds its private key 𝑠𝑘𝑖 . We also assume a threshold cryptosystem
is established among the replicas, possibly via Distributed Key Gen-
eration protocols [3, 23, 40], to enable threshold signatures. We also

assume a collision-resistant hash function. Finally, we assume that
the adversary has limited computational resources and cannot break
the PKI, the threshold cryptosystem, or the hash function.

For performance evaluation, we consider two types of situations:
good situations and bad situations. A good situation is when the
leader of the optimistic path is non-faulty and (if applicable) the
actual network delay 𝛿 is not greater than the estimated parameter
Δ. On the contrary, a bad situation is when the designated leader is
faulty or 𝛿 is larger than Δ. It is worth noting that since there is no
parameter of Δ in ParBFT0 or ParBFT1, the good and bad situations
depend solely on whether the designated leader is non-faulty.

A consensus protocol maintains a replicated log among all non-
faulty replicas. Each entry in the log corresponds to a request or some
submitted data from a client. Henceforth, we use the terms “request”
and “log entry” interchangeably. A correct consensus protocol must
guarantee safety and liveness, which are defined as follows:

• Safety: If two non-faulty replicas commit two data 𝑑 and 𝑑′

at the same log position, then 𝑑 must be equal to 𝑑′.
• Liveness: If a client proposes a request 𝑟𝑒𝑞, 𝑟𝑒𝑞 will eventu-

ally be committed.

2.2 Preliminaries
In the design of ParBFT, we make use of Validated Asynchro-
nous Byzantine Agreement (VABA) protocols to implement the pes-
simistic path and Asynchronous Binary Agreement (ABA) protocol
to decide between the outputs from the two paths. We utilize ABA in
a black-box manner and slightly modify VABA to enable it to output
a proof for the decided value. We refer to the modified VABA as
Provable VABA (PVABA). In this section, we present the interfaces
of ABA and PVABA and show how to modify a VABA protocol to a
PVABA protocol.

2.2.1 ABA interface. An ABA protocol is used to reach consen-
sus on a single bit [55, 62]. In an ABA protocol, each replica inputs
a bit value of 0 or 1, and ultimately, each non-faulty replica will
decide on the same bit value as the output. To be more precise, an
ABA protocol must satisfy the following three properties:

• Validity: If a non-faulty replica decides on a value 𝑣 , 𝑣 must
be input by at least one non-faulty replica.
• Agreement: If two non-faulty replicas decide on two values
𝑣 and 𝑣 ′ respectively, then 𝑣 = 𝑣 ′.
• Termination: If all non-faulty replicas complete inputting

values to the protocol, every non-faulty replica will eventually
decide on a value.
• Integrity: No non-faulty replica decides twice.

Over the past few decades, various ABA protocols have been
proposed [1, 8, 30, 51]. We will use ABA in a black box.

2.2.2 VABA & PVABA interfaces. First, we describe the original
VABA interface. In a VABA protocol, each replica is allowed to
input an arbitrary value, and the protocol will eventually decide on a
value [15]. To prevent the protocol from deciding on an invalid or
trivial value, an external validation predicate 𝑄 is defined, and the
output value must satisfy 𝑄 . More formally, a VABA protocol must
satisfy the properties as follows:

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

• External-validity: If a non-faulty replica decides on a value
𝑣 , 𝑄 (𝑣) must be True.
• Agreement: If two non-faulty replicas decide on two values
𝑣 and 𝑣 ′ respectively, then 𝑣 = 𝑣 ′.
• Termination: If all non-faulty replicas complete inputting

values to the protocol, every non-faulty replica will eventually
decide on a value.
• Quality: The probability of deciding on a non-faulty replica’s

input is at least 1/2.
• Integrity: No non-faulty replica decides twice.

Decided values of a VABA protocol will be taken as inputs for
the final agreement of ParBFT. To prevent Byzantine replicas from
forging decided values, we further require the VABA protocol to
output a proof for the decided value. In other words, output from the
VABA protocol has the format of (𝑣, 𝜎), where 𝜎 is the proof for the
value 𝑣 . Each replica can verify the legitimacy of the VABA output
through an external validity predicate 𝑅(𝑣, 𝜎).
• Provability: If a non-faulty replica outputs (𝑣, 𝜎), then 𝑅(𝑣, 𝜎) =
𝑡𝑟𝑢𝑒. If a Byzantine replica outputs (𝑣, 𝜎) satisfying 𝑅(𝑣, 𝜎) =
𝑡𝑟𝑢𝑒, then some non-faulty replica must have output (𝑣, 𝜎).

We note the differences between the two predicates: 𝑄 is to verify
the external validity of an input, while 𝑅 is to verify that a value is
indeed decided by the VABA instance.

The adapted VABA interface is named PVABA. Existing VABA
protocols [5, 15, 35, 46] can be easily modified into PVABA. Taking
AMS-VABA [5] or sMVBA [35] as examples, the proof 𝜎 can be
set as the VIEW-CHANGE message (Line 22 of Algorithm 3 in [5])
or the HALT message (Line 16 of Algorithm 5 in [35]), and the
predicate 𝑅(𝑣, 𝜎) can be set as the threshold signature verification
function. When there is no ambiguity, we will simply use VABA to
mean PVABA in the remaining parts of this paper.

3 PARBFT DESIGN
Before delving into the final designs of ParBFT (i.e., ParBFT1 and
ParBFT2), we first introduce a preliminary variant named ParBFT0
in this section. ParBFT0 is meant to illustrate the basic idea of
running two parallel paths and is not designed for efficiency. As
such, ParBFT0 has higher latency and larger communication over-
head even in a good situation. But it demonstrates the feasibility of
removing the parameter Δ and the finicky path-switch mechanism.

3.1 Description of ParBFT0
The structure of ParBFT0 is illustrated in Figure 1. For brevity, we
omit the process of sending requests from clients, which is similar
to that in partially-synchronous protocols [18]: (1) The client will
first send the request to the leader on the optimistic path initially; (2)
If within a predetermined period, the request cannot be successfully
committed, the client will then broadcast the request to all replicas.
The protocol consists of two stages: parallel paths and final agree-
ment. In the first stage, an optimistic path and a pessimistic path are
launched simultaneously, and each replica participates in both paths.
The optimistic path can be implemented using the normal-case pro-
tocol of many partially synchronous BFT works. To be concrete,
we adopt the normal-case protocol of SBFT [34], as it offers a low
communication overhead of 𝑂 (𝑡𝑛). The pessimistic path can be
constructed using any VABA protocol in a black box.

Figure 1: The structure of ParBFT0

We borrow the notion of Provable Broadcast (PB) from AMS-
VABA [5] or sMVBA [35] to describe the process of data broadcast
plus vote collection. In a PB instance, a broadcaster 𝑝𝑏 first broad-
casts its data 𝑑 along with a proof 𝜋 in the format of (𝑑, 𝜋) to each
replica. The proof 𝜋 is used to verify the validity of 𝑑 according to a
global predicate function. If the validation passes, a replica 𝑝𝑖 will
output a tuple (𝑑, 𝜋) locally and send its vote through a threshold
signature share 𝜌 on 𝑑 to 𝑝𝑏 . To aid presentation, we refer to the
replicas that send votes to the broadcaster in a PB instance as voters.
After collecting more than two-thirds of the shares, 𝑝𝑏 can combine
them into a final threshold signature 𝜎 and output the tuple (𝑑, 𝜎).

As Figure 1 illustrates, the optimistic path consists of two consec-
utive PB instances followed by an additional broadcast performed
by the leader (𝑝𝐿). For brevity, we refer to the two consecutive PBs
as one Strong Provable Broadcast (SPB) as defined in sMVBA [35].
In an SPB instance, the broadcaster 𝑝𝑏 uses the output from the first
PB (PB1) as input for the second PB (PB2). In other words, 𝜋2 = 𝜎1
where 𝜎1 represents 𝑝𝑏 ’s output from PB1 and 𝜋2 denotes the proof
for 𝑑 in PB2. The broadcaster 𝑝𝑏 ’s output from SPB is exactly the
output from PB2. Moreover, in the additional broadcast after SPB,
𝑝𝑏 broadcasts its output from SPB, namely the tuple (𝑑, 𝜎2).

A replica returns from the optimistic path after receiving the tuple
of (𝑑, 𝜎2), marked by the green triangle in Figure 1. Recall that in
Section 2.2.2, a replica returning from the pessimistic path (i.e.,
VABA) also possesses a tuple of (𝑑, 𝜎), which is marked by the red
triangle in Figure 1. The tuples returned from the two parallel paths
are referred to as candidates. We distinguish them as optimistic can-
didates and pessimistic candidates, denoted by (𝑑𝑜 , 𝜎𝑜) and (𝑑𝑝 , 𝜎𝑝),
respectively. It is worth noting that (𝑑𝑜 , 𝜎𝑜) obtained by different
replicas are identical, and the same holds true for (𝑑𝑝 , 𝜎𝑝).

In the second stage of ParBFT0, each replica takes the first candi-
date it obtains from the parallel paths as input for the final agreement.
The final agreement, described in Algorithm 1, is primarily imple-
mented based on a black-box ABA protocol, where 0 represents the
optimistic candidate (𝑑𝑜 , 𝜎𝑜) and 1 represents the pessimistic can-
didate (𝑑𝑝 , 𝜎𝑝). A replica will first broadcast its candidate (Line 2)

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Algorithm 1 FINAGR0: Final agreement protocol in ParBFT0 (for
replica 𝑝𝑖)

Let 𝑣𝑖 denote the input (a candidate in the context of ParBFT0)
of 𝑝𝑖 and 𝑉𝑎𝑙𝐹𝑛 denote a global predicate function.

1: initialize 𝑣𝑎𝑙𝑠 [2] ← [⊥,⊥]
2: broadcast (FA, 𝑣𝑖)
3: if 𝑣𝑖 is an optimistic candidate then:
4: 𝑣𝑎𝑙𝑠 [0] ← 𝑣𝑖
5: invoke ABA with 0
6: else:
7: 𝑣𝑎𝑙𝑠 [1] ← 𝑣𝑖
8: invoke ABA with 1

9: upon receiving (FA, 𝑣 𝑗) from 𝑝 𝑗 that 𝑉𝑎𝑙𝐹𝑛(𝑣 𝑗) = 𝑡𝑟𝑢𝑒 do:
10: if 𝑣 𝑗 is an optimistic candidate and 𝑣𝑎𝑙𝑠 [0] = ⊥ then:
11: 𝑣𝑎𝑙𝑠 [0] ← 𝑣 𝑗
12: else if 𝑣 𝑗 is a pessimistic candidate and 𝑣𝑎𝑙𝑠 [1] = ⊥ then:
13: 𝑣𝑎𝑙𝑠 [1] ← 𝑣 𝑗

14: upon receiving the output 𝑏 from ABA do:
15: wait until 𝑣𝑎𝑙𝑠 [𝑏] ≠ ⊥
16: output 𝑣𝑎𝑙𝑠 [𝑏]

and then invoke the ABA protocol with the mapped bit (Lines 3-8).
Once the ABA protocol outputs a decision bit, the replica waits until
the candidate corresponding to the decision bit is received (Lines
9-13) and then outputs the candidate (Lines 14-16).

