
Key-Range Attribute-Based Signatures for
Range of Inner Product and Its Applications

Masahito Ishizaka

KDDI Research, Inc., Saitama, Japan. xma-ishizaka@kddi.com

Abstract. In attribute-based signatures (ABS) for range of inner prod-
uct (ARIP), recently proposed by Ishizaka and Fukushima at ICISC
2022, a secret-key labeled with an n-dimensional vector x ∈ Zn

p for
a prime p can used to sign a message under an n-dimensional vector
y ∈ Zn

p and a range [L,R] = {L,L+ 1, · · · , R− 1, R} with L,R ∈ Zp iff
their inner product is within the range, i.e., 〈x,y〉 ∈ [L,R] (mod p). We
consider its key-range version, named key-range ARIP (KARIP), where
the range [L,R] is associated with a secret-key but not with a signature.
We propose three generic KARIP constructions based on linearly homo-
morphic signatures and non-interactive witness-indistinguishable proof,
which lead to concrete KARIP instantiations secure under standard as-
sumptions with different features in terms of efficiency. We also show
that KARIP has various applications, e.g., key-range ABS for range eval-
uation of polynomials/weighted averages/Hamming distance/Euclidean
distance, key-range time-specific signatures, and key-range ABS for hy-
perellipsoid predicates.

Keywords: Key-Range attribute-based signatures for range of inner product,
Adaptive unforgeablity, Signer-privacy, Key-delegatability.

1 Introduction

Attribute-Based Encryption (ABE) for Inner Products. In ABE for inner prod-
ucts [13], n-dimensional vector x ∈ Znp (resp. y ∈ Znp) for a prime p is associ-
ated with secret-key (resp. ciphertext). The decryption succeeds iff 〈x,y〉 = 0
(mod p). It can be generically transformed into various ABE primitives, e.g.,
(anonymous) identity-based encryption (IBE), hidden-vector encryption (HVE)
[6], the dual variant of HVE (= wildcarded IBE [1]), ABE for evaluation of
polynomials/weighted averages, ABE for CNF and DNF formulas, and ABE for
exact thresholds.

Attribute-Based Signatures for Range of Inner Product (ARIP) [9,10]. ARIP is
a generalization of attribute-based signatures (ABS) for inner products which
is the digital signature version of the above ABE for inner products. A secret-
key associated with an n-dimensional vector x ∈ Znp is used to sign a message
M under an n-dimensional vector y ∈ Znp and a range [L,R] with L,R ∈ Zp.

The signing succeeds iff 〈x,y〉 ∈ [L,R] (mod p). Two security requirements are
defined, unforgeability and signer-privacy. The latter means that any signature
leaks no more information about x than the fact that its inner product with y
is in the range [L,R]. ARIP has various applications. An ARIP scheme can be
transformed into any of the following ABS primitives, ABS for range evaluation
(RE) of polynomials (AREP), ABS for RE of weighted averages (AREWA),
fuzzy identity-based signatures (FIBS), time-specific signatures (TSS) [15,11],
ABS for RE of Hamming distance (AREHD), ABS for RE of Euclidean distance
(AREED) and ABS for hyperellipsoid predicates (AHEP).

In this paper, we consider its key-range version, named key-range ARIP
(KARIP). The range [L,R] is associated with a secret-key but not with a sig-
nature. The ABS scheme by Sakai et al. [17] supporting any circuit as signer-
predicate can be a KARIP scheme by properly configuring the circuit. Both
a vector x ∈ Znp and a range [L,R] are transformed into a binary attribute

x ∈ {0, 1}(n+2)·λ. In their ABS scheme, at signature generation, a signer gener-
ates a commitment of the non-interactive witness indistinguishable proof (NIWI)
system by Groth and Sahai (GS) [8] for each bit x[i] ∈ {0, 1} of x. Thus, at least,
its signature length linearly increases with nλ.

1.1 Contribution

In this work, we propose three generic constructions of KARIP, which lead to
three concrete KARIP schemes with distinct features in terms of efficiency and
key-delegatability. We show that KARIP has various applications.

1st Construction. It is generically constructed by NIWI, linearly homomorphic
signatures (LHS)1 [5] and append-only signatures (AOS)2 [14]. In key-generation
for (x, L,R), we choose an LHS tag τ , then define n+ 2 vectors v1, · · · ,vn+2 ∈
Zn+3
p as vi := (xi, 0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

, 0, 0) for each i ∈ [1, n], vn+1 := (0, · · · ,

0, 1, 0) and vn+2 := (0, · · · , 0, 0, 1). We generate an LHS signature σi on each
vector vi under the common tag τ . In signing for (y,M), they are used to derive
an LHS signature σ′ with the same tag τ on v′ := (〈x,y〉, y1, · · · , yn,M). In key-
generation, we also generate AOS signatures. We consider a complete binary tree
with p leaf nodes. C denotes the set of intermediate nodes covering all of the leaf
nodes associated with from [L]2 to [R]2, where [a]2 is the binary value of a. For
each c ∈ C, parsed as c[1] ‖ · · · ‖ c[hc] with c[i] ∈ {0, 1} and length hc ∈ [1, λ], we
generate an AOS signature θc on (τ, c[1], · · · , c[hc]) ∈ ({0, 1}N)hc+1. In signing,
one of the AOS signatures is used to generate an AOS signature θ′ on (τ, 〈x,y〉[1],
· · · , 〈x,y〉[λ]) ∈ ({0, 1}N)λ+1. If 〈x,y〉 ∈ [L,R], there exists a node c ∈ C s.t. c
is whether identical to or an ancestor of 〈x,y〉. An AOS signature θc for such a

1 In LHS, l signatures {σi}li=1 on vectors {vi}li=1 associated with the common tag τ
make us derive a signature on any linear summation

∑l
i=1 βi · vi with same tag τ .

2 In AOS, each message has a hierarchical structure. Any signature on a message M
makes us derive a new signature on any descendant message M ′.

2

node c derives θ′. Finally, we generate an NIWI proof that both of the LHS and
AOS signatures σ′, θ′ are correct under the witness (〈x,y〉, τ, σ′, θ′). Clearly, our
1st construction is key-delegatable because of the message-appendability of the
underlying AOS.

To instantiate it, we use the simplified ALP LHS scheme [9,10] and the GS
proof [8]. As AOS, we search for a candidate satisfying both of the following
conditions, namely (1) Based on symmetric bilinear paring with prime order and
(2) Its verification algorithm consists of only PPEs. We refer to an hierarchical
identity-based signatures scheme in by Chatterjee and Sarkar [7] to construct an
original AOS scheme satisfying the conditions and rigorously prove its security,
i.e., unforgeability, under the CDH assumption. To evaluate efficiency of the
instantiated scheme, we rigorously calculate its secret-key and signature sizes.
They are N +

(
n+ λ2)|g| [bit] and (27N + 27λ+ 40)|g| [bit], where |g| denotes

bit length of an element in the bilinear group G.

2nd Construction. It is generically constructed by LHS and NIWI. This con-
struction is similar to the 1st ARIP scheme in [9,10]. In key-generation for (x, L,
R), we define n+2 vectors v1, · · · ,vn+2 ∈ Zn+5

p as vi := (xi, 0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

,

0, 0, 0, 0) for each i ∈ [1, n], vn+1 := (0, · · · , 0, L,R, 0, 1) and vn+2 := (0, · · · , 0,
0, 0, 1, 0). For each vector vi, we generate an LHS signature σi with the common
tag τ . In signing for (y,M), an LHS signature σ′ with the tag τ on v′ := (〈x,y〉,
y1, · · · , yn, L,R,M, 1) is derived. Then, we generate an NIWI proof that σ′ is a
correct signature on v′ and 〈x,y〉 ∈ [L,R].

We instantiate it by the simplified ALP LHS scheme [9,10] and the GS proof
[8] to obtain a KARIP scheme secure under the DLIN, CDH and FlexCDH
assumptions. To efficiently prove 〈x,y〉 ≥ L, we use the following fact. If 〈x,y〉 ≥
L, 〈x,y〉 = L or there exists a single index t ∈ [1, λ] s.t. the leftmost t − 1 bits
of 〈x,y〉 and L are identical and the t-th bits of 〈x,y〉 and L are 1 and 0,

respectively. More formally, ∃t ∈ [1, λ + 1] s.t.
∧t−1
i=1〈x,y〉[i] = L[i]

∧
〈x,y〉[t] =

1
∧
L[t] = 0. To prove 〈x,y〉 ≤ R, we also use the same fact. We rigorously prove

that its secret-key and signature sizes are N+4(n+2)|g| and (18N+132λ+39)|g|.

3rd Construction. It is generically constructed by LHS, NIWI and collision-
resistant hash function (HF). It is similar to the 2nd ARIP scheme in [9,10]. In
key-generation, we define only two vectors v1 := (x1, x2, · · · , xn, L,R, 0, 1),v2 :=
(0, · · · , 0, 1, 0) ∈ Zn+4

p , then generate an LHS signature σi with the common tag
τ on each vector vi. In signing, an LHS signature σ′ on v′ := (x1, · · · , xn, L,
R, h, 1), where h is the hash value of (y,M). Then, we generate an NIWI proof
that σ′ is a correct signature on v′, 〈x,y〉 ∈ [L,R], and the inner product value
is correctly calculated, i.e., 〈x,y〉 =

∑n
i=1 xi · yi (mod p).

To instantiate it, we use the same building blocks as our 2nd construction.
We rigorously prove that its secret-key and signature sizes are N + 8|g| and
(9n+ 18N + 132λ+ 42)|g|.

3

Applications. As formally shown in [9,10], an ARIP scheme can be transformed
into any of the following ABS primitives, namely AREP, AREWA, FIBS, TSS
[15,12], AREHD, AREED and AHEP. The same transformation techniques also
work for KARIP. A KARIP scheme can be transformed into their key-range ver-
sions. We emphasize that if the underlying KARIP scheme has key-delegatablity,
the property is directly inherited after the transformation.

Paper Organization. In Sect. 2, we explain some notations, and define some
computational assumptions, NIWI, LHS and AOS. In Sect. 3, we formally define
KARIP. In Sect. 4 (resp. 5, 6), we propose our 1st (resp. 2nd, 3rd) generic KARIP
construction, prove its security, and introduce its instantiation. In Sect. 7, we
introduce the applications of KARIP.

2 Preliminaries

Notations. For λ ∈ N, 1λ denotes a security parameter. A function f : N→ R is
negligible if for every c ∈ N, there exists x0 ∈ N s.t. for every x ≥ x0, f(x) ≤ x−c.
Given a binary string x ∈ {0, 1}L, for every i ∈ [1, L], let x[i] ∈ {0, 1} denote
its i-th bit. PPTA means probabilistic polynomial time algorithm. For a set A,

a
U←− A means that an element a is chosen uniformly at random from A. For an

integer a ∈ N, [a]2 denotes its binary value.

Symmetric Bilinear Pairing on Groups with Prime Order. G takes a security
parameter 1λ with λ ∈ N and outputs a group description (p,G,GT , e, g). p is
a prime with bit length λ. G and GT are multiplicative groups with order p.
g is a generator of G. e : G × G → GT is an efficiently computable function
which satisfies the following two conditions, (1) Bilinearity: For any a, b ∈ Zp,
e(ga, gb) = e(g, g)ab, (2) Non-degeneracy: e(g, g) 6= 1GT , where 1GT denotes
the unit element of GT . In this work, |g| denotes bit length of an element in the
bilinear group G.

Assumptions. We define the three computational hardness assumptions.

Definition 1. The computational Diffie-Hellman (CDH) assumption holds on
the group G if for every PPT A, AdvCDHA,G(λ) := Pr[gab ← A(g, ga, gb)] with

a, b
U←− Zp, is negligible.

Definition 2. The flexible CDH (FlexCDH) assumption [4] holds on the group
G if for every PPT A, AdvFlexCDHA,G (λ) := Pr[(gµ, ga·µ, gab·µ) ← A(g, ga, gb)] with

a, b
U←− Zp and µ 6= 0, is negligible.

Definition 3. The decisional linear (DLIN) assumption holds on the group G
if for every PPT A, AdvDLINA,G(λ) := |Pr[1 ← A(ga, gb, gab, gbd, gc+d)]| − Pr[1 ←
A(ga, gb, gab, gbd, gz)] with a, b, c, d, z

U←− Zp, is negligible.

4

2.1 Non-Interactive Witness Indistinguishable Proof (NIWI)

An NIWI system for the NP relation R : {0, 1}∗ × {0, 1}∗ → 1/0 consists of the
following 3 polynomial-time algorithms. Note that Ver is deterministic and the
others are probabilistic. Setup algorithm Setup takes a security parameter 1λ for
λ ∈ N, then outputs a common reference string (CRS) crs. Proving algorithm
Pro takes the CRS crs, a statement x ∈ {0, 1}∗ and a witness w ∈ {0, 1}∗, then
outputs a proof π. Verification Ver takes the CRS crs, a statement x ∈ {0, 1}∗
and a proof π, then outputs a verification result 1/0. We require every NIWI
system to be correct. An NIWI system is correct if for every λ ∈ N, every
crs ← Setup(1λ), every x ∈ {0, 1}∗, every w ∈ {0, 1}∗ s.t. 1 ← R(x,w), and
every π ← Pro(crs, x, w), it holds that 1← Ver(crs, x, π).

We define two security requirements, namely perfect witness-indistinguishability
(WI) and perfect witness-extractability (WE).

Definition 4. An NIWI system is perfectly witness-indistinguishable (WI), if
for every λ ∈ N, every crs ← Setup(1λ), every x ∈ {0, 1}∗, and every w0, w1 ∈
{0, 1}∗ s.t. 1 ← R(x,wb) for each b ∈ {0, 1}, Pro(crs, x, w0) distributes identi-
cally to Pro(crs, x, w1).

Definition 5. An NIWI system is perfectly witness-extractable (WE), if for every
λ ∈ N, there exist two algorithms SimSetup and Extract that satisfy both of the
following two conditions.

1. For every PPT algorithm A, AdvWEΣNIWI,A(λ) := |Pr[1 ← A(crs) | crs ←
Setup(1λ)]− Pr[1← A(crs) | (crs, ek)← SimSetup(1λ)]| is negligible.

2. For every probabilistic algorithm A,

Pr

[
(crs, ek)← SimSetup(1λ); (x, π)← A(crs);

w ← Extract(crs, ek, x, π) : 1← Ver(crs, x, π) ∧ 0← R(x,w)

]
= 0.

2.2 Linearly Homomorphic Signatures (LHS) [5,4]

An LHS scheme consists of the following 4 polynomial-time algorithms. Note that
Setup and Sig are probabilistic, Ver is deterministic and Derive is (possibly)
probabilistic.

Key-Generation KGen: It takes a security parameter 1λ for λ ∈ N and an
integer n ∈ N that indicates the dimension of a vector to be signed, then
outputs a key-pair (pk, sk). (pk, sk)← KGen(1λ, n)

Signing Sig: It takes the secret-key sk, a tag τ ∈ {0, 1}∗ and a vector v ∈ Znp
to be signed, then outputs a signature σ. σ ← Sig(sk, τ,v)

Derivation Derive: It takes the public-key pk, a tag τ ∈ {0, 1}∗ and l triples
{vi, σi, βi}li=1, consisting of a vector vi ∈ Znp , a signature σi and a weight βi,

then outputs a signature σ on the weighted vector v :=
∑l
i=1 βi · vi ∈ Znp .

σ ← Derive(pk, τ, {vi, σi, βi}li=1)

5

Verification Ver: It takes the public-key pk, a tag τ ∈ {0, 1}∗, a vector v ∈ Znp
and a signature σ, then outputs 1 or 0. 1/0← Ver(pk, τ,v, σ)

We require every LHS scheme to be correct. An LHS scheme is correct if for any
λ ∈ N, any n ∈ N and any (pk, sk) ← KGen(1λ, n), the following two conditions
hold, namely (1) 1← Ver(pk, τ,v, Sig(sk, τ,v)) for any tag τ ∈ {0, 1}∗ and any

v ∈ Znp , and (2) 1← Ver(pk, τ,
∑l
i=1 βivi, Derive(pk, τ, {vi, σi, βi}li=1)) for any

tag τ ∈ {0, 1}∗, any integer l ∈ N and any l triples {vi ∈ Znp , σi, βi ∈ Zp}li=1 s.t.
1← Ver(pk, τ,vi, σi) for each i ∈ [1, l].

As security notions for P -homomorphic signatures [2], a generalization of
LHS and AOS, unforgeability and unlinkability-related strong context-hiding
(SCH) and complete context-hiding (CCH) [3] have been defined. Since these
notions are not needed for our KARIP constructions, we define only weak un-
forgeability weaker than the original notion of unforgeablity [2]. We consider the
following experiment, where a PPT algorithm A adaptively accesses a signing
oracle to get a signature on an arbitrarily chosen vector v, then outputs a forged
signature.

ExptwUNFΣLHS,A
(1λ, n):

1. (pk, sk)← Setup(1λ, n). (τ∗ ∈ {0, 1}∗,v∗ ∈ Znp , σ
∗)← ASign(pk).

- -
- Sign(τ ∈ {0, 1}∗,v ∈ Znp): Q := Q ∪ {(τ,v)}. Rtrn σ ← Sig(sk, τ, v).

