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Abstract. This article is dedicated to a new generation method of two
“independent” Fq-points P0, P1 on almost any ordinary elliptic curve E
over a finite field Fq of large characteristic. In particular, the method is
relevant for all standardized and real-world elliptic curves of j-invariants
different from 0, 1728. The points P0, P1 are characterized by the fact
that nobody (even a generator) knows the discrete logarithm logP0

(P1)
in the group E(Fq). Moreover, only one square root extraction in Fq (in-
stead of two ones) is required in comparison with all previous generation
methods.

Keywords: endomorphism rings · generation of “independent” points ·
isotrivial elliptic curves · Mordell–Weil lattices.

1 Introduction

There is a misconception among many academics that elliptic curve cryptog-
raphy (ECC) finally and irrevocably gives way to post-quantum cryptography
(PQC). This is because academia is mainly funded by governments. They are
really interested in moving to PQC in the near future, since government infor-
mation must remain classified for a long time. At the same time, according to a
series of experts, a powerful quantum computer may be invented already in our
lifetime.

However, ECC in fact experiences an all-time flourishing due to its active
application to protect the majority of blockchains, including cryptocurrencies.
First, they are inherently opposed to state control, hence any standardized cryp-
tography is foreign for them. Second, their emphasis on elliptical cryptography
stems from concerns about efficiency of cryptographic protocols. Blockchains use
multi-party computation (MPC) with plenty of parties, so the transition to PQC
would lead to a catastrophic slowdown.

Unfortunately, actors of the blockchain world are greedy enough to fund
research even if it is directly related to practice. They are rather focused on
urgent issues of software implementation or protocol design. In this connection,
blockchain enthusiasts and applied mathematicians rarely communicate with
each other. That is why the latter are often unfamiliar with needs that arise in
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today’s elliptic cryptography. And in vain, because it is based on interesting sec-
tions of the theory of elliptic curves. Meanwhile, developers do not have enough
time, desire, and skills to speed up ECC by mathematical methods, and not by
program optimizations.

This article takes one more small step towards integrating the two profes-
sional communities. The role of the connecting thread is performed by the task
of generating transparently several “independent” Fq-points on an elliptic curve
E over a finite field Fq. “Independence” means that non-trivial linear relations
between the points are unknown to anyone. We will focus on the case when
the characteristic of Fq is large and E : y2 = f(x) is an ordinary (a.k.a. non-
supersingular) curve. Today, other pairs E/Fq are considered to be suspicious
and hence they are (almost) never used.

At the moment, in order to obtain one point in E(Fq) people frequently
give preference to the naive try-and-increment method (represented, e.g., in [22,
Section 8.2.1]) iterating the x-coordinate. Alternatively, one can resort to any
constant-time map to E(Fq). In recent years, there are breakthroughs in con-
structing such maps [28, Section 3]. Nevertheless, it is worth stressing that
constant-timeness is in fact superfluous in our context, because the seed of a
generation process is not secret. On the contrary, it must be as public as possi-
ble so that everyone can make sure in honesty of a generator. That is why, we
can forget about tricky deterministic maps without loss of generality.

Given x ∈ Fq, the condition
√
f(x) ∈ Fq can be checked without computing

before that the square root, namely via the Legendre symbol
( f(x)

q

)
. Generally

speaking, this symbol (with whatever argument from Fq) should be determined
by widespread Euclidean-type algorithms running in the bit time Θ(log2(q)).
Moreover, they prove themselves well in practice [26,35]. Meanwhile, two x-
coordinates are on average enough to meet the desired condition. As is well
known (e.g. from [38]), extracting

√
· ∈ Fq costs Θ(log3(q)) bit operations, which

is an order of magnitude more expensive than
( ·
q

)
. Finally, when one needs

more than one Fq-point on E, nothing prevents to repeat multiple times the
try-and-increment method with another seed.

