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Abstract. In the case of standard LWE samples (A, b = sA + e), A is typ-
ically uniformly over Z!*", and under the LWE assumption, the condi-
tional distribution of s given b and s should be consistent. However, if an
adversary chooses A adaptively, the gap between the two may be larger.
In this work, we are mainly interested in quantifying He(s|sA + e),
while A an adversary chooses. Brakerski and Doéttling answered the
question in one case: they proved that when s is uniformly chosen from
Zy, it holds that Heo(s|sA +e) o ps(Ag(A)). We prove that for any
d < g, s is uniformly chosen from Z’L} or is sampled from a discrete
Gaussian, the above result still holds.

In addition, as an independent result, we have also proved the regularity
of the hash function mapped to the prime-order group and its Cartesian
product.

As an application of the above results, we improved the multi-key fully
homomorphic encryption [15] and answered the question raised at the
end of their work positively: we have GSW-type ciphertext rather than
Dual-GSW, and the improved scheme has shorter keys and ciphertexts

Keywords: Leftover hash lemma - Leakage resilient cryptography - Multi-
key FHE

1 Introduction

In the real world, hardware devices that host cryptographic algorithms expose
additional information to the external environment during operation, such
as noise, temperature, execution time, electromagnetic radiation, etc. If these
features can be captured more accurately, then the intermediate state of the
algorithm or private key may no longer be perfectly private.

In response to this attack model, the cryptographic community has re-
evaluated the "black-box" adversary model and above adversary model with
auxiliary inputs(noise, power, time, temperature, etc.) and proposed a series
of corresponding solutions: such as [17] [23] [1] [28]. This line of work became
known as "leakage-resilient cryptography” For more details, please refer to
"Survey of Leakage-Resilient Cryptography [30]."
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"Passive Leakage" Caused by Physical Devices : If we assume that our level
of manufacturing technology can create such a set of cryptographic hardware:
any algorithm running on it will not emit any sound, detect no radiation, and
give output at a constant time, then the above leaks will not exist. Informally,
we refer to such leaks in the real world but not in the ideal world as "passive
leaks" (caused by the real physical world but unrelated to encryption, signing,
computing tasks etc.). Next, we introduce another type of leakage different
from "passive leakage", called "active leakage".

Active Leakage in Decentralization: In the era of massive data, it has become
a trend for multiple companies and service providers to cooperate in providing
data and training better parameters and models, such as Federated learning
[31], privacy-preserving data mining [12].

Private information retrieval(PIR) [20], Secure multi-party computing(MPC)
[41], Threshold fully homomorphic encryption(Th-FHE) and Multi-key fully
homomorphic encryption(MKFHE) [32] provide technical support for the above
applications. Depending on the assumptions, the above techniques can be di-
vided into two categories: the first with setup (trusted third party, common
reference string(CRS)), and the second without setup (plain model).

Compared with the schemes or protocols under the plain model, those
schemes that introduce a trusted third party or CRS are much simpler and
more efficient, especially in the initialization phase. However, some people
believe that introducing such assumptions seems like cheating (Since there is
such a trusted third party, why not put everyone’s data in his hands and then
return the results to all parties?), so building cryptographic primitives under
the plain model has also become a demand for some people.

The key issue here is that for the initialization of MPC, Th-FHE or MKFHE
protocols, such as key generation, often rely on some common parameters.
If these parameters come from a trusted third party, their regularity can be
guaranteed, otherwise, the protocol initialization is often an interactive process
that may involve data provided by other users (who may be adversaries), and
the regularity of the data cannot be guaranteed, which may lead to the leakage
of user privacy. We call this kind of leakage caused by the protocol itself "active
leakage".

For example, In the MKFHE scheme [15], parties need to multiply their
own private key s with A generated by other party and make sA public in
order to support "ciphertext expansion”. In the oblivious transfer protocol [13],
the first round message y = tA + e of the sender is composed of its own secret
t multiplied by A generated by the receiver plus a small disturbance. Similarly,
the unbounded MPC protocol [5] also needs to make the class LWE sample
y = sA + e public, where A is generated by the adversary.

Apart from the different reasons for "active leakage" and "passive leakage"
mentioned above (one is caused by the physical world, and the other is caused
by the protocol itself), there are also great differences in the way of leakage.
There are many known side-channel attacks, including timing analysis attacks,
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power consumption attacks, electromagnetic analysis attacks, and optical anal-
ysis attacks. Therefore, designing cryptographic primitives resistant to a spe-
cific type of leakage may not be very meaningful. Thus, the formalization of
leakage-resilient primitives does not care about specific attack methods but the
private key(e.g., the conditional min-entropy of the key is sufficient).

However, the situation is different for "active leakage". As far as we know,
the ways of "active leakage" are very limited, especially in the context of decen-
tralized applications based on lattices. Therefore, it is necessary to study some
"mainstream" or "common active leakage" and reasonably quantify them. Next,
we will introduce specific examples and motivations.

Remark : We must admit that CRS has always been a dark cloud over se-
cure multi-party computing, and how to weaken it has always been a research
hotspot. Recently, the work [3] has proposed an alternative approach: instead
of removing it, they proposed the concept of accountability of CRS, that is,
the generator of CRS should be responsible for its randomness; otherwise,
the challenging party can provide a publicly verifiable proof that certifies the
authority’s misbehaviour. We believe this could be an effective means of bal-
ancing authority.

1.1  Motivation

In MKFHE scheme [15], in order to support subsequent ciphtertext expansion,
the "active leakage" was b = sA;. Assuming there were k parties, each one
needs to multiply their own private key s by the public keys {A;};cjr_1) of
other k — 1 parties and make {b; = sA;};_; public. In order to quantify the
effective bits of s € {0,1}"™ after disclosing {b; = sA;},_1, it estimated the
leakage in the worst case : Assuming b € Zg, then {b; = sA;},_; leaked
(k—1)nlogg bits of s. According to the proof method in [15], based on the
Leftover Hash Lemma(LHL), in order to make the statistical distance between
ciphertext and uniform distribution less than 2%{, m should be at least m — (k —
1)nlogqg > logq + 2«.

In [13], it applied another "active leakage" model s|b = sA + e. To ensure
that the entropy of s is still sufficient after b = sA + e is disclosed, it proved
that Heo(s|sA +e) > —log(m +27™). We believe that s|sA +e is a
better "active leakage" model compared to s|sA, because Heo(s|sA + e) estab-

lishes a relationship with A,;(A), and its loss ratio is O( @ ), while the latter is

O(1). Based on this, the work [13] constructed the first post-quantum secure
oblivious transfer protocol under the plain model that can resist malicious
receivers.

So far, we have seen two "active leakage" models, s|sA and s|sA + e. The
former quantifies the conditional entropy of s € {0,1}* in a more rudimentary
way, while the latter characterizes Hoo(s|sA + e) based on the properties of
lattices, but is limited to s «+ Zg. We are interested in whether there is a
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similar result Heo(s|sA +e) > — log(m +27™), forany d < q,s < ZI,

or s is sampled from a discrete Gaussian.

Such a requirement is not groundless. In the LWE-like sample sA + e, it
is sometimes convenient and necessary to bound the norm of s. For exam-
ple, in order to support bootstrapping in FHE, it is necessary to encrypt the
private key s. If s is uniform over Z;, how can it be filled into the plaintext
space? Therefore, [6] reduced the LWE problem with secrets taken from dis-
crete Gaussian to the standard LWE problem. MKFHE scheme [18] required
that s must be sampled from the discrete Gaussian in order to alleviate the
noise introduced by the re-linearization after multiplication of the ciphertext.
Furthermore, [26] proved that Regev’s encryption scheme was leakage-resilient
when taking private key s from a small uniform range( [26] only gave a reduc-
tion for s € {0,1}* in the original text, but the result holds for all sufficiently
small s). In addition, [5] uses the result of [13] to resist semi-malicious adver-
saries, but in their scheme, s is taken from a discrete Gaussian distribution.