- -
2. Rtrn 1 if (1) 1← Ver(pk, τ∗,v∗, σ∗) and (2) one of the following conditions is satisfied.

(a) τ∗ 6= τi for any entry (τi, ·) ∈ Q and v∗ 6= 0.
(b) τ∗ = τi for k > 0 entries (τi,vi) in Q and v∗ /∈ span{v1, · · · ,vk}.

Definition 6. An LHS scheme ΣLHS is wUNF if for every λ ∈ N, every n ∈
poly(λ) and every PPT A, A’s advantage defined as AdvwUNFΣLHS,A(λ) := Pr[1 ←
ExptwUNFΣLHS,A(1λ, n)] is negligible.

Unforgeablity, SCH and CCH of LHS are defined in Subsect. A.1.

2.3 Append-Only Signatures (AOS) [14]

An AOS scheme consists of the following 4 polynomial-time algorithms. Note
that Setup and Sig are probabilistic, Ver is deterministic and Derive is (possi-
bly) probabilistic.

Key-Generation KGen: It takes a security parameter 1λ, the maximum depth
of message H ∈ N and bit length of a sub-message L ∈ N, then outputs a
key-pair (pk, sk). (pk, sk)← KGen(1λ, H, L)

Signing Sig: It takes the secret-key sk and a message M ∈ ({0, 1}L)h≤H , then
outputs a signature σ. σ ← Sig(sk,M)

Derivation Derive: It takes the public-key pk, a message M ∈ ({0, 1}L)h≤H ,
a signature σ and a message M ′ ∈ ({0, 1}L)h

′≤H , then outputs a signature
σ′. σ′ ← Derive(pk,M, σ,M ′)

Verification Ver: It takes the public-key pk, a message M ∈ ({0, 1}L)h≤H and
a signature σ, then outputs 1 or 0. 1/0← Ver(pk,M, σ)

6

We require every AOS scheme to be correct. An AOS scheme is correct if for any
λ ∈ N, any H,L ∈ N and any (pk, sk) ← KGen(1λ, H, L), both of the following
conditions hold, (1) 1← Ver(pk,M, Sig(sk,M)) for any M ∈ ({0, 1}L)h≤H , and
(2) 1 ← Ver(pk,M ′, Derive(pk,M, σ,M ′)) for any M ∈ ({0, 1}L)h≤H , M ′ ∈
({0, 1}L)h

′≤H s.t. h ≤ h′
∧h
i=1Mi = M ′i and any σ s.t. 1← Ver(pk,M, σ).

As LHS, we define only weak unforgeablity (wUNF) for AOS.
ExptUNFΣAOS,A

(1λ, H, L):

1. (pk, sk)← Setup(1λ, H, L). (M∗ ∈ ({0, 1}L)h
∗
, σ∗)← ASign(pk).

- -
- Sign(M ∈ ({0, 1}L)h): Q := Q ∪ {M}. Rtrn σ ← Sig(sk,M).

- -
2. Rtrn 1 if (1) 1← Ver(pk,M∗, σ∗), and

(2) h > h∗ ∨ ∃i ∈ [1, h] s.t. mi 6= m∗i for any M ∈ Q, where M ∈ ({0, 1}L)h for some h ≤ H.
3. Rtrn 0.

Definition 7. An AOS scheme ΣAOS is wUNF if for every λ ∈ N, every H,L ∈ N
and every PPT A, AdvwUNFΣAOS,A(λ) := Pr[1← ExptwUNFΣAOS,A(1λ, H, L)] is negligible.

Unforgeablity, SCH and CCH of AOS are defined in Subsect. A.2.

3 Key-Range ABS for Range of Inner-Product (KARIP)

A KARIP consists of the following four polynomial-time algorithms. Ver is de-
terministic and the others are probabilistic.

Setup Setup: It takes a security parameter 1λ for λ ∈ N and a number of
dimensions n ∈ N, then outputs a public parameter pp and master-key mk.
Assume that a prime p with bit length λ is chosen and included in pp. The
other algorithms implicitly take pp as input. (pp,mk)← Setup(1λ, n)

Key-Generation KGen: It takes mk and an n-dimensional vector x ∈ Znp and
a range [L,R] = {L,L + 1, · · · , R − 1, R} with L,R ∈ Zp, then outputs a
secret-key sk. sk ← KGen(mk,x, L,R)

Signing Sig: It takes a secret-key sk, a message M ∈M and an n-dimensional
vector y ∈ Znp , then outputs a signature σ. σ ← Sig(sk,M,y)

Verification Ver: It takes a signature σ, a messageM ∈M and an n-dimensional
vector y ∈ Znp , then outputs 1 or 0. 1/0← Ver(σ,M,y)

Every KARIP scheme must be correct. A KARIP scheme is correct if ∀λ ∈ N,
∀n ∈ N, ∀(pp,mk) ← Setup(1λ, n), ∀x ∈ Znp , ∀L,R ∈ Zp, ∀sk ← KGen(mk,x,
L,R), ∀M ∈ M, ∀y ∈ Znp s.t. 〈x,y〉 ∈ [L,R] (mod p), ∀σ ← Sig(sk,M,y),
1← Ver(σ,M,y) holds.

As security for KARIP, we require unforgeability and signer-privacy. As a no-
tion of unforgeability, we define unforgeability against adaptively chosen predi-
cate attack (UNF). For a PPT algorithm A, we consider the following experiment.

ExptUNFΣKARIP,A
(1λ):

1. (pp,mk)← Setup(1λ). (σ∗,M∗ ∈ M,y∗ ∈ Znp)← AReveal,Sign(pp).
- -

- Reveal(x ∈ Znp , L,R ∈ Zp): sk ← KGen(mk,x). Q := Q ∪ {(x, L,R)}. Rtrn sk.

- Sign(x ∈ Znp , L,R ∈ Zp,M ∈ M,y ∈ Znp): sk ← KGen(mk,x, L,R). σ ← Sig(sk,M,y).

7

Q′ := Q′ ∪ {(M,y, σ)}. Rtrn σ.
- -

2. Rtrn 1 if (1) 1← Ver(σ∗,M∗,y∗), (2) ∀(x, L,R) ∈ Q, 〈x,y∗〉 /∈ [L,R] and (3) (M∗,y∗, ·) /∈ Q′.
3. Rtrn 0.

Definition 8. A KARIP scheme ΣKARIP is UNF if for every PPT A, its advan-
tage AdvUNFΣKARIP,A(λ) := Pr[1← ExptUNFΣKARIP,A(1λ, n)] is negligible.

As a notion of signer-privacy, we define perfect signer-privacy (PRV). For a prob-
abilistic algorithm A, we consider the following two experiments.
ExptPRVΣKARIP,A,0

(1λ): //ExptPRVΣKARIP,A,1

(pp,mk)← Setup(1λ). (pp,mk, µ)← SimSetup(1λ). Rtrn b′ ← AReveal,Sign(pp,mk).
- -

- Reveal(x ∈ Znp , L,R ∈ Zp):

sk ← KGen(mk,x, L,R). sk ← SimKGen(mk, µ,x, L,R). Q := Q ∪ {(x, L,R, sk)}. Rtrn sk.
- Sign(x ∈ Znp , L,R ∈ Zp, sk,M ∈ M,y ∈ Znp):

Rtrn ⊥ if (x, L,R, sk) /∈ Q ∨ 〈x,y〉 /∈ [L,R] (mod p).
σ ← Sig(sk,M,y). σ ← SimSig(mk, µ,M,y). Rtrn σ.

The latter is associated with 3 polynomial-time algorithms {SimSetup, SimKGen,
SimSig}. The grey parts are considered in the latter, but ignored in the former.

Definition 9. A KARIP scheme ΣKARIP is perfectly signer-private (PRV) if for
every probabilistic algorithm A, there exist polynomial-time algorithms {SimSetup,
SimKGen, SimSig} such that A’s advantage AdvPRVΣKARIP,A(λ) := |

∑1
b=0(−1)b Pr[1←

ExptPRVΣKARIP,A,b(1
λ)]| becomes 0.

Key-Delegatability. We say that a KARIP scheme is key-delegatable if for any
vector x ∈ Znp , any range [L,R] ⊆ Zp and any subrange [l, r] ⊆ Zp s.t. L ≤ l ≤
r ≤ R, any secret-key for (x, L,R) can generate a secret-key for (x, l, r).

4 Our 1st Generic Construction of KARIP

4.1 Construction

We use an algorithm Cover called covering. Consider a complete binary tree
with 2λ leaf nodes. The leftmost (resp. rightmost) leaf node is associated with
0λ (resp. 1λ). Since p is of bit length λ, for every integer i ∈ Zp, [i]2 ∈ {0, 1}λ is
corresponded to a leaf node one-to-one. Cover takes a range [L,R] ⊆ Zp, then
outputs a set C with the minimal cardinality, composed of intermediate nodes
which covers all of the leaf nodes from [L]2 to [R]2. For every i ∈ [L,R], there is
a single c ∈ C s.t. c is either identical to or an ancestor of [i]2. Such a set can be
efficiently and easily derived. Refer to Subsect. A.4 for the definition of Cover.

Our generic KARIP construction is built by an LHS scheme {L.KGen, L.Sig,
L.Derive, L.Ver}, an AOS scheme {A.KGen,A.Sig,A.Derive,A.Ver} and an NIWI
proof system {N.Setup,N.Pro,N.Ver}.

Setup(1λ, L): Generate crs← N.Setup(1λ), (pkL, skL)← L.KGen(1λ, n+3) with
tags whose bit length is N ∈ poly(λ) and (pkA, skA) ← A.KGen(1λ, N + λ,
1). Output pp := (crs, pkL, pkA) and mk := (skL, skA).

8

KGen(mk,x, L,R): Choose a tag τ
U←− {0, 1}N . Conduct the following two steps.

1. For each i ∈ [1, n], let vi := (xi, 0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

, 0, 0) ∈ Zn+3
p . Let

vn+1 := (0, · · · , 0, 1, 0) ∈ Zn+3
p and vn+2 := (0, · · · , 0, 0, 1) ∈ Zn+3

p . For
each vi, generate an LHS signature with tag τ by σi ← L.Sig(skL, τ,vi).

2. For each c ∈ C, generate an AOS signature on (τ, c[1], · · · , c[hc]), i.e.,
θc ← A.Sig(skA, (τ, c[1], · · · , c[hc])), where c is parsed as c[1] ‖ · · · ‖ c[hc]
for some hc ∈ [1, λ]. Note that this construction is key-delegatable. Con-
sider a subrange [l, r] ⊆ [L,R], and let C ′ ← Cover(l, r). For any c′ ∈ C ′,
there must exist a single c ∈ C s.t. c is either identical to or an ancestor
of c′.

Output sk := (τ, {σi}n+2
i=1 , {θc}c∈C).

Sig(sk,M,y): Parse sk as above. Let d := 〈x,y〉 (mod p). Assume that d ∈
[L,R]. Conduct the following three steps.

1. Generate an LHS signature on v′ := (d, y1, · · · , yn,M, 1) by σ′ ← L.Derive(pkL,
τ, {vi, σi, βi}n+2

i=1), where βn+1 := M , βn+2 := 1 and βi := yi for each
i ∈ [1, n].

2. d ∈ [L,R] implies that there is c ∈ C s.t. c is whether identical to or an
ancestor of [d]2. Derive an AOS signature on (τ, d[1], · · · , d[λ]) from θc,
i.e., θ′ ← A.Derive(pkA, (τ, c[1], · · · , c[hc]), θc, (τ, d[1], · · · , d[λ])), where
[d]2 is parsed as d[1] ‖ · · · ‖ d[λ].

3. Define the NIWI relation RN as follows.

– A statement x = (ŷ, M̂) consists of a vector ŷ = (ŷ1, · · · , ŷn) ∈ Znp
and a message M̂ ∈ Zp. A witness w = (d̂, τ̂ , σ̂, θ̂) consists of an inner

product value d̂ ∈ Zp, an LHS tag τ̂ ∈ {0, 1}L, an LHS signature σ̂

and an AOS signature θ̂. RN takes a statement x and witness w then
outputs 1 if both of the following conditions are satisfied.

1. 1← L.Ver(pkL, τ̂ , v̂, σ̂), where v̂ := (d̂, ŷ1, · · · , ŷn, M̂ , 1).

2. 1← A.Ver(pkA, (τ̂ , d̂[1], · · · , d̂[λ]), θ̂).

If we set x := (y,M) and w := (d, τ, σ, θ), it obviously holds that 1 ←
RN(x,w). Output σ ← N.Pro(crs, x, w).

Ver(σ,M,y): Set x := (y,M) and output 1/0← N.Ver(crs, x, σ).

As explained in the key-generation algorithm, this construction is key-delegatable.
For its privacy and unforgeability, we give the following two theorems.

Theorem 1. Our 1st KARIP scheme is PRV if the NIWI scheme is WI.

Proof. The signer-privacy experiments w.r.t. our 1st KARIP scheme are simply
denoted by Expt0 and Expt1. For the three simulation algorithms associated
with Expt1, SimSetup and SimKGen are identical to the original ones3. SimSig
is defined as follows.

3 The auxiliary variable µ outputted by SimSetup is null.

9

SimSig(mk,M,y): Arbitrarily choose x ∈ Znp and L,R ∈ Zp s.t. d(:= 〈x,y〉) ∈
[L,R] (mod p). Choose τ

U←− {0, 1}N . Generate an LHS signature on v′ :=
(d, y1, · · · , yn,M, 1) by σ′ ← L.Sig(skL, τ,v

′). Generate an AOS signature on
(τ, d[1], · · · , d[λ]) by θ′c ← A.Sig(skA, (τ, d[1], · · · , d[λ])). Generate an NIWI
proof π ← N.Pro(crs, x, w), where x := (y,M) and w := (d, τ, σ′, θ′), then
return π.

It holds that 1 ← RN(x,w). Hence, if the NIWI scheme is WI, the simulated
signature π distributes identically to the real one in Expt0. ut

Theorem 2. Our 1st KARIP scheme is UNF if the LHS scheme is wUNF, the
AOS scheme is wUNF, and the NIWI system is WI and WE.

Proof. We define six experiments as follows.

Expt0: The standard UNF experiment w.r.t. the KARIP scheme.
Expt1: The same as Expt0 except that it aborts when we choose a tag on the

key-revelation or signing oracle, the tag matches a tag previously chosen.
Expt2: The same as Expt1 except for the signature generation on the sign-

ing oracle. In Expt2, we directly generate both of an LHS signature σ′ on
v′ := (〈x,y〉, y1, · · · , yn,M, 1) and an AOS signature θ′ on (τ, 〈x,y〉[1], · · · ,
〈x,y〉[λ]) by using the LHS and AOS secret-keys, respectively.

Expt3: The same as Expt2 except for the CRS generation. In Expt3, the CRS
crs is generated by (crs, ek)← SimSetup(1λ).

Expt4: Basically the same as Expt3. In Expt4, we extract the NIWI witness
w∗ for the NIWI proof σ∗ by using the extraction key ek. Formally, extract
w∗ ← Extract(crs, ek, x∗, σ∗), where x∗ := (y∗,M∗). The witness is parsed
as (d∗ ∈ Zp, τ∗ ∈ {0, 1}N , σ∗, θ∗). Expt4 aborts if w∗ is not the correct
witness for the statement x∗, i.e., 0← RN(x∗, w∗).

Expt5: The same as Expt4 except that it aborts if one of the following three
events occurs.

E1: The extracted tag τ∗ is identical to no tag previously chosen.
E2: The tag τ∗ has been already chosen on the signing oracle.
E3: The tag τ∗ has been already chosen on the key-revelation oracle and it

holds that d∗ 6= 〈x̂,y∗〉 (mod p), where d∗ ∈ Zp is the extracted inner
product value and x̂ ∈ Znp is the n-dimensional key-vector queried by A.

For each i ∈ [0, 5], let Wi denote the event that the experiment Expti outputs 1.

We obtain AdvUNFΣKARIP,A,n(λ) = Pr[W0] ≤
∑5
i=1 |Pr[Wi−1]− Pr[Wi]|+ Pr[W5] ≤

q(q− 1)/2N+1 + AdvWIΣNIWI,B3
(λ) + AdvwUNFΣLHS,B5

(λ) + AdvwUNFΣAOS,B6
(λ) for some PPT

adversary B3,B5,B6. The last inequality is obtained because of the following six
lemmas. Lemma 1 is the same as Lemma 1 in [9,10] and can be proven in the
same manner. Lemma 3 is true because the CRSs in Expt2 and Expt3 are
indistinguishable if the NIWI system is WE. The other lemmas are proven below.
For each i ∈ {1, 4, 5}, aborti denotes the abort event firstly introduced in the
experiment Expti. ut

10

Lemma 1. Pr[W0] − Pr[W1] ≤ q(q − 1)/2N+1, where q ∈ poly(λ) is the total
number of times that A uses the key-revelation and signing oracles.

Lemma 2. |Pr[W1]− Pr[W2]| = 0 if the NIWI system is WI.

Proof. In Expt2, on the signing oracle, we directly generate both of an LHS
signature σ′ and an AOS signature θ′ by the LHS and AOS secret-keys, then
generate a signature σ(:= π) as π ← N.Pro(crs, x, w), where x := (y,M) and
w := (d, τ, σ′, θ′). Since it holds that 1← RN(x,w), the NIWI proof π distributes
identically to the one in Expt1 if the NIWI system is WI. ut

Lemma 3. Pr[W2] − Pr[W3] is negligible if the NIWI system is WE. Formally,
there exists a PPT algorithm B3 s.t. Pr[W2]− Pr[W3] ≤ AdvWEΣNIWI,B3

(λ).

