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Abstract. In this paper, we study the differential properties of integer
multiplication between two w-bit integers, resulting in a 2w-bit integer.
Our objective is to gain insights into its resistance against differential
cryptanalysis and asses its suitability as a source of non-linearity in sym-
metric key primitives.

1 Introduction

Cryptographic functions require strong non-linear functions to resist against dif-
ferential cryptanalysis[2]. One effective approach to achieving this non-linearity
is through the utilization of integer multiplications. Many CPUs, in particular
those equipped with single-instruction-multiple-data (SIMD) vector instructions,
have instruction sets specifically designed for efficient integer multiplication. The
multiplicands are all integers with a fixed bit-length w (typically 16 or 32 ) and
the resulting output is an integer with bit-length 2w.

Concretely, the inputs to the integer multiplication that we study are two
integers in the range [0, 2w) and the output is an integer in the range [0, 22w).
We define the input difference by the group operation of addition modulo 2w

and the output difference by the group operation of addition modulo 22w.
While there are several cryptographic functions based on multiplication and

addition in a finite field, like GHASH[4] and Poly-1305[1], integer multiplication
has not been used as widely. One notable example is UMAC[3], which uses NH
family of hash function. This hash function is based on integer multiplication
and UMAC is very fast in software whenever integer multiplication is available
as an instruction.

2 Notations and Preliminaries

In this paper, for a positive integer w, Z/2wZ denotes the group of integer
residues modulo 2w with addition . For two elements x, y ∈ Z/2wZ, x ⊞ y and
x ⊟ y denote respectively (x + y) mod 2w and (x − y) mod 2w. For any element
x ∈ Z/2wZ, x denotes the additive inverse of x, i.e., x = 2w ⊟ x .

Z≥0 is used to denote the set of positive integers including 0. [x, y], [x, y),
(x, y] and (x, y) will be used to denote the corresponding closed, semi-open and
open intervals containing only the integer elements.
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The inputs to the integer multiplication are two w-bit integers. As such we
treat them as elements of Z/2wZ. Naturally the output of the integer multiplica-
tion is an element of Z/22wZ. We call the integer multiplication of two elements
of Z/2wZ the w-bit multiplication and denote it as M[w]. This operation is de-
fined as

M[w] : (Z/2wZ)2 → Z/22wZ : M[w](x, y) = x · y . (1)

For x, y ∈ Z/2wZ, throughout this paper x · y and M[w](x, y) are both used to
denote w-bit multiplication of x and y.

Example 1. Let w = 4. Then M[w](5, 6) = 5 · 6 = 30.

We are interested in the differential properties of integer multiplication to
investigate its suitability as a source of non-linearity in a cryptographic function.

Let f : G → G′ be any public function, where G and G′ are abelian groups
⟨G, +⟩ and ⟨G′, +⟩. A differential defined over f is the tuple (A, δ), where A ∈
G/{0} is called the input difference and δ ∈ G′ is called the output difference.
We now remind the reader of differential probability of a differential over fixed-
length public functions.

Definition 1 (Differential probability).
Let f : G → G′ be a public function. The differential probability of a differ-

ential (A, δ) of f , denoted as DPf (A, δ), is:

DPf (A, δ) = #{X ∈ G | f(X + A) − f(X) = δ}
#G

.

We say that input difference A propagates to output difference δ with probability
DPf (A, δ).

Definition 2 (Solution set). Given any public function f , the solution set of
a differential (A,δ) to f denoted as Sf (A, δ) is

Sf (A, δ) = {X ∈ G | f(X + A) − f(X) = δ} .

Definition 3 (Differential weight). Let f : G → G′ be a public function. The
differential weight of a differential (A, δ) of f denoted as wf (A, ∆) is:

wf (A, ∆) = − log2(DPf (A, ∆)) = log2(#G) − log2(#Sf (A, ∆)) .

3 Differential Properties of w-bit Multiplication

M[w] is a binary operation in Z/2wZ. To that end an input difference to M[w]
has the form A = (a, b), where a, b ∈ Z/2wZ. The co-domain of M[w] is Z/22wZ
and thus output difference δ ∈ Z/22wZ. Naturally the solution set and DP of a
differential ((a, b), δ) to the w-bit multiplication are denoted as SM[w]((a, b), δ)
and DPM[w]((a, b), δ) respectively. However, for the sake of notational simplicity
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we will use S((a, b), δ) and DP((a, b), δ) without any subscript in this paper.
Now, S((a, b), δ) is given by:

S((a, b), δ) = {(h, k) ∈ (Z/2wZ)2 | ((a ⊞ h) · (b ⊞ k) − h · k) mod 22w = δ} .
(2)

Clearly DP((a, b), δ) = #S((a,b),δ)
22w .