A novel approach for solving the generation task is suggested in [29]. That
article dwells on the extreme, but important case of j-invariant 0. The current
article follows the same conception, but in the general case, that is, without
significant restrictions on j-invariant. In contrast to [29], we will succeed in
constructing just two “independent” points in E(Fq). Nonetheless, this already
significantly affects performance, taking into account the cumulative effect. In-
deed, it seemed earlier that n ∈ N “independent” points cannot be generated
faster than by finding n roots (usually square) in the field Fq. We will justify
that ⌈n/2⌉ quadratic roots turn out to be sufficient for that purpose.

Throughout the text, D < 0 stands for the complex multiplication (CM)
discriminant of E. As we will see, unlike j(E) = 0 (equivalently, D = −3), a new
difficulty appears whenever D is large by absolute value. Fortunately, we will
successfully circumvent this obstacle. It is worth noting that conservative cryp-
tographers prefer and, at the same time, regulators standardize elliptic curves
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of huge CM discriminants, because they seem more secure as opposed to others.
For instance, the source [9] recommends to pick D = D0c

2 with c ∈ N and the
square-free natural −D0 > 2100. The given condition is fulfilled for a random
curve E with a high probability.

The problem of “independent” points has long painful history. For example,
such points occurred in the notorious Dual Elliptic Curve Deterministic Random
Bit Generator (Dual EC DRBG) invented by NIST. It was heavily criticized, be-
cause NIST proposed its own points P , Q without any transparent explanation of
their origin. Therefore, the cryptographic community was suspicious concerning
a possible backdoor (see, e.g., [10,11]). In addition, Dual EC DRBG had other
disadvantages [16,39], which raised even more doubts about the meaning of its
use. Under public pressure, the last actual version of the standard [8] does not
contain this generator anymore. Nevertheless, as shown in [23], it can be modified
to be safe if the discrete logarithm between the points is truly unknown.

It is also worth mentioning a Password-Authenticated Key Exchange (PAKE)
protocol under the name SPAKE2 [1,2]. It was one of the candidates (but not the
winner) of the relatively recent public selection process [20] under the auspices
of CFRG. SPAKE2 likewise requires two “independent” points denoted by M ,
N in the draft [32]. Bearing in mind the bitter experience of Dual EC DRBG,
the creators of the given draft explicitly indicate where the points come from.

The third classical example is the so-called Pedersen hash function to the
group E(Fq) (a.k.a. Pedersen commitment) [34, Section 3], which is also con-
tained in [18, Section 3]. The Pedersen hash is naturally generalized to an ar-
bitrary number n of “independent” points (see, e.g., [14]). The larger number
n, the better compression can be provided by the hash function, since it always
returns one Fq-point on E regardless of n. Thereby, it is very tempting to take
tremendous values of n (such as 228), which really happens in practice [17].

Entities of any cryptographic scheme operating with a large number of “inde-
pendent” points face a difficult choice. They are obliged either to store/transmit
the points or to regenerate them (or others) every time from a short seed. The
first approach requires large amount of memory or a channel with good band-
width, respectively. In turn, the second one forces entities to spend a part of
their running time on a monotonous point regeneration. Consequently, any no-
ticeable acceleration of the given subroutine deserves attention to lean towards
the second solution.

To be honest, implementers of cryptosystems pay little attention to the prob-
lem of generating “independent” points, since it is not the bottleneck in contrast
to other primitives on elliptic curves such as aMulti-Scalar Multiplication (MSM)
[13]. By the way, MSM is essentially evaluating the Pedersen hash function. Nev-
ertheless, the problem under consideration should be rigorously discussed by the
scientific society. Otherwise, there is a risk that an ad hoc speed up proposed by
a junior developer may come to a catastrophic security error not identified until
the release of a software product.

The mathematics underlying the new generation method is quite exotic for
elliptic cryptography. It is about elliptic curves over the rational function field
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Fq(u) and about theirMordell–Weil lattices. The author prefers [40], [42, Chapter
III] as sources on the topic. It is hoped that Mordell–Weil lattices will sooner
or later find other exciting applications in ECC or PQC, just as this was done
in the past by pairings and isogenies, respectively. Such a prospect has a right
to exist, because any Fq-isogeny E0 → E1 between elliptic Fq-curves is realized
as a point of E1 over the function field Fq(E0). In fact, Fq-isogenies can be
also imagined as points of a certain non-constant elliptic Fq(u)-curve. This view
permits to establish in Appendix an interesting relationship between isogeny-
based cryptography (IBC) and yet another type of PQC.

