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Abstract. The Brakerski-Gentry-Vaikuntanathan (BGV) scheme is a
Fully Homomorphic Encryption (FHE) cryptosystem based on the Ring
Learning With Error (RLWE) problem. Ciphertexts in this scheme con-
tain an error term that grows with operations and causes decryption
failure when it surpasses a certain threshold. For this reason, the pa-
rameters of BGV need to be estimated carefully, with a trade-off be-
tween security and error margin. The ciphertext space of BGV is the
ring Rq = Zq[x]/(Φm(x)), where usually the degree n of the cyclotomic
polynomial Φm(x) is chosen as a power of two for efficiency reasons.
However, the jump between two consecutive powers-of-two polynomials
can sometimes also cause a jump of the security, resulting in parameters
that are much bigger than what is needed.
In this work, we explore the non-power-of-two instantiations of BGV. Al-
though our theoretical research encompasses results applicable to any cy-
clotomic ring, our main investigation is focused on the case ofm = 2s · 3t,
i.e., cyclotomic polynomials with degree n = 2s · 3t−1. We provide a thor-
ough analysis of the noise growth in this new setting using the canonical
norm and compare our results with the power-of-two case considering
practical aspects like NTT algorithms. We find that in many instances,
the parameter estimation process yields better results for the non-power-
of-two setting.

Keywords: Fully Homomorphic Encryption, BGV, non-power-of-two, parame-
ter estimation

1 Introduction

Fully Homomorphic Encryption (FHE) is a revolutionary field that enables com-
putations on encrypted data without the need for decryption. Namely, a set of
operations can be performed over ciphertexts such that these operations are re-
flected as additions and multiplications on the corresponding plaintexts. This
capability presents a powerful tool for privacy-preserving data processing, offer-
ing solutions for different applications such as machine learning, cloud services,
and secure computation outsourcing.

After Gentry’s breakthrough thesis [20], several FHE schemes were proposed.
Among all FHE schemes, the most practical, efficient and widely adopted [30]
are BGV [6], BFV [5, 18], TFHE [10, 11] which improve [17], and CKKS [8, 9]. In
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this work, we focus on the Brakerski-Gentry-Vaikuntanathan (BGV) [6] scheme.
BGV can be instantiated using either the integers or cyclotomic rings, yielding
a scheme based on Learning with Errors (LWE) or its ring variant (RLWE),
respectively; the latter version is often preferred for efficiency reasons. Roughly
speaking, the (decision version of) RLWE problems consist of distinguishing
equations perturbed by small noise from random tuples. The issue arising from
this construction is noise growth. Indeed, to guarantee a correct decryption,
the error added has to be small. Unfortunately, it increases when homomorphic
operations are computed, and to allow a larger number of supported operations,
we have to increase the ciphertext modulus. However, a higher modulus also
decreases the security level of the underlying scheme. On the other hand, to
increase the security level, we can adopt a higher polynomial degree n at the
cost of efficiency.

The ciphertext space of RLWE-based scheme is the ringRq = Zq[x]/(Φm(x)),
where Φm(x) is the cyclotomic polynomial of degree n. In general, n is chosen
as a power of two. The choice of power-of-two degree happens because then
Φm(x) = xn + 1 and the ring has a nice algebraic structure, exploitable in many
ways. Moreover, in lattice-based cryptography, polynomial multiplication is one
of the main computational bottlenecks. To address this problem, fast algorithms
are necessary for efficient computation, and when n is a power of two, we can
use the powerful radix-2 Number Theoretic Transform (NTT) [2] algorithm.

Powers-of-two are sparse, and, as mentioned before, this is sometimes a prob-
lem: it can happen that we are forced to choose non-optimal instantiations of
BGV only because we have to increase the degree n and the jump between two
consecutive powers-of-two is too big. Due to this significant gap, researchers have
started to explore the idea of studying non-power-of-two cyclotomic polynomials.
Promising results have been obtained by applying it to NTRU, as demonstrated
in [29].

Our contribution. In this work, we investigate what happens if we choose the
cyclotomic index m to be different from a power-of-two, and in particular,
we consider m = 2s · 3t. The main change coming with this idea is that now
Φm(x) = xn − xn/2 + 1, where n = m/3, which conditions many different as-
pects of BGV constructions. The most important ones are the algorithms for
the NTT and how modular reductions affect the computation of polynomial
products. The first topic has been recently addressed in [29], showing how it
is possible to find algorithms that are competitive with the radix-2 NTT. Re-
garding the second topic, we show how to compute the full covariance matrix of
the product of two random polynomials modulo Φm(x) when m = 2s · 3t (The-
orem 3). The proof exploits the theoretical idea behind the NTT algorithm in
[29], suggesting the potential for generalization to other scenarios.

To estimate the parameters, we perform a worst-case analysis using the
canonical norm. This analysis for power-of-two BGV was carried out in previous
works, such as [12, 14, 31]. Although this is not the most pioneering method, as
demonstrated in several papers proposing the average-case analysis on different
FHE schemes, such as [3, 10, 13], it is one of the soundest in the literature and
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still gives good estimates. Moreover, the purpose of this work is not to improve
noise estimation techniques as much as it is to analyze the new framework. In
this context, using Ljapunov’s Central Limit Theorem [4], we give a rigorous
proof of the widely used fact that the canonical embedding of a random polyno-
mial yields vectors whose components have distribution well approximated by a
complex Gaussian (Theorem 2).

Finally, we compare our results with the power-of-two setting and find that
there are many cases where it is recommendable to use non-power-of-two BGV.
This is a nice improvement towards more feasible applications of BGV and sug-
gests that similar techniques can also be applied to other FHE constructions.

This work is structured as follows.

– In Section 2, we introduce the mathematical notions serving as foundations
to BGV and parameter estimation.

– In Section 3, we describe BGV and our techniques for the parameter esti-
mation, including the tools for the non-power-of-two framework.

– In Section 4, we study how the basic operations interact to form the leveled
circuits and how this impacts noise estimation.

– In Section 5, we present our results for non-power-of-two parameter estima-
tion, and draw comparisons with the power-of-two instantiations.

– Finally, in Section 6, we draw our conclusions and propose future research
directions.

2 Preliminaries

2.1 Notation

We begin by fixing some notation.

– C and Q are the complex and rational fields respectively, Z is the ring of
integers, and for a ∈ Z>0 we let Za = Z/aZ, and [a] = {0, 1, . . . , a− 1}.

– Integer modular reductions modulo odd numbers q are symmetric with re-
spect to the origin: the notation [x]q refers to the representative of the class
of x that is contained in

[
−⌊ q2⌋, ⌊

q
2⌋
]
.

– For any ring R, R∗ denotes the units of R; for a, b ∈ N, Ra×b is the set of
a× b matrices with elements in R.

– Coordinate vectors with respect to some basis are indicated by bold letters:
e.g., a = (a0, . . . , an−1) where each ai lies in some ring, [a]q indicates the
vector ([a0]q, . . . , [an−1]q). ||a|| is shorthand for the infinity norm of a.

– Given a random vector X = (X0, . . . , Xn−1), E[X] = (E[X0], . . . ,E[Xn−1])
is its expected value and Var(X) is the vector of variances; for a random
vector Y, CovM(X,Y) = (Cov(Xi, Yi))i,j=1,...,n is their covariance matrix.

– Given a distribution χ on some set S, s← χmeans sampling s ∈ S according
to χ, and this generalizes to vectors in a coefficient-wise fashion. χs and χe

will refer to the secret and error distributions for RLWE samples.
– ℜ(z) and ℑ(z) denote real and imaginary part of z ∈ C.
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– Given an integer r we call Rr = R/(rR). With t and q, we denote the
plaintext and the ciphertext moduli, respectively. The plaintext space is
Rt = Z[x]/(Φm(x)), while the ciphertext space is Rq = Z[x]/(Φm(x)), where
Φm(x) is the cyclotomic polynomial (see Section 2.2).

2.2 Mathematical Background

Cyclotomic polynomials For m ∈ N, an mth root of unity in a field F is
any element ζ ∈ F such that ζm = 1; if ζk ̸= 1 for any k < m then ζ is called
primitive. The set of primitive mth roots of unity is {ζi : i ∈ Z∗

m}. Finally, the
mth cyclotomic polynomial Φm(x) is

Φm(x) =
∏
i∈Z∗

m

(x− ζi) .

It has degree n = ϕ(m), i.e., the Euler’s totient function. Let m =
∏l

i=1 p
αi
i be

a natural number, where pi are distinct primes. Then the radical rad(m) is the

product of its prime factors, namely, rad(m) =
∏l

i=1 pi.

Lemma 1 ([15]). For any m ∈ N we have Φm(x) = Φrad(m)(x
m/ rad(m)).

This result implies that for m = 2s3t we have Φm(x) = xn − x
n
2 + 1.

The following result describes how cyclotomic polynomials factorize over fi-
nite fields. This factorization is a crucial finding with significant implications for
polynomial multiplication algorithms.

Lemma 2 ([28]). For any m ∈ N the polynomial Φm(x) has ϕ(m)/d factors
of same degree d over Fq, where d is the multiplicative order of q modulo m.

