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Abstract. In this paper, we introduce a new approach to efficiently compute TFHE bootstrapping
keys for (predefined) multiple users. Hence, a fixed number of users can enjoy the same level of efficiency
as in the single key setting, keeping their individual input privacy. Our construction relies on a novel
algorithm called homomorphic indicator, which can be of independent interest. We provide a detailed
analysis of the noise growth and a set of secure parameters suitable to be used in practice. Moreover,
we compare the complexity of our technique with other state-of-the-art constructions and show which
method performs better in what parameter sets, based on our noise analysis. We also provide a prototype
implementation of our technique. To the best of our knowledge, this is the first implementation of TFHE
in the multiparty setting.
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1 Introduction

Many privacy preserving protocols are efficiently designed in a non-interactive way with practical
implementation results thanks to recent improvements on FHE. However, some problems arise when
it comes to handling multiple users. The easiest way to handle multiple users is to share the same
secret key among them and then ask a third party (a server in general) to compute a function of
the given encrypted data of each user under the same key. However, in this case, some dishonest
parties can easily intercept others’ encrypted inputs through the public channel and decrypt them.
Therefore, this naive approach does not guarantee input privacy [16,15].

If numerous users want to compute a common function keeping their input privacy, multi-key
homomorphic encryption (MKHE) [18] and multiparty homomorphic encryption (MPHE) (a.k.a.
threshold-multikey FHE) [19] are the best solutions for non-interactive protocols1. That is, both
designs allow users to keep partial information of the master secret key without the need to involve
a third trusted party during key distribution. In other words, no one knows the master secret key,
only partial information of it, so decrypting other’s ciphertexts becomes impossible. Decryption is
possible only when all the participants (users) agree to do so.

Despite providing user privacy, MKHE has a serious practical problem when the number of
users is large, since the ciphertext size increases depending on the number of users. On the other
hand, MPHE does not have such ciphertext expansion, so it can achieve (asymptotically) the
same computational complexity as single key FHE. However, it requires a setup phase where users
must interact at least once to generate their common public key, which is not necessary in MKHE.
Therefore, both approaches have distinct advantages and there are different applications where
each can have better performance than the other, as analyzed in [21]. For example, if there are
already predefined inputs for a function which a server is going to compute, such as the training of
a machine learning model, MPHE outperforms MKHE.

1 Each user can protect its input from other parties in both designs since the secret key is never shared.
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The main technical bottleneck of designing MPHE is to create the common evaluation key
efficiently. Mouchet et al. [19], introduce a MPHE construction requiring two rounds between
participants. In [21], the author improved upon [19] by designing a non-interactive algorithm, once
the public keys are already known. The setup phase (generation of the common keys) of the above
works has practical computation time and memory consumption. Once the common public keys
(including evaluation keys) are generated during the setup phase, most of the algorithms that the
server runs have the same performance as those of the underlying single key scheme. Indeed, the
asymptotic complexity of previously designed MPHE is the same as their single key FHE versions
(BGV [5], FV [12], and CKKS [8]).

MPHE designs on TFHE has not studied well even though TFHE is widely used in privacy
preserving protocols due to its advantages2. Recently, Lee et al. [17] introduced a (theoretical version
of) MPHE protocol based on TFHE. They first design a single key TFHE with larger coefficients
for the secret key and then, they naturally extend it to the MPHE version, introducing a simple
(global) evaluation key generation algorithm which requires all parties’ local evaluation keys. This
makes sense because the common secret key of MPHE corresponds to the sum s := s1 + · · ·+ sk,
where si’s is the binary secret key of the i-th user, which is viewed as a secret key of a single user,
corresponding to a secret s with large entries. However, a direct extension without implementation
might hide the actual computation overhead caused by the noise contained in the global evaluation
keys. The main difference between single key FHE with larger secret entries and its MPHE version
is the noise contained in the same types of keys. Since the global keys are made of all parties’ keys,
the noise contained in the keys grows proportional to the total number of parties (which we denote
by k). Therefore, in practice, we cannot directly use the same parameters which are recommended
for single key setting. In other words, we must take the noise contained in the global keys into
account, when it comes to choosing parameters.

A concurrent paper [14] gives a protocol for TFHE with larger key size with a different technique.
We observe that their technique requires only k multiplication in FFT domain among bootstrapping
keys in the main loop of the boostrapping algorithm. Whereas Lee et al. [17] makes use of key
switching including two FFT conversions and an external product, which is more expensive than
the k FFT multiplications in every loop. However, a detailed comparison of both techniques, even
in the single key setting, has not appeared in the literature just yet.

In this work, we extend [14]’s scheme to a version of MPHE, introducing an efficient evaluation
key generation algorithm. To do this, we introduce an algorithm called homomorphic indicator,
which homomorphically computes a unit vector of dimension m. That is, the algorithm takes as
input a bit string and outputs a unit vector with an encryption of 1 in the position corresponding to
the Hamming weight of the input string. This algorithm is the main building block of our evaluation
key generation to indicate which key is selected during bootstrapping. The server can therefore run
the bootstrapping algorithm of [14] with the indicated bootstrapping key, without revealing the
corresponding secret value because the output of the algorithm is the same as their bootstrapping
key. We believe that our technique for constructing the evaluation key can be of independent interest.

Furthermore, we compare the complexity of each bootstrapping technique and we show which
scheme performs better in what parameter sets, based on our noise analysis. Our approach suffers
from high memory overhead as the number of parties grows, whereas the other existing approach has
constant memory overhead. We provide a prototype implementation of our key generation algorithm

2 TFHE outperforms the rest (BGV,FV,CKKS) when the computation is over bits and for non-linear functions such
as ReLU, max/min functions.
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Fig. 1: Illustration of an application scenario of MPHE (two-party case). (1) Once a client and a service provider
generates a common key (pk) during setup phase, both can send their item (m : client’s data, f : machine learning
model) encrypted under the key to the server. (2) After the computation is over, server sends the output (Enc(f(m), pk))
to the model provider so that (3) he can run partial decryption with his own secret key sk 2 and (4) sends the output
which is an encryption of Enc(f(m), sk 1)) to the server. (5) The server sends the given value from the model provider
to the client, so that he can obtain f(m) by decrypting the ciphertext with its own secret key sk 1.

using the Concrete library [10] with exact parameters yielding at least 110 bits security. With a
number of parties of up to 16, we are able to perform bootstrapping in less than a second. To the
best of our knowledge, this is the first implementation of TFHE in the multiparty setting.

