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Abstract

We present a three-round protocol for threshold ECDSA signing
with malicious security against a dishonest majority, which information-
theoretically UC-realizes a standard threshold signing functionality, as-
suming ideal commitment and two-party multiplication primitives. Our
work improves upon and fully subsumes the DKLs t-of-n [DKLs19] and
2-of-n [DKLs18] protocols. This document focuses on providing a suc-
cinct but complete description of the protocol and its security proof, and
contains little expository text.
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1 Introduction
The Elliptic Curve Digital Signature Algorithm (ECDSA) is among the most
common and widely deployed cryptographic tools of any kind. Since its
standardization by the US National Institute of Standards and Technology
(NIST) [Nat13], it has become an ubiquitous component of the internet in-
frastructure. This makes it a natural and essential target for threshold cryp-
tography. Unfortunately, ECDSA features a non-linear signing equation that is
challenging to compute in a distributed fashion.

In this work, we propose a three-round protocol for ECDSA signing that
information-theoretically UC-realizes a standard threshold ECDSA signing
functionality against a malicious adversary corrupting a dishonest majority of
parties, assuming ideal commitments and ideal secure multiplication. Specifi-
cally, we prove the theorem:

Theorem 1.1 (Informal Security Theorem). In the (FCom,FZero,FRVOLE,
FDLKeyGen)-hybrid model, πECDSA(G, n, t) statistically UC-realizes FECDSA(G, n, t)
against a malicious adversary that statically corrupts up to t− 1 parties.

where n is the number of parties in total, t is the threshold of parties required for
a signature to be produced, and G is the description of an elliptic curve. In addi-
tion to the commitment functionality FCom and the randomized multiplication
functionality FRVOLE, our protocol uses FZero to generate secret-sharings of zero,
and we abstract the key generation process behind the FDLKeyGen functionality.

Our protocol reduces the round complexity of threshold ECDSA signing
to parity with threshold signing for the Schnorr scheme [Sch89], for which
an elegant three-round protocol has long been known under standard assump-
tions [Lin22].1 We derive our protocol primarily from the t-of-n [DKLs19] and
2-of-n [DKLs18] signing schemes of Doerner et al. and combine their approach
to achieving malicious security by checking consistency of intermediate com-
putations in the signing curve with a protocol structure recently introduced
by Abram et al. [ANO+22] and also used by Groth and Shoup [GS22a] in the
contexts of PCG-based signing and honest-majority signing, respectively.2 To
our knowledge, no other threshold ECDSA scheme for an arbitrary threshold
requires fewer than four rounds without some flavor of pipelining and pre-
processing. The round count of our protocol can be reduced further to two
rounds via pipelining, and in the two-party context under pipelining only a sin-
gle message in each direction is necessary. We suggest to realize the required
secure multiplication functionality via a refinement of the protocol of Doerner et
al. [DKLs19], and show via closed-form analysis that with this realization, the
bandwidth cost of our protocol is significantly reduced, relative to its progeni-
tors. Thus, the protocol in this work fully subsumes the prior works of Doerner
et al. [DKLs18, DKLs19] as well as several other threshold ECDSA schemes.

1A number of two-round distributed Schorr protocols such as MuSig2 [NRS21] and
FROST [BCK+22] also exist, with game-based security under non-standard assumptions.

2It seems that the same correlation was also used by Lindell and Nof [LN18] somewhat
earlier, without being formulated explicitly.
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The purpose of this document is to provide a functional description of our
protocol and a proof of its security. We assume familiarity with the problem
space, and do not include a comprehensive literature survey, design rationale,
or other introductory material. In addition to our primary dishonest-majority
protocol, we also give a brief account of a significantly simplified two-round
honest-majority protocol.

1.1 Background
ECDSA uses a basic discrete logarithm key pair comprising a uniform sk← Zq

and a public pk = sk · G, where G = (G, G, q) is an elliptic curve. A signature
consists of a public nonce R = r·G, where r is a secret per-signature instance key,
and a value of the form s = (a+sk ·b)/r, where a and b are public coefficients. It
is the computation of s that forms the core challenge of distributing the signing
process efficiently.

One widely-used approach involves sampling secret shares of r, then using
the inversion protocol of Bar-Ilan and Beaver [BB89] to compute secret shares of
1/r, and then a further secure multiplication subprotocol to compute shares of
sk/r, before finally assembling the signature. The sequentiality of this approach
is its shortcoming: each of the subprotocols requires multiple rounds, and still
more rounds may be necessary to ensure security against malicious adversary.

In a recent work on threshold ECDSA in the Pseudorandom Correlation
Generation (PCG) paradigm, Abram et al. [ANO+22] proposed to fuse two
instances of the Bar-Ilan and Beaver protocol to compute secret sharings of
what they refer to as an ECDSA tuple, which comprises four values (ϕ, r, u, v)
such that u = ϕ · r and v = ϕ · sk. It is easy to see that given these four values,
if w = a · ϕ + b · v and u are made public, then a valid signature can easily be
assembled as w/u. If the secret sharing scheme is linear, then shares of w can
be computed locally by the signers, and assembly of the signature takes only
the one round required to swap shares of w and u.

Fixing the above correlation as the layout of a putative protocol leaves two
problems: how to compute the correlation securely, and, if the adversary is mali-
cious, how to ensure that the correlation is consistent with pk and R, and that it
is not altered during assembly. Prior works involving the same correlation have
used honest-majority techniques [GS22a], complex PCG techniques with sep-
arate statistical MACs [ANO+22], or expensive zero-knowledge proofs [LN18]
to solve these problems. In this work, we propose a simple pairwise statisti-
cal consistency check, similar in spirit to the global consistency checks used by
the protocol of Doerner et al. [DKLs19], which works in the dishonest-majority
setting, leverages the structure of the existing shares, requires no additional
correlated state or zero-knowledge proofs to be generated. We also propose
to sample the correlation with a simple and minimal pairwise random vector
oblivious linear evaluation (VOLE) functionality—essentially a flavor of secure
multiplication—and show how a two-round protocol to realize this functionality
efficiently from Oblivious Transfer (OT) can be derived from the secure multi-
plication protocol of Doerner et al. [DKLs19]. While we focus on our suggested
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VOLE realization, the modularity and simplicity of our ECDSA signing proto-
col imply that its performance properties can be adjusted to mimic or exceed
those of threshold ECDSA schemes based on Paillier [Pai99, CGG+20] or class
groups [CL15, CCL+23] simply by replacing the underlying VOLE.

2 Preliminaries
2.1 Notation
We use = for equality, ..= for right-to-left assignment, =.. for left-to-right as-
signment, and ← for right-to-left sampling from a distribution. In general,
single-letter variables are set in italic font, function names are set in sans-serif
font, and string literals are set in slab-serif font. We use X for an unspecified
domain, G for a group, Z for the integers, and N for the natural numbers. We
use λc and λs to denote the computational and statistical security parameters,
respectively, and κ is the number of bits required to represent an element of the
order field of an elliptic curve.3

Vectors and arrays are given in bold and indexed by subscripts; thus ai is
the ith element of the vector a, which is distinct from the scalar variable a.
When we wish to select a row or column from a multi-dimensional array, we
place a ∗ in the dimension along which we are not selecting. Thus b∗,j is the
jth column of matrix b, bj,∗ is the jth row, and b∗,∗ = b refers to the entire
matrix. We use bracket notation to generate inclusive ranges, so [n] denotes the
integers from 1 to n and [5, 7] = {5, 6, 7}. We use |x| to denote the bit-length
of x, and |y| to denote the number of elements in the vector y. By convention,
elliptic curve operations are expressed additively, and elliptic curve points are
typically given capitalized variables.

We use Pi to indicate a party with index i; in a typical context, there will
be a fixed set of n parties denoted P1, . . . ,Pn. In contexts where only two
parties are present, they are given indices A and B and referred to as Alice and
Bob, respectively. Whenever a functionality or protocol requires a threshold of
parties, it is denoted t.

2.2 Security and Communication Model
We consider a malicious PPT adversary who can statically corrupt a dishonest
majority of parties. All of our proofs are expressed in the Universal Composition
framework of Canetti [Can01]. We note that our techniques do not rely on any
specific properties of the framework. We assume that all of the parties in any
protocol are fully connected via authenticated channels.

3In the context of non-pairing-friendly curves, κ = 2 · λc, and all three security parameters
are asymptotically equivalent.
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2.3 The ECDSA Signature Scheme
We begin by describing the ECDSA signature scheme. All algorithms in the
scheme are parameterized by G = (G, G, q), which is the description of an elliptic
curve group G of order q that is generated by G. Note that κ = |q|. Formally, we
require a curve-sampling algorithm G ← GrpGen(1λc), and if ECDSA is a secure
signature scheme, then, at a minimum, the discrete logarithm assumption must
hold with respect to the distribution of curves sampled by GrpGen.4 In practice,
the group description is fixed and standardized.
Algorithm 2.1. ECDSAGen(G)

1. Uniformly choose a secret key sk← Zq.

2. Calculate the public key as pk ..= sk ·G.

3. Output (pk, sk).

Algorithm 2.2. ECDSASign(G, sk ∈ Zq, m ∈ {0, 1}∗)
1. Uniformly choose an instance key r ← Zq.

2. Calculate R ..= r ·G and let rx be the x-coordinate of R, modulo q.

3. Calculate
s ..= SHA2(m) + sk · rx

r

4. Output σ ..= (s, rx).

Algorithm 2.3. ECDSAVerify(G, pk ∈ G, m ∈ {0, 1}∗, σ ∈ Z2
q)

1. Parse σ as (s, rx).

2. Calculate
R′ ..= SHA2(m) ·G + rx · pk

s

and let rx′ be the x-coordinate of R′, modulo q.

3. Output 1 if and only if rx′ = rx.

3 t-Party Three-Round Threshold ECDSA
We begin by giving the functionality that our threshold ECDSA protocol will
realize. This functionality is fundamentally similar to the one given by Doerner

4This is necessary, but it is not known to be sufficient, and as of writing the security of
ECDSA cannot be proven under any standard assumption.
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et al. [DKLs19], but unlike their functionality, ours uses the ECDSA algorithms
as black boxes, does not leak R early, and formally distinguishes aborts, which
prevent further interactions with the functionality, from failed signatures, which
do not. This distinction is important in threshold functionalities, because a
single corrupt party should not, by participating in one signing, be able to
prevent signatures from being created in the future by other groups of parties
that exclude it.

