
THIRD-PARTY PRIVATE SET INTERSECTION

FOO YEE YEO AND JASON H. M. YING

Abstract. Private set intersection (PSI) enables two parties, each holding

a private set to compute their intersection without revealing other informa-

tion in the process. We introduce a generalized extension of conventional PSI

termed as third-party PSI, whereby the intersection output of the two parties

is only known to an inputless third party. In this setting, the two parties who

participate in the protocol have no knowledge of the intersection result or any

information of the set content of the other party. In general, third-party PSI

settings arise where there is a need for an external party to obtain the inter-

section outcome without leakage of additional information to any other party.

This setting is motivated by an increasing importance in several real-world

applications. We describe protocols which achieve this functionality with min-

imal communication overhead. To the best of knowledge, our work is the first

of its kind to explore this variant of PSI.

1. Introduction

Private set intersection (PSI) was first introduced in [9], incorporating ideas

tracing back to [14, 23]. PSI enables the secure computation of the intersection of

datasets held by two different parties. While this is a special case of secure multi-

party computation, PSI protocols are in general much more efficient, thus allowing

for practical applications on much larger datasets. An early PSI protocol proposed

by Freedman et al. [6] cleverly applies a combination of oblivious polynomial eval-

uation and homomorphic encryption with the additive property.

Conventional two-party PSI has seen many diverse applications such as botnet

detection [15], human genomes testing [1], private proximity testing [16], online

advertising [18], privacy-preserving ride-sharing [7] and contact tracing [5]. Due to

its utility, a vast amount of research has been devoted to improve the efficiency of

PSI with respect to both communication and computational costs. Several state-

of-the art PSI schemes include [12,20,21].

In recent times, there has been an increasing number of scenarios whereby an

inputless third party requires the output of intersection between datasets held by

two other parties. The privacy requirements are such that only the third party

obtains the intersection output and receives no other information of the input sets

of either party. Moreover, no information is revealed to either of the participating

parties in the process. For example during a pandemic, various venues such as malls,

supermarkets and places of worship are frequented by people. These premises keep

an identity record of people who visit, along with their times of entry and exit for

the purpose of contact tracing. In the event of a virus cluster at two or more of these

locations, a regulatory organization is then able to obtain the database of people

who are present on specific times at these respective premises to identify potential

asymptomatic sources of the clusters in a privacy preserving manner. Another

such scenario arises when a medical body such as the health ministry seeks to

obtain genomic information of individuals contained in the list of two other medical
1

2 FOO YEE YEO AND JASON H. M. YING

institutions to perform a research study. In this situation, the medical body being

the third-party is able to obtain the required information without any leakage to

the participating medical institutions.

While the above situations occur surprisingly often, there has not been a suitable

privacy-preserving solution adopted to this problem in the literature to our knowl-

edge thus far. The work here aims to bridge this gap. For the intended use cases

in third-party PSI, there is no incentive for any party to deviate from the protocols

and execution is regulated by policies in many instances. As such, the work in

this paper focuses on the semi-honest security model. In this model, adversaries

can attempt to obtain information from the execution of the protocol but they are

unable to perform any deviations from the intended protocol steps.

Despite the enormous strides achieved in conventional two-party PSI, such schemes

do not translate to a solution in the above setting. There has been research relating

to PSI which involves an additional entity such as a server. For instance, Kamara

et al. [11] described very efficient schemes for two parties to conduct PSI by uti-

lizing an external server for assistance to perform an encrypted intersection before

relaying back to the respective parties to decrypt and compute. In [13], the server

is also used as an assistance tool to compute intersection cardinality. In essence,

the above works are completely different to the existing problem in hand since the

receiver of the intersection set are the participating parties in [11] instead of the

intended third party. The complexity of the problem increases when the participat-

ing parties with inputs are unable to learn any information such as in the scenario

we consider.