Lemma 4. Pr[W3]− Pr[W4] = 0 if the NIWI system is WE.

Proof. Obviously, Pr[W4] = Pr[W3∧¬abort4]. By a basic mathematical theorem,
Pr[W3] = Pr[W3 ∧ abort4] + Pr[W3 ∧¬abort4], which implies Pr[W3]−Pr[W4] =
Pr[W3 ∧ abort4]. Assume that the case where W3 ∧ abort4 occurs. Because of the
event W3, 1← N.Ver(crs, x∗, σ∗). Because of the event abort4, 0← RN(x∗, w∗).
That contradicts to the WE. Hence, Pr[W3]− Pr[W4] = 0. ut

Lemma 5. Pr[W4]−Pr[W5] is negligible if the LHS scheme is wUNF. Formally,
there exists a PPT algorithm B5 s.t. Pr[W4]− Pr[W5] ≤ AdvwUNFΣLHS,B5

(λ).

Proof. As the proof of Lemma 4, Pr[W4] − Pr[W5] = Pr[W4 ∧ abort5] holds.
Assume that A is a PPT algorithm which makes the event W4 ∧ abort5 occur
with a non-negligible probability. By using A, a PPT simulator B5 attempts to
win the wUNF experiment w.r.t. the LHS scheme.
B5 receives an honestly-generated public-key pkL. B5 can access to the signing

oracle SignL. B5 honestly generates crs, ek, pkA and skA. B5 sends pp := (crs,
pkL, pkA) to A and run it. When Amakes a query to the key-revelation or signing
oracle, B5 behaves as follows.

Reveal(x, L,R): Choose a tag τ
U←− {0, 1}N . Honestly generate the n+2 vectors

v1, · · · ,vn+2 ∈ Zn+3
p . For each vector vi, generate an LHS signature by

σi ← SignL(τ,vi). Let C := Cover(L,R). For each c ∈ C, generate θc ←
A.Sig(skA, (τ, c[1], · · · , c[hc])). Return sk := (τ, {σi}n+2

i=1 , {θc}c∈C).

Sign(x, L,R,y,M): Choose τ
U←− {0, 1}N . Let d := 〈x,y〉 (mod p). Generate

an LHS signature on a vector v′ := (d, y1, · · · , yn,M, 1) by σ′ ← SignL(τ,
v′). Honestly generate an AOS signature on (τ, d[1], · · · , d[λ]), i.e., θ′ ←
A.Sig(skA, (τ, d[1], · · · , d[λ])). Generate an NIWI proof π ← N.Pro(crs, x,
w), where x := (y,M) and w := (d, τ, σ′, θ′), then return it.

Given a forged KARIP signature π∗, B6 extracts the witness behind the NIWI
proof π∗ by w∗ ← Extract(crs, ek, x∗, π), where x∗ := (y∗,M∗), and parse it
as (d∗, τ∗, σ∗, θ∗). B5 outputs a forged LHS signature σ∗ with tag τ∗ on vector
v∗ := (d∗, y∗1 , · · · , y∗n,M∗, 1).

11

The above is how B5 behaves. Because we have assumed that A makes the
event W4 ∧ abort5 occur, one of the three events E1, E2 and E3 must occur.
Any of the events leads B5 to win the wUNF experiment.

E1: Every tag queried to SignL is not identical to τ∗. W4 ∧ abort5 implies
¬abort4, which implies that σ∗ is a valid LHS signature on the non-zero
vector v∗.

E2: W4 implies ¬abort1, which implies that the extracted tag τ∗ is identical to
a single tag chosen on the signing oracle. Among multiple vectors whom B5

queried to SignL, v̂ := (〈x̂, ŷ〉, ŷ1, · · · , ŷn, M̂ , 1) is the only vector tagged by
τ∗, where x̂, L̂, R̂, ŷ and M̂ denote variables queried to the signing oracle
when the tag τ∗ was chosen. W4 implies that (y∗,M∗) 6= (ŷ, M̂). Obviously,
v∗ is linearly independent of v̂.

E3: W4 implies ¬abort1, which implies that the extracted tag τ∗ is identical to a
single tag chosen on the key-revelation oracle and it holds that d∗ 6= 〈x̂,y∗〉
(mod p). Among multiple vectors whom B5 queried to SignL, there are n+2
vectors v̂1, · · · , v̂n+2 tagged by τ∗. The vectors are expressed as follows. For
each i ∈ [1, n], v̂i = (x̂i, 0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

, 0, 0). The others are v̂n+1 = (0,

· · · , 0, 1, 0) and v̂n+2 = (0, · · · , 0, 0, 1). Since d∗ 6= 〈x̂,y∗〉 (mod p), v∗ =
(d∗, y∗1 , · · · , y∗n,M∗, 1) is not in span({v̂1, · · · , v̂n+2}).

Therefore, Pr[W4]− Pr[W5] ≤ AdvwUNFΣLHS,B5
(λ). ut

Lemma 6. Pr[W5] is negligible if the AOS scheme is wUNF. Formally, there
exists a PPT algorithm B6 s.t. Pr[W5] ≤ AdvwUNFΣAOS,B6

(λ).

Proof. Assume that A is a PPT algorithm which makes Expt5 outputs 1 with
a non-negligible probability. By using A, a PPT simulator B6 attempts to win
the weak unforgeability experiment w.r.t. the underlying AOS scheme.
B6 receives a public-key pkA, which has been honestly generated. B6 can

access to the signing oracle SignA. B6 honestly generates crs, ek, pkL and skL.
B6 sends pp := (crs, pkL, pkA) to A and run it.

Reveal(x, L,R): Choose a tag τ
U←− {0, 1}N . Honestly generate the n+2 vectors

v1, · · · ,vn+2 ∈ Zn+3
p . For each vector vi, generate σi ← L.Sig(skL, τ,vi).

Let C := Cover(L,R). For each c ∈ C, generate θc ← SigA((τ, c[1], · · · ,
c[hc])). Return sk := (x, L,R, τ, {σi}n+2

i=1 , {θc}c∈C).

Sign(x, L,R,y,M): Choose τ
U←− {0, 1}N . Let d := 〈x,y〉 (mod p). Generate an

LHS signature on the vector v′ := (d, y1, · · · , yn,M, 1), i.e., σ′ ← L.Sig(skL,
τ,v′). Generate an AOS signature θ′ ← SignA((τ, d[1], · · · , d[λ])). Generate
an NIWI proof π ← N.Pro(crs, x, w), where x := (y,M) and w := (d, τ, σ′,
θ′), then return it.

A outputs a forged KARIP signature π∗ on M∗ under y∗. We extract the witness
for the NIWI proof π∗ by w∗ ← Extract(crs, ek, x∗, π), where x∗ := (y∗,M∗),
and parse it as (d∗, τ∗, σ∗, θ∗). B6 outputs a forged AOS signature θ∗ on (τ∗,
d∗[1], · · · , d∗[λ]).

12

The above is the behavior of B6. We prove that B6 wins the experiment.
The assumption that W5 occurs implies that neither abort1 nor abort5 occurs.

Thus, the forged tag τ∗ is identical to a single tag which was chosen on the key-
revelation oracle and it holds that d∗ = 〈x̂,y∗〉 (mod p). When the tag τ∗ was

chosen, B6 makes the signing oracle reveal signatures on (τ∗, c[1], · · · , c[ĥc]) for

all c = c[1] ‖ · · · ‖ c[ĥc] ∈ Cover(L̂, R̂). W5 implies that 〈x̂,y∗〉 /∈ [L̂, R̂] (mod p),
which implies that no c ∈ Cover(L̂, R̂) is neither [d∗]2 nor its ancestor. Thus, B6

wins. Hence, Pr[W5] ≤ AdvwUNFΣAOS,B6
(λ). ut

4.2 Our AOS Scheme

We instantiate our generic construction in Subsect. 4.3. We use an NIWI proof by
Groth and Sahai (GS) [8] secure under the decisional linear (DLIN) assumption.

Its CRS consists of 3 vectors
#»

f 1,
#»

f 2,
#»

f 3 ∈ G3, where
#»

f 1 = (f1, 1, g),
#»

f 2 = (1,

f2, g) and f1, f2 ∈ G. A commitment
#»

C to a group element X ∈ G is given as
#»

C := (1, 1,X) · #»

f r1 ·
#»

f s2 ·
#»

f t3, where r, s, t
U←− Zp. In the GS NIWI system, the

prover can efficiently prove that committed variables satisfy a paring-product
equation (PPE) in the form of

∏m
i=1 e(Ai,Xi) ·

∏m
i=1

∏m
j=1 e(Xi,Xj)aij = tT for

variables Xi ∈ G and constants Ai ∈ G, aij ∈ Zp and tT ∈ GT .
Attrapadung, Libert and Peters (ALP) [4] proposed an LHS scheme unforge-

able and CCH-secure under the flexible CDH (FlexCDH) assumption. Ishizaka
et al. [9,10] simplified it to obtain another one weakly unforgeable under the
same assumption. The LHS scheme is used for the instantiation. Its verification
algorithm consists of only PPEs. Its full construction is in Subsect. C.1.

We searched for an AOS scheme used for the instantiation satisfying both
of the two conditions, (1) Based on symmetric, i.e., type-1, bilinear pairing with
prime order and (2) Its verification algorithm consists of only PPEs. We modified
a hierarchical identity-based signatures (HIBS) scheme named HIBS-1 in [7]
based on asymmetric type-3 bilinear paring with prime order, then obtained the
following AOS scheme.

KGen(1λ, H, L): (G,GT , e) denote the bilinear group description. g is a generator

of G. Choose β
U←− Zp and g′, U1, · · · , UH , V1, · · · , VL

U←− G. Output (pk, sk),
where pk := (g, gβ , g′, {Ui}Hi=1, {Vi}Li=1) and sk := β.

Sig(sk,M): Parse M ∈ ({0, 1}L)h≤H as (m1, · · · ,mh). For each i ∈ [1, h],

choose ri
U←− Zp and calculateBi := gri . CalculateA := (g′)β

∏h
i=1(Ui

∏L
j=1 V

mi[j]
j)ri ,

where mi is parsed as mi[1] ‖ · · · ‖mi[L]. Output σ := (A,B1, · · · , Bh).
Derive(pk,M, σ,M ′): Parse M ′ ∈ ({0, 1}L)h

′≤H as (m′1, · · · ,mh, · · · ,m′h′). For

each i ∈ [1, h′], choose r′i
U←− Zp and calculate B′i := Bi · gr

′
i if i ∈ [1, h]

or B′i := gr
′
i otherwise. Then calculate A′ := A ·

∏h′

i=1(Ui
∏L
j=1 V

m′i[j]
j)r

′
i .

Output σ′ := (A′, B′1, · · · , B′h′).
Ver(pk,M, σ): Output 1 iff e(A, g) = g(gβ , g′)

∏h
i=1 e(Bi, Ui

∏L
j=1 V

mi[j]
j).

Theorem 3. Our AOS scheme is wUNF under the CDH assumption w.r.t. G.

13

Proof. We assume that a PPT adversary A wins the wUNF experiment with a
non-negligibility. A PPT simulator B solves the CDH problem by using A. B
receives a CDH problem instance (g, ga, gb), then behaves as follows.

Let gβ := ga and g′ := gb. Let k := 2q, where q ∈ poly(λ) denotes the
maximal number of times that the signing oracle can be used. We assume that

k(L+ 1) < p. For each i ∈ [1, H], compute Ui := (gβ)p−k·si+xi · gx′i , where si
U←−

[0, L], xi
U←− Zk and x′i

U←− Zp. For each j ∈ [1, L], compute Vj := (gβ)yj · gy
′
j ,

where yj
U←− Zk and y′j

U←− Zp. For an index i ∈ [1, H] and a sub-message

m ∈ {0, 1}L, define the following three functions.

Ji(m) := x′i +

L∑
j=1

y′j ·m[j], Li(m) := xi +

L∑
j=1

yj ·m[j]

Fi(m) := p− k · si + xi +

L∑
j=1

yj ·m[j] (= p− k · si + Li(m))

Note that it holds that Ui
∏L
j=1 V

m[j]
j = (gβ)Fi(m) · gJi(m). We often use the

following theorem, which is proven in Subsect. B.3.

Theorem 4. For any i ∈ [1, H] and any m ∈ {0, 1}L, if Fi(m) = 0 (mod p)
then Li(m) = 0 (mod k).

If A queries a message M ∈ ({0, 1}L)h≤H to the signing oracle, the simulator
B generates a signature σ as follows. Consider the following two cases, (S1)
6 ∃i ∈ [1, h] s.t. Li(mi) 6= 0 (mod k) and (S2) Otherwise.

S1: Abort the simulation.
S2: It holds that ∃i ∈ [1, h] s.t. Li(mi) 6= 0 (mod k). Let t denote such an

index i. Contraposition of Theorem 4 guarantees that Ft(mt) 6= 0 (mod p).

For each i ∈ [1, h], choose ri
U←− Zp and compute Bi := gri if i 6= t or

Bi := (g′)−1/Ft(mt) · grt otherwise. Compute

∆ := (g′)
Jt(mt)
Ft(mt) · (gβ)rt·Ft(mt) · grt·Jt(mt)

= (g′)β · (g′)−
β·Ft(mt)
Ft(mt) · (g′)−

Jt(mt)
Ft(mt) · (gβ)rt·Ft(mt) · grt·Jt(mt)

= (g′)β · g(rt− b
Ft(mt)

)(β·Ft(mt)+Jt(mt)) = (g′)β · (Ut
L∏
j=1

V
mt[j]
j)rt−

b
Ft(mt)

and A := ∆ ·
∏
i∈[1,h]\{t} Ui

∏L
j=1 V

mi[j]
j . Finalize σ := (A,B1, · · · , Bh).

If A outputs a forged signature σ∗ = (A∗, B∗1 , · · · , B∗h∗) on a message M∗ = (m∗1,
· · · ,m∗h∗) with depth h∗ ∈ [1, H], B considers the following two cases, (F1)
∃i ∈ [1, h∗] s.t. Fi(m

∗
i) 6= 0 (mod p), and (F2) otherwise.

F1: Abort the simulation.

14

F2: It holds that ∀i ∈ [1, h∗], Fi(m
∗
i) = 0 (mod p). We have assumed that A

successfully forges a signature. There exist integers r∗1 , · · · , r∗h∗ ∈ Zp s.t. A∗ =

(g′)β
∏h∗

i=1(Ui
∏L
j=1 V

m∗i [j]
j)r

∗
i and B∗i = gr

∗
i for all i ∈ [1, h∗]. B outputs

A∗ · {
∏h∗

i=1(B∗i)Ji(m
∗
i)}−1 = (g′)β = gab as an answer to the CDH problem.

Let abort denote the event that B aborts the simulation. When abort does not
occur, B perfectly simulates the weak unforgeability experiment to A. More-
over, when abort does not occur and A wins, B solves the CDH problem. Thus,
AdvwUNFΣAOS,A(λ) ≤ 1

Pr[¬abort] ·Adv
CDH
G,B(λ). As proven in [7], 1

Pr[¬abort] is upper bounded

by 2 · {2q(L+ 1)}H . Its rigorous proof is given in Subsect. B.4. ut

4.3 Instantiation

For anyX ∈ G, ιG(X) (resp. ιGT (X)) denotes (1G, 1G, X) ∈ G3 (resp. (1GT , 1GT , X) ∈
G3
T). For any X ∈ GT , ΓGT (X) denotes the 3 × 3 matrix which has X as the

(3, 3)-th element and 1GT as any of the other elements. For any h, g1, g2, g3 ∈ G,

E(h, (g1, g2, g3)) denotes (e(h, g1), e(h, g2), e(h, g3)) ∈ G3
T . For any

#»

X = (X1,

X2, X3) ∈ G3 and
#»

Y = (Y1, Y2, Y3) ∈ G3, F (
#»

X,
#»

Y) := F̃ (
#»

X,
#»

Y)1/2 · F̃ (
#»

Y ,
#»

X)1/2 ∈ G3×3
T , where F̃ (

#»

X,
#»

Y) ∈ G3×3
T contains e(Xi, Yj) as the (i, j)-th ele-

ment for all i, j ∈ {1, 2, 3}.

Setup(1λ, L): Choose bilinear groups (G,GT) whose order is a prime p with bit
length λ. Conduct the following three steps.

1. Generate a key-pair of the simplified ALP LHS scheme. Choose α
U←− Zp.

Choose g, h, g1, · · · , gn+3
U←− G. Choose u′, u1, · · · , uN

U←− G for N ∈ N.
HG : {0, 1}N → Zp is a function which takes τ = τ [1]‖· · ·‖τ [N] ∈ {0, 1}N

and outputs u′
∏N
i=1 u

τ [i]
i ∈ G.