In this work we do not make any assumptions about the SHA2 function. If
it is assumed to be collision resistant, then step 5 of the functionality can be
changed to emit a failure when the messages themselves are unequal, rather
than when their images under SHA2 are unequal.
Functionality 3.1. FECDSA(G, n, t): Threshold ECDSA

This functionality is parameterized by the party count n, the threshold t,
and the elliptic curve G = (G, G, q). The setup phase runs once with n
parties, and the signing phase may be run many times between (varying)
subgroups of parties indexed by P ⊆ [n] such that |P| = t. If any party
is corrupt, then the adversary S may instruct the functionality to abort
during the setup phase only. S may also instruct the functionality to fail
during the signing phase if any party indexed by P is corrupt, but in
this case the functionality does not halt, and further signatures may be
attempted.

Setup: On receiving (init, sid) from some party Pi such that sid =..

P1‖ . . . ‖Pn‖sid′ and i ∈ [n] and sid is fresh, send (init-req, sid, i) to S.
On receiving (init, sid) from all parties,

1. Sample the joint secret and public keys, (pk, sk)← ECDSAGen(G).

2. Store (secret-key, sid, sk) in memory.

3. Send (public-key, sid, pk) directly to S.

4. On receiving (release, sid, i) for i ∈ [n] from S, send
(public-key, sid, pk) to Pi and store (pk-delievered, sid, i) in
memory.

Signing: On receiving (sign, sid, sigid, mi) from any party Pi, parse
sigid =.. P‖sigid′ such that |P| = t and ignore the message if i 6∈ P or
P 6⊆ [n] or sigid is not fresh or if (pk-delievered, sid, i) does not exist in
memory. Otherwise, send (sig-req, sid, sigid, i, mi) directly to S.
On receiving (sign, sid, sigid, mi) from Pi for every i ∈ P, sample σ ←
ECDSASign(G, sk, mP1) and then

5. If there is any pair of signers Pi and Pj such that SHA2(mi) 6=
SHA2(mj), then for every i ∈ P, then send (failure, sid, sigid) to Pi.

5



6. If a corrupt party is indexed by P, and S sends (fail, sid, sigid, i)
such that i ∈ P, send (failure, sid, sigid) to Pi and ignore any future
(fail, sid, sigid, i) or (proceed, sid, sigid, i) message.

7. If a corrupt party is indexed by P, and S sends (proceed, sid, sigid, i)
such that i ∈ P, send (signature, sid, sigid, σ) to Pi and ignore any
future (fail, sid, sigid, i) or (proceed, sid, sigid, i) message.

8. If no corrupt parties are indexed by P, send (signature, sid, sigid, σ) to
Pi for every i ∈ P.

9. Once every signing party has received an output, ignore all future mes-
sages with this sigid value.

3.1 Building Blocks
In this section, we define a number of simple functionalities from which our
protocol will be constructed. All are relatively standard, and they can be real-
ized via standard techniques. In each case we give some notes on purpose and
realization strategies and performance.

We begin with a functionality that samples Shamir sharings of keys for
discrete-log cryptosystems (e.g. ECDSA, the Schnorr signature scheme, the
ElGamal encryption scheme, the BBS+ signature scheme, etc). This function-
ality essentially abstracts the key generation portion of the threshold ECDSA
protocols of Doerner et al. [DKLs18, DKLs19], and is nearly identical to the
abstraction used by the threshold BBS+ protocol of Doerner et al. [DKL+23].
We refer the reader to the latter paper for the description of a protocol that per-
fectly UC-realizes the functionality in three rounds assuming ideal one-to-many
committed zero-knowledge (i.e. in the FRDL

CP -hybrid model).

Functionality 3.2. FDLKeyGen(G, n, t): Discrete Log Keygen [DKL+23]
This functionality is parameterized by the party count n, the threshold t,
and the elliptic curve G = (G, G, q). The adversary S may corrupt up to
t− 1 parties that are indexed by P∗, and if |P∗| ≥ 1, then the adversary S
may instruct the functionality to abort.

Key Generation: On receiving (keygen, sid) from some party Pi

such that sid =.. P1‖ . . . ‖Pn‖sid′ and i ∈ [n] and sid is fresh, send
(keygen-req, sid, i) to S. On receiving (keygen, sid) from all parties,

1. Sample (pk, sk)← ECDSAGen(G).

2. Store (secret-key, sid, sk) in memory.

3. Receive (poly-points, sid, {p(i)}i∈P∗) from S.
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4. Sample a random polynomial p of degree t− 1 over Zq, consistent with
the values p(i) for i ∈ P∗ that were sent by S, and subject to p(0) = sk.

5. For i ∈ [n], compute P (i) ..= p(i) ·G.

6. Send (public-key, sid, pk, {P (1), . . . , P (n)}) directly to S.

7. On receiving (release, sid, i) for i ∈ [n] directly from S, send
(key-pair, sid, pk, p(i), {P (1), . . . , P (n)}) to Pi.

Next, we introduce the standard commitment functionality, which can be
realized in the random oracle model via a folklore method: the commitment is
the image under the oracle of the committed value concatenated with a salt of
length 2λc, and the decommitment is simply the committed value plus the salt.
Functionality 3.3. FCom: Commitment [CLOS02]

In each instance one specific party PS commits, and the other party PR
receives the commitment and committed value.

Commit: On receiving (commit, sid, x) from party PS, parse sid =..

PS′‖PR‖sid′. If sid is a fresh value and S′ = S, then store
(commitment, sid, x) in memory and send (committed, sid) to PR.

Decommit: On receiving (decommit, sid) from PS, if a record of the form
(commitment, sid, x) exists in memory, then send (opening, sid, x) to PR.

We use a functionality that non-interactively samples uniform secret-sharings
of zero. It can be realized very simply in the FCom-hybrid random oracle model:
to initialize the protocol, each pair of parties commits and decommits a pair
of λc-bit seeds to one another, then sums the pair to form a single shared
seed. When a party invokes the protocol, it evaluates the random oracle on
each of its shared seeds concatenated with the next index in sequence, and
accumulates the outputs: it subtracts oracle outputs for the party pairs in
which it is lower-indexed, and adds oracle outputs for the party pairs in which
it is higher-indexed. The seeds can be reused indefinitely.
Functionality 3.4. FZero(G, n): Zero-Sharing Sampling [DKL+23]

This functionality is parameterized by the party count n and a group G.

Sample: Upon receiving (sample, sid) from some party Pi such that
sid =.. P1‖ . . . ‖Pn‖sid′ and i ∈ [n] and sid is fresh, uniformly sample x← Gn

conditioned on
∑

i∈[n] xi ≡ 0G and send (mask, sid, xi) to Pi. Upon receiv-
ing (sample, sid) from any other Pj for j ∈ [n] \ {i}, send (mask, sid, xj) to
Pj .

Finally, we use a random vector oblivious linear evaluation (VOLE) func-
tionality. In this functionality, the first party (Bob) to invoke the functionality
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receives a single random value; the second party (Alice) then supplies it with
a vector of chosen values, and the functionality outputs to both of them se-
cret shares of the product of the random value and each of the elements in
the vector. While realizations are possible from a variety of techniques, as dis-
cussed in section 1, we suggest that this functionality be realized via a simple
modification of the three-round OT-based multiplication protocol of Doerner et
al. [DKLs19]. We note that the vectorization in their protocol is of a differ-
ent kind than the vectorization we will construct, and consequently we ignore
it (specifically, in their notation, we hardcode ℓ = 1). We make two specific
modifications. First, Bob’s “adjustment value” (γB in their notation) is always
hardcoded to be 0. This produces a protocol in which Bob’s “input” is not
chosen by him, but uniformly sampled when he is honest (and possibly nonuni-
form when he is corrupted), and reduces the round count to two while retaining
the bandwidth advantage that Doerner et al.’s three-round multiplication pro-
tocol has over their earlier [DKLs18] two-round protocol. Second, we apply a
one-sided version of the “forced-reuse” modification that Chen et al. [CCD+20]
previously described, in order to force Bob to multiply his (random) input by
a vector of Alice’s inputs. Specifically, Alice performs the steps of the protocol
for each input in her vector, but uses a single batch of Bob’s OT instances for
all of them, concatenating the corresponding OT payloads to form one batch of
payloads with lengths proportionate to her input vector length. The resulting
protocol has an initialization phase that is not represented in the functionality
we intend it to realize. We have omitted the initialization from our functionality
for clarity and simplicity: adapting our protocols to include it is straightforward.
Functionality 3.5. FRVOLE(q, ℓ): Random Vector OLE

This functionality interacts with two parties, PA and PB, who we refer to
as Alice and Bob. It also interacts with the ideal adversary S directly. It
is parameterized by a prime q that determines the order of the field over
which multiplications are performed.

Sampling: On receiving (sample, sid) from Bob such that sid =..

PB‖PA‖sid′ and sid is fresh and no record of the form (instance, sid, ∗, ∗)
exists in memory, sample b ← Zq if Bob is honest, or receive
(adv-sample, sid, b) from S if he is corrupt, and then sample c ∈ Zℓ

q store
(instance, sid, c), output (sample, sid, b) to Bob, and send (ready, sid, c)
to Alice.

Multiplication: On receiving (multiply, sid, a) from Alice, where a ∈
Zℓ

q, if there exists a message of the form (instance, sid, b, c) in memory,
and if (complete, sid) does not exist in memory, then compute di

..= ai ·
bi − ci mod q for every i ∈ [ℓ], send (products, sid, d) to Bob, and store
(complete, sid) in memory.

The protocol of Haitner et al. [HMRT22] may be used to realize a weaker
version of the above functionality which does not always extract the corrupt
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party’s input, but may have reduced bandwidth costs relative to the DKLs-
derived realization we have just described at the expense of one additional round.
Haitner et al. claim threshold ECDSA protocols such as ours to be a primary
motivation for their work. We do not give a precise functionality for their
protocol, and we stress that we have not proven the combination to be secure.
Nevertheless, we give a cost comparison for their protocol in section 5.2.

