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Abstract. We present Owl, an augmented password-authenticated key
exchange (PAKE) protocol that is both efficient and supported by secu-
rity proofs. Owl is motivated by recognized limitations in SRP-6a and
OPAQUE. SRP-6a is the only augmented PAKE that has enjoyed wide
use in practice to date, but it lacks the support of formal security proofs,
and does not support elliptic curve settings. OPAQUE was proposed
in 2018 as a provably secure and efficient alternative to SRP-6a, and
was chosen by the IETF in 2020 for standardization, but open issues
leave it unclear whether OPAQUE will replace SRP-6a in practice. Owl
is obtained by efficiently adapting J-PAKE to an asymmetric setting,
providing additional security against server compromise yet with lower
computation than J-PAKE. Our scheme is provably secure, efficient and
agile in supporting implementations in diverse multiplicative groups and
elliptic curve settings. Owl is the first solution that provides systematic
advantages over SRP-6a in terms of security, computation, message sizes,
and agility. Owl’s agility across settings also contrasts ongoing issues re-
lated to how OPAQUE will instantiate a hash-to-curve operation in the
elliptic curve setting (and what impact this will have on efficiency, secu-
rity and forward compatibility with new elliptic curves in the future).
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1 Introduction

Password authenticated key exchange (PAKE) represents a major category of
cryptographic protocols that allow two parties to establish a high-entropy session
key based on a shared low-entropy secret (e.g., a memorable password) without
requiring any public key infrastructure (PKI). This line of research started with
the 1992 Bellovin-Merritt Encrypted Key Exchange (EKE), and has become
a busy field. In contrast to using passwords for authentication in TLS, PAKE
never discloses the plaintext password to the verifier during the authentication
process, and hence is naturally resistant to phishing attacks. Furthermore, it is
particularly useful in applications where a PKI is unavailable or untrusted.

There are two types of PAKE protocols in general: balanced and augmented
(also resp. called symmetric and asymmetric PAKE). In the former, two parties



share a common secret (e.g., a password or a hash of a password). In the latter,
which is customized for a client-server setting, a client holds a password but
the server stores only a one-way transformation of it. The idea is that reversing
the transformation requires an offline search that proceeds by guessing through
an enumeration of candidate passwords. Augmented PAKE improves security
(vs. balanced PAKE) in case of server compromise: in a balanced PAKE, any
plaintext credentials stolen from a server can be directly used to impersonate
clients, but in an augmented PAKE, to recover plaintext passwords requires an
offline guessing attack. This is an easy way to make attacks more expensive,
without involving tamper-resistant hardware or multiple servers [25].

Augmented PAKE has received less attention to date than balanced PAKE.
The additional security requirement makes it more complex to design. Several
augmented PAKE protocols are available in the literature, but only SRP-6a [36]
has been widely implemented in practice. (It is the latest version of SRP-3,
following a series of revisions to patch weaknesses in the 1998 Secure Remote
Password 3 protocol [38].) For example, SRP-6a is used in iCloud, 1Password and
ProtonMail [18]. Security concerns [26] have been raised related to its heuristic
design. The protocol also requires working over the whole range of a multiplica-
tive group Z∗

p (where p is a safe prime, i.e., p = 2q + 1 with q also prime). This
makes modular exponentiation relatively expensive—e.g., given a 3072-bit p,
the exponent for modular exponentiation is 3072 bits, and one exponentiation is
3072/256 = 12 times as costly as an exponentiation in 3072-bit DSA with 256-bit
exponents. Finally, SRP-6a does not support elliptic curve implementations.

OPAQUE is an augmented PAKE scheme [26] asserted to have advantages
over SRP-6a. For reasons explained in §2, it remains unclear whether OPAQUE
will displace SRP-6a in practice. Finding an alternative more secure and efficient
than SRP-6a has been an open problem to date. We address this herein by effi-
ciently adapting J-PAKE [17] to an asymmetric setting, yielding a new scheme:
Owl.5 Compared with J-PAKE, Owl provides additional security against server
compromise with even lower computation overall. To the best of our knowledge,
Owl is the first protocol that shows systematic advantages over SRP-6a (see §5
for a comprehensive comparison). Our contributions are as follows.

1. We propose Owl, a novel augmented PAKE scheme. We do this by modifying
J-PAKE, delivering extra security features yet with lower computation.

2. We formally prove the security of Owl under the Computational Diffie-
Hellman (CDH) and Decision Diffie-Hellman (DDH) assumptions in a Uni-
versal Composability (UC) framework in the random oracle model.

3. We show that Owl is systematically better than SPR-6a in terms of security,
computation, message sizes, and cryptographic agility in implementations.

5 Owls have asymmetric ears with one higher than the other. This asymmetry helps
owls pinpoint the source of a sound in darkness.
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2 Motivation and background

Owl is motivated by limitations that have been observed in SRP-6a, and different
issues that are now known with OPAQUE. This section provides the context.

To date, many more balanced than augmented PAKE schemes have been pro-
posed. Among the many balanced PAKE schemes, a smaller number have been
implemented in real-world applications, including SAE [19] in Wi-Fi Protected
Access 3 (WPA3), J-PAKE [17] in IoT (as part of the Thread specification) and
browser sync, PACE [7] in e-passports (third generation), and SPEKE [23] in
Blackberry Messenger. For a state-of-the-art review of PAKE protocols and their
real-world applications, see Hao and van Oorschot [18].

SRP-6a is the only augmented PAKE that has been widely used in practice to
date. However, aside from concerns about its heuristic security, it has practical
limitations including (1) costly modular exponentiation due to the use of long
exponents, and (2) failure to support elliptic curve implementations.

OPAQUE is an augmented PAKE scheme from 2018 by Jarecki et al. [26]. An
advantage promoted in its favor is so-called pre-computation security : if a server
is compromised, an attacker cannot use pre-computed tables to speed up offline
search. In contrast, for some augmented schemes, a single pre-computed table can
be used thereafter to efficiently recover many passwords. Compared to SRP-6a,
however, the advantage is less: if a server is compromised, while it is possible for
an attacker to speed up password guessing using a pre-computed table, a unique
table must be pre-computed per user (because of SRP-6a’s salt), significantly
increasing attack costs in terms of memory used and pre-computation time. We
emphasize that pre-computation security does not itself stop offline attacks—in
case of server compromise, OPAQUE passwords remain at risk and should be
updated as soon as possible (as for other augmented PAKE protocols).

In 2020, the IETF conducted a PAKE competition. OPAQUE was selected as
a winner in the augmented PAKE category [8], with its pre-computation security
regarded as an advantage over some other schemes. OPAQUE also has formal
security proofs (SRP-6a does not), and seems to be much more efficient than
others (for caveats, see §5). However, it has three limitations, as now detailed.

1) OPAQUE relies on a hash-to-curve (H2C) function to map a password
to a random prime-order generator on an elliptic curve (EC), as part of the
Oblivious PRF (OPRF) construction. However, this H2C function was not in-
stantiated in the original paper. In fact, researchers have been trying to define
H2C since 2000 (as part of the IEEE P1363.2 standardization project [22]), but
even today, standard constructions of H2C remain missing. Earlier constructions
of H2C in IEEE 1363.2 worked with general elliptic curves and guaranteed the
correctness in the output (a prime-order generator), but they turned out to be
vulnerable against side-channel timing attacks [18]. (The IEEE 1362.2 standard
was withdrawn in 2019.) When OPAQUE was selected by IETF in 2020, H2C
remained uninstantiated [16]. Since then, attempts to fill this gap by defining
custom H2C functions continue, within an Internet draft [20]. The IETF H2C
constructions are motivated to guarantee constant-time operations, but unlike
the earlier IEEE constructions, they work only with specifically selected elliptic
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curves and do not guarantee the output is a prime-order generator [18]. Until
the H2C functions are finally established (defined) and widely adopted, how to
securely and efficiently instantiate H2C remains an open problem.

2) The critical dependence on H2C essentially leaves OPAQUE undefined
in a multiplicative group (MODP) setting. During the IETF selection process,
OPAQUE was specified only in an EC setting. As shown in §5, it is possible to
instantiate OPAQUE in a MODP setting, e.g., by replacing H2C with an equiv-
alent hash-to-group (H2G) function as used in SPEKE [23], but the performance
advantages of OPAQUE then diminish significantly.

3) After OPAQUE was selected by IETF, it was discovered that the original
protocol reveals information to passive observers about whether the password has
been recently changed during a login session [16]. Although this revelation may
at first appear minor, it can be of significant concern in practice. Recall that the
main motivation for augmented PAKE is to address the threat of “server com-
promise”. In principle, with the stolen credentials from a compromised server,
the attacker is able to launch brute-force attacks to uncover plaintext passwords,
but this is a time-consuming process. If a user diligently updates the password,
her account on the server can remain secure. However, many users may be slow
to update passwords. By passively monitoring the login sessions for all users,
an attacker learns valuable information to identify those who have not changed
the password and hence prioritizes the brute-force attack against those users.
SPR-6a does not appear to have this problem.

These above issues point to the need for an augmented PAKE scheme that
is efficient across both multiplicative and elliptic curve settings, is supported by
security proofs, and does not reveal information about password changes.

3 Protocol specification of Owl

Here we provide a specification of the Owl protocol. Owl follows the design
strategy of J-PAKE by adopting Schnorr zero-knowledge proofs to enforce each
party to honestly follow the protocol specification, but unlike J-PAKE, works in
an asymmetric setting and delivers additional security against server compro-
mise. To ease comparison, we reuse J-PAKE notation where possible, including
x1, x2, x3 and x4 for J-PAKE’s four ephemeral private keys. In the original J-
PAKE scheme, x1 and x3 are never used again after their public keys gx1 and
gx3 (together with the Schnorr zero-knowledge proofs) are computed. This ob-
servation provides us with an insight to securely and efficiently modify J-PAKE
in the new setting to achieve more security with less computation by leveraging
the data storage that becomes available on the server, as will be detailed below.