Therefore, if we can characterize Hoo(s|sA + e) for any d < g, s < Z", or
s is taken from a discrete Gaussian distribution. we believe that this result can
be applied in many ways. Specifically, based on this result, we optimized the
MKFHE [15], resulting in shorter keys and smaller ciphertexts. We introduce
our results in the following section.

1.2 Our Results

For LWE samples whose secrets are sampled from a discrete Gaussian, we have
the following result :

Theorem 1 For a given matrix A € Zp"™ with m = O(nlogq). Let (A, b =
sA + &), where A + ZZX”, s +— ZZ, € < Dyuy, 0 <0 < 2\/%, be n LWE
samples. Let A' = —A"1A, A = (A,A),b=sA+e e« Dym . It holds that :

PU(Aq(A)
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When the secret s is uniform, we proved a more general version of Lemma
3.2 in [13] (Lemma 3.2 is a special case of our theorem).

Theorem 2 Let d, g, 0 < d < q be integers, A € 371", m = O(nlogd) and a

parameter 0 < 0 < ﬁ. Let s + Zs and e Dgzm,a' then it holds that :

1

Heo(s|sA + e) > —log(m

+27™M)

Clearly, when d = g, the above theorem degenerates to Lemma 3.2.

)



Title Suppressed Due to Excessive Length 5

In addition, as an independent result, we also proved the regularity of
the universal hash function mapped to a prime order group and its Carte-
sian product(Lemma6 and Corollary2) to prove the security of our improved
scheme.

As an application of the above results, we optimized the MKFHE scheme
in [15]. It must be pointed out that [15] seems to be becoming a cornerstone,
which is increasingly used in constructing more complex protocols, especially
in the MPC protocol with the optimal number of rounds. Such as [9] based
on [15] constructed a three-round protocol in the simultaneous message ex-
change model with rushing adversaries that achieves sub-exponential concur-
rent super-polynomial simulation (SPS) security for secure multi-party com-
putation for any efficiently computable function, in which all parties can re-
ceive output. Based on [15], [10] constructed a secure threshold multi-key FHE
scheme for the class of access structures {0,1}-LSSSD. The work [27], based
on [15], constructed an MPC while does not require the parties to be online
simultaneously or interact with each other. As the main building block [15]
used in [8] to construct a maliciously circuit-private MKFHE scheme.

Therefore, the above applications should all benefit from our improved
scheme. In particular, combined with the proof trick of [26] for the LWE variant
of binary keys, we answer the question posed at the end of [15] in positive
form: the ciphertext of our improved scheme is GSW-like constructed, instead
of Dual GSW. In addition, compared with [15], our ciphertext and key are
shorter, Table 1 lists the complexity comparison of the improved scheme:

Table 1. Complexity

Scheme ‘ Key size ‘ Ciphertext size
[15] O(knlog® q) O(K2n*log* q)
our scheme O(n*log> d) O(n?log(dq) logd)

k,n,q denotes number of parties, LWE dimension, modulus respectively. d is defined in our scheme with d = q/poly(A)

Remark : It must be pointed out that we introduce stronger assumptions
compared with [15]. Under the semi-malicious adversary, we require the lattice
A4(A) to contain enough short vectors, and the former has no restriction on
A, so the complexity of their scheme is related to k.

1.3 Technic overview :

We note that for a given y =sA+e mod g, A < Z*™, s < Z], e < x", let
s*A be the nearest lattice point to y, e* be the vector from s*A to y, it holds
that events s = s*|y =sA +e and e = e*|y = sA + e are equivalent, where
V € Z™ be the discrete Voronoi cell of Ay(A). Thus, we have :

Pr(s =s*|y) = Pr(e = e*|ly) = Pr(e mod g€ V)
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Therefore, as s < Z{, e < x", we can quantify Heo(s|sA + e) and Heo(e[sA + e).
Based on the above observation, [13] gave a low bound of He(s|sA + e), which
is also the low bound of He(e|sA + e). We quantify it for s + x", e < x™ or

s < Z5(d <q), e+ x"

We first analyze the situation when s < x", e <- x™. Unlike above, for a
given y, we cannot determine the probability of sA taking s* A(The nearest lat-
tice point to y). Therefore, we can not apply the above result directly. However,
we observed the reduction process of LWE samples(with discrete Gaussian se-
crets) to the standard LWE samples(with uniform secrets) in [6]: the noise in
the standard LWE samples turn into the secrets in the discrete Gaussian version
LWE samples. From the above analysis, we can see that we can quantify the
entropy of noise in standard LWE samples. Therefore, combining these two, we
can quantify He(s|sA + e) for s < x", e +— x™. We point out that this result
is not straightforward as it requires some properties of entropy.

Now, we consider the case of s + Zg(d < q), e < x™. According to the
definition of average conditional Min-entropy:

Heo(X|E) = —log(]E[m;ixPr[X|E =¢|]

that is, for a given y = sA + e, He(s|sA + e) is determined by the s* that
maximizes the conditional probability Pr(s = s*|y = sA +e). According to
the proof of Lemma 3.2 in [13], Pr(s = s*|y = sA + e) oc Pr(e =y —s*A), that
is, Pr(s = s*|y = sA + e) gets the maximum, if and only if s*A is the lattice
point closest to y, that is, the error term e must fall in the Voronoi cell V. But
when s is limited to a small range, the above conclusion does not necessarily
hold. Let d < g be an integer :

S={xeZ",x=sA modqsecZj}

obviously, S is a subset of g-ary lattice A;(A) = {x € Z",x =sA mod gq,s €
Zy } (not necessarily a sub-lattice, it may not be closed). For any giveny = sA + e,
where s < 7/, e <— Dzn ,, by Bayes Rule, it holds that Pr(s = s*|y = sA +e) o
Pr(e =y —s*A). Now, we need to find a lattice point on S that is closest to y.
There are two possible cases :

— The nearest lattice point to y on S is the same as the nearest lattice point
to y on the A4 (A).
— These two points are different

As shown in Figure1, we interpret it in a two-dimensional lattice.

Obviously, in the second case, y falls outside the Voronoi cell of s*A, e & V.
Therefore, we cannot use Lemma3.2 in [13] to get the Ho(sA + e mod q) low
bound. The point is that sA mod g doesn’t necessarily traverse all the lattice
points when limiting s to a small range. If Vs € Z/, S = {x € Z",x = sA
mod g,s € Zg} be a lattice, then a similar conclusion can be obtained from
Lemma3.2.
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Fig. 1. Cases of the nearest point to y : Red points are in S. The left panel shows that
the closest point to y is on S, but the right panel shows that the closest point to y is
clearly not on S

We found that as A € 37", Aj(A) = {x € JZ",x =sA mod q,s € Z!}
also be a lattice, similar to Aj(A’)(A’ € Z"*™) being a g-ary lattice defined
over Z™, Ay(A) being an d-ary lattice defined over 3Z™. Therefore, for such
lattice Ay(A), when s < Z(d < q), e < x™, we can still quantify Hw(sA + e
mod ¢).

The improvement on MKFHE scheme [15] requires us to show that sA + e
is still pseudorandom when s is lossy, where s < Z, A <« %ngm, e —
D 470 Here, we borrow the proof techniques in [30] from binary LWE sam-
ples to low-dimensional standard LWE samples. Let A = BC + E, where B <
171, €« ZL™M, E Dy, itholds that

sA+e=s(BC+E)+e=sBC+sE+e

By the Leftover hash lemma, as long as it is shown that the hash function
determined by B is universal and s has sufficient conditional entropy, then
it holds that (B,sB) = (B,u). In general, when s € {0,1}", for a uniformly
selected B from G"*!(G is a general finite Abelian group), the hash function
determined by it is usually universal. However, when s € Z, the regularity
of the hash function mapped to the general finite Abelian group cannot be
guaranteed(there is a zero divisor). However, when G is isomorphic to the
prime order group, the above hash functions are also universal.