The quotient ring Km = Q[x]/Φm(x) is the mth cyclotomic field. This extension
has degree n = ϕ(m) over the rationals.

Lemma 3 ([27]). The ring of integers of Q(ζm) is R = Z[ζm] = Z[x]/(Φm(x)).

Canonical embedding and norm The canonical embedding of a polynomial
a(x) ∈ Km is the vector (a(ζi) : i ∈ Z∗

m). Ordering the roots appropriately we
have σ : K → H, where

H = {(x1, . . . , xn) ∈ Rt1 × C2t2 : xs1+i = xs1+s2+i for i = 1, . . . , s2} ⊂ Cn (1)

and this is a ring homomorphism; by identifying the conjugate couples, we have
H ∼= Rs1+s2 . The canonical norm || · ||can is the pull-back of the infinity norm via
the canonical embedding: || · ||can = || · ||can∞ . It is sub-multiplicative: ∀ a, b ∈ K

||ab||can ≤ ||a||can||b||can . (2)

The following two results establish a connection between the infinity norm and
its canonical counterpart. For full proofs and more extensive background, we
refer to [16].
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Lemma 4. Let K be the mth cyclotomic field, R be its ring of integers, and σ
the canonical embedding of K. There exists is a constant cm such that for any
α ∈ R we have

||α||∞ ≤ cm||α||can.

The constant cm is called the ring’s expansion factor, and it enjoys the following
properties.

Lemma 5. Let m ≥ 2, then

1. for r = rad(m) we have cm ≤ cr;
2. if m is odd then c2m = cm;
3. for m = p prime we have

cp =
2 sin(π/p)

p(1− cos(π/p))
.

A straightforward application of the properties above is that for m = 2s3t, we
can bound the value of cm with

c3 =
2 sin(π/3)

3(1− cos(π/3))
=

2√
3

(3)

from which we deduce the bound cm ≤ 1.1547.

Probability theory We assume the reader is familiar with the basic properties
of expected value and covariance, including the complex case; a basic reference
including proofs for the following results is [25]. All distributions in this work are
centred, meaning they are symmetric around the origin. This implies the mean
µ of the distributions is always zero. We will use the following widely known
distributions:

– the ternary distribution T , having variance σ2
T = 2/3;

– for an odd q ∈ N, the uniform centered discrete distribution Uq over Z or Zq

with variance is q2/2;
– The continuous Gaussian distribution on R with variance σ2, denoted as
Nr = N (0, σ2).

Note that in our work we use χs = T and χe = DG(0, σ2) with σ = 3.19.
A multivariate normal vector is defined as an affine transformation of a stan-

dard normal vector, that is a vector of independent Gaussian random variables
with mean 0 and variance 1. We have the following equivalent definition.

Lemma 6. A random vector (X0, . . . , Xn−1) is Gaussian if and only if each
linear combination over R of its components is a Gaussian random variable.

Moreover, we have the following property.

Lemma 7. If the components of a Gaussian random vector (X0, . . . , Xn−1) are
uncorrelated, then they are also independent.
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We also recall the statement of Lyapunov’s Central Limit Theorem, which will be
used in an approximate way (see [32]) to justify some theoretical results needed
for our estimates.

Theorem 1. (Lyapunov CLT) Let X0, X1, . . . , Xj , . . . be a sequence of indepen-
dent random variables each with mean µi and variance σ2

j both finite for each j,

and let s2n =
∑n−1

j=0 σ2
j . Assume the existence of a strictly positive real number δ

such that

lim
n→∞

1

s2+δ
n

n−1∑
j=0

E[|Xj − µj |2+δ] = 0. (4)

Then

1

sn

n−1∑
j=0

(Xj − µj)
d−→ N (0, 1).

Polynomial multiplication The main computational bottleneck in lattice-
based cryptosystems is polynomial multiplication, which can be tackled in dif-
ferent ways [2]. In our work, we use the Number Theoretic Transform (NTT)
proposed in [29], which is particularly well-suited for our specific requirements.

Let us consider the cyclotomic ring Rq with index m = 2s3t and q = 1
mod m. Then, given a sixth primitive root of unity ζ, we have the factorization

Φm(x) = xn − xn/2 + 1 = (xn/2 − ζ)(xn/2 − ζ5) . (5)

Using the fact that ζ5 = ζ̄ = 1 − ζ, the CRT isomorphism corresponding to
this factorization can be computed with only n/2 additions more than a radix-
2 NTT layer. After this step, we can proceed with some s − 1 radix-2 steps,
obtaining 2s rings of degree smaller than 3t−1. We consider especially the case
of t = 2, where at this point it is more convenient to compute the product of 2s

polynomials of degree at most 2 rather than using e.g. a radix-3 NTT layer. this
is very similar to what done in [29], with the only difference that the exponent s
will be bigger than 8 in our case. This way we obtain an algorithm for polynomial
multiplication in non power-of-two cyclotomic rings that is competitive with the
power-of-two instantiations.
We point out that to have efficient NTT algorithms we need the modulus q to
be congruent to 1 modulo m.

3 The BGV Scheme and Noise Estimation

In this section, we present the BGV scheme [6] and our techniques to perform
noise estimation in the setting of a non-power-of-two cyclotomic ring. We perform
a worst-case analysis based on the canonical norm.
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3.1 The BGV cryptosystem

BGV functionalities can be divided into two main categories: the basic encryp-
tion scheme, including key generation, encryption and decryption, and the ho-
momorphic operations.

Basic encryption scheme The three basic algorithms of BGV are as follows:

– Key generation (KeyGen(λ)): sample s ← χs, a ← UqL and e ←
χe in RqL, output the secret key sk = s and the public key
pk = (b, a) = [(−a · s+ te, a)]ql ;

– Encryption (Encpk(m)): given a plaintext m ∈ Rt and the public key
pk = (b, a), sample u ← χs, e0, e1 ← χe and output c = (c, l, ν) where
the ciphertext is

c = (c0, c1) = [(b · u+ te0 +m, a · u+ te1]qL ,

and l and ν are quantities related to noise management, whose role we explain
below. The triad c is called extended ciphertext.

– Decryption (Decsk(c)): given the secret key sk and the ciphertext c = (c0, c1)
output

m = [[c0 + c1 · s]ql ]t .
The first part of the decryption can be seen as the polynomial evaluation of
c0 + c1x ∈ Rql [x] in the secret key s. For this reason, we will often write c(s)
in the place of c0 + c1 · s; this notation extends to triples of polynomials in an
obvious way.
In the extended ciphertext, l is the current multiplicative level, while ν = [c(s)]ql
is the critical quantity. For a fresh ciphertext, we have

ν = m+ t(e · u+ e1 · s+ e0) = m+ tE , (6)

and this quantity increases through homomorphic operations [14]. The impor-
tance of ν lies in the fact that as long as its coefficients do not wrap around
modulo ql, the decryption is correct. For this reason, we need to study the quan-
tity ||ν||, called noise.

In this work, we consider the Residue Number System (RNS) representation
of the ciphertext space. Since the modulus q = p0 . . . pL−1 is the product of dis-
tinct primes, applying the Chinese Remainder Theorem we get the isomorphism

Rq
∼= Rp0

× . . .×RpL−1
. (7)

This representation allows using native data types for integers because the pis
can be chosen to fit into 32 or 64 bits. When using BGV with the RNS repre-
sentation, we need to change the modulus of the ring in use, switching from RA

to RB , where A = a0 · · · ak, B = b0 · · · bk′ are the two product decompositions
used for RNS. For this purpose, we need a Fast Base Extension (FBE) algorithm
[19]. Namely, if a ∈ Ra0

× . . .×Rak
, then

FBE(a, A,B) =

 k∑
j=0

[
a

(
A

aj

)−1
]
aj

A

aj


bj

. (8)
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Homomorphic operations We introduce the three homomorphic ring oper-
ations (addition, multiplication and constant multiplication) and two key sub-
routines (key switching and modulus switching).

– The addition Add(c, c′) is defined as

Add(c, c′) = (([c0 + c′0]ql , [c1 + c′1]ql), l, ν + ν′) = ([c+ c′]ql , l, νAdd). (9)

The critical quantity νAdd is ν + ν′ since we have

[(c+ c′)(s)]ql = [[c(s)]ql + [c′(s)]ql ]ql = [m+ tE +m′ + tE′]ql .

– The ciphertext multiplication Mul(c, c′) outputs

Mul(c, c′) = ((c0 · c′0 , c0 · c′1 + c1 · c′0 , c1 · c′1), l, ν · ν′)
= ((c′′0 , c

′′
1 , c

′′
2), l, νMul)

(10)

where c′′ = (c′′0 , c
′′
1 , c

′′
2) represents the product of c(s) and c′(s). This means

that to recover the message hidden in c′′ we would actually need to calculate

[ [c′′(s) = c′′0 + c′′1 · s+ c′′2 · s2]ql ]t.

However, instead of using this special decryption, we will use a relineariza-
tion procedure to convert the ciphertext c′′ = (c′′0 , c

′′
1 , c

′′
2) ∈ R3

ql
back to a

ciphertext c̄ = (c̄0, c̄1) ∈ R2
ql

(see Equation (16)). The critical quantity νMul

is well posed, since

[c′′(s)]ql = [c(s) · c′(s)]ql = [[c(s)]ql · [c′(s)]ql ]ql
= [(m+ tE)(m′ + tE′)]ql .

