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Abstract

In this work, we describe a technique to amplify the soundness of
zero-knowledge proofs of knowledge for cryptographic group actions.

1 Introduction

The recent call for signatures issued by the National Institute of Standards
and Technology (NIST) [15] has rekindled the community’s interest in trying to
produce efficient post-quantum schemes from a variety of assumptions. Indeed,
NIST is explicitly looking for signature schemes that are not based on lattices;
this has led to an acceleration in the development of schemes from other areas
such as coding theory, multivariate equations, and isogenies. In terms of the
former, in particular, the last few years have seen the signature landscape evolve
quite remarkably: considering that no viable code-based signature schemes were
proposed for NIST’s original call in 2017, we now instead have, to cite but a few,
hash-and-sign schemes [9], protocols based on code equivalence [7, 3], MPC-in-
the-head [13, 10, 11] and even rank metric [2, 8]. Among these, the protocols
exploiting the MPC-in-the-head framework certainly represent a very promising
approach, especially thanks to recent developments [1, 12] which have a very
positive impact on its performance.

1.1 Our Contribution

In this work, we explore the possibility of employing the MPC-in-the-head tech-
niques on top of group actions, with only minimal assumptions; most impor-
tantly, we do not require the commutativity property, which is often the biggest
obstacle for protocol design. Indeed, the only object that can be formulated as a
commutative group action appears in the context of isogenies, with the work of
CSI-FiSh [6], although this is only practical under very specific circumstances.
We show that it is possible to translate the framework successfully to this case,
although it requires some non-trivial modifications to enable the secret sharing
which is at its core. We therefore provide a fully general protocol that yields
a proof of knowledge for cryptographic group actions. We then investigate the
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specific case of code-based group actions, both in the Hamming metric, and the
rank metric, showing how it is possible to design a signature scheme by applying
the Fiat-Shamir transformation. We compare the performance profile obtained
in this way with the respective schemes from literature [3, 8] and highlight the
advantages and disadvantages of our technique.

2 Notation and Background

In this section we establish the notation that we will use throughout the paper,
as well as recall basic concepts about linear codes and sigma protocols.

2.1 Notation

As usual, we use Fq to indicate the finite field with q elements and F˚
q to indicate

its multiplicative group. Throughout the paper we will use denote with capital
letters object such as sets and groups, and with lowercase letters their elements.
We will use instead boldface letters to denote vectors and matrices. Given a
matrix A over Fq, we write ai to indicate its i-th column. The general linear
group formed by the non-singular kˆk matrices over Fq is indicated as GLk. For
an ordered set J , we writeAJ to indicate the matrix formed by the columns ofA
that are indexed by the elements in J ; equivalent notation is adopted for vectors.
The identity with size k is indicated as Ik, while 0 denotes the null-matrix
(its dimensions will always be clear from the context). We denote by Sn the
symmetric group on n elements, and consider its elements as permutations of n
objects. We represent permutations as n-tuples of the form π :“ ti1, i2, ¨ ¨ ¨ , inu,
so that for j “ 1, ¨ ¨ ¨ , n, it holds that πpjq “ ij . Given a matrix A, we write
πpAq to indicate the matrix resulting from the action of π on the columns of A.
We denote by Mn the set of monomial tranformations, that is, transformations
of the form µ :“ pπ,vq with π P Sn and v P F˚n

q , acting as follows

µpAq “ µ
`

pa1, ¨ ¨ ¨ ,anq
˘

“ pv1aπ´1p1q, v2aπ´1p2q, ¨ ¨ ¨ , vnaπ´1pnqq.

2.2 Cryptographic Group Actions

A group action is a well-known object in mathematics. It can be described as a
function, as shown below, where X is a set and G a group.

‹ : G ˆ X Ñ X

pg, xq Ñ g ‹ x

A group action’s only requirement is to be compatible with the group; using
multiplicative notation for G, and denoting with e its identity element, this
means that for all x P X we have e ‹ x “ x and that moreover for all g, h P G,
it holds that h ‹ pg ‹ xq “ ph ¨ gq ‹ x. A group action is also said to be:
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• Transitive, if for every x, y P X, there exists g P G such that y “ g ‹ x;

• Faithful, if there does not exist a g P G such that x “ g ‹ x for all x P X,
other than the identity;

• Free, if an element g P G is equal to identity whenever there exists an
x P X such that x “ g ‹ x;

• Regular, if it is free and transitive.