Let t = sB, then sA + e = tC + sE + e, where tC + e are [ dimension LWE
sample. We can consider tC + sE + e as the ciphertext of the dual-Regev en-
cryption scheme, where the public key, private key and plaintext are (B, t), s,
sE respectively, that is, the encrypted data is related to the private key. If it
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is assumed that the dual-Regev encryption scheme is Circular Security, then
tC + sE + e should be computationally indistinguishable from the uniform
distribution(The Circular Security should be a widely accepted assumption,
which is used in FHE and key switch). Therefore, we can still use the GSW
type to construct MKFHE, which is similar to [15], but the encoding of the
plaintext is different. Note that our ciphertext C € 1Z"*™. We introduce the
encoding and correctness of homomorphic evaluation in Section6.3.

2 Preliminaries

2.1 Notation:

Let negl(A) be a negligible function parameterized by A. Lowercase bold letters
such as v, unless otherwise specified, represent vectors. Vectors are row vectors
by default, and matrices are represented by uppercase bold letters such as M.
Let k be an integer, [k] be the set of integers {1,--- ,k}. If X is a distribution,
then a <— X denotes that value a is chosen according to the distribution X, or a
finite set, then a <— X denotes that the value of a is uniformly sampled from X.
For two distribution X, Y, we use X ~; Y to represent X and Y are statistically
indistinguishable, where X =~ Y are computationally indistinguishable.

Gadget decomposition over Z + %Z : In order to decompose elements in Z,

into binary, we review the Gadget matrix [33] [2] here. Let G~!(-) be the com-
putable function that for any M € Zi"*", it holds that G (M) € {0,1}mxn,

where | = [logq]. Let g = (1,2,...,2""1) ¢ Zé, G=1,0g € ZZ”’”Z, it
satisfies GG ™1 (M) = M.

Now, we consider decomposing the elements on Z; + %Zd into binary. Let
g = (211’1,211’2,- -1, %, %,' . ,2%771) where I = [logq], I = [logd]. For
any a € Zg + %Zd, leta =ag+ 4 (ap € Zy, a1 € Zy), define g1 (a) = {0,1}1+h
be the decomposition of 49 and a;. It holds that for any a € Z; + %Zd, g-
g !(a) = a. Further, for M € (Z, + %Zd)mm, let G = I, ® g, it holds that
G (M) € {0,1}mht)xn - GG™I(M) = M.

2.2 Some background in probability

Definition 1 A distribution ensemble {Dy},c|n) supported over integer, is called
B-bounded if :

Pr,. p, [|e] > B] = negl(n).

Lemma 1 (Smudging lemma [7]) Let By = By(A), and B, = By(A) be positive
integers and let ey € [—By,By] be a fixed integer, let e; € [—Bp, By| be chosen
uniformly at random, Then the distribution of ey is statistically indistinguishable from
that of ey + e1 as long as By /By = negl(A).
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Average Conditional Min-Entropy(in [13]) Let X be a random-variable sup-
ported on a finite set X', and let Z be a random variable supported on a finite
set Z. The average-conditional min-entropy He(X|Z) of X given Z is defined
as:
Heo(X|Z) = —log(E; |maxPr[X = x|Z = z]|).
xeX

2.3 Universal hash function and Leftover hash lemma

The content of this subsection is mainly derived from [38] and [39]

Definition 2 Let the seed Uy be uniformly distributed on {0,1}%. We say that a
function Ext : {0,1}" x {0,1}* — {0,1}" is a (k, €)(strong) extractor if, for all
random variables X on {0,1}" independent of Uy with He(X) > k,

(EXt(X, Ud), Ud) z)e(um, Ud)
where Uy, is uniformly distributed on {0,1}™ independent of X and U,,.

Definition 3 A keyed hash function or, equivalently, a family H of hash functions of
size 2 from {0,1}" to {0,1}" is called universal if, for every x,y € {0,1}" with
x#y,

Pr [h(x) = h(y)] <27"

Theorem 3 ((Leftover Hash Lemma(LHL) [29])) Let X be a random variable with
universe U and Heo(X) > k. Fix € > 0. Let H be the universe hash family of size 2
with output length m = k — 2log(L). Define

Ext(x,h) = h(x).
Then Ext is a strong (k, §) extractor with seed length d and output length m.

The leftover hash lemma simply states that a universal hash family gives an
extractor. The seed is used to choose a hash function, and the output is simply
the hash of the input. In the above theorem, m = k — log(%) can be understood
as the min-entropy in the output of this extractor decreasing from k to m.
Xagawa [40] gives the following more easily applicable version

Lemma 2 (Lemma 4.2.3 in [40]) Let Hy = {hy : k € K} be a universal hash func-
tion defined over finite set K, D, T :

hk : D—T
x = hy(x)

where x is a random variable defined over D and independent from k. It holds that :
A((U, I (x)), (U, V)) < 273 (Fel) g 7142

where U and V are uniform random variable defined over K and T.
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The following lemma shows the regularity of the hash function mapping
from {0,1}" to general finite Abelian group G:

Lemma 3 ([37], Claim 5.3) Let G be a finite Abelian group, Q = |G|, m be in-
tegers. For any g1,---,9m € G, consider A(Zie[m] bigi, u), where b; < {0,1},
u < G. For uniformly chosen g1,---,gm € G, the statistical distance expectation
is at most (Q/ 2’")% In particular, the probability that the statistical distance exceeds

(Q/Z’”)% does not exceed (Q/Z’”)%.

2.4 Some result on the lattice

Theorem 4 Let A be a lattice, V be the Voronoi-cell of A, t,t' are two vectors in
span(A), then the following three statements are equivalent:

1. tis the shortest vector in t + A
2.te (t+A)NV
3. v =t —t' € Ais the nearest lattice point to t.

Definition 4 Let p,(x) = exp(—7t||x/c]||?) be a Gaussian function scaled by a
factor of 0 > 0. Let A C R™ be a lattice, and ¢ € R™. The discrete Gaussian
distribution D ¢, with support A + c is defined as :

Po(X)

Daseo(x) = —P2%)
A+ ,U(x) PU(A+X)

Lemma 4 (in [13]) Let A C Ag C R™ be full rank lattices and let T C Ay be a
system of coset representatives of Ao/ A, ie. we can write every x € Agasx =t+z
for unique t € A. Then it holds for any parameter o > 0 that

PU(T) 1
00(A0) = po(A)

Lemma 5 (in [11]) Let A € R", 0 > 0 and v > 0 be such that A (B contains
at least k linearly independent vectors. Then it holds that p,(A) > (o/ )k,

Theorem 5 (in [11]) For any lattice A € R™, parameter ¢ > 0 and u > \/% it
holds that
po(A\uoy/mB) <27 py(A),

where ¢, = — log(v/27eu - e—nuZ).
Setting A = Z™ and u = 1 in Theorem 5, we obtain the following corollary.

Corollary 1 Let ¢ > 0 and x <— Dgm . Then it holds that ||x|| < o - \/m, except
with probability 27™.
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2.5 Learning with Errors

The Learning With Errors(LWE) problem was introduced by Regev [37]. In
general, we are primarily interested in its decision version.

Definition 5 (Decision-LWE) For n,m,q € N and for a distribution x supported
over Z, the DLWEy 4,y is to distinguish the following distribution :

— Dy : the jointly distribution (A, z) € (Z"*™ x Z™") is sampled by A < Z"*™,z +
) Y q q P Y q
7,
q
— D : the jointly distribution (A,b) € (Zi*™ x Zi}') is computed by A « Zy™™,
b = sA + e where s <—Z;,e — x™.

It is often considered the hardness of solving DLWE,, ;4,5 for any m = poly(nlogq).
The matrix version of this problem ask to distinguish (A,SA + E) from (A, U)
where S Z’[‘IX’”, E « X" and U « stm, whose hardness for any k =
poly(n) can be established from DLWE,, ;s 4, Via a routine hybrid-argument.

As shown in Regev [37], for certain module g and discrete Gaussian error
distribution y with parameter o = ag > 2+/n, the DLWE,; 4,5 is true as long as
certain worst-case lattice problem is hard to solve using a quantum algorithm.

2.6 Road-map

In section3, we proved a more general result for He (s|sA + e). In sectiong, we
proved the regularity of the hash function defined on the prime order group
and its Cartesian product. This result will be used in the security proof of our
scheme. In sections, we proved the leakage-resilient property of LWE defined
on %Z. In section6, we gave our improved MKFHE scheme.