3.1 Setup

We describe the protocol in a DSA-like group G (the specification works the
same in an elliptic curve setting). Let p and q be two large primes such that
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q | p−1. The protocol operates in the subgroup of Z∗
p of prime order q. Any non-

identity element in this subgroup can serve as a generator, denoted g. Unless
specified otherwise, all modular operations are performed with reference to the
modulus p. Let t be a (low-entropy) user-specific secret, obtained by hashing the
username and password: t = H(username∥password) mod q. Here ∥ denotes
concatenation. In a practical implementation, each concatenated item can be
prepended with the item’s byte length, to clearly separate items. We define
π = H(t) mod q as a shared secret to be used for authenticated key exchange
and T = gt mod p as a password verifier to be stored on the server. In Owl,
π, π + q, π + 2q, · · · are equivalent values in the exponent, hence the ‘mod q’ in
the π definition. As in J-PAKE, we require π ̸= 0 mod q. As summarized in
Fig. 1, the protocol comprises two main phases: initial registration and login
(authenticated key exchange); for completeness, we also cover password update.

Zero-knowledge proof. Given a private key x ∈R [0, q − 1] and the corre-
sponding public key X = gx mod p, ZKP{x : g,X} will denote a zero-knowledge
proof (ZKP) for conveying knowledge of exponent x. When the context is clear,
we shorten this to ZKP{x}. As a concrete instantiation, we use Schnorr non-
interactive zero-knowledge (NIZK) proof [15], which is provably secure, revealing
nothing beyond the truth of the statement: “the prover knows the exponent”.

Specifically, to generate a zero-knowledge proof for ZKP{x : g,X}, the prover
chooses a random secret v ∈R [0, q − 1], computes V = gv mod p, and outputs
(h, r) as the “proof”, where h = H(g∥V ∥X∥ProverID) and r = v − x · h mod q.
ProverID represents the prover’s unique identity. H(·) is a secure one-way hash
function.6 Verification of the ZKP requires that the verifier check:
1) X has the correct prime order; and

2) h
?
= H(g∥gr ·Xh∥X∥ProverID), where h is the received value.

Note that in the original J-PAKE protocol, the Schnorr ZKP contains (V, r)
while we use (h, r). The two are equivalent [15, §4] with the same computation
cost, but the latter has a more compact size in a MODP setting. In Owl, if the
ZKP verification fails, the receiver will reject the received data with a “ZKP
verification failure” message. The status of the session remains intact.

3.2 Initial registration

To register an account on a server, a user computes t = H(U∥w) mod q. Here
U denotes her username; w her (weak) password. She then computes π =
H(t) mod q, T = gt mod p, and sends (U, π, T ) to the server through a secure
channel (e.g., over TLS or out-of-band). The server chooses a random secret
x3 ∈R [1, q−1], and computes a public key X3 = gx3 mod p together with a zero-
knowledge proof Π3 = ZKP{x3 : g,X3}. The server stores {U : X3, Π3, π, T} as
the password verification file for U , and deletes x3.

6 The use of a secure one-way hash function is a common technique to transform an
interactive ZKP into a non-interactive one based on the Fiat-Shamir heuristics [10].
As a result, the security proof for Owl is in the random oracle model.
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Init registration

User (U,w) Server (S)

t = H(U∥w) mod q x3 ∈R [0, q − 1], X3 = gx3

π = H(t) mod q Π3 = ZKP{x3}
T = gt mod p U, π, T

−−−−−−−−−→
Stores {U : X3, Π3, π, T}

(Secure channel)

Login

User (U,w) Server (S, {U : X3, Π3, π, T})
t = H(U∥w) mod q
π = H(t) mod q

x1 ∈R [0, q − 1], X1 = gx1

Π1 = ZKP{x1}
x2 ∈R [1, q − 1], X2 = gx2

Π2 = ZKP{x2} U,X1, X2, Π1, Π2−−−−−−−−−−−−−−−→
Verify Π1, Π2, X2 ̸= 1

x4 ∈R [1, q − 1], X4 = gx4

Π4 = ZKP{x4}
β = (X1X2X3)

x4·π

Verify Π3, Π4, Πβ , X4 ̸= 1 S,X3, X4, Π3, Π4, β,Πβ←−−−−−−−−−−−−−−−−−−−
Πβ = ZKP{x4 · π}

α = (X1X3X4)
x2·π

Πα = ZKP{x2 · π}
K = (β/Xx2·π

4 )x2

h = H(K∥Transcript)
r = x1 − t · h mod q α,Πα, r−−−−−−−−−→

Verify Πα

K = (α/Xx4·π
2 )x4

h = H(K∥Transcript)
Verify gr · Th = X1

k = H(K) k = H(K)

Password update

User (U,w,w′) Server (S, {U : X3, Π3, π, T})
t′ = H(U∥w′) mod q
π′ = H(t′) mod q

T ′ = gt
′
mod p π′, T ′

−−−−−−−−−→
Replaces (π, T ) with (π′, T ′)

(Secure PAKE channel)

Fig. 1. The Owl protocol. U is the user’s identity, w her (weak) password.

We will use π as a shared secret to run a modified J-PAKE protocol by
using the pre-computed X3 and Π3 values instead of freshly generating them for
each login session as in the original J-PAKE protocol. This modification does not
affect the security of the session key, as we will show in §4. We define π as a secret
salted by a unique username (rather than H(w)). This is to ensure that upon
server compromise if an attacker wishes to use a pre-computed table to launch
an offline dictionary attack, he needs to build a unique pre-computed table for
each user. In addition to modifying J-PAKE, we adopt a method proposed by
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Hwang et al. to enable a client to securely prove the knowledge of t for T = gt

based on a variant of Schnorr NIZK proof [21] with details below.

3.3 Login

The protocol runs between a client user (with unique identity U) and server (with
identity S). The user initiates the communication. Both sides check: U ̸= S.
There are three flows in the login process to perform authenticated key exchange.

1. User→ Server: U chooses random private keys x1 ∈R [0, q−1], x2 ∈R [1, q−1],
computes corresponding public keys X1 = gx1 , X2 = gx2 mod p, and zero-
knowledge proofs Π1 = ZKP{x1 : g,X1}, Π2 = ZKP{x2 : g,X2} to prove
knowledge of exponents x1 and x2. U sends to S: (U,X1, X2, Π1, Π2).

2. Server → User: After verifying the received ZKPs and that X2 ̸= 1 mod p,
S chooses a random private key x4 ∈R [1, q − 1], computes X4 = gx4 mod p
and Π4 = ZKP{x4 : g,X4} to prove the knowledge of x4, and computes
β = (X1X2X3)

π·x4 together with Πβ = ZKP{π · x4 : X1X2X3, β} to prove
the knowledge of the exponent π·x4. S sends to U : (S,X3, X4, Π3, Π4, β,Πβ).

3. User→ Server: U verifies the received ZKPs and that X4 ̸= 1 mod p. U com-
putes α = (X1X3X4)

x2·π together with Πα = ZKP{x2 · π : X1X3X4, α} to
prove knowledge of the exponent x2 ·π. U then computesK = (β/Xx2·π

4 )x2 =
g(x1+x3)·x2·x4·π and r = x1 − t · h mod q where t = H(U∥w) and h =
H(K∥Transcript). Our definition of Transcript herein is a record of the
items exchanged between U and S for them to compute a common session
key. Transcript = U∥X1∥X2∥Π1∥Π2∥S∥X3∥X4∥Π3∥Π4∥β∥Πβ∥α∥Πα. The
computation of r is based on a method proposed by Hwang et al. [21] to prove
the knowledge of t for gt in a compiler; here, we use X1 as a commitment
(which is included in Transcript). Finally, U sends to S: (α,Πα, r).

Session key computation. After the third flow, the server S first verifies the
received Πα, and then computes K = (α/Xx4·π

2 )x4 = g(x1+x3)·x2·x4·π. S then
computes h = H(K∥Transcript). S checks that gr ·Th = X1 mod p; otherwise,
it rejects the login with “authentication failure”. If U and S have used the correct
password credentials, they will derive a common session key (for simplicity, using
a one-way hashH as a key derivation function): k = H(K) = H(g(x1+x3)·x2·x4·π).

Explicit key confirmation. After each party has computed the session key, they
use it to encrypt messages (in an authenticated mode) for secure communica-
tion. The equality of session keys can be verified based on whether the receiver
can decrypt ciphertexts successfully; this is called implicit key confirmation. Al-
ternatively, explicit assurance (before secure communication) that both parties
have computed the same session key can be achieved by adding an explicit key
confirmation procedure. There are a number of ways to do this. One example
is to use the method from J-PAKE RFC 8236 (itself based on NIST SP 800-
56A). We define K = g(x1+x3)·x2·x4·π as the raw keying material, and derive a
key-confirmation key k′ = H(K∥ "KC"). In the third flow, the user can append a
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key confirmation string MU = HMAC(k′, U∥S∥X1∥X2∥X3∥X4) using an HMAC
algorithm with k′ being the key. The server replies with another key confirma-
tion string MS = HMAC(k′, S∥U∥X3∥X4∥X1∥X2). This requires an extra flow.
Note that although explicit key confirmation is generally recommended, it is not
mandatory in IEEE 1363.2, ISO/IEC 11770-4 and NIST SP 800-56A.

We note that in Owl’s third flow, the client-to-server authentication has been
done based on verification against the stored password verifier. The explicit key
confirmation string from the client to the server can be piggybacked in the same
flow at a negligible cost. After receiving the explicit assurance of key confirmation
from the client, the server may use the session key to send encrypted data in
the next flow, and piggyback the key confirmation string in the same flow, hence
adding a negligible cost for realizing explicit key confirmation.

3.4 Password update

After the successful authenticated key exchange process, both parties use the
session key k to create a secure channel. Through this secure channel, the user
can update the password by sending π′, T ′ to the server as shown in Fig. 1.
The server updates the password verifier file for U accordingly. One reason for a
user to update her password is suspicion that the old password was compromised.
Owl’s forward secrecy property (§4.3) ensures that a passive attacker who knows
the old password cannot learn the session key k, and hence cannot learn the new
password. Although OPAQUE and SRP-6a do not discuss this explicitly, they
can use a similar method to update the password.