The adjective cryptographic is added to indicate that the group action in
question has additional properties that are relevant to cryptography. For in-
stance, a cryptographic group action should be one-way, i.e. given randomly
chosen x, y P X, it should be hard to find g P G such that g ‹ x “ y (if such a g
exists). Indeed, the problem of finding this element is known as the vectorization
problem, or sometimes Group Action Inverse Problem (GAIP).

Problem 1 (GAIP). Given x and y in X, find, if any, an element g P G such
that y “ g ‹ x.

A related problem asks to compute the action of the product of two group
elements, given the result of the individual actions on a fixed element. This
is known as the parallelization problem, and it corresponds to, essentially, the
computational version of the Diffie-Hellman problem, formulated for generic
group actions. A definition is given next.

Problem 2 (cGADH). Given x, g‹x and h‹x, for g, h P G, compute pg ¨hq‹x.

In fact, the analogy to the case of discrete logarithms is easily drawn, once
one realizes that this is simply the group action given by the exponentiation
map on finite cyclic groups.

Finally, other useful properties for group actions include those that make it
effective, such as for instance the existence of efficient (probabilistic polynomial-
time) algorithms for membership testing, sampling, computation (of the group
operation and ‹) etc.

2.3 Coding Theory

A linear code C Ď Fn
q is a k-dimensional subspace of Fn

q . The quantity R “ k{n
is called code rate, and any vector c P C is called codeword. A canonical
representation for a code is through a generator matrix, that is, a rank-k matrix
G P Fkˆn

q such that C “
␣

uG | u P Fk
q

(

. Any code admits multiple generator
matrices: for any S P GLk, which can be thought of as a change of basis, it holds
that SG andG generate the same code. The dual code CK is the set of all vectors
that are orthogonal to codewords in C, that is, CK “

␣

v P Fn
q | cvJ “ 0, @c P C

(

.

It is easy to see that CK is linear subspace of Fn
q with dimension r “ n´k (which

is normally called redundancy). The dual code is generated by a rank-r matrix
H P Frˆn

q , which is called parity-check matrix and is such that GHJ “ 0.
Obviously, for any S P GLr, H and SH are parity-check matrices for the same
code.
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For J Ď t1, ¨ ¨ ¨ , nu, we write CJ :“ tcJ | c P Cu. We say that a set J with
size k is an information set for a code C if, for any two distinct c, c1 P C, it holds
that cJ ‰ c1

J , which implies that CJ contains qk elements. Equivalently, J is an
information set if, for G being a generator matrix for C, it holds that GJ is non-
singular. We say that a generator matrix G is in systematic form if G “

`

Ik V
˘

,
for V P Fkˆn. This matrix exists whenever J “ t1, ¨ ¨ ¨ , ku is an information set:
starting from any generator matrix G, we obtain the one in systematic form as
G´1

J G. Also, the systematic matrix is an invariant under changes of basis: if
G1 “ SG, then its systematic form is G1´1

J G1 “ G´1
J S´1SG “ G´1

J G.

Normally, linear codes are measured using the Hamming metric. This metric
assigns a weight to each codeword by simply counting the number of non-zero
positions in it, i.e. wtHpcq “| tci : ci ‰ 0u |. The distance between two words
is then defined as the number of positions in which they differ, i.e. dHpc, c1q “

wtHpc ´ c1q. In this case, isometries, i.e. map which preserve the weight, are
given by permutations, in the simplest case; these can be generalized to the
so-called monomial maps, via some non-zero scaling factors. To be precise, we
represent permutations as n-tuples of the form π :“ ti1, i2, ¨ ¨ ¨ , inu, so that for
c “ pc1, ¨ ¨ ¨ , cnq, it holds that

πpcq “
`

ci1 , ¨ ¨ ¨ , cin
˘

.

We then denote by Mn the set of monomial transformations, that is, transfor-
mations of the form µ :“ pπ,vq with π P Sn and v P F˚n

q , acting as follows

µpcq “ πpcq

¨

˚

˚

˚

˝

v1
v2

. . .

vn

˛

‹

‹

‹

‚

.