We point out that in this operation, the noise growth is multiplicative, which
is the worst case among basic operations.

– The constant multiplication ConstMul(α, c) defined as

ConstMul(α, c) = ((α · c0 , α · c1), l, α · ν) = (α · c, l, νConstMul) , (11)

where α ∈ Rt. The critical quantity is correct because

[α · c(s)]ql = [α · [c(s)]ql ]ql = [α · (m+ tE)]ql .

The main novelty separating the BGV scheme from its predecessors is the mod-
ulus switching. This operation allows sacrificing one or more of the primes pi
that compose the ciphertext moduli ql to obtain a noise reduction.

– Let c = (c, l, ν) be the extended ciphertext and let l′ = l − k be a target
level, where k is a positive integer. Then

ModSw(c, l′) =

(
c′ =

[
ql′

ql
(c+ δ)

]
ql′

, l′, νModSw

)
. (12)
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The polynomial δ is a correction term computed as

δ = t[−t−1c]ql/ql′ = t[(t−1c0, t
−1c1)]ql/ql′ , (13)

and it is formulated only to affect the errors. It makes the ciphertext divisible
by ql/ql′ , allowing it to descend in the moduli ladder from ql to ql′ . The
formal proof of why this procedure reduces the noise is in [6, Lemma 5]. If
we consider only one-step modulus switching, i.e., k = 1 and l′ = l− 1, then
ql/ql′ = 1/pl and we have

[c′(s)]ql′ = c′(s)− kql′ =
c(s) + kql + δ(s)

pl
− kql′ =

c(s) + δ(s)

pl
.

Hence the critical quantity for modulus switching is

νModSw =
ν + δ(s)

pl
. (14)

The last procedure that we are going to analyse is the subroutine called key
switching. This procedure is used for (i) reducing the degree of a ciphertext
polynomial, usually the output of multiplication, or (ii) changing the key after a
rotation. For multiplication, we convert the ciphertext term c′′2 ·s2 to a polynomial
cks0 + cks1 · s, and for a rotation, we convert the ciphertext term c1 · rot(s) to a
polynomial cks0 + cks1 · s. In the following, we will only analyze multiplication.
This procedure can be divided into two parts, a key generation (KeySwGen)
that somehow encrypts s2 under s itself and the actual key switching operation
(KeySw).

– The key generation takes as input s and s2, samples a ← Uql and e ← χe

and outputs

KeySwGen(s, s2) = ks = (ks0, ks1) = [(−a · s+ te+ s2, a)]ql . (15)

– the key switching operation takes in input an extended ciphertext c =
(c, l, ν) = ((c0, c1, c2), l, ν) and the relative key switching key ks = (ks0, ks1),
computes

c′ = (c′0, c
′
1) = [(c0 + c2 · ks0, c1 + c2 · ks1)]ql

and outputs
KeySw(ks, c) = c′ = (c′, l, νKeySw) . (16)

The critical quantity after this operation is νKeySw = ν + tc2 · e. Unfortu-
nately, if we tried to compute ||νKeySw||, especially after a few homomorphic
operations have been performed, it becomes evident that the noise growth in-
troduced by the term tc2 · e in the critical quantity is too big. To address this
issue, several variations of the KeySw procedure have been developed, aiming
to control the growth of noise introduced during computations effectively. We
focus on the Hybrid variant presented in [21], called so because it is a mix of
the BV [7] and the GHS [21] variants. From the former we need the following
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decompositions: let b ∈ N be a basis, then for k = ⌊logb ql⌋+1 and any α ∈ Rql ,
if we define

Db(α) = ([α]b, [⌊α/b⌋]b, [⌊α/b2⌋]b, . . . , [⌊α/bk−1⌋]b) (17)

Pb(α) = ([α]ql , [bα]ql , [b
2α]ql , . . . , [b

k−1α]ql) . (18)

Then for any α, β ∈ Rq we obtain ⟨Db(α), Pb(β)⟩ = α · β [26]. The GHS variant
instead limits the noise growth by performing the key switching with respect to
a bigger ciphertext modulus and then going back to the original ql via modulus
switching. A number C coprime with ql is chosen, and the key switching takes
place in RQ where Ql = qlC. Then the Hybrid key switching is performed as
follows: with the above notations, the key generation is given by

KeySwGenHybrid(s, s2) = ksHybrid = [(−a · s+ te+ CPb(s
2),a)]Ql

(19)

and the new ciphertext is computed in two steps: first, let

c′ = [(Cc0 + ⟨Db(c2), ks
Hybrid
0 ⟩, Cc1 + ⟨Db(c2), ks

Hybrid
1 ⟩)]Ql

;

and then set δ = t[−t−1c′]C and modulus switch back to ql:

c′′ =

[
c′ + δ

C

]
ql

Finally, the output of the Hybrid key switching is

KeySwHybrid(ksHybrid, c) = (c′′, l, νHybrid
ks ) (20)

with critical quantity given by putting together the BV and GHS ones: we set

νHybrid
KeySw = ν +

t⟨Db(c2), e⟩+ δ(s)

C
. (21)

The Hybrid key switching achieves better efficiency than the BV and better noise
management than GHS, and it is for this reason the preferred one when it comes
to implementations [23].

3.2 Theoretical results for noise estimation

Since the encryption process in BGV involves randomization and we need to esti-
mate the canonical norm of the ciphertexts, we focus on estimating the canonical
norm of random polynomials. We remark that by random polynomial we mean a
polynomial whose coefficients are sampled independently from some distribution.

Canonical norm of random polynomials The main result in this section
is Theorem 2, stating a probabilistic bound on the canonical norm of a random
polynomial that depends on the variance of its coefficients. Similar bounds were
already provided in previous works (e.g. [12, 24]). In our paper, we take an
additional step to provide comprehensive proof to support our findings.
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Theorem 2. Let a(x) =
∑n

i=0 aix
i ∈ R be a random polynomial whose coeffi-

cients are identically distributed, having mean zero, finite variance Va and that
there exists some δ > 0 such that

E[|aj |2+δ] < γ1 ∈ R>0. (22)

Then for any primitive mth root of unity ζ = cos(α) + i sin(α) ∈ C, the distribu-
tion of a(ζ) is well approximated by centered Gaussian distribution with variance
nVa.

Proof. Note that by the independence of the coefficients of a(x), we have

E[a(ζ)] =
∑
j

E[aj ]ζ
j = 0 and Var(a(ζ)) = E[a(ζ)a(ζ)]

Since the product of a root of unity and its conjugate is 1, then

Var(a(ζ)) =

n−1∑
j1,j2=0

E[aj1aj2ζ
j1ζj2 ] =

n−1∑
j1,j2=0

Cov(aj1 , aj2)ζ
j1ζj2 = nVa.

Now we show that a(ζ) has Gaussian distribution. To prove that, we consider
a(ζ) as a random vector Z = (X,Y ) = (ℜ(a(ζ)),ℑ(a(ζ))) over C ∼= R2 and, by
Lemma 6, we prove that it is a Gaussian vector. The trigonometric expressions
of X and Y are

X = ℜ(a(ζ)) =
n−1∑
j=0

aj cos(αj) and Y = ℑ(a(ζ)) =
n−1∑
j=0

aj sin(αj)

and for any given η, ρ ∈ R we have

ηX + ρY = η

n−1∑
j=0

aj cos(αj) + ρ

n−1∑
j=0

aj sin(αj) =

n−1∑
j=0

(η cos(αj) + ρ sin(αj))aj .

We can approximate the distribution of ηX + ρY using Lyapunov’s CLT (The-
orem 1), treating the coefficients η cos(αj) + ρ sin(αj) as constants and hence
applying the theorem to the random variables Wj = (η cos(αj) + ρ sin(αj))aj ,
which have mean 0 and variance

Var(Wj) = (η cos(αj) + ρ sin(αj))2V ar(aj) =

= η2 cos2(αj) + ρ2 sin2(αj) + 2ηρ cos(αj) sin(αj))Va.

This implies

s2n =

n−1∑
j=0

Var(Wj) =

n−1∑
j=0

η2 cos2(αj) + ρ2 sin2(αj) + 2ηρ cos(αj) sin(αj))Va =

=

n−1∑
j=0

(η2 cos2(αj) + ρ2 sin2(αj))Va + 2ηρVa

n−1∑
j=0

cos(αj) sin(αj) =

=

n−1∑
j=0

(η2 cos2(αj) + ρ2 sin2(αj))Va.
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The last equality is motivated by the fact that since ζ is a primitive root of unity,∑n−1
j=0 cos(αj) sin(αj) = 0 . Indeed, for any j such that cos(αj) sin(αj) ̸= 0 in

the sum above, we have that also − cos(αj) sin(αj) appears in the sum since it is
the term related to the complex conjugate of cos(αj) + i sin(αj). These couples
cancel each other out in the sum, and there are no other nonzero elements
because {ζj : j = 0, . . . , n − 1} is symmetric with respect to the real axis,
and each element is used exactly once. Notice that, except for trivial cases,
(η2 cos2(αj)+ρ2 sin2(αj)) is positive. Moreover, there exists γ2 ∈ R>0 such that

γ2 < (η2 cos2(αj) + ρ2 sin2(αj))

and hence s2n > nγ2Va. Let δ > 0 be such that E[|aj |2+δ] < γ1. Then for each j
we can bound |(η cos(αj) + ρ sin(αj))|2+δ < γ3 for some γ3 ∈ R>0 and get

n−1∑
i=0

E[|(η cos(αj) + ρ sin(αj))aj |2+δ] =

n−1∑
i=0

|(η cos(αj) + ρ sin(αj))|2+δE[|aj |2+δ]

< nγ1γ3.