There are two major aspects when considering an efficiency of a scheme: compu-

tational cost and communication overhead. Due to advances in hardware, commu-

nication overhead has gradually been presented as a larger bottleneck than com-

putational cost. Indeed, the work of Google [10] and Rosulek & Trieu [21] serve

to highlight that communication costs far outweigh computation especially in the

business settings as it is much less expensive to add CPUs than to expand net-

work capacity. Hence, these protocols are constructed with communication cost as

the primary consideration. As such, we aim to provide a practical solution with

minimal communication overhead.

In this paper, we propose a generalized extension of PSI, which we call third-

party PSI. In third-party PSI, we privately compute the intersection of the datasets

between two participating parties P1, P2 such that the result is revealed only to a

third-party Q.

2. Preliminaries

Definition 1 (Third-party PSI scheme). In a third-party PSI scheme, 2 parties P1

and P2 each holds a dataset with elements in {0, 1}∗, while a third-party Q has no

input. At the end of the protocol, Q outputs the set intersection functionality, and

the other parties output ⊥.

We shall use ideal-world/real-world simulation-based definitions in order to de-

fine the security of a third-party PSI scheme. Specifically, we say that a third-party

PSI scheme is secure in the semi-honest model if it achieves the ideal functionality

shown in Figure 1 against semi-honest adversaries. In other words, P1 and P2 do

not learn any information about the other parties’ datasets, while Q only learns

the intersection, but nothing else.

THIRD-PARTY PRIVATE SET INTERSECTION 3

(1) Get P1’s input set S1.

(2) Get P2’s input set S2.

(3) Send S1 ∩ S2 to Q.

Figure 1. Third-party PSI ideal functionality

3. A Third-Party PSI Scheme

In this section, we will introduce the first third-party PSI scheme, which is secure

against a semi-honest adversary corrupting a single party. Suppose P1 and P2 have

sets S1 ⊆ {0, 1}ℓ and S2 ⊆ {0, 1}ℓ respectively, each of size n, and they wish to

privately compute the intersection of their sets, while revealing the result only to a

third party Q.

Our scheme relies on the use of a deterministic commutative cipher, such as

Pohlig-Hellman [19]. The basic idea is for P1 and P2 to first encrypt their elements

using a common key k. Q can then compute the intersection on the encrypted

elements, and encrypt the intersection result again using a different key k′. The

double encrypted intersection result is now decrypted by P1, and then decrypted

by Q to reveal the intersection.

However, in order to hide the size of the intersection from P1, it is necessary

for Q to pad the encrypted intersection result with enough elements to a total

of n elements (see step 5). To ensure that this can be done regardless of the

actual intersection size, we shall identify {0, 1}ℓ with a subset of {0, 1}ℓ+1. Let

E : K×{0, 1}ℓ+1 → {0, 1}ℓ+1 be a deterministic commutative cipher with keyspace

K.
If h is a positive integer, we let [h] = {1, 2, . . . , h}. For any sequence A =

(a1, a2, . . . , an) and any L ⊆ [n], we shall denote the sets {ai ∈ A : i ∈ L} and

{ai ∈ A : i /∈ L} by A∈L and A ̸∈L respectively.

We will assume that secure communication channels exist between any two par-

ties. Otherwise, the participating parties can carry out a simple key exchange

protocol prior. Our protocol works as follows:

(1) P1 and P2 agree on a random key k ← K.
(2) For each i = 1, 2, party Pi computes the set

S′i = Ek(Si) = {Ek(x) : x ∈ Si},
randomly rearranges its elements, and sends the result to Q.

(3) P1 randomly chooses a set of n elements T ⊆ {0, 1}ℓ+1 \ {0, 1}ℓ and

sends T ′ = Ek(T) to Q.

(4) Q performs an intersection of the sets S′1 and S′2 to obtain S′ = S′1∩S′2.
(5) Let n′ = |S′|. Q chooses n−n′ random elements from T ′ and appends

them to S′ to obtain a sequence U .