3 Lattice-based, more general anti-leakage model

In Section3.1, we first quantify the anti-leakage properties of LWE whose se-
crets are drawn from discrete Gaussian. However, when the secrets are uniform
in a small range, the situation is different. In Section3.2, We describe a lattice
contained on %Z’”, then in Section3.3, we prove the anti-leakage property of
the LWE samples on this lattice.

3.1 Anti-leakage properties of discrete Gaussian version of LWE samples

When s is taken from a discrete Gaussian distribution, we cannot directly ap-
ply the proof method in [13]. At this time, we need to use the reduction tech-
nique [6] from LWE (with discrete Gaussian secrets) to LWE (with uniform
secrets).

Consider the following game :

— Alice picks a matrix A € Zg*™ and sends it to Bob.
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— After receiving A, Bob generates n standard LWE samples (A, b =sA, +é),
where A « ZgX", s Zg, € < Dzn, Let A = —A 1A, b=sA+ee+
Dym ,, and send (A’,b,b) to Alice.

— After receiving (A’,b,b), Alice computes (A’,b’ = b + bA’).

The above game is essentially the reduction from discrete Gaussian LWE to
standard LWE. Apparently (A’/,b’ = €A’ + e) are the LWE samples with dis-
crete Gaussian secrets, but A’ may not be uniform, because A is chosen by
Alice. Now, we quantify He(€|eA’ + e).

Theorem 1. For a given matrix A € Zy"*™ with m = O(nlogq), and 0 < ¢ <

72\/%. Let (A, b = sA +&), where A < Z[*", s < 1L, & < Dzn, be n LWE

samples. Let A’ = —A~'A, A = (A,A), b =sA +e, e < Dyu,. It holds that :

3 & 1
Hoo(é|éA/ + E) = Hoo<é,3|éA/ + e) > —lo - - +27(m+n)
5\ oo (Ag(A)

Proof. Let & = (e,e), b = (b,b). According to the definition of average min-
entropy, we have

Heo(8|b) = Hw(8[b = sA + &) = — log (EB {n}ang[é =&*|lb=sA+ é]])
é* s,e

Obviously, & that maximizes the conditional probability Pr[é = &*|b = sA + &]
must fall in the Voronoi cell of the lattice point that nearest to b, that is, &* =
b — s*A(s*A is the nearest lattice point to b). By Theoremy, it holds that
Pr[é = &*|b = sA + & = Pr[é mod g € V], where V € Z"*" is the discretized
Voronoi cell of Ag(A). By Theorems, it holds that |[&]| < o -v/m+n < q/2 ex-
cept with probability 2~ "+, thus Pr[é mod q € V] < Pr[é € V] 42~ (m+n),

: 3 < pe(V) < 1 P
By Lemmay, it holds that Pr[é € V] < @) S AR therefore, Pr(é

1 —(m+n) .
moquV]gpa(Aq(ADJrZ . We have :

Heo(&b) = —log (Eg [Prlé mod g € V]])
= —log (Pr[é¢ mod g € V])

1
> 1 _ o —(m+n)
- (pgmq(A)) " ) v

According to the chain rule of entropy : H(X,Y) = H(X) + H(Y|X), we have :
Heo(8,e|eA’ +e) = He(e,e,eA’ +e) — Ho(eA' +e) (2)
And because He(e|eA’ + e, &) = 0, then by the chain rule, we have :

He(8,e,8A’ +e) = Hw(8,eA’ +e) (3)
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Combining (2), (3) we have :
He(8,e|eA’ +e) = Ho(8,eA’ +e) — Ho(eA' +e) = Ho(e|eA +e) (1)
Because €A’ + e =b + bA’, we have :
Heo(e,eeA’ +e) > Heo(e e|b) (5)

Combining (1), (4), (5) we have :

Hoo(é|éA/ =+ E) = Hoo(é,8|éA/ _|_e) Z —log ( +2—(m+n)>

po(Aq(A)

; q
3.2 Lattice over ;Z™

Letd,gc Zandd <gq, Ac I7"", sc 7 Let 3
Aq(A):{xegZ’":x:sA mod ¢,s « Zj}

It is easy to verify that A;(A) forms a lattice, for any x1, x2 € A;(A), let x; =
s1A mod g, x; = spA mod g, there exist x3 € Aq(A) satisfying x3 = x1 + xp
mod g, where x3 = s3A mod g, s3 = s; +s, mod d. That is, A;(A) is closed
under addition modulo g, and is a discrete additive subgroup of 7.

For those who are more familiar with lattice, it may be seen at a glance that
A4(A) is isomorphic to the d-ary lattice (obtained by stretching d-ary lattice
by a factor %). Such as for any A € %Z"X’”, let A = %A’, where A’ € 7/"*m,
there is a bijection ¢ between Ay(A’) = {x' € Z" : X' = sA’ mod d,s « Z}
and A4(A) : for any X' € Ay(A'), let X' = v+d-c, where v e Z, c € Z", its
image in Ag(A)isx=Jv+q-c

¢ o Aa(A) = Ag(A)
1

v+d-c~>a-v+q~c.

3.3 Lossy model for d-ary lattices

Theorem 2. Let d, g, 0 < d < q be integers. Fix a matrix A € 37"" with m =

4 Tets < 7l and e + D%Zm o Then it

O(nlogd), and a parameter 0 < o < NG

holds that :
- 1
He(s|sA+e modg) > —log(———++~ +27")
” pr(Ag(A))
3 JC: Here the definition of mod has been extended to take the remainder of a ratio-
nal number to an integer
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If d = g, the above theorem degenerates into Lemma 3.2 in [13]. Its proof is the
same as [13]; for the sake of completeness, we list it here.

Proof. For a given A € 471" and 'y € 47, let s* be the point that maximizes
the conditional probability PIZ [s = s*|y = sA + e]. By Bayes Rule, it holds
s«Zj

that :
e B B . Pr[s = s¥|
szlig[s_s ly=sA+e]=Prly=sA+e|s"] Pily — sA +¢]
Pr[s = s¥|
:P prm— —*Ac
rle=y-s }Zs/Pr[y:sA—l-e|s:s’]Pr[s:s’]
d*?’l
rle=y—s }Zs/Pr[e:yfs*A]d_”
Prie =y —s*A]

- Yo Prle=y—s'A

For the given A, y, Y, Prle = y — s’A] is a constant, it holds that Pr[s = s*|y = sA + e] «
Pr[e = y — s*A], thus the point maximizes Pr[s = s*|y = sA + e] is the lattice
point nearest to y. Let V € %Z’" be the discretized Voronoi cell of Az(A), that is
V consists of all point in §Z™ that are closer to 0 than to any other point in A.
By construction, V is a system of coset representatives of 17"\ A, (A).
By Theoremy, it holds that Pr[s = s*|y = sA +e] = Pr[e mod g € V]. By

Theorems, it holds that |[e|| < J - o - /m < q/2 except with probability 27,
thus Prfe mod g € V] < Prle € V] + 27" By Lemmay, it holds that Pr[e €

V] < pelV) L, therefore, Prfe mod g € V] < —+ 7 + 27", thus

= pe(§2m) = po(Aq(A)) S 0(Ag(A))

Heo(s | sA+e) = —log (Ey {maxg’g[s =s"|y= sA—f—e]})
s* s,

= —log (Ey[Pr[e mod g € V]])
= — log(Pr[e mod g € VD

1 —m
2‘“g(pgwm»” )
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4 Regularity of Hash Functions on Prime Order Groups and
Their Cartesian Products

The work( [37], Claim 5.3)proved that hash function family {Hg = hg : g € G}
is universal, where :

hg : {01} = G
b — Z bz’gi
iem

The above result requires that the preimage of hg is taken from Z, and G
only needs to be a finite Abelian group. Here we relax the preimage of hg and
take it from Z;, where d < ¢ is an integer, but the order of the finite Abelian
group G must be prime. We prove that the following hash function family is
universal H¢g = {hg : g € G™}

hg : ZI — G
b — Z bigi
ie[m]

Below we prove lemma6 and then extend to its Cartesian products.
Lemma 6 Let G be a finite Abelian group with |G| = q as a prime, m,d as inte-
gers, and d < gq. For uniformly chosen g1,--- ,8m € G, b; < Zg, u <+ G, the
statistical distance A(Zie[m] bigi, u) is expected to be at most %1 / d%, in particular,
the probability that the statistical distance exceeds (%)% does not exceed (%)%

Proof. As G is a finite Abelian group, it holds that for b, b’ € Z/, and b # b/,
we have :

m

o] <o [

i=1

Y bigi = Z bigi

=0lb #£ b’] ©6)

geG’” [

The above probability can be determined by counting the fixed b and b’. When
only the i-th element of b — b’ is non-zero, b; — b/ # 0, we have Y, (b; —
bl)gi = (bi — b})gi = 0. Because G is a finitely generated Abelian group and
has prime order ¢, then G and Z; are isomorphic For any bl,b € Zy, and
b; — b} # 0, there is b; — b} € [—(d — 1), d —1]/0. Therefore, for (b; — b})g; =0,
we have g; = 0, and the remaining m — 1 positions can be chosen randomly on
G, thus (6) = ¢ 1/q" =1/4.