Now we are ready to check that Lyapunov’s condition (Equation (4)) holds: we
have

1

s2+δ
n

n−1∑
i=0

E[|(η cos(αj) + ρ sin(αj))aj |2+δ] ≤ nγ1γ3

((γ2n)
1
2 )2+δ

= O
(

1

nδ/2

)
and hence we can state (always in an approximate way)

lim
n→∞

1

s2+δ
n

n−1∑
i=0

E[|(η cos(αj) + ρ sin(αj))aj |2+δ] = 0.

Then we can use Lyapunov’s CLT to state that ηX + ρY is very well approxi-
mated by a Gaussian ∀ η, ρ ∈ R, hence X and Y are jointly Gaussian and the
random vector Z is Gaussian.
A further step that can be taken is to prove that X and Y are uncorrelated; by
Lemma 7, this also implies that they are independent. In fact, we have

Cov(X,Y ) = E
[( n−1∑

j=0

aj cos(αj)
)( n−1∑

j=0

aj sin(αj)
)]

=

n−1∑
j,k=0

Cov(aj , ak) cos(αj) sin(αk) = Va

n−1∑
j=0

cos(αj) sin(αj) = 0.

⊓⊔

If we take a random polynomial a ∈ Rq, the condition in Equation (22) is easily
satisfied since the distributions of the coefficients are bounded. Hence we can
use Theorem 2 to derive a bound on ||a||can in the following way. For a complex
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centered Gaussian random variable Z with variance VZ , for any B ∈ R>0 we
have |Z| > B with probability exp(−B2/V 2

Z ). This result can be obtained by
integrating the chi-squared distribution. In our case then Z = a(z), VZ = nVa

and by setting B = D
√
VZ we get

P (|a(z)| ≤ D
√
VZ) = e−D2

.

This immediately translates into a bound on the canonical norm of a: by defini-
tion ||a||can = max |a(ζ)| with ζ ranging among primitive mth roots of unity. It
follows that the inequality

||a||can < D
√
nVa (23)

holds with probability (1− e−D2

)n ≈ 1− ne−D2

, meaning it fails with negligible
probability. In our work, we use D = 6.

Variance of random polynomials Since we can estimate the canonical norm
of a random polynomial using its variance, we study the behaviour of the vari-
ance with respect to ring operations. For the sum of random polynomials and
the multiplication for a constant in Zq, the results do not differ from the power-
of-two case (e.g. see [12, 31]) and are widely known.
What changes in our new case is the coefficient variance of the product of two ran-
dom polynomials c(x) = a(x)b(x). In the power-of-two case, in [24], it is shown
that Vc = nVaVb, where n is the degree of the ringRq. Finding a similar result for
the case where the cyclotomic index is m = 2s3t is not trivial because the reduc-
tion modulo Φm(x) is more complex. In fact for m = 2s we have Φm(x) = xn+1,
while m = 2s3t implies Φm(x) = xn − xn/2 + 1 (where in both cases n = ϕ(m)),
and this affects the computations. In [29, Section 3.2], the authors give a bound
on the variance by making some considerations on the behaviour of the product,
finding

Vc ≤
3

2
nVaVb . (24)

We show an alternative way to obtain the same bound, with the difference that
we compute the full covariance matrix of the vector of coefficients of the product
c(x). This is a generalisation of the result in [29], as we compute all the variances
exactly and not only an upper bound, and gives deep hindsight on the behaviour
of random polynomials. These computations only concern the reduction modulo
the cyclotomic polynomial, not the one modulo q; hence we consider the product
of two random polynomials in R instead of Rq. The formal way to compute such
a product is in two steps: let

a(x) =

n−1∑
i=0

aix
i, b(x) =

n−1∑
i=0

bix
i ∈ Z[x]/(Φm(x)) = R .

First we consider a and b as if they were in Z[x], and multiply them to obtain

g(x) =

2n−1∑
i=0

glx
l = a(x)b(x) ∈ Z[x] .



14 Andrea Di Giusto and Chiara Marcolla

After this, we compute c(x) by reducing g(x) modulo Φm(x). General formulas
for the coefficients of c can be computed, yielding

ck =


gk − gn+k − gn+n/2+k k = 0, . . . , n/2− 2

gk − gn+k k = n/2− 1

gk + gn/2+k k = n/2, . . . , n− 1

which expands to

ck =



k∑
j=0

ajbk−j −
n−1∑

j=k+1

ajbn+k−j −
n−1∑

j=n
2 +1+k

ajbn+n
2 +k−j k = 0, . . . , n

2 − 2

k∑
j=0

ajbk−j −
n−1∑

j=k+1

ajbn+k−j k = n
2 − 1

k∑
j=0

ajbk−j −
n−1∑

j=k−n
2 +1

ajbn
2 +k−j k = n

2 , . . . , n− 1

.

These equations lack the same regularity observed in their power-of-two coun-
terparts: we need three distinct cases, whereas in [24], one formula is sufficient
to express all the coefficients. For this reason, straightforward substitution does
not enable us to compute Cov(ci, cj) and so we need the following theorem.

Theorem 3. Let c(x) = a(x)b(x) be the product of two random polynomials
with coefficient variances Va and Vb respectively, and let c = (c0, . . . , cn−1) be
the vector of coefficients of c(x). Then the covariance matrix of c is formed by
four diagonal blocks of size n/2:

CovM(c) =

(
Diag(α0, . . . , αn/2−1) Diag(β0, . . . , βn/2−1)
Diag(β0, . . . , βn/2−1) Diag(αn/2, . . . , αn−1)

)
(25)

where

αk =

{(
3
2n− (k + 1)

)
VaVb if 0 ≤ k < n/2

3
2nVaVb if n/2 ≤ k < n

βk = (k + 1− n)VaVb 0 ≤ k < n/2 .

Notice how the bound in Equation (24) follows immediately from the theorem:
the variances of the coefficients are the values αi in the matrix above.

Proof. The fundamental construction in this proof is the radix-6 NTT isomor-
phism (Section 2.2)

Ψ : R → Z[x]/(xn/2 − ζ)× Z[x]/(xn/2 − ζ5) = Rℓ ×Rr

where ζ = 1/2 +
√
3/2i is a complex primitive 6th root of unity. The idea is to

consider the images a(x), b(x) via this isomorphism and perform the multiplica-
tion in the factor rings where it is easier to keep track of the correlations.
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Since Z does not contain a sixth primitive root of unity, we have to embed
Z[x] identically into the polynomial ring Z[ζ][x]. By doing so, we obtain a CRT
isomorphism represented by:

Ψ : Z[ζ][x]/(xn − xn/2 + 1)→ Z[ζ][x]/(xn/2 − ζ)× Z[ζ][x]/(xn/2 − ζ5),

whose restriction to Z yields exactly the desired isomorphism. In practice, this
transformation is given by reductions modulo the quotienting polynomials of
the factor rings, and it can be computed on 2 coefficients simultaneously using
a radix-6 butterfly operation (Section 2.2). Using this isomorphism, we compute
c(x) = a(x)b(x) ∈ R as

c(x) = Ψ−1(Ψ(a(x))Ψ(b(x))) .

The advantage of multiplying in Rℓ and Rr is that their quotienting polynomial
is of the form xα + constant, which makes the modular reduction again similar
to the power-of-two case. In other words, using the radix-6 split takes care of
the repetition of coefficients introduced by the reduction modulo xn − xn/2 + 1
mentioned above. We proceed now by examining each of the three steps in more
detail: the direct isomorphism Ψ , the product inRℓ andRr (which are essentially
the same) and finally, the inverse isomorphism Ψ−1.
Recall that ζ satisfies ζ̄ = ζ5 = 1 − ζ and ζ2 − ζ + 1 = 0; furthermore for any
z ∈ C we have zz̄ = |z|2 where | · | is the complex modulus.

1. The isomorphism Ψ . Let a(x) ∈ R, then Ψ(a) = (aℓ(x), ar(x)) where

aℓi = ai + ζai+n/2 and ari = ai + ζ5ai+n/2 = ai + (1− ζ)ai+n/2

for any i = 0, . . . , n/2 − 1. Since ζ(1 − ζ) = 1 and since all coefficients of
a(x) ∈ R are uncorrelated, with mean 0 and variance Va, we have

E[aℓi ] = E[ari ] = 0

Var(aℓi) = Var(ari ) = E[(ai + ζai+n/2)(ai + ζai+n/2)]

= E[a2i + ζaiai+n/2 + (1− ζ)aiai+n/2 + ζ(1− ζ)a2i+n/2]

= E[a2i ] + E[aiai+n/2] + E[a2i+n/2] = 2Va . (26)

Moreover, each coefficient of a is used to construct exactly one coefficient of
aℓ and one of ar. Then, by the independence of the ais, it follows that for
any i ̸= j we have that each of aℓi and ari is independent of both aℓj and arj .

