Skye: A Fast KDF based on Expanding PRF and its Application to Signal

Amit Singh Bhati¹^(b), Antonín Dufka², Elena Andreeva³^(b), Arnab Roy⁴^(b), and Bart Preneel¹^(b)

¹ imec-COSIC, KU Leuven, Belgium,

{amitsingh.bhati,bart.preneel}@esat.kuleuven.be
² Masaryk University, Brno, Czech Republic, dufkan@mail.muni.cz
³ Technical University of Vienna, Austria, elena.andreeva@tuwien.ac.at

⁴ Alpen-Adria University, Klagenfurt, Austria, arnab.roy@aau.at

Abstract. A Key Derivation Function KDF generates a uniform and highly random key-stream from weakly random key material. KDFs are broadly used in various security protocols such as digital signatures and key exchange protocols. HKDF is the most deployed KDF in practice. It is based on the *extract-then-expand* paradigm and is presently used, among others, in the Signal Protocol for end-to-end encrypted messaging. HKDF was proposed as a generic KDF for general input sources and thus is not optimized for source-specific use cases such as key derivation from Diffie-Hellman (DH) sources (i.e. DH shared secrets as key material). Furthermore, the sequential HKDF design is unnecessarily slower on some general-purpose platforms that benefit from parallelization. In this work, we propose a novel, efficient and secure KDF called Skye. Skye follows the extract-then-expand paradigm and consists of two algorithms: efficient deterministic randomness extractor and expansion functions. Instantiating our extractor for dedicated source-specific (e.g. DH sources) inputs allows us to achieve a significant efficiency speed-up over

HKDF at the same security level. We provide concrete security analysis of Skye and both its algorithms in the standard model. We provide a software performance comparison of Skye with the AES-based expanding PRF ButterKnife and HKDF with SHA-256 (as used in Signal). Our results show that in isolation Skye performs from 4x to 47x faster than HKDF, depending on the platform instruction support. We further demonstrate that with such a performance gain, when Skye is integrated within the current Signal implementation, we can achieve significant overall improvements ranging from 38% to 64% relative speedup in unidirectional messaging. Even in bidirectional messaging, that includes DH computation with dominating computational cost, Skye still contributes to 12-36% relative speedup when just 10 messages are sent and received at once.

Keywords: KDF Deterministic Extraction Extract-then-Expand HKDF X3DH Signal Expanding PRF PRF-PRNG Randomness Amplification

1 Introduction

A Cryptographic Key Derivation Function (KDF) is an algorithm, that when provided with a non-uniform or "weak" random key material can return a uniform and "highly" random arbitrarily large key-stream. KDFs are used for generating randomness for encryption, digital signatures, in key exchange protocols, etc.

HKDF [28] was introduced in 2010 by Krawczyk et al. as a secure, generic cryptographic KDF and by now is the most deployed KDF in practice. HKDF follows the extract-then-expand paradigm [28]. For a given non-uniform or "weak" random key material, HKDF first extracts a relatively small but uniform and "highly" random string via an internal *randomness extractor* function. Then, in HKDF the extracted value is passed to a *randomness expander*: a pseudorandom function PRF with variable length output. The output is a uniform and "highly" random key-stream of some desired length.

HKDF is used in the popular Signal Protocol [35] for end-to-end encrypted messaging. Its purpose there is to generate a fresh message key. The Signal protocol (or Signal in short) uses HKDF in conjunction with the triple Elliptic-curve Diffie–Hellman handshake [36] (X3DH) key agreement protocol. A number of wide-spread applications of end-to-end encryption also make use of Signal and internally call the X3DH handshake and a secure KDF (usually HKDF) to establish a common secret for later cryptographic use. Examples here include the popular instant messaging apps WhatsApp [34], Facebook Messenger [1], Skype [31], Allo [33], Status [5], Secure Chat, Viber and Forsta. HKDF is also implemented as a main component in the general Noise Protocol Framework (NPF) [39] and Message Layer Security (MLS) [3]. HKDF is also used in TLS1.3 for generating encryption keys.

HKDF was proposed as a generic key derivation function for processing general input-sources of some desired min-entropy. However, in many applications the input sources are predefined, fixed and may contain a nice algebric structure, such as the triple Elliptic-curve Diffie–Hellman handshake [36] (X3DH) protocol component in Signal. As a generic or non-source-specific KDF, HKDF meets some basic security and performance goals, but for concrete use cases, it might not be best optimized for: 1. source-specific (randomness) extraction; 2. speed or performance on common platforms; 3. reliance on weaker assumptions than the present random oracle one for the SHA-256 compression function used in HKDF.

A dedicated/source-specific KDF can efficiently leverage the structure of the input randomness source during the extraction phase to optimize the process. Note that the possibility of constructing (input) source-specific extractor functions in a KDF under the extract-then-expand paradigm, was already discussed in [28]. Some concrete examples here are the works on deterministic randomness extraction from Diffie-Hellman schemes [15, 23].

To further achieve secure and more efficient randomness expansion, a candidate building block is one that, unlike a compression function like SHA-2, naturally expands its inputs. Cryptographically, such a function needs to also come with some pseudorandom properties or behave as a fixed output length expanding pseudorandom function (PRF). Forkciphers [8] are such expanding functions. Yet, forkciphers come with additional functionalities of inversion and reconstruction that are not required for randomness expansion and additionally limit the PRF security to birthday-bound (in block size). The recently proposed PRF ButterKnife [7] is a dedicated expanding PRF design and hence a natural KDF building block candidate. ButterKnife is a fixed output length expanding PRF taking inputs of 256 bits and producing outputs of 1024 bits. ButterKnife is based on AES and Deoxys-BC [26]. The underlying AES structure allows the application of AES native instructions (NI) on all AES-NI supporting processors. Furthermore, ButterKnife is proven secure both generically (via a proof of security) and cryptanalytically in [7]. Its security is further supported by the cryptanalysis results for AES-PRF [21,38] and Deoxys-BC [17,26,30,44].

Our Results

In this work we propose Skye, a novel extract-then-expand KDF based on an expanding PRF. We provide a detailed security analysis of Skye and demonstrate empirically the efficiency advantage of Skye over HKDF both directly and also when used in Signal. We provide a discussion on possible Skye applications in WhatsApp, Facebook Messenger, Skype, Allo, Status, Secure Chat, Viber, Forsta and Blockchain-based X3DH (BCB-X3DH) for IoTs [41]. More concretely, our contributions are as follows. We propose:

Deterministic extension for randomness extraction. In Sec. 7, we build a novel, generic and deterministic function DExt_f that aggregates the amount of extracted randomness for any randomness extractor f when provided with multiple and independent input samples. We formally prove that the outputs of DExt_f are indistinguishable from random binary strings.

Considering the randomness aggregation and extraction of the X3DH handshake based input samples of the Signal Protocol, which consist of multiple (three or four) DH shared secrets, DExt_f is designed to handle multiple independent samples and hence well-suited for optimal randomness extraction.

Secure DExt_f instantiation for DH samples. In Sec. 7.2, we provide a 128-bit secure simple and efficient *deterministic extractor* as an instantiation of DExt_f . This is achieved by choosing a DH source-specific extractor function to instantiate f in DExt_f . Applying the above-mentioned general result (in Sec. 7), we construct an extractor with a higher security margin from the msb/lsb (most/least significant bits based) extractor function for Diffie-Hellman (DH) schemes in [15]. We prove the security of our instantiation by combining the analysis of the generic DExt_f and the security of msb/lsb based extractor [15].

Secure randomness expander. The outputs of the deterministic extractor are processed by a variable-output-length (VOL) PRF or randomness expander called FExp. In [28] two approaches towards constructing a randomness expander are mentioned: based on a counter or feedback encryption modes. HKDF uses as a randomness expander, a keyed feedback mode over the HMAC [29] pseudorandom function (PRF). To avoid the frequent rekeying of the feedback mode and the consequent loss of speed for the target 128-bit security level, we adopt a counter mode-like approach for our construction.

Our randomness expander FExp is motivated by the classical CTR\$ [40] encryption mode. FExp benefits from a naturally expanding underlying PRF function as opposed to a block cipher or compression function. The FExp design provides both security and efficiency improvements over the CTR\$ [40] mode in the randomness expansion context. When compared to the CTR\$ mode (see Sec. 8), FExp can accommodate larger and arbitrary (i.e. not necessarily random) inputs and provides full n = 128-bit security as opposed to birthday-bound n/2 = 64-bit, when instantiated with ButterKnife [7]. We provide a formal security proof of FExp via the notion of indistinguishability from random binary strings, a notion equivalent to the IND\$ [40] encryption notion.

Skye: secure and more efficient alternative to HKDF in X3DH based applications. In Sec. 5, we propose the Skye scheme as a dedicated KDF following the extract-then-expand approach and using the two above-mentioned novel extractor and expander functions DExt_f and FExp , respectively. In other words, $\mathsf{Skye}[f,\mathsf{PRF}_s]$ can be defined as a function based on two underlying primitives - a weak source-specific extractor f (processed under DExt_f extension) and an expanding $\mathsf{PRF} \; \mathsf{PRF}_s$ (processed under FExp mode).

Concretely, we consider DH samples over Curve25519 as the input source to exemplify the performance gain and concrete security of Skye over HKDF and hence instantiate f with lsb. In Sec. 9, we show that when Skye is instantiated with ButterKnife as the expanding PRF_s, it achieves 128-bit CCS security [16,28]. HKDF [28] is also shown secure under the CCS security notion and informally, CCS-security is defined as the indistinguishability of the KDF outputs from truly random strings under a chosen input attack. The security of Skye is however proven under a more practical (non random oracle) assumption than HKDF.

We provide software performance comparison (in Sec. 6) between HKDF and Skye with their standard functionalities. Our results show that in isolation, Skye performs from 4x to 47x faster than HKDF in various settings depending on the availability of native instruction sets.

We then consider the Signal Protocol to demonstrate the performance gain of Skye. We integrated Skye within the current implementation of Signal [2] and show that under various settings with and without available native instruction sets, Skye is able to provide 38-64% relative speedup in unidirectional messaging. In bidirectional messaging, whose cost is dominated by DH computation, the speedup depends on the number of messages sent at once. With a single message, Skye achieves 3%-11% relative speedup; after sending just 10 messages, the speedup rises to 12-36%, and with a further increase in the number of messages, it converges to the unidirectional speedup.

Potential use cases of Skye beyond Signal. In this work, we also discuss several potential applications of Skye (see Sec. 10), including MLS [3] where multi-DH samples are used. However, we note that DH sources are not the only

potential target for extraction and key derivation. Random binary strings of size larger than their amount of entropy also need secure extraction. Same applies to the post-quantum Signal variants, such as the KEM [13] based version which also shares non uniform keys and makes multiple KDF calls (some hidden under KEM calls) on them. The study of weak extractors fs (and thus a direct application of Skye) for polynomial rings and isogenies is out of scope and hence left open for future work.

Related Works

Randomness amplification. We note that one can use the result from Maurer et al. [37, Corollary 2] in an iterative manner over a set of independent input samples (that are generated using some weak extractor f) and with their \star operation defined as XOR to extract randomness with similar security as our proposed DExt_f. However, we emphasize that our design approach is more general which allows us to optimally extract (up to 100%) more randomness than the existing solution.

For example, consider a set of v input samples with each providing w bits of extracted randomness and λ bits of security when passed through some weak extractor f. Now, let say we need a strengthened security of $c\lambda$ bits from the extracted final output for some integer c, then the existing solution of [37] can only provide randomness up to (v/c)w bits whereas our solution DExt_f can go up to $\lfloor (v-c)/\lceil c/2 \rceil \rfloor + 1 w$ bits which is optimal (see App. B) for various values of (v, c) as long as linear operations are used to extract randomness.

Our work can be seen as a generalization of Maurer et al. [37, Corollary 2] result with relatively simple and independent proof that 1. increases confidence in the existing analysis 2. gives a more general and really better bound for amount of extraction with an optimality proof for reasonable/practical sample sizes.

Related KDF notion. In the existing formal analysis of the Double Ratchet protocol, Alwen et al. [4] formalized a KDF syntax called PRF-PRNG and it's security notion called P to cover what exactly is needed from a KDF function. HKDF is also assumed to satisfy this notion.

For source-specific samples, Our KDF Skye targets the standard stronger KDF notion of CCS-security, which by definition implies the P-security when the KDF is used as a PRF-PRNG (in the context of Signal). We refer the reader to App. E for more details on the PRF-PRNG syntax, how to convert a standard syntax KDF into a PRF-PRNG and a formal claim with full proof of CCS to P security reduction.

As the main result, [4] claims to provide a standard model proof for the Double Ratchet and Signal protocol. However, our observations (see App. E) shows that the analysis is not actually free from ROs when the KDF is instantiated with HKDF or the sketched alternative of [4] that rely on idealized assumptions. This begs the important question of - "Can we design a KDF for Signal that is

free from idealized assumptions and is equally or more efficient than the current solution - HKDF?"

Our work solves this problem with a positive answer. We provide Skye KDF that follows the standard KDF syntax [28] and is shown CCS [16, 28]-secure in the standard model.

2 Notations

Strings. All strings are binary strings. The set of all strings of length n (for a positive integer n) is denoted by $\{0,1\}^n$ and the set of all strings of all possible lengths is denoted by $\{0,1\}^n$. We denote by $\operatorname{Func}(m,n)$ the set of all functions with domain $\{0,1\}^m$ and range $\{0,1\}^n$. For a string X of ℓ bits, we let X[i] denote the i^{th} bit of X for $i = 0, \ldots, \ell - 1$ (starting from the left) and $X[i \ldots j] = X[i]||X[i+1]|| \ldots ||X[j]|$ for $0 \le i < j < \ell$. We let $\mathsf{msb}_\ell(X) = X[0 \ldots (\ell - 1)]$ denote the ℓ leftmost (most significant) bits of X and $\mathsf{lsb}_r(X) = X[(|X| - r) \ldots (|X| - 1)]$ the r rightmost (least significant) bits of X, such that $X = \mathsf{msb}_X(X)||\mathsf{lsb}_{|X|-\chi}(X)$ for any $0 \le \chi \le |X|$. Given an xn-bit string X, we let $X_1, \ldots, X_x \stackrel{n}{\leftarrow} X$ denote a partitioning of X into n-bit blocks, such that $|X_i| = n$ for $i = 1, \ldots, x$.