(6) Q picks a random key k′ ← K and encrypts U to obtain U ′ = Ek′(U).

(7) (a) Q sends U ′ to P1.

(b) P1 decrypts U ′ using the key k to obtain U ′′ = E−1k (U ′).

(c) P1 sends U ′′ to Q.

(8) Q decrypts U ′′ using the key k′ to obtain R = E−1k′ (U ′′), and outputs

R∈[n′].

Protocol 1. A semi-honest third-party PSI protocol

4 FOO YEE YEO AND JASON H. M. YING

Note that the operations used in Protocol 1 are simply O(n) encryptions and

decryptions, and an intersection operation, hence, if we have fast encryptions and

decryptions, Protocol 1 will be quite computationally efficient. However, in prac-

tice, commutative ciphers such as Pohlig-Hellman can be slow. The communication

cost of Protocol 1 is 5n(ℓ+ 1) bits.

While Protocol 1 will be quantum-safe assuming the cipher E is such, currently,

the security of existing commutative ciphers such as Pohlig-Hellman and SRA [24]

both rest on the hardness of the discrete logarithm problem, hence, Protocol 1 will

not be quantum-safe in practice. In the next section, we shall introduce a different

third-party PSI protocol that achieves security against quantum adversaries.

We will now prove the correctness and security properties of Protocol 1.

Proposition 1. Assume E is a deterministic commutative cipher. Then Protocol

1 always outputs the correct intersection.

Proof. Let I = S1 ∩ S2. First, observe that

S′ = S′1 ∩ S′2 = Ek(S1) ∩ Ek(S2) = Ek(S1 ∩ S2) = Ek(I).

Thus, by construction of U , we have U∈[n′] = S′ = Ek(I). It then follows from

R = E−1k′ (E−1k (Ek′(U))) that

R∈[n′] = E−1k′ (E−1k (Ek′(Ek(I)))) = I,

where the last equality uses the assumption that E is a commutative cipher. □

To prove security against semi-honest adversaries, it suffices to consider parties

P1 and Q, since they are the only parties who receive messages when running the

protocol.

Proposition 2. Assume E is a secure cipher. Then Protocol 1 is secure against a

semi-honest P1.

Proof. The only message that P1 receives is the sequence U ′ = Ek′(U), where U is

independent of the key k′. Since P1 does not know k′, the assumption that E is a

secure cipher means that changing U ′ to n uniformly random elements of {0, 1}ℓ is
indistinguishable to P1. □

Proposition 3. Assume E is a secure cipher. Then Protocol 1 is secure against a

semi-honest Q.

Proof. We shall change how S′1 and S′2 are computed. Specifically, the simulator

chooses 2(n − n′) distinct random elements s′1, s
′
2, . . . , s

′
n−n′ , t′1, t

′
2, . . . , t

′
n−n′ from

{0, 1}ℓ \ (S1 ∩ S2), and defines

S′1 = Ek(S1 ∩ S2) ∪ Ek({s′1, s′2, . . . , s′n−n′}),
S′2 = Ek(S1 ∩ S2) ∪ Ek({t′1, t′2, . . . , t′n−n′}).

Since E is a secure cipher, and since T ′ and U ′′/∈[n′] are both independent of S1 and

S2, this interaction is indistinguishable from the real interaction. □

4. A Quantum-Safe Third-Party PSI Scheme

In this section, we present a different third-party PSI scheme, which relies in-

ternally on the use of a key agreement protocol. Our work builds upon that of

Rosulek and Trieu [21] which had incorporated techniques due to Cho, Dachman-

Soled, and Jarecki [4]. Our scheme is quantum-safe with the use of a post-quantum

key agreement protocol.