Namely, for all i ̸= j, Cov(aℓi , a
ℓ
j) = Cov(aℓi , a

r
j) = Cov(ari , a

r
j) = 0 and the

only nonzero covariances are given by

Cov(aℓi , a
r
i ) = E[(ai + ζai+n/2)(ai + (1− ζ)ai+n/2)]

= E[(ai + ζai+n/2)
2] = (1 + ζ2)Va = ζVa .

(27)

Obviously, the same formulas hold for b(x) with Vb in place of Va.
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2. Product in Rℓ and Rr. Consider the two left images aℓ(x) and bℓ(x) in Rl.
We compute the coefficients of cℓ(x) = aℓ(x)bℓ(x) by first calculating the
product as if we were working in Z[x] and then reducing modulo xn/2 − ζ.
Let Vaℓ and Vbℓ be the coefficient variances of the two factors. We have

gℓ(x) =

n−2∑
l=0

gℓlx
l = aℓ(x)bℓ(x) ∈ Z[x] with gℓl =

∑
i+j=l

aℓib
ℓ
j .

It is clear that all the gℓl are uncorrelated and have mean 0, and cℓk =
gℓk + ζgℓk+n/2. Again no gℓl is repeated in any two distinct cℓks, implying

Cov(cℓk1
, cℓk2

) =

{
E[(gℓk + ζgℓk+n/2)(g

ℓ
k + ζ̄gℓk+n/2)] =

n
2VaℓVbℓ if k1 = k2

0 otherwise
.

The same reasoning holds for Rr: we have

gr(x) =

n−2∑
l=0

grl x
l = ar(x)br(x) ∈ Z[x] with grl =

∑
i+j=l

ari b
r
j .

Since for any i = 0, . . . , n/2− 1 we have crk = grk +(1− ζ)grk+n/2, we get also
for the right side

Cov(crk1
, crk2

) =

{
n
2ValVbl if k1 = k2

0 otherwise
.

Regarding the cross-side covariance Cov(cℓk1
, crk2

), its computation reduces

by linearity to many terms of the form Cov(aℓi1b
ℓ
j1
, ari2b

r
j2
). As before, we have

Cov(aℓi1b
ℓ
j1 , a

r
i2b

r
j2) ̸= 0 ⇐⇒ i1 = i2 and j1 = j2.

Since no product aℓib
ℓ
j (ari b

r
j) is repeated in two different gℓl (grl ), and no

gℓl (grl ) is repeated in any two distinct cℓk (crk), the condition above can be
realized only when k1 = k2, meaning that we also have

Cov(cℓk1
, crk2

)

{̸
= 0 if k1 = k2

= 0 otherwise
.

Furthermore for k = 0, . . . , n/2− 1 we have

Cov(cℓk, c
r
k) = Cov(gℓk + ζgℓk+n/2, g

r
k + (1− ζ)grk+n/2)

= Cov(gℓk, g
r
k) + ζ(1− ζ) Cov(gℓk+n/2, g

r
k+n/2)

= (k + 1)Cov(aℓi , a
r
i ) Cov(b

ℓ
i , b

r
i ) + ζ2

(n
2
− (k + 1)

)
Cov(aℓi , a

r
i ) Cov(b

ℓ
i , b

r
i ) .
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Thus, we can substitute Equations (26) and (27) obtaining

Val = Var = Var(ali) = Var(ari ) = 2Va

Vbl = Vbr = Var(bli) = Var(bri ) = 2Vb

Cov(aℓi , a
r
i ) = ζVa and Cov(bℓi , b

r
i ) = ζVb.

Hence
Var(clk) = Var(crk) =

n

2
· 2Va · 2Vb = 2nVaVb (28)

and

Cov(clk, c
r
k) = (k + 1)ζVaζVb + ζ2(

n

2
− (k + 1))ζVaζVb

= (ζ2 + ζ)(k + 1)VaVb − ζ
n

2
VaVb . (29)

3. The isomorphism Ψ−1. The inverse NTT butterfly operation in [29] is given
by the following matrix-vector product: for any k = 0, . . . , n/2− 1(

ck
ck+n/2

)
=

1

1− 2ζ

(
1− ζ −ζ
−1 1

)(
cℓk
crk

)
Note that, for any k̄1, k̄2 = 0, . . . , n− 1, the computation of Cov(ck̄1

, ck̄2
) re-

duces by linearity to calculate a linear combination of the terms Cov(cℓk1
, crk2

)
where

kj =

{
k̄j if j < n

2

k̄j − n
2 if j ≥ n

2

for any j = 1, 2. As seen previously, Cov(cℓk1
, crk2

) ̸= 0 if and only if k1 = k2,

and this implies either k̄1 = k̄2 or k̄1 = k̄2 ± n
2 ; hence

Cov(ck̄1
, ck̄2

) ̸= 0⇒ k̄1 = k̄2 or k̄1 = k̄2 ±
n

2
.

Regarding the exact formulas for the nonzero terms in CovM(c), we have
different cases according to k. Notice that (1 − 2ζ)−1(1/1− 2ζ)−1 = 1/3;
moreover, for any z ∈ C we have z + z̄ = 2ℜ(z), and by the properties of
covariance Cov(X,Y ) = Cov(Y,X).
For 0 ≤ k < n/2 we have

Var(ck) = Var

(
(1− ζ)clk − ζcrk

1− 2ζ

)
=

1

3
(Var(clk)+Var(crk)−2ℜ((1−ζ)2 Cov(clk, c

r
k))).

Substituting Equations (26) and (27), we get

Var(ck) =
1

3

(
4nVaVb − 2ℜ

(
(1− ζ)2[(ζ2 + ζ)(k + 1)VaVb − ζ

n

2
VaVb]

))
=

(
3

2
n− (k + 1)

)
VaVb .
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For k ≥ n/2, instead, the behaviour of the variance is constant:

Var(ck) = Var

(
−clk + crk
1− 2ζ

)
=

1

3
(Var(clk) + Var(crk)− 2ℜ(Cov(clk, crk))) .

Since ζ2 + ζ =
√
3i has real part equal to 0 and thanks to Equations (26)

and (27), we have:

Var(ck) =
1

3

(
4nVaVb − 2ℜ

(
(ζ2 + ζ)(k + 1)VaVb − ζ

n

2
VaVb

))
=

=
1

3

(
4nVaVb +

n

2
VaVb

)
=

3

2
nVaVb .

Finally, regarding the nonzero covariances for 0 ≤ k < n/2 we find

Cov(ck, ck+n/2) = Cov

(
(1− ζ)clk − ζcrk

1− 2ζ
,
−clk + crk
1− 2ζ

)
=

=
1

3

(
−(1− ζ)Var(clk)− ζ Var(crk) + 2ℜ((1− ζ) Cov(clk, c

r
k))
)

and substituting Equations (28) and (29) we get

Cov(ck, ck+n/2) =
1

3
(−(1− ζ)2nVaVb − ζ2nVaVb+

+ 2ℜ
(
(1− ζ)[(ζ2 + ζ)(k + 1)VaVb − ζ

n

2
VaVb]

)
=

1

3
(−3nVaVb + 3(k + 1)VaVb) = (k + 1− n)VaVb

⊓⊔

The following result is the analogue of Theorem 3 for the power-of-two case;
the proof is much simpler and does not require the use of NTT butterflies. The
results are coherent with the bound on the variance of a random product in [24].

Theorem 4. Let c(x) = a(x)b(x) be the product of two random polynomials and
let c = (c0, . . . , cn−1) be the vector of coefficients of c(x). Then the covariance
matrix of c is diagonal, and in particular CovM(c) = Diag(nVaVb).

3.3 Noise estimates for homomorphic operations

In this section, we develop the noise bounds for the operations described in
Section 3.1 with the aid of the results in Section 3.2. The main properties we
use are the following.

– Lemma 4 and Equation (3) to bound the noise with the canonical norm of
the critical quantity. We get

||ν|| < cm||ν||can with cm = 2/
√
3 .
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– Equation (23) to bound the canonical norm of ν with the variance of its
coefficients. We have

||ν||can ≤ 6
√
nVν , and so ||ν|| < 2√

3
6
√

nVν = 4
√

3nVν

with probability 1− ne−36.

– The properties of the coefficients variance of random polynomials, including
Theorem 3. For two independent random polynomials a and b in Rq and a
scalar γ ∈ Zq

Va+b = Va + Vb, Vγa = γ2Va, Vab ≤
3

2
nVaVb .

In the literature, this approach is also referred to as a worst-case canonical
embedding analysis. A similar work for the power-of-two case is [31].