The notion of linear codes can be generalized to the case where each code-
word is a matrix, instead of a vector; more precisely, m ˆ n matrices over Fq.
We talk then about rmˆn, ks matrix code, which can be seen as a k-dimensional
subspace C of Fmˆn

q . These objects are usually measured with a different metric,
known as rank metric, where the weight of each codeword corresponds to its
rank (as a matrix), that is wtRpCq “ RankpCq, and the distance between two
matrices C,C1 is defined as dRpC,C1q “ wtRpC ´ C1q. In this case, isometries
are maps which preserve the rank of a matrix, and are thus identified by two
non-singular matrices A P GLm and B P GLn acting respectively on the left
and on the right of each codeword, by multiplication.

In both of the metrics defined above, then, we can formulate a notion of
equivalence in the same way, by calling equivalent two codes which are connected
by an isometry. In other words, two linear codes C and C1 are linearly equivalent
if C1 “ µpCq, and two matrix codes C and C1 are matrix equivalent if C1 “ ACB.
Note that the notion of permutation equivalence is just a special case of linear
equivalence (corresponding to a trivial scaling vector v), yet is often treated
separately for a variety of reasons of both historical and practical nature (for
instance, certain solvers behave quite differently).
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2.4 Code Equivalence Problems

The problem of determining whether two codes are equivalent, in the respective
senses described above, arises quite naturally in coding theory. We report below
the respective formulations.

Problem 3. Permutation Equivalence (PEP)
Given: two k-dimensional linear codes C, C1 Ď Fn

q

Goal: Determine if there exists π P Sn such that C1 “ πpCq.

Problem 4. Linear Equivalence (LEP)
Given: two k-dimensional linear codes C, C1 Ď Fn

q

Goal: Determine if there exists µ P Mn such that C1 “ µpCq.

Problem 5. Matrix Code Equivalence (MCE)
Given: Two k-dimensional matrix codes C, C1.
Goal: Determine if there exist A P GLm,B P GLn such that C1 “ ACB.

Note that, as above, we have stated PEP as a separate problem, even though
this is just a special case of LEP. Also, all of the above problems are formu-
lated as decisional problem, as is traditional, but in cryptographic applications
we are most often interested in their computational version. Rather extensive
treatments of their hardness is given, for instance, in [5, 8].

3 Proving Equivalence via Random Paths

We now describe our new proof-of-knowledge strategy for cryptographic group
actions. As we mentioned in the preamble, we formulate our protocols con-
sidering the most general possible setting for group actions. Thus, the only
properties we require for our construction are that the action is transitive and
faithful.

3.1 The Action Graph

Let Opxq denote the orbit of x under the action of G, that is

Opxq “ tg ‹ x | x P Gu .

If the action of G is faithful, then Opxq contains |G| elements. Also, one of them
is the public key element x1 “ g‹x for some secret g P G. We can represent such
an orbit through a simple, ordered graph G whose vertices are the elements in
Opxq. Any pair of vertices px1, x2q is connected by a pair of edges pg1, g2q such
that x2 “ g1 ‹ x1 and x1 “ g2 ‹ x1 when ‹ is faithful, g2 “ g´1

1 . We call G the
action graph of G on X “ Opxq. We observe also that G is connected: any pair
of vertices px1, x2q is connected by two edges (one for each direction).

Let us now assume that the prover performs a random walk on G, starting
from x and ending in xN . This can be done by generating N random elements of
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x x1 x2 x3 x4 x5 x6 x7 x8

x1

g1 g2 g3 g4 g5 g6 g7 g8

g

g1
1 g1

2 g1
3 g1

4 g1
5 g1

6 g1
7 g1

8

Figure 1: Example of action subgraph, for N “ 8.

G uniformly at random tg1, g2, ¨ ¨ ¨ , gNu, and letting them act on x sequentially,
that is

x0 “ x
g1

ÝÑ x1
g2

ÝÑ x2
g3

ÝÑ ¨ ¨ ¨
gN´1

ÝÝÝÑ xN´1
gN

ÝÝÑ xN .

Notice that, for i ě 1, it holds that

xi “ pgi ¨ gi´1 ¨ ¨ ¨ g2 ¨ g1q ‹ x.

From now on, we will refer to the path going from x to xN as random path. We
can think that the random path defines a subgraph S Ă G, built as follows:

- it has N ` 2 vertices tx0 “ x, x1, ¨ ¨ ¨ , xN , x1u;

- it has N edges of the form pxi´1, xiq, for i “ 1, ¨ ¨ ¨ , N . Each such edge is
labelled with gi;

- it has N edges px1, xiq, for i “ 1, ¨ ¨ ¨ , N . Each such edge is labelled with
g1
i “ gi ¨ gi´1 ¨ ¨ ¨ g1 ¨ g´1.