1.1 A brief note on applications

The direct application of MPHE is privacy preserving machine learning [7,23,11] where a model
provider holding its private machine learning model encrypts the model under the common public
key, and the client encrypts its private input data under the common public key, then both party
sends ciphertexts to the server (which is the (semi-honest) third party) for a computation (See
Figure 1). At the end of the server’s computation and partial decryption [20] interacting with
the model provider, the client only gets the inference/predicted value from the server. The whole
protocol is non-interactive thanks to homomorphic encryption on the client’s side, so that the client
can go offline after query phase, until the computation is over. More applications are discussed in
Section 8.1 in detail.

2 Preliminaries

2.1 Notations.

We denote the security parameter of the FHE scheme by λ. The dot product of two vectors v,w is
denoted by ⟨v,w⟩. For a vector x, both xi and x[i] denote either the i-th scalar component or the
i-th element of an ordered finite set. The i-th element of an array A is denoted by A[i]. We denote the
logarithm function in base two by log(·). LetR andRq denote the rings of polynomials Z[X]/(XN+1)
and Zq[X]/(XN + 1), respectively, for positive integers q and N . Let θ, θ′ denote the standard
deviation of the noise contained in a fresh RLWE ciphertext and a fresh LWE ciphertext, respectively.
All the noise is sampled from a distribution denoted by χ according to a suitable standard deviation.
Let β, ϵ, ℓ = O(log q) be the parameters of the TFHE scheme [9]. We denote the number of users
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by k. The LWE (resp. RLWE) secret key of each user is denoted by si = (si,0, . . . , si,n−1), where
si,j ∈ {0, 1} and n ≥ 1 (resp. si ∈ R). The (master) secret key corresponding to the common public

key for an LWE ciphertext is denoted by S = (S0, S1, . . . , SN−1), where Sj =
∑k

i=1 si,j ≤ k for all
j ∈ {0, . . . , n− 1}. Similarly, s := s1 + s2 + · · ·+ sk is the master secret key for an RLWE/RGSW
ciphertext. Given a base g and ℓ = O(log q), we define a gadget vector g = (1, g, . . . , gℓ−1)t. An
RGSW ciphertext is of the form RGSWs(m) := (a,b) ∈ R2ℓ×2

q . Let G be a gadget matrix defined as
G := I2⊗ g. Let G−1(·) be the gadget decomposition function, which satisfies G−1(a) ·G = a ∈ R2

q .

We define G−1(c) := (G−1(c1), . . . ,G
−1(cδ)), for a vector c = (c1, . . . , cδ) ∈ Rδ×2

q . In this paper, we
use the terms parties and users interchangeably to refer to the entities who join the homomorphic
computation.

2.2 TFHE Ciphertexts.

We denote the ciphertext modulus as q and encode a message m ∈ {0, 1} as ∆ ·m, where ∆ = ⌊q/8⌉.
In our design, we only focus on binary messages and binary secret keys for each party.

– An LWE ciphertext is defined as LWEs(m) := (a, b) ∈ Zn+1
q , where a is a random vector,

b = ⟨a, s⟩+∆ ·m+ e for a message m ∈ {0, 1}, a secret key s ∈ Zn, and a noise term e← χθ′ .
We call a the mask and b the body of an LWE ciphertext.

– A RLWE ciphertext is defined as RLWEs(m) := (a, b) ∈ R2
q , where b = a · s+∆ ·m+ e′ for a

random polynomial a ∈ Rq, a message polynomial m ∈ R2, a secret key s ∈ R, and e′ ← χθ.
Similarly, a and b are called the mask and the body of an RLWE ciphertext, respectively.

– Fix a base Bg and ℓ = O(log q), and the gadget vector g = (1, g, . . . , gℓ−1)t. An RGSW ciphertext
is of the form RGSWs(m) := (a,b) ∈ R2ℓ×2

q , where b = H+m ·G, each row of H is a RLWEs(0)
and G is a gadget matrix defined as G := I2 ⊗ g.

– TrivialNoiseless(tag, µ) : it takes as input a tag tag ∈ {LWE,RLWE,RGSW} which indicates the
ciphertext form, and a message µ, and outputs a ciphertext with the form according to tag with
a noiseless mask.

2.3 External and internal products.

GivenC1 = RGSWs(m) and c2 = RLWEs(µ), the external product produces the ciphertext RLWEs(m·
µ). It is defined as follows:

⊡ : RGSW×RLWE→ RLWE, (C1, c2) 7→ C1 ⊡ c2 = G−1(c2) ·C1.

The internal product of two RGSW ciphertexts C1 and C2 is equivalent to computing the external
product of C1 with all 2ℓ RLWE rows (c1, . . . , c2ℓ)

t of C2. It is defined as follows:

⊠ : RGSW×RGSW→ RGSW, (C1,C2) 7→ (C1 ⊡ c1, . . . ,C1 ⊡ c2ℓ).

2.4 CMux gate.

The main use of external products in TFHE is in the instantiation of the controlled multiplexer
(CMUX) gate. Given two RLWE ciphertexts c0 and c1 encrypting messages m1 and m2 respectively
and a RGSW ciphertext C encrypting a (controller) bit b, the CMUX gate returns a RLWE ciphertext
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encrypting mb. That is, the CMUX essentially selects either c0 or c1 depending on the controller
bit encrypted in C. The CMUX gate is instantiated as follows:

CMUX⊡(C, c0, c1)← C⊡ (c1 − c0) + c0.

It can also be instantiated with internal products, producing a RGSW ciphertext encrypting mb, as
we use in our bootstrapping key generation. In this case, it is computed as follows:

CMUX⊠(C,C0,C1)← (C1 −C0)⊠C+C0.

2.5 Blind rotation.

The most expensive procedure of TFHE bootstrapping is called blind rotation. This algorithm converts
a ciphertext LWEs(m) = (a, b) ∈ Zn+1

q encrypted using the secret key s into another ciphertext
RLWEs′(X

−m · v) ∈ R2
q via computing CMUX⊡ n times, where m is a rounded approximation of

b− ⟨a, s⟩ and v is a polynomial, and n is the dimension of the input LWE ciphertext.