However, OPAQUE’s login process can reveal information about whether a
password has been recently updated as discussed in §2. In OPAQUE, during the
registration phase, the server saves a ciphertext c = Em(. . .) using a password-
derived encryption key m = H(w, f(w)k) where w is the password, f(w) is a
function that maps the password to a generator in the designated prime-order
subgroup, and k ∈R Zq is a random secret. We omit the content of the encryption
as it is not relevant to the discussion here. The same ciphertext c is sent back
to the user in every login session, but a passive attacker can observe that the c
value will change once the password is updated. Addressing this issue requires
modifying the OPAQUE protocol. By comparison, Owl and SRP-6a do not have
this problem. In Owl, the values (X3, Π3) remain the same after the password is
updated. SRP-6a saves a salt s and a verifier v = gH(s,w) during the registration
phase. The salt s is sent to the user in every login session. Although not explicitly
discussed in SRP-6a [36], it is possible to update only v′ = gH(s,w′) with a new
password w′ without changing s, hence preventing the problem as in OPAQUE.

4 Security analysis

This section analyzes the security of Owl based on a universally composable
(UC) security model due to Gentry, MacKenzie and Ramzan [12], which was
derived from the UC PAKE model of Canetti et al. [6] by extending it from a
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symmetric setting to an asymmetric one. Based on the model of Gentry et al.,
Hwang et al. [21] proposed a compiler to convert symmetric PAKE to asymmetric
PAKE based on a variant of the Schnorr non-interactive zero-knowledge proof.
We adopt the method of Hwang et al. as part of our protocol (more specifically,
proving the knowledge of t for T = gt; see Fig. 1). As Hwang et al.’s compiler
has been proven secure in the UC model on the assumption that the session key
from the symmetric PAKE is secure, we focus on analyzing the security of the
session key derived from the modified J-PAKE protocol.

4.1 Security assumption

The security proof of Owl is based on the intractability of Multiple Decision
Diffe-Hellman (MDDH) [29] and Square Computational Diffie-Hellman (SCDH)
assumptions. We show that Decision Diffe-Hellman (DDH) and MDDH assump-
tions are equivalent. The SCDH and Computational Diffie-Hellman (CDH) as-
sumptions are also equivalent, as shown by Bao et al. [2].

Assumption 1 (DDH): For any PPT adversary A, AdvDDH
A (λ) ≤ negl(λ),

where,

AdvDDH
A (λ) =

∣∣∣∣Pr[A(g, ga, gb, gab) = 1
∣∣a, b $←− Zq]−Pr[A(g, ga, gb, gc)

∣∣a, b, c $←− Zq]

∣∣∣∣
Assumption 2 (MDDH): For n ∈ poly(λ), any PPT adversary A, the fol-
lowing two distributions are computationally indistinguishable.

R0 =
(
(g, ga, gbi , gabi) : i ∈ [1, n]

∣∣a, b1, b2, . . . , bn $←− Zq

)
R1 =

(
(g, ga, gbi , gci) : i ∈ [1, n]

∣∣a, b1, b2, . . . , bn, c1, c2, . . . , cn $←− Zq

)
We define the advantage of A in distinguishing between R0 and R1 as,

AdvMDDH
A (λ) =

∣∣∣∣Pr[A(R0) = 1]− Pr[A(R1) = 1]

∣∣∣∣
Hence, AdvMDDH

A (λ) ≤ negl(λ), for a PPT adversary A.

Lemma 1. Assumption 1 and Assumption 2 are equivalent.

Proof. (⇒): If there is an adversary A against Assumption 2, we could use it
to construct another adversary B against Assumption 1. This has been proved
in Lemma 4 by Kurosawa and Nojima [29]. (⇐): Let us assume that we have
an adversary B, against the DDH assumption. We use it to construct another
adversary A, against Assumption 2. A receives as input g, ga, and bi, Ωdi ∈
{ga·bi , Ri}, for i ∈ [1, n], where Ri

$←− G. It then invokes B with g, ga, gbk , and
Ωdk for some k ∈ [1, n]. B has to check if Ωdk = ga·bk or a random element in G.
If B is successful, so will be A. Hence, the result holds.
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Assumption 3 (CDH): Given x, y
$←− Zq, and g

$←− G, define CDHg(g
x, gy) =

gxy. Consider the following security experiment ExpCDH
A (λ). In this experiment,

the challenger randomly chooses three elements g, X = gx, Y = gy from G.
Then the adversary A is invoked with these three as inputs. A has to com-
pute CDHg(X,Y ) from these parameters. The experiment is successful if A
can compute CDHg(X,Y ) correctly. The advantage of an adversary A, against

ExpCDH
A (λ)

g
$←− G

X
$←− G

Y
$←− G

C ← A(g,X, Y )

Return C
?
= CDHg(X,Y )

ExpCDH
A (λ) is given by

AdvCDH
A (λ) = Pr[ExpCDH

A (λ) = 1]

As such, for any PPT adversary A AdvCDH
A (λ) ≤ negl(λ).

Assumption 4 (SCDH): Given x
$←− Zq, and g

$←− G, define SCDHg(g
x) =

gx
2

. Consider the following security experiment ExpSCDH
A (λ). In this experi-

ment, the challenger randomly chooses two elements g and X = gx from G.
Then the adversary A is invoked with these two as inputs. A has to compute
SCDHg(X) from these parameters. The experiment is successful if A can com-
pute SCDHg(X) correctly. The advantage of an adversary A, against ExpSCDH

A (λ)

ExpSCDH
A (λ)

g
$←− G

X
$←− G

C ← A(g,X)

Return C
?
= SCDHg(X)

is given by

AdvSCDH
A (λ) = Pr[ExpSCDH

A (λ) = 1].

As such, for any PPT adversary A AdvSCDH
A (λ) ≤ negl(λ).

Lemma 2. Assumption 3 and Assumption 4 are equivalent [2] .
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4.2 UC Secure augmented PAKE

In this section, we discuss the UC functionality FAPAKE of an augmented PAKE
protocol based on the model of Gentry et al. [12]. Figure 2 provides the de-
scription of the ideal functionality FAPAKE of an augmented PAKE protocol.
FAPAKE is parameterized by a security parameter λ. It interacts with an ad-
versary A and other parties in the protocol via a set of the defined queries. Owl
employs Schnorr ZKPs to enforce that each party honestly follows the protocol
specification; only messages with valid ZKPs will be accepted and processed.
Anyone (including the adversary) can verify the ZKPs. If a ZKP fails to be veri-
fied, the receiver aborts processing the received data without changing the state
of the session (i.e., a malformed input does not affect the session). The session
will be aborted only when the client’s password and the server’s password veri-
fication file do not match (i.e., an authentication failure), as already handled in
Gentry et al.’s model.

The (STOREPWFILE, sid, Pi, w) query from party Pj corresponds to the server
storing a password verification file in its database, where sid is the index of the
record ⟨FILE,Pi, Pj⟩. If there is already a record then the query is ignored.
Else, the password verification file is recorded by the UC functionality FAPAKE

in file[sid]. When FAPAKE receives a query (CLTSESSION, sid, ssid, Pj , w)
from the client Pi to start a session, FAPAKE checks if the CLTSESSION query
is new or not. If there is no record of a previous CLTSESSION query, FAPAKE

creates a record ⟨ssid, Pi, Pj , w⟩ where ssid represents a unique session ID and
marks it fresh. If there is already a fresh record, the query is ignored. FAPAKE

sends (CLTSESSION, sid, ssid, Pi, Pj) to the adversaryA. When FAPAKE receives
a (SVRSESSION, sid, ssid) query from the server Pj , it checks if there exists a
password record ⟨FILE,Pi, Pj , w⟩. That is to say, the functionality checks if the
client is already registered with the server or not. If there is no such record, the
query is ignored. FAPAKE also checks if there exists a fresh CLTSESSION query
for ssid, and ignores if not. Then FAPAKE sends (SVRSESSION, sid, ssid, Pi, Pj)
to the adversary A. For every SVRSESSION query that goes through, FAPAKE

makes a session record ⟨ssid, Pj , Pi, w⟩ and marks it fresh.
Now, we discuss how FAPAKE deals with stealing password file queries. The

‘Steal Password Query’ is invoked by the adversary. In any balanced PAKE pro-
tocol, when the ‘steal password file’ query is invoked by the adversary, the ideal
functionality sends the password directly to the adversary. However, in an aug-
mented PAKE protocol, the adversary needs to do a brute-force search to find
the password from the information obtained through the theft. The brute-force
search is captured by the OFFLINETESTPWD query. When the adversary makes
this query with the correct password after compromising the server, the func-
tionality returns ‘correct guess’. This event happens when the brute-force search
is done by the adversary on the correct password. If the password is wrong, the
functionality returns ‘wrong guess’. If the query is made before compromising
the server, the functionality stores a record (offline, w′). This is done to model
the construction of the pre-processing table by the adversary. If later the adver-
sary compromises the server, and there is a matching entry in the preprocessing

11



Functionality FAPAKE

Password storage and authentication sessions
1 Upon receiving a query (STOREPWFILE, sid, Pi, w) from party Pj :
• If there is a record ⟨FILE,Pi, Pj , w

′⟩, then do nothing.
• Else create a fresh record ⟨FILE,Pi, Pj , w⟩ and mark it uncompromised.

2 Upon receiving a query (CLTSESSION, sid, ssid, Pj , w) from party Pi:
• Send (CLTSESSION, sid, ssid, Pi, Pj) to adversary A, and if this is the first CLTSESSION query

for ssid, store session record ⟨ssid, Pi, Pj , w⟩ and mark it fresh.
3 Upon receiving a query (SVRSESSION, sid, ssid) from Pj :
• If there is a password record ⟨FILE,Pi, Pj , w⟩, then send (SVRSESSION, sid, ssid, Pi, Pj)

to A, and if there exists a fresh CLTSESSION query for ssid, store session record
⟨ssid, Pj , Pi, w⟩, and mark it fresh.

Stealing Password Files
1 Upon receiving a query (STEALPWFILE, sid) from adversary A:
• If there is no password data record, reply to A with “no password file”. Otherwise, do the

following. If the password data record ⟨FILE,Pi, Pj , w⟩ is marked uncompromised, mark it
as compromised. If there is a tuple (offline, w′) stored with w = w′, send w to A, otherwise
reply to A with “password file stolen”.

2 Upon receiving a query (OFFLINETESTPWD, sid, w′) from adversary A:
• If there is no password data record, or if there is a password data record ⟨FILE,Pi, Pj , w⟩

that is marked uncompromised, then store (offline, w′). Otherwise, do: If w = w′, reply to
A with “correct guess”. If w ̸= w′, reply with “wrong guess”.