Miscellaneous. The symbol \perp denotes an error signal, or an undefined value. We denote by $X \leftarrow^{\$} \mathcal{X}$, a sampling of an element X from a finite set \mathcal{X} following the uniform distribution. We use lexicographic comparison of tuples of integers; i.e. (i', j') < (i, j) iff i' < i or i' = i and j' < j. We denote the set of natural numbers by \mathbb{N} . For a matrix M, we use M[ij] to denote the ij^{th} entry of M. For equations E_i s with $1 \leq i \leq a$ (for some $a \in \mathbb{N}$), we use the indexed set $S = \{E_i | 1 \leq i \leq a\}$ to denote the system of equations E_i s.

3 Key Derivation Function

The goal of a KDF is to derive one or more *cryptographically secure* secret keys (of any fixed length) from a source of initial keying material (IKM) that can contain a good amount of randomness but is not distributed uniformly. The notion of cryptographically secure keys is usually associated with pseudorandom keys, i.e. keys that are computationally indistinguishable from a uniformly random string of the same length. Formally, a source of IKM can be defined as follows.

Definition 1 (Source of IKM [28]). A source of initial keying material (or simply source) Σ is a two-valued probability distribution (Z, C_Z) generated by an efficient probabilistic algorithm (we will refer to both the probability distribution as well as the generating algorithm by Σ).

A KDF function tackles the case when the initial keying material is not pseudorandom or uniformly random, e.g. the initial keying material is obtained from a weak process that uses renewable sources of randomness, a weak random number generator, random sampling over a group or Diffie-Hellman values computed in a (key-exchange) protocol. In these settings a KDF function is constructed using the so-called *extract-then-expand* paradigm.

3.1 Extract-then-Expand Paradigm

A KDF constructed under the extract-then-expand paradigm is defined via its two components. The first one is a randomness extractor Ext that extracts a fixed-length pseudorandom key K from an "imperfect" source of initial keying material. The second component is a randomness expander Exp that expands the key K to a variable-length output (required cryptographic key material). The latter is usually built using a regular pseudorandom function (PRF) with output extension via counter or feedback encryption modes [28, 40].

An extractor Ext is supposed to produce "close-to-random" outputs in a computational or statistical sense, from an input that is sampled from the corresponding source key material distribution. An extraction process may have an additional non-secret input or salt value, that is either randomized or kept constant. When the salt value is constant the extractor and the corresponding KDF are called *deterministic extractor* and *deterministic KDF*, respectively. The expander function Exp uses the pseudorandom key K that is output from the Ext and produces cryptographic keys K_{kdf} of a specified length. The function Exp takes the output length parameter as one of the inputs.

A KDF scheme is formally defined over the following inputs: the source key material Z, the extractor salt salt (may be null or constant), the length ℓ of key bits to be produced by KDF, and a context variable or auxiliary info string γ (may be null). The latter string should include key-related information that is uniquely (and cryptographically) bound to the produced output. For example, it may include, information about the application or protocol calling the KDF, session-specific information like nonces, time, session identifiers, etc. The KDF evaluation is defined as:

$$K = \mathsf{Ext}(\mathsf{salt}; Z) \,,$$
$$K_{kdf} = \mathsf{Exp}(K; \gamma; \ell) \,.$$

1

HKDF key derivation function. The HKDF [28] is a generic KDF instanti-

ated with HMAC following the extract-then-expand approach. In the extraction phase a pseudorandom key K is derived from an initial keying material IKM and a randomly chosen salt value (optional) as following

K = HMAC(salt, IKM).

In the expansion phase the HMAC is applied again to generate the final output $K_{kdf} = K_1 ||K_2|| \dots ||K_t[1 \dots \ell]$ (for some integer t defined as $\lceil \ell / n_{\text{HMAC}} \rceil$ where ℓ is the desired output length of HKDF and n_{HMAC} is the output size of HMAC) as

$$K_1 = \text{HMAC}(K, \gamma \| 0),$$

$$K_{i+1} = \text{HMAC}(K, K_i \| \gamma \| i), \quad 1 \le i < t$$

Here γ denotes the context variable.

3.2 Deterministic Multi-sample KDF

We call a KDF *multi-sample* if it can take multiple independent samples from its input source altogether and can combine those to provide a relatively large and highly random output with the same or increased security than its single-sample variant.

Formally, a deterministic multi-sample KDF scheme $\Pi : (\{0,1\}^*)^v \times \Gamma \times \mathbb{N} \to \{0,1\}^*$ takes three arguments; a set Z of v values Z_i s (binary strings) sampled from a source of keying material (defined in Def. 1), a context variable or auxiliary info γ (optional, i.e., can be set to the null string or a constant) and the desired output length ℓ . The function returns an ℓ -bit binary string K_{kdf} . HKDF [28] can be seen as an example of a deterministic multi-sample KDF scheme when its salt value is set to a constant.

4 KDF calls in the Signal Protocol

The Signal Protocol uses the Double Ratchet algorithm [35], the X3DH (triple Elliptic-curve Diffie-Hellman) handshake [36], the key derivation function HKDF [28], and an AEAD mode as cryptographic functions to achieve security. The popular variant of the Signal Protocol with 128-bit security uses the concrete instances of Curve25519 [11], AES-256, and HMAC-SHA256 as its underlying cryptographic primitives.

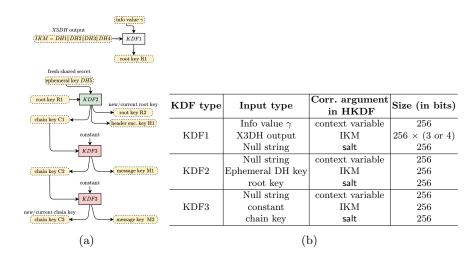


Fig. 1: (a) The three types of KDF calls in the Signal Protocol. Here IKM represents the initial keying material which is defined as the concatenation of (3 or) 4 (depending upon the availability of the corresponding one-time prekeys for DH4, see [35]) DH shared secrets from the X3DH handshake. (b) Types and sizes of Signal's KDF's inputs in terms of HKDF-HMAC-SHA-256's arguments.

The Signal Protocol as defined in [35] makes KDF calls for three different purposes (see Fig. 1a): 1. to generate a **root key** from the X3DH outputs and the info value γ ; 2. to generate a **chain key**, a **header encryption key** and a **new root key** from the present root key and an **ephemeral DH shared secret key**; and 3. to generate a **message key** and a **new chain key** from the old chain key and a predefined constant. These three processes are each realized by a KDF which we denote here by KDF1, KDF2 and KDF3, respectively. The main differences between those lie in the types and sizes of their inputs and outputs. Furthermore, KDF1 is used first and only once in a session (between two users) to generate the initial root key.

Later, when a user sends s > 0 many concurrent messages to another user, the root key is used along with a fresh DH shared secret as an input to KDF2 to produce a chain key and update the root key. This call is then followed by smany iterative KDF3 calls with the i^{th} chain key as input to generate the i^{th} message keys and the $i + 1^{th}$ chain key for $1 \le i \le s$. Fig. 1a illustrates the sequence of calls with its input and output values.

Current implementation libraries [2] of Signal Protocol use HKDF [28] for each of these KDF calls. When instantiated with HKDF, the type and size of each input of Signal's KDF calls in terms of HKDF's arguments is provided in Table 1b (for 128-bit secure version).

Skye as a (more efficient) alternative to HKDF for Signal.

I. For all KDF1 calls in Signal Protocol, the salt values for HKDF are set to a constant (null string) and with that the underlying SHA-256 compression function of HKDF is treated as a random oracle (RO) to achieve the claimed security level (see Lemma 10 and its following paragraphs in [28]). While this is a requirement for general HKDF input sources, it might be possible to relax this RO requirement for the underlying primitives in Signal.

The reliance on specific randomness sources like the one used for the X3DH handshakes aids towards a simplified and efficient extraction KDF phase in Signal. Note that such possibility is discussed in [28]. In the expansion phase on the other hand, one can benefit both security- and efficiency-wise from an in-built expanding cryptographic primitive with pseudorandom properties (indistinguishability from a set of random functions or permutations), such as the ones captured by the forkcipher [8] (e.g., ForkSkinny [8]; based on the lightweight ISO standard SKINNY [9]), multiforkcipher [6] and expanding PRF [7] (e.g., Butterknife [7]; based on AES and Deoxys-BC [26]) notions. Note that HKDF currently uses a "compressing" primitive instead (HMAC-SHA-256) in a key feedback mode for the expansion phase.

II. Fig. 1a clearly shows that only the KDF1 call requires the use of both the randomness extraction and expansion functions. The calls to KDF2 and KDF3 are always made over pseudorandom key inputs that are generated by the prior KDF calls. More specifically, the root keys that are fed to KDF2 calls are pseudorandom keys as they are generated by the KDF1 calls and the chain keys that are fed to KDF3 calls are pseudorandom keys as they are generated

by the KDF2 calls. In such cases, the extraction phase becomes redundant and the HKDF for KDF2 and KDF3 can be replaced by calling a fast and secure PRF (using the pseudorandom keys) that will provide the required expansion.

Addressing the above points, we propose Skye – a new KDF which improves upon HKDF in the Signal Protocol. In fact, we replace HKDF with Skye (as a KDF for the KDF1 and as its expanding component Exp for the KDF2 and KDF3 calls) and as a consequence we improve the performance of Signal Protocol by a very significant margin with achieving 128-bit security level. In the following sections, we define Skye and provide our software performance comparison (with HKDF) results. For simplicity, we limit our discussion to the 128-bit secure variant of the Signal protocol. Our results can be analogously used for the stronger variant of the protocol with 224-bit security.

5 Skye: An Expanding PRF based KDF

In this section, we define Skye, a source-specific fast key derivation function for the Signal protocol. Skye's design uses an expanding pseudorandom function (instead of a compression function) as the underlying primitive. An expanding pseudorandom function PRF_s is a symmetric primitive that transforms a fixed length (2*n*-bit) input X into a larger fixed-length (sn-bit with $s \ge 2$) output Y via a secret key K of k bits. Formally, PRF_s is defined as:

$$\mathsf{PRF}_s: \{0,1\}^k \times \{0,1\}^{2n} \to \{0,1\}^{sn}$$

Let \mathcal{K} denote the key space $\{0,1\}^k$ in the rest of the paper.

PRF security definition. We now recall the standard security definition of prf security for any expanding PRF PRF_s .

Definition 2 (PRF Advantage). For $\mathsf{PRF}_s : \{0,1\}^k \times \{0,1\}^{2n} \to \{0,1\}^{sn}$, let \mathcal{A} be an adversary whose goal is to distinguish $\mathsf{PRF}_s(K,\cdot)$ and a uniform random function $R(\cdot) : \{0,1\}^{2n} \to \{0,1\}^{sn}$ by their oracle access. The advantage of \mathcal{A} against the prf-security of PRF_s is then defined as

$$\mathbf{Adv}_{\mathsf{PRF}_s}^{\mathsf{prf}}(\mathcal{A}) = \big| \Pr[K \leftarrow^{\$} \mathcal{K} : \mathcal{A}^{\mathsf{PRF}_s(K, \cdot)} \Rightarrow 1] \\ - \Pr[R \leftarrow^{\$} \operatorname{Func}(2n, sn) : \mathcal{A}^{R(\cdot)} \Rightarrow 1] \big|.$$

Description of Skye. Skye is a deterministic multi-sample KDF that follows the extract-then-expand approach. For extraction and expansion it uses a deterministic source-specific extractor DExt_f (which we instantiate with $\mathsf{DExt}_{\mathsf{lsb}}$ for DH-source based applications such as the Signal Protocol) and a randomness expander (variable output length PRF) FExp , respectively.

Skye in Signal. The inputs to Skye in Signal are:

- the set Z of v = 3 or 4 (depending on the availability of the corresponding one time prekeys, see [35]) independent samples DH_i (i = 1, ..., v) of Diffie-Hellman (DH) shared secrets from the source group G defined over Curve25519 where each sample is of length 2n;
- the auxiliary info $\gamma \in \{0,1\}^{2n}$;
- $-\ell \in \mathbb{N}$ denoting the desired output length;

Skye outputs $K_{exp} \in \{0, 1\}^{\ell}$ (as shown in Fig. 2).

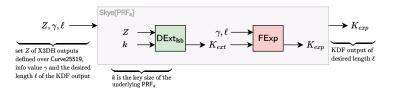


Fig. 2: Skye KDF in the context of Signal Protocol. See Fig. 3 and 4a for the internals of functions $\mathsf{DExt}_{\mathsf{lsb}}$ and FExp .

The $\mathsf{DExt}_{\mathsf{lsb}}$ in Skye takes the inputs Z and an integer k denoting the output size of $\mathsf{DExt}_{\mathsf{lsb}}$. It then produces a k-bit output K_{ext} . Then, K_{ext} together with γ and ℓ are given as input to the FExp. The FExp using a fixed PRF_s (with key size k, input size 2n and output size sn) produces the ℓ -bit K_{exp} . The description of $\mathsf{DExt}_{\mathsf{lsb}}$ and FExp are outlined in Fig. 3 and 4a respectively.

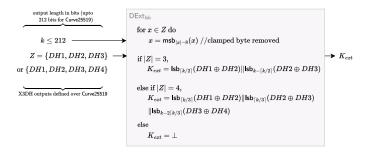
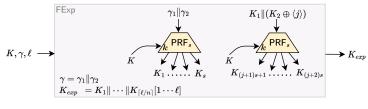


Fig. 3: $DExt_{lsb}$: A deterministic extractor that can extract up to 212 bits of randomness with 128 bits of security from 3 or 4 random, independent and fresh DH shared secrets that are X3DH outputs over Curve25519.