When only the i-th and j-th elements of b — b’ are non-zero, we have (b; —
b)gi + (bj — b)gj = 0, then g; = —(b; — b}) "' (b; — b})g;, where (b; — b})~"
the inverse of b; — b} on b; — b;. For a given g, g; is uniquely determined, and
the remaining m — 2 positions can be arbitrarily selected on G, thus, (6) =
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g™ 2q/q™ = 1/q. Generally, when only k elements of b — b’ are non-zero, it
can be derived from the linear relationship :

gi=—li—b)"" Y (b —b)g;
jelk]/i

it holds that :

m—k ;k—1
b;éb’]_q q" =1/q

m

m
Pr [Zbigi =) bigi
; i=1

g« Gm

Therefore, the family of hash functions Hg = {hg : g € G™} defined above
are universal. In particular, with b < Z, the probability of collision is 1/d",
so the min-entropy is m logd, the output of this hash function is log q bits, and

e = 22(l0gq—mlogd) By the leftover hash lemmaz, it holds that :

Ml(g Lbigi), (8:1) < N

where u < G.

The following estimate of the statistical distance expectation is similar to
Lemma 4.3.3 in [40]. For any g = (g1, -+ ,gm) € G™ define

1

Py() =

m
{beZ?Zb,g,:hH

=1

For a fixed g € G™, define the collision boundary, that is, the l,-norm of the
function Pg on RY:

m m
Py(h)2= P bigi =Y blg
L Py(h) bz L_El i3 1:21 lgl]

heG

1 m m
< — P b;g; = bigilb #b'|.
= gm +b,b’:Z§” |J_21 i8i 1221 i&i # ]

Thus for random variable g, it hold that :

1,1
Expge g lz Pg(h)2] €
heG q
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For any x € RY, it holds that |[x||« < \/q][x|[2, we have :

1/2
1 1\?2
EngeGm Z Pg(h) - ‘ < EngeGm ql/Z (Z (Pg(h) - ) >
heG q heG q
132\ 12
= ql/zEng(me <Z (Pg(h) — ) >
heG q
1 1/2
o (e [ 0] )
heG q
< ql/Z.dfm/Z _ /dim
Thus :
1 /
Eng%Gm A(Zbigi,u) S E dim
1

By averaging argument(See Appendix A), we have :

q .1 g1

o [A@bigi,m > <dm>4] < (Dt

(Otherwise, it can be derived that Expg, gn [A(Y; bigi, u)] > % %, contradictory)
|

Next, we extend the above lemma to the Cartesian product of prime order
groups.

Corollary 2 Let Gy X Gy - - - x Gy be the Cartesian product of finite Abelian groups
{Gi}iciq, where |G| = q; be primes, qmin = min{q;}ic), m be an integer, {gr =

(8i1," " 8tk) € G1 X Gy -+ X Gyliepyy)- For uniformly chosen {gt}icpm), bi <

Lgins 0 <= (G1 X Go - - - X Gy), the statistical distance A((Zte[m] big1, - - ,Zte[m] bigtk),u)
is expected to be at most (IT5_; q;/ q;’fﬁn)%, in particular, the probability that the sta-

tistical distance exceeds (IT5_, q;/ qr'flin)% does not exceed (TT<_; q:/q™,,) i,

Proof. Similar to the lemma 6, first prove the family of hash functions Hg, ... xG, =
{hg:g € Gyx, -, xGy} is universal :

thZ;nmin—}G1 X XGk
m m m
b (Y bigin, Y bigio -+, Y bigik)
iz i=1 i=1

whenb # b’ mod gmin, and only the a-th element is non-zero { (by — by )ga,; =

O}je[k]/ it holds that {g,x,j = O}je[k}/ then the collision probability is H’Lll 0
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Similarly, only when the a-th and B-th elements are non-zero {(bx — by )&a,j +
(bg — b/’g) 8 = O}jeji), the collision probability is H% Generally, when ¢t

i=11i
elements are non-zero, there are:

|S|=t

Y. (bi—b})gi;j =0

i€S

ScC[m] ]E[k}
the collision probability is —. o Thus Hg, x,...,xG, is universal. The proof of

i=14i
the statistical distance is similar to the lemma6, which will not be repeated
here. [ |

Remark : We want to extend the above result to the general finite Abelian
group, but the hash function mapping to it seems not to be universal(there is
zero divisor). Such as, let G ~ Z; x Z,(q be prime, a > g be an integer), b # b’
mod q. For any g1 < Zy, & < Zg, let (b —1b")gy = 0, it holds that g; = 0, but
(b—1')g> = 0 holds for any b — V' satisfying ord(g2)|(b — b’), where order(g>)
is the order of g, which the probability of (b —b')g, = 0is:

= d(i, a)
Pr [(b—V)g =0/b—b #0]=) Pr [(b—p) = .84
b'h':zq[( )22=0 70 i <b/b/(EZq[( )=1] a
gzeG

The above probability is clearly greater than 1.

5 Leakage-resistant properties of LWE over %Z"‘

In this section, we need to introduce the LWE problem on 4Z™, and then prove
its anti-leakage property. In fact, it will not be simpler than the standard LWE
problem. Below, we introduce this non-standard LWE problem, then reduce
it to the standard LWE problem (which is almost an observation), and finally
prove its anti-leakage property.

1
5.1 The LWE problem over ;Z"
In this work, we mainly use its decision version.

Definition 6 For n,m,d,q € N,d < g, and a distribution ) supported over %Z, the
rational-DLWE,, y, 4,4, problem is to distinguish the following distribution :

— Dy : the joint distribution (A,z) € (3Z"™ x 1711 is sampled by A < JZ7*"
,Z gZ’;

— Dy : the joint distribution (A,b) € (3Z1"™ x 37Z%) is computed by A <+
%Z;‘X'”, b =sA +e mod g, wheres < 7, e < x"™.
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As introduced in Preliminary, the standard DLWE;, ;4,5 is defined on Z,
when ¥ is a discrete Gaussian distribution on Z with a standard deviation
o > 24/n, it will not be simpler than the hard problem on lattice. Now we
build the reduction from rational-DLWE, ;4 4  to DLWE,, , 4 5.

Claim 1 If an adversary can distinguish the rational-DLWE,, ,, 4 , . problem with an
advantage € in time T, then he can also distinguish the standard DLWE, ,,, 4 » problem
with the same time and advantage.