THIRD-PARTY PRIVATE SET INTERSECTION 5

Suppose P1 and P2 have sets S1, S2 ⊆ {0, 1}ℓ, each of size n. Let λ > 0 be

the security parameter. We identify {0, 1}ℓ with a subset S of a finite field F with

|F| ≥ 2ℓ+λ+2 logn. Let S1 = {s1, . . . , sn} and S2 = {t1, . . . , tn}. We fix:

• a 2-round key agreement protocol KA (see Figure 2) with space of random-

ness KA.R, message space KA.M = F and key space KA.K = F,
• an ideal permutation Π : F→ F.

(1) P1 picks a← KA.R, and sends m1 = KA.msg1(a) to P2.

(2) P2 picks b← KA.R, and sends m2 = KA.msg2(b,m1) to P1.

(3) P1 and P2 output KA.key1(a,m2) and KA.key2(b,m1) respectively.

Figure 2. A 2-round key agreement protocol between P1 and P2

For two probability distributions X and Y (each indexed by a security parame-

ter), we writeX ≈ Y to denote thatX and Y are computationally indistinguishable.

The key agreement protocol KA should satisfy the following three properties:

Property 1. A 2-round key agreement protocol KA is correct if

KA.key1(a,KA.msg2(b,KA.msg1(a))) = KA.key2(b,KA.msg1(a))

for all a, b ∈ KA.R.

Property 2. A 2-round key agreement protocol KA has pseudorandom second mes-

sages if

{(a,KA.msg2(b,m1))}b←KA.R ≈ {(a,m2)}m2←KA.M

for all a ∈ KA.R, m1 = KA.msg1(a).

Property 3. A 2-round key agreement protocol KA has pseudorandom keys if

{KA.key2(b,KA.msg1(a))}b←KA.R ≈ {k}k←KA.K

for all a ∈ KA.R.

Our protocol works as follows:

(1) P1 picks a random a← KA.R.
(2) P1 sends m = KA.msg1(a) to P2.

(3) For each i ∈ [n], P2 picks a random bi ← KA.R and let m′i =

KA.msg2(bi,m) and fi = Π−1(m′i).

(4) P2 computes the unique polynomial p of degree ≤ n − 1 such that

p(ti) = fi for all i ∈ [n], and sends p to P1.

(5) For each i ∈ [n], P1 computes ki = KA.key1(a,Π(p(si))).

(6) P1 shuffles K = {k1, . . . , kn} and sends K to Q.

(7) P2 computes the unique polynomial q of degree ≤ n − 1 such that

q(ti) = KA.key2(bi,m) for all i ∈ [n], and sends q to Q.

(8) For each i ∈ [n], Q computes all solutions t to the equation q(T) = ki
with t ∈ S, and outputs {t ∈ S : q(t) = ki for some i}.

Protocol 2. A semi-honest third-party PSI protocol

From the above description, it is easily seen that the total amount of commu-

nication required by the protocol is (3n + 1)(ℓ + λ + 2 log n) bits. When log n

is small compared to ℓ, this gives us a significant improvement over Protocol 1.

Asymptotically, Protocol 2 incurs less communication cost for ℓ = ω(log n).

6 FOO YEE YEO AND JASON H. M. YING

Figure 3. Region representing the communication cost improve-

ment of Protocol 2

Figure 3 illustrate concrete values for which the improvements in communication

overhead are attained as represented by the upper shaded portion of the curve and

beyond, where λ = 40 is a standard statistical security parameter.

As a consequence, Protocol 2 has a lower communication cost compared to Pro-

tocol 1 for all practical values of n for element length of at least 128 bits. The

reduction in communication becomes greater as the element length increases. This

is especially relevant for elements comprising of moderate to long length strings

such as DNA sequences.

4.1. Correctness and security.

Proposition 4. Assume KA satisfies Properties 1 and 3, and Π is an ideal permu-

tation. Then Protocol 2 is correct except with negligible probability.

Proof. Protocol 2 outputs S1 ∩ S2 unless

(i) for some i ∈ [n] and tj ∈ S2 such that tj ̸= si, ki = KA.key2(bj ,m) where

bj ∈ KA.R is the randomness corresponding to tj , or

(ii) for some i ∈ [n] such that si ̸= tj for all j ∈ [n], q(T) = ki has a solution

t ∈ S, or

(iii) for some i ∈ [n] such that si = tj for some j ∈ [n], q(T) = ki has a solution

t ∈ S with t ̸= tj .