Corollary 1. For any differential ((a, b), δ) to M[w], DP((a, b), δ) is symmetric
in the components of its input difference. So, DP((a, b), δ) = DP((b, a), δ).

Proof. The proof follows from (2) and the commutativity of M[w]. ⊓⊔

Obtaining the cardinality of S((a, b), δ) for an input difference (a, b) with a = 0
or b = 0 is an interesting case and requires special attention.

Definition 4 (Unilateral and bilateral differentials). For a pair of inputs
from (Z/2wZ)2, let their input difference be (a, b) ̸= (0, 0). When (a, b) is such
that a = 0 or b = 0, we call (a, b) an unilateral difference. Otherwise we call
(a, b) a bilateral difference and any differential to M[w] with a unilateral input
difference is called a unilateral differential, while a differential to M[w] with a
bilateral difference is called a bilateral differential.

Due to Corollary 1 it suffices to only look at unilateral differentials of the form
((a, 0), δ).

Lemma 1. For a unilateral differential ((a, 0), δ) to M[w] with δ ̸= 0, we have

For δ < 2wa : DP((a, 0), δ) =
{

a
22w , if a | δ

0 , otherwise

For δ > 2wa : DP((a, 0), δ) =
{

a
22w , if a | 22w − δ

0 , otherwise

For δ = 2wa : DP((a, 0), δ) = 0

Proof. For an input difference (a, 0), (2) converts into

((a ⊞ h) · k − h · k) mod 22w = δ .

After modular reduction, there are two cases namely

h < a : a · k = δ , (3)
h ≥ a : −a · k + 22w = δ . (4)

The solutions to (3) and (4) are positive integers smaller than 2w. When h < a,
a · k = δ has at most one solution and that solution exists iff a | δ such that
δ/a < 2w, i.e., δ < 2wa. Similarly for h ≥ a, −a · k + 22w = δ has at most one
solution and that solution exists when a | 22w − δ such that (22w − δ)/a < 2w,
i.e., δ > 2wa. Since δ < 2wa and δ > 2wa cannot occur simultaneously, we arrive
at the lemma. ⊓⊔
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Lemma 2. For a unilateral differential ((a, 0), 0) to M[w], DP((a, 0), 0) = 1
2w

Proof. For the unilateral differential ((a, 0), 0) to M[w], (2) transforms into

(a ⊞ h) · k = h · k .

This equation is satisfied iff k = 0. Hence S((a, b), 0) = {(h, 0) | h ∈ Z/2wZ},
i.e., #S((a, 0), 0) = 2w. Thus DP((a, 0), 0) = 1

2w . ⊓⊔

We now focus on bilateral differentials. Given any δ, obtaining S((a, b), δ)
from (2) involve modular reduction depending on whether h + a < 2w and
whether k + b < 2w. We deal with these reductions by partitioning the domain
in four parts that we denote as quadrants I,II,III and IV. We describe them
along with the simplified form of (2) in Table 1.

Quadrant Domain of quadrants Reduced form of (2) modulo 2w

I h ∈ [0, a), k ∈ [0, b) b · h + a · k + a · b = δ

II h ∈ [0, a), k ∈ [b, 2w)
(
−b · h + a · k − a · b

)
mod 22w = δ

III h ∈ [a, 2w), k ∈ [0, b) (b · h − a · k − a · b) mod 22w = δ

IV h ∈ [a, 2w), k ∈ [b, 2w) −b · h − a · k + a · b + 22w = δ

Table 1: The Quadrants corresponding to bilateral differential ((a, b), δ)

For a given bilateral differential ((a, b), δ) and i ∈ {I, II, III, IV}, we use
Si((a, b), δ) to denote S((a, b), δ) restricted to quadrant i, i.e., Si((a, b), δ) =
S((a, b), δ) ∩ Quadrant i.

We now depict the S((a, b), δ) for a concrete case when w = 4, a = 4, b = 8
and δ = 208 in Figure 1. Naturally a = 24 − 4 = 12 and b = 24 − 8 = 8.
The horizontal axis represents h and the vertical axis represents k: The whole
domain of (Z/2wZ)2 is the grid of points with integer coordinates (h, k) . The
quadrants are naturally rectangles as depicted in Figure 1. Now, each blue point
in the figure is an element of S((4, 8), 208) for the 4-bit multiplication. Thus
#S((4, 8), 208) = 6. We further see that SI((4, 8), 208) = SIV((4, 8), 208) = ϕ
and for i = II, III, each element of Si((4, 8), 0) lies on line segments reflecting the
linearity of the equations within each quadrant.
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(0, 0) (15, 0)

(0, 15)

I

(0, 7)

II

(11, 15)

III

(12, 0)

IV

(15, 15)

(15, 9)