Proof. In above section, we have shown that there is a bijection between A;(A)
and A4(A’), where A’ = 1A,A € Z*™. Similarly, there is a bijection be-
tween DLWE,, ,, 4 7 and rational-DLWE,, ,,, 4, , samples. For any given standard
LWE,, 4, samples (A,b = sA +e mod d), letb =sA +e+d-c" where c €
7™, it holds that :
gb:g-sA+%e+q-c
Let A’ = %A, b’ = %b, e = %e, it holds that :
b’ =sA’+e modg

where A’ € §7/*™ ¢’ € 17. Thus (A’,b’) is sample of rational-DLWE, ;4 1 .-
Therefore, for rational-DLWE,, ;, 15, when x is a discrete Gaussian de-
fined on 37 with standard deviation ¢ > 2/n, it will not be simpler than
DLWE,, ,4,5-
|

5.2 Leakage resistance of rational LWE samples

Goldwasser [26] et al. proved the leakage-resilient property of such "weak"
LWE samples (A, b = sA + e) where s is taken from {0,1}"(as the entropy of s
is sufficient, it is no simpler than the low-dimensional standard LWE problem).
It essentially used the anti-leakage property of the leftover hash lemma and
reduced it to low-dimensional LWE samples.

Next, we prove that the rational-DLWE,, ;, 4 5, samples we defined also have
anti-leakage properties. This proof needs to use the regularity result of the
hash function family on the prime order group(Corollary2), and unlike [26],
we need to use the Circular Security assumption.

Theorem 6 Let n,q be integers and d < q be prime, s be a random variable over
1, having min-entropy at least k. For any r < %, there is a ppt reduction
from rational-DLWE,, ;; 4 4 to distinguish dual Regev ciphertext( with public key
pk = (B,t), B < 1Z7*",t = sB mod g, and plaintext is related to private key s)

defined over %Z with uniform distribution.
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Proof. For a given m rational LWE samples, (A, b = sA + e), where A <+ 17" e +
X", s < Z]j and Heo(s) > k. By claim1, we can replace A with BC + E, where

B« 71", C « Z*™,E < x™*™, it holds that b = sBC + sE + e. Let t = sB

mod ¢, as §Z; is a finite Abelian group with d elements, for any randomly
chosen B < 37", hg defines a hash function mapping from Z!! to 47,

mo 4
Hizy = {hp:Bedzpo

o Zy— iz
s — sB mod g.

By Corollary2, we have the family of hash functions ‘H a7 is universal, further,
by the leftover hash lemma2, we have :

A((B, 1), (B,u)) < 2 2(He(s)~logd"+2)

%, we have A((B,t), (B,u)) < negl(n), where

u < 17! Thus b = tC + sE + e. We note that tC + e are m rational LWE sam-
ples. In [26], they set the variance of E and e to satisfy ||sE||/||e|| = negl(n),
then get e =; e + sE by smudging lemmazi. Thus b = tC + e and / dimension
standard LWE samples are indistinguishable. However, this method is not suit-
able for us. Our x is defined on %Z, and s < Z!, so sE will overturn q with a
high probability, which leaves no room for us to set the variance of E and e, to
satisfy |[sE||/||e|| = negl(n).

We noticed that b = tC + e + sE could be regarded as the ciphertext of the
dual Regev encryption, where (B,t = sB) is the public key, s is the private
key, and sE is the plaintext(related to the private key). Suppose we assume the
dual-Regev encryption scheme is Circular Security (while the encrypted data
is related to private key, the ciphertext is still computationally indistinguish-
able). In that case, we should have enough confidence in the leak resistance of
rational-DLWE,; 4,4, -

Considering that the Circular Security assumption exists in many places,
such as the key-switch in the FHE scheme [14] and the bootstrapping in [24] [16]
[25]. Therefore, if an adversary can distinguish the rational-DLWE,, ;, 4,4 , with
the private key s lossy, then he can distinguish the dual Regev ciphertext(with
plaintext is related to the private key).

Further, for any r <

6 Optimized multi-key fully homomorphic encryption
scheme

Multi-key fully homomorphic encryption(MKFHE) was proposed by Lépez-
Alt et al. [32], and constructed the first MKFHE based on the NTRU encryption
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scheme. It was an extension of the single-key fully homomorphic scheme (sup-
ports homomorphic operations between ciphertexts encrypted with different
public keys)

After Lopez-Alt et al proposed the concept of MKFHE, by introducing CRS,
Clear and McGoldrick [21], Mukherjee and Wichs [34], Peikert and Shiehian
[35] constructed the GSW type MKFHE. Chen [19] and Chen [18] constructed
the MKFHE based on RLWE and applied it to privacy-preserving neural net-
work training with multi parties. The work [15] was the first MKFHE scheme
that does not introduce CRS, by the anti-leakage property of the dual-Regev
encryption scheme, it proved the security of its scheme, as the entropy of the
private key is sufficient(the tradeoff is that the length of the private key in-
creases with the amount of leakage). Ananth et al. [4] removed CRS from
a higher dimension; instead of using the leftover hash lemma or regularity
lemma, they based on Multiparty homomorphic encryption and modified the ini-
tialization method of its root node to achieve this purpose.

It is worth noting that most of the GSW-type MKFHE follow the same
paradigm :

— The total private key is the concatenation of multiple private keys

— All require a ciphertext expansion to convert ciphertext under different
public keys into ciphertext under the total private key

— Distributed decryption needs to introduce large noise to guarantee security

In order to solve the above problems, Dai et al. [22] introduced the keylifting
operation in the interactive key generation stage, which removed the expen-
sive ciphertext expansion. Based on the Rényi divergence argument and the
asymmetric properties of the GSW ciphertext, it removed the noise flooding
technique used in encryption and distributed decryption phase making the
parameters the same as that of the single-key FHE scheme.

MKFHE is a rapidly developing field that has dominated many appli-
cations and is becoming a building block for many primitives: a series of
work [15] [34] [5] showed that MKFHE was an excellent base tool for building
round-optimal MPC.

Judging from the above series of work, MKFHE is moving closer to single-
key FHE in terms of protocol design, security assumptions, and parameter
sizes (ideally, we hope that MKFHE can both supports multi-party participa-
tion and can be as concise and compact as FHE(no CRS, ciphertext expansion,
and noise flooding). Intuitively speaking, the complexity lower bound of the
MKFHE scheme should be FHE.

As an application of our result in the previous section, we give an opti-
mized MKFHE scheme based on [15]. It must be pointed out that such op-
timization can also be applied to [21] [34] [35] [22] and other GSW-based
MKFHE(constructed on Z, can use the leftover hash lemma to remove CRS).
We choose [15] as an example because it requires fewer changes, and the im-
proved result is better. For completeness, we define MKFHE below and then
describe our improved scheme.
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6.1 The definition of MKFHE

Definition 7 Let A be the security parameter, L be the circuit depth, and k be the
number of participants. A levelled multi-key fully homomorphic encryption scheme
consists of a tuple of efficient probabilistic polynomial time algorithms MKFHE=(Init,
Gen, Enc, Expand, Eval, Dec) which defines as follows.

— pp < setup(1*, 1%, crs) : Input security parameter A, circuit depth L, common
reference string crs (generated by a third party or random oracle), output system
parameter pp ( [21] [34] [35] [18])

— pp < Distributed setup(1*, 1%, 1) : Input security parameter A, circuit depth L,
user number k output system parameter pp. ( [15] [22])

- (pk;, sk;) < Gen(pp) : Input pp, output a key pair for participant i.

— ¢; < Enc(pk;, u;) : Input pk; and plaintext u;, output ciphertext c;.

- v; < Enc(pk;,r;): Input pk; and the random r; used in ciphertext c;, output
auxiliary ciphertext v;.

= ¢; < Expand({pk;}c ), vi, ci): Input the ciphertext c; of participant i, the pub-
lic key set {pk;}ic[x of all participants, auxiliary ciphertext v;, output expanded
ciphertext ¢; which is under f(sk;, .. .sky) whose structure is undefined.

~ Cepal < Eval(S,C):Input C, the set of all ciphertext S = {¢;};c|n) while N is the
input length of C, output evaluated ciphertext Cyyy

— u < Dec(Cppar, f(ski1 .. .sky)): Input evaluated ciphertext oy, private key func-
tion f(skj ...skg), output u (This is usually a distributed process).