We will refer to S as action subgraph; an example of how this graph looks like is
shown in Figure 1. Notice that the graph may be enriched with additional edges:
indeed, the vertices in S would form a connected graph, assuming one draws all
edges. However, as we describe in the following, the edges we are considering we
are considering are the only ones which can be used to build a zero knowledge
proof system, and (some) missing edges can be easily recomputed from the
information which is provided by the prover.

We now observe that, when the random path x ÞÑ xN has been genuinely
generated (i.e., using elements g1, ¨ ¨ ¨ , gN generated uniformly at random), then
knowing a path x ÞÑ x1 is possible only if one knows also a secret element g such
that g ‹ x “ x1. Indeed, let us consider a path x ÞÑ x1 in S along the edges
P “ tpx0, x1q, px1, x2q, ¨ ¨ ¨ , pxi´1, xiq, pxi, x

1qu, for some i P t1, ¨ ¨ ¨ , Nu. Since
pxi, x

1q is labeled by g1
i “ gi ¨ ¨ ¨ g1 ¨ g´1 and each pxj´1, xjq has label gj , then

the secret g can be easily recovered. Indeed, consider that

pg1
iq

´1 ¨ pg1 ¨ ¨ ¨ giq “
`

pgi ¨ ¨ ¨ g1q ¨ g´1
˘´1

¨ pg1 ¨ ¨ ¨ giq

“
`

g ¨ pgi ¨ ¨ ¨ g1q´1
˘

¨ pg1 ¨ ¨ ¨ giq

“ g. (1)
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3.2 Proofs of Knowledge from the Action Subgraph

In this section we describe how to build a ZK proof of knowledge from the
considerations in the previous section. Basically, the idea is that of proving
knowledge of a path x ÞÑ x1 without revealing all the edges. This would prevent
an adversary from recovering the secret key by applying (1). The subgraph will
be constructed in the usual ZK fashion, i.e., elements g1, ¨ ¨ ¨ , gN will be sampled
uniformly at random from G and the prover will commit to the corresponding
random path, i.e., to everything that binds all the edges from x to xN . Then,
the verifier will select a random interruption, that is, an index i P t1, ¨ ¨ ¨ , Nu.
The prover has to show that the graph has been honestly obtained, i.e., it is
the same regardless of the interruption (the challenge value). To do this, he will
provide:

- all the edges from x to xi: this can be done by revealing gj , for j ď i;

- the path from x1 to xi`1: this can be done by revealing g1;

- all the edges from xi`1 to xN : this can be done by revealing gj , for
i ` 1 ď j ď N .

A proof of knowledge for the above paradigm would be then be of the form

P piq “

´

g1
i, tgjuj‰i`1

¯

. If i “ N (i.e., no interruption is actually asked) the

prover instead reveals all labels tgju1ďjďN . To sum up, the proof of knowledge
is a function of the sole challenge index i P t1, ¨ ¨ ¨ , Nu, and has the following
form

P piq “

#

´

g1
i, tgjuj‰i`1

¯

if i ă N ,

tgju1ďjďN if i “ N .
(2)

An example of how the proof of knowledge is constructed is shown in Figure 2.

Observe that, from the information provided in the proof as in (2), one can
also recover all the edges g1

j with j ą i ` 1, but this is not useful to retrieve
the secret g. Indeed, the vertices in the subgraph can be divided into groups:
V “ tx, x1, ¨ ¨ ¨ , xiu Ă Opxq and V 1 “ txi`1, xi`1, ¨ ¨ ¨ , xNu Ă Opx1q. What the
verifier does is checking that both V and v1 are connected subgraphs. However,
the prover never reveals an edge connecting a vertex in V with one in V 1: this
guarantees that g cannot be recovered from the proof P piq. A representation of
the situation is depicted in Figure 3.