3.2 The Basic Three-Round Protocol
In this section we give our three round protocol. We begin by developing some
intuition. Suppose that each party Pi knows additive shares ri and ski of r and
sk respectively, and samples a uniform mask ϕi. Suppose also that they know
ui and vi such that∑

i∈P
ui =

∑
i∈P

ri ·
∑
i∈P

ϕi and
∑
i∈P

vi =
∑
i∈P

ski ·
∑
i∈P

ϕi

It is easy to see that given these correlations,∑
i∈P(SHA2(m) · ϕi + rx · vi)∑

i∈P ui
= SHA2(m) + rx · sk

r

is a valid signature on m under pk = sk · G when combined with the nonce
R = r · G. Assuming the correlation to be generated with security against
malicious adversaries, it remains only to ensure that pk = sk · G and that
R = r · G, and to ensure that the adversary does not add any offsets to the
correlation when the signature is assembled. The latter problem is quite simple:
once m, R, and pk are fixed, there exists only one valid ECDSA signature, and
so output offsets can be detected perfectly by verifying the signature after it is
assembled. This leaves the problem of consistency.

Fortunately, the ingredients we need in order to ensure consistency are al-
ready present. Suppose we enrich the correlation: each party Pi knows cu

i,j and
cv

i,j and each party Pj knows du
j,i and dv

j,i such that

cu
i,j = ri · ϕj − du

j,i and cv
i,j = ski · ϕj − dv

j,i

Under this correlation, if Pi sends Ri = ri · G and pki = ski · G to Pj , then it
can also send Γu

i,j = cu
i,j ·G and Γv

i,j = cv
i,j ·G to authenticate the former values.

Because ϕj is uniform and information-theoretically hidden from Pi, if Pi sends
Ri 6= ri ·G, then its chance of sending Γu

i,j satisfying

Γu
i,j = Ri · ϕj − du

j,i ·G

is negligible in κ. Thus by checking the latter equality, Pj can ensure that Pi

has behaved consistently with overwhelming probability. A similar check allows
Pj to ensure the consistency of pki and ski via cv

i,j and dv
j,i. Finally, it is easy to

compute an appropriate value ui given knowledge of ri, ϕi, cu
i,∗, and du

i,∗, and
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to compute an appropriate vi given knowledge of ski, ϕi, cv
i,∗, and dv

i,∗, which
implies that signature assembly can happen as before.

We make a few adjustments to the above basic scheme in our true protocol.
First, we do not insist that each Pi use a consistent inversion mask ϕi with
all of the other parties: instead, it uses an individual random mask with each
counterparty and checks consistency relative to that mask, and then adjusts
the correlation before signature assembly. This allows the correlation to be
generated by a standard pairwise VOLE functionality. Second, Ri is not sent,
but committed and then released, to avoid adversarial bias. Third, the shares
of pk are rerandomized during each signature, in order to prevent the adversary
from inducing offsets that depend on the honest parties’ secrets by using its
mask values inconsistently among the honest parties.

Our final protocol is three rounds. In the first round, each party commits
to Ri and instantiates an FRVOLE instance toward each of the other parties. In
the second round, each party decommits Ri, inputs ski and ri into the instances
of FRVOLE that the other parties have instantiated toward it, and sends each of
the parties the values necessary to authenticate its inputs to FRVOLE and adjust
the outputs of FRVOLE so that they can be assembled into a signature. After
the second round, the inputs to FRVOLE are authenticated. In the third round,
shares of the signature are swapped.
Protocol 3.6. πECDSA(G, n, t): t-Party Three-Round ECDSA

This protocol is parameterized by the party count n, the threshold t, and
the elliptic curve G = (G, G, q). The setup phase runs once with parties
P1, . . . ,Pn, and the signing phase may be run many times between (vary-
ing) subsets of parties of size t. The parties in this protocol interact with the
ideal functionalities FCom, FZero(Zq, t), FRVOLE(q, 2), and FDLKeyGen(G, n, t).
The SHA2 function is not assumed to have any cryptographic properties.

Setup:

1. On receiving (init, sid) from the environment Z, each
party Pi checks whether there exists a record of the form
(key-pair, sid, pk, p(i), {P (1), . . . , P (n)}) in memory. If not, then
Pi sends (keygen, sid) to FDLKeyGen(G, n, t).

2. On receiving (key-pair, sid, pk, p(i), {P (1), . . . , P (n)}) from
FDLKeyGen(G, n, t) each party Pi stores this message in memory and
outputs (public-key, sid, pk) to the environment. If FDLKeyGen(G, n, t)
aborts, then Pi aborts to the environment.

3. The parties perform any initialization procedure associated with
FRVOLE(q, 2) and FZero(Zq, t).a

Signing:
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4. On receiving (sign, sid, sigid, m) from the environment Z, Pi parses
P‖sigid′ ..= sigid such that |P| = t, and ignores the environ-
ment’s message if i 6∈ P or P 6⊆ [n] or sigid is not fresh or
(key-pair, sid, pk, p(i), {P (1), . . . , P (n)}) does not exist in memory.
Otherwise, Pi continues to the next step.

5. Pi samples a secret instance key ri ← Zq and an inversion mask ϕi ← Zq

and computes

Ri
..= ri ·G

P-j ..= P \ {j} for j ∈ P

6. Pi sends

• (commit,Pi‖Pj‖sid‖sigid, Ri) to FCom for every j ∈ P-i

• (sample,Pi‖Pj‖sid‖sigid) to FRVOLE(q, 2) for every j ∈ P-i

• (sample,PP1‖ . . . ‖PPt‖sid‖sigid) to FZero(Zq, t)

This completes the first round.

if pipelining, supply m hereb

7. On receiving

• (committed,Pj‖Pi‖sid‖sigid) from FCom for j ∈ P-i

• (ready,Pj‖Pi‖sid‖sigid, {cu
i,j , cv

i,j}) from FRVOLE(q, 2) for j ∈ P-i

• (sample,Pi‖Pj‖sid‖sigid,χi,j) from FRVOLE(q, 2) for j ∈ P-i

• (mask,PP1‖ . . . ‖PPt‖sid‖sigid, ζi) from FZero(Zq, t)

Pi computes

Γu
i,j

..= cu
i,j ·G

Γv
i,j

..= cv
i,j ·G

ski
..= p(i) · lagrange(P, i, 0) + ζi

pki
..= ski ·G

ψi,j
..= ϕi − χi,j

for every j ∈ P-i and then Pi sends

• (decommit,Pi‖Pj‖sid‖sigid) to FCom

• (multiply,Pj‖Pi‖sid‖sigid, {ri, ski}) to FRVOLE(q, 2)
• (check-adjust, sid, sigid, Γu

i,j , Γv
i,j ,ψi,j , pki) to Pj

11



for every j ∈ P-i.

if preprocessing, supply m hereb

8. On receiving

• (opening,Pj‖Pi‖sid‖sigid, Rj) from FCom

• (products,Pi‖Pj‖sid‖sigid, {du
i,j , dv

i,j}) from FRVOLE(q, 2)
• (check-adjust, sid, sigid, Γu

j,i, Γv
j,i,ψj,i, pkj) from Pj

for every j ∈ P-i, Pi checks whether

χi,j ·Rj − Γu
j,i = du

i,j ·G
χi,j · lagrange(P, j, 0) · P (j)− Γv

j,i = dv
i,j ·G

for every j ∈ P-i, and whether∑
k∈P

pkk = pk

and if these equations hold, then Pi computes

R ..=
∑
j∈P

Rj

ui
..= ri ·

(
ϕi +

∑
j∈P-i

ψj,i

)
+
∑

j∈P-i

(cu
i,j + du

i,j)

vi
..= ski ·

(
ϕi +

∑
j∈P-i

ψj,i

)
+
∑

j∈P-i

(cv
i,j + dv

i,j)

wi
..= SHA2(m) · ϕi + rx · vi

where rx is the x-coordinate of R, and sends (fragment, sid, sigid, wi, ui)
to Pj for every j ∈ P-i. On the other hand, if Pi’s shared instance of
FRVOLE with Pj aborts, or if any of the aforementioned equations do not
hold for some j ∈ P-i, then Pi sends (fail, sid, sigid) to all other parties
and sends an analogous message at the corresponding point in all con-
current signing sessions that involve Pj , outputs (failure, sid, sigid) to
the environment, does not continue to step 10, and does not participate
in any future signature signing sessions involving Pj . This completes
the third round.

9. On receiving (fail, sid, sigid) from any Pj for j ∈ P, Pi outputs
(failure, sid, sigid) to the environment, and does not continue to
step 10.
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10. On receiving (fragment, sid, sigid, wj , uj) from Pj for every j ∈ P-i, Pi

computes

s ..=

∑
j∈P

wj∑
j∈P

uj

and outputs (signature, sid, sigid, (s, rx)) to the environment if and
only if ECDSAVerify(G, pk, m, (s, rx)) = 1; otherwise, Pi outputs
(failure, sid, sigid) to the environment.
aThe functionalities have no such initialization per se, but their realizations might,

and this is the appropriate time to do it.
bIn this case, the signing phase is initiated with a (pre-sign, sid, sigid) message from

the environment, and waits at the indicated point for a (sign, sid, sigid, m) message from
the enviornment. See section 3.3.

3.3 Pipelining and Preprocessing
We have marked the above protocol in two places to show how it can be modified
to add pipelining or preprocessing. In each case, the parties must supply the
message m to the protocol at the indicated point, instead of at the beginning
of the protocol.

Pipelining. Pipelining allows the first round of the protocol to be evaluated
before the message is known. If a single group of parties signs many messages
together, they can evaluate the first round of one signing instance along simul-
taneously with the third round of a previous signature. This allows the signing
procedure to be completed with only two rounds of latency. Because the nonce
R is not defined until the second round, the standard order of quantifiers, in
which the message cannot depend upon R is respected, and the output signa-
tures are secure if single-party ECDSA signatures are. However, R becomes
well-defined from the point of view of the adversary as soon as the the honest
parties are activated by the environment, and potentially before the corrupt
parties are. This necessitates a revised functionality, which we present below.
Functionality 3.7. FPipelinableECDSA(G, n, t): Pipelineable TECDSA

This functionality is parameterized by the party count n, the threshold t,
and the elliptic curve G = (G, G, q). The setup phase runs once with n
parties, and the signing phase may be run many times between (varying)
subgroups of parties indexed by P ⊆ [n] such that |P| = t. If any party
is corrupt, then the adversary S may instruct the functionality to abort
during the setup phase. S may also instruct the functionality to fail during
the signing phase if any party indexed by P is corrupt, but in this case the
functionality does not halt, and further signatures may be attempted.
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Setup: On receiving (init, sid) from some party Pi such that sid =..

P1‖ . . . ‖Pn‖sid′ and i ∈ [n] and sid is fresh, send (init-req, sid, i) to S.
On receiving (init, sid) from all parties,

1. Sample the joint secret and public keys, (pk, sk)← ECDSAGen(G).

2. Store (secret-key, sid, sk) in memory.

3. Send (public-key, sid, pk) directly to S.

4. On receiving (release, sid, i) for i ∈ [n] from S, send
(public-key, sid, pk) to Pi and store (pk-delievered, sid, i) in
memory.