To reduce the number of communication rounds, the round of
broadcasting the candidate (Line 2 of Algorithm 1) can be merged
with the first round of ABA. Additionally, a replica only accepts the
candidate broadcast by others if it passes the check against a global
predicate function𝑉𝑎𝑙𝐹𝑛 (Line 9 of Algorithm 1). If the candidate is
optimistic,𝑉𝑎𝑙𝐹𝑛 is simply the verification function of the threshold
signature. If the candidate is pessimistic, 𝑉𝑎𝑙𝐹𝑛 is precisely the
predicate 𝑅(𝑣, 𝜎) mentioned in Section 2.2.2.

Note that a replica that returns from either path can immediately
stop participating in the other path. Besides, it is possible for a
replica to receive valid candidate (𝑑, 𝜎) from the final agreement
protocol before it returns from either path in the first stage. In such a
case, the replica can treat (𝑑, 𝜎) as its own candidate (as though it
has obtained (𝑑, 𝜎) from the first stage on its own), input (𝑑, 𝜎) to
the final agreement, and terminate both paths in the first stage.

3.2 Correctness analysis of ParBFT0
The correctness analysis of ParBFT0 includes two parts: safety and
liveness. Notably, each instance of the ParBFT0 protocol described
above is responsible for committing data at one log position. There-
fore, for safety, we only need to show that all non-faulty replicas
commit the same data from a given ParBFT0 instance. For liveness,
since each leader attempts to propose requests from clients, we only
need to show that each non-faulty replica is able to commit from the
ParBFT0 instance.

3.2.1 Safety. The safety analysis of ParBFT0 is straightforward
and relies on the safety guarantees provided by the SBFT, VABA,
and ABA protocols. According to the safety property of SBFT, all

optimistic candidates are identical, and according to the agreement
property of VABA, all pessimistic candidates are also identical. This
means that there can only be two distinct candidates taken as inputs
into the final agreement protocol, which are mapped to bits 0 and 1.
The ABA protocol ensures that all non-faulty replicas will output the
same bit. Thus, all non-faulty replicas will output the same candidate
from the final agreement protocol corresponding to the ABA’s output
bit. This guarantees the safety of ParBFT0.

3.2.2 Liveness. We refer to the execution of ParBFT to commit
a single decision as one instance. Within each instance, a client can
initially send the request to the leader of the optimistic path. If the
request does not get committed through the optimistic path for some
time, the client broadcasts the request to all replicas. Recall that
the leader of the optimistic path is predetermined in a round-robin
fashion. If the optimistic path under some non-faulty leader suc-
ceeds, the client’s request will be committed. On the flip side, if all
instances with non-faulty leaders commit in the pessimistic path, the
quality property of VABA ensures with at least 1/2 probability that a
non-faulty replica’s input will be committed, which will include the
client’s request. It remains to show that each consensus instance will
successfully commit. We will first establish a lemma.

LEMMA 1. Every non-faulty replica in ParBFT0 will eventually
invoke the ABA protocol.

PROOF. We establish this lemma through two cases.
Case 1: Some non-faulty replica 𝑝𝑖 outputs from the optimistic

path. According to Algorithm 1, 𝑝𝑖 will broadcast its optimistic
candidate during the stage of final agreement. Therefore, non-faulty
replicas that have not yet output from either the optimistic or the
pessimistic path can receive an optimistic candidate from 𝑝𝑖 . This
ensures that every non-faulty replica will acquire a candidate and
invoke the ABA protocol.

Case 2: No non-faulty replica outputs from the optimistic
path. In this case, every non-faulty replica will keep running the
pessimistic path. The termination property of VABA guarantees that
each non-faulty replica will eventually output from the pessimistic
path and acquire a pessimistic candidate. Thus, each non-faulty
replica invokes the ABA protocol. □

THEOREM 2. Every non-faulty replica in ParBFT0 can success-
fully commit in each consensus instance.

PROOF. Due to Lemma 1, every non-faulty replica will invoke
the ABA protocol. Subsequently, by the termination property of
ABA, every non-faulty replica will eventually output from the ABA
protocol. Based on the validity property of ABA, at least one non-
faulty replica must have inputted the same bit as the output bit. That
replica must have also broadcast the corresponding candidate. There-
fore, each non-faulty replica will receive a candidate corresponding
to the output bit and commit that candidate value. This concludes
the proof of Theorem 2. □

3.3 Performance analysis of ParBFT0
We analyze the performance of ParBFT0 in terms of consensus
latency and communication overhead. To this end, we assume that

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

ABA and VABA are implemented based on the state-of-the-art ABY-
ABA [1] and sMVBA [35], respectively. The expected latency of
ABY-ABA is 4𝛿 in a good situation and 9𝛿 in a bad situation. The
expected latency of sMVBA is 6𝛿 in a good situation and 12𝛿 in a
bad situation.

If the leader is non-faulty, each replica will return from the op-
timistic path first, which takes 5𝛿 . In addition, the ABA protocol
has an expected latency of 4𝛿 . Therefore, in the case of a non-faulty
leader, the expected latency of ParBFT0 is 9𝛿 . When the leader is
faulty, each replica will return from the pessimistic path first. Conse-
quently, the expected consensus latency of ParBFT0 is 21𝛿 : 12𝛿 from
sMVBA and 9𝛿 from ABA. Regarding communication overhead,
since each replica broadcasts data on the pessimistic path, ParBFT0
always has a message complexity of 𝑂 (𝑛2).

4 PARBFT1 WITH LOWER LATENCY
To reduce latency under a non-faulty leader, we propose ParBFT1,
which allows a replica to commit directly on the optimistic path
without going through the final agreement. This is achieved by
adding a shortcut on the optimistic path and a prepare phase to
exchange candidates before running ABA. We also modify the rule
of returning candidates from the optimistic path.

4.1 Description of ParBFT1
Figure 2 illustrates the structure of ParBFT1, where we open the box
of PB2 to show how a replica outputs a candidate in PB2. Compar-
ing it with ParBFT0 in Figure 1 highlights the difference of ParBFT1
from ParBFT0: a replica outputs a candidate from the optimistic
path after receiving (𝑑𝑜 , 𝜎1) in PB2, without waiting for (𝑑𝑜 , 𝜎2) as
in ParBFT0. Instead, upon receiving (𝑑𝑜 , 𝜎2), a replica can immedi-
ately commit and exit the current ParBFT1 instance, marked by 1 in
Figure 2. This serves as a shortcut on the optimistic path, eliminating
the need to execute the final agreement and resulting in an optimal la-
tency of 5𝛿 , which is the same as Ditto or BDT. Algorithm 2 outlines
the pseudocode of the optimistic path in ParBFT1. For brevity, we
omit the validity check of data in the pseudocode. As shown in Lines
10-11, a replica outputs the optimistic candidate after receiving data
from PB2. To ensure liveness, a replica will broadcast a Halt mes-
sage before exiting. Any replica that receives a valid Halt message
can take a shortcut to commit and exit the current ParBFT1 instance
as well. Pseudocode related to the decision and broadcast of Halt
messages is shown in Lines 12-15 of Algorithm 2.

The use of a shortcut rule may pose safety risks to the algorithm,
as some replicas may commit through the shortcut while others may
commit different data through the final agreement. To mitigate this
safety risk, we introduce a prepare phase to exchange candidates
before activating the ABA protocol. The prepare phase also provides
an additional shortcut for committing data without running an ABA
protocol. The final agreement after adding the prepare phase is
described by Algorithm 3. Each replica will begin by broadcasting a
PREP message, which contains the candidate and a partial threshold
signature on the data (Lines 3-4 of Algorithm 3). The threshold is
set to 𝑛 − 𝑓 . Once a replica has received 𝑛 − 𝑓 valid PREP messages,
it checks whether it can commit using another shortcut, marked by
2 in Figure 2. If it cannot, the replica will prepare the input value to
the ABA protocol. In more detail, there are three cases:

Figure 2: The structure of ParBFT1

Algorithm 2 OPTPATH1: Optimistic path protocol in ParBFT1 (for
replica 𝑝𝑖 , with 𝑝𝐿 as the leader)

Let 𝑣𝑖 represent the data proposed by 𝑝𝑖 .

1: if 𝑝𝑖 = 𝑝𝐿 then:
2: 𝑑𝑜 ← 𝑣𝑖
3: activate PB1 as the broadcaster with (𝑑𝑜 ,⊥) as data
4: upon receiving (𝑑𝑜 , 𝜎1) from PB1 do:
5: activate PB2 as the broadcaster with (𝑑𝑜 , 𝜎1) as data
6: upon receiving (𝑑𝑜 , 𝜎2) from PB2 do:
7: broadcast (OPTH, 𝑑𝑜 , 𝜎2)
8: else:
9: activate PB1 and PB2 as a voter

10: upon receiving (𝑑𝑜 , 𝜎1) from PB2 do:
11: output the candidate (𝑑𝑜 , 𝜎1)

12: upon receiving (OPTH, 𝑑𝑜 , 𝜎2) from 𝑝𝐿 do:
13: commit 𝑑𝑜
14: broadcast (HALT, 𝑑𝑜 , 𝜎2) if has not
15: exit

Case 1: If all the 𝑛 − 𝑓 PREP messages contain optimistic can-
didates (Lines 6-10 of Algorithm 3), the replica can construct a
complete threshold signature 𝜎 for 𝑑𝑜 based on the partial signatures
in the PREP messages. With a valid 𝜎 , the replica can commit 𝑑𝑜
directly without activating the ABA protocol. Also, the replica will
broadcast a Halt message containing (𝑑𝑜 , 𝜎) to help other replicas
commit 𝑑𝑜 .

Case 2: If all the 𝑛 − 𝑓 PREP messages contain pessimistic can-
didates (Lines 16-20 of Algorithm 3), the replica will broadcast the
pessimistic candidate (𝑑𝑝 , 𝜎𝑝) and invoke the ABA protocol with 1.

Case 3: If both optimistic and pessimistic candidates are present
in these 𝑛 − 𝑓 PREP messages (Lines 11-15 of Algorithm 3), the
replica will broadcast the optimistic candidate and invoke the ABA
protocol with 0.

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Algorithm 3 FINAGR: Final agreement protocol in ParBFT1 and
ParBFT2 (for replica 𝑝𝑖)

Let 𝑣𝑖 represent an input value (a candidate in the context of
ParBFT1 or ParBFT2) of 𝑝𝑖 . 𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒 and 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 denote
the threshold signature functions.