Encryption and ring operations After the encryption, the critical quantity
ν is given by Equation (6). Recalling that all errors have the same distribution
with variance Ve, and u comes from the same distribution of the secret key s,

||ν||can ≤ 4
√
3nVm+t(e·u+e1·s+e0)

≤ 4

√
3n

(
t2

12
+ t2

(
3

2
nVeVu +

3

2
nVe1Vs + Ve0

))

≤ 4t

√
3n

(
1

12
+ 3nVeVs + Ve

)
= Bclean . (30)

By this computation, we set Bclean as our bound for the noise in a fresh ciphertext.

To estimate νAdd (Equation (9)), we use the triangular inequality for the
canonical norm: we have

||νAdd||can = ||ν + ν′||can ≤ ||ν||can + ||ν′||can (31)

and this actually applies to any sum of polynomials.

Regarding polynomial multiplication (Equation (10)), we have νMul = νν′,
and we proceed using the sub-multiplicativity of the canonical norm (Equa-
tion (2)); we immediately obtain

||νMul||can ≤ ||ν||can||ν′||can (32)

which is used to estimate the noise.

Finally, for ConstMul (Equation (11)), the critical quantity is again a polyno-
mial product νConstMul = αν. Note that the two factors are independent, as α can
be seen as a uniformly random polynomial in Rt. Thus, we can split the variance
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Vαν using Equation (24). Moreover, we have Vα = t2

12 and ||ν||can ≈ 6
√
nVν . So

||νConstMul||can ≤ 6
√

nVαν ≤ 6

√
n
3

2
nVαVν

≤
√

3

2
n
t2

12
6
√

nVν = t

√
1

8
n ||ν||can . (33)

This is an improvement on previous bounds, which used again the sub-
multiplicativity of the canonical norm.

Modulus switching After the one-step modulus switching, the critical quan-
tity is given by Equation (14) as νModSw = ν + δ(s)/pl, where δ(s) is as in
Equation (13). By using the triangular inequality, we get

||νModSw||can ≤
||ν||can + ||δ(s)||can

pl
.

Hence we have to estimate the canonical norm of δ(s). The two polynomials δ0
and δ1 can be seen as random polynomials with coefficients in Ztpl

. Thus,

||δ(s)||can ≤ 6
√
nVδ0+δ1·s = 6

√
n

(
Vδ0 +

3

2
nVδ1Vs

)
≤ pl6t

√
n

(
1

12
+

1

8
nVs

)
.

Namely,

||νModSw||can ≤
||ν||can

pl
+ Bscale where Bscale = 6t

√
n

(
1

12
+

1

8
nVs

)
. (34)

Notice that the term Bscale is independent of pl.

In the general case of k-step modulus switching, we have to consider the RNS
representation. If l is the starting level and l′ = l−k the arrival level, then using
Equation (8) we have

δ = tFBE(−t−1c,
ql
ql′

, ql′)

which implies the coefficient of the polynomials δ0 and δ1 have variance

Vδi = t2
k

12

q2l
q2l′

.

As a consequence of this, we have ||νModSw||can ≤ ql′
ql
||ν||can +

√
kBscale .

Key switching Performing computations similar to those in [31], it is pos-
sible to find the following bounds for the noise in the BV and GHS variants.



Title Suppressed Due to Excessive Length 21

Specifically,

||νBVKeySw||can ≤ ||ν + ⟨Db(c2), e⟩||can

≤ ||ν||can + b
√

(⌊logb ql⌋+ 1)BKeySw where BKeySw = 6tn

√
Ve

8

||νGHSKeySw||can ≤
∣∣∣∣∣∣∣∣ν +

tc2 · e+ δ(s)

C

∣∣∣∣∣∣∣∣can ≤ ||ν||can +
ql
C

BKeySw +Bscale .

Instead, for the Hybrid variant, by Equation (21) we have

||νHybrid
KeySw ||

can ≤
∣∣∣∣∣∣∣∣ν +

t⟨Db(c2), e⟩+ δ(s)

C

∣∣∣∣∣∣∣∣can
≤ ||ν||can +

b
√
logb ql

C
BKeySw +Bscale . (35)

The RNS representation affects both the BV and the GHS key switching
variants, and hence also the Hybrid one. In the BV variant, we substitute the
decomposition with respect to a basis b with the one given by the CRT split in
Equation (7). This results in each element of D(α) having coefficients of the size
of the various pi composing the modulus ql in use. Consequently, we have

||νBV−RNS
KeySw ||can ≤ ||ν||can +

√
L+ 1max(pi)Bks

Regarding the GHS variant, we have to factor in the effect of the base extension
algorithm, which is used two times: once to extend c2 from ql to Ql, the other
to extend δ0 + δ1 · s from C to Ql.

||νGHS−RNS
KeySw ||can ≤ ||ν||can +

√
L+ 1

ql
C

BKeySw +
√
kBscale .

Finally, by putting together these two analyses, we can find a bound for the noise
after the Hybrid key switching: we have to account for the fact that the RNS
is used to split the ciphertext in modulus h chunks q̃0,. . . ,q̃h−1. This affects the
second summand in the GHS estimate, as we have to account for the BV-style
decomposition of c2: we have

||t⟨D(c2), e⟩||can ≤
√
hmax

i∈[h]
(q̃i)BKeySw

and so

||νHybrid−RNS
KeySw ||can ≤ ||ν||can +

√
l + 1

C

√
hmax

i∈[h]
(q̃i)BKeySw +

√
kBscale

≤ ||ν||can +
√
h(L+ 1)

maxi∈[h](q̃i)

C
BKeySw +

√
kBscale . (36)

4 Analyzing Error in a Homomorphic Circuit

In this section, we study how to combine the different operations of the BGV
scheme to perform complex computations. We need to model circuits involv-
ing homomorphic sums and products while controlling the noise growth using
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the modulus switching technique. Our approach performed modulus switching
immediately after each polynomial product, thereby effectively mitigating the
noise increase caused by the multiplication operation (Equation (32)). However,
an exception arises at the final multiplicative layer, where no relinearization or
modulus switching is performed. Instead, it is more convenient to decrypt the
three-word ciphertext directly. Furthermore, the noise after encryption (Equa-
tion (30)) is already significant. Hence a modulus switching is performed right
after Enc.

Following these ideas, the number L of primes pi needed to compose the
ciphertext modulus is determined: if M is the multiplicative depth of the homo-
morphic circuit we want to evaluate, then L = M + 1.

Another thing to take into account when modelling a circuit is ciphertext
rotations: these operations are useful from a practical standpoint, as they make
key management easier. We do not go into detail regarding these procedures:
we only mention them because, after each rotation, it is necessary to perform a
key-switching step.

4.1 Building blocks

This work studies Model 1 [31, Section 3]: we assume to be working with η
ciphertexts c1, . . . , cη in parallel and

1. perform on each ciphertext, a constant multiplication αi: cIi =
ConstMul(αi, ci);

2. followed by τ rotations: cIIi = rotτ (. . . rot1(c
I
i)).

3. Finally, we sum all the results of the previous steps:

cIII = Add(cIIη ,Add(c
II
η−1,Add(. . . ,Add(. . . ,Add(c

II
2 , c

II
1 )))))

The resulting ciphertext is used as input to one multiplication Mul(cIII , c̃III).
We now compute a bound Bblock for the output noise of one such blocks.

We analyze the noise growth by assuming that each of the η input ciphertexts
ci = (ci, l, νi) has noise ||νi||can < B. Then, by Equation (33), after the step 1.,

||νIi ||can ≤ εB where ε = t
√
n/8.

For any rotation, we have to perform an Hybrid key switching. These introduce
an additive growth in the error, and using the computations in Section 3.3, we
get that the noise in cIIi is bounded by

||νIIi ||can ≤ εB+τv where v =
γ0
C

BKeySw +γ1 Bscale .

The values of γ0 and γ1 are given by either Equation (35) or Equation (36) if
we are using the RNS representation. Namely, we have

(γ0, γ1) =

{
(b
√

logb ql, 1) (Hybrid)

(
√
h(L+ 1)maxi∈[h](q̃i),

√
k) (Hybrid−RNS)

. (37)
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The next step in the block is the sum of the η ciphertexts cIIi ; by Equation (31),

||νIIIi ||can < η||νIIi ||can < η(εB+τv) .

Finally, in a building block, two ciphertexts computed as cIII are multiplied
together. Then Equation (32) implies

Bblock = η2 (εB+τv)
2

(38)

4.2 Moduli size

In this section, we analyze the size of the different moduli p0, . . . , pL−1 depending
on their role in the scheme. All the middle moduli pi, for i = L − 2, . . . , 1, are
associated with a building block like the one analyzed in the previous section.
The idea is to move down the moduli ladder from qL−1 = pL−1 · · · p0 to q0 = p0
keeping in mind the function each prime modulus has.

– The top modulus does not have to support any homomorphic operations, as
after encryption, we immediately use ModSw to reduce the noise Bclean down
to the base noise B. This implies pL−1 can be smaller than the other pis.

– The middle moduli pi, i = L− 2, . . . , 1 are used to reduce the noise back to
B after the corresponding building block has been performed.

– The bottom modulus needs to support decryption without counting on mod-
ulus switching to reduce the noise. This means we can still perform some
homomorphic operations, but p0 needs to be large enough to contain the
corresponding noise growth.