Signing: On receiving (pre-sign, sid, sigid) from any party Pi, parse
sigid =.. P‖sigid′ such that |P| = t and ignore the message if i 6∈ P or
P 6⊆ [n] or sigid is not fresh or if (pk-delievered, sid, i) does not exist in
memory. Otherwise, send (presig-req, sid, sigid, i) directly to S and store
(ready, sid, sigid, i) in memory.
On receiving (sign, sid, sigid, m) from Pi for some i ∈ P, if
(ready, sid, sigid, j) exists in memory for all j ∈ P then

5. If (signature, sid, sigid, σ) does not exist in memory, then sample
σ ← ECDSASign(G, sk, m), store (signature, sid, sigid, σ) in mem-
ory, and if at least one party indexed by P is corrupt, then send
(leakage, sid, sigid, rx) directly to S.

6. If at least one party indexed by P is corrupt, then send
(sig-req, sid, sigid, i, m) directly to S.

Once every Pi for i ∈ P has sent (sign, sid, sigid, m),

7. If the value of m submitted is not consistent among all parties,
then for every i ∈ P, wait for S (fail, sid, sigid, i) and then send
(failure, sid, sigid) to Pi.

8. If a corrupt party is indexed by P, and S sends (fail, sid, sigid, i)
such that i ∈ P, send (failure, sid, sigid) to Pi and ignore any future
(fail, sid, sigid, i) or (proceed, sid, sigid, i) message.

9. If a corrupt party is indexed by P, and S sends (proceed, sid, sigid, i)
such that i ∈ P, send (signature, sid, sigid, σ) to Pi and ignore any
future (fail, sid, sigid, i) or (proceed, sid, sigid, i) message.

10. If no corrupt parties are indexed by P, send (signature, sid, sigid, σ) to
Pi for every i ∈ P.
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11. Once every signing party has received an output, ignore all future mes-
sages with this sigid value.

Preprocessing. Preprocessing allows the first two rounds of the protocol to
be evaluated before the message is known, which leaves only the last round (con-
taining nothing but a few simple field operations and one signature verification
per party) as the only round that must be evaluated online. Unlike pipelining,
preprocessing does not preserve the standard order of quantifiers: the environ-
ment can potentially condition the message on R, which is fixed in the second
round. Groth and Shoup [GS22b] gave a proof under a new assumption on
SHA2 in a variant of the generic group model that ECDSA is secure even if this
occurs. They also show a number of conditions under which preprocessing can
lead to attacks (none of which apply to our protocol, as presented). We warn
that preprocessing should only be used in practice by those who understand and
accept the implications and risks associated with it. Nevertheless, our protocol
is compatible with it.

3.4 Comparison to DKLs19
The protocol presented in this section is a significant revision of the one pre-
sented by Doerner et al. [DKLs19]; although it contain many of the same fun-
damental ideas, a rearrangement of the main protocol structure and the elimi-
nation of an intermediate functionality (the so called inverse-sampling function-
ality) have yielded a significant improvement in the number of rounds and a
completely new proof under strictly weaker assumptions. Specifically, whereas
the 2019 protocol required either 6 + log t or 10 rounds under the computa-
tional Diffie-Hellman assumption in the non-programmable global random ora-
cle model, our new protocol requires only 3 rounds (one of which is pipelineable)
and is statistically secure in the (FCom,FRVOLE,FDLKeyGen)-hybrid model. Our
new protocol has bandwidth requirements similar to the 10-round version of
the 2019 protocol, whereas the (6 + log t)-round version required slightly less
bandwidth.

The heart of the structural change lies in the way the two protocols compute
shares of 1/r and sk/r, and in the way they check the correctness of these
computations. In the 2019 protocol, a distinct functionality was defined to
sample R along with shares of r and 1/r. This functionality was realized by
a protocol that sampled multiplicative shares of r, inverted them locally, and
then used a O(log t)-long sequence of pairwise FMul invocations to compute
additive shares of both r and ϕ/r, where ϕ is a uniform mask. A single commit-
and-release check assures the well-formedness of the shares in the 2019 scheme,
and then the shares are unmasked. Only once shares of 1/r are known are
they multiplied by shares of sk, with an additional commit-and-releaes check
(containing two check values) establishing the correctness of this multiplication
with respect to pk. The 2019 protocol’s higher round count is due the fact that
it performs the inversion and multiplication operations sequentially, and the fact
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that it performs two sequential commit-and-release checks.
In contrast the protocol introduced here performs inversion, multiplication

with sk, and consistency checking simultaneously. The consistency properties
of the FRVOLE functionality are used to guarantee that each party Pj multiplies
a single uniform value χj,i by both ri and ski for every Pi such that i 6= j. This
value χj,i first serves as a MAC key for the pair of parties in question: they
check the MAC in the exponent to ensure that Pi’s inputs to FRVOLE are con-
sistent with Ri and pki, respectively. This check is statistical. Simultaneously,
Pj publishes the offset ψj,i between every χj,i and a single uniform inversion
nonce ϕi. If all parties do this honestly, then their shares can be converted into
the form requires by the inversion trick of Bar-Ilan and Beaver, and assembly
of the signature can be done just as it was in prior works that use a similar cor-
relation [ANO+22, GS22a]. If any parties cheat in this adjustment, the induced
offsets can be perfectly simulated independently of the honest parties’ secrets.
Because fixing m, R, and pk fixes the value of the signature, verifying the sig-
nature becomes a perfect check for malicious behavior in the final adjustment
and assembly stage of the protocol.

While the number of rounds is significantly improved relative to the 2019
scheme, we note that the number of elliptic curve scalar operations grows with
the number of signers in our new scheme, whereas in the 2019 scheme it was a
constant. We believe that in most deployment scenarios this trade is beneficial.
In addition to the above changes, key generation process has been abstracted
via a new ideal functionality.

3.5 Two-Party Two-Message ECDSA
In addition to their general t-of-n protocol, Doerner et al. also proposed a
specialized 2-of-n protocol [DKLs18] that required only one message to be sent
in each direction. When t = 2, a simple modification of our new protocol allows
it to match the communication properties of theirs. In each signing instance,
one of the two parties is chosen as the initiator. We will label the initiator
as Alice, and the other party as Bob. Only Alice will receive the signature at
the end. The parties run πECDSA with pipelining, as described in sections 3.2
and 3.3, and make the following modifications:

1. Alice’s pipelined first message is not triggered by any message from the envi-
ronment. Instead, she sends her first message with her second message, upon
receiving (sign, sid, sigid) from the environment.

2. Bob’s second message is not triggered by a (sign, sid, sigid) message from
the environment. Instead, upon receiving Alice’s first and second messages,
Bob outputs (sig-req, sid, sigid) to the environment, and sends his second
message only after the environment responds with (proceed, sid, sigid, m).

3. Bob sends his third message at the same time he sends his second message.
Since Alice’s second message has already been received, this is possible.
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Figure 1: Two-party Message Structures Illustrated. On the left is the
protocol structure, with pipelining, as described in sections 3.2 and 3.3. On the
right is the protocol structure suggested for the two-party setting in this section.

4. Alice never sends her third message, depriving Bob of the s component of
the output signature.

We note that these modifications to the protocol are secure because they are
essentially equivalent to rushing behavior, and our proof in section 4 already
acounts for rushing adversaries. We illustrate the modifications in figure 1.
The resulting protocol comprises three messages, and if the parties pipeline the
messages of each signature to occur simultaneously with the last message of a
previous signature, then the resulting protocol has two messages in effect, just
like the original 2-of-n protocol.
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Comparison to DKLs18. Compared to the original 2-of-n DKLs protocol
from 2018, our new protocol requires pipelining (and thus the storage of in-
termediate state) in order to achieve a two-round structure. We note that in
the two party-case the downside implied by this is minimal: the stored state
is exclusively pairwise, just like the stored state already required by the OT-
extension protocol that is used to realize FRVOLE. On the other hand, our new
protocol realizes a standard threshold signing functionality, whereas the 2018
DKLs protocol realizes a weaker functionality that allows the adversary to bias
R, and that is only known to be equivalent to the standard functionality in
the generic group model. Moreover, our protocol is statistically secure, whereas
the 2018 protocol required a reduction to the computational Diffie-Hellman as-
sumption on G, and a reduction to the forgery game for ECDSA. Finally, our
protocol improves upon the efficiency of the 2018 protocol. We do not make use
of zero-knowledge during signing, whereas the 2018 protocol does. In the UC
paradigm, realizing a zero-knowledge functionality in one round (as required by
the 2018 paper) requires a straight-line extractor such as the Fischlin [Fis05]
or Kondi-shelat [Ks22] transform. This is by far the most computationally-
expensive component of the 2018 protocol, and the only reason that the 2018
protocol requires a superconstant number of public-key operations during sign-
ing. We eliminate this cost. We also improve upon the bandwidth of the 2018
protocol: the chosen-input multiplication subprotocol used in that work requires
a total of 4κ+4λs OT instances, half of which have a payload size of 2κ and half
of which have a payload size of 4κ. Realizing the randomized VOLE instances
required by our new protocol via the DKLs-derived VOLE protocol suggested
in section 3.1 requires a total of 2κ + 4λs OT instances, all of which have a
payload size of 4κ. When κ = 256 and λs = 80, as is common in practice, this
yields a 17.5% savings in the bandwidth due to the OT payload. This improve-
ment is independent of improvements due to new OT-extension techniques, and
independent of the random-oracle based optimization that can be applied to
both their multiplication protocol and our VOLE protocol, which is discussed
in section 5.1.

4 Proof of Security for t-Party ECDSA
In section 1, we stated the following security theorem for our protocol:

Theorem 1.1 (Informal Security Theorem). In the (FCom,FZero,FRVOLE,
FDLKeyGen)-hybrid model, πECDSA(G, n, t) statistically UC-realizes FECDSA(G, n, t)
against a malicious adversary that statically corrupts up to t− 1 parties.