1: initialize 𝑣𝑎𝑙𝑠 [2] ← [⊥,⊥]
2: parse 𝑣𝑖 as (𝑡𝑎𝑔, 𝑑 , 𝜎)
3: 𝜌 ← 𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒𝑛−𝑓 (𝑑, 𝑡𝑎𝑔)
4: broadcast (PREP, 𝑡𝑎𝑔, 𝑑 , 𝜎, 𝜌)

5: upon receiving 𝑛 − 𝑓 PREP messages do:
6: if all the 𝑛 − 𝑓 messages with tag OPT then:
7: 𝑆𝜌 ← all the 𝜌 from 𝑛 − 𝑓 messages
8: extract 𝑑𝑜 from one message
9: broadcast

(
HALT, 𝑑𝑜 ,𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑛−𝑓 (𝑆𝜌 , 𝑑𝑜 ,OPT)

)
10: commit 𝑑𝑜 ; exit
11: else if at least one message with tag OPT then:
12: extract 𝑑𝑜 and 𝜎𝑜 from the message with tag OPT
13: broadcast (FA, 𝑑𝑜 , 𝜎𝑜)
14: invoke ABA with 0
15: 𝑣𝑎𝑙𝑠 [0] ← (𝑑𝑜 , 𝜎𝑜)
16: else:
17: extract 𝑑𝑝 and 𝜎𝑝 from one message
18: broadcast

(
FA, 𝑑𝑝 , 𝜎𝑝

)
19: invoke ABA with 1
20: 𝑣𝑎𝑙𝑠 [1] ← (𝑑𝑝 , 𝜎𝑝)

21: // Same as Lines 9-16 of Algorithm 1 (FINAGR0)

Pseudocode of ParBFT1 is given in Algorithm 4. Note that even
if a replica has obtained a candidate from the optimistic path, it will
continue the remaining parts of the optimistic path. However, like in
ParBFT0, a replica that obtains a candidate from either path will ter-
minate its participation in the other path (Lines 8-11 of Algorithm 4).
To speed up the progress, a replica can use the candidate from the
received PREP message as if it is obtained from the first stage. In
other words, the replica can construct and broadcast its PREP mes-
sage using the candidate received from others. Besides, in Lines 3-6
of Algorithm 4, once a replica receives a valid Halt message, it
can commit immediately and exit the current ParBFT1 instance. If
data is committed at the end of the final agreement (Lines 13-15
of Algorithm 4), a replica is not necessary to broadcast a Halt
message. This is because the ABA protocol in the final agreement
already includes a broadcast step that assists others in obtaining the
output from ABA and committing the data [1].

4.2 Correctness analysis
4.2.1 Safety. There are three points at which data can be com-
mitted in ParBFT1: the end of the optimistic path, the end of the
prepare phase, and the end of the final agreement. For brevity, we
refer to these three points as 𝑡1, 𝑡2, and 𝑡3, respectively. Next, we
will analyze the safety of ParBFT1 in three situations.

Situation 1: A non-faulty replica commits 𝑑 at 𝑡1. In this sit-
uation, at least 𝑓 + 1 non-faulty replicas have returned from the

Algorithm 4 ParBFT1 protocol (for replica 𝑝𝑖)

Let 𝑣𝑖 represent the data proposed by 𝑝𝑖 .

1: activate OPTPATH1(𝑣𝑖)
2: activate VABA(𝑣𝑖)

3: upon receiving (HALT, 𝑑 , 𝜎) from 𝑝 𝑗 do:
4: commit 𝑑
5: broadcast (HALT, 𝑑 , 𝜎) if has not
6: exit

7: wait for the output (𝑑, 𝜎) from OPTPATH1 or VABA
8: if the output is an optimistic candidate then:
9: terminate the pessimistic path; 𝑡𝑎𝑔← OPT

10: else:
11: terminate the optimistic path; 𝑡𝑎𝑔← PES
12: activate FINAGR with (𝑡𝑎𝑔, 𝑑, 𝜎) if has not

13: wait for the output 𝑑 from FINAGR

14: commit 𝑑
15: exit

optimistic path, each of which will broadcast the optimistic candi-
date in the prepare phase. Therefore, every replica will receive at
least one optimistic candidate among the 𝑛 − 𝑓 PREP messages, and
only Case 1 or Case 3 in Section 4.1 are possible. If a non-faulty
replica is in Case 1, it will commit 𝑑 directly. If it is in Case 3,
it will broadcast the optimistic candidate (i.e., 𝑑) and invoke the
ABA protocol with 0. In other words, each non-faulty replica will
invoke the ABA protocol with 0, provided that it has not exited at
𝑡1 or 𝑡2. According to the validity property of ABA, the data output
from ABA must be 0, and the data to be committed at 𝑡3 must be 𝑑 .
Therefore, safety is guaranteed in this situation.

Situation 2: A non-faulty replica commits 𝑑 at 𝑡2. According
to Case 1 in Section 4.1, at least 𝑓 + 1 non-faulty replicas must
have broadcast the optimistic candidate in the prepare phase. The
remaining analysis is identical to Situation 1.

Situation 3: A non-faulty replica commits 𝑑 at 𝑡3. If there are
other non-faulty replicas that commit at 𝑡1 or 𝑡2, safety is guaranteed
based on the analysis of Situation 1 and Situation 2. Therefore, we
only need to consider the remaining situation where all the non-
faulty replicas commit at 𝑡3. According to the agreement property
of ABA, non-faulty replicas will get the same output bit from ABA
and thus commit the corresponding candidate. Since all the opti-
mistic (respectively, pessimistic) candidates are identical, safety is
guaranteed in this situation.

4.2.2 Liveness. Similar to the liveness analysis in ParBFT0, the
liveness property of ParBFT1 is stated in Theorem 4, with its proof
relying on Lemma 3.

LEMMA 3. In ParBFT1, if no non-faulty replica commits at 𝑡1 or
𝑡2, every non-faulty replica will eventually invoke the ABA protocol.

PROOF. This lemma is established through two cases.
Case 1: Some non-faulty replica 𝑝𝑖 outputs from the optimistic

path. According to Algorithm 3, 𝑝𝑖 will broadcast its optimistic
candidate during the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase. Each non-faulty replica will

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

receive this optimistic candidate. This ensures that each non-faulty
replica can broadcast a PREP message and expect to receive at
least 𝑛 − 𝑓 PREP messages during the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase. Then, every
non-faulty replica will invoke the ABA protocol.

Case 2: No non-faulty replica outputs from the optimistic
path. In this case, all non-faulty replicas will keep participating in
the pessimistic path, eventually obtaining a pessimistic candidate
according to the termination property of VABA. Every non-faulty
replica can then broadcast a PREP message and invoke the ABA
protocol after receiving 𝑛 − 𝑓 PREP messages. □

THEOREM 4. Every non-faulty replica in ParBFT1 can success-
fully commit in each consensus instance.

PROOF. First, if some non-faulty replica 𝑝𝑖 commits at 𝑡1 or 𝑡2,
it will broadcast a Halt message. Every non-faulty replica will
eventually receive this Halt message from 𝑝𝑖 , leading them to
commit if it has not yet. Next, if no non-faulty replica commits at 𝑡1
or 𝑡2, then due to Lemma 3, each non-faulty replica will invoke the
ABA protocol. The termination property of ABA ensures that each
non-faulty replica will eventually output from the ABA protocol.
Based on the validity property of ABA, at least one non-faulty replica
must have inputted the same bit as the output bit. According to
Algorithm 3, that replica must have also broadcast the corresponding
candidate. Therefore, each non-faulty replica will receive a candidate
corresponding to the output bit and commit that candidate value. This
concludes the proof of Theorem 4. □

4.3 Performance analysis
In a good situation with a non-faulty leader, a replica in ParBFT1
can commit at the end of the optimistic path, which has a latency of
5𝛿 . In a bad situation characterized by a faulty leader, ParBFT1 takes
22𝛿 to reach consensus, slightly larger than 21𝛿 in ParBFT0, due to
the additional prepare phase. Furthermore, since the pessimistic path
always results in quadratic communication overhead, the optimistic
path in ParBFT1 could be implemented using the normal-case proto-
col of PBFT [18], where each replica sends the vote to all replicas
instead of only to the leader. This will give ParBFT1 a latency of 3𝛿
under a non-faulty leader.

It is worth noting that if the adversary manipulates the network
only slightly, ParBFT1 can still commit in the optimistic path. To
be more specific, if 𝑓 + 1 or more non-faulty replicas obtain the
optimistic candidates earlier than pessimistic candidates, each non-
faulty replica will receive at least one PREP message containing the
optimistic candidate by the end of the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase. Consequently,
each non-faulty replica will invoke the ABA protocol with input 0.
As indicated by the validity property, the ABA protocol will output
0 and each non-faulty replica will commit the optimistic candidate.
Furthermore, if all non-faulty replicas obtain optimistic candidates
earlier, they can even take a shortcut to commit the optimistic candi-
date at the end of the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase, bypassing the need to run the
ABA protocol altogether.

However, since the pessimistic path is launched at the beginning,
ParBFT1 has a message complexity of 𝑂 (𝑛2), even when the leader
is non-faulty and the network is good, which is larger than the
𝑂 (𝑡𝑛) complexity of Ditto or BDT where 𝑡 is the actual number of
Byzantine replicas.

Figure 3: The structure of ParBFT2

5 PARBFT2 WITH LOWER COMMUNICATION
To reduce the message complexity in good situations, we propose
ParBFT2, whose key idea is to delay the launch of the pessimistic
path by 5Δ. When it is in a good situation, the consensus can be
reached through the optimistic path in 5Δ, without running the pes-
simistic path and avoiding the quadratic message complexity. Al-
though ParBFT2 reintroduces the parameter Δ, its negative effects
are not as severe as those in prior works. To be more specific, an
incorrect estimation of Δ in Ditto or BDT can lead to premature
switching from the optimistic path to the pessimistic path, resulting
in both high latency and large communication overhead. In ParBFT2,
incorrect estimation of Δ will only increase communication over-
head. Furthermore, if the optimistic path is implemented using the
chain structure, as detailed in Section 6.1, the timer for delaying the
pessimistic path can be configured to 2Δ, same as in Ditto or BDT.

5.1 Description of ParBFT2
Figure 3 illustrates the structure of ParBFT2, which delays launching
the pessimistic path by 5Δ. The rationale behind this delay is that, in a
good situation, a replica is expected to commit on the optimistic path
within 5Δ. To be more specific, a replica that cannot commit within
this time period will check whether it has obtained the optimistic
candidate. If it has, the replica will activate the final agreement with
the optimistic candidate, avoiding the need to launch the pessimistic
path. Otherwise, the replica will launch the pessimistic path.

Algorithm 5 describes the ParBFT2 protocol. It differs from
ParBFT1 in that replicas do not activate the final agreement im-
mediately after obtaining an optimistic candidate. Instead, the final
agreement is activated only after the timer of 5Δ expires (Lines 8-12
of Algorithm 5), similar to the launch of the pessimistic path. Addi-
tionally, a replica that commits on the optimistic path or receives a
Halt message will not always broadcast a Halt message to avoid
introducing quadratic communication overhead. Instead, the replica
will check if it has already activated FINAGR or VABA before.
Only if this is true will it broadcast Halt messages. Furthermore,
to ensure that each non-faulty replica can commit, a replica that has

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Algorithm 5 ParBFT2 protocol (for replica 𝑝𝑖)

Let 𝑣𝑖 represent the data proposed by 𝑝𝑖 .