Fig. 1: Solution set corresponding to the differential ((4, 8), 208) when w = 4

Lemma 3. Let ((a, b), δ) be a bilateral differential of M[w] .Then for i ∈ {I,II,III,IV},
Si((a, b), δ) denote straight line segments in (Z/2wZ)2, whose slopes and maxi-
mum cardinalities are given by

Slope Max #Si((a, b), δ)

SI((a, b), δ) −b/a
⌈

gcd(a, b) min
(

a
a

, b
b

)⌉
SII((a, b), δ) b/a

⌈
gcd(a, b) min

(
a
a

, b

b

)⌉
SIII((a, b), δ) b/a

⌈
gcd(a, b) min

(
a
a

, b
b

)⌉
SIV((a, b), δ) −b/a

⌈
gcd(a, b) min

(
a
a

, b

b

)⌉

Proof. We prove this for i =I. For (h, k) ∈ SI((a, b), δ), we see from Table 1 that
b ·h +a ·k +a ·b = δ, which denotes a straight line with slope −b/a in (Z/2wZ)2.

Every point on this line can be expressed as (h+x, k−bx/a) for some x. This
point has integer coordinates iff a | bx, or equivalently, if a/ gcd(a, b) | x. This
means that these x coordinates of these points are at distances da = a/gcd(a, b)
from each other. Quadrant I has width (a−1) and can fit at most ⌈a/da⌉ points.
The y coordinates of these points are at distances db = b/gcd(a, b) from each
other and hence quadrant I with its height of (b − 1) can fit at most

⌈
b/db

⌉
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points. Both restrictions apply and hence the number of points on a line is at
most

⌈
gcd(a, b) min

(
a
a , b

b

)⌉
.

The proofs are similar when i =II, III or IV. ⊓⊔

Lemma 4. The solution set of a bilateral differential ((a, b), δ) is fully in quad-
rants I and IV or in quadrants II and III.

Proof. We will first show that the solution set must be empty in one of SI((a, b), δ)
and SII((a, b), δ). Indeed if that were not the case, from Table 1 it follows that
both the following equations must have a solution.

b · h + a · k + a · b = δ , 0 ≤ h < a, 0 ≤ k < b (5)(
−b · h + a · k − a · b

)
mod 22w = δ , 0 ≤ h < a, b ≤ k < 2w . (6)

Now, (6) after reduction modulo 22w can have one of the following forms

−b · h + a · k − a · b = δ (6.1)
−b · h + a · k − a · b = δ − 22w (6.2)

From (5) we have,

0 ≤ k < b =⇒ δ − a · b < δ − a · k ≤ δ =⇒ δ − a · b < b · h + a · b ≤ δ

=⇒ δ − 2w · a < b · h ≤ δ − a · b (7)

Similarly from (5) we also have:

δ − 2w · b < a · k ≤ δ − a · b (8)

From (6.1) we see that

b ≤ k < 2w =⇒ −δ ≤ b · h < a · b − δ (9)

Since both b × h ≥ 0 and b × h ≥ 0, δ ≥ a · b implies (9) cannot hold for any
h and δ < ab implies (7) cannot hold for any h, Thus for all values of δ, (7)
and (9) cannot hold simultaneously for any h.

Now from (6.2) we have

0 ≤ h < a =⇒ δ − 22w + a · b ≤ a · k < δ − 2w · b (10)

But this implies that (8) and (10) cannot both hold simultaneously.
Hence (5) and (6) cannot have a common solution. Thus both SI((a, b), δ)

and SII((a, b), δ) cannot be non-empty. It can similarly be shown that both
SI((a, b), δ) and SIII((a, b), δ) or SII((a, b), δ) and SIV((a, b), δ) or SIII((a, b), δ)
and SIV((a, b), δ) cannot be non-empty.

Lemma 5. Let ((a, b), δ) be a bilateral differential to M[w]. Then

#S((a, b), δ) ≤ max
(⌈

gcd(a, b) min
(

a
a , b

b

)⌉
+

⌈
gcd(a, b) min

(
a
a , b

b

)⌉
,
⌈
gcd(a, b) min

(
a
a , b

b

)⌉
+

⌈
gcd(a, b) min

(
a
a , b

b

)⌉)
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Proof. We first note that,

S((a, b), δ) = SI((a, b), δ) ∪ SII((a, b), δ) ∪ SIII((a, b), δ) ∪ SIV((a, b), δ)

By Lemma 4 it follows that for every differential ((a, b), δ), one of SI((a, b), δ) ∪
SIV((a, b), δ) and SII((a, b), δ)∪SIII((a, b), δ) must be empty. Thus we must have

S((a, b), δ) ≤ max
(
#SI((a, b), δ) + #SIV((a, b), δ), #SII((a, b), δ) + #SIII((a, b), δ)

)
The rest of the proof follows immediately from Lemma 3.