There is, however, one caveat we must address when formalizing the above
theorem. The UC model officially captures only a computational notion of
security, and if it is extended to permit unbounded environments and adver-
saries, then a problem arises when considering protocols that realize reactive
functionalities such as FECDSA: if each invocation implies a statistically negli-
gible chance of distinguishing the real and ideal worlds, but the environment
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is allowed exponentially-many invokations, then, the overall probability of dis-
tinguishing such a protocol from its functionality becomes noticeable. To avoid
this, we enforce explicit (but arbitrary) polynomial bounds on both the number
of parties and the number of times the honest parties may be invoked, while al-
lowing the environment to be otherwise unbounded. Thus we have the following
formal theorem:

Theorem 4.1 (Formal Security Theorem). For every malicious adversary A
that statically corrupts up to t− 1 parties, there exists a PPT simulator SA

ECDSA
that uses A as a black box, such that for every environment Z and every pair
of polynomials µ, ν, if µ(λ) bounds the number of times Z invokes any honest
party, then{

RealπECDSA(G,n,t),A,Z (λ, z) : G ← GrpGen(1λ)
}

λ∈N,n∈[2,ν(λ)],
t∈[2,n],z∈{0,1}∗

≈s

{
IdealFECDSA(G,n,t),SA

ECDSA(G,n,t),Z (λ, z) : G ← GrpGen(1λ)
}

λ∈N,n∈[2,ν(λ)],
t∈[2,n],z∈{0,1}∗

Proof. We begin by specifying the simulator SA
ECDSA(G, n, t), after which we will

give a sequence of hybrid experiments to establish that it produces a view for
the environment that is indistinguishable from the real world.
Simulator 4.2. SA

ECDSA(G, n, t): t-Party ECDSA
This simulator is parameterized by the party count n, the threshold t, and
the elliptic curve G = (G, G, q). The simulator has oracle access to the
adversary A, and emulates for it an instance of the protocol πECDSA(G, n, t)
involving the parties P1, . . . ,Pn. The simulator forwards all messages from
its own environment Z to A, and vice versa. When the emulated protocol
instance begins, A announces the identities of up to t− 1 corrupt parties.
Let the indices of these parties be given by P∗ ⊆ [n]. SA

ECDSA(G, n, t)
interacts with the ideal functionality FECDSA(G, n, t) on behalf of every
corrupt party, and in the exeriment that it emulates for A, it interacts with
A and the corrupt parties on behalf of every honest party and on behalf of
the ideal oracles FCom, FZero(Zq, t), FRVOLE(q, 2), and FDLKeyGen(G, n, t).

Setup:

1. On receiving (keygen, sid) from Pi for some i ∈ P∗ on behalf of
FDLKeyGen(G, n, t), send

• (init, sid) to FECDSA(G, n, t) on behalf of Pi

• (keygen-req, sid, i) directly to A on behalf of FDLKeyGen(G, n, t)

2. On receiving (init-req, sid, j) for some j ∈ [n] \ P∗ directly from
FECDSA(G, n, t), send (keygen-req, sid, j) directly to A on behalf of
FDLKeyGen(G, n, t).
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3. On receiving (public-key, sid, pk) directly from FECDSA(G, n, t), forward
this message to A on behalf of FDLKeyGen(G, n, t).

4. On receiving (release, sid, i) from A on behalf of FDLKeyGen(G, n, t), for-
ward this message directly to FECDSA(G, n, t).

5. On receiving (public-key, sid, pk) from FECDSA(G, n, t) on behalf of Pj

for j ∈ P∗, if Pj is the first party for which such a message was received,
then

(a) Wait to receive (poly-points, sid, {p(i)}i∈P∗) directly from A.
(b) Choose Psk ⊂ [n] such that P∗ ⊆ Psk and |Psk| = t− 1.
(c) For every i ∈ Psk \ P∗ sample p(i) ← Zq uniformly, and then for

every j ∈ Psk, compute P (i) ..= p(i) ·G.
(d) For every k ∈ [n] \Psk, compute

P (k) ..=
pk−

∑
j∈Psk lagrange(Psk ∪ {k}, j, 0) · P (j)

lagrange(Psk ∪ {k}, k, 0)

and store (public-key, sid, pk, {P (1), . . . , P (n)}) in memory.
(e) Send (public-key, sid, pk, {P (1), . . . , P (n)}) directly to A on be-

half of FDLKeyGen(G, n, t).

and regardless, send (key-pair, sid, pk, p(i), {P (1), . . . , P (n)}) to Pi on
behalf of FDLKeyGen(G, n, t).

6. Initialize the blacklist for sid to be empty.

Signing:

7. On receiving (sig-req, sid, sigid, j, mj) from FECDSA(G, n, t) on behalf of
the corrupt signers, compute

P‖sigid′ ..= sigid such that |P| = t

C ..= P ∩P∗

H ..= P \C
P-k ..= P \ {k} for k ∈ P
cu

i,j ← Zq

cv
i,j ← Zq

and if there is any i ∈ P-j such that (j, i) is in the blacklist for sid,
then ignore these messages and act as though they had never arrived.
Otherwise, for every i ∈ C send to Pi
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• (committed,Pj‖Pi‖sid‖sigid) on behalf of FCom

• (ready,Pj‖Pi‖sid‖sigid, {cu
i,j , cv

i,j}) on behalf of FRVOLE(q, 2)

8. Upon receiving (sample,PP1‖ . . . ‖PPt‖sid‖sigid) from Pi on
behalf of FZero(Zq, t), sample ζi ← Zq and respond with
(mask,PP1‖ . . . ‖PPt

‖sid‖sigid, ζi) on behalf of FZero(Zq, t). Note
that this step may occur at any time.

9. Upon satisfying satisfying step 7 for every j ∈ H and also receiving

• (commit,Pi‖Pj‖sid‖sigid, Ri,j) from Pi on behalf of FCom

• (sample,Pi‖Pj‖sid‖sigid) from Pi on behalf of FRVOLE(q, 2)
• (adv-sample,Pi‖Pj‖sid‖sigid,χi,j) from A on behalf of FRVOLE(q, 2)

for every i ∈ C and some consistent j ∈ H, if sigid is fresh and the records
(public-key, sid, pk, {P (i)}i∈[n]) and (secret-key, sid, i, p(i)) for every
i ∈ C are stored in memory, then

• if Pj is not the last honest party for whom these conditions hold,
then sample rj ← Zq, skj ← Zq, ϕj ← Zq, δu

j ← Zq, and δv
j ← Zq,

and compute Rj
..= rj ·G and pkj

..= skj ·G
• if Pj is the last honest party for whom these conditions hold,

then let h ..= j. For every i ∈ C, send (sign, sid, sigid, mh) to
FECDSA(G, n, t) on behalf of Pi and send (proceed, sid, sigid, i) directly
to FECDSA(G, n, t). If (signature, sid, sigid, (s, rx)) is received in reply
on behalf of the corrupt parties, reconstruct R from the x-coordinate
rx and compute

Rh
..= R−

∑
k∈P-h

Rk and pkh
..= pk−

∑
k∈P-h

skk ·G

If (failure, sid, sigid) is received in reply, then sample R ← G and
s← Zq uniformly and compute Rh and pkh as above.

and then for every i ∈ C compute

ψj,i ← Zq

du
i,j ← Zq

dv
i,j ← Zq

Γu
j,i

..= χi,j ·Rj − du
i,j ·G

Γv
j,i

..= χi,j · pkj − dv
i,j ·G

and send to Pi

• (products,Pi‖Pj‖sid‖sigid, {du
i,j , dv

i,j}) on behalf of FRVOLE(q, 2)
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• (opening,Pj‖Pi‖sid‖sigid, Rj) on behalf of FCom

• (check-adjust, sid, sigid, Γu
j,, Γv

j,i,ψj,i, pkj) on behalf of Pj

10. Upon satisfying satisfying steps 7 and 9 for every j ∈ H and receiving
(abort,Pj‖Pi‖sid‖sigid) directly from A on behalf of FRVOLE(q, 2) for
some i ∈ C and some j ∈ H, send (fail, sid, sigid) to all corrupt parties
on behalf of Pj , send the fail message on behalf of Pj at the corre-
sponding point in all concurrent signing sessions involving Pj and Pi,
append (j, i) to the blacklist for sid, and ignore all future instructions
pertaining to the signature ID sigid.

11. Upon satisfying satisfying steps 7 and 9 for every j ∈ H and receiving

• (decommit,Pi‖Pj‖sid‖sigid) on behalf of FCom

• (multiply,Pj‖Pi‖sid‖sigid, {au
i,j , av

i,j}) on behalf of FRVOLE(q, 2)
• (check-adjust, sid, sigid, Γu

i,j , Γv
i,j ,ψi,j , pki,j) on behalf of Pj

for every i ∈ C and some consistent j ∈ H,

• If there exists some i ∈ C such that au
i,j ·G 6= Ri,j or av

i,j ·G 6= pki,j

or Γu
i,j 6= cu

i,j ·G or Γv
i,j 6= cv

i,j ·G, or if∑
i∈C

pki,j +
∑
k∈H

pkk 6= pk

then send (fail, sid, sigid, k) directly to FECDSA(G, n, t) for every k ∈
H, send (fail, sid, sigid) to all corrupt parties on behalf of Pj , send
the fail message on behalf of Pj at the corresponding point in all
concurrent signing sessions involving Pj and Pi, append (j, i) to the
blacklist for sid, and ignore all future instructions pertaining to the
signature ID sigid.

• If j 6= h and au
i,j · G = Ri,j and av

i,j · G = pki,j and Γu
i,j = cu

i,j · G
and Γv

i,j = cv
i,j ·G for every i ∈ C, and if∑

i∈C
pki,j +

∑
k∈H

pkk = pk

then compute

uj
..= rj ·

∑
i∈C

ψi,j + δu
j

+
∑
i∈C

(
(ϕj −ψj,i) · au

i,j + χi,j · rj − cu
i,j − du

i,j

)
vj

..= skj ·
∑
i∈C

ψi,j + δv
j
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+
∑
i∈C

(
(ϕj −ψj,i) · av

i,j + χi,j · skj − cv
i,j − dv

i,j

)
wj

..= SHA2(mh) · ϕj + rx · vj

and send (fragment, sid, sigid, wj , uj) to Pi for every i ∈ C on behalf
of Pj .