 $\label{eq:FExp} \left\{ \begin{aligned} & \mathsf{FExp}(\mathbf{K},\gamma,\ell) \\ & //K \in \mathcal{K}, \gamma \in \{0,1\}^{2n}, \ell \in \mathbb{N} \\ & K_1, K_2, \dots, K_s \leftarrow \mathsf{PRF}_s(K,\gamma), j_{\mathsf{last}} \leftarrow \lfloor \lceil \ell/n \rceil / s \rfloor, s_{\mathsf{last}} \leftarrow \lceil \ell/n \rceil - j_{\mathsf{last}} s \\ & \mathsf{for} \ j \ \mathbf{in} \ [0...j_{\mathsf{last}} - 2] \ \mathsf{do} \\ & K_{(j+1)s+1}, K_{(j+1)s+2}, \dots, K_{(j+2)s} \leftarrow \mathsf{PRF}_s(K, K_1 \| (K_2 \oplus \langle j \rangle)) \\ & K_{j_{\mathsf{last}}s+1}, K_{j_{\mathsf{last}}s+2}, \dots, K_{\lceil \ell/n \rceil} \leftarrow \mathsf{PRF}_{s_{\mathsf{last}}}(K, K_1 \| (K_2 \oplus \langle j_{\mathsf{last}} \rangle)) \\ & K_{exp} \leftarrow K_1 \| \dots \| K_{\lceil \ell/n \rceil} [1 \dots \ell] \\ & \mathsf{return} \ K_{exp} \end{aligned} \right.$

(b)

Fig. 4: (a) FExp mode of randomness expansion. Here K denotes the secret key to the PRF_s and $\langle j \rangle$ is a suitable *n*-bit binary encoding of j (e.g., $0^{n-\lceil \log_2(j) \rceil} || j$). Here each concatenation separates *n*-bit (block size) strings. (b) FExp mode pseudocode.

Parameters	Argument types	Sizes
set Z	DExt _{lsb} input	$256 \times (3 \text{ or } 4) \text{ bits}$
K_{ext}	DExt _{lsb} output	k = 128 bits
info value γ	FExp input	256 bits
K_{exp}	FExp output	ℓ bits

Table 1: Parameter sizes of input-output arguments in $\mathsf{DExt}_{\mathsf{lsb}}$ and FExp components of $\mathsf{Skye}[\mathsf{ButterKnife}]$.

We note that although in Fig. 2 k seems as an external input to the underlying block $\mathsf{DExt}_{\mathsf{lsb}}$, for a fixed PRF_s it is fixed to its keysize. Hence, it is not considered as a part of the global inputs to $\mathsf{Skye}[f, \mathsf{PRF}_s]$. For simplicity, we also drop f from the global inputs (hence denoting only $\mathsf{Skye}[\mathsf{PRF}_s]$) whenever it is fixed to lsb i.e. when working with DH-sources.

Why instantiate with ButterKnife [7]?

The PRF_s in Skye is instantiated with $\mathsf{ButterKnife}$ (where n = 128 bits and s = 8) for the following reasons:

- It is based on AES and Deoxys-BC [26] (one of the CAESAR [10] winners) and hence can make use of the AES native instructions (NI) on all supporting processors.
- It provides a very large expansion of s = 8.
- Its design structure provides efficient key-scheduling [7] that allows to save the frequent cost of key scheduling.
- The construction comes with extensive cryptanalysis [7] as well as a proof of security [7]. Further, its security strength is supported by the extensive cryptanalytic results of AES-PRF [21,38] and Deoxys-BC [17,26,30,44].

The parameter sizes of $\mathsf{DExt}_{\mathsf{lsb}}$ and FExp with $\mathsf{ButterKnife}$ are described in Table 1.

6 Software Performance of Skye

In this section, we present the performance evaluation of our implementation of Skye in comparison to HKDF both in an isolated setting and integrated within the current Signal Protocol implementation [2]. In measurements, we use the Rust implementation of HKDF, currently used in the Signal Protocol implementation. Our implementation of Skye is also done in Rust, and it is instantiated with ButterKnife implementation in C. We present measurements on the x86_64 platform and consider the performances both with and without using relevant instruction set extensions (AES-NI and SHA-NI). All measurements were performed with AMD Ryzen 7 5800X CPU.

6.1 Isolated Performance

To provide a direct performance comparison, we measured the time⁵ required to perform execution of what is needed in Signal Protocol to send up to n messages in a sequence. This benchmark includes the computation of KDF1, KDF2, and then n executions of KDF3, but it does not include the time needed to compute the inputs to the key derivation function (i.e., they are taken as constants), nor the time required to perform any follow-up operations like message encryption with the derived key.

The results of the measurement are shown in Table 2. On average, implementation with AES-NI and SHA-NI extensions enabled achieved at least 91% (or $\geq 11x$) speedup, while implementation without these extensions achieved at least 76% (or $\geq 4x$) speedup. On platforms that do support AES-NI but not SHA-NI⁶, the achieved speedup is at least 98% (or $\geq 47x$) on average, as HKDF cannot utilize AES-NI instructions, but Skye instantiated with ButterKnife can.

⁵ We measure wall-clock time with ns precision to be consistent with benchmarks present in the Signal Protocol implementation.

⁶ SHA-NI support was released for public markets in 2017-18 with Intel's Goldmont microarchitecture. All processors and devices before that and many after that do not have the support for SHA-NI.

n	Skye	HKDF	Skye	HKDF
	with NI	with NI	without NI	without NI
1	157	1739	1794	7404
2	218	2595	2666	11014
3	273	3459	3542	14640
4	336	4318	4414	18275
5	389	5179	5289	21901
6	453	6035	6164	25535
7	505	6894	7037	29160
8	570	7753	7919	32785
9	622	8617	8787	36406
10	688	9470	9667	40036

Table 2: The mean time (in ns) required to generate n message keys using Skye and HKDF with and without support for AES-NI and SHA-NI extensions. The measurements were repeated 10^4 times.

6.2 Performance within Signal

To evaluate the real performance gain of employing Skye in the Signal Protocol, we integrated Skye within the current Signal Protocol implementation [2]. First, we present the results from extended benchmarks of the original Signal code. In these settings, we assume that session initialization has already been performed (this includes the one time cost of X3DH computation and KDF1 call), and we measure the subsequent communication.

We note that Signal library also supports group messaging however, each group message is handled as a direct message to each receiver in the group. In other words, if there are N members in the group, signal client sends N messages individually encrypted with the derived ratchet key of each participant. Hence, we stick to two-party messaging for analyzing performance in both direct and group messaging.

One-way messaging: In this setting, we cover a scenario in which one party is sending messages to another party in sequence without receiving any reply in between the messages. Fig. 5a presents the results of measuring the time it takes the party to encrypt n messages.⁷ The relative speedup was mostly independent of n and was on average equal to 38% with NI instructions, 47% without NI instructions, and 64% with AES-NI but not SHA-NI⁸. For complete measurements results, see Table 4 in App. F.

Both-way messaging: Since the previous setting does not include the computational cost of DH-ratchet that occurs in bidirectional communication, we

 $^{^{7}}$ We use one block test messages of size 128 bits (i.e. 16 characters).

 $^{^8}$ Note that in this case AES-NI and SHA-NI were also used for message encryption and authentication so this number (64%) cannot be computed from the figure and is based on the full measurement.

also present results from the following setting: a party sends n messages (in sequence) to another party, which replies with n messages. In Fig. 5b, we present the time required to encrypt and decrypt these sent and received messages, respectively. Since the DH computation cost diminishes the impact of the rest of the computation (especially when the number of made KDF calls is very low), we gain only around 3% with single message i.e. n = 1 for the implementation with NI instructions, but we emphasize that (as expected) with more messages, the speedup easily improves and tends towards the results of earlier experiment of one-way messaging. For example, the speedup quickly improves here to 12% for n = 10. Similarly, without NI, instructions we gain a speedup of around 9% with n = 1, and with n = 10, it reaches to 27%. And lastly, with the partial extension support (with AES-NI but not SHA-NI) we get 11% with n = 1 that goes to 36% with n = 10. For complete measurements results, see Table 5 in App. F.

Speedup due to the use of expanding PRF. In the unidirectional experiment, 81%-93% of the total performance gain is due to the use of an expanding PRF (ButterKnife) in place of a compression function and the rest 19%-7% is due to the replacement of KDF2 and KDF3 calls by simply the expander function FExp. Similarly, in the bidirectional experiment, with 10 messages, 78%-86% of the total performance gain is due to the use of an expanding PRF and the rest 22%-14% is due to the KDF2 and KDF3 replacements which illustrates the advantage of adding an expanding PRF.

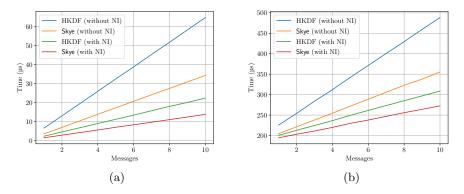


Fig. 5: (a) The mean time (in µs) required to encrypt n messages in the Signal Protocol implementation using Skye and HKDF. (b) The mean time (in µs) required to encrypt (on sender side) then decrypt (on receiver side) n messages, and then encrypt (on receiver side) and decrypt (on sender side) another n messages in the Signal Protocol implementation using Skye and HKDF. In both cases, the measurements were performed for variants with and without AES-NI and SHA-NI support. The encrypted messages were of less than 16 characters. All measurements were repeated 10^3 times.

We now provide some basic definitions contributing towards the full design specification and security analysis of Skye.

7 Randomness Extraction Phase

We first recall some preliminary definitions that are required for presenting our results.

Definition 3 (Statistical Distance). Let X and Y be two random variables taking values from a finite set \mathcal{X} . The statistical distance between X and Y is the value of the following expression:

$$SD(X, Y) = \frac{1}{2} \sum_{x \in \mathcal{X}} |\Pr[X = x] - \Pr[Y = x]|.$$

7.1 Elliptic Curve Decisional Diffie-Hellman (ECDDH) Problem [12]

Let G be a public cyclic subgroup (of size a prime q) of an elliptic curve group $\mathcal{E}(\mathbb{F}_p)$ over the finite field \mathbb{F}_p of size prime p. Let P be a randomly chosen generator of G, then for some secret and randomly chosen $a, c \in \mathbb{Z}_q^*$ and a randomly chosen $Q \in G$, it is hard to determine whether Q = acP or $Q \neq acP$ when provided with P, aP, cP and Q. Formally, we define the advantage of an adversary \mathcal{A} against solving ECDDH in G as

$$\mathbf{Adv}_{G}^{\mathsf{ecddh}}(\mathcal{A}) = |\Pr[\mathcal{A}(P, aP, cP, acP) = 1] \\ - \Pr[\mathcal{A}(P, aP, cP, Q) = 1]|$$

where the probability is over the random choices of $a, c \in \mathbb{Z}_q^*$, $P, Q \in \mathbb{G}$ and the internal randomness of \mathcal{A} .

The ECDDH assumption (with respect to G) states that for all *efficient* adversaries, the value of advantage $\mathbf{Adv}_{G}^{\mathsf{ecddh}}(\mathcal{A})$ is reasonably *small*.

In the remaining section, we now show how to build a strong extractor from a weak extractor and provide its security analysis. Formally, an extractor is defined as follows:

Definition 4 ((X, ϵ) -extractor [28]). Let X be a random variable that takes values in $\{0,1\}^x$ and U_w denote a random variable uniformly distributed in $\{0,1\}^w$ for some positive integers x and w, where U_w and X are independent. We say that for some non-negative integer d, the function $f : \{0,1\}^x \times \{0,1\}^d \rightarrow$ $\{0,1\}^w$ is an (X,ϵ) -extractor if

$$\mathsf{SD}((f(X,\mathsf{salt}),\mathsf{salt}),(U_w,\mathsf{salt})) \le \epsilon$$

where the salt is a d-bit value which is made public upon sampling.

We note that the salt value can be a null string or constant (in case of deterministic extractors). Further, since the salt sampling is independent to f, X and U_w , for simplicity, we slightly abuse the notation and omit both salt terms from the second arguments in the expression of Def. 4. In other words, the expression becomes

$$\mathsf{SD}(f(X,\mathsf{salt}),U_w) \le \epsilon$$
.

7.2 **DExt:** A Generic and Deterministic Extension Towards Improved Security of any Extractor

In this section, we describe how to build a stronger extractor DExt_f which can more securely extract the same or larger amount of randomness from a relatively weak extractor f given multiple independent samples. Our construction uses only simple and cheap operators like concatenation and XOR to avoid additional computational cost. Unlike the prior works based on extraction from multiple sources [18, 19, 22, 27, 42], our construction requires independence only within the samples where the source of these samples can still remain the same. An example here is multiple independent DH handshakes defined over the same source group.

Definition of \mathsf{DExt}_f. We provide a definition of the extended extractor DExt_f in Fig. 6 as a function that takes as inputs:

- a set $Z = \{Z_1, Z_2, \ldots, Z_v\}$ of v many z-bit (when represented in binary) independent samples chosen from some public finite sets S_1, S_2, \ldots, S_v , respectively (all of these sets could be same) for some positive integer z;
- the desired output length k;
- a positive integer e (security parameter);
- a pair (f, ϵ) with $f : \{0, 1\}^z \times \{0, 1\}^d \to \{0, 1\}^w$ being a (U_{Z_i}, ϵ) -extractor for some $\epsilon > 0$, positive integers d and w and all $1 \le i \le v$;
- a *d*-bit salt value salt (if any).

 DExt_f then uses the (U_{Z_i}, ϵ) -extractor (for all $1 \le i \le v$) f and the function invXOR (defined in Def. 5) and outputs a k-bit string K_{ext} if $k \le wb$ or \perp otherwise. Here, U_{Z_i} denotes a random variable distributed according to the sampling of Z_i s from the set S_i for all is, respectively, $b = \lfloor \frac{v-c}{\lceil c/2 \rceil} \rfloor + 1$ and $c = \min_i \{c_i \in \mathbb{N} | b_i(2\epsilon)^{c_i} \le 2^{-e+1}, b_i = \lfloor \frac{v-c_i}{\lceil c_i/2 \rceil} \rfloor + 1\}$. We note that the parameters c, e, b and the function f are important to define DExt_f , its design optimality (Theorem 6) and security (Theorem 1 and its following corollary).

$$Z, e, k \longrightarrow \begin{array}{c} \mathsf{DExt}_{f} \\ Z = \{Z_{1}, Z_{2}, \dots, Z_{v}\} \\ f \longrightarrow \\ f, \epsilon \longrightarrow \\ \mathsf{salt} \longrightarrow \\ \mathsf{salt} \longrightarrow \\ b = \lfloor (v-c)/\lceil c/2 \rceil \rfloor + 1, \ |a_{i}| = w \text{ for all } i, \\ \text{ if } k \leq wb \text{ then } K_{ext} = \mathsf{invXOR}(a_{1} \| a_{2} \| \cdots \| a_{v}, c)[1 \cdots k] \end{array} \xrightarrow{\mathsf{if } k \leq wb \atop \mathsf{salt} } \begin{array}{c} \mathsf{if } k \leq wb \atop \mathsf{salt} K_{ext} \\ \mathsf{else} \longrightarrow \\ \mathsf{salt} \longrightarrow \\ \mathsf{salt}$$

Fig. 6: DExt_f : A $(U_Z, b(2\epsilon)^c/2)$ -extractor (with upto wb bits of extraction) parameterized by a relatively small and weak (U_{Z_i}, ϵ) -extractor f (with upto w bits of extraction). Here U_{Z_i} and U_Z denote random variables distributed according to the sampling of Z_i s from S_i s for all is and of corresponding Z from the Cartesian product of all S_i s, respectively.