Remark : In the initial definition of MKFHE given by Lopez-Alt et al [32],
there is no limitation on the initialization of parameters. According to a series
of existing works, we divide the initialization of parameters into the above
two types: setup and Distributed setup. The difference is that the former needs
to introduce CRS and complete the initialization locally. In contrast, the lat-
ter does not need to introduce CRS, but the user completes the initialization
interactively. In addition, although the initial MKFHE definition does not in-
clude auxiliary ciphertext and ciphertext expansion operations, in fact, the
works [34] [36] [21] include this procedure to support homomorphic opera-
tions. The common private key depends on {sk;}c(, f is a certain function,
which is not unique; for example, it can be the concatenation of all keys or the
sum of all keys.

6.2 An improved "GSW-style" MKFHE based on [15]

Our optimized scheme is similar to [15], except that their scheme was based on
Dual-GSW(on Z), while our is GSW type(on %Z), which will lead to different
plaintext encoding. Furthermore, their "active leakage" model is s|sA, while
ours is s|sA + e. The improved scheme is defined as follows:

— pp ¢+ setup(1%,1%,1L): On input security parameter A, users number k =
poly(A), circuit depth L, let n = poly(A) be an integer, d = 20*L) be a
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prime, m = nlogd, g = d - poly(A) satisfying 4 = 1 mod d. Let x be a
noise distribution defined over 17, where e < x, |e| is bounded by By
with overwhelming probability. Suitable choosing the above parameters to
make rational-DLWE,, , 4 5 1 is infeasible, output pp = (k,n,m,d,q, x).

- (pkj, sk;) <= Gen(pp,i) : Input pp,i, output the key pair (pk;, sk;) of party
i, where pk; = (A;,b;;), A; < 171", s; « 7, e < X", b;; = s;A;+ e
mod g, sk; = (s;, —1).

— Auxk; < Auxiliary KeyGen(ski, {pkj}jcik/i) : Input the private key sk; of
party i and other parties public keys {pk;}jcy,i, output the Auxiliary
key(as needed for ciphertext expansion) Auxk; = {b;;}ic[q,; of party i,
where b;j = s;A; +e;.

— C; <+ Enc(pk;, u;) : Input public key pk;, a plaintext u#; € {0,4}, output
ciphertext C; = (£l> R+ (3,) +u;G, where e’ is sampled from y'("+1)!

i
defined over 47 satisfying ||eR/e’|| = negl(), R « {0,1}m>(+D1 | =
[loggd], G is a gadget matrix as defined in preliminary.
— u < Dec(sk,C) : Input ciphertext C, private key sk, let t = sk, wl =

da/2 -
0, ,0,%) c %ZZH/ v=1t-CG Y(wT), output u = Lq%]

6.3 The encoding check

Since our improved scheme is based on Z, this causes our plaintext encod-
ing to be different from the GSW scheme on Z (theirs are {0,1}, while ours is
{0,4}). Next, we point out that as long as the parameters are set reasonably,
the plaintext evaluation over {0, 4} resulting in the homomorphic evaluation
of the ciphertext is also closed. The decryption, homomorphic addition, and
multiplication of the initial ciphertext are tested in the following. It must be
pointed out that the initial ciphertext does not undergo homomorphic evalua-
tion because different public keys encrypt it, and it is the "expanded" cipher-
text that actually undergoes homomorphic evaluation. Because the "expanded"
ciphertext and the initial ciphertext maintain the same decryption paradigm:
tC =~ utG, the two are consistent in decryption, homomorphic addition and
multiplication. We choose the initial ciphertext for verification here because it
is more concise to describe.

Correctness of decryption : For initial ciphertext C = (ﬁ) R+ (3,) +uG,

if u = 0, we have
7 =tCG Y(wl) = (eR+¢/,G 1 (w!)).

thus, if (eR +e/,G~1(wT)) < g/4, it holds that u = Lq/iz] =0.ifu =g, it
holds that

7 =tCG Y(wl) = (eR+¢,G 1 (w!)) + tGGH(wT)

— (eR+¢/, G (wh) + T4 0,



24 Xiaokang Dai, Jingwei Chen, Wenyuan Wu, * and Yong Feng

where |A| < 0.5, thus if (eR+e/,G"1(w!)) + 1A < %, it holds that u =
=1
q/2

homomorphic addition: Let C,qq = C; + Cp, where C; are C, the ciphertext
under (A, b), it holds that

7 = tCaqdG ' (W') = (eRy +eRp + €]+, G (W")) + (u1 + u2)tGG ™' (w")

- if uy = up = 0 and (eR; + eR; + ] + ¢}, G }(wT)) < 1, it holds that :
U= Lq%} =0 |

- if u3 = 0,up = q(vice versa) , and (eR; + eR; + €] + e}, G~ 1(wT)) +
%A < 1,itholds that: u = Lq—“}z] =1

- if uy = up = ¢, it holds that :

1 A
7 = (eRy + eR, + ¢} + e, G H(wT)) +2q(§ + E) mod ¢

thus if (eRy +eRp + e} +e), G™1(W')) +23A < {, wehaveu = | ;5] =0

Homomorphic multiplication : In order for the ciphertext multiplication

corresponding to the plaintext multiplication to be closed on {0, 4}, we need

% = 1 mod g (this is why we set ¢ = 1 mod d). Thus ,for any a € JZ, it

holds that ga =a mod g, 4?>-G =¢q-G mod q. Let :

oo e = (B () ()] o ()

0

e [T 1) =)

A
+ U (b) Ry +uy <e0/2) + uuyr G.

= (e () (2] (s8] 2)])

we have

¥= tCmuhG*l(wT) = (tM + upeR; + uze’l
+ureRy +urey, G Hw!)) 4 uguptGG~H(wT)

- if u1 = up = 0 and (tM, G~ (w”)) < {, itholds that | ;5] =0
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— if uy = g, up = O(vice versa) and :

(tM+eRp 4+ €5, G 1(wh)) <

IR

it holds that Lq%] =0
- if uy = up =g, we have :

v =(tM+eR; +¢,+eRr+e), G L(wl))+ %A+g

Error

and Error < 1, it holds that [q%] =1

6.4 Security under Semi-malicious adversary

We note that the auxiliary key of i is Auxk; = {b;; = s;A; + e;};c[/i, Where
{Aj}ej)/i is generated by other k — 1 parties, under the semi-honest adversary,
{Aj}iej/i is uniform over $77™. Under the rational-DLWE,; ;4 4,, assump-
tion, Auxk; is indistinguishable from the uniform, and the scheme’s security is
obvious now.

However, under the semi-malicious adversary, {A;} je[k)/i may not be uni-
form, and the conditional distributions s;[{b; ;} ;c[s/; and s; may be quite dif-
ferent. In order to cover this "active leakage" model, we need to assume that
the average min-entropy Heo(s;[{b;;};c[ij/i) Of s; is large enough, we have the
following result :

Lemma 7 Let A; € JZ™ be uniform, and {Aj}jcin i be chosen by a rushing ad-
versary after seeing A;. Let s; <= 7, x be a discrete Gaussian distribution over %Z,
€ — Xm, and {bi,j = SiA]' + ej}je[k]/i' Assuming Hw(si‘{bi,j}je[k]/i) > n, and
dual-Regev encryption is circular security with public key (B, t), B < 121", t = s;B
mod g, r = %ézg"), then it holds that (A, {b;;}ic /i, C) and (A, {bi;}ic /i U),
where C is the ciphertext of party i, U < %Zéﬂﬂ)x(”ﬂ)l, are (jointly) computational
indistinguishable.

Proof. Let C = (SO> = (:Z) R+ (3,), for b;; = s;A; + e, it holds that
1 ii

c1 = s;A;R+ eR + ¢’ = s,Cy+ eR + ¢’. By our parameter settings, we have

[leR/€’|| = negl(A), thus :

C C
(Ai/ {bijticwi (cf)) s <Air {bij}iew i (SiCO 1 e/>>

Using the leftover hash lemma with A; as seed and R as source, we have
(A;, Cp) =5 (Aj,Z), where Z + %ZZX(HH)I, thus :

C zZ
(A,’, {bi,j}je[k]/i/ (SiCO (')i‘ e/) ) s (Ai; {bi,j}je[k]/i/ <S,‘Z + e/))
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We note that Z is independent of s;, as Cy is generated after s;[{b; ; }. Assuming
Heo(si|{bi;}jcii /i) = n, letr = %gk;g") and dual-Regev encryption is circular

security. By Theoremé, it holds that :

Z Z
(Ai/ {bij}jew /i (siz N e/>) oF (sz {bij}jerw /i (Z) )

1 .
where z « Z‘(;H) , Thus(Aj, {b;;}ic /i, C) and (A;, {b;;} e i, U), are (jointly)

computational indistinguishable.
|

Remark: Note that the premise of the above result is that He (s;|{b; ;} jelk/i) =
n, where b; ; = s;A; + e;. Assuming i = 1, we have

(b12,b1g, -+, b1k) = s1(Az|As|- - - |Ag) + (ea]es] - - |ex).