Active session attacks
1 Upon receiving a query (TESTPWD, sid, ssid, P, w′) from adversary A:
• If there is a session record of the form ⟨ssid, P, P ′, w⟩ which is fresh, then do: If w = w′,

mark the record compromised and reply to A with “correct guess”. Otherwise, mark the
record interrupted and reply with “wrong guess”.

2 Upon receiving a query (IMPERSONATE, sid, ssid) from adversary A:
• If there is a session record of the form ⟨ssid, Pi, Pj , w⟩ which is fresh, then do: If there is

a password data record ⟨FILE,Pi, Pj , w⟩ that is marked compromised, mark the session
record compromised and reply to A with “correct guess”, else mark the session record
interrupted and reply with “wrong guess”.

Key Generation and Authentication
1 Upon receiving a query (NEWKEY, sid, ssid, P, k) from A, where |k| = λ, if there is a record of

the form ⟨ssid, P, P ′, w⟩ that is not marked completed, then:
• If this record is compromised, or either P or P ′ is corrupted, output (sid, ssid, k) to P .
• If this record is fresh, there is a session record ⟨ssid, P ′, P, w′⟩, w′ = w, a key k′ was sent

to P ′, and ⟨ssid, P ′, P, w⟩ was fresh at the time, then let k′′ = k′, else pick a random key
k′′ of length λ. Output (sid, ssid, k′′) to P .

• In any other case, pick a random key k′′ $←− {0, 1}λ, and output (sid, ssid, k′′) to P .
• Finally, mark the record ⟨ssid, P, P ′, w⟩ as completed.

2 Upon receiving a query (TESTABORT, sid, ssid, P ) from A: If there is a record of the form
⟨ssid, P, P ′, w⟩ that is not marked completed, then:
• If this record is fresh, there is a record ⟨ssid, P ′, P, w′⟩, and w′ = w, let b′ = succ.
• In any other case, let b′ = fail.
• Send b′ to A. If b′ = fail, send (abort, sid, ssid) to P and mark ⟨ssid, P, P ′, w⟩ completed.

Fig. 2. UC functionality FAPAKE of augmented PAKE
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Functionality FRO

Upon receiving a message (Hash, sid,m) from any party P :

If there is a tuple (m, r) recorded, return r. Else, sample a random l-bit string r
$←−

{0, 1}l, store (m, r) and return r to P .

Fig. 3. The random oracle functionality.

table, the adversary gets the password by looking up the table rather than doing
a brute-force search.

The TESTPWD query models the online password guessing attack. If the ad-
versary picks the correct password, the attack is successful, and the adversary
learns the password. The IMPERSONATE attack is successful if the adversary has
made a STEALPWFILE before. If the adversary sends a NEWKEY query then the
ideal functionality allows the adversary to set a key for a party that is either a
corrupt party or whose partner is a corrupt party. If both the parties are honest
and the session is not compromised then the functionality FAPAKE sends the
same randomly generated key to both parties. In all other cases, the function-
ality assigns a random key to each party. The TESTABORT query is to let the
session abort when the password authentication fails (i.e., the client’s and the
server’s passwords do not match).

Random Oracle: We define the UC functionality of a random oracle in Figure
3. The oracle is queried with a message m. It returns a random string of a fixed
bit length. If a query is repeated, the oracle returns whatever it had returned
earlier. Our augmented PAKE protocol uses the random oracle functionality to
compute 1) t = H(U∥w); 2) π = H(t); 3) the session key k = H(K); 4) the
challenge h = H(K∥Transcript) in Hwang et al.’s compiler [21]. To distinguish
these, we use the argument ⟨sid, d⟩, where d = 1, 2, 3, 4 respectively.

Owl in the UC framework: Figure 4 describes the Owl protocol in the UC frame-
work. During the registration phase, we follow the ideal functionality defined by
Gentry et al. [12] to let the server process the password to derive a password
verification file for storage. In practice, we can let the client compute this file
instead, so the server has no access to the password (see §3 for more details).
When Pi (or Pj) receives a NEWKE message, they check the correctness of the
message format and parameters. If the format and parameters are correct, Pi

and Pj compute a session key k and k′ respectively. If Pi has used the password
matching the verification file stored by the server Pj , we have k = k′; otherwise,
k and k′ are two random strings, k ̸= k′ with an overwhelming probability.

The Simulator: In order to prove that our augmented PAKE protocol discussed
in Figure 4 realizes the UC functionality presented in Figure 2, we need to intro-
duce a simulator SIM. In a simulated world, the adversary A interacts with the
simulator which in turn interacts with the ideal functionality. Figure 5 depicts
two scenarios: the real world and the simulated world. In both scenarios, there
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UC Augmented PAKE protocol Owl

Setup: This protocol uses a random oracle functionality FRO.

Storing Password: Upon receiving (STOREPWFILE, sid, Pi, w), Pj does the following:

– Pj sends (Hash, ⟨sid, 1⟩, ⟨Pi, w⟩) to FRO and receives the response t.
– Pj sends (Hash, ⟨sid, 2⟩, t) to FRO and receives the response π.

– Pj samples random x3
$←− Zq, and stores file[sid] = (X3 = gx3 , Π3, π, T = gt).

Here, Π3 = ZKP [x3 : g, gx3 ].

Protocol Steps:

1 When Pi receives (CLTSESSION, sid, ssid, Pj , w), she sends (Hash, ⟨sid, 1⟩, ⟨Pi, w⟩)
to FRO and receives the response t. She sends (Hash, ⟨sid, 2⟩, t) to FRO and re-

ceives the response π. Pi selects x1
$←− Zq, x2

$←− Z∗
q , and computes X1 = gx1 ,

X2 = gx2 , Π1 = ZKP [x1 : g, gx1 ], and Π2 = ZKP [x2 : g, gx2 ]. Pi sends to Pj

(FlowOne, sid, ssid,D), where D = ⟨X1, X2, Π1, Π2⟩.
2 When Pj receives (SVRSESSION, sid, ssid, Pi, D), she obtains (X3, Π3, π, T ) from

the tuple stored in file[sid] (aborting if this value is not properly defined). She

then parses D and aborts if this parsing fails. Pj selects x4
$←− Z∗

q , and com-
putes X4 = gx4 , β = (X1X2X3)

x4·π, Π4 = ZKP [x4 : g, gx4 ] and Πβ =
ZKP [x4 · π : X1X2X3, β]. Pj sends to Pi (FlowTwo, sid, ssid, E), where E =
⟨X3, X4, β,Π3, Π4, Πβ⟩.

3 When Pi receives (NEWKEY, sid, ssid, Pj , E), she parses E and aborts if the pars-
ing fails. Pi computes α = (X1X3X4)

x2·π and Πα = ZKP [x2 · π : X1X3X4, α].
Pi computes K = (β/Xx2π

4 )x2 and sends (Hash, ⟨sid, 4⟩, ⟨K, Transcript⟩) to
FRO and obtains a response h. Pi computes r = x1 − t · h mod q and
sends to Pj (FlowThree, sid, ssid, F ), where F = ⟨α,Πα, r⟩. Finally, Pi sends
(Hash, ⟨sid, 3⟩,K) to FRO to obtain a session key k. Pi outputs (sid, ssid, k) and
terminates the session.

4 When Pj receives (NEWKEY, sid, ssid, Pi, F ), she parses F and aborts if the parsing
fails. Pj computes K′ = (α/Xx4·π

2 )x4 , and sends (Hash, ⟨sid, 4⟩, ⟨K′, Transcript⟩)
to FRO to obtain h′. Pj verifies that gr · Th′

= X1, and aborts the session if the
verification fails. Finally, Pj sends (Hash, ⟨sid, 3⟩,K′) to FRO to obtain a session
key k′. Pj outputs (sid, ssid, k′) and terminates the session.

Stealing Password File: When Pj (who is a server) receives a message
(STEALPWFILE, sid), from the adversary A, if file[sid] is defined, Pj sends it to A.

Fig. 4. The Owl protocol in the UC framework
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is an environment Z that sets the passwords for the user and interacts with the
dummy adversary A. In the real world, A and the users interact with the Owl
protocol. In the simulated world, the users interact with the ideal functionality,
whereas A interacts with the simulator that in turn interacts with the ideal func-
tionality. We will show that the view of Z in the two worlds is indistinguishable.

Z Pi/Pj

A Owl

(a) Real world

Z Pi/Pj

A SIM

FAPAKE

(b) Simulated world

Fig. 5. View of environment for real world and simulated world.

The environment Z chooses an arbitrary password w from a dictionary D
and performs the password registration by sending the STOREPWDFILE query to
Pj , creating a record ⟨FILE,Pi, Pj , ss⟩, where ss represents the server storage,
ss = (X3, Π3, π, T ). We emphasize that passwords chosen from the dictionary do
not have to follow a uniform distribution; in fact, they can be of any distribution.
The authentication in Owl is entirely based on the equality of the two (low-
entropy) secret values chosen by both sides. In case of server compromise, the
ss file will be revealed to A through the STEALPWFILE query. SIM must come
up with a guessed password w′ that matches gH(U∥w′) = T . SIM checks if the
guessed password is correct through the OFFLINETESTPWD query.

When Z sends a client session initiation request to Pi, Pi chooses a password
w′, and sends a query (CLTSESSION, sid, ssid, Pi, Pj , w

′) to FAPAKE , which then
sends (CLTSESSION, sid, ssid, Pi, Pj) to the simulator. SIM first checks if the
session ID ssid is fresh. If ssid was used before, SIM ignores the request. If this
ssid is new, SIM creates a record ⟨ssid, Pi, Pj , ·⟩, and marks it fresh. SIM
then chooses x1

$←− Zq, x2
$←− Z∗

q , and generates NIZK proofs Π1 = ZKP [x1 :
g, gx1 ], and Π2 = ZKP [x2 : g, gx2 ]. SIM sends (FlowOne, sid, ssid,D) to A,
where D = ⟨gx1 , gx2 , Π1, Π2⟩.