17

Definition 5 (XOR-based Involvement). We define invXOR as a function that maps a wv-bit binary string $a_1 ||a_2|| \cdots ||a_v|$ where all a_is are w-bit binary strings (equivalently elements of \mathbb{F}_{2^w} for some integer $w \ge 0$) and an integer c < v to an wb-bit binary string as follows:

$$\mathsf{invXOR}(a_1 \| a_2 \| \cdots \| a_v, c) = \bigoplus_{i=1}^c a_i \| \bigoplus_{i=1+\lceil c/2 \rceil}^{i=c+\lceil c/2 \rceil} a_i \| \cdots \| \bigoplus_{i=1+(b-1)\lceil c/2 \rceil}^{i=c+(b-1)\lceil c/2 \rceil} a_i$$

where $b = \lfloor (v-c)/\lceil c/2 \rceil \rfloor + 1$.

We refer the reader to App. B for a detailed analysis and discussion on the (sub-)optimality of the DExt_f construction. This analysis shows that although finding an optimal extension for randomness extraction over arbitrary values of v, c is hard, it is possible to construct one for v < 6 (the relevant case in practice) and DExt_f is one example of such extensions.

With all necessary definitions in place, we are now ready to give the formal security statement of DExt_f in Theorem 1.

Theorem 1. Let Z_1, Z_2, \ldots, Z_v be v independent z-bit binary strings that are chosen from the public finite sets S_1, S_2, \ldots, S_v , respectively for some positive integer z. Let f be a public function with a range in $\{0,1\}^w$ for some positive integer w. Let k and c be two positive integers, such that $c \leq v$ and $k \leq wb$ where $b = \lfloor (v-c)/\lceil c/2 \rceil \rfloor + 1$. If there exists an $\epsilon > 0$ such that f is a (U_{Z_i}, ϵ) -extractor for all i then, we have

$$\mathsf{SD}(U_D, U_k) \leq \frac{b}{2} (2\epsilon)^c$$
.

Here U_{Z_i} is a random variable distributed according to the sampling of Z_i s in the set S_i . U_k is a random variable uniformly distributed over $\{0,1\}^k$. U_D is a random variable distributed according to the outputs of DExt_f (of size k bits) when provided with $Z_1, Z_2, \ldots, Z_v, k, c$ and salt (if any) as inputs.

Increasing the value of c for a fixed distribution of Z_i s will increase the security of the final outputs linearly, but will also hyperbolically decrease the maximum possible length of the final outputs. This trade-off is important and explains why it is good to leave c a free variable in the theorem (this can later be defined according to the requirements of an application). We defer the proof of Theorem 1 to App. C.1.

7.3 DExt_f Instantiation based on msb/lsb Function

In this section, we show that for applications like the Signal Protocol where the KDF source of inputs is a subgroup of an elliptic curve group and the input distribution is computationally indistinguishable from the uniform distribution over the source, one can instantiate the underlying function f of DExt_f by the functions msb or lsb. More concretely, we recall one of the two main theorems from the work of Chevalier et al. [15] on the security of lsb_k function as a deterministic extractor (this function does not require any additional salt during its evaluation) and combine it with Theorem 1 to amplify the extracted output's size and security.

Theorem 2 (msb/lsb extraction, Theorem 14, [15]). Let p be an ℓ_p -bit prime, G a subgroup of $\mathcal{E}(\mathbb{F}_p)$ of cardinality q generated by P_0 , q being an ℓ_q -bit prime, U_G and U_k be two random variables uniformly distributed in G and $\{0,1\}^k$, respectively for some positive integer k. Then we have

$$\mathsf{SD}(\mathsf{lsb}_k(U_G), U_k) \le 2^{(k+\ell_p + \log_2 \ell_p)/2 + 3 - \ell_q}$$
.

By combining the results from Theorem 1 and 2 we obtain the following corollary:

Corollary 1. Let p be an ℓ_p -bit prime, G a subgroup of $\mathcal{E}(\mathbb{F}_p)$ of cardinality q generated by P_0 , q being an ℓ_q -bit prime, U_D a random variable distributed according to the outputs of $\mathsf{DExt}_{\mathsf{lsb}}$ for v many chosen uniform and independent samples from G with two positive integers k and c(< v) and $b = \lfloor (v-c)/\lceil c/2 \rceil \rfloor + 1$. Let U_k be a random variable uniformly distributed in $\{0,1\}^k$. We have $\mathsf{SD}(U_D, U_k) \leq 2^{-e}$ for some positive integer e if

$$2\ell_q - \ell_p - \log_2 \ell_p - 6 \ge \frac{2(e + \log_2 b - 1)}{c} + \left\lceil \frac{k}{b} \right\rceil$$

In the concrete settings of the Signal Protocol, we have the source group G defined as the cyclic subgroup of Curve25519 [11] using the base point x = 9 (one of the NIST standards for ECC [14] targeting 128-bit security) with $\ell_p = 256$ bits and $253 \ge \ell_q \ge 252$. Further, under the ECDDH [12] assumption (see Sec. 7.1), the X3DH [36] handshake over G provides at least 3 uniform and independent group elements as DH shared secrets. Hence, from Corollary 1, we have that DExt can output upto k = 212 bits of randomness with security of e = 128 bits when provided with fresh, independent and random X3DH outputs with the least significant byte (a.k.a. the clamped [32] byte that contains three fixed bits as 0s) dropped.

Note that with the results from [15] (Theorem 2) one can achieve the same amount of randomness, i.e. $k \approx 212$ bits by concatenating the outputs of $f = \mathsf{lsb}$, but with at most security of e = 82 bits when provided with at least v = 3 uniform and independent samples from the group G.

Let us consider the following example to clarify a different implication of this result. For a fixed sample size v = 10, source settings p = 256 and $q \ge 252$, and a security parameter e = 80, the input size that can be extracted in the final concatenated output (computed as concatenation of the outputs of $f = |sb\rangle$) is only $\approx 26\%$ (according to the results of [15]). On the other hand, the same is improved to 52% (according to our results) when evaluated with DExt_{lsb} under the same settings.

To summarize, for a given X3DH output with 3 (resp. 4) random, independent and fresh DH samples (defined after dropping the fixed/clamped byte) as DH1||DH2||DH3 (resp. DH1||DH2||DH3||DH4) over Curve25519, we have shown that under the ECDDH assumption the string $|sb_{[k/2]}(DH1 \oplus DH2)|||sb_{k-\lceil k/2\rceil}(DH2 \oplus DH3)$ (resp. $|sb_{\lceil k/3\rceil}(DH1 \oplus DH2)|||sb_{\lceil k/3\rceil}(DH2 \oplus DH3)|||sb_{k-2\lceil k/3\rceil}(DH3 \oplus DH4))$ is indistinguishable from a k-bit uniform random string with a security of at least 128 bits when $k \leq 212$. A simplified version of DExt_f in the Signal Protocol with f defined by the lsb function is provided in Fig. 3.

8 Randomness Expansion Phase

Randomness expansion or key-stream generation is a process to generate a large amount of random bits from relatively smaller random and secret keys. Formally, a randomness expander scheme $\Pi : \mathcal{K} \times \Gamma \times \mathbb{N} \to \{0,1\}^*$ takes a k-bit key $K \in \mathcal{K}$, the desired output length $\ell \in \mathbb{N}$ and an additional arbitrary but fixed length binary string $\gamma \in \Gamma$ as inputs and returns an ℓ -bit binary string K_{exp} as an output.

In [28], two approaches are discussed to construct randomness expanders: counter and feedback encryption mode style. HKDF uses a randomness expander that is defined using a key feedback mode over HMAC. HMAC in key feedback mode performs slow due to the frequent rekeying in HMAC calls (consequence of using feedback mode) and double hashing per HMAC call (consequence of using HMAC). In order to avoid these speed breakers, while maintaining 128-bit security level, we turn to the counter mode-like approach and consider some built-in expanding primitives such as a PRF_s with $s \ge 2$ as the underlying primitive. The known counter mode CTR\$ (CTR with random IV) [40] is a good randomness expander, however, in its original form it accommodates γ s only if they are chosen uniformly at random and are of size n bits (where n is the underlying block size).

Our proposal FExp is a highly efficient randomness expander that can accommodate arbitrary γ s of size 2n bits. Further, unlike CTR\$ mode which can only provide n/2 bits of security under the indistinguishability from random strings IND\$ [40] notion, we show that FExp mode (for a given secret random key) provides full *n*-bit security under the same security notion. We adjust the notion under the syntax of a randomness expander scheme and denote it by gexp below.

gexp Security. The security of a randomness expander or in short, Exp scheme Π is defined with the help of the games gexp-real and gexp-ideal in Fig. 7. The security of Π is measured as the indistinguishability of its outputs from random strings in a chosen input attack. More precisely, given Π and an adversary \mathcal{A} who interacts with either gexp-real or gexp-ideal, we define \mathcal{A} 's advantage at breaking the gexp security of Π as:

$$\operatorname{Adv}_{\Pi}^{\operatorname{gexp}}(\mathcal{A}) = \left| \Pr[\mathcal{A}^{\operatorname{gexp-real}} \Rightarrow 1] - \Pr[\mathcal{A}^{\operatorname{gexp-ideal}} \Rightarrow 1] \right|$$

8.1 FExp: A PRF_s-based Randomness Expander

We provide a definition for our randomness expansion scheme based on an expanding (fixed output length) PRF PRF_s .

Definition of FExp. For a fixed expanding PRF $\mathsf{PRF}_s : \mathcal{K} \times \{0, 1\}^{2n} \to \{0, 1\}^{sn}$ with $s \ge 2$, FExp takes in a key $K \in \mathcal{K}$, the auxiliary info $\gamma \in \{0, 1\}^{2n}$ and the desired output length $\ell \in \mathbb{N}$ as inputs. It then uses the PRF_s as shown in Fig. 4a and outputs the key-stream $K_{exp} \in \{0, 1\}^{\ell}$.

We give a formal statement of the FExp security and support it with a security proof. The formal security claim is stated in Theorem 3.

Theorem 3 (Security of FExp). Let PRF_s be an expanding pseudorandom function with a secret and uniform random key $K \in \mathcal{K}$ and $s \geq 2$. Then for any adversary \mathcal{A} who makes at most q FExp queries such that the total number of PRF_s calls induced by all the queries is at most $\sigma = \sum_{i=1}^q \ell_i$ with ℓ_i being the output length (in sn-bit blocks) of i^{th} query, we have

$$\mathbf{Adv}_{\mathsf{FExp}}^{\mathsf{gexp}}(\mathcal{A}) \leq \mathbf{Adv}_{\mathsf{PRF}_s}^{\mathsf{prf}}(\mathcal{B}) + \frac{2q(\sigma - q)}{2^{2n}}$$

for some adversary \mathcal{B} who makes at most σ queries, and runs in time given by the running time of \mathcal{A} plus $\gamma_0 \cdot \sigma$ for some constant γ_0 .

We use combinatorics and reduction to prove Theorem 3 and defer the proof to App. C.2.

Game gexp-real	Game gexp-ideal
$//K \leftarrow^{\$} \{0,1\}^k$	$\overline{//K \leftarrow^{\$} \{0,1\}^k}$
Oracle $\mathcal{E}(\gamma, \ell)$	Oracle $\mathcal{E}(\gamma, \ell)$
return $\Pi(K, \gamma, \ell)$	return $RF_{K,\gamma}[1\dots\ell]$
$b \leftarrow \mathcal{A}^{\mathcal{E}}$	$b \leftarrow \mathcal{A}^{\mathcal{E}}$
return b	return b

Fig. 7: Games **gexp-real** and **gexp-ideal** defining the security of an Exp scheme Π . Here $\mathsf{RF}_{K,\gamma}$ is a function (independently sampled for every (K,γ)) that outputs arbitrary many uniform random bits.

9 Security Analysis of Skye

The security of a KDF scheme depends on the properties of its source of initial keying material (IKM, Def. 1) from which Z is chosen. We refer the reader to [28] for various examples of such sources. Although this definition does not specify the inputs to the Σ algorithm, it provides a pair (Z, \mathcal{C}_Z) where Z (the sample set) represents the secret IKM as the input to a KDF, while \mathcal{C}_Z represents a set of some auxiliary knowledge about Z (or its distribution). This auxiliary information is available to the attacker and hence can be used in the security treatment of a KDF. In other words, a KDF is expected to be "secure" on inputs Z even when the value \mathcal{C}_Z is available to the attacker. To exemplify, in a Diffie-Hellman value Z will consist of a value g^{xy} while \mathcal{C}_Z could represent the set

 $\{p, q, g, g^x, g^y\}$. In a different application, say a random number generator that works by hashing samples of system events in a computer system, the value C_Z may include some of the sampled events used to generate Z.

Towards defining the security of Skye, we recall the min-entropy and m-entropy source definitions from [28].

Definition 6 (min-entropy [28]). A probability distribution \mathcal{X} has min-entropy (at least) m if for all a in the support of \mathcal{X} and for a random variable X drawn according to \mathcal{X} , $\Pr(X = a) \leq 2^{-m}$.

Definition 7 (*m*-entropy source [28]). We say that Σ is a statistical *m*-entropy source if for all *s* and *a* in the support of the distribution Σ , the conditional probability $\Pr(Z = s | \mathcal{C}_Z = a)$ induced by Σ is at most 2^{-m} . We say that Σ is a computational *m*-entropy source (or simply an *m*-entropy source) if there is a statistical *m*-entropy source Σ' that is computationally indistinguishable from Σ .