• If j = h and au
i,h · G = Ri,h and av

i,h · G = pki,h and Γu
i,h = cu

i,h · G
and Γv

i,h = cv
i,h ·G for every i ∈ C, and if∑

i∈C
pki,j +

∑
k∈H

pkk = pk

then sample uh ← Zq and compute

ϕi
..= ψi,h + χi,h for i ∈ C

û ..=
∑
i∈C

au
i,h ·

( ∑
k∈P-h

ϕk +ψh,i

)
+ cu

i,h + du
i,h


+

∑
j∈H\{h}

(
δu

j + rj ·
∑
i∈C

ϕi

)

v̂ ..=
∑
i∈C

av
i,h ·

( ∑
k∈P-h

ϕk +ψh,i

)
+ cv

i,h + dv
i,h


+

∑
j∈H\{h}

(
δv

j + skj ·
∑
i∈C

ϕi

)

ŵ ..= SHA2(mh) ·
∑

k∈P-h

ϕk + rx · v̂

wh
..= s · uh + s · û− ŵ

and send (fragment, sid, sigid, wh, uh) to Pi for every i ∈ C on behalf
of Ph.

12. On receiving (fail, sid, sigid) from Pi on behalf of Pj for some j ∈ H
and some i ∈ C, send (fail, sid, sigid, j) directly to FECDSA(G, n, t).

13. On receiving (fragment, sid, sigid, wi,j , ui,j) from Pi on behalf of Pj for
some j ∈ H and every i ∈ C, if∑

k∈H
wk +

∑
i∈C

wi,j∑
k∈H

uk +
∑

i∈C
ui,j

= s
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then send (proceed, sid, sigid, j) directly to FECDSA(G, n, t); otherwise,
send (fail, sid, sigid, j) directly to FECDSA(G, n, t).

Our sequence of hybrid experiments begins with the real world

H0 =
{

RealπECDSA(G,n,t),A,Z (λ, z) : G ← GrpGen(1λ)
}

λ∈N,n∈[2,ν(λ)],
t∈[2,n],z∈{0,1}∗

and proceeds by gradually replacing the code of the real parties with elements of
the simulator until SA

ECDSA(G, n, t) is be fully implemented and the experiment
is be the ideal one.

Hybrid H1. This hybrid experiment replaces all of the individual honest parties
and ideal functionalities in H0 with a single simulator machine S that runs
their code and interacts with the adversary, environment, and corrupt parties
on their behalf. Since S interacts with the adversarial entities on behalf of the
ideal functionalities, it learns any values they receive or that are defined by
their internal state (for example, the secret key sk). This is a purely syntactical
change, and so it must be the case that H1 = H0.

Hybrid H2. This hybrid behaves identically to H1, except that the consistency
checks that are performed by S on behalf of the honest parties in step 8 of
πECDSA are replaced. Let Ri,j denote the value of Ri actually transmitted from
party Pi to party Pj (although the protocol specifies that Pi should use a single
consistent value Ri with all honest parties, Pi might use inconsistent values if
it is corrupt and misbehaves). Similarly, let pki,j be the value of pki actually
transmitted to Pj . In H2, S does not check whether

χj,i ·Ri,j − Γu
i,j = du

j,i ·G (1)
χj,i · pki,j − Γv

i,j = dv
j,i ·G (2)

but instead checks whether au
i,j ·G = Ri,j and av

i,j ·G = pki,j and Γu
i,j = cu

i,j ·G
and Γv

i,j = cv
i,j ·G, as specified in step 11 of SECDSA.

Because the code of FRVOLE enforces that

χj,i · au
i,j = cu

i,j + du
j,i and χj,i · av

i,j = cv
i,j + dv

j,i

we know that if the consistency checks evaluated in H2 pass, then the checks
in H1 also pass. We also know that if au

i,j ·G = Ri,j and av
i,j ·G = pki,j , then

the checks in both hybrids pass if and only if Γu
i,j = cu

i,j ·G and Γv
i,j = cv

i,j ·G.
Thus, the adversary can only distinguish the two by setting au

i,j · G 6= Ri,j

or av
i,j · G 6= pki,j for some corrupt Pj and contriving to pass the consistency

check in H1, while failing the check (with certainty) in H2. Because Ri,j is
fixed, there is exactly one value of Γu

i,j that will satisfy equation 1 for any
assignment of χj,i and du

j,i. Since χj,i and du
j,i are uniformly sampled and

information-theoretically hidden from the adversary at the time that it must
commit to Γu

i,j , the probability that the adversary sends this value is exactly
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1/q if au
i,j ·G 6= Ri,j . A similar argument implies that the adversary has a 1/q

probability of satisfying equation 2 if av
i,j ·G 6= pki,j .

Note that if a consistency check fails, the honest party that observes the
failure will never again allow a signing session to produce an output when it
involves the party that caused the failure. Even if an unbounded environment
were permitted to invoke an unbounded number of signing sessions, at most
(t−1) · (n− t+1) failed consistency checks can occur before there are no honest
parties that are willing to sign with any corrupt party. The probability that at
least one of the first (t − 1) · (n − t + 1) distinguishing attempts will result in
success is upper-bounded by (t− 1) · (n− t + 1)/q ≤ n2/q, and since n = ν(λ)
is polynomially-bounded while q is exponential in λ, it follows that H2 ≈s H1.

Hybrid H3. This hybrid behaves identically to H2, except that if the environ-
ment triggers a single signing instance with ID sigid among a group of exclusively
honest parties with messages that have consistent images under SHA2, then the
protocol code no longer runs. Instead, upon (sign, sid, sigid, m) on behalf of
all of the parties, S locally evaluates σ ← ECDSASign(G, sk, m) and outputs
(signature, sid, sigid, σ) to the environment on behalf of all parties.

Observe that in H2, a group of honest parties compute their views such that

ri ← Zq for every i ∈ P (3)
ri · χj,i = cu

i,j + du
j,i for every i, j ∈ P : i 6= j

ski · χj,i = cv
i,j + dv

j,i for every i, j ∈ P : i 6= j

ψj,i = ϕj − χj,i for every i, j ∈ P : i 6= j

u =
∑
i∈P

(
ri · ϕi +

∑
j∈P\{i}

(ri ·ψj,i + cu
i,j + du

i,j)
)

= r · ϕ

v =
∑
i∈P

(
ski · ϕi +

∑
j∈P\{i}

(ri ·ψj,i + cv
i,j + dv

i,j)
)

= sk · ϕ

s = SHA2(m) · ϕ + rx · v
u

= SHA2(m) + rx · sk
r

(4)

The consistency checks introduced in H2 trivially pass when all of the par-
ticipants are honest, and by inspection we can see that equations 3 and 4 yield
a signature with a distribution identical to that produced by ECDSASign, which
implies that the verification check in step 10 of πECDSA always passes when all
signing parties are honest. Thus the output distributions for all signing parties
are identical in H3 and H2, and in both hybrids the probability of a failed sig-
nature is zero. No other values are observable by the adversary, and so the two
hybrids are perfectly indistinguishable.

Hybrid H4. This hybrid behaves identically to H3, except when the environ-
ment triggers a single signing instance with ID sigid between a group containing
two or more honest parties, but uses inconsistent messages with the honest par-
ties. Suppose Ph is the last honest party in the group to be activated by the
environment. In H4, S replaces mj with mh in the calculations of every honest
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Pj for j ∈ H \ {h}. If there exists some j ∈ H \ {h} such that environment
sends (sign, sid, sigid, mj) to Pj and SHA2(mj) 6= SHA2(mh), then S samples
wh ← Zq instead of calculating wh per the instructions in step 8 of πECDSA as
in H3, always outputs (failure, sid, sigid) to the environment on behalf of all
honest parties, and ignores all future messages with the same sigid.

In H3, honest parties fail if they do not receive a valid signature as out-
put, and we have argued in the context of H3 that a group of signers always
receives a valid signature as output when their messages have the same image
under SHA2 and nobody deviates from the protocol. In H3, S always calculates
wh

..= SHA2(mh) · ϕh + rx · vh and wj
..= SHA2(mj) · ϕj + rx · vj . We make

three observations. First, the leftmost terms of these equations are the only
constituent parts of the final signature that depend upon mh or mj . Second,
S effectively samples wh and wj uniformly subject to a condition on their sum,
because vj and vh depend linearly on cv

j,h + dv
j,h and cv

h,j + dv
h,j respectively,

and the latter values are sampled uniformly subject to a condition on their sum.
Third, due to similar linear dependencies upon cu

j,h + du
j,h and cu

h,j + du
h,j , we

can conclude that uj and uh commit S to the sum of ϕj and ϕh, but S still has
a degree of freedom in choosing the individual values.5

Summing and rewriting, we have

wh + wj = SHA2(mh) · (ϕh + ϕj) + (SHA2(mj)− SHA2(mh)) · ϕj + rx · (vh + vj)

If SHA2(mh) = SHA2(mj), then (SHA2(mj) − SHA2(mh)) · ϕj = 0 and the
signature is valid if the corrupt parties follow the protocol. If SHA2(mh) 6=
SHA2(mj), then (SHA2(mj)− SHA2(mh)) ·ϕj is distributed uniformly, because
ϕj is, as we have observed, uniformly sampled and information-theoretically
hidden from the adversary. All other terms that the honest parties contribute
to the signature are the same in either case. In other words, if SHA2(mh) 6=
SHA2(mj), then wh and wj are not uniform subject to a condition on their
sum, but simply uniform. This implies that the joint distribution of wi for
every i ∈ H is identical in H4 and H3, both when SHA2(mh) = SHA2(mj) and
when SHA2(mh) 6= SHA2(mj).

Once the message, public key, and nonce are fixed, there is exactly one valid
ECDSA signature. When SHA2(mh) 6= SHA2(mj) and wh and wj are uniform
without constraint, the chance that the resulting signature will be valid for any
honest party’s message (and that party will consequently output a signature
in H3) is no greater than t/q in each signing session. Since t < n = ν(λ)
is polynomial in λ, and we have assumed the number of signing sessions to
be bounded by µ(λ), which is polynomial in λ, but q is exponential in λ, we
can conclude that the distribution of honest party failures in H4 is statistically
indistinguishable from the distribution in H3. It follows that H4 ≈s H3 overall.
For the remainder of this proof, we will assume that if any group of honest
signing parties does not output a failure, then their messages have identical
images under SHA2.

5Fixing one of these two values also fixes the other, but the simulator cannot calculate
both without implicitly breaking the discrete logarithm problem on R. Fortunately it will not
be necessary to calculate both.
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Hybrid H5. The behavior of this hybrid differs from H4 when the environment
triggers a signing instance among a group of parties, some of whom are corrupt.
In H5, if the honest parties receive messages that have identical images under
SHA2, then S uses the ECDSASign to generate the signature, and embeds it into
the protocol by altering the code of one of the honest signers. Specifically, S
follows the code of the honest parties on their behalves until step 7 of πECDSA.
Whichever honest party reaches this step last is designated Ph (as before), and
if the honest parties have messages with identical images under SHA2, then the
code of Ph is replaced for the remainder of the protocol.