2.6 Multiparty FHE

Let P = {P1, . . . ,Pk} be a set of k parties. Informally, a multiparty homomorphic encryption scheme
(MPHE) over P is an homomorphic encryption scheme where the secret key is a function of the k
individual secret keys of each party s1, . . . , sk. In this paper, we are interested in the case where the
secret key s of the MPHE is computed as s = s1 + · · ·+ sk. Notice that obtaining this secret key
structure from existing lattice-based HE schemes is already well known and simple in a common
random string (CRS) model [2,21,19]. For example, following the same notation as in subsection
2.2, the ciphertext LWEs1(0) + · · ·+ LWEsk(0) can be decrypted using the secret key s provided that
the same a was used for all parties in the masks of these k LWE ciphertexts3 . We follow the most
communication efficient MPHE protocol [21], which can be described as follows:

1) Each party generates its own (local) public key using a common random string and distributes
the keys to all the predefined users Pi’s.

2) All parties locally generate (public) evaluation keys and ciphertexts by aggregating the given k
different keys, obtained in 1). Then, they send them to a computing party (server).

3) The computing party generates the global evaluation key to perform the necessary operations
over a set of given ciphertexts.

4) The computing party can now perform homomorphic operations over ciphertexts given by the k
parties using the global keys which computed in step 3).

We note that step 1) is a (one-round) setup for k parties, and step 3) is a (non-interactive) setup for
the computing party. Therefore, for the same party set P , the outcomes of step 1) and 2) are reused
over and over. The difficulty of building practically efficient MPHE schemes stems from the fact
that more complex types of keys also need to be condensed to a global key from the individual keys
produced from the parties in P (step 3).

3 However, due to security issues, this technique is not directly used for generating ciphertexts, only for generating
keys.
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3 TFHE blind rotation with arbitrary secret key distribution

In the following subsections we explain the two most efficient state-of-the-art approaches of TFHE
blind rotation which can work with an arbitrary secret key distribution.

3.1 Bootstrapping of Lee et al. [17]

The work of Lee et al. [17] introduces a new efficient blind rotation algorithm that works with
arbitrary secret key distributions and requires small evaluation keys. Very briefly and omitting a
lot of technicalities, each loop of their blind rotation algorithm consists of a number of external
products followed by one automorphism (key switching). That is, starting with an accumulator
acc = RLWEs(f

′(X)) and a collection of blind rotation keys bskj := RGSWs(X
sj ) for j ∈ J ,

for some indexing set J , their blind rotation algorithm proceeds by multiplying acc by all bskj ,

obtaining acc = RLWEs(f
′(X)X

∑
j∈J sj ). Then, applying an automorphism they obtain acc =

RLWEs(f
′(Xg)Xg·

∑
j∈J sj ), for a suitable integer g depending on the polynomial degree N . After

repeating this process with other indexing sets they finally obtain acc = RLWEs(f(X) ·Xβ+⟨α,s⟩).
This blind rotation technique requires a total of at least 1.5 · n external products, where n is the

dimension of the input LWE ciphertext.
To use this blind rotation algorithm in the threshold setting, they require the construction of

a common blind rotation key (bsk) and a common automorphism key (ak). We only give a short
summary of how a computing party can obtain bsk and refer the interested reader to the original
paper for the construction of ak. Let s1, . . . , sk be the secret keys of a set of k parties. Each party
j computes bskj,i = RGSWs(X

sj,i) where sj,i is the i-th component of sj and sends this to the
computing party. Then, the computing party obtains bski = ⊠∏

j∈J
bskj,i = RGSWs(X

s∗,i).

3.2 Bootstrapping of Joye and Paillier’s [14]

As mentioned in the introduction, each loop of the blind rotation in [14] consists of k RGSW
ciphertext additions followed by an external product. Their bootstrapping key is a set of RGSW
ciphertexts which encrypt either 0 or 1. Basically, a client generates k RGSW ciphertexts, denoted
by {keyj,i}i∈[k], per secret key component Sj (j ∈ {0, . . . , n}) such that all of them are encryptions of
0 or only one encrypts 1 (the rest encrypt 0). Then, the computing party runs a selection algorithm
to choose the corresponding Xaj ·Sj , as follows:

1 + (Xaj − 1) · keyj,1+(X2·aj − 1) · keyj,2+ · · ·+ (Xk·aj − 1) · keyj,k .

For example, if Sj = 3, then keyj,3 is an encryption of 1 and the rest are encryptions of 0. Here, we
note that the Xi·aj ’s for i ∈ [k] are precomputed and the product with keyi is a multiplication in
the FFT domain which is the most expensive part in this selection algorithm.

4 The common bootstrapping key generation

After each user sends its locally generated bootstrapping key encrypting the coefficients of its secret
key, the computing party (a server) creates a global bootstrapping key to run single key TFHE
bootstrapping with multi digit secret elements. Since we wish to use Joye and Paillier’s approach for
TFHE bootstrapping, our main goal in this section is to create on the fly a common bootstrapping
key compatible with their blind rotation algorithm from the locally generated keys sent by all users.
To do this, we introduce our novel algorithm called homomorphic indicator below.

6



4.1 Homomorphic Indicator

Given an array A of encryptions of 0’s and 1’s, the goal of the homomorphic indicator algorithm is
to homomorphically produce a new array with an encryption of 1 in the position corresponding
to the Hamming weight (WH) of A, that is, the output array will have an encryption of 1 in the
WH(A)-th position and encryptions of 0 everywhere else.

Let us start by explaining its plaintext version. The algorithm takes as input an array A of k
slots4 filled with 0’s and another array C with also k slots but filled with 0’s and 1’s, which we will
call controller bits. The algorithm proceeds by iterating over C as follows. If the first controller bit is
1, the first slot of A becomes 1, and the rest of A is untouched. If the second controller bit is also 1,
A remains the same except the first and second slots, where the first slot becomes 0, and the second
slot becomes 1. After repeating this k times, the array A will have a 1 at the position corresponding
to the number of 1’s in C.

In the ciphertext case, we start with two arrays of k + 1 slots, denoted by Aold and Anew, where
the 0-th slot of Aold contains an encryption of 1 and the rest are set to encryptions of 0. Additionally,
we need k controller bits {Ci}i∈[k], each of which encrypts a bit. We note that the last k slots of

Aold are what we have at the beginning in the cleartext case. We store the desired value (which is 1)
at the 0-th slot. In each loop, Anew is updated based on the corresponding controller bit and the
values in the slots of Aold, as follows. For each j ∈ [k], Anew[j]← Aold[j − 1] if Ci is an encryption
of 1, otherwise, Anew[j]← Aold[j]. This can be instantiated as

Anew[j] := (Aold[j − 1]− Aold[j])⊠Ci + Aold[j].