The corresponding ZK-ID protocol is shown in Figure 4. Notice that all
group elements g1, ¨ ¨ ¨ , gi can be compactly communicated using generating
seeds, while for g1

i this is not possible. When i “ N (i.e., no interruption is
asked), the proof is obtained by revealing all seeds and each edge in the random
path is verified. Using the standard technique of using a PRG tree, revealing
the random edges (i.e., edges labeled by some gj) costs λ log2pNq bits in case
i ‰ N , and only λ bits in case i “ N .
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x x1 x2 x3 x4 x5 x6 x7 x8

x1

g1 g2 g3 g4 g6 g7 g8

g

g1
1 g1

2 g1
3 g1

4 g1
5 g1

6 g1
7 g1

8

✗

Figure 2: Example of proof of knowledge constructed on the action subgraph,
for the interruption i “ 4. The edges that form the path from x to x1 are
highlighted in blue; the edges that are revealed by the prover are highlighted
with double arrows.

x

x1

x2

x3

x4 x5

x6

x7

x1
g

✗

Figure 3: Example of all edges that one learns in case the interruption is i “ 4.
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Private Key g P G
Public Key x1

“ g ‹ x

PROVER VERIFIER
Set x0 “ x
For i “ 1, ¨ ¨ ¨ , N :

Sample Seedi
$

ÐÝ t0, 1u
λ

Generate gi P G from Seedi
Compute xi “ gi ‹ xi´1

Set ci “ CommitXpxiq

Set c “ Commitpc1, ¨ ¨ ¨ , cN q
c

ÝÝÑ

Sample i P t1, ¨ ¨ ¨ , Nu
i

ÐÝÝ

If i ă N :
Set g1

i`1 “ gi`1 ¨ gi ¨ ¨ ¨ g1 ¨ g´1

Set Response “
␣

g1
i`1, tSeedjuj‰i`1

(

Else:
Set Response “ ttSeedju1ďjďNu

Response
ÝÝÝÝÝÑ

If i ă N :
Compute xi`1 “ g1

i`1 ‹ x1

For j ‰ i ` 1:
Generate gi P G from Seedi
Compute xj “ gj ‹ xj´1

Compute cj “ CommitXpxjq

Verify Commitpc1, ¨ ¨ ¨ , cN q “ c
Else:

For j “ 1, ¨ ¨ ¨ , N :
Generate gi P G from Seedi
Compute xj “ gj ‹ xj´1

Compute cj “ CommitXpxjq

Verify c “ Commitpc1, ¨ ¨ ¨ , cN q

Figure 4: A single round of the new ZK-ID protocol based on interruptions in
the action subgraph

Notice that we generically consider two commitment functions. While Commit
can be any generic commitment function, CommitX is specific to how elements
of X are represented and (as we detail when we focus on the code equivalence
group action). We generically assume that CommitX requires a larger computa-
tional cost, with respect to Commit. As we argue in the following, our protocol
allows to trade the signature size with the verification time: with some increase
in the signature size, one can greatly reduce the number of times the function
CommitX is computed, on the verifier’s side. This fact will become very impor-
tant when focusing on CEP, since the function CommitX will require to compute
systematic forms.

We now study the security properties of the resulting protocol. Seeing that
it is complete is trivial, so we focus on Zero Knowledge and soundness.

Zero Knowledge We want to show that a simulator that knows, in advance,
the challenge value can produce a valid transcript which is statistically dis-
tributed as the one that would be produced by an honest prover. To this end,
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consider a simulator that, on input i P t1, ¨ ¨ ¨ , Nu, proceeds as follows:

- if i “ N , it samples seeds Seed1, ¨ ¨ ¨ , SeedN and generates the random
path and the commitments; then, outputs all the seeds. Obviously, this
output is statistically distributed as the one of the honest prover;

- if i ă N , it selects random seeds Seed1, ¨ ¨ ¨ , Seedi and uses them to
compute tgjujďi and txjujďi inductively as xj “ gj ‹ xj´1. Then, the
simulator selects uniformly at random rg P G and uses it to compute
rxi`1 “ rg ‹ x1. Finally, if i ` 1 ă N , it selects the remaining random
seeds Seedi`2, ¨ ¨ ¨ , SeedN , it uses them to compute tgjujěi`2 and to in-
ductively compute rxi`2 “ gi`2 ‹rxi`1, . . . , rxN “ gN ‹rxN´1. The simulator
hashes x1, . . . , xi, rxi`1, . . . , rxN to produce the commitments, which indis-
tinguishable from those of a honest execution. As output, the simulator
provides Response “ trg, tSeedjuj‰i`1u. The elements rg and tSeedjuj‰i`1

are independent and uniformly distributed over G. This is also the case
of the response of an honest prover because g1

i`1 has the form

g1
i`1 “ gi`1

loomoon

Secret and
ephemeral

¨ gi ¨ gi´1 ¨ ¨ ¨ g1
looooooomooooooon

Public and
ephemeral

¨ g´1
loomoon

Secret

.