When the time comes for S to decommit Ph’s contribution to the nonce on
behalf of FCom, rather that decommitting the value of Rh that was committed
by Ph in step 6 of πECDSA, S instead samples (s, rx) ← ECDSASign(G, sk, m),
reconstructs R from the x-coordinate rx, computes

Rh
..= R−

∑
k∈P-h

Rk

and then decommits this value of Rh on behalf of FCom. This embeds the value
of rx that was sampled by ECDSASign into the protocol output, if the parties do
not deviate from the protocol. Note that the distribution of rx has not changed:
in both H5 and H4 it is uniform.

Next, if the consistency checks (specified in step 11 of SECDSA) pass, then S
uses its knowledge of the corrupt parties’ inputs and outputs from FRVOLE to
predict the values of ui and wi that all of the parties apart from Ph would use,
if no parties cheated. We will denote the sum of these predicted values as û
and ŵ respectively. These values depend upon ϕi for i ∈ C, which might have
been used inconsistently in interactions with the different honest parties, if the
corrupt parties have misbehaved. S defines the true value of ϕi to be the value
implied by the interaction between Pi and Ph. Note that ϕi − ψi,h − χi,h = 0
by definition, which implies that there is no discrepancy between the values Ph

computes if the corrupt parties follow the protocol and the values it computes
if they misbehave, conditioned on the fact that the consistency check passes.

If we let δu
j for j ∈ H \ {h} represent the sum of the terms comprising uj

that arise from interactions between the honest Pj and the other honest parties,
and likewise let δv

j represent the sum of the honestly-derived terms comprising
vj , then we have

δu
j = rj · ϕj +

∑
k∈H\{j}

(cu
j,k + du

j,k) for j ∈ H

δu
j = skj · ϕj +

∑
k∈H\{j}

(cv
j,k + dv

j,k) for j ∈ H

û ..=
∑
i∈C

au
i,h ·

( ∑
k∈P-h

ϕk +ψh,i

)
+ cu

i,h + du
i,h
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+
∑

j∈H\{h}

(
δu

j + rj ·
∑
i∈C

ϕi

)

v̂ ..=
∑
i∈C

av
i,h ·

( ∑
k∈P-h

ϕk +ψh,i

)
+ cv

i,h + dv
i,h


+

∑
j∈H\{h}

(
δv

j + skj ·
∑
i∈C

ϕi

)

ŵ ..= SHA2(m) ·
∑

k∈P-h

ϕk + rx · v̂

Note that because cu, du, cv, and dv are uniformly sampled subject to con-
straints upon their component-wise sums, δu

j and δv
j are uniform when considered

indepently of the view of Ph. By the same argument as we made in the context
of H3, these constraints imply that the output of the protocol in H4 is a valid
ECDSA signature on m under pk and R when all parties follow the protocol.

In H5, S samples uh ← Zq and δu
j ← Zq and δv

j ← Zq for j ∈ H \ {h}
uniformly, calculates û and ŵ as defined above, and then computes

wh
..= s · uh +

∑
k∈P-h

(
s · ûk − ŵk

)
This embeds the value of s that was sampled by ECDSASign into the protocol
output, if the parties do not deviate from the protocol. In both hybrids uj and
wj for j ∈ H are all uniformly distributed subject to the fact that s is the single
valid ECDSA signature on m that exists under pk and R when no party deviates
(and the honest parties have messages with identical images under SHA2). If
the corrupt parties do deviate then the offsets they induce upon the output
satisfy the same algebraic relationship with the embedded value of s in H5 as
they do with the hypothetical value of s that would occur if they did not cheat
in H4. Thus H5 = H4.

Hybrid H6. This final hybrid differs from H5 in the following way: S no longer
acts on behalf of any honest parties, nor does it use ECDSAGen or ECDSASign
internally to sample signatures. Instead, SA

ECDSA(G, n, t) is fully implemented
in H6 (that is, S = SA

ECDSA(G, n, t)), and the experiment now incorporates
FECDSA(G, n, t). The honest parties run dummy-party code as is standard for
ideal-world experiements in the UC model, and SA

ECDSA(G, n, t) speaks to FECDSA
on behalf of corrupt parties.

The differences between H6 and H5 are purely syntactical, which is to say
that H5 = H6. Notice that in H5, S did not require knowledge of rh or skh

in order to simulate. Moreover, because skk for k ∈ P were computed by
adding a uniform secret-sharing of zero ζk to the interpolated Shamir-shares
lagrange(P, k, 0) · p(k) of the secret key, skk for k ∈ P were uniform subject to∑

k∈P

skk ·G = pk
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In H6, at initialization time, S invokes FECDSA(G, n, t) on behalf of the corrupt
parties, and learns pk but not the discrete logarithm of pk. At signing time, it
samples skj for j ∈ H \ {h} uniformly, and computes pkh such that the above
equation holds. S waits to invoke FECDSA on behalf of the corrupt parties until
after FECDSA is invoked by the very last honest party Ph, and uses mh (the
message on which a signature was requested by Ph) on the corrupt parties’
behalves. If S receives (s, rx) from FECDSA on the corrupted parties’ behalves,
then it embeds these values into the protocol just as it did in H5. If it receives
a failure message from FECDSA, then it samples (s, rx) uniformly amd embeds
them, just as it did inH5. Since the failure conditions are identical, pkj for j ∈ H
are identically distributed, the signature values are identically distributed, and
the embedding of the signature is otherwise performed identically in the two
hybrids, H6 = H5.

Since we now have

H6 =
{

IdealFECDSA(G,n,t),SA
ECDSA(G,n,t),Z (λ, z) : G ← GrpGen(1λ)

}
λ∈N,n∈[2,ν(λ)],
t∈[2,n],z∈{0,1}∗

and by transitivity we also have

H6 ≈s H0 =
{

RealπECDSA(G,n,t),A,Z (λ, z) : G ← GrpGen(1λ)
}

λ∈N,n∈[2,ν(λ)],
t∈[2,n],z∈{0,1}∗

we can conclude that Theorem 4.1 holds.

5 Cost Analysis
In this section, we give a closed-form accounting of the bandwidth costs of our
protocol and its various building blocks. We also account for the number of
elliptic curve scalar operations that our protocol requires during signing, since
this is the dominant computational cost. We begin with all of the non-VOLE
building blocks that were introduced in section 3.1; in each case we assume use
of the realization that was suggested in that section. To wit, we assume that an
FCom commitment to any payload requires 2λc bits to be transmitted, and a de-
commitment to a payload of size x requires 2λc +x bits. We assume FZero(Zq, t)
requires a one-time setup cost of (t−1) commitments and decommitments to λc
bits on the part of each party, and that invocation by that set of parties is free
in terms of bandwidth thereafter. The cost of realizing FDLKeyGen(G, n, t) via the
DKLs protocol [DKLs19] has already been reported by Doerner et al. [DKL+23].
We assume a mild optimization of their protocol, where all commitments and
duplicate values transmitted by any party to another party are coalesced, and
arrive at a bandwidth cost of

KeyGenCost(n, λc, κ, |G|) 7→
(n− 1) · (4λc + (κ + |G|) · dλc/ log2 λce+ κ + |G|)
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In addition to the foregoing costs, the VOLE instantiations described in the
next two subsections both rely upon oblivious transfer. We suggest to realize
this via the OT-extension protocol of Roy [Roy22], with base OTs supplied by
the endemic OT protocol of Zhou et al. [ZZZR23]. We instantiate the latter
primitive over the same group G in which signatures are to be computed. Zhou
et al. claim that for ℓOT OT instances their protocol has an average per-party
bandwidth cost of

OTCost(λc, κ, |G|, ℓOT) 7→
λc + (2ℓOT + 1) · |G|+ ((2ℓOT + 1) · |G|+ (3ℓOT + 1) · κ) · dλc/ log2 λce

2

In order to meet our round-count requirements, Roy’s OT-extension protocol
must be modified via the Fiat-Shamir heuristic to run in two rounds. In the
first round, the OT receiver sends a message to the OT sender, and in the
second round, the sender replies. Roy’s protocol requires a one-time setup
that comprises exactly λc instances of OT. This is followed by any number of
extension batches. Per the accounting of Doerner et al. [DKL+23], each batch
of ℓOTE random OT instances has an average per-party bandwidth cost of

ROTECost(λc, ℓOTE) 7→
(

3
2

+ 1
2kSSOT

)
· (λc

2 + λc) + λc · ℓOTE
2kSSOT

where kSSOT is a parameter that also impacts computation time. Roy suggested
that kSSOT = 2 yields a strict improvement upon all other OT-extension pro-
tocols, and we follow this advice when calculating concrete costs. If correlated
OT-extension instances are required then

COTECost(λc, ℓOTE, |m|) 7→ ℓOTE · |m|/2 + ROTECost(λc, ℓOTE)

where |m| is the size of the message to be transmitted.

5.1 An Optimized DKLs VOLE
In this section, we describe a simple optimization of the DKLs-derived VOLE
protocol introduced in section 3.1. Recall that our protocol is based upon the
multiplication protocol of Doerner et al. [DKLs19]. In this subsection (and
only this subsection) we will use their notation, except for security parameters
(in which case, we use λc and λs for the computational and statistical security
parameters, respectively), and their parameter ℓ, which we rename to ℓDKLs
in order to avoid collision with our parameter ℓ. Recall also that we have
eliminated their batching technique (i.e. hardcoded ℓDKLs = 1), hardcoded
Bob’s adjustment message γB = 0, and applied the “forced-reuse” technique
from Chen et al. [CCD+20] to Bob’s side of the protocol, in order to tranform it
into a multiplication protocol into a random vector OLE protocol. The last of
these adjustments introduces a new vector-length parameter ℓ for Alice’s input,
and for the purposes of the optimization we present here, this new parameter ℓ
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must be treated similarly to their parameter ℓDKLs. In Steps 5 and 6 of Protocol
1 of their paper (after our adjustments), Alice computes

r ..=
{
{χ̃i · z̃A,j,i + χ̂i · ẑA,j,i}i∈[ℓ]

}
j∈[κ+2λs]

u ..= {χ̃i · ãi + χ̂i · âi}i∈[ℓ]

and sends r and u to Bob, who then aborts if∨
i∈[ℓ],
j∈[κ+2λs]

rj,i + χ̃i · z̃B,j,i + χ̂i · ẑB,j,i 6= βj · ui

Rewriting the above equation, we have∨
i∈[ℓ],
j∈[κ+2λs]

rj,i 6= βj · ui − χ̃i · z̃B,j,i − χ̂i · ẑB,j,i

and we observe that in the non-programmable global random oracle, the follow-
ing optimization is possible: Instead of sending r, Alice computes r̃ ..= RO(sid, r)
and transmits r̃ with u. Bob aborts if

r̃ 6= RO
(
sid, {βj · ui − χ̃i · z̃B,j,i − χ̂i · ẑB,j,i}i∈[ℓ],j∈[κ+2λs]

)
Note that the above optimization involves Alice sending strictly less infor-

mation to Bob. Intuitively, other than the event that a collision is found for the
random oracle, Alice will not be able to pass the check unless her input to RO
exactly matches Bob’s input to RO, which in turn is a simple rearrangement of
the equation that he must verify in the original protocol. This holds trivially in
the non-programmable global random oracle, which is already required by the
protocol of Doerner et al., and the proof of security is only slightly less trivial
if RO replaced by a collision-resistant hash function.