By Property 3 of KA, for fixed i, j ∈ [n] such that tj ̸= si, the probability

that ki = KA.key2(tj ,m) is negligibly close to 1/|KA.K|. Taking the union bound

over i, j ∈ [n], we see that the probability that (i) holds is ≤ n2/|KA.K| + η(λ) =

2−ℓ−λ + η(λ), where η(λ) is a negligible function of λ.

Now assume (i) does not occur. Since outputs of KA are indistinguishable from

uniformly random, q is indistinguishable from a random polynomial of degree ≤
n− 1 in F[X].

For (ii), we note that if si ∈ S1 does not correspond to any tj ∈ S2, then the roots

of q(T) = ki = KA.key1(a,Π(p(si)) are uniformly random in F. The probability

that a root lies in S is |S|/|F| ≤ 2−λ−2 logn, thus the probability that one or more

of the roots of q(T) = ki lie in S is ≤ (n− 1)2−λ−2 logn.

For (iii), since si = tj for some j, q(T) = ki has the solution tj . Now, (q(T) −
ki)/(T − tj) is indistinguishable from a uniformly random polynomial of degree

≤ n− 2, so the probability that one or more roots of (q(T)− ki)/(T − tj) lie in S

is ≤ (n− 2)2−λ−2 logn.

THIRD-PARTY PRIVATE SET INTERSECTION 7

By the union bound again, Protocol 2 gives the correct output except with

probability ≤ 2−ℓ−λ + η(λ) + n(n− 1)2−λ−2 logn < 2−λ+1 + η(λ), i.e. the protocol

is correct except with negligible probability. □

We adapt the proofs of Lemmas 11 and 12 in [21] to prove that Protocol 2 is

secure against semi-honest adversaries.

Proposition 5. Assume KA satisfies Property 2 and Π is an ideal permutation.

Then Protocol 2 is secure against a semi-honest P1.

Proof. It suffices to show how to simulate p. Since KA satisfies Property 2, changing

m′i = KA.msg2(bi,m) to m′i ← KA.M cannot be distinguished by P1. Then the

fi’s become independently and uniformly distributed, thus p is simply a uniformly

chosen polynomial of degree ≤ n− 1. □

Proposition 6. Protocol 2 is secure against a semi-honest P2.

Proof. This is clear since the only protocol message received by P2 is m, which does

not depend on S1. □

Proposition 7. Assume KA satisfies Properties 1, 2 and 3, and that Π is an ideal

permutation. Then Protocol 2 is secure against a semi-honest Q.

Proof. Hybrid 0 : The real interaction.

Hybrid 1 : We abort if there exists s∗ ∈ S1 \ S2 and t∗ ∈ S2 such that p(s∗) =

p(t∗). Since p is indistinguishable from a uniformly chosen polynomial of degree

≤ n− 1, the probability of abort is ≤ n2/|F| < 2−λ by the union bound. Since the

probability of abort is negligible, this hybrid is indistinguishable from Hybrid 0.

Hybrid 2 : We modify how the ideal permutation Π is simulated. For each

si ∈ S1 \ S2, we know there has been no query to Π at p(si) in steps 1 to 4.

This hybrid chooses ri ← KA.R, and sets Π(p(si)) = KA.msg2(ri,m). This hybrid

is indistinguishable from Hybrid 1 since KA.msg2(r,m) is indistinguishable from

uniformly random by Property 2.

Hybrid 3 : We change how the ki values are computed. We set ki = KA.key2(bj ,m)

if si = tj for some tj ∈ S2, else ki = KA.key2(ri,m). Hybrids 2 and 3 are identical

by Property 1 of KA.
Hybrid (4, h) for h ∈ [n+ 1]: We again change how the ki values are computed.