1: 𝑏𝑑 ← false // 𝑏𝑑 indicates whether 𝑝𝑖 has broadcast data before
2: activate OPTPATH2(𝑣𝑖)

3: upon receiving (HALT, 𝑑 , 𝜎) from 𝑝 𝑗 do:
4: commit 𝑑
5: if 𝑏𝑑 then:
6: broadcast (HALT, 𝑑 , 𝜎) if has not
7: exit

8: wait until the timer of 5Δ expires
9: 𝑜𝑝1← OPTPATH2; 𝑏𝑑 ← true

10: if 𝑜𝑝1 ≠ ⊥ then:
11: parse 𝑜𝑝1 as (𝑑, 𝜎)
12: activate FINAGR with (OPT, 𝑑, 𝜎) if has not
13: else:
14: activate VABA(𝑣𝑖)
15: wait for the output 𝑜𝑝2 from OPTPATH2 or VABA
16: parse 𝑜𝑝2 as (𝑑, 𝜎)
17: if 𝑜𝑝2 is an optimistic candidate then:
18: terminate the pessimistic path; 𝑡𝑎𝑔← OPT
19: else:
20: terminate the optimistic path; 𝑡𝑎𝑔← PES
21: activate FINAGR with (𝑡𝑎𝑔, 𝑑, 𝜎) if has not

22: wait for the output 𝑑 from FINAGR

23: commit 𝑑
24: exit

committed must send a Halt message to another replica 𝑝 𝑗 if it
receives a FINAGR or VABA message from 𝑝 𝑗 , even though it has
exited from the current ParBFT2 instance. It is worth noting that
the partially synchronous BFT protocols such as HotStuff also use
a similar design to help each non-faulty replica commit, where a
non-faulty replica 𝑝𝑖 responds to another replica 𝑝 𝑗 with the blocks
lacked by 𝑝 𝑗 .

In fact, ParBFT2 can be viewed as an intermediate protocol be-
tween the serial-path protocols (i.e., Ditto/BDT) and ParBFT1. At
one end of the spectrum, the serial-path protocols execute the opti-
mistic and pessimistic paths in a serial manner. At the other end of
the spectrum, ParBFT1 launches these two paths simultaneously in
parallel. As an intermediate design point, ParBFT2 launches the two
paths in a partially parallel fashion, with the pessimistic path being
activated slightly later than the optimistic path.

5.2 Correctness analysis
It is evident that ParBFT2’s safety proof is identical to that of
ParBFT1, so we focus on liveness.

THEOREM 5. Every non-faulty replica in ParBFT2 can success-
fully commit in each consensus instance.

PROOF. We refer to the three points to commit in ParBFT2 as 𝑡1,
𝑡2, and 𝑡3. We prove liveness by analyzing three cases.

Algorithm 6 OPTPATH2: Optimistic path protocol in ParBFT2 (for
replica 𝑝𝑖 , with 𝑝𝐿 as the leader)

Let 𝑣𝑖 represent the data proposed by 𝑝𝑖 . 𝑏𝑑 is a variable shared
with Algorithm 5.

1: // Same as lines 1-11 of Algorithm 2 (OPTPATH1)

2: upon receiving (OPTH, 𝑑𝑜 , 𝜎2) from 𝑝𝐿
3: commit 𝑑𝑜
4: if 𝑏𝑑 then:
5: broadcast (HALT, 𝑑 , 𝜎) if has not
6: exit

Case 1: Some non-faulty replica 𝑝𝑖 commits at 𝑡1. If another
non-faulty replica 𝑝 𝑗 cannot commit at 𝑡1, it will trigger the execution
of VABA and FINAGR. Then, 𝑝𝑖 will receive a VABA/FINAGR

message from 𝑝 𝑗 and will send a Halt message to help 𝑝 𝑗 commit
as well. Thus, every non-faulty replica can commit in this case.

Case 2: No non-faulty replica commits at 𝑡1, but some non-
faulty replica 𝑝𝑖 outputs from the optimistic path. In this case, 𝑝𝑖
will broadcast its optimistic candidate during the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase after
the timer expires. Any non-faulty replica that has not output from
the stage of parallel paths can obtain an optimistic candidate from
𝑝𝑖 . Therefore, every non-faulty replica broadcasts a PREP message.
If some non-faulty replica 𝑝 𝑗 manages to commit at the end of the
𝑝𝑟𝑒𝑝𝑎𝑟𝑒 phase (i.e., 𝑡2), it will broadcast a HALT message to help
others commit as well. If no non-faulty replica commits at 𝑡2, every
non-faulty replica will advance to the ABA protocol. The termination
and validity properties of ABA ensure that every non-faulty replica
eventually commits, similar to the proof of Theorem 4.

Case 3: No non-faulty replica commits at 𝑡1 or outputs from
the optimistic path. In this case, each non-faulty replica will launch
the pessimistic path after the timer expires. VABA’s termination prop-
erty guarantees that each non-faulty replica can obtain a pessimistic
candidate. Subsequently, every non-faulty replica will broadcast a
PREP message and invoke the ABA protocol. The remaining analy-
sis is similar to Case 2.

To summarize, all non-faulty replicas in ParBFT2 commit. □

5.3 Performance analysis
In a good situation where the leader on the optimistic path is non-
faulty, ParBFT2 can achieve the same latency of 5𝛿 as ParBFT1.
In a bad situation involving a faulty leader, ParBFT2’s latency is
5Δ larger than ParBFT1, at an expected latency of 5Δ + 22𝛿 due to
the delay to the pessimistic path. However, by adopting the chain
structure and the pipelining technique described in Section 6.1 and
Appendix A, ParBFT2 can achieve a latency of 2Δ + 25𝛿 under a
faulty leader, which is the same as that of BDT.

Regarding the communication overhead, if it is in a good situation
where the leader is non-faulty and 𝛿 ≤ Δ, ParBFT2 can commit with-
out launching the pessimistic path or activating the final agreement
protocol. As a result, ParBFT2 has a message complexity of 𝑂 (𝑡𝑛),
which is better than ParBFT1 and comparable to Ditto or BDT. On
the contrary, if it is in a bad situation, the message complexity of
ParBFT2 is 𝑂 (𝑛2), the same as ParBFT1, Ditto, and BDT.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

As can be seen from Table 1, a wrong estimation of Δ in ParBFT2
will only increase the message complexity without affecting the
consensus latency. We can think of ParBFT2 as making a trade-off
between latency and communication over ParBFT1. To be more
specific, ParBFT2 trades the larger latency under a Byzantine leader
for a smaller message complexity in a good situation.

6 IMPLEMENTATION AND EVALUATION
In this section, we first introduce the chain-based version of ParBFT,
which organizes data on the optimistic path into blocks that are
chained one by one and processed in a pipelined manner to improve
throughput. We then implement the chain-based system prototypes
of both variants (i.e., ParBFT1 and ParBFT2) and conduct extensive
experiments to evaluate their performance.

6.1 Chain-based ParBFT
In the previous description of ParBFT, we focused on a single in-
stance of consensus to illustrate our main ideas more clearly. We can
easily organize the data on the optimistic path across consecutive
ParBFT instances into blocks and chain them together. This allows us
to pipeline the processing of these blocks to improve throughput, as
is commonly done in many partially-synchronous protocols [13, 67].

In general, the chain-based ParBFT proceeds in epochs, with
blocks in an epoch indexed by increasing and successive height
numbers. On the optimistic path of an epoch, the leader 𝐿ℎ of height
ℎ will create a Quorum Certificate (𝑄𝐶ℎ−1) by combing the partial
threshold signatures on the block (𝐵ℎ−1) of height ℎ − 1. After
embedding 𝑄𝐶ℎ−1 in its newly created block 𝐵ℎ , 𝐿ℎ will broadcast
𝐵ℎ to other replicas. When a replica receives 𝐵ℎ , it will commit
the block 𝐵ℎ−2 and vote for 𝐵ℎ by sending its partial threshold
signature on 𝐵ℎ to the leader 𝐿ℎ+1 of height ℎ + 1. This optimistic
path is similar to Tendermint [13] or two-chain HotStuff [67], where
block processing is pipelined. The difference is that the chain-based
ParBFT also attempts to launch a pessimistic path and then the final
agreement protocol for each height, either immediately in ParBFT1
or delayed in ParBFT2. An epoch ends if any candidate from the
pessimistic path gets committed, at which point the protocol moves
on to the next epoch.

For chain-based ParBFT2, the timing parameter for delaying the
pessimistic path can be set to 2Δ, resulting in a latency of 2Δ + 25𝛿
under a faulty leader, as shown in Table 1. Due to space constraints,
we defer a detailed description of chain-based ParBFT to Appen-
dix A. From now on, we refer to the chain-based ParBFT simply as
ParBFT in the remainder of the paper when there is no ambiguity.

6.2 Implementation and experimental details
We implement the chain-based version of ParBFT in Golang (v1.17).
Our implementation leverages several open-source libraries, includ-
ing kyber2 for threshold signatures, go-msgpack3 for network com-
munication, and gorpc4 for synchronizing data payloads. We choose
the MMR version of the ABA protocol [51] for implementation due
to its simplicity. We are aware that the MMR protocol is vulnerable

2https://github.com/dedis/kyber
3https://github.com/hashicorp/go-msgpack
4https://github.com/valyala/gorpc

to liveness attacks if the adversary can arbitrarily manipulate mes-
sage deliveries. This problem has known solutions [1, 47, 52], but it
is not central to our paper.

Although there is an open-source implementation of BDT, it
is written in Python, which generally has worse performance than
Golang implementations. In addition, its pessimistic path uses Dumbo-
MVBA [36], which is no longer the state-of-the-art. To ensure fair-
ness, we implement our own version of BDT in Golang and give it
a more efficient MVBA subroutine (i.e., sMVBA [35]) as its pes-
simistic path. For Ditto, we directly adopt its open-source Rust im-
plementation5. For a lack of better heuristics, we follow the default
configuration of BDT and Ditto that switch back to the optimistic
path once a single agreement decision is reached on the pessimistic
path.

We implement clients to send transactions to replicas at a rate
controlled by a tunable configuration parameter. Additionally, we
implement a mempool [31] to facilitate replicas to synchronize
the data blocks in the background without embedding them into
consensus messages. The payload size in the mempool is set to
512 KB. Each block proposal can contain hash digests of up to 32
payloads. Each hash digest is 32 bytes, making the maximum size
of a block proposal 1 KB.

In Ditto’s open-source implementation, a non-leader replica will
create and broadcast a payload only after receiving enough trans-
actions to fill a payload. This will lead to very large end-to-end
latency when the input rate is low. To address this problem, we add
an improvement on Ditto’s mempool implementation: in addition to
broadcasting a payload whenever it is full, a replica also broadcasts
a payload one second after broadcasting the previous payload, even
if the new payload is not full.