CCS Security. We follow the original CCS-security definition from [16,28] for a secure KDF with an *m*-entropy source Σ in the adaptive chosen context information (γ) model with a single salt. Our CCS formalization for an *m*-entropy source makes use of the two security games **ccs-real** and **ccs-ideal**, see Fig. 8 in App. A. The CCS-security is then defined as the indistinguishability of the KDF generated outputs K_{kdf} from truly random strings under a chosen input attack. More precisely, given a KDF scheme Π and an adaptive adversary \mathcal{A} , who interacts with either **ccs-real** or **ccs-ideal**, the \mathcal{A} 's advantage at breaking the CCS security of Π is defined as $\mathbf{Adv}_{\Pi}^{\mathsf{CCS}}(\mathcal{A}) = |\Pr[\mathcal{A}^{\mathsf{ccs-real}} \Rightarrow 1] - \Pr[\mathcal{A}^{\mathsf{ccs-ideal}} \Rightarrow 1]|$.

9.1 Security of Skye

We now give the Skye security statement in Theorem 4.

Theorem 4 (Security of Skye). Let $\mathsf{PRF}_s : \mathcal{K} \times \{0,1\}^{2n} \to \{0,1\}^{sn}$ be an expanding pseudorandom function with $s \ge 2$ and key size $k \le 212$ bits. Let $\Sigma = (Z, \mathcal{C}_Z)$ be an input source. Let Z is sampled from a set containing secret, random, independent and fresh X3DH handshake outputs computed over the group G, where G is defined as the cyclic subgroup of Curve25519 using the base point x = 9 [11]. Then, for all adversaries \mathcal{A} who make q Skye queries in at most $\sigma = \sum_{i=1}^{q} \ell_i \; \mathsf{PRF}_s$ calls with ℓ_i being the output length (in sn-bit blocks) of ith query, we have

$$\mathbf{Adv}_{\mathsf{Skye}[\mathsf{PRF}_s]}^{\mathsf{CCS}}(\mathcal{A}) \leq \mathbf{Adv}_{\mathsf{PRF}_s}^{\mathsf{prf}}(\mathcal{B}) + \mathbf{Adv}_G^{\mathsf{ecddh}}(\mathcal{C}) + \frac{q}{2^{128}} + \frac{2q(\sigma - q)}{2^{2n}}$$

for adversaries \mathcal{B} and \mathcal{C} making at most σ and $4q \ \mathsf{PRF}_s$ and ECDDH (over G) queries, respectively and running in time given by the running time of \mathcal{A} plus $\gamma_0 \cdot \sigma$ for some constant γ_0 .

We defer the proof of Theorem 4 to App. C.3. In our implementation, we instantiate Skye with $\mathsf{PRF}_s = \mathsf{Butterknife}$ to achieve 128-bit security i.e. n = k = 128.

22

10 Discussion and Future Research

Curve448 and 224-bit security. The Skye's instantiation defined in this article for the Signal Protocol specifically targets 128-bit security that is defined using Curve25519. The 224-bit secure version of the Signal Protocol is based on Curve448. This rises a natural question of whether the Skye syntax and similar security proof arguments also works for the 224-bit version of Signal.

We note that the general study of the underlying components of Skye is directly applicable for constructing 224-bit secure Skye. A 224-bit secure Skye can be defined with the same syntax, and similar security proof arguments when Curve25519 is replaced by Curve448. However, we avoid a detailed study of Skye with Curve448 in this paper as currently no expanding PRF exists with key security > 128 bits, input size > 256 bits and no ideal cipher or RO assumptions. With this motivation, we leave the research of finding efficient expanding PRFs with at least 224 bits of standard model security as an open problem.

Network latency and IoT devices. The changes we are proposing improve performance on the cryptographic level of the Signal implementation, but the impact of such computations on the overall performance of modern smartphones and laptops is low when network latency is included. Nonetheless, this tradeoff is not the same for all kinds of devices and network setups. Low-performance hardware, e.g., IoT devices or wireless sensor networks, could greatly benefit from these improvements, enabling a wider deployment of the Signal protocol.

Energy efficiency. Although we present improved time efficiency as the main result, an associated benefit is lower energy consumption. Energy savings are relevant even in settings where the network latency overshadows the performance.

Security under compromised X3DH samples. To avoid the reliance on strong RO assumptions, our present analysis of Skye for Signal application assumes at least 3 uncompromised X3DH keys and that results in stronger standard model security when compared to HKDF. In the case when there are at most 2 uncompromised X3DH keys (and assuming user doesn't periodically update the compromised ones), the security will be achieved by "assuming that the PRF_s behave as an ideal object (RO)" (similarly to the security treatment in [20]). This analysis is a subject of separate treatment.

Skye applications beyond Signal and DH sources. Our results on the performance of Skye in Signal Protocol indicate that similar applications (that are based on Signal and X3DH protocol) such as WhatsApp, Facebook Messenger, Skype, Allo, Status, Secure Chat, Viber, Forsta and Blockchain-based-X3DH for IoTs should also get significant boost when instantiated with Skye. We leave their concrete performance analysis to future research.

We also emphasize that Skye is based on a generic design of DExt_f and that its security analysis is not limited to Curve25519 points as input source. Hence, realizing the potential of Skye beyond DH sources (and finding corresponding weak extractors fs) can also be considered as an important direction for future works. This includes exploring its application in the ongoing Message Layer Security (MLS) [3] and Post-Quantum Signal [13] projects.

On instantiation of PRF_s. The security of ButterKnife is argued in detail by the authors and till date no attack against it is found. However, we emphasize that beyond the use of ButterKnife, any suitably designed expanding primitive PRF_s in Skye is equally able to provide a secure and efficient alternative to HKDF. For example, one can also use ForkSkinny but then the gains when compared with ButterKnife would be significantly less such as half (i.e. up to 64-bits) PRF-security and slower speed (as ForkSkinny performs slower than ButterKnife and does not have NI support on regular platforms).

DExt beyond linear systems. The number of extracted bits from DExt and their security might be improved for the same inputs when non-linear multivariate equations (with the extra cost of field multiplications) are used. Studying such systems was out of the scope and motivation of this paper and we leave the design and analysis of further generalized yet efficient DExt-like extensions as an open problem.

References

- 1. Messenger secret conversations: Technical whitepaper https://fbnewsroomus. files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
- Signal Protocol software libraries Github [accessed on 05/02/2023], https://github.com/signalapp/
- The Messaging Layer Security (MLS) Protocol Work in Progress, Internet-Draft, draft-ietf-mls-protocol-17, 19 December 2022, https://datatracker.ietf.org/ doc/html/draft-ietf-mls-protocol-17
- Alwen, J., Coretti, S., Dodis, Y.: The Double Ratchet: Security Notions, Proofs, and Modularization for the Signal Protocol. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2019. pp. 129–158. Springer International Publishing, Cham (2019)
- 5. Andrea Piana, Pedro Pombeiro, C.P.O.T.D.E.: Specifications for Status clients 5/SECURE-TRANSPORT https://specs.status.im/spec/5
- Andreeva, E., Bhati, A.S., Preneel, B., Vizár, D.: 1, 2, 3, Fork: Counter Mode Variants based on a Generalized Forkcipher. IACR Trans. Symmetric Cryptol. 2021(3), 1–35 (2021)
- Andreeva, E., Cogliati, B., Lallemand, V., Minier, M., Purnal, A., Roy, A.: Masked Iterate-Fork-Iterate: A new Design Paradigm for Tweakable Expanding Pseudorandom Function. Cryptology ePrint Archive (2022)
- Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.: Forkcipher: a New Primitive for Authenticated Encryption of Very Short Messages. In: International Conference on the Theory and Application of Cryptology and Information Security. pp. 153–182. Springer (2019)
- Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Annual International Cryptology Conference (CRYPTO). pp. 123–153. Springer (2016)

25

- Bernstein, D.J.: Cryptographic competitions: CAESAR. http://competitions. cr.yp.to
- 11. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: International Workshop on Public Key Cryptography. pp. 207–228. Springer (2006)
- Boneh, D.: The Decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. pp. 48–63. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)
- Brendel, J., Fiedler, R., Günther, F., Janson, C., Stebila, D.: Post-quantum asynchronous deniable key exchange and the signal handshake. In: Public-Key Cryptography–PKC 2022: 25th IACR International Conference on Practice and Theory of Public-Key Cryptography, Virtual Event, March 8–11, 2022, Proceedings, Part II. pp. 3–34. Springer (2022)
- Chen, L., Moody, D., Regenscheid, A., Randall, K.: SP800-186, Recommendations for discrete logarithm-based cryptography: Elliptic curve domain parameters. Tech. rep., National Institute of Standards and Technology (2019)
- 15. Chevalier, C., Fouque, P.A., Pointcheval, D., Zimmer, S.: Optimal Randomness Extraction from a Diffie-Hellman Element. EUROCRYPT 2009 p. 572 (2009)
- Chuah, C.W., Dawson, E., Simpson, L.: Key derivation function: the SCKDF scheme. In: IFIP International Information Security Conference. pp. 125–138. Springer (2013)
- Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: A security analysis of Deoxys and its internal tweakable block ciphers. IACR Transactions on Symmetric Cryptology pp. 73–107 (2017)
- Ciss, A.A.: Two-sources randomness extractors for elliptic curves. arXiv preprint arXiv:1404.2226 (2014)
- Ciss, A.A., Sow, D.: Two-Source Randomness Extractors for Elliptic Curves for Authenticated Key Exchange. In: International Conference on Codes, Cryptology, and Information Security. pp. 85–95. Springer (2017)
- Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A Formal Security Analysis of the Signal Messaging Protocol. In: 2017 IEEE European Symposium on Security and Privacy (EuroS P). pp. 451–466 (2017). https://doi.org/10.1109/EuroSP.2017.27
- Derbez, P., Iwata, T., Sun, L., Sun, S., Todo, Y., Wang, H., Wang, M.: Cryptanalysis of AES-PRF and its dual. IACR Transactions on Symmetric Cryptology 2018(2) (2018)
- Dodis, Y., Elbaz, A., Oliveira, R., Raz, R.: Improved randomness extraction from two independent sources. In: Approximation, randomization, and combinatorial optimization. Algorithms and techniques, pp. 334–344. Springer (2004)
- Fouque, P., Pointcheval, D., Stern, J., Zimmer, S.: Hardness of Distinguishing the MSB or LSB of Secret Keys in Diffie-Hellman Schemes. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Automata, Languages and Programming, 33rd International Colloquium, ICALP, Venice, Italy, 2006, Part II. Lecture Notes in Computer Science, vol. 4052, pp. 240–251. Springer (2006). https://doi.org/10. 1007/11787006_21, https://doi.org/10.1007/11787006_21
- Gilbert, E.N.: A comparison of signalling alphabets. The Bell system technical journal **31**(3), 504–522 (1952)
- Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de (2007), accessed on 2021-06-25
- 26. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Submission to CAESAR : Deoxys v1.41 (October 2016), http://competitions.cr.yp.to/round3/deoxysv141.pdf

- Kolyang, D., Sow, D., Ciss, A.A., Tchapgnouo, H.B.: Two-sources randomness extractors in finite fields and in elliptic curves. African Journal of Research in Computer Science and Applied Mathematics 24 (2017)
- Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme. In: Annual Cryptology Conference. pp. 631–648. Springer (2010)
- 29. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message authentication (1997)
- Liu, Y., Shi, B., Gu, D., Zhao, F., Li, W., Liu, Z.: Improved meet-in-the-middle attacks on reduced-round Deoxys-BC-256. The Computer Journal 63(12), 1859– 1870 (2020)
- 31. Lund, J.: Signal partners with Microsoft to bring end-to-end encryption to Skype https://signal.org/blog/skype-partnership/
- 32. Madden, N.: What's the Curve25519 clamping all about? https://neilmadden. blog/2020/05/28/whats-the-curve25519-clamping-all-about/
- 33. Marlinspike, M.: Open whisper systems partners with Google on end-to-end encryption for Allo https://signal.org/blog/allo/
- 34. Marlinspike, M.: WhatsApp's Signal Protocol integration is now complete https: //signal.org/blog/whatsapp-complete/
- 35. Marlinspike, M., Perrin, T.: The double Ratchet algorithm, November 2016 https://whispersystems.org/docs/specifications/doubleratchet/ doubleratchet.pdf
- Marlinspike, M., Perrin, T.: The X3DH key agreement protocol. Open Whisper Systems (2016), https://signal.org/docs/specifications/x3dh/x3dh.pdf
- Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In: Advances in Cryptology-CRYPTO 2007: 27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007. Proceedings 27. pp. 130–149. Springer (2007)
- Mennink, B., Neves, S.: Optimal PRFs from blockcipher designs. IACR Transactions on Symmetric Cryptology pp. 228–252 (2017)
- 39. Perrin, T.: The Noise protocol framework (2016), noiseprotocol.org
- Rogaway, P.: Evaluation of some blockcipher modes of operation. Cryptography Research and Evaluation Committees (CRYPTREC) for the Government of Japan (2011), https://crossbowerbt.github.io/docs/crypto/rogaway_modes.pdf
- Ruggeri, A., Celesti, A., Fazio, M., Galletta, A., Villari, M.: BCB-X3DH: a Blockchain Based Improved Version of the Extended Triple Diffie-Hellman Protocol. In: 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). pp. 73–78 (2020). https://doi.org/10.1109/TPS-ISA50397.2020.00020
- 42. Tchapgnouo, H.B., Ciss, A.A.: Multi-sources Randomness Extraction over Finite Fields and Elliptic Curve. arXiv preprint arXiv:1502.00433 (2015)
- Varshamov, R.R.: Estimate of the number of signals in error correcting codes. Docklady Akad. Nauk, SSSR 117, 739–741 (1957)
- Zhao, B., Dong, X., Jia, K.: New related-tweakey boomerang and rectangle attacks on Deoxys-BC including BDT effect. IACR Transactions on Symmetric Cryptology pp. 121–151 (2019)

26

A CCS Security Games

Game ccs-real	Game ccs-ideal			
$//I_{\gamma} = \{\}$	$//I_{\gamma} = \{\}$			
$//\gamma_c = \perp$ until provided by \mathcal{A}	$//\gamma_c = \perp$ until provided by \mathcal{A}			
$(Z, \mathcal{C}_Z) \leftarrow \Sigma / / m$ -entropy source	$(Z, \mathcal{C}_Z) \leftarrow \Sigma / / m$ -entropy source			
Oracle Derive (γ, ℓ)	Oracle Derive (γ, ℓ)			
define $I_{\gamma} = I_{\gamma} \cup \{\gamma\}$	$\mathbf{define} I_{\gamma} = I_{\gamma} \cup \{\gamma\}$			
$\mathbf{if} \ \gamma \neq \gamma_c$	$\mathbf{if} \gamma \neq \gamma_c$			
return $(\Pi(Z,\gamma,\ell),salt)$	$\mathbf{return}~(\Pi(Z,\gamma,\ell),salt)$			
else //challenge query	else //challenge query			
$\mathbf{return}(\Pi(Z,\gamma,\ell),salt)$	$\mathbf{return} \; (RF_{Z,\gamma}[1 \dots \ell], salt)$			
$(\gamma_c, \ell_c), b \leftarrow \mathcal{A}^{Derive}$	$(\gamma_c, \ell_c), b \leftarrow \mathcal{A}^{Derive}$			
//challenge query and the	//challenge query and the			
//final output bit of \mathcal{A}	//final output bit of \mathcal{A}			
$\mathbf{if} \gamma_c \in I_\gamma$	$\mathbf{if} \ \gamma_c \in I_\gamma$			
$\mathbf{return} \perp$	$\mathbf{return} \perp$			
else	else			
$\mathbf{return} \ b$	$\mathbf{return} \ b$			

Fig. 8: Games **ccs-real** and **ccs-ideal** defining the CCS-security of a KDF scheme. Here $\mathsf{RF}_{Z,\gamma}$ is a function (independently sampled for every (Z,γ)) that outputs arbitrary many uniform random bits and salt denotes the internally sampled salt value which is used in the queries $\mathsf{Derive}(\cdot, \cdot)$ (Note that this salt here can be a uniform random string or fixed to some constant or null string. However, we let its sampling remain general in the security definition).