2. Generate a key-pair of our AOS scheme in Subsect. 4.2. Choose β
U←− Zp

and H,U1, · · · , Uλ+1, V1, · · · , VN
U←− G. Note that H ∈ G was originally

g′ ∈ G.
3. Generate a GS CRS f = (

#»

f 1,
#»

f 2,
#»

f 3) as
#»

f 1 := (f1, 1, g),
#»

f 2 := (1, f2,

g) and
#»

f 3 :=
#»

f ξ11 ·
#»

f ξ22 · (1, 1, g)−1, where f1, f2
U←− G, ξ1, ξ2

U←− Zp.
Output (pp,mk), where pp := (G,GT , e, g, gα, h, {gi}n+3

i=1 , u
′, {ui}Ni=1, g

β , H,
{Ui}λ+1

i=1 , {Vi}Ni=1,f) and mk := (α, β).

KGen(mk,x, L,R): Choose an LHS tag τ
U←− {0, 1}N . Conduct the following two

steps.

1. For each i ∈ [1, n], let vi := (xi, 0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

, 0, 0) ∈ Zn+3
p . Let

vn+1 := (0, · · · , 0, 1, 0) ∈ Zn+3
p and vn+2 := (0, · · · , 0, 0, 1) ∈ Zn+3

p . For
i ∈ [1, n + 2], generate a signature of the ALP LHS scheme on vi as

σi := (σi,1, σi,2, σi,3, σi,4) := ({(
∏n+3
j=1 g

vij
i) ·hsi}αHG(τ)ri , gri , gsi , gα·si),

where ri, si
U←− Zp.

15

2. Calculate C ← Cover(L,R). Each c ∈ C is parsed as c[1] ‖ · · · ‖ c[hc]
with length hc ∈ [1, λ]. For each c ∈ C, generate a signature of our AOS
scheme on (τ, c[1], · · · , c[hc]) as θc := (Ac, Bc,1, · · · , Bhc+1) := (Hβ ·
(U1

∏N
i=1 V

τ [i]
i)t1 ·

∏hc
i=1(Ui+1 · V c[i]1)ti+1 , gt1 , · · · , gthc+1), where t1, · · · ,

thc+1
U←− Zp.

Output sk := (τ, {σi}n+2
i=1 , {θc}c∈C).

Sig(sk,M,y): Parse sk as above. Let d := 〈x,y〉 (mod p). Assume that d ∈
[L,R]. Conduct the following four steps.
1. Derive an LHS signature on v′ := (d, y1, · · · , yn,M, 1). Let βn+1 := M ,

βn+2 := 1 and βi := yi for each i ∈ [1, n]. Choose r′
U←− Zp. Compute

σ′ := (σ′1, σ
′
2, σ
′
3, σ
′
4) := (

∏n+2
i=1 σ

βi
i,1 · HG(τ)r

′
,
∏n+2
i=1 σ

βi
i,2 · gr

′
,
∏n+2
i=1 σ

βi
i,3,∏n+2

i=1 σ
βi
i,4).

2. d ∈ [L,R] implies that there exists c ∈ C s.t. c is either identical to or
an ancestor of [d]2. Parse c as (c[1], · · · , c[hc]). Parse θc as (A,B1, · · · ,
Bhc+1). Compute θ′ := (A′, B′1, · · · , B′λ+1) := (A·(U1

∏N
i=1 Vi)

t′1
∏λ
i=1(Ui+1·

V
d[i]
1)t

′
i+1 , B1 · gt

′
1 , · · · , Bhc+1 · gt

′
hc+1 , gt

′
hc+2 , · · · , gt

′
λ+1), where t′1, · · · ,

t′λ+1
U←− Zp.

3. Generate GS commitments for all of the following group elements.

(a) gτ [i], g1−τ [i] and V
τ [i]
i (for all i ∈ [1, N])

(b) HG(τ)

(c) g
d[i]
1 , g

1−d[i]
1 and V

d[i]
1 (for all i ∈ [1, λ])

(d) gd1
(e) σ′1, σ

′
3 and σ′4

(f) A′

They are denoted by
#»

Cτ [i],
#»

C1−τ [i],
#»

C ′τ [i],
#»

CHG(τ),
#»

Cd[i],
#»

C1−d[i],
#»

C ′d[i],
#»

Cd,
#»

Cσ1
,

#»

Cσ3
,

#»

Cσ4
and

#»

CA. A commitment
#»

C to an element X ∈ G is

computed as ιG(X) · #»

f rX1 ·
#»

f sX2 ·
#»

f tX3 , where rX , sX , tX
U←− Zp.

4. Generate GS proofs for all of the following PPEs.
[a] e(gτ [i], g1−τ [i]) = 1GT , e(gτ [i], g) · e(g1−τ [i], g) = e(g, g) and

e(gτ [i], Vi) = e(g, V
τ [i]
i) (for all i ∈ [1, N])

[b] e(HG(τ), g) = e(u′, g)
∏N
i=1 e(ui, g

τ [i])

[c] e(g
d[i]
1 , g

1−d[i]
1) = 1GT , e(g

d[i]
1 , g1) · e(g1−d[i]

1 , g1) = e(g1, g1) and

e(gd[i], V1) = e(g, V
d[i]
1) (for all i ∈ [1, λ])

[d] e(gd1 , g) =
∏λ
i=1 e(g

d[i]
1 , g2i−1

)
[e] e(σ′1, g) = e(gd1 , g

α)·e(
∏n
i=1 g

yi
i+1·gMn+2·g1

n+3, g
α)·e(h, σ′4)·e(HG(τ), σ′2)

[f] e(σ′3, g
α) = e(g, σ′4)

[g] e(A′, g) = e(gβ , H) · e(U1, B
′
1)
∏λ
i=1 e(Ui+1, B

′
i+1)

∏N
i=1 e(V

τ [i]
i , B′1)∏λ

i=1 e(V
d[i]
1 , B′i+1)

All PPEs surrounded by a grey rectangle are quadratic. The others are
linear. The generated proofs are denoted by #»π τ [i],mul ,

#»π τ [i],sum, #»π τ [i],
#»πHG(τ),

#»π d[i],mul ,
#»π d[i],sum, #»π d[i],

#»π d,
#»π σ1

, #»π σ3
and #»πA. A GS proof #»π

for a linear (resp. quadratic) PPE consists of 3 (resp. 9) group elements.

16

Output a signature σ which is set to
{ #»

Cτ [i],
#»

C1−τ [i],
#»

C ′τ [i],
#»π τ [i],mul,

#»π τ [i],sum,
#»π τ [i]}Ni=1,

{ #»

Cd[i],
#»

C1−d[i],
#»

C ′d[i],
#»π d[i],mul,

#»π d[i],sum,
#»π d[i]}λi=1,

#»

CHG(τ),
#»πHG(τ),

#»

Cd,
#»π d,

#»

Cσ1
, σ′2,

#»

Cσ3
,

#»

Cσ4
, #»π σ1

, #»π σ3
,

#»

CA, {B′i}λ+1
i=1 ,

#»πA

 .

(1)
Ver(σ,M,y): Each GS proof #»π ∈ G3 (resp. #»π ∈ G9) is parsed as (π1, π2, π3)

(resp. (#»π 1,
#»π 2,

#»π 3) with #»π i ∈ G3). Output 1 iff all of the 11 equations hold.
1. F (

#»

Cτ [i],
#»

C1−τ [i]) =
∏3
k=1 F (#»π τ [i],mul,k,

#»

f k) (for all i ∈ [1, N])

2. E(g,
#»

Cτ [i]) · E(g,
#»

C1−τ [i]) = ιGT (e(g, g))
∏3
k=1E(πτ [i],sum,k,

#»

f k)
(for all i ∈ [1, N])

3. E(g,
#»

CHG(τ)) = ιGT (e(u′, g))
∏N
i=1E(ui,

#»

Cτ [i])
∏3
k=1E(πτ [i],k,

#»

f k)

4. E(Vi,
#»

Cτ [i]) = E(g,
#»

C ′τ [i])
∏3
k=1E(πτ [i],k,

#»

f k) (for all i ∈ [1, N])

5. F (
#»

Cd[i],
#»

C1−d[i]) =
∏3
k=1 F (#»π d[i],mul,k,

#»

f k) (for all i ∈ [1, λ])

6. E(g,
#»

Cd[i]) · E(g,
#»

C1−d[i]) = ιGT (e(g, g))
∏3
k=1E(πd[i],sum,k,

#»

f k)
(for all i ∈ [1, λ])

7. E(g,
#»

Cd) =
∏λ
i=1E(g2i−1

,
#»

Cd[i])
∏3
k=1E(πd,k,

#»

f k)

8. E(V1,
#»

Cd[i]) = E(g,
#»

C ′d[i])
∏3
k=1E(πd[i],k,

#»

f k) (for all i ∈ [1, λ])

9. E(g,
#»

Cσ1) = E(gα,
#»

Cd) · ιGT (e(
∏n
i=1 g

yi
1+i · gMn+2 · gn+3, g

α)) · E(h,
#»

Cσ4) ·
E(σ′2,

#»

CHG(τ))
∏3
k=1E(πσ1,k,

#»

f k)

10. E(gα,
#»

Cσ3
) = E(g,

#»

Cσ4
)
∏3
k=1E(πσ3,k,

#»

f k)

11. E(g,
#»

CA) = ιGT (e(gβ , H)·e(U1, B
′
1)
∏λ
i=1 e(Ui+1, B

′
i+1))

∏N
i=1E(B′1,

#»

C ′τ [i])∏λ
i=1E(B′i+1,

#»

C ′d[i])
∏3
k=1E(πA,k,

#»

f k)

Corollary 1. Our 1st KARIP scheme is UNF if the DLIN, CDH and FlexCDH
assumptions hold in the group G. The scheme is PRV unconditionally.

Efficiency Analysis. Every signature is expressed as (1). It consists of (27N +
27λ + 40) elements in G. Thus, |σ| = (27N + 27λ + 40)|g| [bit]. Each secret-
key consists of (τ, {σi}n+2

i=1 , {θc}c∈C). τ and {σi}n+2
i=1 are of N [bit] and 4(n +

2)|g| [bit], respectively. Size of {θc}c∈C is calculated as |{θc}c∈C | = |{(Ac, Bc,1,
· · · , Bc,hc+1)}c∈C | =

∑
c∈C(2 +hc)|g| = (2|C|+

∑
c∈C hc)|g| ≤ (λ2 + 5λ− 10)|g|

[bit]. The last upper bound is because of the fact that both |C| (= the cardinality
of the set C) and

∑
c∈C hc are maximized when [L,R] = [1, p − 2] and their

maximal values are 2λ−2 and λ2 +λ−2, respectively4. Thus, |sk| = N +O(n+
λ2)|g| [bit]. As explained in Subsect. 4.1, the KARIP scheme is key-delegatable.
The analysis result is added as the first entry in Table 4.3.

5 Our 2nd Construction of KARIP

5.1 Construction

Our generic KARIP construction is built by an LHS scheme {L.KGen, L.Sig,
L.Derive, L.Ver} and an NIWI proof system {N.Setup,N.Pro,N.Ver}.
4 The latter value is obtained by 2× (2 + 3 + · · ·+ λ) = λ2 + λ− 2.

17

Table 1. Comparison of our KARIP schemes w.r.t. efficiency and key-delegatability.

Schemes |sk| [bit] |σ| [bit] KD

Ours 1 N +O(n+ λ2)|g| (27N + 27λ+ 40)|g| X
2 N + 4(n+ 2)|g| (18N + 132λ+ 39)|g| -

3 N + 8|g| (9n+ 18N + 132λ+ 42)|g| -

Setup(1λ, L): crs← N.Setup(1λ) and (pkL, skL)← L.KGen(1λ, n+ 5) with tags
whose bit length is N ∈ poly(λ). Output pp := (crs, pkL) and mk := skL.

KGen(mk,x, L,R): Choose a tag τ
U←− {0, 1}N . For each i ∈ [1, n], let vi := (xi,

0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

, 0, 0, 0, 0︸ ︷︷ ︸
4

) ∈ Zn+5
p . Let vn+1 := (0, · · · , 0, L,R, 0, 1) ∈

Zn+5
p and vn+2 := (0, · · · , 0, 0, 0, 1, 0) ∈ Zn+5

p . For each vi, generate an LHS

signature with tag τ by σi ← L.Sig(skL, τ,vi). Output sk := (τ, {σi}n+2
i=1).

Sig(sk,M,y): Parse sk as above. Let d := 〈x,y〉 (mod p). Assume that d ∈
[L,R]. Conduct the following two steps.
1. Generate an LHS signature on v′ := (d, y1, · · · , yn, L,R,M, 1) by σ′ ←

L.Derive(pkL, τ, {vi, σi, βi}n+2
i=1), where βn+1 := 1, βn+2 := M and βi :=

yi for each i ∈ [1, n].
2. Define the NIWI relation RN as follows.

– A statement x = (ŷ, M̂) consists of a vector ŷ = (ŷ1, · · · , ŷn) ∈ Znp
and a message M̂ ∈ Zp. A witness w = (L̂, R̂, d̂, τ̂ , σ̂) consists of

integers L̂, R̂ ∈ Zp, an inner product value d̂ ∈ Zp, an LHS tag
τ̂ ∈ {0, 1}L and an LHS signature σ̂. RN takes a statement x and
witness w then outputs 1 if both of the two conditions are satisfied.
1. 1← L.Ver(pkL, τ̂ , v̂, σ̂), where v̂ := (d̂, ŷ1, · · · , ŷn, L̂, R̂, M̂ , 1).

2. d̂ ∈ [L̂, R̂] (mod p).

If we set x := (y,M) and w := (L,R, d, τ, σ), it obviously holds that
1← RN(x,w). Output σ ← N.Pro(crs, x, w).

Ver(σ,M,y): Set x := (y,M) and output 1/0← N.Ver(crs, x, σ).

Because of the page restriction, we omit the proof of the following theorem. It
is given in Subsect. B.1 and basically the same as the proofs of the security
theorems of our 1st KARIP construction.

Theorem 5. The construction is UNF if the LHS scheme is wUNF, and the NIWI
system is WI and WE. It is PRV if the NIWI system is WI.

5.2 Instantiation

We use the simplified ALP LHS scheme [9,10] and the GS NIWI proof [8].

Setup(1λ, L): Choose bilinear groups (G,GT) whose order is a prime p. Conduct
the following two steps.

18

1. Generate a key-pair of the simplified ALP LHS scheme [4]. Choose α
U←−

Zp. Choose g, h, g1, · · · , gn+5
U←− G. Choose u′, u1, · · · , uN

U←− G for N ∈
N. HG : {0, 1}N → Zp is a function which takes τ = τ [1] ‖ · · · ‖ τ [N] ∈
{0, 1}N and outputs u′

∏N
i=1 u

τ [i]
i ∈ G.

2. Generate a GS CRS f = (
#»

f 1,
#»

f 2,
#»

f 3).

Output (pp,mk) := ((G,GT , e, g, gα, h, {gi}n+5
i=1 , u

′, {ui}Ni=1,f), α).

KGen(mk,x, L,R): Choose an LHS tag τ
U←− {0, 1}N . For each i ∈ [1, n], let

vi := (xi, 0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

, 0, 0, 0, 0︸ ︷︷ ︸
4

) ∈ Zn+5
p . Let vn+1 := (0, · · · , 0, L,R,

0, 1) ∈ Zn+5
p and vn+2 := (0, · · · , 0, 0, 0, 1, 0) ∈ Zn+5

p . For i ∈ [1, n + 2],
generate a signature of the ALP LHS scheme on vi as σi := (σi,1, σi,2,

σi,3, σi,4) := ({(
∏n+5
j=1 g

vij
i) · hsi}αHG(τ)ri , gri , gsi , gα·si), where ri, si

U←− Zp.
Output sk := (τ, {σi}n+2

i=1).

Sig(sk,M,y): Parse sk as above. Let d := 〈x,y〉 (mod p). Assume that d ∈
[L,R]. Firstly, conduct the following three steps.

1. Derive an LHS signature on v′ := (d, y1, · · · , yn, L,R,M, 1). Let βn+1 :=

1, βn+2 := M and βi := yi for any i ∈ [1, n]. Compute σ′ := (
∏n+2
i=1 σ

βi
i,1 ·

HG(τ)r
′
,
∏n+2
i=1 σ

βi
i,2 · gr

′
,
∏n+2
i=1 σ

βi
i,3,
∏n+2
i=1 σ

βi
i,4), where r′

U←− Zp.
2. Generate GS commitments for all of the following group elements.

(a) gτ [i] and g1−τ [i] (for all i ∈ [1, N])
(b) HG(τ)

(c) g
d[i]
1 , g

1−d[i]
1 , g

L[i]
n+2, g

1−L[i]
n+2 , g

R[i]
n+3 and g

1−R[i]
n+3 (for all i ∈ [1, λ])

(d) gd1 , gLn+2 and gRn+3

(e) σ′1, σ
′
3 and σ′4

They are denoted by
#»

Cτ [i],
#»

C1−τ [i],
#»

CHG(τ),
#»

Cd[i],
#»

C1−d[i],
#»

CL[i],
#»

C1−L[i],
#»

CR[i],
#»

C1−R[i],
#»

Cd,
#»

CL,
#»

CR,
#»

Cσ1
,

#»

Cσ3
and

#»

Cσ4
.