Our experiments are conducted in three different settings that
attempt to capture the three situations in Table 1: (1) a good situation
where the leader of the optimistic path is non-faulty and the network
is good; (2) a situation with a non-faulty leader but a slow network;
and (3) a situation where the leader is faulty.

We focus on the performance metrics of throughput and end-
to-end latency. Throughput is calculated as the average number
of committed transactions per second, while end-to-end latency is
measured as the time it takes for a transaction to be committed since
the client sends that transaction.

Each experiment lasts for five minutes and is repeated three times.
Each data point in the rest of this section reports the average and
is accompanied by error bars. The experiments are conducted on
Amazon Web Service (AWS). Each replica is implemented on an
m5d.2xlarge EC2 instance with 8 vCPUs, 32 GB memory, and a net-
work bandwidth of up to 10 Gbps. The replicas are distributed across
five AWS regions in a geo-distributed manner: US-East (N. Virginia),
US-West (N. California), Asia-Pacific (Sydney), EU (Stockholm),
and Asia-Pacific (Tokyo).

6.3 Performance in a good situation
In this section, we compare the performance of different protocols in
a good situation. Specifically, we set the parameter Δ in Ditto, BDT,
and ParBFT2 to 500 ms (milliseconds), leading to a timer setting of
1,000 ms (2Δ), which is significantly larger than the actual network

5https://github.com/danielxiangzl/Ditto

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path CCS ’23, November 26–30, 2023, Copenhagen, Denmark

0 10 20 30 40 50 60 70 80
Throughput (k tx/s)

0

5

10

15

20

La
te
nc

y
(s
)

Ditto-10
Ditto-19
Ditto-40

BDT-10
BDT-19
BDT-40

ParBFT1-10
ParBFT1-19
ParBFT1-40

ParBFT2-10
ParBFT2-19
ParBFT2-40

Figure 4: Latency vs throughput in a good network

10 16 22 28 34 40
Replicas

700

800

900

1,000

1,100

1,200

1,300

1,400

1,500

La
te
nc

y
(m

s)

Ditto
BDT
ParBFT1
ParBFT2

Figure 5: Latency comparison as the number of replicas
increases in a good network

delay. Our evaluation consists of two parts. Firstly, we analyze the
relationship between latency and throughput for three system scales.
Next, we conduct a more detailed comparison of latency as the
number of replicas increases when the input rate does not saturate
the system.

In the first part of our evaluation, we set the number of replicas to
10, 19, and 40, respectively. The results are shown in Figure 4. As
anticipated, as the system scales up, all protocols exhibit a reduction
in their peak throughput. For each replica count, ParBFT2 demon-
strates a peak throughput comparable to BDT and Ditto. ParBFT1
also delivers a similar peak throughput when there are only 10 repli-
cas, but as the system scales up, ParBFT1 shows worse performance
than others due to its quadratic communication in the pessimistic
path.

In the second part, we fix the input rate to 10,000 transactions per
second and vary the number of replicas from ten to forty. The la-
tency comparison is illustrated in Figure 5. Notably, Ditto, BDT, and

ParBFT2 exhibit excellent scalability as the replica count increases,
sustaining a 900∼1,000 ms latency with up to 40 replicas. This is
because in the good case, Ditto or BDT do not switch to the pes-
simistic path, and ParBFT2 need not launch the pessimistic path. On
the other hand, ParBFT1 demonstrates poor scalability as the replica
count increases, again due to its quadratic message complexity. It is
worth noting that ParBFT1 has an advantage in latency over other
protocols when the number of replicas is small. The reason is that
replicas in ParBFT1 can promptly activate the prepare phase within
the final agreement protocol upon receiving a subsequent block (or
receiving output from PB1 in Figure 2). The prepare phase empow-
ers replicas to commit a block within one round of communication,
in contrast to the two rounds mandated by the optimistic path.

6.4 Performance in a slow network
In this situation, we simulate a slow network by adding delays to
all messages. We introduce a new delay parameter Z . We note that
Z represents an artificial delay added to all messages, so the final
message delay would be Z plus the original network delay. We fix
the number of replicas at sixteen and retain the same 500 ms value
of Δ as in Section 6.3. Our experiments include two parts: the first
part depicts the relationship between latency and throughput, while
the second part explores how the latency changes as the artificial
delay Z increases.

For the first part, we try two Z values: 200 ms and 600 ms. The
results are given in Figure 6. When Z is 200 ms, all the protocols
exhibit similar performance. When Z is set to 600 ms, Ditto and
BDT suffer considerably worse performance compared to ParBFT1
or ParBFT2. This is the case where Ditto and BDT fail to commit
in their optimistic paths and switch to the pessimistic path after
the timeout is triggered. Although the timer also expires and the
pessimistic path is launched in ParBFT2, the optimistic path will
still finish faster than the pessimistic path, enabling ParBFT2 to
commit through the optimistic path, without having to finish the
entire pessimistic path.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

0 10 20 30 40
Throughput (k tx/s)

0

2

4

6

8

10

12

14

16

La
te
nc

y
(s
)

Ditto-200ms
Ditto-600ms

BDT-200ms
BDT-600ms

ParBFT1-200ms
ParBFT1-600ms

ParBFT2-200ms
ParBFT2-600ms

Figure 6: Latency vs throughput in a slow network

In the second part, we fix the input rate to 10,000 transactions per
second and vary the value of Z from 0 ms to 700 ms in increments
of 100 ms. The experimental results are presented in Figure 7. As
shown, the performance of Ditto and BDT deteriorates significantly
when Z exceeds 500 ms. By contrast, the performance of ParBFT1
and ParBFT2 degrades in a gradual manner.

An interesting phenomenon captured by Figure 7 is the initial
lower latency of ParBFT1 compared to ParBFT2. As the value of Z
increases, this latency difference becomes larger. However, eventu-
ally, the latency of ParBFT2 converges to a level similar to ParBFT1.
The reason for this trend is that at the start of small Z , ParBFT1
can benefit from early decision in the prepare phase in contrast to
ParBFT2, as we have discussed in Section 6.3. As Z increases from
0 ms to 400 ms, the benefits of one less communication round in
ParBFT1 become more and more significant, leading to an increas-
ing latency difference. However, when Z reaches 500 ms, the timer
in ParBFT2 expires and the prepare phase is activated. In this case,
ParBFT2 also benefits from the prepare phase, similar to ParBFT1,
and hence achieves comparable performance.

6.5 Performance under a faulty leader
In this section, we examine the situation where the leader is faulty.
Although a Byzantine faulty leader can behave arbitrarily, it is rea-
sonable to focus on a crashed or slow leader. This is because the
leader’s power in ParBFT is limited to the optimistic path. The worst
disruption a faulty leader can cause is to spoil the optimistic path,
which can be achieved by simply crashing or being slow. Thus,
we delay the block proposals from the leader by a parameter of 𝜓 ,
through which we can observe the performance change under differ-
ent 𝜓 values. For this group of experiments, we fix the number of
replicas at sixteen. The parameter Δ is configured at 250 ms, result-
ing in a timer of 500 ms. Our experiments again include two parts:
the first part shows the relationship between latency and throughput,
and the second part analyzes the latency as a function of𝜓 .

In the first part, we try two values of 𝜓 : 400 ms and 2 seconds.
Experimental results are shown in Figure 8. From the figure, we see

0 100 200 300 400 500 600 700
ζ (ms)

2

4

6

8

10

12

14

16

La
te
nc
y
(s
)

Ditto
BDT
ParBFT1
ParBFT2

Figure 7: Latency comparison as the added delay increases in a
slow network

0 10 20 30 40
Throughput (k tx/s)

0

1

2

3

4

5

6

7

8
La

te
nc

y
(s
)

Ditto-400ms
Ditto-2s

BDT-400ms
BDT-2s

ParBFT1-400ms
ParBFT1-2s

ParBFT2-400ms
ParBFT2-2s

Figure 8: Latency vs throughput under a faulty leader

that when 𝜓 is set to 400 ms, both ParBFT1 and ParBFT2 demon-
strate superior performance compared to Ditto or BDT. In this case,
Ditto and BDT will switch to run the pessimistic path. Despite the
timer also expiring in ParBFT2, ParBFT2 can still commit in the
optimistic path similar to the previous situation. When 𝜓 is set to
2 seconds, all protocols resort to the pessimistic path to commit.
In this case, ParBFT1 outperforms the other protocols due to the
simultaneous launch of both two paths. In contrast, Ditto, BDT, and
ParBFT2 activate the pessimistic path only after a timer expires.

For the second part, we set the input rate to 10,000 transactions
per second while varying the value of 𝜓 from 0 ms to 2,800 ms in
increments of 400 ms. The results of these experiments are shown in
Figure 9. We can immediately notice that the latency of all protocols
grows when the block proposals are delayed. Upon a more careful
comparison, we see that Ditto and BDT experience a sharp increase
in latency when𝜓 reaches 400 ms, due to the expiration of the timer

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path CCS ’23, November 26–30, 2023, Copenhagen, Denmark

0 400 800 1,200 1,600 2,000 2,400 2,800
ψ (ms)

0

500

1,000

1,500

2,000

2,500

3,000

La
te
nc
y
(m

s)

Ditto
BDT
ParBFT1
ParBFT2

Figure 9: Latency comparison as the leader becomes slower

and consequent path switch. In contrast, the latency of ParBFT1
and ParBFT2 increases gradually, due to the early decision in the
prepare phase. Specifically, in the case of ParBFT2, a block can still
be committed at the end of the prepare phase, even after the timer
expires and the pessimistic path is launched when𝜓 exceeds 400 ms.
In terms of the final steady performance, all protocols demonstrate a
high latency, as a result of running the pessimistic path. However,
BDT and ParBFT2 exhibit slightly larger latency than Ditto, possibly
due to the additional usage of an ABA protocol.

7 RELATED WORK
Based on different timing assumptions, BFT protocols can be classi-
fied into three categories: synchronous, partially-synchronous, and
asynchronous.

7.1 Synchronous BFT protocols
The pioneering works of Pease et al. [43, 53] introduce the problem
of Byzantine agreement, originally in a synchronous network where
messages between non-faulty replicas are delivered in a timely man-
ner. Assuming a network delay upper bound (i.e., Δ), early synchro-
nous protocols coordinate all the replicas to proceed in a lock-step
manner [2, 9, 25, 28, 38]. However, this approach is caught in a
delicate dilemma between security and efficiency. If Δ is set too
small, the synchrony will be violated, and the protocol will lose
safety. On the other hand, if Δ is set too large, each lock-step round
will take a long time, causing unnecessary delays and poor perfor-
mance. For this reason, synchronous BFT consensus protocols have
long been considered impractical. Recent works such as Sync Hot-
Stuff [4] alleviated this problem by embracing a non-lockstep model
of synchrony, enabling replicas to advance more quickly to the next
steps and minimizing the protocol’s performance dependency on Δ.
Despite the improvement, synchronous protocols, including Sync
HotStuff, still have their performance fundamentally dependent on
Δ and thus still face the dilemma of incorrect estimation of Δ.