We now analyze in detail each of the three different categories above.

Middle moduli The noise growth in a building block of the circuit is given
by Equation (38). After the homomorphic product of ciphertexts concludes the
block, we perform two more operations: a key switching to relinearize the result of
the product and a modulus switching to reduce the noise. In the Hybrid variant,
it is possible to merge these two because in KeySwHybrid (Equation (20)), it is
already included a modulus switching: instead of switching down from Ql to ql,
we can go directly to ql−1. This decreases the noise by a multiplicative factor of
ql−1/Ql = 1/Cpl, and thanks to Equations (35) and (36) the condition on B is

η2 (εB+τv)
2

pl
+

γ0
Cpl

BKeySw +γ1 Bscale < B . (39)

where γi are as in (37). Expanding the square in this inequality, we get

η2 (εB+τv)
2

pl
=

η2ε2

pl
B2 +

2η2ετ

pl
v B+

η2τ2

pl
v2.

Following [21], to isolate the terms in B we let

Rl =
η2τ2

pl
v2 +

γ0
Cpl

BKeySw +γ1 Bscale
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for each multiplicative level l = 1, . . . , L − 2. This quantity increases with l,
hence by bounding RL−2 we bound all the other Rls; moreover, we want this
term to be as close as possible to Bscale (notice that for sure Rl > γ1 Bscale). We
can modify C to achieve this goal: letting

C > Kγ0
BKeySw

Bscale
(40)

for some large K ∈ N, e.g. K = 100, Equation (39) becomes the following
inequality in B:

η2ε2

pl
B2 +

(
2η2τεγ1

pl
Bscale−1

)
B+

η2τ2γ2
1

pl
Bscale

2 +γ1 Bscale < 0 .

Taking B as a variable, we get a quadratic expression, and we need its discrimi-
nant ∆ to be positive. This implies

∆ =

(
2η2τεγ1

pl
Bscale−1

)2

− 4
η2ε2

pl

(
η2τ2γ2

1

pl
Bscale

2 +γ1 Bscale

)
= 1− 4η2εγ1(τ + ε)Bscale

pl
≥ 0

which results in an estimate for the prime moduli:

p1 ≈ . . . ≈ pL−2 ≈ 4η2εγ1(τ + ε)Bscale . (41)

Setting pl as Equation (41), for each l, we have the ∆ = 0. Thus, we recover B

B ≈ −

(
2η2τεγ1

pl
Bscale−1

)
2η2ε2

pl

=
pl

2η2ε2
− τγ1

ε
Bscale

≈ 4η2εγ1(τ + ε)Bscale

2η2ε2
− τγ1

ε
Bscale ≈ γ1

(τ
ε
+ 2
)
Bscale . (42)

To conclude our estimates, we bound the constant C in the key switching by
looking at the explicit values of γ0 in Equation (40). For l = 1, . . . , L − 2 we

have b
√
logb ql ≤ b

√
logb qL−2 and

√
h(L+ 1)maxi∈[h](q̃i) ≤ Kp

L/h
L−2

√
h(L− 1),

implying that

C ≥


Kb
√
logb qL−2

BKeySw

Bscale
(Hybrid)

Kp
L/h
L−2

√
h(L− 1)

BKeySw

Bscale
(Hybrid−RNS)

(43)

where K ≈ 100. According to [31], this is the smallest lower bound for C, and
it is for this reason that the Hybrid key switching is preferred to the other two
variants.
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Top modulus After encryption, the noise is bounded by Bclean. We want the
noise after ModSw to be smaller than a threshold B. Following Equation (34) the
inequality determining the top modulus pL−1 is Bclean/pL−1 + Bscale < B ad using
the approximation in Equation (42) we get

pL−1 >
Bclean

(( τϵ + 2)γ1 − 1)Bscale
.

Bottom modulus At this level, the decryption condition is applied directly to
the noise bound for the building block (Equation (38)), resulting in the bound

p0 = q0 > 2cmη2 (εB+τv)
2
. Since the constant C is quite large, we have

v = γ0
BKeySw

C
+ γ1 Bscale ≈ γ1 Bscale .

Moreover, thanks to Equation (42), we have

εB+τv ≈ εγ1

(τ
ε
+ 2
)
Bscale +τγ1 Bscale = 2γ1(τ + ε)Bscale .

Finally, we get the following condition on p0:

p0 > 2cmη2(2(τγ1 + 1)Bscale)
2 = 8cmη2γ2

1(τ + ε)2 Bscale
2 .

4.3 Parameters specification

We briefly recall the conditions of the parameters.

– m = 2i3j is the cyclotomic index. It comes with an expansion factor cm =
2/
√
3 and n = ϕ(m) = m/3.

– ql =
∏l

i=0 pi are the ciphertext moduli, for l = 0, . . . , L−1; we need pi =m 1
to have efficient NTT, and the pi need to be word-sized primes ([22]), mean-
ing they need to fit the native data length of the machine we are using
(usually 32 or 64 bits) to exploit the RNS representation fully.

– h is the number of blocks for the RNS decomposition in the Hybrid key
switching, and we take h = 3.

– C is the auxiliary modulus for the key switching. For the RNS variant, we
need C =

∏k
j=1 Cj and Cj =m 1 again for NTT related reasons. The size of

C is determined using Equation (43).

– Ve = σ2, where σ = 3.19, and Vs = 2/3 are the variances of the errors and
of the secret key.

– τ is the number or rotations, η is the number of summands in each block.

– ε = t
√

n/8 is a constant due to the multiplication by the ConstMul step in
the circuit; if we wish to suppress this step, it is sufficient to set ε = 1.

In Table 1 and Table 2, we summarize all the results coming from previous
sections.
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Bclean Bscale BKeySw B

4t

√
3n

(
1

12
+ 3nVeVs + Ve

)
6t

√
n

(
1

12
+

1

8
nVs

)
6tn

√
Ve

8
γ1

(τ
ε
+ 2

)
Bscale

Table 1. Intermediate noise bounds

τ p0 pl (l = 1, . . . , L− 2) pL−1

0 8cmη2ε2 Bscale
2 4η2ε2γ1 Bscale

BKeySw

(2γ1 − 1)Bscale

̸= 0 8cmη2γ2
1(τ + ε)2 Bscale

2 4η2εγ1(τ + ε)Bscale
Bclean

B−Bscale

Table 2. Sizes of the prime moduli

5 Our Results

5.1 Performance comparison

In this section, we draw a comparison between the power-of-two case and the
new setting with cyclotomic index m = 2s3t. The estimates for the former case
are based on the formulas in [31] and follow the same blueprint of Section 4;
this way we obtain comparable results between the two frameworks. To draw
comparisons, we fix a security threshold λ (e.g. λ = 128) and look for the
smallest possible parameters supporting a certain circuit with security λ.
The security of our constructions is estimated using the Lattice Estimator by
Albrecht et al. [1]. In Tables 3 to 6, we report both the sizes of the ciphertext
modulus q and the modulus qC used in the Hybrid key switching (Section 3.1).
Although most of BGV works modulo q, the security needs to be assessed with
respect to qC as part of the key switching is public.

To build circuits, we fix the parameters of a building block (Section 4.1) and
then increase the number of multiplications M. Obviously, the security decreases
as M grows, meaning that at some point, we will slip below the security threshold.
When this happens, it is necessary to raise the cyclotomic index, giving us the
margin to show our improvements with respect to the power-of-two case. We call
the instances for which we improve the estimates corner cases.

Example 1. We consider a simple circuit where the building block has no con-
stant multiplication, no rotations (τ = 0), two summands for each block (η = 2),
and plaintext modulus t = 64. We will refer again to this construction, thus we
name it Circuit 1. We run the computation form = 213 andm = 214. Namely, we
work in lattices of dimension n = 212 = 4096 and n = 213 = 8192, respectively.
The sizes of the ciphertext modulus and the security parameter are reported in
Table 3. Now assume we want to achieve 128 bits of security on a circuit with 3
multiplications. If we look at our power-of-two parameters, we can see that for
n = 212 this cannot be done, as for M = 3 we have λ < 128 (the red cells in
Table 3). Considering the power-of-two rings, the only option we have at this
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M 1 2 3 4 5 6 7 8 9 10

n = 212
log q 46 68 91 115 138 161 185 209 232 256
log qC 70 100 131 163 194 225 257 288 320 341

λ 203 137 103 83 70 61 54 48 45 45

n = 213
log q 48 71 96 119 144 168 193 208 240 267
log qC 72 104 137 169 202 235 268 301 334 367

λ 436 286 209 165 136 116 101 90 81 75

Table 3. Power-of-two estimates for Circuit 1.

point is to jump to n = 213 where a solution with λ = 209 is available (the green
cells in Table 3). Moreover, for this n, it is also possible to use the circuits with
M = 4, 5 (the blue cells in Table 3) and decrypt after the desired number of mul-
tiplications since they also feature λ ≥ 128. Clearly, this approach is suboptimal
since it requires significantly larger ciphertext moduli (log q). Consequently, the
computational cost of operations in Zq increases significantly. The main issue
with all these constructions is that increasing the dimension does not come for
free. Indeed, n is also the degree of the quotienting polynomial in the ring Rq

where the cryptosystem lives. Hence, by moving from n = 212 to n = 213 we
are doubling the length of all the vectors involved. This affects the quantity of
memory involved as well as the computational time required for the scheme to
work. If, instead, we consider the case of m = 211 · 3 = 6144, using the formulas
in Section 4 we get Table 4.