In order to update the first slot, we need to deal with the 0-th slot as well since it influences on
the first slot of Anew. The 0-th slot should also be updated to 0 or remain 1. That is, Anew[0] is
updated to Aold[0] if Ci is an encryption of 0, otherwise, Anew[0] becomes an encryption of 0. This
is instantiated as

Anew[0] := Aold[0]⊠ (1−Ci).

After all the slots of Anew are updated, Aold is set as Anew and we repeat the protocol until all k
controller bits are used. At the end of the protocol, we will take the last k slots of Anew as the
desired result.

Algorithm 1 Homomorphic Indicator (Hom.Indicator)

Input: {Ci}i∈[m],A
new and Aold.

Output: Aold.
for i← 1 to k do

for j ← 1 to k do
Anew[j] := CMUX⊠(Ci,A

old[j],Aold[j − 1])
end for
Anew[0] := Aold[0]⊠ (1−Ci)
for j ← 0 to k do

Aold[j] := Anew[j]
end for

end for

4 A slot of an array refers to an element of an array in this paper, we use these terms interchangeably.
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Note that we use internal product to instantiate CMUX gate and multiplication between two
ciphertexts for a direct application to our bootstrapping key generation. However, one can use
internal product or any type of homomorphic multiplication. Since the multiplicative depth of
this algorithm is linear in the size of the output unit vector, internal/external product is highly
recommended if the size is large to manage noise issue.

4.2 Instantiation of bootstrapping key generation

Local bootstrapping key generation Generating local bootstrapping key is similar to [21],
however, the instantiation is a bit different in order to minimize the noise generated during this
process. We adapt the typical technique, which transforms a private-key ciphertext into a public-key
ciphertext. Our goal is to turn single key ciphertexts encrypted under a user’s public key into a
ciphertext encrypted under global public key via one interaction. We specifically follow the way of
[13] which is designed for TFHE ciphertexts. Each user does the following:

1. Generates a vector consisting of size m = O(n log q) LWE/RLWE/RGSW encryptions of 0 under
its own key, and distributes the vector of the ciphertexts to the other predefined k − 1 users. In
other words, each component of the vector looks like (a, bi), where bi = a · si + ei, with a being
a common random string (CRS) which has already been provided to all the users. Once this
step is done, the rest can be run multiple times without interactions among users.

2. Generates k random bit vectors of dimension m.

3. Computes k dot products between the bit vectors and the given k ciphertext vectors, including
its own vector, and adds up the results. The outcome is an LWE/RLWE/RGSW encryption of 0
under the master secret key, which is s := (s1 + s2 + . . .+ sk).

Every time all k users generate ciphertexts/ local evaluation keys, each user does the second and
the third step described above and add the message term on the desired spot at the end. We give
an algorithm of this procedure below. In practice, we set m = ⌈3 · log q⌉ as [5] analyzed.

Algorithm 2 Local encryption (Local.Enc)

Input: A vector of dimension m consisting of ciphertexts (all of which can be one of LWE/RLWE/RGSW forms),
denoted by V, and a message µ, a tag tag ∈ {LWE,RLWE,RGSW}.

Output: an LWE/RLWE/RGSW ciphertext c encrypting a message µ.
Sample a random vector R← {0, 1}m
Computes µ̄ := TrivialNoiseless(tag, µ).
Computes c := ⟨V,R⟩+ µ̄

Global evaluation key generation The main goal of this algorithm is to create the global
bootstrapping key of [14] on the fly using all clients’ keys which have already been given at the
beginning of the protocol. As we explained in Section 2, the global bootstrapping key is an array of
k RGSW ciphertexts per coefficient. We denote this key as b̂sk := [b̂sk0, . . . , b̂skn−1], where each

component consists of k RGSW ciphertexts, that is b̂ski = [RGSWs(bi,1), . . . ,RGSWs(bi,k)], where
bi,j ∈ {0, 1} for and j ∈ [k] and i ∈ [0, . . . n− 1].
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To generate b̂sk, the following actions are required by each user and by the server (or a computing
party).

Each user. Each client i sends its (local) bootstrapping key bski := (RGSWs(si,0), RGSWs(si,1),
. . ., RGSWs(si,n−1)) to a server.

Server.

– Initialization: The Server creates two arrays of k + 1 slots per coefficient, denoted by Aold and
Anew, respectively, where the first slot of Aold is 1 and the rest are zeros.

– As soon as it receives the (local) bootstrapping keys bsk1, . . . , bskk from the predefined k users,
it executes the algorithm 3, running Hom.Indicator as a subroutine.

Algorithm 3 Global bootstrapping key generation

Input: {bski}i∈[k],A
new and Aold.

Output: b̂sk.
for t← 0 to n− 1 do

for i← 1 to k do
Parse Ci,t := bski[t]

end for
A := Hom.Indicator({Ci,t}i∈[k],A

new,Aold)

b̂sk[t] := [A[1], . . . ,A[k]]
Refresh Anew and Aold

end for

4.3 A toy example for 4 parties

Assume that we have four users (k = 4), and each has a secret key si for i ∈ [4]. For ease of
exposition, we only focus on the constant term of each si, the process is the same for the rest of the
coefficients. Let us say that s1,0 = 1, s2,0 = 1, s3,0 = 1, and s4,0 = 0, hence the constant term of the
master secret key is 3 (S0 = 3). The server creates two arrays of k+1 = 5 elements, as we explained
in the above section, called Aold,Anew. The array Aold has a RGSW encryption of 1 at the first
position and a RGSW encryption of 0 in the rest while Anew consists of RGSW encryptions of 0.

In the first iteration, since s1,0 = 1, we will set Anew[1] = RGSW(1) and Anew[j] = RGSW(0)
for all j ≠ 1. We have then an encryption of 1 in position 1. The same would happen in the next
two iterations until we reach s4,0. In this case, since s4,0 = 0, the algorithm does not change the
plaintexts of all elements in the output array (but the noise is increased). At the end, we get an
array with an RGSW encryption of 1 in position 3, and a RGSW encryption of 0 in the rest. The
last 4 elements of the final array exactly correspond to the bootstrapping keys needed for 4 parties
in the blind rotation protocol of [14]. This example is depicted in Figure 2.