7.2 Partially-synchronous BFT protocols
The partial synchrony model proposed by Dwork et al. [27] opens
up a new avenue for BFT consensus protocol design. PBFT [18],
based on a partially synchrony model and using the view-based de-
sign, becomes the de facto standard for practical BFT consensus for
over a decade. To reduce the (already low) latency of PBFT from
three rounds to two rounds, a range of works propose adding a fast
path. These include Zyzzyva [41], FastBFT [44], SBFT [34], and
Trebiz [21]. More recently, the emergence of blockchains inspires
further simplification of the view-based partially synchronous BFT
paradigm protocol with the new chain-based structures of blocks,
as seen in Tendermint [13], Casper FFG [14], HotStuff [67], and
Streamlet [19]. Although partially synchronous protocols exhibit de-
cent performance in the good case, they have recently been criticized
for being vulnerable to liveness attack [49]. To be more specific,
even with a non-faulty leader, the adversary may construct an elabo-
rate network scheduler that blocks messages to and from the leader
until the leader is demoted. This results in a loss of liveness.

Aublin et al. propose a black-box framework to switch between
multiple protocols [7] to get their respective benefits. Their frame-
work adopts the serial-path paradigm. The two baselines considered
in our work, Ditto and BDT, can be viewed as concrete instantiations
of this framework.

Some recent works explore an orthogonal direction of employ-
ing multiple leaders to concurrently drive multiple consensus in-
stances [60, 61] to improve throughput. In contrast, ParBFT runs
two parallel paths within each single consensus instance to accelerate
the instance.

7.3 Asynchronous BFT protocols
Research on the asynchronous BFT protocols dates back to the
1980s [8, 12, 17, 20]. Asynchronous BFT broadcast protocols enable
replicas to deliver the same message from a designated broadcaster,
with Bracha’s reliable broadcast [11] and Dolev’s consistent broad-
cast [24] being notable examples. These protocols are typically used
as subroutines in the Byzantine consensus or state machine replica-
tion protocols. The famous FLP impossibility states that asynchro-
nous BFT consensus protocols must make use of randomness [29].
Early works in this area include Ben-Or [8], Canetti-Rabin [17],
CKPS [15], and SINTRA [16]. Many works focus on the simpler
problem of agreeing on a single bit (0 or 1), also known as Asyn-
chronous Binary Agreement (ABA) [1, 8, 30, 51]. Recent practical
advances in synchronous BFT include HoneybadgerBFT [49], the
Dumbo family of protocols [35, 36, 46], and Directed Acyclic Graph
(DAG)-based protocols [22, 39, 57, 59].

Although asynchronous consensus protocols are more robust than
partially synchronous ones, they generally have inferior performance.
To match the performance of partially synchronous protocols, a
number of works propose adding an optimistic path, which is often
adapted from a partially synchronous protocol, and use the original
asynchronous protocol as a pessimistic fallback [32, 45]. We have
discussed the drawbacks of this design extensively, and it is also the
motivation of our work.

Some recent works combine synchronous and asynchronous pro-
tocols to improve fault tolerance [6, 10, 48, 50]. It is well known
that asynchronous (and partially-synchronous) protocols tolerate at

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

most 𝑛/3 Byzantine faults while synchronous protocols tolerate up
to 𝑛/2 Byzantine faults. These works aim to tolerate more than 𝑛/3
Byzantine faults in the good case when the network happens to be
synchronous. In contrast, ParBFT focuses on improving performance
in the good case.

8 CONCLUSION
The existing serial-path BFT consensus protocols can result in sig-
nificant latency if the network delay is incorrectly estimated. To
deal with this problem, we propose ParBFT, whose intuitive idea
is to parallelize the optimistic and pessimistic paths. In general,
ParBFT can achieve a low latency of 5𝛿 as long as the leader on
the optimistic path is non-faulty, without requiring estimation of the
network delay. We present two variants of ParBFT (i.e., ParBFT1
and ParBFT2) that offer a trade-off between latency and communi-
cation overhead. To enhance system throughput, we also introduce
the chain-based version of ParBFT, which incorporates chain struc-
ture and pipeline technology into the optimistic path. We prove that
ParBFT can guarantee both liveness and safety, and our experimental
results demonstrate its feasibility and efficiency.

REFERENCES
[1] Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. 2022. Efficient and

Adaptively Secure Asynchronous Binary Agreement via Binding Crusader Agree-
ment. In Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing. ACM, 381–391.

[2] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.
2019. Synchronous Byzantine Agreement with Expected O (1) Rounds, Expected
Communication, and Optimal Resilience. In Proceedings of the 23rd International
Conference on Financial Cryptography and Data Security. Springer, 320–334.

[3] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,
and Alin Tomescu. 2021. Reaching Consensus for Asynchronous Distributed
Key Generation. In Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing. ACM, 363–373.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.
Sync Hotstuff: Simple and Practical Synchronous State Machine Replication.
In Proceedings of the 41st IEEE Symposium on Security and Privacy. IEEE,
106–118.

[5] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically
Optimal Validated Asynchronous Byzantine Agreement. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing. ACM, 337–346.

[6] Andreea B. Alexandru, Erica Blum, Jonathan Katz, and Julian Loss. 2022. State
Machine Replication under Changing Network Conditions. In Proceedings of the
2022 International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 681–710.

[7] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and
Marko Vukolić. 2015. The Next 700 BFT Protocols. ACM Transactions on
Computer Systems 32, 4 (2015), 1–45.

[8] Michael Ben-Or. 1983. Another Advantage of Free Choice: Completely Asynchro-
nous Agreement Protocols. In Proceedings of the 2nd Annual ACM Symposium on
Principles of Distributed Computing. ACM, 27–30.

[9] Piotr Berman, Juan A Garay, and Kenneth J. Perry. 1992. Bit Optimal Distributed
Consensus. Computer Science Research (1992), 313–322.

[10] Erica Blum, Jonathan Katz, and Julian Loss. 2021. Tardigrade: An Atomic
Broadcast Protocol for Arbitrary Network Conditions. In Proceedings of the
27th International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 547–572.

[11] Gabriel Bracha. 1987. Asynchronous Byzantine Agreement Protocols. Information
and Computation 75, 2 (1987), 130–143.

[12] Gabriel Bracha and Sam Toueg. 1985. Asynchronous Consensus and Broadcast
Protocols. Journal of the ACM 32, 4 (1985), 824–840.

[13] Ethan Buchman. 2016. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains. Ph.D. Dissertation. University of Guelph.

[14] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget.
arXiv preprint arXiv:1710.09437 (2017).

[15] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure
and Efficient Asynchronous Broadcast Protocols. In Proceedings of the 2001
Annual International Cryptology Conference. Springer, 524–541.

[16] Christian Cachin and Jonathan A. Poritz. 2002. Secure Intrusion-tolerant Repli-
cation on the Internet. In Proceedings of the 2002 International Conference on
Dependable Systems and Networks. IEEE, 167–176.

[17] Ran Canetti and Tal Rabin. 1993. Fast Asynchronous Byzantine Agreement
with Optimal Resilience. In Proceedings of the 25th Annual ACM Symposium on
Theory of Computing. ACM, 42–51.

[18] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the 1999 USENIX Symposium on Operating Systems Design and
Implementation. USENIX, 173–186.

[19] Benjamin Y. Chan and Elaine Shi. 2020. Streamlet: Textbook Streamlined
Blockchains. In Proceedings of the 2nd ACM Conference on Advances in Fi-
nancial Technologies. ACM, 1–11.

[20] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. 2006. From Consensus
to Atomic Broadcast: Time-free Byzantine-resistant Protocols without Signatures.
The Computer Journal 49, 1 (2006), 82–96.

[21] Xiaohai Dai, Liping Huang, Jiang Xiao, Zhaonan Zhang, Xia Xie, and Hai Jin.
2022. Trebiz: Byzantine Fault Tolerance with Byzantine Merchants. In Pro-
ceedings of the 38th Annual Computer Security Applications Conference. ACM,
923–935.

[22] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. 2022. Narwhal and Tusk: A DAG-based Mempool and Efficient
BFT Consensus. In Proceedings of the 17th European Conference on Computer
Systems. ACM, 34–50.

[23] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-
Kogias, and Ling Ren. 2022. Practical Asynchronous Distributed Key Generation.
In Proceedings of the 2022 IEEE Symposium on Security and Privacy. IEEE,
2518–2534.

[24] Danny Dolev. 1982. The Byzantine Generals Strike Again. Journal of Algorithms
3, 1 (1982), 14–30.

[25] Danny Dolev and H. Raymond Strong. 1983. Authenticated Algorithms for
Byzantine Agreement. SIAM Journal on Computing 12, 4 (1983), 656–666.

[26] Sisi Duan, Michael K. Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous
BFT Made Practical. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2028–2041.

[27] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
Presence of Partial Synchrony. Journal of the ACM 35, 2 (1988), 288–323.

[28] Paul Feldman and Silvio Micali. 1988. Optimal Algorithms for Byzantine Agree-
ment. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing.
ACM, 148–161.

[29] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility
of Distributed Consensus with One Faulty Process. Journal of the ACM 32, 2
(1985), 374–382.

[30] Roy Friedman, Achour Mostefaoui, and Michel Raynal. 2005. Simple and Efficient
Oracle-based Consensus Protocols for Asynchronous Byzantine Systems. IEEE
Transactions on Dependable and Secure Computing 2, 1 (2005), 46–56.

[31] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
2022. Dumbo-ng: Fast Asynchronous BFT Consensus with Throughput-oblivious
Latency. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1187–1201.

[32] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegel-
man, and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-adaptive Efficient
Consensus with Asynchronous Fallback. In Proceedings of the 2022 International
Conference on Financial Cryptography and Data Security. Springer, 296–315.

[33] Vincent Gramoli. 2020. From Blockchain Consensus back to Byzantine Consensus.
Future Generation Computer Systems 107 (2020), 760–769.

[34] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
Sbft: A Scalable and Decentralized Trust Infrastructure. In Proceedings of the
49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, 568–580.

[35] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. 2022. Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice.
Cryptology ePrint Archive (2022).

[36] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.
Dumbo: Faster Asynchronous BFT Protocols. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 803–818.

[37] Hai Jin and Jiang Xiao. 2022. Towards Trustworthy Blockchain Systems in the
Era of “Internet of Value”: Development, Challenges, and Future Trends. Science
China Information Sciences 65 (2022), 1–11.

[38] Jonathan Katz and Chiu-Yuen Koo. 2006. On Expected Constant-round Proto-
cols for Byzantine Agreement. In Proceedings of the 2006 Annual International
Cryptology Conference. Springer, 445–462.

[39] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.
2021. All You Need is DAG. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing. ACM, 165–175.