B (Sub-)Optimality Analysis of DExt_f

In this section we provide the security analysis of our proposed extractor and its instantiation. We start with the basic definitions that are required for the analyses presented in this section. **Definition 8 (Consistent system).** A system of linear equations over a field \mathbb{F} is called consistent if it has at least one solution in \mathbb{F} .

Definition 9 (Coefficient matrix). For a given set S of linear equations, the coefficient matrix C_S of S is defined by a matrix with i^{th} row as the coefficients of the variables in the i^{th} linear equation of the set S.

Definition 10 (Binary linear code). A binary linear code of length n and rank k is a linear subspace C with dimension k of the vector space \mathbb{F}_2^k where \mathbb{F}_2 is the binary field. The vectors in C are called codewords.

Definition 11 (Hamming distance). For any binary linear code C, the Hamming distance between any two codewords in C is defined as the number of elements in which the codewords differ.

Any binary linear code C can be represented by $[n, k, d]_2$ where n is the length of a codeword in C, d is the minimum of Hamming distances of all pairs of codewords in C and k is the rank of C. The maximum number of codewords in any $[n, k, d]_2$ code is denoted by $A_2(n, d)$. This implies that $k \leq \log_2(A_2(n, d))$.

We now introduce two new definitions called degree of involvement and mindegree of involvement for the upcoming analysis.

Definition 12 (Degree of involvement). Let $S = \{E_i | 1 \le i \le a\}$ be a consistent system of equations of v variables over a field \mathbb{F} and let x_0 be one of these v variables then the degree of involvement di_S of x_0 is defined as the minimum number of other variables on which the value of x_0 depends in S.

To exemplify, consider the following system of one equation with 3 variables over \mathbb{R} , $S_1 = \{x + y + z = 3\}$ where $V = \{x, y, z\}$. Clearly, any variable in Vhas 2 degrees of involvement as its value depends on the other two variables. Now, as another example, consider the following system of three equations over \mathbb{R} , $S_2 = \{x + y + z = 3, x + y = 2, z = 1\}$. Unlike to the previous example, in S_2 where z is now fixed by another equation, we have zero degree of involvement left in the system for z. Similarly, for x and y, the degree of involvement is 1 as they depend on each other.

Definition 13 (Min-degree of involvement). Let $S = \{E_i | 1 \le i \le a\}$ be a consistent system of equations of v variables defined by the set $V = \{V_1, V_2, \ldots, V_v\}$ over a field \mathbb{F} then the min-degree of involvement (MDI) mdi of S is defined as the minimum of $di_S(V_i)$ for $1 \le i \le a$.

We note that the MDI of a system is not equal to its degree of freedom. In fact, one can show that the degree of freedom for a system S is equal to the "maximum" of $di_S(x)$ over all variables x in S. However, for this work the important extremum on these degrees is the minimum defined above as the MDI of a system. The definition of degree of freedom is provided below for completeness. **Definition 14 (Degree of freedom).** Let $S = \{E_i | 1 \le i \le a\}$ be a system of linear equations of v variables defined by the set $V = \{V_1, V_2, \ldots, V_v\}$ over a field \mathbb{F} and let $V_f \subset V$ be the largest subset of V such that for all possible values of the variables of V_f in \mathbb{F} , all equations of S holds. We use the term "free variable" to denote a variable in V_f and the degree of freedom df of S is defined as df $(S) = |V_f|$.

Next, we state necessary theorems towards the construction of DExt_f . We emphasize that to extract optimal randomness from a given input $a = \{a_i\}_{i=1}^v$ and c, one would need to find one of the largest system S of linear equations containing v variables (each variable corresponding to an element in the set a) with binary coefficients and with $\mathsf{mdi}(S) = c - 1$. Below in Theorem 5 we show that this problem is equivalent to finding a $[v, \log_2(A_2(v, c)), c]_2$ optimal binary linear code which has been considered hard for general values of v, c and that there is no polynomial-time algorithm that can find a $[v, \log_2(A_2(v, c)), c]_2$ code for arbitrary values of v, c.

Theorem 5. Let S_c be the collection of all consistent systems $S^j = \{E_i^j | 1 \le i \le a_j\}$ of linear equations in v variables defined by the set $V = \{V_1, V_2, \ldots, V_v\}$ over the binary field \mathbb{F}_{2^w} (for some integer $w \ge 0$) with binary coefficients and for each $S \in S_c$ we have $\mathsf{mdi}(S) = c - 1$ for some positive integer $c \le v$ then for a system $S^* \in S_c$ such that $|S^*| = \max_j \{a_j | S_j \in S_c\}$ we have

 $|S^*| = \log_2(A_2(v, c)).$

Proof of Theorem 5 is straightforward from the fact that the coefficient matrix C_S for any system $S \in S_c$ can be equivalently seen as a basis set of codewords a.k.a. the generator matrix for a $[v, |S|, c]_2$ code. Hence, for S^* as defined, we have $2^{|S^*|} = A_2(v, c)$ and thus the result of the theorem.

We further note that there exists a good lower bound on $A_2(v,c)$ called the Gilbert–Varshamov bound [24,43] (which states that $\log_2(A_2(v,c)) \ge \lfloor v - \log_2 \sum_{i=0}^{c-2} {v \choose i} \rfloor$ and proves the existence of a $[v, |S|, c]_2$ code with $|S| \ge \lfloor v - \log_2 \sum_{i=0}^{c-2} {v \choose i} \rfloor$), however, there does not exist any deterministic method that can construct a linear code satisfying the Gilbert–Varshamov (GV) bound.

For our work, we settle with a comparatively loose lower bound of $|S| = b = \lfloor (v-c)/\lceil c/2 \rceil \rfloor + 1$ (which is very close to GV or even optimal for settings where v is very small and quite loose, otherwise) but with a deterministic algorithm \mathcal{E} that can construct linear codes satisfying this bound (as shown below in Def. 15 and Theorem 6).

Definition 15. \mathcal{E} is a deterministic algorithm that, when provided with two integers v and $c \leq v$, first computes a coefficient matrix C_S with its ij^{th} entry $C_S[ij]$ defined as

$$C_S[ij] = \begin{cases} 1 & if \lceil c/2 \rceil (i-1) + 1 \le j \le \lceil c/2 \rceil (i-1) + c \\ 0 & o/w \end{cases}$$

and then for a variable set $\{V_1, V_2, \ldots, V_v\}$ with independent variables over the binary field \mathbb{F}_{2^w} (for some integer $w \ge 0$), it returns the corresponding consistent system S of C_S .

Theorem 6. Every system S returned by the algorithm \mathcal{E} as defined above in Def. 15 has mdi(S) = c - 1.

We defer the proof of Theorem 6 to App. C.4 and provide Table 3 in App. D showing the differences between $\log_2(A_2(v,c))$ and $b = \lfloor (v-c)/\lceil c/2 \rceil \rfloor + 1$ for various values of v and c up to sample sizes $v \leq 10$. From the table, one can infer that our definition of b can be considered very good for small values of v and even optimal for $v \leq 5$ (which is pretty sufficient in practice).

Further, we note that the construction of DExt_f allows variable sample sizes, security parameters and output sizes, therefore, for a deterministic and faster execution of this algorithm, we fix b to $\lfloor (v-c)/\lceil c/2 \rceil \rfloor + 1$. However, we recommend that for applications where sample size, security parameter and output size is defined only once, one may use a better or even optimal code (i.e. $\log_2(A_2(v,c))$ instead of b), if exists to extract more randomness with almost the same security. We refer the reader to codetables.de [25] for existing tables of optimal $[v, \log_2(A_2(v,c)), c]_2$ codes for certain v, c settings.

In this paper, b is treated as a positive integer, defined as $\lfloor (v-c)/\lceil c/2\rceil \rfloor + 1$ for another positive integers v, c. Therefore, all results that are defined in terms of b and c in this paper are directly applicable to any application for which a different and larger value for b exists.

For simplicity, we have provided (and used in the rest of this paper) an equivalent definition of the algorithm \mathcal{E} as a function called invXOR (see Def. 5).

Equivalence between the two definitions can be easily understood from the fact that for a given variable set $\{V_1, V_2, \ldots, V_v\}$ and their corresponding values as a set $\{a_1, a_2, \ldots, a_v\}$, each concatenation in the output of invXOR function corresponds to an equation in the generated system S of \mathcal{E} and vice versa.

C Omitted Security Proofs

C.1 Proof of Theorem 1

Proof. We are given v independent z-bit elements Z_1, \ldots, Z_v (when represented as binary strings) that are chosen from some public finite sets S_1, S_2, \ldots, S_v , respectively for some positive integer z and a public function f (that may or may not require a random salt value for its evaluation) with a range in $\{0, 1\}^w$ for some positive integer w. Let us now consider U_w as a random variable uniformly distributed over $\{0, 1\}^w$. For some $\epsilon > 0$, we have $\mathsf{SD}(f(U_{Z_i}, \mathsf{salt}), U_w) \leq \epsilon$ for all i. Since the value of salt is sampled once and used for all values of Z_i , for simplicity, we denote $f(U_{Z_i}, \mathsf{salt})$ by $f(U_{Z_i})$ in the rest of the proof. Let c, k be two positive integers and $b = \lfloor (v - c) / \lceil c/2 \rceil \rfloor + 1$ such that $w = \lceil k/b \rceil$. Now, from the definition of SD and ϵ we have

$$SD(f(U_{Z_i}), U_w) = \frac{1}{2} \sum_{x \in U_w} \left| \Pr[f(U_{Z_i}) = x] - \frac{1}{2^w} \right| \le \epsilon.$$
 (1)

Also, since an element of U_D of size k that corresponds to Z_1, \ldots, Z_v can be equivalently defined as $invXOR(f(Z_1)||f(Z_2)||\cdots||f(Z_v), c)[1\ldots k]$, we have for $k' = b\lceil k/b\rceil$,

$$\begin{aligned} \mathsf{SD}(U_D, U_k) &\leq \mathsf{SD}(\mathsf{invXOR}(f(U_{Z_1}) \| f(U_{Z_2}) \| \cdots \\ & \cdots \| f(U_{Z_v}), c), U_{k'}) \\ &= \mathsf{SD}(\oplus_{i=1}^c f(U_{Z_i}) \| \oplus_{i=1+\lceil c/2 \rceil}^{i=c+\lceil c/2 \rceil} f(U_{Z_i}) \| \cdots \\ & \cdots \| \oplus_{i=1+(b-1)\lceil c/2 \rceil}^{i=c+(b-1)\lceil c/2 \rceil} f(U_{Z_i}), U_{k'}) \end{aligned}$$

We denote $\bigoplus_{i=1+(j-1)\lceil c/2\rceil}^{i=c+(j-1)\lceil c/2\rceil}f(U_{Z_i})$ by U_{f_j} . Hence, we have

$$\begin{aligned} \mathsf{SD}(U_D, U_k) &\leq \mathsf{SD}(U_{f_1} \| U_{f_2} \| \cdots \| U_{f_b}, U_{k'}) \\ &= \frac{1}{2} \sum_{x \in U_{k'}} |\Pr[U_{f_1} \| U_{f_2} \| \cdots \| U_{f_b} = x] - \Pr[U_{k'} = x]| \\ &= \frac{1}{2} \sum_{\substack{x \in U_{k'} \\ x_1, \dots, x_b \notin \frac{W}{x}}} \left| \prod_{j=1}^b \Pr[U_{f_j} = x_j] - \frac{1}{2^{k'}} \right|. \end{aligned}$$

The last equality holds due to the fact that for each U_{f_j} the corresponding subset of Z_i s contains at least one new/fresh independent element from the corresponding main set Z (note that this is true for all positive values of c). Hence all U_{f_j} s can be considered independent from each other. Now, with some basic algebra we can show that for all y_j s

$$\prod_{j=1}^{b} y_j - \frac{1}{2^{k'}} = \sum_{j=1}^{b} \left[\left(\frac{1}{2^w} \right)^{j-1} \left(y_j - \frac{1}{2^w} \right) \prod_{j'=j+1}^{b} y_{j'} \right].$$

Hence, we have $\mathsf{SD}(U_D, U_k)$

$$\leq \frac{1}{2} \sum_{\substack{x \in U_{k'} \\ x_1, \dots, x_b \notin w \\ x_1, \dots, x_b \notin w}} \sum_{j=1}^{b} \left| \left(\frac{1}{2^w} \right)^{j-1} \left(\Pr[U_{f_j} = x_j] - \frac{1}{2^w} \right) \prod_{j'=j+1}^{b} \Pr[U_{f_{j'}} = x_{j'}] \right|$$

$$= \sum_{j=1}^{b} \frac{1}{2^{wj-w+1}} \sum_{\substack{x \in U_{k'} \\ x_1, \dots, x_b \notin w \\ x}} \left| \left(\Pr[U_{f_j} = x_j] - \frac{1}{2^w} \right) \prod_{j'=j+1}^{b} \Pr[U_{f_{j'}} = x_{j'}] \right|$$

$$= \sum_{j=1}^{b} \frac{1}{2^{wj-w+1}} \left(\sum_{\substack{x_j \in U_w \\ x_j \in U_w}} \left| \Pr[U_{f_j} = x_j] - \frac{1}{2^w} \right| \right)$$

$$\left(\prod_{j'=j+1}^{b} \sum_{\substack{x_{j'} \in U_w \\ x_{j'} \in U_w}} \Pr[U_{f_{j'}} = x_{j'}] \right) \left(\prod_{j'=1}^{j-1} \sum_{\substack{x_{j'} \in U_w \\ x_{j'} \in U_w}} 1 \right)$$

A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

$$=\sum_{j=1}^{b} \mathsf{SD}(U_{f_j}, U_w).$$
⁽²⁾

Claim (1). For $\epsilon > 0$ defined as above we have $\mathsf{SD}(U_{f_j}, U_w) \le (2\epsilon)^c/2$ for all $1 \le j \le b$.