5 TFHE bootstrapping in the multiparty setting

Once the predefined k users (parties) generate their own local bootstrapping key as discussed in
Section 4.2 and upload them to server, the server runs Algorithm 3 to create the common/global
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Fig. 2: Example for k = 4 of our bootstarpping key generation. The blue arrow shows the direction of moving the
first slot. The black arrows show that the elements in the new array comes from the previous slots in the old array
when the corresponding secret key component is 1. The red arrow shows that the elements in the new array come
from the same slots of the old array when the corresponding secret key component is 0.

bootstrapping key. The global bootstrapping key is stored, and the server can reuse it as long as the
computation is for the same set of users.

After running the blind rotation algorithm of Joye and Paillier with the global bootstrapping
key, the output is an RLWE ciphertext under the k ”RLWE keys” defined over a polynomial ring of
degree N . However, the result of a TFHE bootstrapping should be an LWE ciphertext encrypted
under the k ”LWE keys” to enable further computations.

As a solution, the original TFHE [9] switches the ciphertext format from a RLWE to an
LWE ciphertext by running an algorithm called sample extraction. However, the outcome has still
dimension N which is larger than the original input dimension n. Therefore, TFHE introduced a
key switching algorithm to switch an LWE from dimension N to dimension n. We can adapt the
single key version of this algorithm to the multiparty setting as follows.

5.1 Key Switching in the multiparty setting

The key switching algorithm for our case is the same as in the single key TFHE setting. Since all
the secret keys correspond to the sum of all the parties’ secrets, the key switching homomorphically
from LWEz(m) to LWEz′(m) where both z and z′ are the sum of all parties’ secrets with different
size. Let us define z = z1 + z2 + · · ·+ zk and z′ = z′1 + z′2 + · · ·+ z′k, where each zi and z′i are the
secrets of the i-th party. Then each user produces kski := LWEz′(zi) as their key switching keys by
running Local.Enc function. And the server adds up all kski to generate the global key switching key.

5.2 Overall description of our bootstrapping

Each i-th user:

– Setup for public key: generates its own local public key; a vector of ciphertexts of dimen-
sion m(= O(log q)) per ciphertext format (LWE,RLWE,RGSW), where all the masks of the
ciphertexts are set to a which is a common random string (CRS). We denote the vectors by
VLWE, VRLWE, VRGSW.

– Generating local evaluation keys: generates local bootstrapping key bski by running
Local.Enc(VRGSW,RGSW, si,j) for all j ∈ [n]. Similarly, generates local key switching key kski by
running Local.Enc(VLWE, LWE, si).
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– Generating ciphertexts: generates ciphertexts for homomorphic evaluation by running
Local.Enc(VLWE, LWE,m), where m ∈ 0, 1.

Server:

– Setup for server: runs Algorithm 3 to generate a global bootstrapping key b̂sk. Generates a
global key switching key denoted by k̂sk by summing up all given kski given by k users.

– After a gate operation: run Joye and Paillier’s bootstrapping with b̂sk and k̂sk.

6 Noise analysis

In this section, we analyze the noise growth of the setup phase and the final noise after bootstrapping.
Let e be the initial noise in each user’s (local) public key, that is, Var(e) = θ2 as we defined in
Section 2. After receiving all the public keys from the predefined users, the noise contained in each
user’s bootstrapping key becomes k · ι · e due to additions, where ι = ⌈3 · log q⌉ to guarantee LWE
security [5] (as we mentioned in Section 4.2). Therefore, Var(Err(bski)) ≤ k · ι · θ2.

The noise becomes larger during the generation of the global bootstrapping key. Each element
in the initial array is a plaintext which has no noise. We can upper-bound the variance of the i-th
output array Ai of one homomorphic indicator operation as

Var(Err(Ai)) ≤ k · ℓ ·N · g2 · Var(Err(bski)) + k · (1 +N) · ϵ2,

based on the analysis of [9]. Each element of ˆbsk is a vector of RGSW ciphertexts (denoted by
[A0, . . . ,An−1]). Each component of such vectors is created via homomorphic indicator which
consists of k consecutive CMUX gates (internal products). We define the variance of ˆbsk to be the
maximum variance of Ai’s. Hence, the noise contained in ˆbsk can be bounded as follows:

Var(Err( ˆbsk)) = maxi(Var(Err(A0)), . . . ,Var(Err(An−1)))

≤ k · ℓ ·N · g2 · Var(Err(bski)) + k · (1 +N) · ϵ2.

Now, we run bootstrapping as specified in [14] with the constructed ˆbsk. In the blind rotation
algorithm of [14], there are k additions among the corresponding ˆbsk components in every loop.
After the additions, the output, say Cadd, contains the noise of which the variance is

Var(Err(Cadd)) ≤ 2 · k · Var(Err( ˆbsk)).

In terms of noise growth, the blind rotation of [14] is viewed as TFHE bootstrapping with Cadd as
the bootstrapping key. After blind rotation, the output RLWE ciphertext c has a noise that can be
bounded as follows:

Var(Err(c)) ≤ n · ℓ ·N · g2 · Var(Err(Cadd)) + n · (1 +N)ϵ2.

Performing a key switching to convert c to an LWE ciphertext, denoted by c, only adds a small
noise N · ℓ · g2 · Var(Err(evki)) which is not a dominant term compared to the noise in c. Therefore,
the variance of the final noise in our case has complexity

O(k3 · ι · n · ℓ2 ·N2 · g4 · θ2),
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whereas [17] has O(k2 · ι · n · ℓ2 ·N2 · g4 · θ2). Under the central limit heuristic, the noise contained
in the output LWE ciphertext c has the following bound with overwhelming probability:

∥Err(c))∥∞ ≤ 6 ·
√
Var(Err(c)).

As a result, we can find the relation among parameters (mainly q,N, n and k) from the following
bound in order to guarantee the correctness,

∥Err(c)∥∞ ≤ q/16.

Overall, our bootstrapping key generation algorithm gives the same noise propagation as Lee et al.’s
approach, however, our choice of bootstrapping adds more noise depending on the number of users
during blind rotation. Therefore, the final noise contained in the output of bootstrapping using our
technique has a bigger factor (k1.5) than the approach of Lee et al., where the noise grows linear in
k.

7 Performance evaluation

In this section, we detail our implementation choices and provide the best parameter sets together
with their benchmarks with respect to the actual running time of the main homomorphic operation
and noise growth. We came across some difficulties when comparing our implementation numbers
with the existing design of [17] since they did not implement their multi-key extension. Therefore,
for fair comparison, we analyze the noise growth of bootstrapping key of both designs in terms of
crucial parameters such as k,N, n, ℓ, and provide benchmarks with respect to the running time of
dominant operation of both cases on the same machine.