2 Mathematical preliminaries

Consider E : y2 = f(x) := x3 + ax + b, an elliptic curve over a finite field Fq of
characteristic 5 or greater. Since the curve E is ordinary by our assumption, its
endomorphism ring is an order Z[τ ] = Z⊕ τZ in some imaginary quadratic field.
Throughout the present paper, we will freely use basic facts from the theory of
such quadratic orders (see, e.g., [19, Section 7]).

As above, denote by D < 0 the complex multiplication discriminant of E,
that is, the discriminant of Z[τ ]. As is customary, τ̂ stands for the dual, i.e., the
complex conjugate of τ . The integers

d := deg(τ) = τ τ̂ , t := tr(τ) = τ + τ̂

are commonly called the degree (or norm) and trace of τ , respectively. Be careful,
t is not in general the Frobenius trace of E, which is usually associated with this
letter in the literature on elliptic curves. Clearly,

τ =
t+

√
D

2
, τ̂ =

t−
√
D

2

are solely the roots of the quadratic polynomial mτ (x) := x2 − tx + d with
discriminant D = t2 − 4d. Besides, it will be convenient to have before our eyes
the elementary formula

deg(n0 + n1τ) = n2
0 + n0n1t+ n2

1d, (1)

where n0, n1 ∈ Z.
Let’s extend the field Fq to the (infinite) function field F := Fq(u) in one

variable u. Now, fix the quadratic twist Eg : g(u)y2 = f(x) by means of a
function g ∈ F ∗. Certainly, Eg is a meaningless twist if

√
g ∈ F because of the

isomorphism
Eg → E (x, y) 7→ (x,

√
g ·y).

Trivially, j(Eg) = j(E) and, vice versa, every elliptic F -curve with the given
j-invariant ̸= 0, 1728 is isomorphic over F to the twist Eh for some h ∈ F ∗.
Such curves are said to be isotrivial. Thus, without loss of generality, we can
deal with the form Eg rather than with the conventional Weierstrass form.
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Hereafter, put E := Eg to simplify the notation. Recall that the (finitely
generated) Mordell–Weil group E(F ) is equipped with the so-called naive height

h : E(F ) → N h(P ) :=

{
deg(x) if P = (x, y),
0 if P = (0 : 1 : 0).

In particular, h(P ) = h(−P ). Based on h and on [42, Theorem III.4.3], we get
the canonical height and pairing

ĥ : E(F ) → Q⩾0 ĥ(P ) :=
1

2
lim

n→∞

h(2nP )

4n
,

⟨·, ·⟩ : E(F )2 → Q ⟨P,Q⟩ := ĥ(P +Q)− ĥ(P )− ĥ(Q),

(2)

respectively. It is useful to remember that 2ĥ(P ) = ⟨P, P ⟩ for each point P and

ĥ(P ) = 0 if and only if the order of P is finite. The fact that ĥ always takes
rational values will be at the core of proving Theorem 1. Curiously, as stressed
in [42, Remark III.4.3.1], the analogue of ĥ for elliptic curves over number fields
(probably) takes transcendental values at all non-torsion points.

Since E is a twist of E, the endomorphism rings of E, E are identical. There-
fore, E(F ) is not only a group, but also an Z[τ ]-module.

Lemma 1. For any φ ∈ Z[τ ] and P,Q ∈ E(F ) there are the identities

ĥ(φ(P )) = deg(φ)ĥ(P ), ⟨φ(P ), φ(Q)⟩ = deg(φ)⟨P,Q⟩.

Proof. The second identity immediately follows from the first one, hence we
can concentrate on establishing it. For compactness, introduce the even function
φx := x ◦ φ whose deg(φx) = 2 deg(φ). We lack the generalized naive height

hφx(P ) := deg(φx(P )) = h(φ(P ))

from [43, Section VIII.6]. In this notation, h = hx. Note that

hφx(2
nP ) = h(φ(2nP )) = h(2nφ(P ))

for each n ∈ N. By virtue of [43, Proposition VIII.9.1], we have:

ĥ(P ) = ĥφx
(P ) :=

1

deg(φx)
lim

n→∞

hφx(2
nP )

4n
=

ĥ(φ(P ))

deg(φ)
.