When the adversary A sends a SVRSESSION request with (id, ssid, Pi, Pj , D),
SIM checks if there is a record ⟨FILE,Pi, Pj , ss⟩ and aborts if there is not
(i.e., the client is not registered). If there is such a record, it retrieves ss =
(X3, Π3, π, T ). SIM also checks if ⟨ssid, Pi, Pj , ·⟩ is fresh, and aborts if it is not.
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SIM parses D = ⟨gx1 , gx2 , Π1, Π2⟩ and aborts if any step in the parsing (which
includes the verification of Π1 and Π2) fails. If the parsing is successful, it creates

a record ⟨ssid, Pj , Pi, ·⟩ and marks it fresh. SIM selects x4
$←− Z∗

q and generates
a NIZK proof Π4. SIM computes β = (X1X2X3)

x4·π and generates a NIZK
proof Πβ to prove the well-formedness of β. SIM sends a (FlowTwo, sid, ssid, E)
message to A where E = ⟨gx3 , gx4 , β,Π3, Π4, Πβ⟩.

When the adversary A sends a NEWKEY query, specifying (sid, ssid, Pi, E),
SIM first checks if the record ⟨ssid, Pi, Pj , ·⟩ is fresh, and aborts if it is not.
SIM then parses E = ⟨gx3 , gx4 , β,Π3, Π4, Πβ⟩ and aborts if any step in the
parsing (which includes verification of Π3, Π4 and Πβ) fails. If the parsing is
successful, SIM extracts the NIZK proof Πβ to find the value of x4 · π′ and
uses NIZK extraction to find x4 from Π4. SIM computes x4 · π′/x4 = π′.
SIM retrieves π from ss. If π = π′, SIM computes K = (β/Xx2·π

4 )x2 , sends
a query (Hash, ⟨sid, 3⟩,K) to FRO and uses the response k as the session key.
If π ̸= π′, SIM samples k randomly from {0, 1}λ. SIM outputs (sid, ssid, k)
to Pi. It updates the last item of the record ⟨ssid, Pi, Pj , ·⟩ with k and marks
the record completed. SIM computes α = (X1X3X4)

x2·π and generates a
NIZK proof Πα to prove the well-formedness of α. Furthermore, SIM retrieves
the SVRSESSION query and extracts the NIZK Π1 to obtain x1. SIM does
not know t = H(U∥w) without knowing the password. SIM must send an
OFFLINETESTPWD query to FAPAKE with a guessed password w′. If the response
is “correct guess”, SIM obtains w = w′ and computes t = H(U∥w′). SIM
sends a query (Hash, ⟨sid, 4⟩, ⟨K, Transcript⟩) to FRO to obtain a response
h, and computes r = x1 − h · t. Finally, SIM sends (FlowThree, sid, ssid, F )
message to A where F = ⟨α,Πα, r⟩.

When the adversary A sends a NEWKEY query, specifying (sid, ssid, Pj , F ),
SIM first checks if the record ⟨ssid, Pj , Pi, ·⟩ is fresh, and aborts if it is not.
SIM then parses F = ⟨α,Πα, r⟩ and aborts if any step in the parsing (which
includes verification of Πα) fails. If the parsing is successful, SIM uses NIZK
proof extraction to find the value of x2 ·π′ from Πα and the value of x2 from Π2.
SIM computes x2 · π′/x2 = π′. SIM retrieves the server storage ss from the
record ⟨FILE,Pi, Pj , ss⟩, and parses ss = (X3, Π3, π, T ). If π = π′, SIM com-
putes K = (α/Xx4·π

2 )x4 . SIM sends a query (Hash, ⟨sid, 4⟩, ⟨K, Transcript⟩)
to FRO to obtain a response h, and aborts the session ifX1 ̸= gr ·Th. SIM sends
a query (Hash, ⟨sid, 3⟩,K) to FRO and uses the response k as the session key. If
π′ ̸= π, SIM samples k randomly from {0, 1}λ. SIM outputs (sid, ssid, k) to
Pj . It updates the last item of the record ⟨ssid, Pj , Pi, ·⟩ with k and marks the
record completed.

4.3 Session key indistinguishability

We first show that the session key in Owl is indistinguishable from random under
three scenarios: 1) when an active adversary impersonates the server without
having the password verification file; 2) when an active adversary impersonates
the client without knowing the password; 3) when a passive adversary knows the
password. These results are needed for proving the main theorem later.
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Impersonating the server We define a security experiment ExpRNDKey
A (λ)

to model the adversary impersonating the server. We use this experiment to
show that the simulator SIM can replace the session key with the hash of a
random element of G, and it will not be possible for the adversary to distinguish
if the key it has received was the actual key or a randomly chosen key when the
adversary had chosen an incorrect password. If the passwords used by the two
parties do not match, both sides end up calculating different keys. In this attack
scenario, the simulator responds to the queries of the attacker impersonating the
server to a legitimate client without knowing the password verification file. The
simulator follows the protocol specifications and sends appropriate information
to the attacker against all its queries. In the end, the simulator calculates the
session key. The simulator then flips a coin and returns either the actual session
key or a random one depending upon the outcome of the coin tossing. We show
that the attacker will not be able to distinguish between the two keys if the
password chosen by the attacker w′ is not the one (w) used by the simulator.
So, if the session key is compromised, the attacker will learn nothing about the
actual password used by the simulator.

In the security experiment ExpRNDKey
A (λ), we define g as a random genera-

tor of the mathematical group G. D is a dictionary of passwords. |D| ∈ poly(λ).
H is a secure hash function (modelled as FRO). The adversary A = (A0,A1,A2)
is a three stage adversary. Here, CDHg(A,B) denotes the Computational Diffie-
Hellman of two elements A, and B with respect to g. Also SCDHg(A) denotes
the square Computational Diffie-Hellman of an element A with respect to g.
First, the challenger generates the public parameters. Then she chooses a gener-

ator g from G, and a password w from D. The challenger chooses X1, X2
$←− G,

and invokes A0 with the specific parameters as shown in the experiment. A0 out-
puts x2, x4 ∈ Z∗

q . Then the challenger computes R, and invokes A1. A1 outputs
a password guess w′ ∈ D and obtains π′ = H(H(U∥w′)). Then the challenger
calculates a raw key K0, and randomly samples K1 from G. The challenger
randomly chooses one of K0 and K1, and invokes A2 with its hash value. A2

has to identify whether H(K0) or H(K1) was passed to her as the input. The
experiment is successful if A2 can identify the correct challenge.

Note that if w = w′ (or π = π′), K0 will be equal to CDHg(X1, X2)
x4π ∗

Xx3x4π
2 . As such, A2 can distinguish between H(K0) and H(K1) easily. So,

we define the advantage of A as
∣∣Pr[ExpRNDKey

A (λ) = 1|π ̸= π′] − 1
2

∣∣. Now,

Pr[ExpRNDKey
A (λ) = 1] = Pr[ExpRNDKey

A (λ) = 1|π = π′] ∗ Pr[π = π′] +

Pr[ExpRNDKey
A (λ) = 1|π ̸= π′]∗Pr[π ̸= π′]. If π = π′, A2 can easily win the ex-

periment. Therefore, Pr[ExpRNDKey
A (λ) = 1|π = π′] = 1. So, Pr[ExpRNDKey

A (λ) =

1] = Pr[ExpRNDKey
A (λ) = 1|π ̸= π′] ∗ (1 − Pr[π = π′]) + Pr[π = π′] =

Pr[ExpRNDKey
A (λ) = 1|π ̸= π′](1− 1

|D| ) +
1

|D| . Now, A2 can always win with 1
2

probability by making a random guess. Therefore, Pr[ExpRNDKey
A (λ) = 1|π ̸=

π′] ≥ 1
2 . Let us assume that Pr[ExpRNDKey

A (λ) = 1|π ̸= π′] = 1
2+X, where X is

used to define the advantage ofA against ExpRNDKey
A (λ). So, Pr[ExpRNDKey

A (λ) =

1] = (X + 1
2 )(1 −

1
|D| ) +

1
|D| . Therefore, X = |D|

|D|−1 ∗ (Pr[ExpRNDKey
A (λ) =
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1]− 1
|D| )−

1
2 = |D|

|D|−1 ∗(Pr[ExpRNDKey
A (λ) = 1]− 1

2|D| −
1
2 ). Since, |D| is poly(λ),

|D|
|D|−1 is a little higher than 1. So, we can eliminate the |D|

|D|−1 part in the above

expression. Therefore, we define the advantage of an adversary A against the
security experiment ExpRNDKey

A (λ) as below:

AdvRNDKey
A (λ) =

∣∣∣∣Pr[ExpRNDKey
A (λ) = 1]− 1

2|D|
− 1

2

∣∣∣∣
ExpRNDKey

A (λ)

(G,D, H)← Setup(1λ)

g
$←− G

w ←− D, π = H(H(U∥w))

X1, X2
$←− G

(x3, x4, state0)← A0(g,G,D, X1, X2)

R← (CDHg(X1, X2) ∗Xx3+x4
2 )π

(w′, state1)← A1(state0, R)
π′ = H(H(U∥w′))

K0 ← CDHg(X1, X2)
x4·π′

∗Xx3·x4·π′

2 ∗ SCDHg(X2)
x4·(π′−π)

K1
$←− G

d
$←− {0, 1}

Ω ← H(Kd)
d′ ← A2(state1, Ω)

Return (d
?
= d′)

Lemma 3. Under the SCDH and DDH assumptions with access to FRO, for
any PPT adversary A = (A0,A1,A2), AdvRNDKey

A (λ) ≤ negl(λ).

Proof. We show that if there exists an adversary A against the security experi-
ment AdvRNDKey

A , we can use it to construct another adversary B, against the
security experiment ExpSCDH

A (λ). B receives as input A
$←− G. Its aim is to com-

pute SCDHg(A). It selects random x1
$←− Zq, and assignsX1 = gx1 , andX2 = A.

It invokes A0 and receives x3, and x4. Then B computes R = X
(x1+x3+x4)π
2 .