We set:

ki =

⎧⎪⎨⎪⎩
KA.key2(bj ,m) if si = tj for some tj ∈ S2,

k′i where k′i ← KA.K if si ̸= tj for all tj ∈ S2 and i < h,

KA.key2(ri,m) otherwise.

Hybrid (4, 1) is identical to Hybrid 3. By Property 3 of KA, Hybrid (4, h) is indis-

tinguishable from Hybrid (4, h + 1) for each h ∈ [n]. Hence, Hybrid (4, n + 1) is

indistinguishable from Hybrid 3.

Hybrid (5, h) for h ∈ [n+1]: We let q be the unique polynomial of degree ≤ n−1

such that

q(ti) =

{︄
KA.key2(bi,m) if ti = sj for some j ∈ [n] or i ≥ h,

qi where qi ← KA.K otherwise.

Hybrid (5, 1) is identical to Hybrid (4, n+1), and Hybrid (5, h) is indistinguishable

from Hybrid (5, h + 1) for each h ∈ [n], again, by Property 3 of KA. This shows

that Hybrid (5, n+ 1) is indistinguishable from Hybrid (4, n+ 1).

8 FOO YEE YEO AND JASON H. M. YING

Simulator : We simulate

K = {KA.key2(bj ,m) : tj ∈ S1 ∩ S2} ∪ {k′′1 , . . . , k′′|S1\S2|}

where each k′′i ← KA.K, and

q ← {Q[X] ∈ F[X] : deg(Q) ≤ n− 1, Q(tj) = KA.key2(bj ,m) for tj ∈ S1 ∩ S2}.

This interaction is identically distributed to Hybrid (5, n+ 1). □

4.2. Implementation details. In the above protocol, steps 4 and 7 involve poly-

nomial interpolation, while step 8 involves finding the roots of polynomials over a

finite field. Let us briefly discuss how these steps can be implemented efficiently.

One straightforward way to implement step 8 is to apply the Cantor-Zassenhaus

algorithm [3] a total of n times, but that gives us a total complexity of O(n4 +

n3 log |F|).
Instead, we can evaluate the polynomial q at all points of S ⊂ F. Using a

divide-and-conquer strategy with the Schönhage-Strassen algorithm [22], a mul-

tipoint evaluation of a degree n polynomial at n distinct points has complexity

O(n(log n)2 log log n). Hence, evaluating q at all points of S has a total complexity

of O(|S|(log n)2(log log n)).
Roughly speaking, the second method is superior if n > |S| 14 , hence the appro-

priate method should be chosen depending on the values of n and |S|.
For an actual implementation, we note that both of the above methods are

easily parallelizable. Furthermore, for small to moderate values of n, Berlekamp’s

algorithm [2] will likely be faster than the Cantor-Zassenhaus algorithm in practice

[25].

For steps 4 and 7, a naive implementation of Lagrange interpolation has a com-

plexity of O(n2). However, polynomial interpolation can be reduced to the prob-

lems of polynomial multiplication and multipoint polynomial evaluation [8]. Hence,

by using fast multiplication and multipoint evaluation algorithms, we can perform

steps 4 and 7 using O(n(log n)2 log log n) operations.

4.3. Extensions to the main protocol.

4.3.1. Offloading computations to an untrusted server. From the above discussion,

we note that step 8 is the most computationally intensive part of the entire protocol.

Hence, it might be beneficial to allow an untrusted party R (such as a cloud service)

to perform step 8. This can be achieved as follows.

Let E : K × {0, 1}ℓ → {0, 1}ℓ be a pseudorandom permutation (PRP). At the

start of the protocol, P1, P2 and Q first agree on a random key k ← K. Then, P1

and P2 apply E to the sets S1 and S2 to obtain Ek(S1) and Ek(S2) respectively.