The lemma is proved. □

Let’s suppose that we are given two short F -points Pi on the curve E , where
i ∈ Z/2. “Short” means that their canonical heights ĥi := ĥ(Pi) as well as
e := ⟨P0, P1⟩ are pretty small and hence they can be found. Also, we need the
values vi := ⟨Pi, τ(Pi+1)⟩. Provided that D is large, we cannot directly compute
them. Fortunately, one value is expressed through the other.

Lemma 2. There is the linear relation v0 + v1 = te.
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Proof. For the sake of compactness, put Qi := Pi + τ(Pi+1). It is suggested to
borrow from [42, Theorem III.4.3.b.iii] the parallelogram law

ĥ(Q0 +Q1) + ĥ(Q0 −Q1) = 2ĥ(Q0) + 2ĥ(Q1). (3)

In accordance with Lemma 1 and the formula (1), we get the sequence of equal-
ities

ĥ(Q0±Q1) = ĥ
(
(1±τ)(P0±P1)

)
= deg(1±τ)ĥ(P0±P1) = (1±t+d)(ĥ0+ĥ1±e).

Thereby, the left-hand side of the law (3) is equal to

2(1 + d)(ĥ0 + ĥ1) + 2te.

On the other hand,

ĥ(Qi) = ⟨Pi, τ(Pi+1)⟩+ ĥ(Pi) + ĥ(τ(Pi+1)) = vi + ĥi + dĥi+1.

As a result, the right-hand side of the law (3) coincides with

2(v0 + v1) + 2(1 + d)(ĥ0 + ĥ1).

Equating the two sides, we obtain the statement of the lemma. □

It is time to put into play the (symmetric) Gram matrix

M2 :=

(
⟨P0, P0⟩ ⟨P0, P1⟩

∗ ⟨P1, P1⟩

)
=

(
2ĥ0 e

∗ 2ĥ1

)
.

Its determinant has the form det(M2) = 4ĥ0ĥ1 − e2. According to [42, Lemma
III.11.5], the points P0, P1 are linearly independent over Z (in the strict sense) if
and only if the matrix M2 is non-degenerate. We are able to say more by virtue
of the following theorem.

Theorem 1. If ∆ := −D det(M2) is not a square in Q, then the points P0, P1

are linearly independent over Z[τ ].

Proof. Introduce yet another (symmetric) Gram matrix

M4 :=


⟨P0, P0⟩ ⟨P0, τ(P0)⟩ ⟨P0, P1⟩ ⟨P0, τ(P1)⟩

∗ ⟨τ(P0), τ(P0)⟩ ⟨τ(P0), P1⟩ ⟨τ(P0), τ(P1)⟩
∗ ∗ ⟨P1, P1⟩ ⟨P1, τ(P1)⟩
∗ ∗ ∗ ⟨τ(P1), τ(P1)⟩

.

By applying again Lemma 1 and the formula (1), it is easily checked that

M4 =


2ĥ0 tĥ0 e v0
∗ 2dĥ0 v1 de

∗ ∗ 2ĥ1 tĥ1

∗ ∗ ∗ 2dĥ1

.
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The points P0, P1 are independent over Z[τ ] if and only if P0, τ(P0), P1,
τ(P1) are independent over Z, that is, the matrix M4 is non-degenerate. To
avoid manual computation of its determinant the reader can resort to the code
[30] written in Magma. It says that after the substitution v0 = te−v1 (cf. Lemma
2) we have:

det(M4) = ρ(v1)
2, where ρ(v1) := v21 − tev1 + (de2 +Dĥ0ĥ1).