B invokes A1 and receives w′, thus π′ = H(H(U∥w′)). If π′ = π, B aborts
and outputs a random element from G. Else, B samples a random string from
{0, 1}λ, and assigns this to Ω. When A0,A1 or A2 makes an oracle query to
H, B answers them. For each such query, B samples a random string and re-
turns it. If a query is repeated, B returns the same string it had returned
earlier. B keeps a log of all query-response pairs. After A2 has returned, B
checks all the queries made by A1 or A2. It randomly selects one query-response

pair ⟨K0, k0⟩ where K0 =
(
(X1X2X3)

x4·π′
/Xx4·π

2

)x2

= CDHg(X1, X2)
x4·π′ ∗

Xx3·x4·π′

2 ∗ SCDHg(X2)
x4·(π′−π) represents the raw keying material computed
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by A and k0 the session key. B computes C = (K0/(CDHg(X1, X2)
x4π

′ ∗
Xx3∗x4π

′

2 ))1/(x4(π
′−π)) = SCDHg(X2) and outputs C. Let us now calculate the

success probability of B. B wins if the following events happen together:

– π ̸= π′

– A queries H(K0).

Since H is modelled as a random oracle FRO, A2 cannot identify d without
querying H(K0). Thus, the probability that A queries H(K0) is at least equal to

Pr[ExpRNDKey
A (λ) = 1] − 1

2 . Now, the probability that H(K0) will be queried

and K0 will have the term SCDHg(X2) as a factor is Pr[ExpRNDKey
A (λ) =

1] − Pr[π=π′]
2 − 1

2 . First, we calculate the value of Pr[π = π′]. If A can guess
the value of π from R, then the probability of this event happening could be
as high as 1. However, the probability that A can guess the value of π from
R is bounded by AdvDDH

A (λ) (i.e., distinguishing CDHg(X1, X2) from ran-
dom). Thus, Pr[π = π′] ≤ 1

|D| + AdvDDH
A (λ). Hence, the probability that A

will query K0 is at least Pr[ExpRNDKey
A (λ) = 1] − 1

2|D| −
1
2AdvDDH

A (λ) − 1
2 .

Now, B randomly picks a query and computes SCDHg(A) on the basis of
that. So if there are Q queries to H, the probability that B will pick the cor-
rect one is 1/Q. Thus, AdvSCDH

B (λ) ≥ (1/Q) ∗ (Pr[ExpRNDKey
A (λ) = 1] −

1
2|D| −

1
2AdvDDH

A (λ) − 1
2 ) = (1/Q)(AdvRNDKey

A (λ) − 1
2AdvDDH

A (λ)). Hence,

AdvRNDKey
A (λ) ≤ Q ∗AdvSCDH

B (λ) + 1
2 ∗AdvDDH

A (λ).

Impersonating the client We consider a security experiment ExpRNDKey1
A (λ),

which emulates the event when the attacker tries to impersonate the user to a
legitimate server without knowing the password. In this experiment, we intro-
duce an oracle O that can be queried by the adversary. This oracle models the
event that the adversary can exploit the fact the server uses the same value of
X3 across all the executions of the protocol. So, the adversary can try to imper-
sonate the client and execute the protocol with the server multiple times and can
receive FlowTwo messages from the server for different values of X4, but a single
value of X3. In the end, the goal of the adversary is to distinguish between the
session key computed by an honest instance and a random string. Similar to the
case of ExpRNDKey

A (λ) (which models an attacker impersonating the server), the

advantage of the adversary A, against the security experiment ExpRNDKey1
A (λ)

(which models an attacker impersonating the user) is defined as

AdvRNDKey1
A (λ) =

∣∣∣∣Pr[ExpRNDKey1
A (λ) = 1]− 1

2|D|
− 1

2

∣∣∣∣
Lemma 4. Under the SCDH and MDDH assumptions with access to FRO, for
any PPT adversary A, AdvRNDKey1

A (λ) ≤ negl(λ).

Proof. We can show that if there exists an adversary A against the security ex-
periment ExpRNDKey1

A (λ), we can use it in the construction of another adversary
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B again the experiment ExpSCDH
A (λ). The proof is almost the same as the proof

of Lemma 3. The only difference is that because of the use of a fixed X3 value
across the sessions, we use Assumption 2 instead of Assumption 1. All other argu-
ments are the same. Thus, we substitute the DDH assumption of Lemma 3 with
Assumption 2, and have AdvRNDKey1

A (λ) ≤ Q∗AdvMDDH
A (λ)+ 1

2 ∗AdvSCDH
A (λ).

Hence, the result follows.

ExpRNDKey1
A (λ)

(G,D, H)← Setup(1λ)

g
$←− G

w ←− D, π = H(H(U∥w))
X3, X4

$←− G

d
$←− {0, 1}

(x1, x2)← AO(g,G,D,X3, X4)
R ←− (CDHg(X3, X4) ∗
X4

x1+x2)π

w′ ← A(R)
π′ = H(H(U ||w′))

B0 ← CDHg(X3, X4)
x2·π′ ∗

Xx1·x2·π′

4 ∗ SCDHg(X4)
x2(π

′−π)

B1
$←− G

d′ ← A(H(Bd))

return d
?
= d′

O()
X

$←− G
(x1, x2)← A(X)
R←− (CDHg(X3, X) ∗Xx1+x2)π

Return R

Session key exposure The following experiment ExpKeyExp
A (λ) models the

event where the attacker gets hold of an actual session key after the key is
derived. We will show that the actual session key is indistinguishable from a
random key in the view of the attacker even with the knowledge of the password
(i.e., forward secrecy [17]). This can happen if AdvKeyExp

A (λ) is negligible, where

AdvKeyExp
A (λ) =

∣∣∣∣Pr[ExpKeyExp
A (λ) = 1]− 1

2

∣∣∣∣.
Lemma 5. Under the DDH and SCDH assumptions with access to FRO, for
any PPT adversary A, AdvKeyExp

A (λ) ≤ negl(λ).

Proof. We show that if there exists an adversary A against the experiment
ExpKeyExp

A (λ), it could be used in the construction of another adversary B
against the security experiment ExpSCDH

B (λ). The adversary B works as fol-

lows: it receives as input an X4
$←− G, and it needs to compute SCDHg(X4).

The adversary B proceeds as follows: It selects x1
$←− Zq, x2, a

$←− Z∗
q and

sets X1 = gx1 , X2 = gx2 , and X3 = X4 ∗ ga. That is, B implicitly sets
x3 = logg X3 = a + logg X4. Let A = (A0,A1) be a two-stage adversary. When
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ExpKeyExp
A (λ)

(G,D, H)← Setup(1λ)

g
$←− G

X4
$←− G

(π, state)← A0(G,D, H, g,X4)

X1, X2, X3
$←− G

α← CDHg(X1 ∗X3 ∗X4, X2)
π

β ← CDHg(X1 ∗X2 ∗X3, X4)
π

K0 ← H(CDHg(X1 ∗X3, X2)
π·logg X4)

K1
$←− {0, 1}∗

d
$←− {0, 1}

d′ ← A∞(state,X1, X2, X3, α, β, Cd)

return d
?
= d′

A0 is invoked with the corresponding parameters, it outputs the password π
from the dictionary D. B can compute α = (gx1x2 ∗ X2x2

4 ∗ gx2a)π. B samples

random β
$←− G. Now, B samples a string {0, 1}∗, and assigns this to Cd. A1

is then invoked with all the necessary parameters. If A0 can identify d, it will
have to query CDHg(X1 ∗X3, X2)

π·logg X4 . B checks all the queries made by A1.
From all the queries made by A1, B randomly picks one query ∆, and outputs

SCDHg(X4) =
(∆1/x2π)

X
(x1+a)
4

. Now, we calculate the advantage of the adversary B.
Note that in this experiment we replace β with a random element from G. Ac-
cording to the DDH assumption, CDHg(X1 ∗X2 ∗X3, X4) is indistinguishable
from random. Therefore, replacing it with a random element will reduce the ad-
vantage of A by a factor of AdvDDH

A (λ). Let us assume that A1 makes Q queries
to H. B selects one query made by A1 to H, and calculates SCDHg(X4) on the

basis of this. Thus, AdvSCDH
B (λ) ≥ 1/Q ∗ (AdvKeyExp

A (λ)−AdvDDH
A (λ)). That

is, AdvKeyExp
A (λ) ≤ AdvDDH

A (λ) +Q ∗AdvSCDH
B (λ). Hence, the result holds.

4.4 Indistinguishability between the ideal and simulated worlds

The following theorem shows that the view of Z in the two worlds in Figure 5
is indistinguishable. For simplicity, we use F to refer to FAPAKE .

Theorem 1. Under the SCDH and DDH assumptions with access to the random
oracle functionality FRO, the view of Z in the real world is indistinguishable from
its view in the simulated world.

Proof. Now, we show that the distinguishing advantage of Z between the real
world and the simulated world is negligible. The argument uses a sequence of
games, starting from the game in the real world and ending at the game in

a simulated world. For any two adjacent games Gi and Gi+1, let Dist
Gi,Gi+1

Z
denote the distinguishing advantage of Z between them, i.e.,

Dist
Gi,Gi+1

Z = |Pr[Z outputs 1 in Gi]− Pr[Z outputs 1 in Gi+1]|
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Game G0 and G1: G0 is the real world game. G1 is almost the same as Game
G0, however, in this Game the simulator simulates all the NIZK proofs. Following
Abdalla, Benhamouda and MacKenzie [1], we assume the adversary is algebraic:
namely, the adversary is limited to performing only group operations on group
elements in G (in Owl, the receiver is always required to check if a received public
key is a proper group element). Under this assumption, Abdalla et al. have shown
that Schnorr NIZK proofs are algebraic-simulation-sound extractable, and that
the adversary’s advantage is bounded by solving the discrete logarithm problem
in the random oracle model. Hence, DistG0,G1

Z = AdvNIZK
A (λ).

Game G2: This game is almost similar to the Game G1. However, in this game,
we do not allow the protocol to use the same value of x1, x2, x4 ∈ Zq. If two
protocol instances come up with the same gx1 , gx2 , gx4 , that was seen previously,
the game halts and the adversary wins. The advantage of the adversary in Game
G2 will be different from the same in Game G1 if we hit the birthday paradox.

Thus, DistG1,G2

Z = O
(

(TCLT+TSV R)2

q

)
. Here, TCLT , and TSV R are the numbers

of client-session and server-session queries respectively.