7.1 Complexity Comparison

Bootstrapping running time

Scheme blind rotation

[17] (1.5n+ w) · Tmult

[14] n · Tmult + k · n · (4 · ℓ · TPM )

Table 1: Comparison in terms of the number of expensive operations such as external products denoted by Tmult

and a point-wise multiplication between two polynomials of degree N in FFT domain, denoted by TPM used in blind
rotation. w is a small constant.

In Table 1 we provide the computational cost of the blind rotation algorithms of [17] and [14] in
terms of the cost of one point-wise multiplication in the FFT domain (denoted by TPM ) and one
external product (denoted by Tmult). An external product consists of 4 ∗ ℓ point-wise multiplications
in the FFT domain and 2ℓ + 2 FFT conversions of a polynomial (denoted by TFFT ) (from the
standard domain to FFT domain and vice versa). Since the dominant part of one external product is
(2ℓ+ 2) FFT conversions , we can consider TFFT as the dominant factor. The actual computational
cost of blind rotation will, of course, depend on the chosen parameters for the schemes.
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We want to know up to which k our MPHE approach based on [14] outperforms that of [17].
For this, we can use Table 1 and upper bound k as follows:

k ≤ 0.5 · Tmult

4 · l · TPM
=

1

2
+

(l + 1)

4l
· TFFT

TPM
. (1)

Theoretically, the ratio between TFFT and TPM (denoted by r) is O(logN), however, the hidden
constant in the complexity varies depending on machines and FFT libraries the server runs. Moreover,
with the bound on the noise after blind rotation derived in Section 6, we obtain the following relation
among parameters

k ≤
(

q

96 ·
√
ι ·
√
n · ℓ ·N · g2 · θ

) 2
3

(2)

to guarantee the correctness in the multiparty setting with our global bootstrapping key.
With the parameters that we used in our implementation (see Table 2), we can handle up

to k ≤ 213.3 parties according to (2). However, the practical bound for k depends on r and l, as
described by (1). For example, let us fix l = 3. If r < 4, it is better to use single-key TFHE directly,
if 5 ≤ r ≤ 7 then the optimal approach is to use our technique for k ≤ 2 and the approach of
[17] for k ≥ 3. Similarly, for 8 ≤ r ≤ 10 the optimal is to use our technique when k ≤ 3 and the
approach of [17] for k ≥ 4. When r ≈ 64 in our implementation, we can expect the upper bound
of k which guarantee that our approach is better up to 21 parties for N = 211, ℓ = 3. Therefore,
our approach is better the higher the ratio r is. This is the case when we want to handle larger
message spaces in TFHE. That is, in order to handle message spaces larger than bits, TFHE offers
functional bootstrapping, which uses N up to 214 [4]. In this case, r will increase with respect to the
case N = 211, resulting in higher values of k for which our approach provides faster bootstrapping
than that of [17].

Setup phase Once the global keys are generated, the server can reuse the keys multiple times.
Therefore, in the MPHE case, the global key generation is considered as being part of the setup
phase. The setup phase of Lee et al. consists of n · k internal products with multiplicative depth
k. Similarly, our homomorphic indicator consists of k CMUX instantiated with internal products
per secret key element. Therefore, our approach also requires k · n internal products, in total, with
multiplicative depth k. As a result, both approaches have the same computation complexity and
the same noise propagation during this phase.

Memory blowup However, the bootstrapping key size increases as k grows in our extension of
[14], whereas the memory overhead of Lee et al. does not rely on k once the bootstrapping key is
generated. Therefore, one can enjoy our approach up to reasonably many parties in the computing
environment where the memory blow-up is not a big issue. With a normal laptop, we show our
implementation result up to 16 parties in the next section.

7.2 Implementation

We provide a prototype implementation of our multikey bootstrapping key generation algorithm.
We have also implemented the blind rotation algorithm of [14] instantiated with our bootsrapping
keys. The prototype was done in Rust using the Concrete library (concrete-core version 1.0.0-beta)
[10].
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For some operations such as encryption/decryption and generation of key-switching keys, the
default code that Concrete provides is not sufficient since it is written to work with binary secret
keys. This has required us to include new functions in concrete-core to account for non-binary secret
keys. Therefore, to ensure reproducible results, we include in our GitHub repository a modified
version of concrete-core together with the Cargo.lock file of our project. We also include the files
generated from the benchmark.

7.3 Results and recommended parameter sets

To test our new key generation algorithm, we have computed a NAND gate using the blind rotation
algorithm of [14] and our bootstrapping keys. We want to remark that the noise after bootstrapping
is independent of the noise of the LWE ciphertext being bootstrapped. As long as the noise after
bootstrapping is smaller than q/16 it is possible to compute a new gate. Therefore, our approach
can be used for a more complex circuit than just a single NAND gate.

We have performed a search over a set of 26 possible parameter sets for decomposition base g and
level l of the RGSW ciphertexts composing the keys, and we have selected the best parameters in
terms of bootstrapping time and noise growth. This selection was done after computing 500 NAND
gates per parameter set. Our experiments were done using a machine with an Intel(R) Core(TM)
i7-8550U CPU @ 1.80GHz with 8Gb of RAM and the results can be found in Table 2.

We use parameter N = 2048, logQ = 64, θ = 1.85 ∗ 24 for local public key (generated during
parties’ setup phase) to achieve 110 bit security. The keys are used to generate ciphertexts and
global keys which has higher security due to k aggregation.

k N n log q logQ σrlwe(= θ) σlwe B l Time (in seconds) Bootstrapping noise Bsk noise

2 2048 530 32 64 1.85 · 24.2 217
12 3 0.20 56.2 (24.2) 35.91
6 8 0.48 45.6 (13.6) 30.37

4 2048 495 32 64 1.85 · 24.2 217
11 4 0.33 56.12 (24.12) 36.95
7 7 0.59 48.97 (16.97) 32.98

8 2048 495 32 64 1.85 · 24.2 217
8 4 0.46 57.51 (57.51) 40.29
7 6 0.70 50.65 (18.65) 33.85

16 2048 495 32 64 1.85 · 24.2 217
10 5 0.90 58.37 (26.37) 38.02
7 6 1.06 52.79 (20.79) 35.81

Table 2: Parameter sets recommended achieving at least 110-bit security based on LWE estimator [1] for different
number parties k. We indicate by log q and logQ the LWE and RLWE modulus, respectively. The noise in a fresh
RLWE ciphertext is indicated as σrlwe. The noise in a fresh LWE ciphertext is indicated as σlwe. B corresponds to
log(g). The last column details the noise contained in the bootstrapping keys after running the homomorphic indicator
algorithm. The values in the last three columns correspond to the average of 500 NAND operations, each performed
with a freshly encrypted LWE ciphertext.