[40] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.
Asynchronous Distributed Key Generation for Computationally-Secure Random-
ness, Consensus, and Threshold Signatures. In Proceedings of the 2020 ACM

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path CCS ’23, November 26–30, 2023, Copenhagen, Denmark

SIGSAC Conference on Computer and Communications Security. ACM, 1751–
1767.

[41] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2007. Zyzzyva: Speculative Byzantine Fault Tolerance. In Proceedings of
21st ACM SIGOPS Symposium on Operating Systems Principles. ACM, 45–58.

[42] Klaus Kursawe and Victor Shoup. 2005. Optimistic Asynchronous Atomic Broad-
cast. In Proceedings of the 32nd International Colloquium on Automata, Lan-
guages and Programming. Springer, 204–215.

[43] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine
Generals Problem. ACM Transactions on Programming Languages and Systems
4, 3 (1982), 382–401.

[44] Jian Liu, Wenting Li, Ghassan O. Karame, and Nadarajah Asokan. 2018. Scalable
Byzantine Consensus via Hardware-assisted Secret Sharing. IEEE Transactions
on Computers 68, 1 (2018), 139–151.

[45] Yuan Lu, Zhenliang Lu, and Qiang Tang. 2022. Bolt-dumbo Transformer: Asyn-
chronous Consensus as Fast as the Pipelined BFT. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. ACM,
2159–2173.

[46] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-mvba: Op-
timal Multi-valued Validated Asynchronous Byzantine Agreement, Revisited. In
Proceedings of the 39th ACM Symposium on Principles of Distributed Computing.
ACM, 129–138.

[47] Ethan MacBrough. 2018. Cobalt: BFT Governance in Open Networks. arXiv
preprint arXiv:1802.07240 (2018).

[48] Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2019. Flexible Byzantine Fault
Tolerance. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 1041–1053.

[49] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The
Honey Badger of BFT Protocols. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 31–42.

[50] Atsuki Momose and Ling Ren. 2021. Multi-threshold Byzantine Fault Toler-
ance. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1686–1699.

[51] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2014. Signature-
free Asynchronous Byzantine Consensus with t< n/3 and O (n2) Messages. In
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing.
ACM, 2–9.

[52] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2015. Signature-
free Asynchronous Binary Byzantine Consensus with t< n/3, O (n2) Messages,
and O (1) Expected Time. Journal of the ACM 62, 4 (2015), 1–21.

[53] Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching Agreement
in the Presence of Faults. Journal of the ACM 27, 2 (1980), 228–234.

[54] Marc Pilkington. 2016. Blockchain Technology: Principles and Applications. In
Research Handbook on Digital Transformations. Edward Elgar Publishing.

[55] Michael O. Rabin. 1983. Randomized Byzantine Generals. In Proceedings of the
24th Annual Symposium on Foundations of Computer Science. IEEE, 403–409.

[56] HariGovind V. Ramasamy and Christian Cachin. 2005. Parsimonious Asynchro-
nous Byzantine-Fault-Tolerant Atomic Broadcast. In Proceedings of the 2005
International Conference On Principles Of Distributed Systems. Springer, 88–
102.

[57] Maria A. Schett and George Danezis. 2021. Embedding A Deterministic BFT
Protocol in A Block DAG. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing. ACM, 177–186.

[58] Alexander Spiegelman. 2020. In Search for An Optimal Authenticated Byzantine
Agreement. arXiv preprint arXiv:2002.06993 (2020).

[59] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. 2022. Bullshark: DAG BFT Protocols Made Practical. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2705–2718.

[60] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. 2022. State Ma-
chine Replication Scalability Made Simple. In Proceedings of the 17th European
Conference on Computer Systems. ACM, 17–33.

[61] Chrysoula Stathakopoulou, David Tudor, Matej Pavlovic, and Marko Vukolić.
2022. Mir-BFT: Scalable and Robust BFT for Decentralized Networks. Journal
of Systems Research 2, 1 (2022).

[62] Sam Toueg. 1984. Randomized Byzantine Agreements. In Proceedings of the
3rd Annual ACM Symposium on Principles of Distributed Computing. ACM,
163–178.

[63] Jun Wan, Atsuki Momose, Ling Ren, Elaine Shi, and Zhuolun Xiang. 2023. On the
Amortized Communication Complexity of Byzantine Broadcast. In Proceedings
of the 2023 ACM Symposium on Principles of Distributed Computing. ACM,
253–261.

[64] Xin Wang, Sisi Duan, James Clavin, and Haibin Zhang. 2022. BFT in Blockchains:
From Protocols to Use Cases. ACM Computing Surveys 54, 10 (2022), 1–37.

[65] Karl Wüst and Arthur Gervais. 2018. Do You Need A Blockchain. In Proceedings
of the 2018 Crypto Valley Conference on Blockchain Technology. IEEE, 45–54.

[66] Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou. 2020. A Survey of
Distributed Consensus Protocols for Blockchain Networks. IEEE Communications

Surveys & Tutorials 22, 2 (2020), 1432–1465.
[67] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai

Abraham. 2019. Hotstuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing.
ACM, 347–356.

A CHAIN-BASED PARBFT
To improve the system throughput, we introduce the chain structures
to the optimistic path of ParBFT, which enables the blocks to be
processed in a pipelining manner. Corresponding to different variants
of ParBFT, we devise the chain-based ParBFT1 and ParBFT2, which
are described in Algorithm 7 and Algorithm 8, respectively.

Like other chain-based protocols such as HotStuff [67], all the
data in chain-based ParBFT are organized into blocks, with each one
indexed by a height number and containing a Quorum Certificate
(QC) of the previous one. The QC is a complete threshold signature,
which is created by combining partial threshold signatures from 𝑛− 𝑓
replicas. Each block 𝐵ℎ also contains a data bulk 𝑏ℎ , consisting of
transactions to be processed. ParBFT operates in successive epochs,
and different epochs are independent, which means there is no com-
plex epoch-change mechanism to switch from one epoch to another.
When a replica exits the current epoch, it can directly enter the next
epoch. Either Algorithm 7 or Algorithm 8 describes the protocol in
a single epoch.

A.1 Chain-based ParBFT1
Blocks within each epoch are numbered starting from height 0, and
each epoch is initialized with a blank block denoted as 𝐵0, which
contains an empty data bulk 𝑏ℎ and an empty QC ⊥. In the chain-
based ParBFT1, every replica activates a new epoch by broadcasting
its vote for 𝐵0, which includes a partial threshold signature on 𝐵0. It
is important to note that broadcasting votes on the optimistic path
ensures that the pessimistic path can be launched simultaneously
with the optimistic path, as shown in Lines 14-16 of Algorithm 7.
Although the broadcast of votes results in quadratic message com-
plexity, it does not significantly affect ParBFT1, since the pessimistic
path already brings quadratic message complexity to the protocol.

Blocks on the optimistic path are committed through the two-
chain structure. Upon receiving a block 𝐵ℎ , the block 𝐵ℎ−2 can be
committed, and the pessimistic path and the final agreement protocol
for the height ℎ − 2 can be terminated, as shown in Lines 20-21
of Algorithm 7. Additionally, the final agreement protocol for the
height ℎ − 1 can be activated with the optimistic candidate, as shown
in Lines 22-23. On the contrary, if the replica obtains the pessimistic
candidate for height ℎ, it will activate the final agreement protocol
FINAGRℎ with the pessimistic candidate and stop voting for the
block 𝐵ℎ+1 on the optimistic path (Lines 24-26).

Once a block is committed through the final agreement protocol
FINAGRℎ and the block is a pessimistic candidate, the replica will
exit the current epoch. To ensure that all the replicas will exit at the
same height and commit identical blocks, a replica will wait to find
the final agreement protocol with the smallest height number that
commits the pessimistic candidate, denoted by FA𝑠 . The replica then
commits the block 𝐵𝑠 , discards all blocks with heights larger than 𝑠,
and terminates all pessimistic paths and final agreement protocols
with heights greater than 𝑠. After this, the replica exits the current
epoch and enters the next.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren

Algorithm 7 CHAINPARBFT1: Chain-based ParBFT1 protocol (for
replica 𝑝𝑖)

Let 𝑏ℎ represent a data bulk extracted from the mempool.
𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒 and 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 denote the threshold signature func-
tions, and 𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘 denotes the function that creates a block
based on the data bulk and QC.

1: initialize 𝑆 ← [⊥,⊥, ...,⊥]
2: broadcast (VOTE, 𝐵0, 𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒𝑛−𝑓 (𝐵0))

3: upon receiving (VOTE, 𝐵ℎ, 𝜌ℎ) from replica 𝑝 𝑗 do:
4: if has not voted for 𝐵ℎ then:
5: broadcast (VOTE, 𝐵ℎ , 𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒𝑛−𝑓 (𝐵ℎ))
6: 𝑆 [ℎ] ← 𝑆 [ℎ] ∪ 𝜌ℎ
7: if VABAℎ has not been activated then:
8: extract 𝑄𝐶ℎ−1 from 𝐵ℎ
9: 𝐵′

ℎ
← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘 (ℎ,𝑏ℎ, 𝑄𝐶ℎ−1)

10: activate VABAℎ (𝐵′ℎ)
11: if |𝑆 [ℎ] | = 𝑛 − 𝑓 then:
12: 𝑄𝐶ℎ ← 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑛−𝑓 (𝐵ℎ, 𝑆 [ℎ])
13: 𝐵ℎ+1 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘 (ℎ + 1, 𝑏ℎ+1, 𝑄𝐶ℎ)
14: if 𝑝𝑖 is leader of ℎ + 1 then:
15: broadcast 𝐵ℎ+1
16: activate VABAℎ+1 (𝐵ℎ+1)

17: upon receiving 𝐵ℎ from the leader of ℎ do:
18: if has not voted for 𝐵ℎ then:
19: broadcast (VOTE, 𝐵ℎ , 𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒𝑛−𝑓 (𝐵ℎ))
20: terminate VABAℎ−2 and FINAGRℎ−2
21: commit 𝐵ℎ−2
22: extract 𝑄𝐶ℎ−1 from 𝐵ℎ
23: activate FINAGRℎ−1 with (OPT, 𝐵ℎ−1, 𝑄𝐶ℎ−1) if has not

24: upon receiving (𝐵ℎ, 𝜎𝑝) from VABAℎ do:
25: activate FINAGRℎ with (PES, 𝐵ℎ, 𝜎𝑝) if has not
26: stop voting for the optimistic block 𝐵ℎ+1

27: upon receiving 𝐵ℎ from FINAGRℎ do:
28: if 𝐵ℎ is a pessimistic candidate, then:
29: wait for each FINAGR𝑘 (k<h) are terminated or finished
30: FA𝑠 ← lowest FINAGR outputting pessimistic candidate
31: extract 𝐵𝑠 from FA𝑠

32: commit 𝐵𝑠 if has not
33: discard all the blocks 𝐵𝑘 (𝑘 > 𝑠)
34: terminate all the VABA𝑘 and FINAGR𝑘 (𝑘 > 𝑠)
35: exit

Moreover, the chain-based ParBFT1 includes a block retrieval
mechanism similar to other chain-based protocols such as HotStuff.
If a replica 𝑝𝑖 receives a new block 𝐵 from leader 𝑝𝐿 , but it lacks
some ancestor blocks of 𝐵, 𝑝𝑖 will send a request to 𝑝𝐿 to retrieve the
missing blocks. Only if all ancestor blocks of 𝐵 are received can 𝑝𝑖
accept 𝐵 as valid. As this block retrieval mechanism is common in
many chain-based protocols, detailed descriptions of it are omitted
here.