3. Generate GS proofs for all of the following PPEs.

[a] e(gτ [i], g1−τ [i]) = 1GT and e(gτ [i], g) · e(g1−τ [i], g) = e(g, g)
(for all i ∈ [1, N])

[b] e(HG(τ), g) = e(u′, g)
∏N
i=1 e(ui, g

τ [i])

[c] e(g
d[i]
1 , g

1−d[i]
1) = 1GT , e(g

d[i]
1 , g1) · e(g1−d[i]

1 , g1) = e(g1, g1),

e(g
L[i]
n+2, g

1−L[i]
n+2) = 1GT , e(g

L[i]
n+2, g) · e(g1−L[i]

n+2 , g) = e(gn+2, g),

e(g
R[i]
n+3, g

1−R[i]
n+3) = 1GT and e(g

R[i]
n+3, g) · e(g1−R[i]

n+3 , g) = e(gn+3, g)
(for all i ∈ [1, λ])

[d] e(gd1 , g) =
∏λ
i=1 e(g

d[i]
1 , g2i−1

), e(gLn+2, g) =
∏λ
i=1 e(g

L[i]
n+2, g

2i−1

) and

e(gRn+3, g) =
∏λ
i=1 e(g

R[i]
n+3, g

2i−1

)
[e] e(σ′1, g) = e(gd1 , g

α) · e(
∏n
i=1 g

yi
i+1 · gMn+4 · g1

n+5, g
α) · e(gLn+2, g

α)

· e(gRn+3, g
α) · e(h, σ′4) · e(HG(τ), σ′2)

[f] e(σ′3, g
α) = e(g, σ′4)

They are denoted by #»π τ [i],mul ,
#»π τ [i],sum, #»πHG(τ),

#»π d[i],mul ,
#»π d[i],sum,

#»πL[i],mul ,
#»πL[i],sum, #»πR[i],mul ,

#»πR[i],sum, #»π d,
#»πL, #»πR, #»π σ1

and #»π σ3
.

19

What remains is proving d ∈ [L,R] (mod p).
Firstly, we prove d ≥ L. If d ≥ L, there is only one index i ∈ [1, λ+ 1] s.t.

d[i] = 1
∧
L[i] = 0

i−1∧
j=1

d[i] = L[i]. (2)

For each i ∈ [1, λ+1], a Boolean variable Ai ∈ {0, 1} is defined to be 1 (resp.
0) if the condition (2) holds (resp. otherwise). It is obviously true that Ai is
1 iff d ≥ L. Additionally, for each i ∈ [1, λ], define three Boolean variables

Bi, Ci, Di ∈ {0, 1}. Bi is 1 iff
∧i
j=1 d[j] = L[j]. Ci is 1 iff d[i] = 1

∧
L[i] = 0.

Di is 1 iff d[i] = L[i].
Conduct the following two steps.
1. Generate GS commitments for all of the following group elements.

(f) gBi1 , gCi1 and gDi1 (for all i ∈ [1, λ])

They are denoted by
#»

CBi ,
#»

CCi and
#»

CDi .
2. Generate GS proofs for all of the following PPEs.

[g] e(gCi1 , gn+2) = e(g
d[i]
1 , g

1−L[i]
n+2) (for all i ∈ [1, λ])

[h] e(gDi1 , gn+2) = e(g
d[i]
1 , g

L[i]
n+2) · e(g1−d[i]

1 , g
1−L[i]
n+2) (for all i ∈ [1, λ])

[i] e(gB1
1 , g1) = e(g1, g

D1
1)

[j] e(gBi1 , g1) = e(g
Bi−1

1 , gDi1) (for all i ∈ [2, λ])

[k] e(g1, g
C1
1)

∏λ
i=1 e(g

Bi−1

1 , gCi1) · e(gBλ1 , g1) = e(g1, g1)

For the equation [e], the term e(g1, g
C1
1) (resp. e(g

Bi−1

1 , gCi1), e(gBλ1 , g1)) is
equivalent to e(g1, g1)A1 (resp. e(g1, g1)Ai , e(g1, g1)Aλ+1). Thus, the left

side of the equation [e] is equivalent to e(g1, g1)
∑λ+1
i=1 Ai . The generated

proofs are denoted by #»πCi ,
#»πDi ,

#»πB1 , #»πBi and #»πA , respectively.
Next, we prove d ≤ R. If d ≤ R, there is only one index i ∈ [1, λ+ 1] s.t.

d[i] = 0
∧
R[i] = 1

i−1∧
j=1

d[i] = R[i]. (3)

For each i ∈ [1, λ+1], a Boolean variable A′i ∈ {0, 1} is defined to be 1 (resp.
0) if the condition (3) holds (resp. otherwise). It is obviously true that A′i is
1 iff d ≤ R. Additionally, for each i ∈ [1, λ], define three Boolean variables

Ei, Fi, Gi ∈ {0, 1}. Ei is 1 iff
∧i
j=1 d[j] = R[j]. Fi is 1 iff d[i] = 1

∧
R[i] = 0.

Gi is 1 iff d[i] = R[i].
Conduct the following two steps.
1. Generate GS commitments for all of the following group elements.

(g) gEi1 , gFi1 and gGi1 (for all i ∈ [1, λ])

They are denoted by
#»

CEi ,
#»

CFi and
#»

CGi .
2. Generate GS proofs for all of the following PPEs.

[l] e(gFi1 , gn+3) = e(g
1−d[i]
1 , g

R[i]
n+3) (for all i ∈ [1, λ])

[m] e(gGi1 , gn+3) = e(g
d[i]
1 , g

R[i]
n+3) · e(g1−d[i]

1 , g
1−R[i]
n+3) (for all i ∈ [1, λ])

[n] e(gE1
1 , g1) = e(g1, g

G1
1)

20

[o] e(gEi1 , g1) = e(g
Ei−1

1 , gGi1) (for all i ∈ [2, λ])

[p] e(g1, g
F1
1)
∏λ
i=1 e(g

Ei−1

1 , gFi1) · e(gEλ1 , g1) = e(g1, g1)
They are denoted by #»πFi ,

#»πGi ,
#»πE1

, #»πEi and #»πA′ .
Output a signature σ which is set to

{ #»

Cτ [i],
#»

C1−τ [i],
#»π τ [i],mul,

#»π τ [i],sum}Ni=1,

{{ #»

Cx[i],
#»

C1−x[i],
#»π x[i],mul,

#»π x[i],sum}λi=1,
#»

Cx,
#»π x}x∈{d,L,R},

#»

CHG(τ),
#»πHG(τ),

#»

Cσ1
, σ′2,

#»

Cσ3
,

#»

Cσ4
, #»π σ1

, #»π σ3
, #»πA,

#»πA′ ,

{ #»

CBi ,
#»

CCi ,
#»

CDi ,
#»πBi ,

#»πCi ,
#»πDi ,

#»

CEi ,
#»

CFi ,
#»

CGi ,
#»πEi ,

#»πFi ,
#»πGi}λi=1

 .

(4)
Ver(σ,M,y): Each GS proof #»π ∈ G3 (resp. #»π ∈ G9), composed of 3 (resp. 9)

elements in G, is parsed as (π1, π2, π3) (resp. (#»π 1,
#»π 2,

#»π 3) with #»π i ∈ G3).
Output 1 iff all of the following equations hold.
1. F (

#»

Cτ [i],
#»

C1−τ [i]) =
∏3
k=1 F (#»π τ [i],mul,k,

#»

f k) (for all i ∈ [1, N])

2. E(g,
#»

Cτ [i]) · E(g,
#»

C1−τ [i]) = ιGT (e(g, g))
∏3
k=1E(πτ [i],sum,k,

#»

f k)
(for all i ∈ [1, N])

3. E(g,
#»

CHG(τ)) = ιGT (e(u′, g))
∏N
i=1E(ui,

#»

Cτ [i])
∏3
k=1E(πτ [i],k,

#»

f k)

4. F (
#»

Cd[i],
#»

C1−d[i]) =
∏3
k=1 F (#»π d[i],mul,k,

#»

f k) (for all i ∈ [1, λ])

5. E(g,
#»

Cd[i]) · E(g,
#»

C1−d[i]) = ιGT (e(g, g))
∏3
k=1E(πd[i],sum,k,

#»

f k)
(for all i ∈ [1, λ])

6. E(g,
#»

Cd) =
∏λ
i=1E(g2i−1

,
#»

Cd[i])
∏3
k=1E(πd,k,

#»

f k)

7. E(g,
#»

Cσ1
) = E(gα,

#»

Cd) · ιGT (e(
∏n
i=1 g

yi
1+i · gMn+4 · gn+5, g

α)) · E(gα,
#»

CL) ·
E(gα,

#»

CR) · E(h,
#»

Cσ4) · E(σ′2,
#»

CHG(τ))
∏3
k=1E(πσ1,k,

#»

f k)

8. E(gα,
#»

Cσ3
) = E(g,

#»

Cσ4
)
∏3
k=1E(πσ3,k,

#»

f k)

9. F (
#»

CL[i],
#»

C1−L[i]) =
∏3
k=1 F (#»πL[i],mul,k,

#»

f k) (for all i ∈ [1, λ])

10. E(gn+2,
#»

CL[i])·E(gn+2,
#»

C1−L[i]) = ιGT (e(gn+2, g))
∏3
k=1E(πL[i],sum,k,

#»

f k)
(for all i ∈ [1, λ])

11. E(g,
#»

CL) =
∏λ
i=1E(g2i−1

,
#»

CL[i])
∏3
k=1E(πL,k,

#»

f k)

12. F (
#»

CR[i],
#»

C1−R[i]) =
∏3
k=1 F (#»πR[i],mul,k,

#»

f k) (for all i ∈ [1, λ])

13. E(gn+3,
#»

CR[i])·E(gn+3,
#»

C1−R[i]) = ιGT (e(gn+3, g))
∏3
k=1E(πR[i],sum,k,

#»

f k)
(for all i ∈ [1, λ])

14. E(g,
#»

CR) =
∏λ
i=1E(g2i−1

,
#»

CR[i])
∏3
k=1E(πR,k,

#»

f k)

15. F (ιG(gn+2),
#»

CCi) = F (
#»

Cd[i],
#»

C1−L[i])
∏3
k=1 F (#»πCi,k,

#»

f k)
(for all i ∈ [1, λ])

16. F (ιG(gn+2),
#»

CDi) = F (
#»

Cd[i],
#»

CL[i])·F (
#»

C1−d[i],
#»

C1−L[i])
∏3
k=1 F (#»πDi,k,

#»

f k)
(for all i ∈ [1, λ])

17. E(g1,
#»

CB1
) = E(g1,

#»

CD1
)
∏3
k=1E(πB1,k,

#»

f k)

18. F (ιG(g1),
#»

CBi) = F (
#»

CBi−1
,

#»

CDi)
∏3
k=1 F (#»πBi,k,

#»

f k) (for all i ∈ [2, λ])

19. F (ιG(g1),
#»

CC1)
∏λ
i=1 ·F (

#»

CBi−1 ,
#»

CCi) · F (ιG(g1),
#»

CBλ) = ΓGT (e(g1, g1))∏3
k=1 F (#»πA,k,

#»

f k)

20. F (ιG(gn+3),
#»

CFi) = F (
#»

C1−d[i],
#»

CR[i])
∏3
k=1 F (#»πFi,k,

#»

f k)
(for all i ∈ [1, λ])

21

21. F (ιG(gn+3),
#»

CGi) = F (
#»

Cd[i],
#»

CR[i])·F (
#»

C1−d[i],
#»

C1−R[i])
∏3
k=1 F (#»πGi,k,

#»

f k)
(for all i ∈ [1, λ])

22. E(g1,
#»

CE1
) = E(g1,

#»

CG1
)
∏3
k=1E(πE1,k,

#»

f k)

23. F (ιG(g1),
#»

CEi) = F (
#»

CEi−1
,

#»

CGi)
∏3
k=1 F (#»πEi,k,

#»

f k) (for all i ∈ [2, λ])

24. F (ιG(g1),
#»

CF1)
∏λ
i=1 ·F (

#»

CEi−1
,

#»

CFi) · F (ιG(g1),
#»

CEλ) = ΓGT (e(g1, g1))∏3
k=1 F (#»πA′,k,

#»

f k)

Corollary 2. Our 2nd KARIP scheme is UNF if the DLIN, CDH and FlexCDH
assumptions hold in the group G. The scheme is PRV unconditionally.

Efficiency Analysis. Every secret-key sk consists of a tag τ ∈ {0, 1}N and 4(n+2)
group elements, i.e., |sk| = N + 4(n+ 2)|g| [bit]. Every signature σ is expressed
as (4). Its size is calculated by summing up all of the elements’ size, i.e., |σ| =
(18N + 126λ+ 58)|g| [bit]. Refer to Table 4.3.

6 Our 3rd Construction of KARIP

6.1 Construction

Hash Function. A hash function consists of the following two algorithms. Key-
generation KGen is a probabilistic polynomial-time algorithm which takes a se-
curity parameter 1λ with λ ∈ N, then outputs a hash key hk. Evaluation Eval

takes the hash key hk and a message M , then outputs a hash value h ∈ {0, 1}l
with l ∈ poly(λ). Its security is collision-resistance. A hash function is collision-
resistant if for any λ ∈ N and any PPT algorithm A, the probability that
A receives a hash key hk ← KGen(1λ), then finds two messages M,M ′ s.t.
M 6= M ′ ∧ Eval(hk,M) = Eval(hk,M ′) is negligible.

Construction. Our generic KARIP construction is built by an LHS scheme
{L.KGen, L.Sig, L.Derive, L.Ver}, an NIWI proof system {N.Setup,N.Pro,N.Ver}
and a collision-resistant hash function {H.KGen,H.Eval}.

Setup(1λ, L): Generate crs ← N.Setup(1λ), (pkL, skL) ← L.KGen(1λ, n + 4)
whose bit length of each tag is N ∈ poly(λ) and hk ← H.KGen(1λ). Output
pp := (crs, pkL, hk) and mk := skL.

KGen(mk,x, L,R): Choose a tag τ
U←− {0, 1}N . Let v1 := (x1, x2, · · · , xn, L,R,

0, 1) ∈ Zn+4
p and v2 := (0, · · · , 0, 1, 0) ∈ Zn+4

p . For each i ∈ {1, 2}, generate
an LHS signature with tag τ by σi ← L.Sig(skL, τ,vi). Output sk := (τ,
{σi}2i=1).

Sig(sk,M,y): Parse sk as above. Let d := 〈x,y〉 (mod p). Assume that d ∈
[L,R]. Conduct the following three steps.
1. Let h ← H.Eval(hk, (y,M)). Generate an LHS signature on v′ := (x1,
· · · , xn, L,R, h, 1) by σ′ ← L.Derive(pkL, τ, {vi, σi, βi}n+2

i=1), where β1 :=
1 and β2 := h.

2. Define the NIWI relation RN as follows.

22

– A statement x = (ŷ, M̂) consists of a signature-vector ŷ = (ŷ1, · · · ,
ŷn) ∈ Znp and a message M ∈ Zp. A witness w = (x̂, L̂, R̂, d̂, τ̂ , σ̂)

consists of a key-vector x̂ ∈ Znp , integer L̂, R̂ ∈ Zp, an inner product

value d̂ ∈ Zp, an LHS tag τ̂ ∈ {0, 1}L, and an LHS signature σ̂. RN

takes a statement x and witness w then outputs 1 if all the following
three conditions are satisfied.
1. 1 ← L.Ver(pkL, τ̂ , v̂, σ̂), where v̂ := (x̂1, · · · , x̂n, L̂, R̂, ĥ, 1) and

ĥ = H.Eval(hk, (ŷ, M̂)).

2. d̂ = 〈x̂, ŷ〉 (mod p).

3. d̂ ∈ [L̂, R̂].

If we set x := (y,M) and w := (x, L,R, d, τ, σ), it obviously holds that
1← RN(x,w). Output σ ← N.Pro(crs, x, w).

Ver(σ,M,y): Set x := (y,M) and output 1/0← N.Ver(crs, x, σ).

Proof of the following theorem is given in Subsect. B.2.

Theorem 6. Our 3rd KARIP scheme is UNF if the LHS scheme is wUNF, and
the NIWI system is WI and WE, and the hash function is CR. The scheme is PRV

if the NIWI system is WI.

6.2 Instantiation

As our 1st and 2nd instantiations, we use the simplified ALP LHS scheme [9,10]
and the GS NIWI proof [8]. We describe the full construction in Subsect. C.2 due
to the page restriction. In key-generation, for the two vectors v1,v2, we generate
a signature σi of the simplified ALP LHS. Every secret-key sk consists of a tag τ
and only 8 group elements, i.e., |sk| = N +8|g| [bit]. Signing algorithm is almost
the same as the one of our 2nd instantiation in Subsect. 5.2. Since the vector
v′ of the LHS signature σ′ has a form of v′ = (x1, · · · , xn, L,R, h, 1), the signer

needs to additionally generate (1) GS commitments
#»

Cxi ,
#»

Cxi ∈ G3 to gxi ∈ G
and gxii ∈ G for each i ∈ [1, n] and (2) GS proofs #»π xi ,

#»π d,ip for the PPEs e(gxii ,
g) = e(gi, g

xi) and e(gd, g) =
∏n
i=1 e(g

xi , gyi). Signature size is derived by simply
adding bit length of newly generated GS commitments and proofs to signature
size of our 2nd instantiated scheme, i.e., |σ| = (6n+ 18N + 126λ+ 65)|g| [bit].