Let us assume for a moment that Claim (1) holds then combining this result with Eqn. 2 gives us the result of Theorem 1 and completes its proof. We now prove the result of Claim (1). Let us recall that $U_{f_j} = \bigoplus_{i=1+(j-1)\lceil c/2\rceil}^{i=c+(j-1)\lceil c/2\rceil} f(U_{Z_i})$ for all $1 \leq j \leq b$. Again, for simplicity, we denote $1 + (j-1)\lceil c/2\rceil$ and $c + (j-1)\lceil c/2\rceil$ by α and β , respectively. This implies

$$\begin{aligned} \mathsf{SD}(U_{f_j}, U_w) \\ &= \mathsf{SD}(\oplus_{i=\alpha}^{\beta} f(U_{Z_i}), U_w) \\ &= \frac{1}{2} \sum_{x_j \in U_w} \left| \Pr[\oplus_{i=\alpha}^{\beta} f(U_{Z_i}) = x_j] - \frac{1}{2^w} \right| \\ &= \frac{1}{2} \sum_{x_j \in U_w} \left| \sum_{\substack{\oplus_{i=\alpha}^{\beta} x_{ij} = x_j, \\ x_{ij} \in f(U_{Z_i})}} \Pr[\wedge_{i=\alpha}^{\beta} (f(U_{Z_i}) = x_{ij})] - \frac{1}{2^w} \right| \end{aligned}$$

As we know, the system of linear equations that corresponds to the outputs of invXOR (i.e. a system with equations defined by the concatenated blocks of an invXOR output) has $\mathsf{mdi} = c - 1$, which means every variable $f(U_{Z_i})$ in the equation $E_j := \bigoplus_{i=\alpha}^{\beta} f(U_{Z_i}) = x_j$ has at least c - 1 degree of involvement. Now, since for all js, E_j contains exactly $\beta - \alpha = c - 1$ variables, we have for all E_js and x_{ij} as defined above

$$\Pr[\wedge_{i=\alpha}^{\beta}(f(U_{Z_i})=x_{ij})]=\prod_{i=\alpha}^{\beta}\Pr[f(U_{Z_i})=x_{ij}].$$

Hence, we get $\mathsf{SD}(U_{f_j}, U_w)$

$$= \frac{1}{2} \sum_{\substack{x_j \in U_w \\ x_{ij} \in f(U_{Z_i})}} \left| \sum_{\substack{\bigoplus_{i=\alpha}^{\beta} x_{ij}=x_j, \\ x_{ij} \in f(U_{Z_i})}} \prod_{i=\alpha}^{\beta} \Pr[f(U_{Z_i}) = x_{ij}] - \frac{1}{2^w} \right|$$
$$= \frac{1}{2} \sum_{\substack{x_j \in U_w \\ \oplus_{i=\alpha}^{\beta} x_{ij}=x_j, \\ x_{ij} \in f(U_{Z_i})}} \sum_{\substack{i=\alpha \\ x_{ij} \in I(U_{Z_i})}} \prod_{i=\alpha}^{\beta} \Pr[f(U_{Z_i}) = x_{ij}] - \sum_{\substack{\bigoplus_{i=\alpha}^{\beta} x_{ij}=x_j, \\ x_{ij} \in U_w}} \prod_{i=\alpha}^{\beta} \frac{1}{2^w} \right|$$

$$\begin{split} &\leq \frac{1}{2} \sum_{x_j \in U_w} \left| \sum_{\substack{\bigoplus_{i=\alpha}^{\beta} x_{ij} = x_j, \\ x_{ij} \in U_w \\ x_{ij} \in U_w}} \prod_{i=\alpha}^{\beta} \Pr[f(U_{Z_i}) = x_{ij}] - \sum_{\substack{\bigoplus_{i=\alpha}^{\beta} x_{ij} = x_j, \\ x_{ij} \in U_w \\ x_{ij} \in U_w}} \prod_{i=\alpha}^{\beta} \left| \Pr[f(U_{Z_i}) = x_{ij}] - \frac{1}{2^w} \right| \\ &= \frac{1}{2} \sum_{x_{ij} \in U_w} \prod_{i=\alpha}^{\beta} \left| \Pr[f(U_{Z_i}) = x_{ij}] - \frac{1}{2^w} \right| \\ &= \frac{1}{2} \prod_{i=\alpha}^{\beta} 2 \cdot \operatorname{SD}(f(U_{Z_i}), U_w) \leq \frac{1}{2} (2\epsilon)^c \,. \end{split}$$

Here the first inequality holds because $|f(U_{Z_i})| \leq |U_w| = 2^w$ for all $1 \leq i \leq v$ and the last inequality follows from Eqn. 1.

C.2Proof of Theorem 3

Proof. We first replace $\mathsf{PRF}_s(K, \cdot)$ with a uniformly sampled random function $f(\cdot) \leftarrow$ Func(2n, sn)) and let $\mathsf{FExp}[f]$ denote the FExp mode that uses f instead of PRF_s , which yields

$$\mathbf{Adv}^{\mathsf{gexp}}_{\mathsf{FExp}[\mathsf{PRF}_s]}(\mathcal{A}) \leq \mathbf{Adv}^{\mathsf{prf}}_{\mathsf{PRF}_s}(\mathcal{B}) + \mathbf{Adv}^{\mathsf{gexp}}_{\mathsf{FExp}[f]}(\mathcal{A}) \; .$$

Let us consider that \mathcal{A} makes at most q FExp queries with i^{th} query containing ℓ_i f calls and hence calling f for total $\sigma = \sum_{i=1}^{q} \ell_i$ many times. Clearly, by definition of f, we know that all the output bits are random and uniformly distributed as long all the queried σ many inputs to f are unique. In other words, if all the queried f inputs in query i are denoted by the ordered multiset $Q_i = \{x_j^i\}_{j=1}^{\ell_i} = \{\gamma^i, K_1^i || K_2^i, K_1^i || (K_2^i \oplus \langle 1 \rangle), \dots, K_1^i || (K_2^i \oplus \langle \ell_i - 2 \rangle)\} \text{ then we}$ have

$$\mathbf{Adv}_{\mathsf{FExp}[f]}^{\mathsf{gexp}}(\mathcal{A}) \le \Pr[\exists (i,j) < (i',j') \text{ such that } x_j^i = x_{j'}^{i'}].$$
(3)

Case Analysis.

Case 1 [When j = j' = 1]. Under this case, all $(x_j^i, x_{j'}^{i'})$ pairs are defined as

($\gamma^i, \gamma^{i'}$) with $\gamma^i \neq \gamma^{i'} \forall i \neq i'$ and hence $\Pr[x_j^i = x_{j'}^{i'}] = 0$. **Case 2** [When $j = 1 \lor j' = 1$ but $j \neq j'$]. Under this case, we always have either $x_j^i = K_1^i || (K_2^i \oplus \langle j \rangle)$ or $x_{j'}^{i'} = K_1^{i'} || (K_2^{i'} \oplus \langle j' \rangle)$ and since each one of $K_1^i, K_2^i, K_1^{i'}$ and $K_2^{i'}$ are outputs of a uniform random function (f), they are uniformly distributed over $\{0, 1\}^n$. Therefore, $\Pr[x_j^i = x_{j'}^{i'}] = 1/2^{2n}$. W.l.o.g., let us assume that j = 1 and then there are total q and at most $\sigma - q$ many choices to risk (i, j) = d (i'i') proportionly. to pick (i, j) and (i'j'), respectively.

Case 3 [When i = i' and $j \neq 1 \land j' \neq 1$]. Under this case, all $(x_j^i, x_{j'}^{i'})$ pairs are defined as $(K_1^i || (K_2^i \oplus \langle j \rangle, K_1^i || (K_2^i \oplus \langle j' \rangle))$ with $j \neq j'$ hence $\Pr[x_i^i = x_{i'}^{i'}] = 0$.

Case 4 [When $i \neq i'$ and $j \neq 1 \land j' \neq 1$]. Under this case, we always have $x_j^i = K_1^i ||(K_2^i \oplus \langle j \rangle)$ and $x_{j'}^{i'} = K_1^{i'} ||(K_2^{i'} \oplus \langle j' \rangle)$. Hence, we can write

$$\Pr[x_j^i = x_{j'}^{i'}] = \Pr[(K_1^i \oplus K_1^{i'}) \| (K_2^i \oplus K_2^{i'}) = 0^n \| (\langle j \rangle \oplus \langle j' \rangle)].$$
(4)

Now, since each one of $K_1^i, K_2^i, K_1^{i'}$ and $K_2^{i'}$ are outputs of a uniform random function (f), they are uniformly distributed over $\{0,1\}^n$ and hence $\Pr[x_j^i = x_{j'}^{i'}] = 1/2^{2n}$. Additionally, we observe from Eqn. 4 with $\langle c \rangle = \langle j \rangle \oplus \langle j' \rangle$ that there are total $\sigma - q$ and at most q many choices for (i, c) and i', respectively.

Combining all these results into Eqn. 3 gives us

$$\mathbf{Adv}_{\mathsf{FExp}[f]}^{\mathsf{gexp}}(\mathcal{A}) \leq \frac{2q(\sigma - q)}{2^{2n}}$$

and hence the result of Theorem 3.

C.3 Proof of Theorem 4

Proof. Let us first define an event E which says that the key fed to the underlying FExp component of the Skye construction over a total of q queries is secret and indistinguishable from a uniform random binary string. Let us now recall from Sec. 8.1 that if the key to the FExp construction is secret and indistinguishable from a uniform random binary string then the outputs of FExp are independent and indistinguishable from uniform random binary strings (of same length) with adversarial advantage as defined in Theorem 3. Further, one can also note from the security definition of CCS that the only difference between the real and ideal CCS games w.r.t. Skye is the corresponding outputs being uniform random or not. This as described above under the event E is upper bounded by $\mathbf{Adv}_{\mathsf{FExp}[\mathsf{PRF}_s]}^{\mathsf{gexp}}(\mathcal{A}')$ for some adversary \mathcal{A}' against FExp that uses \mathcal{A} (restricted under the event E) as a subroutine. Now, for Skye with a source group G defined as in Theorem 4 (over Curve25519) we have that under the ECDDH assumption on G, $\Pr(\neg E)$ is upper bounded by $q \cdot \mathsf{SD}(\mathsf{DExt}_{\mathsf{lsb}}(U_Z), U_k)$ and thus

$$\begin{split} \mathbf{Adv}_{\mathsf{Skye}[\mathsf{PRF}_s]}^{\mathsf{CCS}}(\mathcal{A}) &\leq \mathbf{Adv}_G^{\mathsf{ecddh}}(\mathcal{C}) + q \cdot \mathsf{SD}(\mathsf{DExt}_{\mathsf{lsb}}(U_Z), U_k) \\ &+ \mathbf{Adv}_{\mathsf{FExp}[\mathsf{PRF}_s]}^{\mathsf{gexp}}(\mathcal{A}') \\ &\leq \mathbf{Adv}_{\mathsf{PRF}_s}^{\mathsf{prf}}(\mathcal{B}) + \mathbf{Adv}_G^{\mathsf{ecddh}}(\mathcal{C}) + \frac{q}{2^{128}} + \\ &+ \frac{2q(\sigma - q)}{2^{2n}} \,. \end{split}$$

The second inequality above is derived from Theorem 3 and Corollary 1 which states that for $k \leq 212$, DExt_{lsb} is a $(U_Z, 2^{-128})$ -deterministic extractor. This completes the proof of Theorem 4.

C.4 Proof of Theorem 6

Proof. Let S denote a system returned by the algorithm \mathcal{E} as defined in Def. 15 and let C_S denote the corresponding coefficient matrix of S then we have that

35

the ij^{th} entry of C_S can be defined as

$$C_S[ij] = \begin{cases} 1 & \text{if } \lceil c/2 \rceil (i-1) + 1 \le j \le \lceil c/2 \rceil (i-1) + c \\ 0 & \text{o/w} \end{cases}$$

Let $U = \{E_{i_1}, E_{i_2}, \dots, E_{i_x}\}$ denote an arbitrary subset of the system S with size x > 1. Clearly, if we show that the combined XOR of all equations in U always contains at least c many 1s then we can say that no linear combination of equations in S can have degree of involvement < c - 1 and hence the claim of the Theorem.

Now, to prove the above statement, we use the following simple approach. Let us first define an indexed set U' as the sorted version of U where the equations are sorted by the value of their corresponding first column indices js in C_S with C[ij] entry as 1. In other words, the sorted set U' will have the entries in the same order as they are defined in S. Clearly, the combined XOR of U will be same as of U'. Now, one can note that in this definition of C_S , every row contains at least $\lceil c/2 \rceil$ many unique 1s entries than others. Hence, the combined XOR of U' will always have the unique 1s entries of the first and the last equation of U'which in total will be $2\lceil c/2 \rceil \ge c$ many 1s.

D A Code Difference Table

c v	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0	0
2		0	0	0	0	0	0	0	0	0
3			0	0	0	1	1	1	1	2
4				0	0	0	1	1	1	1
5					0	0	0	0	0	1
6						0	0	0	0	0
7							0	0	0	0
8								0	0	0
9									0	0
10										0

Table 3: A table showing the differences between the actual value of $\log_2(A_2(v, c))$ and b for various values of v and c up to sample sizes $v \leq 10$. The optimal values of $\log_2(A_2(v, c))$ are taken from codetables.de [25].