We can see that the trade-off between running time and the noise contained in the ciphertexts
and keys, depending on the choice of B = log2 g and ℓ, where gℓ ≤ Q in Table 2. Since ℓ influences
on the size of bootstrapping key, it also affects the running time. Moreover, as we can see from
Section 6, both ℓ and g are important factors for the noise growth. However, the noise grows in
poly(g). Therefore, our small choice of B increases bootstrapping running time but decreases the
noise contained in bootstrapping key and the final ciphertext after bootstrapping, significantly,
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which guarantees much lower decryption failure probability. In Table 2, we give two versions of
noise in logarithmic form, in the second column from the right. The first one is the noise in RQ

and the second one in the parentheses is the noise after modulus switching from Q to q. Since our
message m ∈ {0, 1} is encoded as q/8 ·m, the final noise should be smaller than q/16 to guarantee
the correctness. Blind rotation with the global bootstrapping key works over RQ, therefore, the
correctness holds if the noise contained in the output of blind rotation is less than Q/16. Our result
shows that we still have enough noise room to handle more operations before decryption failure
occurs. Moreover, our bootstrapping key noise grows linearly in k as our analysis expected (for fixed
parameters Q, θ,N and similar choice of ℓ and B).

In Table 3, we show how much the server consumes memory to store bootstrapping keys, which
increases linearly in k. We also show the time to generate the keys. We want to remain to the
reader that this key generation happens only once and can be done by the server alone. Therefore,
the parties can produce their individual keys, send them to the server and go offline until the
server produces the bootstrapping keys. For the single-key case, the original TFHE key generation
takes around 1.5 seconds, while ours takes 6 seconds. Since bootstrapping keys are forms of RGSW
ciphertext and the number of keys are depending on the size of secret key, the keys are the main
factor of server’s memory overhead of FHE in general.

k N n log q logQ B l Bsk size Bsk generation time Other keys generation time

2 2048 530 32 64
12 3 0.42 220 3.80
6 8 0.45 620 3.70

4 2048 495 32 64
11 4 0.63 540 7.29
7 7 0.66 970 7.26

8 2048 495 32 64
8 4 1.3 1330 15.20
7 6 1.1 1600 14.94

16 2048 495 32 64
10 5 2.3 2900 31.29
7 6 2.2 3570 37.76

Table 3: Size in GB and time of generation (in seconds) of the bootstrapping keys produced by our approach with
respect to the best parameters for time/noise error. We also provide the time of generation (in seconds) of the rests
of the keys generated during setup. That is, the generation of all the users public and secret keys, the global public
and secret key and the global key switching key. The values in the last two columns correspond to the average of 500
NAND operations, each performed with a freshly encrypted LWE ciphertext.

As we mentioned above (Section 6), Lee et al.[17]’s bootstrapping key generation would be so much
similar since the number of the dominant operation (internal product) of their algorithm is same as
our case. Since they don’t provide experimental result, our result can be used for a reference for
their case.

8 Discussion and Conclusion

8.1 Applications of TFHE-based multiparty FHE

Determining whether a MKHE or a MPHE approach is better for a given application will come down
to understanding two things. First, the character of the parties involved. If the application needs to
provide parties with the capability of joining and leaving during the life cycle of the application,
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then multikey is the only choice. On the other hand, if the application has a static number of users
from start to finish, then both approaches can be considered. The deciding factor in this case will
be the bandwidth of the network and the storage capabilities of the parties. That is, the ciphertexts
produced by a multikey scheme grow linearly in size with respect to the number of parties. The
ciphertexts considered in a multiparty scheme have constant size. In fact, they have the same size
as the single-party equivalent of the scheme. Another detail that need to be considered in this
discussion is the setup time. A multiparty based application requires an expensive setup phase, since
the generation of the global bootstrapping key is very computationally expensive. If the application
only needs to run once, the multiparty approach might not be the best approach and the user should
favor some other alternative. On the other hand, if the application will execute a good amount of
times, the amortized cost well compensates the initial requirement of the setup phase.

In what follows, we give examples of applications that could benefit from the multiparty variant
of TFHE that we present in this paper. We will try to provide the best explanation as of why we
think that these applications would indeed need to use a multiparty variant of TFHE and not some
other FHE-based solution such as multikey or the use of some other scheme instead of TFHE.

– k-NN learning. k-NN is a well-known Machine Learning algorithm that given a distance δ, a
collection of vectors D (model vectors) and a source vector v returns the k vectors in D closest to
v with respect to distance δ. The inner workings of k-NN are beyond the scope of this work, we
will just point out that the main function to homorphically evaluate k-NN is the sign function:

Signl :N→ {0, 1}
x 7→ 0 if x ≤ m− l

x 7→ 1 if x > m− l.

Using our new technique for generating bootstrapping keys for TFHE, it is possible to run
k-NN homomorphically in the following scenario, as discussed in Figure 1. The data owner sends
its data to a server (the computing party), by encrypting D with the global public key. The
client, encrypts its source vector v using the same global public key and sends it to the server,
which runs the k-NN algorithm homomorphically using the bootstrapping procedure of [23],
together with our bootstrapping keys to evaluate the sign function as described in this work. The
server sends back to the client the set of model vectors M closest to v together with the partial
decryption interacting with the data owner. This allows the client to decrypt M . If another
party wants to do the same, it simply interacts with the server to generate a new collection of
global public key, bootstrapping keys and secret keys.