The 3rd instantiated scheme is the only one whose secret-key size is indepen-
dent of n, and simultaneously the only one whose signature size is dependent on
n. In comparison between the 1st and 2nd ones, the former has a disadvantage
that its secret-key increases linearly with λ2, but has an advantage that signa-
ture size is approximately one fifth of the size of the latter (if we ignore their
constants and N -terms). Remind that only the 1st one is key-delegatable.

7 Applications of KARIP

[9,10] showed that an ARIP scheme is transformed into any of the following 7
ABS primitives, (1) ABS for range evaluation (RE) of polynomials (AREP), (2)

23

ABS for RE of weighted averages (AREWA), (3) fuzzy identity-based signatures
(FIBS), (4) time-specific signatures (TSS) [15,11], (5) ABS for RE of Hamming
distance (AREHD), (6) ABS for RE of Euclidean distance (AREED) and (7)
ABS for hyperellipsoid predicates (AHEP). Their definitions are in Subsect. A.3.
The same transformations work for KARIP. A KARIP scheme is transformed
into any of key-range versions of the 7 ABS primitives. We emphasize that key-
delegatability is inherited. If we use a key-delegatable KARIP scheme such as
our 1st instantiated scheme, we obtain a key-delegatable key-range ABS scheme.

References

1. M. Abdalla, J. Birkett, D. Catalano, A.W Dent, J. Malone-Lee, G. Neven, J.C.N.
Schuldt, and N.P. Smart. Wildcarded identity-based encryption. Journal of Cryp-
tology, 24(1):42–82, 2011.

2. J.H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Waters.
Computing on authenticated data. In TCC 2012, pp. 1–20. Springer, 2012.

3. N. Attrapadung, B. Libert, and T. Peters. Computing on authenticated data:
New privacy definitions and constructions. In ASIACRYPT 2012, pp. 367–385.
Springer, 2012.

4. N. Attrapadung, B. Libert, and T. Peters. Efficient completely context-hiding
quotable and linearly homomorphic signatures. In PKC 2013, pp. 386–404.
Springer, 2013.

5. D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature
schemes for network coding. In PKC 2009, pp. 68–87. Springer, 2009.

6. D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC 2007, pp. 535–554. Springer, 2007.

7. S. Chatterjee and P. Sarkar. Practical hybrid (hierarchical) identity-based encryp-
tion schemes based on the decisional bilinear diffie-hellman assumption. Interna-
tional Journal of Applied Cryptography (IJACT), 3(1):47–83, 2013.

8. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT 2008, pp. 415–432. Springer, 2008.

9. M. Ishizaka and K. Fukushima. Attribute-based signatures for range of inner
product and its applications. In ICISC 2022, pp. 382–407. Springer, 2022.

10. M. Ishizaka and K. Fukushima. Attribute-based signatures for range of inner
product and its applications. Cryptology ePrint Archive: Report 2022/8131, 2022.

11. M. Ishizaka and S. Kiyomoto. Time-specific signatures. Cryptology ePrint Archive:
Report 2020/658, 2020.

12. M. Ishizaka and S. Kiyomoto. Time-specific signatures. In ISC 2020, pp. 20–38.
Springer, 2020.

13. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In EUROCRYPT 2008, pp. 146–162.
Springer, 2008.

14. E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan. Append-only signatures. In
ICALP 2005, pp. 434–445. Springer, 2005.

15. K. G. Paterson and E. A. Quaglia. Time-specific encryption. In SCN 2010, pp.
1–16. Springer, 2010.

16. A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005,
pp. 457–473. Springer, 2005.

17. Y. Sakai, N. Attrapadung, and G. Hanaoka. Attribute-based signatures for circuits
from bilinear map. In PKC 2016, pp. 283–300. Springer, 2016.

24

A Omitted Definitions

A.1 Unforgeability and Strong/Complete Context-Hiding of LHS

Unforgeability. For unforgeablity (UNF) of LHS, we consider the following exper-
iment, where a PPT algorithm A receives adaptively accesses three type oracles,
namely signing Sign, derivation Derive and revelation Reveal, then outputs a
forged signature σ∗. H denotes the space of handles used for the queue Q whose
initial content is ∅ (empty).
ExptUNFΣLHS,A

(1λ, n):

1. (pk, sk)← Setup(1λ, n). (τ∗ ∈ {0, 1}∗,v∗ ∈ Znp , σ
∗)← ASign,Derive,Reveal(pk).

- -
- Sign(τ ∈ {0, 1}∗,v ∈ Znp):

Choose an unused handle h
U←− H. σ ← Sig(sk, τ, v). Q := Q ∪ {(h, τ,v, σ)}. Rtrn h.

- Derive(τ ∈ {0, 1}∗, {hi ∈ H,vi ∈ Znp , βi ∈ Zp}li=1):

Rtrn ⊥ if ∃i ∈ [1, l] s.t. [6 ∃(vi, σi) s.t. (hi, τ, vi, σi) /∈ Q].

Choose an unused handle h
U←− H. σ ← Derive(pk, τ, {vi, σi, βi}li=1).

Q := Q ∪ {(h, τ,
∑l
i=1 βi · vi, σ)}. Rtrn h.

- Reveal(h ∈ H, τ ∈ {0, 1}∗,v ∈ Znp):

Rtrn ⊥ if 6 ∃σ s.t. (h, τ, v, σ) ∈ Q. Q′ := Q′ ∪ {(τ,v)}. Rtrn σ.
- -

2. Rtrn 1 if (1) 1← Ver(pk, τ∗,v∗, σ∗) and (2) one of the two conditions is satisfied.
(a) τ∗ 6= τi for any entry (τi, ·) ∈ Q′ and v∗ 6= 0.
(b) τ∗ = τi for k > 0 entries (τi,vi) in Q′ and v∗ /∈ span{v1, · · · ,vk}.

Definition 10. An LHS scheme ΣLHS is UNF if for every λ ∈ N, every n ∈
poly(λ) and every PPT A, AdvUNFΣLHS,A(λ) := Pr[1 ← ExptUNFΣLHS,A(1λ, n)] is
negligible.

SCH and CCH. Both of them are security notions guaranteeing that no signature
generated by the deriving algorithm Derive based on some original signatures
can be linked to the original ones. In the former, the original signatures have
been honestly generated by the signing algorithm Sig. In the latter, the only
condition that the original signatures must satisfy is that they are correct ones,
which means that they might have been dishonestly generated. Obviously, the
latter notion is truly stronger than the former.

Definition 11. An LHS scheme is SCH if for every λ ∈ N, every n ∈ poly(λ),
every (pk, sk) ← KGen(1λ, n), every tag τ ∈ {0, 1}∗, every integer l ∈ [1, n], all
l linearly-independent vectors v1, · · · ,vl ∈ Znp and all l weights β1, · · · , βl ∈ Zp,
the following two distributions are statistically close, namely

– {sk, {σi}li=1, Derive(pk, τ, {vi, σi, βi}li=1)} and

– {sk, {σi}li=1, Sig(sk, τ,
∑l
i=1 βivi)},

where σi ← Sig(sk, τ,vi) for each i ∈ [1, l].

Definition 12. An LHS scheme is CCH if for every λ ∈ N, every n ∈ poly(λ),
every (pk, sk)← KGen(1λ, n), every tag τ ∈ {0, 1}∗, every integer l ∈ [1, n], all l
linearly-independent vectors v1, · · · ,vl ∈ Znp , all l correct signatures σ1, · · · , σl
s.t. 1 ← Ver(pk, τ,vi), and all l weights β1, · · · , βl ∈ Zp, the following two
distributions are statistically close, namely

– {sk, {σi}li=1, Derive(pk, τ, {vi, σi, βi}li=1)} and

– {sk, {σi}li=1, Sig(sk, τ,
∑l
i=1 βivi)}.

25

A.2 Unforgeability and Strong/Complete Context-Hiding of AOS

Unforgeability. We consider the following experiment.
ExptUNFΣAOS,A

(1λ, H, L):

1. (pk, sk)← Setup(1λ, H, L). (M∗ ∈ ({0, 1}L)h
∗
, σ∗)← ASign,Derive,Reveal(pk).

- -
- Sign(M ∈ ({0, 1}L)h):

Choose an unused handle h
U←− H. σ ← Sig(sk,M). Q := Q ∪ {(h,M, σ)}. Rtrn h.

- Derive(h ∈ H,M ∈ ({0, 1}L)h,M ′ ∈ ({0, 1}L)h
′
):

Rtrn ⊥ if 6 ∃σ s.t. (h,M, σ) ∈ Q.

Choose an unused handle h′
U←− H. σ′ ← Derive(pk,M, σ,M ′).

Q := Q ∪ {(h,M ′, σ′)}. Rtrn h′.

- Reveal(h ∈ H,M ∈ ({0, 1}L)h):
Rtrn ⊥ if 6 ∃σ s.t. (h,M, σ) ∈ Q. Q′ := Q′ ∪ {M}. Rtrn σ.

- -
2. Rtrn 1 if (1) 1← Ver(pk,M∗, σ∗), and

(2) h > h∗ ∨∃i ∈ [1, h] s.t. mi 6= m∗i for any M ∈ Q′, where M ∈ ({0, 1}L)h for some h ≤ H.
3. Rtrn 0.

Definition 13. An AOS scheme ΣAOS is UNF if for every λ ∈ N, every H,L ∈ N
and every PPT A, AdvUNFΣAOS,A(λ) := Pr[1← ExptUNFΣAOS,A(1λ, H, L)] is negligible.

SCH and CCH. Defined as follows.

Definition 14. An AOS scheme is SCH if for every λ ∈ N, every H,L ∈ N, every
(pk, sk) ← KGen(1λ, H, L), every M = (m1, · · · ,mh) ∈ ({0, 1}L)h, every M ′ =
(m′1, · · · ,m′h′) ∈ ({0, 1}L)h

′
s.t. h′ > h and m′i = mi for all i ∈ [1, h], the fol-

lowing two distributions are statistically close, (1) {sk, σ, Derive(pk,M, σ,M ′)}
and (2) {sk, σ, Sig(sk,M ′)}, where σ ← Sig(sk,M).

Definition 15. An AOS scheme is CCH if for every λ ∈ N, every H,L ∈ N,
every (pk, sk)← KGen(1λ, H, L), every M = (m1, · · · ,mh) ∈ ({0, 1}L)h, every σ
s.t. 1← Ver(pk,M, σ), every M ′ = (m′1, · · · ,m′h′) ∈ ({0, 1}L)h

′
s.t. h′ > h and

m′i = mi for all i ∈ [1, h], the following two distributions are statistically close,
(1) {sk, σ, Derive(pk,M, σ,M ′)} and (2) {sk, σ, Sig(sk,M ′)}.

A.3 Attribute-Based Signatures (ABS) for a General Predicate and
Its Subclasses

Syntax. General ABS for predicate f : {0, 1}∗ → {0, 1} in F consists of the
following four polynomial-time algorithms. Ver is deterministic and the others
are probabilistic.

Setup Setup: It takes a security parameter 1λ for λ ∈ N, then outputs a public
parameter pp and master-key mk. Let M denote the message space. Note
that the other algorithms implicitly take pp as input. (pp,mk)← Setup(1λ)

Key-Generation KGen: It takes mk and an attribute x ∈ {0, 1}∗, then outputs
a secret-key sk. sk ← KGen(mk, x)

Signing Sig: It takes a secret-key sk, a message M ∈M and a predicate f ∈ F ,
then outputs a signature σ. σ ← Sig(sk,M, f)

26

Verification Ver: It takes a signature σ, a message M ∈ M and a predicate
f ∈ F , then outputs 1 or 0. 1/0← Ver(σ,M, f)

Every ABS scheme must be correct. Informally the property means that every
correctly generated signature is accepted. Formally the property is defined as
follows. An ABS scheme is correct if ∀λ ∈ N, ∀(pp,mk) ← Setup(1λ), ∀x ∈
{0, 1}∗, ∀sk ← KGen(mk, x), ∀M ∈ M, ∀f ∈ F s.t. 1← f(x), ∀σ ← Sig(sk,M,
f), 1← Ver(σ,M, f) holds.

As security for ABS, we require unforgeability and signer-privacy. As a notion
of unforgeability, we define unforgeablity against adaptively chosen predicate
attack (UNF). For a PPT algorithm A, we consider the following experiment.

ExptUNFΣABS,A
(1λ):

1. (pp,mk)← Setup(1λ). (σ∗,M∗ ∈ M, f∗ ∈ F)← AReveal,Sign(pp).
- -

- Reveal(x ∈ {0, 1}∗): sk ← KGen(mk, x). Q := Q ∪ {x}. Rtrn sk.
- Sign(x ∈ {0, 1}∗,M ∈ M, f ∈ F): sk ← KGen(mk, x). σ ← Sig(sk,M, f).
Q′ := Q′ ∪ {(M, f, σ)}. Rtrn σ.

- -
2. Rtrn 1 if (1) 1← Ver(σ∗,M∗, y∗), (2) ∀x ∈ Q, 0← f∗(x) and (3) (M∗, f∗, ·) /∈ Q′. Rtrn 0.

Definition 16. An ABS scheme ΣABS is UNF if for every λ ∈ N and every PPT
A, A’s advantage AdvUNFΣABS,A(λ) := Pr[1← ExptUNFΣABS,A(1λ)] is negligible.

As a notion of signer-privacy, we define perfect signer-privacy (PRV). For a prob-
abilistic algorithm A, we consider the following two experiments.

ExptPRVΣABS,A,0
(1λ): //ExptPRVΣABS,A,1

(pp,mk)← Setup(1λ). (pp,mk, µ)← SimSetup(1λ). Rtrn b′ ← AReveal,Sign(pp,mk).
- -

- Reveal(x ∈ {0, 1}∗): sk ← KGen(mk, x). sk ← SimKGen(mk, µ, x). Q := Q∪{(x, sk)}. Rtrn sk.
- Sign(x ∈ {0, 1}∗, sk,M ∈ M, f ∈ F):

Rtrn ⊥ if (x, sk) /∈ Q ∨ 0← f(x). σ ← Sig(sk,M, f). σ ← SimSig(mk, µ,M, f). Rtrn σ.

The latter is associated with 3 polynomial-time algorithms {SimSetup, SimKGen,
SimSig}. The grey parts are considered in the latter, but ignored in the former.

Definition 17. An ABS scheme ΣABS is perfectly signer-private (PRV) if for ev-
ery λ ∈ N and every probabilistic algorithm A, there exist polynomial-time algo-
rithms {SimSetup, SimKGen, SimSig} such that A’s advantage AdvPRVΣABS,A(λ) :=

|
∑1
b=0(−1)b Pr[1← ExptPRVΣABS,A,b(1

λ)]| becomes 0.

ABS has various subclasses. Some examples are given below.

1. ABS for Range Evaluation of Polynomials (AREP) [9,10]: The attribute
x ∈ {0, 1}∗ in the general ABS is changed into a single variable x ∈ Zp
in AREP. The predicate fAREP, associated with a d-dimensional univari-
ate polynomial φ with coefficients ad, · · · , a0 ∈ Zp and a range [L,R] with
L,R ∈ Zp, is defined as

fAREP(x) :=

{
1 (If φ(x) :=

∑d
i=0 ai · xi ∈ [L,R] (mod p))

0 (Otherwise).

27

2. ABS for Range Evaluation of Weighted Average (AREWA) [9,10]:
The attribute x consists of t variables x1, · · · , xt ∈ Zp. The predicate fAREWA,
associated with t coefficients a1, · · · , at ∈ Zp and a range [L,R] for L,R ∈ Zp,
is defined as

fAREWA(x1, · · · , xt) :=

{
1 (If

∑t
i=1 ai · xi ∈ [L,R] (mod p))

0 (Otherwise).

3. Fuzzy IBS (FIBS): This is a generalization of the ABS for exact thresh-
olds. Let A be {1, · · · , l} for l ∈ N. The attribute x is a set of attributes
S ⊆ A. The predicate fFIBS, associated with a set of attributes S′ ⊆ A and
a range [L,R] for 0 ≤ L ≤ R ≤ l, is defined as

fFIBS(S) :=

{
1 (If |S ∩ S′| ∈ [L,R])

0 (Otherwise).

This FIBS is a further generalization of the signature analogue of FIBE [16]
since the upper bound R of the overlapped attributes can be set.

4. Time-Specific Signatures (TSS) [15,12]: TSS is a subclass of the ABS.
The attribute x ∈ {0, 1}∗ is a time-period t ∈ [0, T −1] for an integer T ∈ N.
The predicate fTSS, associated with a range [L,R] with L,R ∈ [0, T − 1], is
defined as

fTSS(t) :=

{
1 (If t ∈ [L,R]

0 (Otherwise).

5. ABS for Range Evaluation of Hamming Distance (AREHD) [9,10]:
A signer with a (binary) string x ∈ {0, 1}l can sign a message under a string
y ∈ {0, 1}l iff the Hamming distance between x and y is within a range
[L,R]. The attribute x in the ABS is a string x ∈ {0, 1}l. The predicate
fAREHD is defined as

fAREHD(x) :=

{
1 (If HD(x, y) ∈ [L,R])

0 (Otherwise),

where the function HD(x, y) returns
∑l−1
i=0 |x[i]−y[i]| which is the Hamming

distance between x and y.
6. ABS for Range Evaluation of Euclidean Distance (AREED) [9,10]:

A signer with a vector
#»

X ∈ Znp declares another vector
#»

Y ∈ Znp and a range
[L,R]. If the Euclidean distance between the two vectors is within the range,
the signing succeeds. The predicate fAREED is defined as

fAREED(
#»

X) :=

{
1 (If ED(

#»

X,
#»

Y) ∈ [L,R])

0 (Otherwise),

where the function ED(
#»

X,
#»

Y) returns
√∑n

i=1(Xi − Yi)2 ∈ [L,R] which is

the Euclidean distance between
#»

X and
#»

Y .