For any input difference (a, b) to M[w], Lemma 5 gives us an upper-bound for
maxδ DP((a, b), δ). This upper-bound is not tight for all input differences, but
is still a reasonably good upper-bound. In fact in practice we only observed the
difference between the upper bound obtained in Lemma 5 and maxδ DP((a, b), δ)
to be negligible with the difference being 2

22w at most.

Lemma 6. For any bilateral differential ((a, b), 0) to M[w], we have

#S((a, b), 0) =
⌈

gcd
(
a, b

)
min

(
a

a
,

b

b

)⌉
+

⌈
gcd (a, b) min

(
a

a
,

b

b

)⌉
.

Proof. We first note that it can be verified from Table 1 that (0, b) ∈ SII((a, b), 0),
i.e., SII((a, b), 0) ̸= ∅. Consequently from Lemma 4, SI((a, b), 0)∪SIV((a, b), 0) =
∅. Thus,

S((a, b), 0) = SII((a, b), δ) ∪ SIII((a, b), δ) .

We now claim that #SII((a, b), 0) =
⌈
gcd(a, b) min

(
a
a , b

b

)⌉
. Indeed by Lemma 3,

SII((a, b), 0) denotes a line segment with slope b/a. (0, b) is one of the end points
of the line segment since (0, b) is one of the vertices of Quadrant II. Hence for any
point (x, y) ∈ SII((a, b), 0) , 0 ≤ x < a, b ≤ y < 2w and x is of the form ai

gcd(a,b) ,

y is of the form b + bj

gcd(a,b) for some i, j ∈ Z≥0. Thus (x, y) ∈ SII((a, b), 0) for
all i, j ∈ Z≥0 whenever

0 ≤ ai

gcd
(
a, b

) < a =⇒ i <

⌈
gcd

(
a, b

) a

a

⌉
b ≤ b + bj

gcd
(
a, b

) < 2w =⇒ j <

⌈
gcd

(
a, b

) b

b

⌉
.

Thus we can conclude that that #SII((a, b), 0) =
⌈
gcd(a, b) min

(
a
a , b

b

)⌉
.

It can be similarly shown that #SIII((a, b), 0) =
⌈
gcd (a, b) min

(
a
a , b

b

)⌉
.

SII((a, b), 0) and SII((a, b), 0) are mutually disjoint and thus we arrive at our
desired result.
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Corollary 2. Let ((a, b), 0) be a bilateral differential to M[w] such that b = a.
Then #S((a, b), 0) = 2w.

Proof. Substituting b = a in Lemma (6), we see that #S(A, 0) = 2w.

We call differences of the form (a, a) counter-diagonal differences. #S(A, 0) =
2w only for these bilateral differences and all the unilateral differences. We also
call differences of the form (a, a) the diagonal differences. From Lemma 5 it can
be verified that for a differential with diagonal difference, maxδ DP((a, a), δ) ≤
2−w.

For an input difference (a, b), we are primarily interested in the value of
maxδ DP((a, b), δ). Lemma 5 provides a good upper-bound for this value. An-
other differential of interest is ((a, b), 0) since this differential corresponds to
collision at the output of the multiplication.

Figure 2 shows the histogram of differential weight vs the number of input
differences that attain that weight for some output difference for 16-bit multipli-
cation , M[16]. Here a blue point at a coordinate (x, y) means that there are y in-
put differences with DP((a, b), 0) = x.2−32. Similarly a red point at a coordinate
(x, y) means that there are y input differences with maxδ DP((a, b), δ) ≤ x.2−32.
So the red dots in the figure correspond to the bound of Lemma 5

Fig. 2: Upper-bound of maxδ DP((a, b), δ) and DP((a, b), 0)-vs Number of dif-
ferences for w = 16
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Figure 2 shows that there are exactly 3 · (2w − 1) differentials with zero
output difference that have weight w. These are the unilateral differences and
the counter-diagonal differences, i.e., input differences with shape (a, 0), (0, a)
or (a, a). Moreover, there are exactly 4 · (2w − 1) input differences for which
the bound of Lemma 5 gives weight w. These are the 3 · (2w − 1) ones with
output difference 0 and the diagonal differences with shape (a, a). For the latter
the bound of Lemma 5 is not tight: the output difference with highest DP is
attained for a = 1 and a = 1 and for these differences, the maximum DP is
2w−2
22w . From this histrogram, it is clear that while the maximum possible value of

maxδ DP((a, b), δ) = 2−w, for most of the differentials this value is actually much
smaller. In fact, for about half of the differentials, maxδ DP((a, b), δ) ≤ 3

22w .
These properties make integer multiplication an excellent choice to be used as a
source of non-linearity in symmetric cryptographic functions.
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