The parties now follow steps 1 to 5 of Protocol 2 with S1 replaced by Ek(S1) and

with S2 replaced by Ek(S2). In steps 6 and 7, P1 and P2 send K and q to R instead

of Q. The untrusted party R can then perform step 8, before forwarding the result,

which is equal to Ek(S1 ∩ S2), to Q. Finally, Q applies E−1 to obtain the desired

intersection.

Note that this protocol does leak the size of the intersection to R, but is easily

seen to be secure otherwise.

4.3.2. Private intersection-sum. Another possible extension to our main protocol

is to augment it so that the sum of auxiliary data over the intersection set can be

computed privately. Assume that this auxiliary data is held by one of the parties,

say P1. To be precise, we suppose that P1 possesses both a set S1 and, for each

THIRD-PARTY PRIVATE SET INTERSECTION 9

element s ∈ S1, a corresponding value vs. By scaling the values of vs, we may

assume that all the vs values are integral. Further, assume that the vs values are

bounded (in absolute value) by B for some B > 0.

We will apply the additively homomorphic Paillier cryptosystem [17] with primes

p and q such that N = pq > 2nB. Let E : ZN → ZN2 and D : ZN2 → ZN be the

encryption and decryption functions respectively.

Our augmented protocol is as follows:

(1) P1 picks a random a← KA.R.
(2) P1 sends m = KA.msg1(a) to P2.

(3) For each i ∈ [n], P2 picks a random bi ← KA.R and let m′i =

KA.msg2(bi,m) and fi = Π−1(m′i).

(4) P2 computes the unique polynomial p of degree ≤ n − 1 such that

p(ti) = fi for all i ∈ [n], and sends p to P1.

(5) For each i ∈ [n], P1 computes ki = KA.key1(a,Π(p(si))) and wi =

E(vi).

(6) P1 shuffles K = {(k1, w1), . . . , (kn, wn)} and sends K to Q.

(7) P2 computes the unique polynomial q of degree ≤ n − 1 such that

q(ti) = KA.key2(bi,m) for all i ∈ [n], and sends q to Q.

(8) For each i ∈ [n], Q computes all solutions t to the equation q(T) = ki
with t ∈ S.

(9) Q computes the product w of all wi for which q(T) = ki has a solution

with t ∈ S, chooses a random e ∈ Z∗N and sends σ = we to P1.

(10) P1 decrypts σ and sends D(σ) to Q.

(11) Q outputs {t ∈ S : q(t) = ki for some i} and the sum e−1D(σ) (inter-

preted as an integer between −nB and nB).

Protocol 3. A semi-honest third-party private intersection-sum protocol

To see the correctness of this modified protocol, recall that the Paillier cryptosys-

tem satisfies the property that D(E(v)E(v′)) = v + v′. Hence, w is an encryption

of
∑︁

s∈S1∩S2
ws and σ is an encryption of e

(︁∑︁
s∈S1∩S2

ws

)︁
.

5. Conclusion

In this paper, we introduce the concept of a third-party PSI scheme, which

is motivated by many existing use cases, and present two protocols to achieve

this functionality with low communication overhead. The first protocol provides

a baseline for such a scheme, while the second protocol enjoys several advantages

over the first, namely, it incurs a lower communication overhead for element strings

of moderate to large lengths, achieves quantum-safe security with the use of a

post-quantum key agreement protocol, and is likely to be easily adaptable to be

secure against malicious adversaries without incurring additional communication

overhead.

References

[1] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Coun-

tering GATTACA: efficient and secure testing of fully-sequenced human genomes. In Proceed-

ings of the 18th ACM conference on Computer and communications security (CCS’11), pages

691–702. ACM, 2011.

[2] Elwyn R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.

[3] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite

fields. Mathematics of Computation, 36(154):587–592, 1981.

10 FOO YEE YEO AND JASON H. M. YING

[4] Chongwon Cho, Dana Dachman-Soled, and Stanislaw Jarecki. Efficient concurrent covert

computation of string equality and set intersection. In Topics in Cryptology-CT-RSA 2016:

The Cryptographers’ Track at the RSA Conference 2016, pages 164–179. Springer Interna-

tional Publishing, 2016.