– Deep Neural Networks. A similar concept can be applied in the world of image processing
by means of Neural Networks. That is, very recent works [22,3] shows how to do Deep Neural
Network inference using TFHE. Only the single-key variant of TFHE is considered. The new
bootstrapping method proposed in this work can be used to perform Deep Neural Network
inference over encrypted data using TFHE. That is, a single client can use an already trained
NN by sending its encrypted query to the server homomorphically encrypted. We believe that
if the number of parties can be fixed in advanced (for example, in the case of centralized NN,
see the survey in [6] for concrete constructions) then our multiparty equivalent of TFHE could
be used to train a more accurate model using data from different parties while preserving their
privacy. Depending on the size of the databases and the number of users, a multikey approach
could quickly become impractical.
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– Inter-bank data sharing for fraud prevention. Imagine that the top five banks of a given
country want to improve their fraud detection and prevention capabilities. Their idea is to share
their data between the banks in order to understand how fraud is happening and to study how it
can be prevented. Of course, the banks can not share the data in the clear between them, since
it is highly sensible customer information. For this, they can use an FHE approach which allows
each bank to query the databases of the other banks in a privacy preserving manner in order to
learn what they can improve in their end. In this scenario, the size of the databases of the banks
make the use of MPHE more favourable than MKHE since the number of banks are already fixed.
Moreover, the nature of the data and the consequences of errors in the encrypted computations
make the use of a TFHE-based approach better than, say, a CKKS approach where some error
is inherently present in the resulting plaintext. This scenario is not theoretical, the idea of using
FHE for inter-bank data sharing has been already studied, explored and implemented in the
UUEE.

8.2 Discussion

Our homomorphic indicator can be of independent interest to homomorphically indicate where the
desired position is in an array/vector. There is a similar work which achieves the same functionality
as ours, introduced in [11]. Their algorithm is called homomorphic traversal and outputs a unit
vector where the desired component is set to 1, and 0 elsewhere. Their algorithm gives less noise
in the output than the homomorphic indicator procedure since the multiplication depth is log k
instead of k, where k is the dimension of the output vector.

However, they need a bit representation form of i for inputs, which is an implementation bottle-
neck in our case. That is, we would need a bit representation of each Sj ≤ k which is a master secret
element to run their algorithm for all j ∈ {0, . . . , n− 1}. Since Sj ’s are not known to every user, the
only way to do this is to homomorphically compute binary addition of all the bit representations of
si,j ’s which were sent by all k users.

However, handling a carry bit homomorphically is not well studied and not practical enough for
now. This is the reason why we have designed a new way to output the same unit vector with only
simple homomorphic operations. Therefore, each approach can be used in different applications,
depending on the required input form.

8.3 Conclusion and Future works

We propose a novel approach to construct blind rotation keys for the TFHE scheme in the multiparty
setting given a predefined set of parties. We compare two different TFHE bootstrapping designs
which can handle multi-digit secret keys in the single user setting and that can be extended to
deal with multiple users. From our comparison, we have determined which of the two approaches
provides a faster bootstrapping algorithm, and we have built an efficient global blind rotation key
compatible with it.

To this end, we introduce a novel algorithm called homomorphic indicator to obliviously compute
an (encrypted) unit vector where the encryption of one is placed according to the input parameters.
We believe that this construction can be of independent interest.

We have implemented our design as a proof-of-concept. Given a suitable set of parameters, we
have been able to compute TFHE gate bootstrapping in less than a second for up to 16 parties.
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As it is detailed in the paper, our method induces a memory blow-up in the blind rotation keys
when the number of parties grows. As future work, we will address this issue and provide optimal
parameters for as many parties as possible.
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2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with
low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (Apr 2012)

3. Benamira, A., Guérand, T., Peyrin, T., Saha, S.: Tt-tfhe: a torus fully homomorphic encryption-friendly neural
network architecture (2023)

4. Bergerat, L., Boudi, A., Bourgerie, Q., Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Parameter optimization &
larger precision for (t)fhe. Cryptology ePrint Archive, Paper 2022/704 (2022), https://eprint.iacr.org/2022/704,
https://eprint.iacr.org/2022/704

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping.
In: Goldwasser, S. (ed.) ITCS 2012. pp. 309–325. ACM (Jan 2012)

6. Cabrero-Holgueras, J., Pastrana, S.: Sok: Privacy-preserving computation techniques for deep learning. Proceedings
on Privacy Enhancing Technologies 2021, 139 – 162 (2021)

7. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with
application to oblivious neural network inference. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM
CCS 2019. pp. 395–412. ACM Press (Nov 2019)

8. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arithmetic of approximate numbers. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 409–437. Springer, Heidelberg
(Dec 2017)

9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homomorphic encryption over the torus.
Journal of Cryptology 33(1), 34–91 (Jan 2020)

10. Chillotti, I., Joye, M., Ligier, D., Orfila, J.B., Tap, S.: Concrete: Concrete operates on ciphertexts rapidly by
extending tfhe. In: WAHC 2020–8th Workshop on Encrypted Computing & Applied Homomorphic Cryptography.
vol. 15 (2020)

11. Cong, K., Das, D., Park, J., Pereira, H.V.: Sortinghat: Efficient private decision tree evaluation via homomorphic
encryption and transciphering. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security. p. 563–577. CCS ’22, Association for Computing Machinery, New York, NY, USA (2022),
https://doi.org/10.1145/3548606.3560702

12. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report
2012/144 (2012), https://eprint.iacr.org/2012/144

13. Joye, M.: Sok: Fully homomorphic encryption over the [discretized] torus. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2022(4), 661–692 (Aug 2022), https://tches.iacr.org/index.php/TCHES/article/
view/9836

14. Joye, M., Paillier, P.: Blind rotation in fully homomorphic encryption with extended keys. In: Dolev, S., Katz, J.,
Meisels, A. (eds.) Cyber Security, Cryptology, and Machine Learning. pp. 1–18. Springer International Publishing,
Cham (2022)

15. Kim, E., Lee, H.S., Park, J.: Towards round-optimal secure multiparty computations: Multikey fhe without a
crs. International Journal of Foundations of Computer Science 31(02), 157–174 (2020), https://doi.org/10.1142/
S012905412050001X

18

https://doi.org/10.1515/jmc-2015-0016
https://eprint.iacr.org/2022/704
https://eprint.iacr.org/2022/704
https://doi.org/10.1145/3548606.3560702
https://eprint.iacr.org/2012/144
https://tches.iacr.org/index.php/TCHES/article/view/9836
https://tches.iacr.org/index.php/TCHES/article/view/9836
https://doi.org/10.1142/S012905412050001X
https://doi.org/10.1142/S012905412050001X


16. Lee, H.S., Park, J.: On the security of multikey homomorphic encryption. In: Albrecht, M. (ed.) 17th IMA
International Conference on Cryptography and Coding. LNCS, vol. 11929, pp. 236–251. Springer, Heidelberg (Dec
2019)

17. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Efficient fhew bootstrapping with small
evaluation keys, and applications to threshold homomorphic encryption. In: Hazay, C., Stam, M. (eds.) Advances
in Cryptology – EUROCRYPT 2023. pp. 227–256. Springer Nature Switzerland, Cham (2023)
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