Let A = (A2|A3""|Ak), e = (e2|e3|-~-|ek), by Theoremz, if 0 < ¢ <

d
W= we have

Heo(si|siA +&) > —log(

By lemmas, if rank(A;(A)NyB) > 5 and ¢ > 47, then it holds that
po(Ag(A) > 2" 2(satisfying m < 27— 2mk=1) thus Heo(si|{bi;}jc /i) >
n).

We observe from [5] that one way to satisfy rank(Ag(A)NyB) > 5 is to
make A have structure as

~ B2
A= (SBz-i-Ez

(The work [5] constructed the Unbounded MPC protocol and used it against
semi-malicious receivers). Thus it holds that :

-1
I ~ (B,
(s1) 2= (&

Let B; + gzgx’", S «— Z;Xj, E; < %2*™, % be defined over gZ with stan-
dard deviation ¢ satisfying \/m(k — 1) -& < v, it holds that rank(A,(A) NyB) >
5, further on o > 4, we have Heo (s;|s;A +@&) > n.Let > 2y/n, by rational-DLIWEy ,, 4, =,
A looks random.

Bs
SBs + E3

By
...|SBy + E;

B;
Ej3

B ) € Ag(A)
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Put things together : In this subsection, we bring together the previous
parameter requirements, in particular, the range of standard deviations for
several discrete Gaussian distributions. By Theorem2, for (7) holds, we need

d A n Ty A =
0<o< e In order to make rank(A;(A) N yB) > 5, Ho(s|sA + &) >

n, we need \/m(k —1)5 <y, 0 > 47; and & > 2+/n to make A looks random.
In Lemmay, we require ||eR/e'||« = negl(A).
To sum up, we get the parameters of x and x respectively as follows :

_ / d

and x’ is a uniform distribution over [-2"¢,2%¢].

6.5 Ciphertext expansion

In order to convert the ciphertext under different keys into ciphertext under
the same key, the GSW-type ciphertext needs to take a so-called "ciphertext ex-
pansion” operation. The private key corresponding to the expanded ciphertext
is private key concatenation. A typical ciphertext expansion was the mask-
b R +uG to
be expanded(the corresponding private key was t), input any v € Z;' and the

ciphertext of the random matrix R, the masking scheme applied the homomor-
phic property of the GSW scheme to output the ciphertext X € Zgnﬂ)x(ﬂﬂ)l
of vR under t(satisfying tX =~ vR), where the function of X is to eliminate the
redundant items produced by decrypting C with other party’s private key t'.

We note that the above masking scheme works for our variant as well,
simply because the encryption and decryption formulas are identical and all
follow the GSW ciphertext structure(except with our scheme is defined over
7). Below, for completeness, we informally describe the process of ciphertext
expansion.

ing scheme defined in [34] [36] [21] : for any ciphertext C = (A

A masking scheme for GSW ciphertext (defined in [34] [21] adapted to our
scheme) : There exist a pair of algorithm (UniEnc, Extend)

— UniEnc(u, pk) : On input a message u € {0,4} and a public key t of our
scheme, it output a pair (U, C), where C € %Z;"H)X(nﬂ)l and 4 € {0,1}*
- Extend(Y,C,v) : Oninput 4, Cand v € ng‘, itoutput X € ngﬂH)X("H)Z.
Let u;; € {0,q} be the encoding of an item of R[i, j](row i, column j of R),

and U € {0,1}* be the ciphertext of R under t, v € ng‘ be any vector, the
correctness of above scheme guarantees that tX = vR + ex, which ||ex|| is
bounded by (n +1)*1*B,,



28 Xiaokang Dai, Jingwei Chen, Wenyuan Wu, * and Yong Feng

When k = 2,1let C = c é) € %Z?”H)XZ("H)I, be the expanded cipher-

text of our scheme under public key t;, let t; be another public key, it holds
that :

(t1,£)C = (1 C[t1X + t,C)
= (ut1G|t1X + (b2,1 — bl,l)R + MtZG)

In above masking scheme, we can set v = by 1 — by 1, where by 1 is the auxiliary
key of party 2 and let U be the ciphertext of R, then it holds that t;X ~
(bl,l - b2,l)Rr thus :

(t, )C~u(ty, t) (G G)

CX

C
The above process can be extended to k parties. At this time, the expanded
ciphertext of C is:

Thus C = > is the expanded ciphertext of C with only two parties.

CX; - Xeq
C ¢ A gkn+1)xk(n+1)1

d d

)
Il

C

where the corresponding key is (t1,- -+, t;), and {X;};c[c_q] satisfying t;X; ~
(b11 —bit1,1)R.

Homomorphic addition and multiplication : Let C;, C; be the ciphertext after
G

G

ciphertext expansion, t = (t,t2,---,t) and G = € (Zg+

%Zd)k(rﬁl)lxk(wrl)l

— Cagd <+ Add(Cy, Cy) : Input ciphertext C1, Cp output Cogg = C1 + Gy, it
holds that : t- Coqq = (41 + u2)tG

— Crult < mult(Cy, Cy) : Input ciphertext C1, C; output Cpyyie = C1 - G 1(Cy),
it holds that : t- Cpyic = u1utG

Accumulation of noise :  Here, we estimate the noise accumulation by the
evaluation of expanded ciphertext. Let C; be the expanded ciphertext of Cy,
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we have :

Ci Xq - Xgq

E(_::(tl/tZ/"'/tk> Cl

G
= (Gt X +£Cy| - [ X1 + 65Cy)
= (eR+e'|eR+e' +ex| --|eR+e +ex)+ utG
= ejnie +u1tG
Therefore, the initial noise ||ejit||c Obtained by decrypting C; is bounded
by (m + (n+1)**)By + B,s. Suppose the multiplication depth of the circuit to
be evaluated is L(The noise caused by multiplication grows much faster than

addition, so generally only multiplication is counted), according to the noise
analysis of GSW in [25], the noise e}, after L depth circuit evaluation in Cj, is

d
bounded by (k(r + 1)1)Lejn. Let wT = (0,---,0, 21) € 175" \ye have :

u

.G (WD) = (e, G (W) + = + ZA.

N
QU

For correctness hold, it requires : (er, G’l(WT> + %A < %, by our parameter
settings and equation(8), k,n = poly(A), I = logqd, m = nlogd, By, B, are

bounded by Jo and 2r. d0 respectively, we have :

(e, G (W) + A < (k(n + VD! ((m+ (10 +1)*1)By + By) logd + 5 (9)
One can observe that decryption works correctly for some d = 20(AL)
poly(A) - 29(AL) it holds that (9) < 1.

s 4 =
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Appendix
A Averaging argument

In layman’s terms, for any random variable X, if the expectation of X is at least
p, then there must be a value of X that is at least p. Namely:

Exp[X] > p = Pr[X > p] > 0.

see details : https://wuw.cs.princeton.edu/courses/archive/spr06/cos522/
averaging.pdf

Claim 2 If everyone likes at least % of the books in the library, then there is a book in
the library that at least % of the people like.

Proof. Suppose the number of people and books are N, B, respectively. Ask
everyone to mark their favorite book with a red dot. Thus, the red dot mark
in the book in the library has at least %. Now assuming that there is no book
that is liked by at least % of the people, thus the amount of red dot marks in
each book is less than %, which will cause the total number of red dot marks

in books in the library to be less than %, contradiction.
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https://www.cs.princeton.edu/courses/archive/spr06/cos522/averaging.pdf
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