The unmodified protocol involves a correlated OT-extention batch of size
ℓOTE = κ+2λs, where each element of the batch has a payload of size 2κ · ℓ bits,
and the transmission of ℓ · (κ + 2λs + 1) additional elements from Zq directly
from Alice to Bob. This optimization reduces the latter figure to just one Zq

element. This brings the total online (i.e. excluding one-time setup) average
per-party bandwidth cost of our DKLs-derived VOLE protocol to

VOLECost(λc, λs, κ, ℓ) 7→ COTECost(λc, κ + 2λs, 2κ · ℓ) + κ · (ℓ + 1)/2

The one-time setup for our protocol comprises the one-time setup for cor-
related OT-extensions, plus the sending of a single security-parameter-length
seed from Bob to Alice. Thus, assuming Roy’s OT-extension protocol is used,
we have an average per-party bandwidth cost of

VOLESetupCost(λc, λs, κ, |G|) 7→ OTCost(λc, κ, |G|, λc) + λc/2
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5.2 VOLE from HMRT22
Next, we present the cost of using an alternate VOLE protocol derived from
the work of Haitner et al. [HMRT22]. We remind the reader that their protocol
realizes a weaker functionality than the one we have specified, and we have not
proven the combination secure, and we remind the reader that the protocol of
Haitner et al. requires an additional round, relative to the DKLs-derived VOLE
presented in section 5.1.

In order to use their protocol, it is necessary to perform a one-time setup
for correlated OT-extensions. Thus

VOLESetupCost(λc, λs, κ, |G|) 7→ OTCost(λc, κ, |G|, λc) + λc/2

The evaluation stage of their protocol involves a batch of ℓOTE = κ + 4λs
correlated OT-extensions. Per a random-oracle-based optimization mentioned
in their paper, the only additional data that must be sent is a single λc-bit seed,
plus a single element of Zq.6 If a VOLE protocol is derived from their protocol
via a similar “forced-reuse” technique to the one we employ when modifying the
DKLs protocol, then the average per-party bandwidth cost is

VOLECost(λc, λs, κ, ℓ) 7→ COTECost(λc, κ + 4λs, κ · ℓ) + (κ · ℓ + λc)/2

5.3 Our ECDSA Protocol
The one-time initialization for πECDSA involves running FDLKeyGen (which is real-
ized by πDLKeyGen [DKL+23]) and initializing two instances of FRVOLE per pair of
parties. Each party must also commit and release a pair of λc-bit seeds, in order
to initialize the protocol that realizes FZero. Coalescing these commitments with
the ones required by πDLKeyGen yields an average per-party bandwidth cost of

SetupCost(n, λc, λs, κ, |G|) 7→

(n− 1) ·

(
5λc + (κ + |G|) · dλc/ log2 λce+ κ + |G|
+ 2 · VOLESetupCost(λc, λs, κ, |G|)

)
Our signing protocol is very simple. Each pair of parties performs two VOLE

evaluations, and each party Pi commits and releases Ri and transmits Γu
i,j , Γv

i,j ,
ψi,j , pki, wi, and ui to every Pj such that j 6= i. This gives us a total average
per-party bandwidth cost of

SignCost(t, λc, λs, κ, |G|) 7→
(t− 1) · (4λc + 3κ + 4|G|+ 2 · VOLECost(λc, λs, κ, 2))

Finally, each party must perform 6t − 2 elliptic curve scalar operations in
order to generate a signature.

6They specify only that the random oracle can be used to compress the value denoted
in their paper as v, but do not give specifics. We assume that a seed is used to generate a
random vector, and the single Zq element is used to adjust that vector such that it meets the
constraints that they require.
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5.4 Concrete Results
In table 1, we substitute values into the above equations to derive the concrete
average per-party bandwidth costs for common security parameters. We assume
that point compression is used for elements of G, such that they require only
one byte more than elements of Zq.7 In all cases, we assume that κ = 2λc and
λs = 80. Note that since the seeds used to initialize the VOLE protocol and
the protocol that realized FZero can be combined, the cost of VOLE setup (and
therefore the overall setup cost) is the same regardless of which VOLE method
is used.

For comparison, when λc = 256 and λs = 80, the 2-of-n signing protocol
of Doerner et al. [DKLs18] requires each party to send 116.4 KiB (on aver-
age), whereas our new protocol (with the DKLs-derived VOLE) requires only
59.7 KiB per party to be sent. On the other hand, our new protocol has the
same communication pattern as theirs (under pipelining), requires fewer ellip-
tic curve scalar operations than theirs does,8 realizes a standard functionality,
whereas their functionality allows the adversary to bias R, and achieves sta-
tistical security, whereas theirs is secure only assuming that the computational
Diffie-Dellman problem is hard in G and that ECDSA is a signature scheme
over G. We therefore claim that our protocol is strictly superior to the original
2-of-n DKLs protocol.

The t-of-n protocol of Doerner et al. [DKLs19] requires (t−1)·88.3 KiB to be
sent by each party (on average) when the (dlog2(t)e+ 6)-round variant is used.9
Our new protocol requires only (t−1)·59.7 KiB to be sent, has only three rounds
(or two, if pipelining is employed), and achieves statistical security, whereas
theirs is secure assuming that the computational Diffie-Hellman problem is hard
in G. However, their protocol requires each party to compute only 6 elliptic
curve scalar operations during signing, and ours requires 6t − 2. Given the
efficiency of elliptic curve operations on modern hardware, and the additional
latency incurred by additional parties, we believe our new protocol to have the
advantage in nearly any real-world deployment scenario.

6 A Two-Round Protocol for Honest Majorities
When the number of corrupt parties is strictly less than t/2, a much simpler pro-
tocol is possible than the one presented in section 3, leveraging honest-majority
techniques for significant bandwidth and round-efficiency improvements. In
spite of its simplicity, we present it here for the sake of completeness, and give
a provisional theorem.

7This is not true of elliptic curves in general, but is true of the ones over which ECDSA is
most commonly deployed.

8While their protocol only requires 9 such operations as implemented, achieving UC-
security for their protocol requires a straight-line extractable proof of knowledge [Fis05, Ks22],
which requires many more.

9Their 10-round variant requires more bandwidth, but they do not give a precise figure.
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λc 128 192 256
κ 256 384 512
|G| 264 392 520

Setup (n− 1) · 3240768 (n− 1) · 9857712 (n− 1) · 21437968
Signing (DKLs) (t− 1) · 488736 (t− 1) · 966560 (t− 1) · 1600032

Signing (HMRT) (t− 1) · 367776 (t− 1) · 686816 (t− 1) · 1095968

Table 1: Bandwidth costs in total bits transmitted per party, for t signers out
of n total parties. Note that in all cases, the statistical parameter λs = 80.

Theorem 6.1 (Informal Honest-Majority Security Theorem). When
(t choose dt/2e) ∈ poly(λ), there exists a two-round protocol that UC-
realizes FECDSA(G, n, t) against a malicious adversary that statically corrupts
fewer than t/2 parties, assuming the existence of pseudo-random functions.

The protocol begins by sampling replicated secret shares of sk, r, ζ = 0,
and ϕ, with a reconstruction threshold of dt/2e. To non-interactively generate
replicated secret shares of zero, there is a direct extension of the protocol we have
given for realizing FZero in section 3.1. To non-interactively sample replicated
secret shares of a uniform value, one can perform a similar trick: simply replicate
shares of a seed, and use a PRF to expand the replicated seeds when necessary.

It is possible to perform multiplications of the shared values in replicated
form; however, the output shares would also be replicated and therefore inef-
ficient to send. Instead, the parties non-interactively convert their replicated
sharings into Shamir sharings of degree dt/2e − 1 via the technique of Cramer,
Damgård, and Ishai [CDI05], and then perform a standard non-interactive mul-
tiplication (as in the BGW protocol [BGW88], without degree-reduction) to
compute Shamir shares of u and v. The latter sharings are of degree t − 1 if t
is odd, or t− 2 if t is even. Following this, a non-interactive linear combination
yields Shamir shares of w.

The final honest-majority protocol, then, is two rounds: the parties perform
all of the non-interactive operations specified above, and swap degree-(dt/2e−1)
shares shares of R over G. They check that these shares lie on a polynomial of the
correct degree, and if so, then they interpolate R and use rx to compute shares
of w, which they swap. These are interpolated and the signature assembled and
verified.

Honest-majority techniques make our consistency check and the commit-
and-release mechanism for R superfluous. Since the honest parties’ shares fully
specify R, any attempt by the adversary to bias this value will result in a
polynomial of incorrect degree, which can be detected. Since the multiplica-
tion operations are completely non-interactive, any cheating on the part of the
adversary must be independent of the honest parties’ secrets, and therefore ex-
pressable in terms of simple linear offsets relative to the expected values, which
can be perfectly detected by verifying the signature, just as in the protocol from
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section 3. In terms of communication, each party must only send a single share
of R to the others, followed by one share each of u and w; thus, when κ = 256,
the total amount of data sent by every party to each of the others is 776 bits.

Note that in the above scheme, the size of each replicated secret share is a
factor of (t choose dt/2e) greater than the size of an ordinary additive share.
In the case that this yields impractically large shares, Shamir sharing can be
used throughout the protocol, and sharings of zero and uniform values can be
sampled interactively via the well-known techniques of Feldman [Fel87] and
Pedersen [Ped91]. Under this modification, the protocol requires three rounds.
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