28

7. ABS for Hyperellipsoid Predicates (AHEP) [9,10]: An n-dimensional
hypersphere is a set of points (or vectors) whose Euclidean distance to the
central point is constant. Let us consider a special type of ABS, where a
secret-key is associated with a vector

#»

X ∈ Znp , a signature is associated

with a hypersphere with center
#»

Y ∈ Znp and radius a ∈ Zp and the signing

succeeds iff the vector
#»

X is inside of the hypersphere, named ABS for hyper-
sphere predicates (AHSP). Obviously, AHSP is transformed from AREED
defined above.
AHEP is a generalization of AHSP. Each hypersphere is generalized to a
hyperellipsoid. The predicate fAHEP is defined as

fAHEP(
#»

X) :=

{
1 (If

∑n
i=1(Xi − Yi)2/a2

i ≤ 1),

0 (Otherwise),

where
#»

Y ∈ Znp is the center and ai ∈ Zp is the radius in the i-th axis.

Their key-range versions are also a subclass of the general ABS. For instance,
in key-range ABS for range evaluation of polynomials (KAREP), not only an
attribute x ∈ Zp but also a range [L,R] ⊆ Zp is associated with a secret-key, and
only a polynomial φ : Zp → Zp is associated with a signature. The other key-
range versions are denoted by KAREWA, KFIBS, KTSS, KAREHD, KAREED
and KAHEP, respectively.

A.4 Formal Definition of the Covering Algorithm Cover

Assume that L and R are of bit length λ and L ≤ R. An integer a ∈ Zp with
bit length λ is parsed as a[1] ‖ · · · ‖ a[λ] with a[i] ∈ {0, 1}. The algorithm Cover

is defined as follows.

Cover(L,R): Let l := L. A set C is initially empty, i.e., C := ∅. While l ≤ R,
repeat the following steps.

– Derive the minimal integer t ∈ [1, λ] satisfying both of the following
conditions,

1. l[t] = · · · = l[λ] = 0
2. [l[1] ‖ · · · ‖ l[t− 1]︸ ︷︷ ︸

t−1

‖ 1λ+1−t︸ ︷︷ ︸
λ+1−t

]10 ≤ R

For a binary value a, [a]10 means its decimal value. If such an integer t
does not exist, t := λ+ 1. Obviously, the node associated with l[1] ‖ · · · ‖
l[t − 1] ∈ {0, 1}t−1 covers all of the leaf nodes associated with from [l]2
to [l + 2λ+1−t − 1]2. Let C := C∪{l[1]‖ · · · ‖ l[t−1]} and l := l+2λ+1−t.

Return C.

For instance, in a complete binary tree with 8 leaf nodes depicted in Fig.
1, Cover(1, 6) = {001, 01, 10, 110}, Cover(0, 4) = {0, 100}, Cover(7, 7) = {111},
and Cover(0, 7) = ∅.

29

Fig. 1. A complete binary tree with depth 3

B Omitted Proofs

B.1 Proof of Theorem 5 (on the Security of Our 2nd Generic
KARIP Construction)

We define five experiments as follows.

Expt0: The standard UNF experiment w.r.t. the KARIP scheme.
Expt1: It aborts when we choose a tag on the key-revelation or signing oracle,

the tag matches a tag previously chosen.
Expt2: We directly generate an LHS signature σ′ on v′ := (〈x,y〉, y1, · · · , yn,

L,R,M, 1) by using the LHS secret-key skL.
Expt3: The CRS crs is generated by (crs, ek)← SimSetup(1λ).
Expt4: We extract w∗ = (L∗, R∗, d∗, τ∗, σ∗, θ∗) ← Extract(crs, ek, x∗, σ∗),

where x∗ := (y∗,M∗). It aborts if 0← RN(x∗, w∗).

We obtain AdvUNFΣKARIP,A,n(λ) = Pr[W0] ≤
∑4
i=1 |Pr[Wi−1]− Pr[Wi]|+ Pr[W4] ≤

q(q−1)/2N+1 +AdvWIΣNIWI,B3
(λ)+AdvwUNFΣLHS,B5

(λ) for some PPT adversary B3,B5.
The last inequality is obtained because of the following five lemmas. The first
four lemmas can be proven in the same manner as the counterpart lemmas for
our 1st construction, i.e., Lemmas 1-4. ut

Lemma 7. Pr[W0] − Pr[W1] ≤ q(q − 1)/2N+1, where q ∈ poly(λ) is the total
number of times that A uses the key-revelation and signing oracles.

Lemma 8. |Pr[W1]− Pr[W2]| = 0 if the NIWI system is WI.

Lemma 9. Pr[W2] − Pr[W3] is negligible if the NIWI system is WE. Formally,
there exists a PPT algorithm B3 s.t. Pr[W2]− Pr[W3] ≤ AdvWEΣNIWI,B3

(λ).

Lemma 10. Pr[W3]− Pr[W4] = 0 if the NIWI system is WE.

Lemma 11. Pr[W4] is negligible if the LHS scheme is wUNF. Formally, there
exists a PPT algorithm B5 s.t. Pr[W4] ≤ AdvwUNFΣLHS,B5

(λ).

Proof. Assume that A is a PPT algorithm which makes the event W4 occur with
a non-negligible probability. By using A, a PPT simulator B5 attempts to win
the wUNF experiment w.r.t. the LHS scheme.
B5 receives an LHS public-key pkL. B5 can access to the signing oracle SignL.

B5 honestly generates crs and ek. B5 sends pp := (crs, pkL) to A and run it.

30

Reveal(x, L,R): Choose a tag τ
U←− {0, 1}N . Honestly generate the n+2 vectors

v1, · · · ,vn+2 ∈ Zn+3
p . For each vector vi, generate an LHS signature by

σi ← SignL(τ,vi). Return sk := (τ, {σi}n+2
i=1).

Sign(x, L,R,y,M): Choose τ
U←− {0, 1}N . Let d := 〈x,y〉 (mod p). Generate an

LHS signature on a vector v′ := (d, y1, · · · , yn, L,R,M, 1) by σ′ ← SignL(τ,
v′). Generate an NIWI proof π ← N.Pro(crs, x, w), where x := (y,M) and
w := (L,R, d, τ, σ′), then return it.

Given a forged KARIP signature π∗, B5 extracts the witness behind the NIWI
proof π∗ by w∗ ← Extract(crs, ek, x∗, π), where x∗ := (y∗,M∗), and parse it as
(L∗, R∗, d∗, τ∗, σ∗). B5 outputs a forged LHS signature σ∗ with tag τ∗ on vector
v∗ := (d∗, y∗1 , · · · , y∗n, L∗,R¯

∗,M∗, 1).
Because of the event W4, one of the following three events must occur.

E1: τ∗ has not been previously chosen.
E2: τ∗ has been already chosen on the signing oracle.
E3: τ∗ has been already chosen on the key-revelation oracle.

Any of the events leads B5 to win the wUNF experiment.

E1: Every tag queried to SignL is not identical to τ∗. W4 implies ¬abort4, which
implies that σ∗ is a valid LHS signature on the non-zero vector v∗.

E2: W4 implies ¬abort1, which implies that τ∗ is identical to a single tag chosen
on the signing oracle. Among multiple vectors whom B5 queried to SignL,
v̂ := (〈x̂, ŷ〉, ŷ1, · · · , ŷn, L̂, R̂, M̂ , 1) is the only vector tagged by τ∗, where x̂,
L̂, R̂, ŷ and M̂ denote variables queried to the signing oracle when the tag
τ∗ was chosen. W4 implies that (y∗,M∗) 6= (ŷ, M̂). Obviously, v∗ is linearly
independent of v̂.

E3: W4 implies ¬abort1, which implies that the extracted tag τ∗ is identical to
a single tag chosen on the key-revelation oracle. W4 implies 1← RN(x∗, w∗)
implying d∗ ∈ [L∗, R∗]. W4 implies 〈x̂,y∗〉 /∈ [L∗, R∗]. Hence, d∗ 6= 〈x̂,y∗〉.
Among multiple vectors whom B5 queried to SignL, there are n+ 2 vectors
v̂1, · · · , v̂n+2 tagged by τ∗. The vectors are expressed as follows. For each i ∈
[1, n], v̂i = (x̂i, 0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

, 0, 0, 0, 0︸ ︷︷ ︸
4

). The others are v̂n+1 = (0, · · · ,

0, L̂, R̂, 0, 1) and v̂n+2 = (0, · · · , 0, 0, 0, 1, 0). Since d∗ 6= 〈x̂,y∗〉 (mod p), v∗

cannot be a linear combination of v̂1 and v̂2.

Therefore, Pr[W4] ≤ AdvwUNFΣLHS,B5
(λ). ut

B.2 Proof of Theorem 6 (on the Security of Our 3rd Generic
KARIP Construction)

We define six experiments as follows.

Expt0: The standard UNF experiment w.r.t. the KARIP scheme.

31

Expt1: It aborts when we choose a tag on the key-revelation or signing oracle,
the tag matches a tag previously chosen.

Expt2: We directly generate an LHS signature σ′ on v′ := (x1, · · · , xn, L,R, h,
1) by using the LHS secret-key skL.

Expt3: The CRS crs is generated by (crs, ek)← SimSetup(1λ).
Expt4: We extract the witness w∗ = (L∗, R∗, d∗, τ∗, σ∗, θ∗)← Extract(crs, ek,

x∗, σ∗), where x∗ := (y∗,M∗). It aborts if 0← RN(x∗, w∗).
Expt5: It aborts if there exists a query of (ŷ, M̂) to the signing oracle satisfying

H.Eval(hk, (ŷ, M̂)) = H.Eval(hk, (y∗,M∗)).

We obtain AdvUNFΣKARIP,A,n(λ) = Pr[W0] ≤
∑5
i=1 |Pr[Wi−1]− Pr[Wi]|+ Pr[W5] ≤

q(q − 1)/2N+1 + AdvWIΣNIWI,B3
(λ) + AdvCRΣHF,B5

(λ) + AdvwUNFΣLHS,B6
(λ) for some PPT

adversary B3,B5,B6. The last inequality is obtained because of the following
six lemmas. The first four lemmas can be proven in the same manner as the
counterpart lemmas for our 1st construction, i.e., Lemmas 1-4. ut

Lemma 12. Pr[W0]− Pr[W1] ≤ q(q − 1)/2N+1, where q ∈ poly(λ) is the total
number of times that A uses the key-revelation and signing oracles.

Lemma 13. |Pr[W1]− Pr[W2]| = 0 if the NIWI system is WI.

Lemma 14. Pr[W2]− Pr[W3] is negligible if the NIWI system is WE. Formally,
there exists a PPT algorithm B3 s.t. Pr[W2]− Pr[W3] ≤ AdvWEΣNIWI,B3

(λ).

Lemma 15. Pr[W3]− Pr[W4] = 0 if the NIWI system is WE.

Lemma 16. Pr[W4]−Pr[W5] is negligible if the hash function is CR. Formally,
there exists a PPT algorithm B5 s.t. Pr[W4]− Pr[W5] ≤ AdvCRΣHF,B5

(λ).

Proof. As the proof of Lemma 4, Pr[W4] − Pr[W5] = Pr[W4 ∧ abort5] holds.
W4 implies (ŷ, M̂) 6= (y∗,M∗). abort5 implies H.Eval(hk, (ŷ, M̂)) = H.Eval(hk,
(y∗,M∗)). We can easily construct a PPT algorithm B5 s.t. Pr[W4 ∧ abort5] ≤
AdvCRΣHF,B5

(λ). ut

Lemma 17. Pr[W5] is negligible if the LHS scheme is wUNF. Formally, there
exists a PPT algorithm B5 s.t. Pr[W5] ≤ AdvwUNFΣLHS,B6

(λ).

Proof. Assume that A is a PPT algorithm which makes the event W5 occur with
a non-negligible probability. By using A, a PPT simulator B6 attempts to win
the wUNF experiment w.r.t. the LHS scheme.
B6 receives an LHS public-key pkL. B6 can access to the signing oracle SignL.

B6 honestly generates crs, ek and hk. B6 sends pp := (crs, pkL, hk) to A and
run it.

Reveal(x, L,R): Choose a tag τ
U←− {0, 1}N . Honestly generate the two vectors

v1,v2 ∈ Zn+4
p . For each vector vi, generate an LHS signature by σi ←

SignL(τ,vi). Return sk := (τ, σ1, σ2).

32

Sign(x, L,R,y,M): Choose τ
U←− {0, 1}N . Let d := 〈x,y〉 (mod p). Let h ←

H.Eval(hk, (y,M)). Generate an LHS signature on a vector v′ := (x1, · · · ,
xn, L,R, h, 1) by σ′ ← SignL(τ,v′). Generate an NIWI proof π ← N.Pro(crs,
x, w), where x := (y,M) and w := (x, L,R, d, τ, σ′), then return it.

Given a forged KARIP signature π∗, B6 extracts the witness behind the NIWI
proof π∗ by w∗ = (x∗, L∗, R∗, d∗, τ∗, σ∗)← Extract(crs, ek, x∗, π), where x∗ :=
(y∗,M∗). Let h∗ ← H.Eval(hk, (y∗,M∗)). B6 outputs a forged LHS signature
σ∗ with tag τ∗ on vector v∗ := (x∗1, · · · , x∗n, L∗, R∗, h∗, 1).

Because of the event W5, one of the three events E1, E2 and E3 (defined in
the proof of Lemma 11 in Subsect. B.1) must occur. Any of the events leads B6

to win the wUNF experiment.

E1: Every tag queried to SignL is not identical to τ∗. W5 implies ¬abort4, which
implies that σ∗ is a valid LHS signature on the non-zero vector v∗.

E2: W5 implies ¬abort1, which implies that τ∗ is identical to a single tag chosen
on the signing oracle. Among multiple vectors whom B6 queried to SignL,
v̂ := (x̂1, · · · , x̂n, L̂, R̂, ĥ, 1) is the only vector tagged by τ∗, where x̂, L̂, R̂, ŷ
and M̂ denote variables queried to the signing oracle when the tag τ∗ was
chosen and ĥ ← H.Eval(hk, (ŷ, M̂)). W5 implies that h∗ 6= ĥ. Hence, v∗ is
linearly independent of v̂.

E3: W5 implies ¬abort1, which implies that τ∗ is identical to a single tag chosen
on the key-revelation oracle. W5 implies 1← RN(x∗, w∗) implying 〈x∗,y∗〉 ∈
[L∗, R∗]. W5 implies 〈x̂,y∗〉 /∈ [L∗, R∗]. Hence, x∗ 6= x̂. Among multiple
vectors whom B6 queried to SignL, there are only 2 vectors v̂1, v̂2 tagged
by τ∗. They are v̂1 = (x̂1, · · · , x̂n, L̂, R̂, 0, 1) and v̂n+2 = (0, · · · , 0, 0, 0, 1, 0).
Since x∗ 6= x̂, v∗ is not in span({v̂1, v̂2}).

Therefore, Pr[W5] ≤ AdvwUNFΣLHS,B6
(λ). ut

B.3 Proof of Theorem 4

The following proof is cited from [7].
Fi(m) is maximized when si = L, xi = 0 and yj = 0 for all j ∈ [1, L] s.t.

m[j] = 1. The maximal value is p− k · L > 0 because k(L+ 1) < p.
Fi(m) is minimized when si = 0, xi = k − 1 and yj = k − 1 for all j ∈ [1, L]

s.t. m[j] = 1. The minimal value is p + (k − 1) +
∑
j∈[1,L](k − 1) · m[j] ≤

p+ (k − 1)(L+ 1) < p+ k(L+ 1) < 2p.
We obtain

Fi(m) = 0 (mod p) ⇐⇒ Fi(m) = p ⇐⇒ k · si = xi +

L∑
j=1

yj ·m[j].

Hence, we obtain

Fi(m) = 0 (mod p) =⇒ Li(m) = k · si =⇒ Li(m) = 0 (mod k).

ut

33

B.4 Evaluation of the Probability Pr[¬abort] in the Proof of
Theorem 3

S denotes the event that B aborts the simulation on the signing oracle. F denotes
the event that B aborts the simulation in the forgery phase. Because of the
definitions of the events abort, S and F ,

Pr[¬abort] = Pr[¬F] · Pr[¬S | ¬F]. (5)

We derive the lower bound of the second term in (5). We obtain

Pr[¬S | ¬F] = 1− Pr[S | ¬F] = 1− Pr

[
q∨
i=1

Si | ¬F

]
≥ 1−

q∑
i=1

Pr [Si | ¬F] ,

where Si denotes the event that B aborts the simulation on the i-th signing oracle
query. Let Mi = (mi,1, · · · ,mi,hi) ∈ ({0, 1}L)hi denote the message queried as
the i-th signing oracle query. We analyze the probability Pr[Si | ¬F] as

Pr[Si | ¬F] = Pr

 hi∧
j=1

Lj(mi,j) = 0 (mod k)

∣∣∣∣∣∣
h∗∧
j=1

Fj(m
∗
j) = 0 (mod p)

≤ Pr

Lĵ(mi,ĵ) = 0 (mod k)

∣∣∣∣∣∣
h∗∧
j=1

Fj(m
∗
j) = 0 (mod p)

 =
1

k
,

where ĵ denotes the smallest integer j ∈ [1, hi] satisfying mi,j 6= m∗j . Thus,
Pr[¬S | ¬F] ≥ 1− q/k.