Algorithm 8 CHAINPARBFT2: Chain-based ParBFT2 protocol (for
replica 𝑝𝑖)

Let 𝑏ℎ represent a data bulk extracted from the mempool.
𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒 and 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 denote the threshold signature func-
tions, and 𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘 denotes the function that creates a block
based on the data bulk and QC.

1: initialize 𝑆 ← [⊥,⊥, ...,⊥]
2: send (VOTE, 𝐵0, 𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒𝑛−𝑓 (𝐵0)) to leader of height 1

3: wait until timer of 2Δ expires or 𝐵1 is received
4: if 𝐵1 is not received then:
5: 𝐵′0 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘 (0, 𝑏0,⊥)
6: activate VABA0 (𝐵′0)

7: upon receiving (VOTE, 𝐵ℎ, 𝜌ℎ) from replica 𝑝 𝑗 do:
8: 𝑆 [ℎ] ← 𝑆 [ℎ] ∪ 𝜌ℎ
9: if |𝑆 [ℎ] | = 𝑛 − 𝑓 and 𝑝𝑖 is leader of ℎ + 1 then:

10: 𝑄𝐶ℎ ← 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑛−𝑓 (𝐵ℎ, 𝑆 [ℎ])
11: 𝐵ℎ+1 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘 (ℎ + 1, 𝑏ℎ+1, 𝑄𝐶ℎ)
12: broadcast 𝐵ℎ+1

13: upon receiving 𝐵ℎ from the leader of ℎ do:
14: send (VOTE, 𝐵ℎ , 𝑆𝑖𝑔𝑛𝑆ℎ𝑎𝑟𝑒𝑛−𝑓 (𝐵ℎ)) to leader of ℎ + 1
15: commit 𝐵ℎ−2
16: terminate VABAℎ−2 and FINAGRℎ−2
17: extract 𝑄𝐶ℎ−1 from 𝐵ℎ
18: if VABAℎ−1 has been activated then:
19: activate FINAGRℎ−1 with (OPT, 𝐵ℎ−1, 𝑄𝐶ℎ−1) if has not
20: wait until timer of 2Δ expires or 𝐵ℎ+1 is received
21: if 𝐵ℎ+1 is not received then:
22: 𝐵′

ℎ
← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑙𝑜𝑐𝑘 (ℎ,𝑏ℎ, 𝑄𝐶ℎ−1)

23: activate VABAℎ (𝐵′ℎ)

24: // Same as lines 24-35 of Algorithm 7

A.2 Chain-based ParBFT2
Unlike chain-based ParBFT1, in chain-based ParBFT2, votes are
only sent to the leader, avoiding quadratic message complexity. Addi-
tionally, the timeout parameter in chain-based ParBFT2 is set as 2Δ
instead of 5Δ in non-chain ParBFT2. At the beginning of each epoch,
each replica sets a timer and waits for 𝐵1 (Line 3 of Algorithm 8).

When a block 𝐵ℎ is received, the timer for the next height ℎ +
1 starts. If 𝐵ℎ+1 is not received within 2Δ, the timeout event is
triggered, and the replica activates the pessimistic path at ℎ (Lines 4-
6 and 21-23). Moreover, the final agreement protocol at ℎ − 1 will be
activated with an optimistic candidate (Lines 18-19). The remaining
parts of chain-based ParBFT2 are the same as chain-based ParBFT1.
Since the pessimistic path in chain-based ParBFT2 is delayed by 2Δ,
it can achieve an expected latency of 2Δ + 25𝛿 when the leader on
the optimistic path is faulty.

A.3 Safety analysis
For brevity, we use the term "pessimistic decision" to refer to the
scenario where the block is committed at the end of the final agree-
ment protocol and the block is a pessimistic candidate. Otherwise,

ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path CCS ’23, November 26–30, 2023, Copenhagen, Denmark

we refer to it as an "optimistic decision". Concerning the safety
analysis, there is no difference between chain-based ParBFT1 and
chain-based ParBFT2. Therefore, the following analysis applies to
both two variants. Furthermore, as the protocol instances for dif-
ferent epochs are independent, we can limit the safety analysis to
a single epoch. The safety property is stated as Theorem 8, whose
proof relies on two lemmas: Lemma 6 and Lemma 7.

LEMMA 6. If a non-faulty replica commits 𝐵ℎ through an op-
timistic decision, then every non-faulty replica will also commit
𝐵𝑘 (𝑘 ≤ ℎ) through an optimistic decision.

PROOF. We prove this by contradiction. Let us assume that there
is a pessimistic decision of block 𝐵𝑘 in replica 𝑝𝑖 . This implies that
at least 𝑓 + 1 non-faulty replicas activate FINAGR𝑘 with pessimistic
candidates. These replicas must receive data from VABA𝑘 before
receiving 𝐵𝑘+1. We consider the following three situations:

• According to Lines 24-26 of Algorithm 7, these replicas will
not vote for 𝐵𝑘+1. As a result, the leader of height 𝑘 + 2 can
neither collect 𝑛 − 𝑓 votes for 𝐵𝑘+1 nor create a valid 𝐵𝑘+2.
Furthermore, any block with a height𝑚 (𝑚 ≥ 𝑘 +2) cannot be
created either, and any block with a height 𝑚 (𝑚 ≥ 𝑘) cannot
be committed on the optimistic path.
• Since any block with a height𝑚 (𝑚 ≥ 𝑘+2) cannot be created,

any FINAGR𝑚 (𝑚 ≥ 𝑘 + 1) instance cannot be activated by an
optimistic candidate. Therefore, any optimistic block with a
height𝑚 (𝑚 ≥ 𝑘 + 1) cannot be committed at the end of the
prepare phase or the end of the final agreement protocol.
• Regarding a height 𝑚 = 𝑘 , if it is committed at the end of the

prepare phase, the block must be an optimistic candidate, and
the final agreement protocol will also commit an optimistic
candidate, which leads to a contradiction. If it is also com-
mitted at the end of the final agreement protocol, according
to the agreement property of ABA, the block will also be a
pessimistic candidate.

To sum up, if a non-faulty replica commits a pessimistic block at
height 𝑘, no non-faulty replica can commit an optimistic block at
height𝑚 ≥ 𝑘 . Therefore, Lemma 6 is proven.

□

LEMMA 7. If a non-faulty replica exits the current epoch at height
ℎ, then every other non-faulty replica will also exit the current epoch
at height ℎ.

PROOF. Assuming a non-faulty replica 𝑝𝑖 exits the current epoch
at height ℎ, as per Lines 29-35 of Algorithm 7, 𝑝𝑖 must commit an
optimistic block for each height𝑚(𝑚 < ℎ) and commit a pessimistic
block at height ℎ. On one hand, according to Lemma 6, each non-
faulty replica will also commit an optimistic block for each height
𝑚(𝑚 < ℎ). Therefore, each non-faulty replica will exit at a height
𝑘 (𝑘 ≥ ℎ). On the other hand, according to the agreement property
of ABA, each non-faulty replica will definitely commit a pessimistic
block at height ℎ. In other words, ℎ is the lowest height where a
pessimistic decision occurs, and each non-faulty replica will exit at
height ℎ.

□

THEOREM 8 (SAFETY). If two non-faulty replicas commit blocks
𝐵 and 𝐵′ at height ℎ respectively, then 𝐵 = 𝐵′.

PROOF. Without loss of generality, we assume that a non-faulty
replica exits the current epoch at height ℎ. As shown in Lemma 7,
each non-faulty replica must also exit the current epoch at height ℎ.
Thus, for each height 𝑘 (𝑘 < ℎ), every non-faulty replica will commit
a block through the optimistic decision, and for height ℎ, everyone
will commit a block through the pessimistic decision. According to
the safety property of the quorum mechanisms and the agreement
property of ABA, all the blocks committed at the same height must
be identical, which concludes the proof.

□

A.4 Liveness analysis
In contrast to the original definition in Section 2.1, we interpret
the liveness property in chain-based ParBFT as Theorem 9. This
theorem guarantees that if every non-faulty replica continues to enter
the next epoch after exiting the previous epoch, blocks will be con-
tinuously committed, and the liveness is promised. The following
analysis also applies to both two chain-based variants.

THEOREM 9 (LIVENESS). At least one block can be committed
in an epoch. Furthermore, for every height ℎ in an epoch, either an
optimistic block is committed at ℎ or all non-faulty replicas exit at
𝑘 (𝑘 ≤ ℎ).

PROOF. Lemma 7 implies that all non-faulty replicas will exit an
epoch at the same height, denoted as ℎ𝑒 without loss of generality.
At every height ℎ(ℎ ≤ ℎ𝑒) in an epoch, either an optimistic block
or a pessimistic block is committed, ensuring that at least one block
can be committed in an epoch.

For a height ℎ, if ℎ ≥ ℎ𝑒 , all non-faulty replicas exit at 𝑘 =

ℎ𝑒 (𝑘 ≤ ℎ). On the other hand, if ℎ < ℎ𝑒 , according to Lines 27-35
of Algorithm 7, an optimistic candidate block is committed at ℎ.
Thus, for every height ℎ in an epoch, either an optimistic block is
committed at ℎ or all non-faulty replicas exit at 𝑘 (𝑘 ≤ ℎ). This
concludes the proof. □

	Abstract
	1 Introduction
	2 Models and Preliminaries
	2.1 Models and definitions
	2.2 Preliminaries

	3 ParBFT Design
	3.1 Description of ParBFT0
	3.2 Correctness analysis of ParBFT0
	3.3 Performance analysis of ParBFT0

	4 ParBFT1 with lower latency
	4.1 Description of ParBFT1
	4.2 Correctness analysis
	4.3 Performance analysis

	5 ParBFT2 with lower communication
	5.1 Description of ParBFT2
	5.2 Correctness analysis
	5.3 Performance analysis

	6 Implementation and Evaluation
	6.1 Chain-based ParBFT
	6.2 Implementation and experimental details
	6.3 Performance in a good situation
	6.4 Performance in a slow network
	6.5 Performance under a faulty leader

	7 Related Work
	7.1 Synchronous BFT protocols
	7.2 Partially-synchronous BFT protocols
	7.3 Asynchronous BFT protocols

	8 Conclusion
	References
	A Chain-based ParBFT
	A.1 Chain-based ParBFT1
	A.2 Chain-based ParBFT2
	A.3 Safety analysis
	A.4 Liveness analysis