M 1 2 3 4 5 6 7 8 9 10

n = 211 · 3
log q 59 72 95 120 146 169 193 217 242 267
log qC 84 105 137 170 204 235 268 300 333 367

λ 303 203 151 120 100 86 76 69 63 57

Table 4. Non power-of-two estimates

Similarly to the case of n′ = 213, these estimates tell us that it is possible to
support the circuit with three multiplications (the green cells in Table 4), only
this time we have λ = 151 instead of 209. This happens because the dimension
of the lattice n is smaller, as 211 · 3 = 6144 < 213 = 8192. The length of vectors
is reduced by 25%, while maintaining comparable efficiency for the NTT with
the help of the technique explained in [29].

Our performance comparison is essentially a systematic extension of what
is just seen in Example 1 to different circuits. We focus on rings with cyclo-
tomic index m = 2s · 32, meaning the quotienting polynomial is of the form
Φm(x) = x2s·3 − x2s−1·3 + 1, for essentially two reasons. The first is that in this
setting, we can always deploy the NTT algorithm described in Section 2.2, and
hence we can be competitive with the power-of-two setting in terms of com-
putational costs. The second reason is that the degree of the polynomial (and
hence the dimension of the lattice used for the security assessment) is exactly
halfway through two consecutive powers of two, which is a reasonable starting
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point to look for corner cases. In fact for any s we have 2s+1 < 2s · 3 < 2s+2

and 2s · 3− 2s+1 = 2s+2 − 2s · 3 = 2s, meaning we can expect the security of
the construction with n = 2s · 3 to be halfway between the two neighbouring
power-of-two constructions.

Circuit 1 We conclude the work started in Example 1 with a full comparison
for Circuit 1: we recall this is one of the most basic constructions, with only an
addition in each building block. We merge and extend Table 3 and Table 4 in
Table 5, and get an extensive study involving all multiplicative levels form 1 to
10. For each value of M we highlight in green the instances optimal with respect
to the security threshold λ = 128. It can be seen how for M = 3, 6, 7, 8, 9, 10 the

M 1 2 3 4 5 6 7 8 9 10

n = 211
log q 43 65 87 109 131 154 176 199 222 245
log qC 67 96 126 156 185 216 246 276 307 338

λ 161 104 78 63 53 45 44 44 44 44

n = 210 · 3
log q 47 69 92 115 138 161 185 209 232 246
log qC 71 101 132 163 194 225 257 289 320 342

λ 145 100 77 63 54 45 45 45 45 45

n = 212
log q 46 68 91 115 138 161 185 209 232 256
log qC 70 100 131 163 194 225 257 288 320 341

λ 203 137 103 83 70 61 54 48 45 45

n = 211 · 3
log q 59 72 95 120 146 169 193 217 242 267
log qC 84 105 137 170 204 235 268 300 333 367

λ 303 203 151 120 100 86 76 69 63 57

n = 213
log q 48 71 96 119 144 168 193 208 240 267
log qC 72 104 137 169 202 235 268 301 334 367

λ 436 286 209 165 136 116 101 90 81 75

n = 212 · 3
log q 51 75 100 125 150 175 201 227 252 278
log qC 77 109 143 177 210 244 279 313 347 381

λ 1033 669 481 371 300 252 215 187 167 150

Table 5. Study of the estimates for Circuit 1.

optimal estimate is achieved by a non power-of-two construction.

Circuit 2 As a second example, we consider a more complex circuit: we allow
for constant multiplication, followed by eight rotations (τ = 8). We also increase
the number of sums from one to eight with respect to Circuit 1 (η = 9), while
we leave the plaintext modulus unchanged (t = 64). We obtain the estimates in
Table 6. Again for each value of M we highlight in green the optimal instances
with respect to the security threshold λ = 128.
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M 1 2 3 4 5 6 7 8 9 10

n = 210 · 3
log q 72 119 168 216 265 313 362 411 460 510
log qC 113 177 242 307 372 436 502 567 633 699

λ 143 85 61 48 45 45 45 44 44 44

n = 212
log q 80 136 193 250 307 364 421 479 536 594
log qC 127 202 278 354 431 507 583 660 737 814

λ 175 99 71 56 45 45 45 45 45 45

n = 211 · 3
log q 75 124 175 225 276 327 377 428 480 531
log qC 117 184 252 319 387 455 522 590 660 728

λ 298 169 116 90 74 64 56 49 46 46

n = 213
log q 83 141 200 259 318 377 436 496 555 615
log qC 131 209 288 367 446 525 604 684 762 842

λ 371 202 137 105 85 73 64 57 51 47

n = 212 · 3
log q 78 129 182 234 287 340 393 446 499 552
log qC 122 196 261 331 402 473 544 614 685 756

λ 640 358 240 181 144 121 104 92 82 75

n = 214
log q 86 146 207 268 329 390 451 513 575 636
log qC 135 216 298 379 461 542 624 707 789 870

λ 802 434 289 215 171 142 122 106 95 86

n = 213 · 3
log q 81 134 189 243 298 353 408 463 518 573
log qC 126 198 271 344 417 491 564 637 711 785

λ 1380 775 518 386 304 250 212 184 162 146

Table 6. Study of the estimates for Circuit 2.

6 Conclusions and Future Work

6.1 Conclusions

With this work, we showed how it is more convenient to implement the BGV
scheme over non-power-of-two cyclotomic rings in order to get better parameters
for specific instantiations. In the process, we established many useful results.

Although it is a widely used fact, we could not find in the literature a satis-
fying proof for Theorem 2. Therefore, we believe ours is the first formal demon-
stration of such a statement. The bounds on the variance of the product rings
were essentially already established in [24] and [29] for the cases m = 2s and
m = 2s3t, respectively. However, we could not find any general results regarding
the covariance matrices. While this matter is straightforward for the power-of-
two case, the same cannot be said for the case where the cyclotomic index is
m = 2s3t. We think Theorem 3 is a very interesting result in this sense because
it shows how to compute the full covariance matrix in this case. Moreover, its
proof seems easy to generalize to other cyclotomic rings. This result sheds some
light on some properties that seem to characterize RLWE with respect to LWE:
it makes no sense to perform a similar analysis in the LWE context because the
algebraic structure is too simple, and the analogue of polynomial product is just
multiplication in Zq.
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Another topic we explored is the techniques used for noise estimation. We
showed how to compute the worst-case canonical norm estimates in our non-
power-of-two setting and obtained an improvement over state-of-the-art meth-
ods for constant multiplication (Equation (33)). The results of the estimations
themselves are quite promising: in Section 5.1, we examine various sets of pa-
rameters and show a number of instances where it is recommendable to choose
a non-power-of-two construction to achieve certain circuit and security targets.
This is mainly connected with the availability of efficient NTT algorithms, which
are non-trivial to develop. However, at least for the case m = 2s · 32, we could
find some solid ground for our idea to grow, yielding some concrete proposals for
alternatives to power-of-two BGV. We point out that all the corner cases we find
in Section 5.1 show a significant improvement with respect to the power-of-two
they outperform. In fact, the size of the modulus q is similar, and the NTT algo-
rithms have comparable performance, but we have vectors whose length n is 25%
shorter. This not only affects the quantity of memory we need but also makes the
cryptosystem more agile. Indeed, the complexity of all the operations, including
polynomial products that are the main bottleneck, depends on the degree of the
cyclotomic ring.

6.2 Future work

Although we showed how it is possible to obtain better parameters for BGV
by also considering cyclotomic rings with index m = 2s · 3t, if we look at the
comparison tables in Section 5.1, we can see how there still are some big jumps
in our estimates. For example, if we consider Table 6, we can see that to achieve
7 multiplications with λ = 128 we need to jump from n = 214 to n = 213 · 3,
with λ increasing to 212 bits. This is again an overkill for an instantiation of
BGV, meaning that if we could find a cyclotomic ring of degree 214 < n < 213 ·3
with efficient NTT then maybe we would also achieve more optimal parameters.
A good direction for further work could be explored in cases where m = 2s · 3t
with t > 2.

Another idea could be extending the estimates to cyclotomic rings with
m ̸= 2s or 2s3t; this would also involve generalizing Theorem 3 to new cases. The
proof of Theorem 3 relies essentially on the Chinese Remainder Theorem and
probability theory, and it seems that it can be extended to other quotient rings.
This looks like a promising topic of self-standing interest in theoretical cryp-
tography, also connected to understanding the extra layer of algebraic structure
introduced by considering RLWE instead of LWE.

Regarding specifically parameter estimation for FHE schemes, the most
promising lines of research are those developing new techniques to substitute
the worst-case canonical norm approach. It seems that there is a discrepancy
between the estimates based on this technique and experimental data ([12]),
and an average case approach has been proposed to overcome this [3, 13, 32].
This topic is for sure very interesting, and any progress makes FHE easier to
deploy in real-life applications.
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