[5] Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: delegated PSI cardinality with ap-

plications to contact tracing. In International Conference on the Theory and Application of

Cryptology and Information Security (ASIACRYPT 2020), pages 870–899. Springer, 2020.

[6] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set

intersection. In Advances in Cryptology - EUROCRYPT 2004, pages 1–19. Springer, Berlin,

Heidelberg, 2004.

[7] Per Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool: Privacy-preserving

ridesharing. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pages

276–291. IEEE, 2017.

[8] Ellis Horowitz. A fast method for interpolation using preconditioning. Information Processing

Letters, pages 157–163, 1972.

[9] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and trust in elec-

tronic communities. In Proceedings of the 1999 ACM CONFERENCE ON ELECTRONIC

COMMERCE. ACM, 1999.

[10] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,

Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure computing: Pri-

vate intersection-sum-with-cardinality. In 2020 IEEE European Symposium on Security and

Privacy (EuroS&P), pages 370–389. IEEE, 2020.

[11] Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed Sadeghian. Scaling private

set intersection to billion-element sets. In International conference on financial cryptography

and data security, pages 195–215. Springer, Berlin, Heidelberg, 2014.

[12] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched obliv-

ious PRF with applications to private set intersection. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security (CCS’16), pages 818–829.

ACM, 2016.

[13] Phi Hung Le, Samuel Ranellucci, and S. Dov Gordon. Two-party private set intersection with

an untrusted third party. In Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security (CCS’19), pages 2403–2420. ACM, 2019.

[14] Catherine Meadows. A more efficient cryptographic matchmaking protocol for use in the

absence of a continuously available third party. In Proceedings of the 1986 IEEE Symposium

on Security and Privacy, pages 134––134. IEEE, 1986.

[15] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov. Bot-

Grep: Finding P2P bots with structured graph analysis. In 19th USENIX Security Sympo-

sium (USENIX Security 10), pages 95––110, 2010.

[16] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg, and Dan

Boneh. Location privacy via private proximity testing. In Network and Distributed Security

Symposium (NDSS’11). The Internet Society, 2011.

[17] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In

Advances in Cryptology — EUROCRYPT ’99, pages 223–238. Springer Berlin Heidelberg,

1999.

[18] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set inter-

section using permutation-based hashing. In 24th USENIX Security Symposium (USENIX

Security 15), pages 515–530, 2015.

[19] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing logarithms

over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory,

24:106–110, 1978.

[20] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS and subfield

VOLE. In ACM CCS’21, 2021.

[21] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small sets.

In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications

Security (CCS’21), pages 1166––1181. ACM, 2021.

[22] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Computing, pages 1436–

5057, 1971.

[23] Adi Shamir. On the power of commutativity in cryptography. In Proceedings of the 1980 Inter-

national Colloquium on Automata, Languages, and Programming, pages 582––595. Springer,

Heidelberg, 1980.

THIRD-PARTY PRIVATE SET INTERSECTION 11

[24] Adi Shamir, Ronald L. Rivest, and Leonard M. Adleman. Mental poker. In The Mathematical

Gardner, pages 37–43. Springer US, 1981.

[25] Victor Shoup. Factoring polynomials over finite fields: Asymptotic complexity vs. reality. In

Proceedings of the IMACS Symposium, 1993.

Foo Yee Yeo, Seagate Technology, Singapore

Email address: fooyee.yeo@seagate.com

Jason H. M. Ying, Seagate Technology, Singapore

Email address: jasonhweiming.ying@seagate.com

	1. Introduction
	2. Preliminaries
	3. A Third-Party PSI Scheme
	4. A Quantum-Safe Third-Party PSI Scheme
	4.1. Correctness and security
	4.2. Implementation details
	4.3. Extensions to the main protocol

	5. Conclusion
	References