Game G3: The difference between this game and Game G2 is that in Game
G3, whenever the adversary A sends a FlowTwo message, then SIM first checks
the correctness of the message. If the message is well-formed, SIM uses NIZK
extraction to find the value of x4 from Π4 and the value of b = x4 · π′ from
Πα, and obtains π′ = b/x4. If there exists a record of the form ⟨FILE, Pi, Pj ,
π⟩, and π = π′, then return “correct guess”. Mark the record ⟨ssid, Pj , Pi, ·⟩ as
compromised. Else, send (TESTPWD, sid, ssid, Pi, π

′) to F , and pass its response
to A. If F replies with “correct guess”, retrieve the record ⟨FILE,Pi, Pj , ·⟩, and
replaces the last item with π′. Mark the record ⟨ssid, Pj , Pi, ·⟩ as compromised.
If F returns “wrong guess”, mark the record ⟨ssid, Pj , Pi, ·⟩ as STALE. It is easy
to see that Z’s view of G2 and G3 is the same, hence, DistG2,G3

Z = 0.

Game G4: This game is the same as Game G3 except the fact that in this
game, when A sends a FlowThree message, SIM first checks the correctness
of the message. If the message is correctly formatted and there was a previous
FlowOne message, then SIM parses it to find F = ⟨α,Πα⟩. SIM uses NIZK
extraction to find the value of a = x2 ·π′ from Πα, and the value of x2 from Π2.
SIM obtains π′ = a/x2. Then SIM checks if there is a record ⟨FILE,Pi, Pj , π⟩
marked compromised, where π = π′, then return “correct guess” to A. Else, send
(TESTPWD, sid, ssid, Pi, π

′) to F . If F returns “correct guess”, then send “correct
guess” to A. Also mark the record ⟨ssid, Pi, Pj , ·⟩ as compromised. In all other
cases, return “wrong guess” to A, and mark the session record as STALE. Here,
Z’s view of G3 and G4 is the same. Thus, DistG3,G4

Z = 0.

Game G5: This game is the same as Game G4 except that when SIM has re-
ceived a FlowTwo or a FlowThree message from A, it checks if the corresponding
session record is marked compromised or not. If A sends a FlowTwo or FlowThree
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message to SIM, then if SIM had returned “correct guess” to A, SIM selects
a key k which is the same as what the adversary would have computed. If SIM
had returned “wrong guess”, then SIM selects k randomly from {0, 1}λ. From
Lemma 3 we can say that if the adversary sends a FlowThree message to SIM,
then the difference between the advantages of the adversary in Game G4 and
Game G5 is at most AdvRNDKey

A (λ). That is to say that the difference will be
at most Q ∗ AdvSCDH

B (λ) + 1
2 ∗ AdvDDH

A (λ), where Q is the number of queries
to FRO, Q ∈ poly(λ). It is also evident that since the server uses a fixed element
gx3 and a variable x4, if the simulator receives a FlowTwo message from A, then
the difference between the advantages of Z in Game G4 and Game G5 is at most
AdvRNDKey1

A (λ) ≤ Q ∗AdvSCDH
B (λ) + 1

2 ∗AdvMDDH
A (λ), as in Lemma 4. Thus,

DistG4,G5

Z ≤ poly(λ) ∗AdvSCDH
B (λ) + poly(λ) ∗AdvDDH

A (λ).

Game G6: This game is the same as Game G5 except that in this game when
SIM receives a FlowTwo or a FlowThree message from an honest client or
an honest server, it randomizes the session keys at both sides with both sides
obtaining the same key. Lemma 5 proves that under such circumstances, the
advantage gained by the adversary is negligible. That is to say DistG5,G6

Z (λ) ≤
AdvDDH

A (λ) +Q ∗AdvSCDH
B (λ).

Game G7: This game is the same as Game G6, except that in this game the pro-
tocol instance replaces the FlowTwo or FlowThreemessage with random elements
from G. According to Assumption 2, the difference between the advantages of an
adversary in Game G6 and Game G7 is at most AdvMDDH

A (λ) when SIM sends
a FlowTwo message and at most AdvDDH

A (λ) when SIM sends a FlowThree

message. In Lemma 1, we have shown that the DDH assumption is equiva-
lent to the MDDH assumption. Therefore, DistG6,G7

Z ≤ O
(
AdvMDDH

A (λ)
)
=

O
(
AdvDDH

A (λ)
)
.

Game G8: This game is the same as Game G7 except that in Game G8 when
the adversary sends a (STEALPWFILE, sid) query to SIM, SIM sends this
to F . If F had returned “correct guess”, and there must have been a query
(Hash, ⟨sid, 1⟩, ⟨Pi, w⟩) made to FRO which was responded with t. Then send
a query (Hash, ⟨sid, 2⟩, t) to FRO to obtain π, and return (π, gt) to A. If F
had only returned “password file stolen”, then it means there was no query
(Hash, ⟨sid, 1⟩, ⟨Pi, w⟩) made by A, where w is the actual password. If A makes
a query or causes a query of the form (Hash, ⟨sid, 1⟩, ⟨Pi, w⟩), then make a
OFFLINETESTPWD query to F for w. If F returns “correct password”, SIM
sends the query (Hash, ⟨sid, 1⟩, ⟨Pi, w⟩) to FRO and returns the response t to
A. Since this difference does not affect Z’s view of the two worlds. As such,
DistG7,G8

Z = 0. Game G8 is the simulated world. This completes the proof.
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5 Related work and comparison

In general, there are two ways to construct an augmented PAKE protocol: 1) by
using a generic compiler to convert a balanced PAKE to an augmented one; 2)
by designing an augmented PAKE specifically in the augmented setting.

Examples of the first approach include the A-method and the B-method. The
A-method was first proposed by Bellovin and Merritt in 1993 [4]. It works by
deriving a pair of digital signature keys from a password and saving only the
public key at the server. The user holds only the password (and hence the pri-
vate signing key derived from the password). This method was applied to convert
EKE to an augmented version called A-EKE. The B-method was proposed by
Jablon in 1997 to convert SPEKE to an augmented B-SPEKE scheme [24]. It
works by adding a Diffie-Hellman protocol with the password being used as an
ephemeral private key, in parallel to a PAKE protocol. Both A and B methods
are generally applicable to convert a balanced PAKE to an augmented one. Sim-
ilar methods were proposed by Gentry et al. based on digital signatures (called
the π method) [12] and Haase et al. based on Diffie-Hellman [14]. Hwang et
al. proposed two compilers based on the Diffie-Hellman scheme and a variant
of the Schnorr signature in a round-efficient manner [21]. Although the generic
methods have the advantage of working with any balanced PAKE, they always
require more cost (rounds, computation or both), which makes them less ap-
pealing in practice. In Owl, we securely and efficiently combine Hwang et al’s
compiler [21] with a modified J-PAKE scheme, yielding an augmented PAKE
protocol that provides extra security over J-PAKE against server compromise
yet with lower computation overall.

The lack of efficiency in generic methods motivates specifically designing
PAKE schemes in an augmented setting. Examples include KHAPE [13], OKAPE,
aEKE [9], VTBSPEKE [32], KC-SPAKE2+ [35], PAK-Z+ [11], OPAQUE [26],
AuCPace [14], SRP-6a [36], AMP [30] and AugPAKE [34]. Among these, KHAPE,
OKAPE and aEKE all rely on an ideal cipher [3] (see Figure 5), an abstract
building block that is assumed to not leak any information about the encryption
content even when the encryption key has low entropy (e.g., using a password as
the key). However, how to instantiate such an ideal cipher has remained an open
problem [18]. VTBSPEKE and KC-SPAKE2+ rely on a trusted setup for all users
but a compromise in this setup will break key exchange sessions for all users [32].
PAK-Z+ and OPAQUE rely on a hash-to-group (also called hash-to-curve in an
EC setting) function, which is assumed to securely and efficiently map a pass-
word to a random generator of a designated group. However, instantiating this
function is not straightforward as we will explain in more detail later. SRP-6a
does not depend on an ideal cipher, a hash-to-group function or a trusted setup,
which makes it relatively easier to implement than others. AMP and AugPAKE
follow a similar design as SRP but both have questionable security. AMP has
been repeatedly revised to patch vulnerabilities [31]. AugPAKE has not been
published in a peer-reviewed paper (it is described in an IETF RFC), and its
security proof is questioned by Jarecki et al. [26].

24



A-PAKE IC?

[4, 9, 13]

Yes

TS?
No

[32, 35]

Yes

H2G?
No

[11, 14, 26]

Yes

SRP-6a,
Owl

No

Fig. 6. Overview of selected augmented PAKE schemes and dependence on various
assumptions. IC: Ideal Cipher. TS: Trusted Setup. H2G: Hash-to-Group

In this section, we focus on comparing Owl with SRP-6a and OPAQUE. We
choose SRP-6a because it is the only augmented PAKE that has been widely
used in practice. Although many provably secure augmented PAKE schemes
have been proposed (see Figure 5), they generally rely on assumptions of an
ideal cipher, a trusted setup or a hash-to-group function; however, difficulties
in the realization of such assumptions have hindered the deployment of these
schemes [18]. We choose OPAQUE because it was chosen by the IETF as a
candidate for standardization and a possible replacement for SRP-6a.

Hash-to-group/hash-to-curve. In the original OPAQUE paper [26], the
authors specify the protocol only in an EC setting, not in any MODP group.
The rationale was however not explained. To provide insights into this design
choice, we first need to clarify the hash-to-group (H2G) and hash-to-curve (H2C)
functions. OPAQUE critically relies on H2C to map a password to a random
prime-order generator on an elliptic curve in constant time. H2G is the equivalent
function in a MODP group. The original idea of using H2G in PAKE is from
Jablon’s 1996 design of SPEKE [23]. More concretely, SPEKE defines a safe
prime p = 2q + 1 as the modulus, i.e., q is also prime. The H2G function with
input a is defined as f(a) = a2 mod p, which forms the basis of SPEKE as
standardized in IEEE 1363.2 [22]. However, using a safe prime as modulus makes
modular exponentiations costly. Extending this construction to a DSA group
(which uses short exponents) and EC proves harder than it seems.

– DSA. For a DSA group (p, q, g), IEEE 1363.2 defines the H2G function with
input a as: f(a) = a(p−1)/q [22]. This function has two known issues: 1) it is
costly due to the long exponent; 2) it may return an identity element (called
an ‘invalid’ output). IEEE 1363.2 does not define any handling for ‘invalid’
outputs; handling such exceptions can forfeit the constant-time property.