Since gi`1 is independent from the tgjujďi`1, g
1
i`1 is also distributed uni-

formly at random independently from tSeedjuj‰i`1u. One can immedi-
ately check that the simulator’s response leads to a valid transcript.

Special Soundness Let us consider two accepting transcripts with same com-
mitment, but different challenge values, say, i0, i1. Without loss of generality,
let i0 ă i1. We show that there is an efficient and rather easy extractor that can
compute a witness, on input such two transcripts. The idea of the proof is that
of showing that, using the edges contained in the two transcripts, the extractor
is always able to obtain a path x ÞÑ x1. Continuing with the graph analogy,
either hash collisions are found or indeed the two following paths in the action
subgraph have the same ending vertex

x ÞÑ xi0`1, x1 ÞÑ xi0`1.

So, the extractor knows a path x ÞÑ x1, which corresponds to the witness.

Remark 1. The protocol in Figure 4 can be modified, to achieve trade-offs
between signature size and number of group actions computations. Indeed, veri-
fication of the commitments for the intermediate vertices in the path xi`1 ÞÑ xN

is not necessary. In such a case, the prover may instead construct a Merkle tree
from c1, ¨ ¨ ¨ , cN , and provide the Merkle proofs for such vertices. This would
reduce the number of times CommitX is computed, on the verifier’s side, but
increases the signature size since Merkle proofs are now needed.
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Since we proved that the protocol achieves special soundness, it has knowl-
edge error given by

ε “
1

N
.

3.3 Using multiple key pairs and unbalanced challenges

As in [3], the soundness of the protocol can be amplified by using more secrets to
create the public values. Namely, the prover can chooseM secrets gp1q, ¨ ¨ ¨ , gpMq

and compute the corresponding public values as x1
i “ gpiq‹x, for i “ 1, 2, ¨ ¨ ¨ ,M .

The action subgraph is computed in the very same way, but now the verifier
challenges the prover by specifying, together with the position of the interrup-
tion, also the public value from which the proof should be provided. This way,
the soundness error is reduced from N to ε “ MN .

Also, when considering the Fiat-Shamir transformation of parallel repeti-
tions, one can use fixed weight challenges. In such a case, the challenge vector
would become a length-t vector (assuming t parallel repetitions are executed).
In t ´ w rounds the verifier chooses i “ N (i.e., no interruption), while in the
other rounds he selects the interruption and the public value. The resulting
protocol would keep the special soundness property, and would be characterized
by an overall soundness error of

ε “

ˆ

t

w

˙

´

MpN ´ 1q

¯w

.

For the t ´ w rounds with i “ N , the prover is asked only for the seeds, which
can be compactly represented by using a unique tree PRNG for all rounds (i.e.,
with tN leaves in the base layer).

4 The Case of Code Equivalence Group Actions

As a concrete instantiation of the previous protocol, we consider the code equiv-
alence group action. To this end, we set X :“ OpCq. The secret group element is
g :“ µ P Sn, while the public key is C1 “ µpCq P OpCq. The commitment function
CommitX is implemented as the hash of the systematic generator matrix, while
Commit can be any cryptographically secure hash function. Given the interest
in digital signatures, we already consider the scheme resulting by application of
the Fiat-Shamir transform on t parallel executions of the paradigm presented
in Figure 4. We consider that M public keys are employed, and that an inter-
ruption is asked in only w rounds. The resulting scheme is shown in Figure 5.