Next, we derive the lower bound of the first term in (5) as follows.

Pr[¬F] = Pr

[
h∗∧
i=1

Fi(m
∗
i) = 0 (mod p)

]

= Pr

 h∗∧
i=1

xi +

L∑
j=1

yj ·m∗i [j] = k · si

= Pr

 h∗∧
i=1

∨
s′i∈[0,L]

xi +

L∑
j=1

yj ·m∗i [j] = k · s′i ∧ si = s′i

= Pr

 h∗∧
i=1

∨
s′i∈[0,L]

{
Xi,s′i

∧ X̃i,s′i

}
= Pr

 ∨
s′1,··· ,sh∗∈[0,L]

h∗∧
i=1

{
Xi,s′i

∧ X̃i,s′i

}
=

∑
s′1,··· ,sh∗∈[0,L]

Pr

[
h∗∧
i=1

{
Xi,s′i

∧ X̃i,s′i

}]

34

=
∑

s′1,··· ,sh∗∈[0,L]

Pr

[
h∗∧
i=1

Xi,s′i

]
· Pr

[
h∗∧
i=1

X̃i,s′i

]

=
1

(L+ 1)h∗
∑

s′1,··· ,sh∗∈[0,L]

Pr

[
h∗∧
i=1

Xi,s′i

]

=
1

(L+ 1)h∗
Pr

 ∨
s′1,··· ,sh∗∈[0,L]

h∗∧
i=1

Xi,s′i

=

1

(L+ 1)h∗
Pr

 h∗∧
i=1

∨
s′i∈[0,L]

Xi,s′i

=

1

(L+ 1)h∗
Pr

[
h∗∧
i=1

Li(m
∗
i) = 0 (mod k)

]
=

1

{k(L+ 1)}h∗
,

where Xi,s′i
(resp. X̃i,s′i

) denote the event that it holds xi+
∑L
j=1 yj ·m∗i [j] = k ·s′i

(resp. si = s′i).
Therefore, we obtain

Pr[¬abort] ≥
(

1− q

k

) 1

{k(L+ 1)}H
=

1

2{2q(L+ 1)}H

because we have assumed that k = 2q.

C Omitted Schemes

C.1 A Simplified Variant [9,10] of the ALP LHS Scheme [4]

KGen(1λ, n): Choose bilinear groups (G,GT) whose order is a prime p. Choose

α
U←− Zp. Let g, h, g1, · · · , gn

U←− G. Let u′, u1, · · · , uN
U←− G for an integer

N ∈ N. Let HG be a function which takes τ ∈ {0, 1}N as input, then outputs

u′
∏N
i=1 u

τ [i]
i ∈ G. Output (pk, sk), where pk := (G,GT , g, gα, h, {gi}ni=1, u

′,
{ui}Ni=1) and sk := α.

Sig(sk, τ ∈ {0, 1}N ,v ∈ Znp): Parse v as (v1, · · · , vn). Choose r, s
U←− Zp. Com-

pute

(σ1, σ2, σ3, σ4) :=

(

n∏
j=1

gvii h
s)αHG(τ)r, gr, gs, gα·s

 .

Output σ := (v, τ, σ1, σ2, σ3, σ4).
Derive(pk, τ ∈ {0, 1}N , {vi ∈ Znp , σi, βi ∈ Zp}): Parse σi as (v, τ, σi,1, σi,2, σi,3,

σi,4). Choose r
U←− Zp. Compute

(σ1, σ2, σ3, σ4) :=

(
l∏
i=1

σβii,1 ·HG(τ)r,

l∏
i=1

σβii,2 · g
r,

l∏
i=1

σβii,3,

l∏
i=1

σβii,4

)
.

35

Output σ := (
∑l
i=1 βi · vi, τ, σ1, σ2, σ3, σ4).

Ver(pk, τ ∈ {0, 1}N ,v ∈ Znp , σ): Parse v ∈ Znp as (v1, · · · , vn). Parse σ as (v, τ,
σ1, σ2, σ3, σ4). Output 1 if both of the following two conditions hold.

e(g, σ1) = e(

n∏
i=1

gvii , g
α) · e(h, σ4) · e(HG(τ), σ2)

e(gα, σ2) = (g, σ4)

Theorem 7. The simplified variant of the ALP LHS scheme is unforgeable (un-
der Definition 10) if the CDH and FlexCDH assumptions hold in the group G.

C.2 Instantiation of Our 3rd Generic KARIP Construction

Setup(1λ, L): Choose bilinear groups (G,GT) whose order is a prime p. Conduct
the following three steps.
1. Generate a key-pair of the simplified ALP LHS scheme [4] in basically the

same manner as our 2nd generic construction in Subsect. 5.1. Number
of group elements n+ 5 is reduced to n+ 4.

2. Generate a hash-key of the hash function, i.e., hk ← H.KGen(1λ).

3. Generate a GS CRS f = (
#»

f 1,
#»

f 2,
#»

f 3).
Output (pp,mk), where pp := (G,GT , e, g, gα, h, {gi}n+4

i=1 , u
′, {ui}Ni=1, hk,f)

and mk := α.
KGen(mk,x, L,R): Choose an LHS tag τ

U←− {0, 1}N . Let v1 := (x1, x2, · · · , xn,
L,R, 0, 1) ∈ Zn+4

p and v2 := (0, · · · , 0, 1, 0) ∈ Zn+4
p . For i ∈ {1, 2}, generate

a signature σi of the ALP LHS scheme on vi. Output sk := (τ, {σi}2i=1).
Sig(sk,M,y): Parse sk as above. Let d := 〈x,y〉 (mod p). Assume that d ∈

[L,R]. Firstly, conduct the following three steps.
1. Compute h ← H.Eval(hk, (y,M)). Derive an LHS signature on v′ :=

(x1, · · · , xn, L,R, h, 1). Let β1 := 1 and β2 := h. Choose r′
U←− Zp.

Compute σ′ := (σ′1, σ
′
2, σ
′
3, σ
′
4) := (

∏2
i=1 σ

βi
i,1 · HG(τ)r

′
,
∏2
i=1 σ

βi
i,2 · gr

′
,∏2

i=1 σ
βi
i,3,
∏2
i=1 σ

βi
i,4).

2. Generate GS commitments for all of the following group elements.
(a) gτ [i] and g1−τ [i] (for all i ∈ [1, N])
(b) HG(τ)

(c) gd[i], g1−d[i], g
L[i]
n+1, g

1−L[i]
n+1 , g

R[i]
n+2 and g

1−R[i]
n+2 (for all i ∈ [1, λ])

(d) gd, gLn+1 and gRn+2

(e) σ′1, σ
′
3 and σ′4

(f) gxi and gxii (for all i ∈ [1, n])

They are denoted by
#»

Cτ [i],
#»

C1−τ [i],
#»

CHG(τ),
#»

Cd[i],
#»

C1−d[i],
#»

CL[i],
#»

C1−L[i],
#»

CR[i],
#»

C1−R[i],
#»

Cd,
#»

CL,
#»

CR,
#»

Cσ1
,

#»

Cσ3
,

#»

Cσ4
,

#»

Cxi and
#»

C ′xi . Note that the
group elements (a)-(e) are (basically) unchanged from our 2nd KARIP
scheme.

3. Generate GS proofs for all of the following PPEs.
[a] e(gτ [i], g1−τ [i]) = 1GT and e(gτ [i], g) · e(g1−τ [i], g) = e(g, g)

(for all i ∈ [1, N])

36

[b] e(HG(τ), g) = e(u′, g)
∏N
i=1 e(ui, g

τ [i])

[c] e(gd[i], g1−d[i]) = 1GT , e(gd[i], g) · e(g1−d[i], g) = e(g, g),

e(g
L[i]
n+1, g

1−L[i]
n+1) = 1GT , e(g

L[i]
n+1, g) · e(g1−L[i]

n+1 , g) = e(gn+1, g),

[d] e(g
R[i]
n+2, g

1−R[i]
n+2) = 1GT and e(g

R[i]
n+2, g) · e(g1−R[i]

n+2 , g) = e(gn+2, g)
(for all i ∈ [1, λ])

[e] e(gd, g) =
∏λ
i=1 e(g

d[i], g2i−1

), e(gLn+1, g) =
∏λ
i=1 e(g

L[i]
n+1, g

2i−1

) and

e(gRn+2, g) =
∏λ
i=1 e(g

R[i]
n+2, g

2i−1

)
[f] e(σ′1, g) =

∏n
i=1 e(g

xi
i , g

α) ·e(gLn+1, g
α) ·e(gRn+2, g

α) ·e(ghn+3 ·gn+4, g
α)

· e(h, σ′4) · e(HG(τ), σ′2)
[g] e(σ′3, g

α) = e(g, σ′4)
[h] e(gxii , g) = e(gi, g

xi) (for all i ∈ [1, n])
[i] e(gd, g) =

∏n
i=1 e(g

xi , gyi)
They are denoted by #»π τ [i],mul ,

#»π τ [i],sum, #»πHG(τ),
#»π d[i],mul ,

#»π d[i],sum,
#»πL[i],mul ,

#»πL[i],sum, #»πR[i],mul ,
#»πR[i],sum, #»π d,

#»πL, #»πR, #»π σ1
, #»π σ3

, #»π xi
and #»π d,ip. Note that the PPEs [a]-[g] are (basically) unchanged from our
2nd KARIP scheme.

What remains is proving d ∈ [L,R] (mod p). In the same manner as our
second instantiated scheme in Subsect. 5.2, generate the following GS com-
mitments and proofs, namely GS commitments { #»

CBi ,
#»

CCi ,
#»

CDi ,
#»

CEi ,
#»

CFi ,
#»

CGi}λi=1, and GS proofs { #»πCi ,
#»πDi ,

#»πBi ,
#»πFi ,

#»πGi ,
#»πEi}λi=1, #»πA and #»πA′ .

Finally, output a signature σ which is set to

{ #»

Cτ [i],
#»

C1−τ [i],
#»π τ [i],mul,

#»π τ [i],sum}Ni=1,

{{ #»

Cx[i],
#»

C1−x[i],
#»π x[i],mul,

#»π x[i],sum}λi=1,
#»

Cx,
#»π x}x∈{d,L,R},

#»

CHG(τ),
#»πHG(τ),

#»

Cσ1 , σ
′
2,

#»

Cσ3 ,
#»

Cσ4 ,
#»π σ1 ,

#»π σ3 ,
#»πA,

#»πA′ ,

{ #»

CBi ,
#»

CCi ,
#»

CDi ,
#»πBi ,

#»πCi ,
#»πDi ,

#»

CEi ,
#»

CFi ,
#»

CGi ,
#»πEi ,

#»πFi ,
#»πGi}λi=1,

{ #»

Cxi ,
#»

C ′xi ,
#»π xi}ni=1,

#»π d,ip

.

(6)
The only difference between (6) and (4) is w.r.t. the elements in a rectangle.

Ver(σ,M,y): Each GS proof #»π ∈ G3 (resp. #»π ∈ G9), composed of 3 (resp. 9)
elements in G, is parsed as (π1, π2, π3) (resp. (#»π 1,

#»π 2,
#»π 3) with #»π i ∈ G3).

Output 1 iff all of the following equations hold.
1. F (

#»

Cτ [i],
#»

C1−τ [i]) =
∏3
k=1 F (#»π τ [i],mul,k,

#»

f k) (for all i ∈ [1, N])

2. E(g,
#»

Cτ [i]) · E(g,
#»

C1−τ [i]) = ιGT (e(g, g))
∏3
k=1E(πτ [i],sum,k,

#»

f k)
(for all i ∈ [1, N])

3. E(g,
#»

CHG(τ)) = ιGT (e(u′, g))
∏N
i=1E(ui,

#»

Cτ [i])
∏3
k=1E(πτ [i],k,

#»

f k)

4. F (
#»

Cd[i],
#»

C1−d[i]) =
∏3
k=1 F (#»π d[i],mul,k,

#»

f k) (for all i ∈ [1, λ])

5. E(g,
#»

Cd[i]) · E(g,
#»

C1−d[i]) = ιGT (e(g, g))
∏3
k=1E(πd[i],sum,k,

#»

f k)
(for all i ∈ [1, λ])

6. E(g,
#»

Cd) =
∏λ
i=1E(g2i−1

,
#»

Cd[i])
∏3
k=1E(πd,k,

#»

f k)

7. E(g,
#»

Cσ1) =
∏n
i=1E(gα,

#»

Cxi)·E(gα,
#»

CL)·E(gα,
#»

CR)ιGT (e(ghn+3·gn+4, g
α))·

E(h,
#»

Cσ4
) · E(σ′2,

#»

CHG(τ))
∏3
k=1E(πσ1,k,

#»

f k)

37

8. E(gα,
#»

Cσ3
) = E(g,

#»

Cσ4
)
∏3
k=1E(πσ3,k,

#»

f k)

9. F (
#»

CL[i],
#»

C1−L[i]) =
∏3
k=1 F (#»πL[i],mul,k,

#»

f k) (for all i ∈ [1, λ])

10. E(g,
#»

CL[i]) · E(g,
#»

C1−L[i]) = ιGT (e(gn+1, g))
∏3
k=1E(πL[i],sum,k,

#»

f k)
(for all i ∈ [1, λ])

11. E(g,
#»

CL) =
∏λ
i=1E(g2i−1

,
#»

CL[i])
∏3
k=1E(πL,k,

#»

f k)

12. F (
#»

CR[i],
#»

C1−R[i]) =
∏3
k=1 F (#»πR[i],mul,k,

#»

f k) (for all i ∈ [1, λ])

13. E(g,
#»

CR[i]) · E(g,
#»

C1−R[i]) = ιGT (e(gn+2, g))
∏3
k=1E(πR[i],sum,k,

#»

f k)
(for all i ∈ [1, λ])

14. E(g,
#»

CR) =
∏λ
i=1E(g2i−1

,
#»

CR[i])
∏3
k=1E(πR,k,

#»

f k)

15. F (ιG(gn+1),
#»

CCi) = F (
#»

Cd[i],
#»

C1−L[i])
∏3
k=1 F (#»πCi,k,

#»

f k)
(for all i ∈ [1, λ])

16. F (ιG(gn+1),
#»

CDi) = F (
#»

Cd[i],
#»

CL[i])·F (
#»

C1−d[i],
#»

C1−L[i])
∏3
k=1 F (#»πDi,k,

#»

f k)
(for all i ∈ [1, λ])

17. E(g,
#»

CB1) = E(g,
#»

CD1)
∏3
k=1E(πB1,k,

#»

f k)

18. F (ιG(g),
#»

CBi) = F (
#»

CBi−1
,

#»

CDi)
∏3
k=1 F (#»πBi,k,

#»

f k)
(for all i ∈ [2, λ])

19. F (ιG(g),
#»

CC1
)
∏λ
i=1 ·F (

#»

CBi−1
,

#»

CCi)·F (ιG(g),
#»

CBλ) = ΓGT (e(g, g))
∏3
k=1 F (#»πA,k,

#»

f k)

20. F (ιG(gn+2),
#»

CFi) = F (
#»

C1−d[i],
#»

CR[i])
∏3
k=1 F (#»πFi,k,

#»

f k)
(for all i ∈ [1, λ])

21. F (ιG(gn+2),
#»

CGi) = F (
#»

Cd[i],
#»

CR[i])·F (
#»

C1−d[i],
#»

C1−R[i])
∏3
k=1 F (#»πGi,k,

#»

f k)
(for all i ∈ [1, λ])

22. E(g,
#»

CE1
) = E(g,

#»

CG1
)
∏3
k=1E(πE1,k,

#»

f k)

23. F (ιG(g),
#»

CEi) = F (
#»

CEi−1 ,
#»

CGi)
∏3
k=1 F (#»πEi,k,

#»

f k)
(for all i ∈ [2, λ])

24. F (ιG(g),
#»

CF1
)
∏λ
i=1 ·F (

#»

CEi−1
,

#»

CFi)·F (ιG(g),
#»

CEλ) = ΓGT (e(g, g))
∏3
k=1 F (#»πA′,k,

#»

f k)

25. E(g,
#»

Cxi) = E(gi,
#»

C ′xi)
∏3
k=1E(πxi,k,

#»

f k)

26. E(g,
#»

Cd) =
∏n
i=1E(gyi ,

#»

Cxi)
∏3
k=1E(πd,ip,k,

#»

f k)
Note that the first 24 relations are (basically) unchanged from our 2nd
KARIP scheme.

Corollary 3. Our 3rd KARIP scheme is UNF if the DLIN, CDH and FlexCDH
assumptions hold in the group G and the hash function is collision-resistant. The
scheme is PRV unconditionally.

38

	Key-Range Attribute-Based Signatures for Range of Inner Product and Its Applications