– EC. To do the equivalent of H2G in EC, IEEE 1363.2 defines an H2C func-
tion based on a trial-and-increment method. The defined H2C function guar-
antees the output is a prime-order generator (no ‘invalid’ output) and works
with general curves, but is vulnerable to timing attacks [37]. IEEE 1363.2
was officially withdrawn in 2019. Since 2018, IETF has been trying to define
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custom-built H2C functions for selected curves in an internet draft [20], but
existing functions do not exclude low-order (i.e., ‘invalid’) points by design
and may not work with future curves [18]. Whether these functions operate
in constant time remains to be established (they must be fully defined first).

To date, the fully defined and generally accepted mapping function in MODP
is the one specified in the original SPEKE paper [23]. As we will explain, apply-
ing the same function to OPAQUE would make it far less efficient than SRP-6a.
All these issues in MODP are avoided if we only consider EC. The OPAQUE
authors assume a secure and efficient H2C function is available for elliptic curves
but without concretely instantiating it in the paper. The lack of a complete spec-
ification of OPAQUE makes it difficult to directly compare Owl with OPAQUE;
we have to treat H2C as an abstract block as well as filling in details of H2G in
a MODP setting for a comprehensive comparison. On the other hand, SRP-6a
is fully defined in MODP with a safe-prime modulus, which allows us to directly
compare it with Owl. Details of the comparison are presented below.

Computational performance. SRP-6a mandates the use of a safe prime
p = 2q + 1 where q is also a prime as the modulus. This leaves the protocol
undefined for a multiplicative group with short exponents such as DSA, as well
as for an elliptic curve setting. OPAQUE is built on two building blocks: 1)
authenticated key exchange (AKE) and 2) hash-to-curve. After OPAQUE was
selected by IETF, its designers modified the protocol by using 3DH instead
of HMQV to instantiate AKE in an IETF Internet draft [28]. Here, we will
evaluate the performance of OPAQUE based on using HMQV as specified in
the original paper [26]. (The performance will decrease when 3DH is used).
The OPAQUE paper assumes a hash-to-curve function to map a password to a
generator of the prime-order (sub)group on an elliptic curve, which leaves the
protocol undefined for the MODP setting. We fill this gap by using two known
hash-to-group functions as defined for SPEKE and PAK in IEEE 1363.2 [22] to
do the equivalent of hash-to-curve in two MODP settings respectively: 1) using
a safe-prime modulus; 2) using DSA groups. Table 1 summarizes the comparison
results. Owl has clear advantages over SPR-6a in terms of flows, computation,
and agility to work with both MODP and EC settings. Implementing OPAQUE
in DSA gives a lower computation cost than using a safe-prime modulus (at
the expense of having the ‘invalid’ output issue). In the DSA setting, the client
requires more computation than Owl, but the server requires less. It is however
difficult to directly compare these two in the EC setting due to H2C not having
been concretely instantiated, hence the cost of H2C is yet unknown (aside from
the ‘invalid’ output and the agility issues that need to be addressed).

Round efficiency. Owl only requires one flow in the registration process,
fewer than others. Between Owl and OPAQUE, OPAQUE seems to have the ad-
vantage of needing only two flows in the login process; Owl needs three. However,
with only two flows, it is impossible for OPAQUE to complete client-to-server
authentication in a login process, as later pointed out by Bradley, Jarecki and
Xu [5]. The (theoretical) advantage of a two-flow OPAQUE is that it allows the
server to be authenticated in the second flow based on explicit key confirmation
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Scheme Flows KC
MODP (safe prime) MODP (DSA) Elliptic Curve

Client Server Client Server Client Server

SRP-6a 3/4 Exp 2(x12)+1 2(x12)+1 – – – –
OPAQUE 3/2 Imp 4.5(x12) 3.5(x12) 1(x11)+6.5† 5.5† 4.5+H2C‡ 3.5
Owl 1/3 Imp – – 14 13 11 10

Table 1. Comparison among selected PAKE schemes. The flows column gives the
number of flows for registration/login respectively. Computational cost columns give
the number of exponentiation in the MODP setting, assuming a 3072-bit modulus for
concreteness. 2(×12) denotes that the cost of one exponentiation (3071-bit exponent) is
about the same as 12 typical 3072-bit DSA group exponentiations (256-bit exponent).
The hash-to-group function in OPAQUE requires an exponentiation with a 2816-bit
exponent (co-factor), which has cost equal to 11 exponentiations with 256-bit exponent
in DSA. H2C denotes (yet unknown) cost of a hash-to-curve function. †denotes having
concerns about ‘invalid’ output. ‡denotes having concerns not only about the cost, but
also ‘invalid’ output and agility.

(before the client is authenticated). However, doing so will expose the server to
an undetectable online dictionary attack [27], in which an attacker (client) does
not send the third flow and the server cannot distinguish the authentication
failure from a drop-out. (In an asymmetric setting, the server is always online
responding to requests, and hence is more vulnerable to online dictionary at-
tacks.) Preventing this attack requires the client to be authenticated first; in
this case, OPAQUE and Owl have the same round efficiency.

Message size. We now compare the sizes of the messages among the three
protocols. For simplicity, we only consider the login phase and focus on public-
key cryptographic data (excluding auxiliary data such as user identities). Fur-
thermore, we only consider implicit key confirmation, hence excluding explicit
key confirmation strings which apply to all schemes. Table 2 summarizes the
result. SRP-6a [36] involves exchanging two group elements in the login process
(we omit the salt). Assume a 3072-bit safe-prime modulus is used. The total
size is 3072 × 2 = 6,144 bits = 768 bytes. OPAQUE [26] involves exchanging
four group elements and an encrypted string using an authenticated encryption
scheme (containing two group elements and a private key generated from the
registration phase). Assume OPAQUE uses the same 3072-bit safe-prime modu-
lus as SRP-6a. The total size is approximately 3072× 6 + 3071 = 21,503 bits =
2,688 bytes (we omit the size of the IV and the message authenticated code). If
a 3072-bit DSA group is used instead, the total size is 3072× 6 + 256 = 18,688
bits = 2,336 bytes. Assume an EC setting where the group has a prime order
of 256 bits. We assume a group element requires 257 bits in a compressed form.
Hence, the size of the messages is 257× 6 + 256 = 1,798 bits = 225 bytes. Owl
involves sending 6 group elements, 6 Schnorr ZKP and a short response in the
key exchange process. In a 3072-bit DSA group, the size of each ZKP (h, r) is
512 bits (see §3.1). Hence, the total size is 3072×6+512×6 + 256 = 21,760 bits
= 2,720 bytes. In an EC setting, the size is 257× 6+512× 6 + 256 = 4,870 bits
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Schemes MODP (safe prime) MODP (DSA) Ellipic Curve

SRP-6a 768 B – –
OPAQUE 2688 B 2336 B 225 B
Owl – 2720 B 609 B

Table 2. Comparison of message sizes in bytes (B) among selected PAKE schemes.
The ‘MODP (safe prime)’ column gives the size in a MODP setting, assuming a 3072-
bit safe-prime modulus. The ‘MODP (DSA)’ column gives the size in a MODP setting,
assuming a 3072-bit DSA group with a 256-bit exponent. The “Elliptic Curve” column
gives the size in an EC setting, assuming a 256-bit prime-order EC group.

= 609 bytes. Although Owl involves sending more group elements than SRP-6a,
it can actually use less bandwidth because of its agile support for EC implemen-
tations. In the same EC setting, the size of the messages in Owl is bigger than
that in OPAQUE, but Owl is more flexible to work with any elliptic curve that
is suitable for cryptography while OPAQUE is restricted by the availability of
the hash-to-curve function on that curve.

Password update. In every login session in OPAQUE, the server sends a
pre-computed ciphertext using authenticated encryption and a password-derived
encryption key. When the password is changed, the pre-computed ciphertext will
change, hence revealing whether the password has been changed from the last
login. By comparison, SRP-6a and Owl do not have this issue.

Server compromise. When the password verification files stored on a server
are stolen, all three schemes will be vulnerable to an offline dictionary attack.
OPAQUE has an advantage in that the attacker cannot use any pre-computed
table. By contrast, for SRP-6a and Owl, it is possible to use a pre-computed
table, but the attacker must generate a unique pre-computed table for each
user. This requires significant computation and storage, which makes the pre-
computation attack less practical. It is possible to add pre-computation security
by using an OPRF-based compiler as proposed by Jarecki et al. [26], but it intro-
duces the reliance on H2C and the related implementation issues in both MODP
and EC settings. Motivated by removing the reliance on H2C, Bradley, Jarecki
and Xu [5] recently proposed an alternative method to achieve pre-computation
security, but their method depends on a trusted setup, which introduces trap-
door concerns. How to achieve pre-computation security without incurring such
issues (e.g., reliance on H2G, TS, or IC; see Figure 5) is an open question which
we leave for future research.

6 Conclusion

In this paper, we present a new augmented PAKE protocol called Owl. Our
design strategy is to utilize Schnorr non-interactive zero-knowledge proof to en-
force every party to follow the protocol specification honestly. We formally prove
the security of Owl based on the standard DDH and CDH assumptions under
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the UC framework in the random oracle model. Through a thorough evalua-
tion, we show Owl is the first protocol that provides systematic advantages over
SRP-6a in terms of provable security, computation, bandwidth and agility for
implementation in versatile group settings. Owl’s agility is attributed to the
fact that it utilizes only the most basic addition/multiplication operations on an
elliptic curve, or equivalently, multiplication/exponentiation in MODP, plus a
standard one-way hash function for implementation without depending on any
ideal cipher, trusted setup, hash-to-group functions or special group character-
istics (such as the mandated use of a safe-prime modulus in SRP-6a).

OPAQUE was chosen by the IETF for reasons of both efficiency and SRP-6a’s
lack of security proofs. However, implementing a MODP version of OPAQUE
runs into issues in terms of instantiating a hash-to-group function, while imple-
menting OPAQUE in EC depends on a not yet fully instantiated hash-to-curve
function. Broad adoption of OPAQUE may also depend on a remedy for the is-
sue of signalling password changes to passive observers (§2), which may require
protocol modifications (and revision of security proofs). While these open issues
in OPAQUE are being addressed, we believe the availability of alternatives such
as Owl, with clear advantages over SRP-6a, are useful to the community.
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