In the description of the scheme, we have implicitly defined standard func-
tions such as SeedTree, which implement the PRNG tree, and Path which is used
to compute the intermediate seeds in a PRNG tree. We have also used a func-
tion Commit which is used to generate the challenge vector

`

Chp1q, ¨ ¨ ¨ , Chptq
˘
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Private Key µ1, ¨ ¨ ¨ , µM P Mn

Public Key linear codes C1
i “ µipCq, for i “ 1, ¨ ¨ ¨ ,M

PROVER VERIFIER

Sample Salt, MSeed
$

ÐÝ t0; 1u
λ

Generate Seedp1q, ¨ ¨ ¨ , Seedptq
“ SeedTreepMseedq

Set tCpjq

0 u1ďjďt “ C
For j “ 1, ¨ ¨ ¨ , t:

Generate Seed
pjq

1 , ¨ ¨ ¨ , Seed
pjq

N “ SeedTreepMSeedpjq
q

For i “ 1, ¨ ¨ ¨ , N :

Generate τ
pjq

i “ PRNGpSeed
pjq

i q

Compute Cpjq

i “ σ
pjq

i pCpjq

i´1q

Compute c
pjq

i “ CommitX
`

Cpjq

i , Salt
˘

Compute c “ Commit
´

tc
pjq

i u 1ďjďt
1ďiďN

¯

Set
`

Chp1q, ¨ ¨ ¨ , Chptq
˘

“ Challengepc, Salt,mq

Set J “ tj | Chpjq
“ Nu

Compute MSeedPath “ PathpMseed, Jq

For j such that Chpjq
‰ N :

Parse Chpjq as
`

i, zj
˘

Set µ
1pjq

i`1 “ τ
pjq

i`1 ¨ τ
pjq

i ¨ ¨ ¨ τ
pjq

1 ¨ µ´1
zj

Set SeedPathpjq
“ Path

`

MSeedpjq, i
˘

Salt,c,
!

µ
1pjq
zj
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)
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Figure 5: The LESS scheme based on the action subgraph

for all rounds. Exactly t ´ w out of these t values are equal to N , as these are
executions in which no interruption is asked. The remaining values are in the
form

`

i, zj
˘

: i is the index of the interruption, while zj is the index of the public
code from which one should restart.

We have not reported details for the verification procedure, as it basically
follows the description we provided in the previous section. The verifier is able to

locally recompute all codes Cpjq

i , with 1 ď i ď N and 1 ď j ď t. For the rounds

where the challenge is N , the verifier generates all the random monomials τ
pjq

i .
Instead, in each of the other rounds, he will use also one of the edges connecting
one of the public key codes to a vertex in the action subgraph.

Signature size and instances Let ℓµ “ n log2pnq ` n log2pq ´ 1q denote
the binary size of a monomial transformation. Then, the size of the resulting
signature, in bits, is given by the following formula:

3λ
loomoon

Salt, c

`wλ log2

ˆ

t

w

˙

looooooomooooooon

MSeedPath

`w
´

ℓµ
loomoon

µ
1pjq
zj

`λ log2pNq
loooomoooon

SeedPathpjq

¯

.
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M Pk size N pt, wq Sign size

PEP pq, n, kq “ p251, 235, 108q

1 13.72
8 p64, 25q 7.67
16 p57, 20q 6.51
32 p64, 16q 5.60

3 41.15
8 p59, 18q 5.64
16 p61, 15q 5.02
32 p63, 13q 4.62

LEP pq, n, kq “ p251, 198, 94q

1 9.77
8 p64, 25q 11.69
16 p57, 20q 9.73
32 p64, 16q 8.18

3 29.33
8 p59, 18q 8.53
16 p61, 15q 7.43
32 p63, 13q 6.71

Table 1: Comparison between LESS based on action subgraph and LESS-FM

Using PEP instead of LEP, the scheme would remain the same, with the only
difference that now isometries are sampled from Sn. The expression for the
signature size does not modify, but we need to replace ℓµ with ℓπ “ n log2pnq,
which is the number of bits required to represent a permutation.

Examples of resulting instances are shown in Table 1. Comparing with [4],
we see that we are able to achieve competitive signature sizes with much smaller
public keys. For instance, [4] reports a PEP instance with signatures of 5.25 kB
and a 205.74 kB public key (for this instance, M “ 15 public codes are used).
Using the same code parameters, we can achieve a slightly larger signature
using only one public key. We can also achieve smaller signatures, using only
M “ 3 public codes, resulting in a public key which is 41.15 kB (hence, 5
times smaller). Analogous gains hold for the LEP case. Namely, with respect
to [4], we are able to achieve either smaller or comparable signatures, with the
remarkable improvement that the public key sizes is drastically reduced.

Finally, we notice that one may obtain even more compact signatures by
using larger values for N and/or larger values for t. This would come with a
trade-off in the computational complexity: increasing these quantities lead to a
larger number of generated codes (during signing and verification), hence to a
larger number of systematic form computations.
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