E PRF-PRNG vs CCS security

Alwen et al. [4] proposed a syntax called PRF-PRNG for KDFs in Signal. In simpler words, a PRF-PRNG takes three inputs - the current state/key σ , an

input I (which in Signal's context will be $Z \| \gamma \rangle$) and the output length ℓ (left implicit in the original description of [4]) and returns a string R of length ℓ bits and a new state/key to be updated σ' . Any PRF-PRNG = (P-init, P-up) is consist of two algorithms - P-init which is used to initiate the PRF-PRNG by generating the first state/key σ (for this it may use some preshared secret key) and P-up which is used over the PRF-PRNG inputs as defined above to generate the outputs.

The paper also defines a security notion P for PRF-PRNG schemes which we will refer here as prf-prng for ease of understanding. For Signal's application, the same paper mentions two KDF examples with prf-prng security, namely, HKDF and PRP-then-PRG [4]. We note here that HKDF is prf-prng-secure when its underlying compression function is assumed as RO whereas the proposed PRP-then-PRG is prf-prng-secure when the PRP is initialized with a preshared "uniform" random secret key. This assumption of preshared symmetric key can not be met in practice for two arbitrary parties that are communicating for the first time which makes PRP-then-PRG inapplicable to Signal. We also note that this incompatibility can be countered by assuming the PRP to be an ideal cipher (which is analogous to the RO assumption) and hence initializing the key with some public constant.

How to define a PRF-PRNG using KDFs with standard syntax. We first formally define a simple way of converting a KDF with the standard syntax (as defined in [28]) into a PRF-PRNG and then state the formal claim on relation among the two mentioned KDF security notions in Theorem 7.

Let $\Pi(Z, \gamma, \ell)$ and $\Pi'(Z', \gamma', \ell')$ be two standard syntax KDF functions then we can define a PRF-PRNG as $\Pi_{PP} = (P\text{-init}, P\text{-up})$ where P-init is just a constant function that returns $\sigma_0 = 0^s$ for s being the state size of the PRF-PRNG and for the $i(\geq 1)^{th}$ query to the PRF-PRNG, we have

$$P-up(\sigma_{i-1}, I_i = Z_i \| \gamma_i, \ell_i) = \begin{cases} \sigma_1 \| R_1 = \Pi(Z_1, \gamma_1, \ell_1 + s) & \text{when } i = 1\\ \sigma_i \| R_i = \Pi'(\sigma_{i-1}, Z_i \| \gamma_i, \ell_i + s) & \text{when } i > 1. \end{cases}$$
(5)

Note that Π and Π' can be same but we don't fix them here for generality.

Theorem 7 (CCS implies prf-prng). Let Π and Π' be two CCS-secure schemes w.r.t. distributions $\Sigma = (Z, C_Z)$ and $\Sigma = (\Pi(Z, \gamma, \ell), C_Z ||\gamma||\ell)$, respectively then the PRF-PRNG Π_{PP} defined using Π and Π' as shown above will be prf-prngsecure under same input sources. More concretely, for all adversaries \mathcal{A} who make total η Π_{PP} queries, we have

$$\mathbf{Adv}_{\varPi_{\mathsf{PP}}[\varPi,\varPi']}^{\mathsf{prf}\operatorname{-prng}}(\mathcal{A}) \leq \mathbf{Adv}_{\varPi}^{\mathsf{CCS}}(\mathcal{B}) + \mathbf{Adv}_{\varPi'}^{\mathsf{CCS}}(\mathcal{C})$$

for some adversaries \mathcal{B} and \mathcal{C} making at most q_1 and q_2 queries to Π and Π' , respectively such that $q_1 + q_2 = q$ and running in time given by the running time of \mathcal{A} plus $\alpha_0 \cdot q$ for some constant α_0 .

Proof (Theorem 7). Let us recall from Sec. 9 and Fig. 8 that the CCS security of a KDF (Z, γ, ℓ) w.r.t. the input source (Z, C_Z) implies that the output of a KDF

query where the input has either unique γ value or independently sampled Z value is indistinguishable from $\mathsf{RF}_{Z,\gamma}[1\dots\ell]$ i.e. uniform random binary string of length ℓ bits. Let us now slightly abuse the notation for simplicity and denote by f and f' two functions that take inputs of the form (Z, γ, ℓ) and return $\mathsf{RF}_{Z,\gamma \parallel \Pi}[1\dots\ell]$ and $\mathsf{RF}_{Z,\gamma \parallel \Pi'}[1\dots\ell]$ as outputs, respectively. This gives us

$$\mathbf{Adv}_{\Pi_{\mathsf{PP}}[\Pi,\Pi']}^{\mathsf{prf}-\mathsf{prng}}(\mathcal{A}) \leq \mathbf{Adv}_{\Pi}^{\mathsf{CCS}}(\mathcal{B}) + \mathbf{Adv}_{\Pi'}^{\mathsf{CCS}}(\mathcal{C}) + \mathbf{Adv}_{\Pi_{\mathsf{PP}}[f,f']}^{\mathsf{prf}-\mathsf{prng}}(\mathcal{A}) \,.$$

Note that for any input $(\sigma, I = Z || \gamma, \ell)$, $\Pi_{\mathsf{PP}}[f, f']$ as per Eqn. 5 will always return independently sampled uniform random strings $(\sigma' || R)$ when I is unique (which implies that all returned chall-prf outputs in prf-prng games [4, Fig. 7] are indistinguishable from random strings). Similarly, for any input $(\sigma, I = Z || \gamma, \ell)$, $\Pi_{\mathsf{PP}}[f, f']$ will always return independently sampled uniform random strings R when σ is the uncompromised current state (which implies that all returned chall-prng outputs in prf-prng games [4, Fig. 7] are indistinguishable from random strings). This implies $\mathbf{Adv}_{\Pi_{\mathsf{PP}}[f,f']}^{\mathsf{prng}}(\mathcal{A}) = 0$ and hence the result.

Clearly for Signal, setting $\Pi = \text{Skye}$ (referring to KDF1 calls) and $\Pi' = \text{FExp}$ (referring to KDF2 and KDF3 calls; which is CCS-secure as the input samples contain the current state value which is uniformly random and secret and thus can be used as the key to the PRF) gives us a Π_{PP} that covers all three types of KDF calls in Signal. The security here can be deduced from Theorem 7 that says for all adversaries \mathcal{A} making a total of q queries to Π_{PP} , there exists some adversary \mathcal{B} making at most q queries and running in time given by the running time of \mathcal{A} plus some constant $\alpha \cdot q$ such that

$$\mathbf{Adv}_{\Pi_{\mathsf{PP}}[\mathsf{Skye},\mathsf{FExp}]}^{\mathsf{prf}-\mathsf{prng}}(\mathcal{A}) \leq \mathbf{Adv}_{\mathsf{Skye}}^{\mathsf{CCS}}(\mathcal{B}) \,.$$

We emphasize that as motivated in Sec. 6, this idea of using FExp in place of full Skye for KDF2 and KDF3 calls in Signal gives significant performance benefits.

F Performance Details

In this section, we provide the benchmark tables Table 4 and 5 that correspond to the performance plots of Fig. 5a and 5b, respectively.

n	HKDF	Skye	HKDF	Skye	HKDF	Skye	
	with A	with AES-NI		AES-NI	with AES-NI		
	with SHA-NI		without	SHA-NI	without SHA-NI		
1	2.22 ± 0.02	1.38 ± 0.01	6.51 ± 0.32	3.44 ± 0.03	6.47 ± 0.05	2.32 ± 0.03	
2	4.48 ± 0.03	2.79 ± 0.02	12.97 ± 0.09	6.88 ± 0.04	12.95 ± 0.1	4.65 ± 0.03	
3	6.7 ± 0.04	4.13 ± 0.03	19.43 ± 0.09	10.33 ± 0.22	19.4 ± 0.1	6.97 ± 0.04	
4	8.92 ± 0.04	5.5 ± 0.08	25.93 ± 0.08	13.81 ± 0.49	25.88 ± 0.21	9.31 ± 0.06	
5	11.14 ± 0.07	6.94 ± 0.05	32.48 ± 0.23	17.22 ± 0.21	32.36 ± 0.24	11.63 ± 0.09	
6	13.34 ± 0.12	8.25 ± 0.05	38.82 ± 0.1	20.68 ± 0.05	38.86 ± 0.26	13.92 ± 0.27	
7	15.68 ± 0.09	9.6 ± 0.08	45.42 ± 0.13	24.12 ± 0.46	45.33 ± 0.32	16.25 ± 0.12	
8	17.98 ± 0.13	10.98 ± 0.1	51.82 ± 0.19	27.49 ± 0.07	51.86 ± 0.18	18.59 ± 0.14	
9	20.07 ± 0.12	12.36 ± 0.12	58.38 ± 0.22	30.9 ± 0.27	58.35 ± 0.34	20.89 ± 0.07	
10	22.33 ± 0.07	13.76 ± 0.31	64.89 ± 0.22	34.33 ± 0.29	64.81 ± 0.23	23.17 ± 0.12	
20	44.44 ± 0.15	27.66 ± 1.38	129.82 ± 0.43	68.73 ± 0.18	129.48 ± 0.97	46.33 ± 0.18	
30	66.68 ± 0.19	41.24 ± 0.28	194.63 ± 0.48	103.02 ± 0.58	194.16 ± 0.78	69.37 ± 0.43	
40	88.66 ± 0.75	55.99 ± 0.25	260.27 ± 0.79	137.27 ± 0.68	258.92 ± 0.82	92.74 ± 0.31	
50	111.6 ± 0.38	68.66 ± 0.53	324.22 ± 1.16	171.74 ± 1.59	323.76 ± 3.69	115.77 ± 0.71	
60	133.79 ± 0.47	83.87 ± 0.51	389.55 ± 0.65	206.8 ± 0.52	388.39 ± 3.2	138.9 ± 1.01	
70	155.49 ± 1.12	96.82 ± 0.58	453.72 ± 0.89	240.95 ± 0.64	453.18 ± 1.42	162.21 ± 1.07	
80	178.02 ± 1.46	110.22 ± 0.81	518.02 ± 1.93	275.16 ± 1.84	517.8 ± 3.09	185.4 ± 0.66	
90	201.36 ± 0.84	124.52 ± 0.47	582.89 ± 1.93	309.23 ± 1.77	582.69 ± 1.21	208.51 ± 1.31	
100	222.8 ± 1.59	137.57 ± 1.05	649.14 ± 2.18	343.14 ± 1.99	646.73 ± 7.1	232.95 ± 10.46	

Table 4: The mean time \pm standard deviation (in µs) required to encrypt n messages sent by one party to the other.

	HKDF	CL .	HKDF	CL .	HKDF	CL .	
n	- /-			Skye		Skye	
	with AES-NI		without		with AES-NI		
	with SHA-NI		without	SHA-NI	without SHA-NI		
1	200.65 ± 1.12	194.51 ± 1.01	225.74 ± 1.86	204.82 ± 1.57	226.35 ± 1.37	201.42 ± 0.51	
2	212.71 ± 1.81	203.19 ± 0.74	254.0 ± 0.8	221.24 ± 0.49	254.8 ± 2.01	214.08 ± 1.63	
3	224.6 ± 1.79	211.19 ± 1.71	283.92 ± 7.51	238.06 ± 0.62	283.95 ± 1.05	226.12 ± 2.16	
4	236.46 ± 0.69	219.88 ± 1.68	312.14 ± 0.9	254.73 ± 1.19	313.06 ± 1.02	238.73 ± 1.81	
5	249.48 ± 1.52	229.85 ± 1.61	342.48 ± 2.38	272.02 ± 0.69	342.95 ± 1.1	251.37 ± 0.6	
6	261.41 ± 1.79	237.91 ± 0.77	371.38 ± 1.48	288.83 ± 0.96	372.77 ± 8.9	264.32 ± 1.9	
7	273.36 ± 1.4	246.89 ± 2.11	400.75 ± 1.27	305.93 ± 2.02	401.4 ± 1.54	276.52 ± 1.01	
8	285.22 ± 1.13	255.93 ± 2.28	429.51 ± 1.06	322.96 ± 0.68	430.53 ± 1.11	288.91 ± 7.07	
9	296.93 ± 1.6	264.1 ± 3.08	459.52 ± 1.13	337.91 ± 1.05	460.04 ± 3.28	300.99 ± 0.77	
10	308.73 ± 0.64	272.63 ± 1.63	488.46 ± 1.15	355.45 ± 1.33	488.52 ± 1.71	313.48 ± 0.73	
20	428.98 ± 0.89	361.04 ± 2.63	781.15 ± 6.48	522.62 ± 1.46	780.11 ± 2.08	437.46 ± 1.35	
30	545.92 ± 1.08	446.9 ± 2.44	1071.67 ± 3.4	688.91 ± 3.74	1071.74 ± 9.22	559.56 ± 1.3	
40	667.88 ± 8.06	535.84 ± 3.14	1364.68 ± 2.87	856.07 ± 2.04	1363.87 ± 8.33	684.44 ± 2.26	
50	786.88 ± 1.78	621.98 ± 3.3	1652.43 ± 2.88	1021.6 ± 2.34	1655.0 ± 10.11	807.02 ± 2.37	
60	905.83 ± 4.57	710.14 ± 10.74	1948.63 ± 12.21	1190.16 ± 4.19	1946.28 ± 3.94	935.55 ± 6.16	
70	1025.61 ± 3.97	796.48 ± 5.8	2237.93 ± 4.99	1357.24 ± 2.92	2235.78 ± 4.38	1056.3 ± 2.32	
80	1146.73 ± 2.48	888.52 ± 3.11	2528.96 ± 6.65	1523.47 ± 10.06	2530.07 ± 15.57	1184.09 ± 3.27	
90	1263.38 ± 6.85	975.91 ± 6.12	2820.42 ± 9.19	1690.03 ± 6.13	2818.72 ± 9.55	1308.08 ± 3.49	
100	1382.64 ± 2.92	1063.36 ± 8.75	3115.64 ± 18.99	1855.34 ± 3.72	3109.68 ± 17.06	1433.14 ± 7.3	

Table 5: The mean time \pm standard deviation (in µs) required to encrypt (and decrypt) n messages that are sent (and received) by one party to (and from, respectively) the other.