Further, the discriminant of the quadratic Q-polynomial ρ equals

disc(ρ) = (te)2 − 4(de2 +Dĥ0ĥ1) = D(e2 − 4ĥ0ĥ1),

which is nothing but ∆ in the statement of the theorem. If
√
∆ ̸∈ Q, then the

polynomial ρ does not have roots in the field Q. Since v1 is on the contrary a
rational number, ρ(v1) ̸= 0 and thus the matrix M4 is non-degenerate. □

Lemma 3. Assume that the initial curve E is not isogenous to a curve of j-
invariant 1728 (i.e., of D = −4). If in addition e = 0 and ĥ0 = ĥ1, then the
premise of Theorem 1 is fulfilled.

Proof. Under the lemma conditions, ∆ = −4Dĥ2
1. Consequently,

√
∆ ∈ Q if and

only if
√
−D ∈ Q or, equivalently, D = −4c2 for some c ∈ N. This amounts to

the fact that E is vertically isogenous (necessarily over Fq) to a certain curve of
j = 1728 as stems, e.g., from [25, Theorems 25.1.2 and 25.4.6]. The lemma is
proved. □

3 Generation of two “independent” points

First of all, let’s specify for self-completeness (in Algorithm 1) the naive try-and-
increment method of generating just one point in E(Fq).

Algorithm 1: Naive generation method of one point

Data: a seed ∈ {0, 1}∗ and a cryptographic hash function η : {0, 1}∗ → Fq.
Result: a point in E(Fq).
begin

i := 0;
x := η(seed||i);
while

( f(x)
q

)
= −1 do

i := i+ 1;
x := η(seed||i);

end

y :=
√

f(x);
return (x, y).

end
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In this section, we will deal solely with points P0, P1 ∈ E(F ) independent
over Z[τ ]. In particular, they are of infinite order. It is necessary to give a strict
definition of “independent” Fq-points on E. It is reasonable to consider for this
role the specializations P0(u), P1(u) at an element u ∈ Fq. Of course, the re-

duction E(u) is assumed to be Fq-isomorphic to E, that is,
√

g(u) ∈ Fq. We
are obliged to require independence of P0, P1 over Z[τ ], not only over Z. The
fact is that in the cryptographic context the group E(Fq) is cyclic. Thereby, the
endomorphism τ acts on E(Fq) as the scalar multiplication [λ], where λ is one
of the two roots of the polynomial mτ modulo the group order.

Evidently, there are at most a finite number of elements u at which P0, P1, or
g is not correctly defined. Besides, it is worth emphasizing that logP0(u)(P1(u))
may be in principle a simple instance of the discrete logarithm problem (DLP)
for specific u. Sometimes, the equality P0(u) = P1(u) even takes place. However,
for general u, the DLP between P0(u), P1(u) seems intractable. Otherwise, it
would be surprising and perhaps would affect solving the DLP for two abstract
points of E(Fq).

The new try-and-increment method of generating two “independent” points
in E(Fq) is formalized in Algorithm 2. Up to an F -isomorphism of E , it is enough
to take g ∈ Fq[u]. This permits to avoid the inversion operation in Fq during the
evaluation g(u). It is of paramount importance to pick a canonical seed and
a cryptographically strong hash function η. Failing that, a dishonest entity can
choose a value u (and then a preimage from η−1(u)) for which the samples P0(u),
P1(u) are weak from the viewpoint of the DLP. The same security requirement
has to be respected in the case of Algorithm 1 executed twice.

Algorithm 2: New generation method of two “independent” points

Data: a seed ∈ {0, 1}∗ and a cryptographic hash function η : {0, 1}∗ → Fq,
a polynomial g ∈ Fq[u] and points (x0, y0), (x1, y1) ∈ Eg(F ) independent over
Z[τ ].
Result: two “independent” points in E(Fq).
begin

i := 0;
u := η(seed||i);
while

( g(u)
q

)
= −1 do

i := i+ 1;
u := η(seed||i);

end

v :=
√

g(u);
return

(
x0(u), vy0(u)

)
,
(
x1(u), vy1(u)

)
.

end

It remains to concretize the second data line of Algorithm 2 to bring it to
mind. Given two elliptic Fq-curves Ei of j-invariant ̸= 0, 1728 (equivalently, the
coefficients a, b ̸= 0), Mestre [33] and Kuwata–Wang [31] separately found a
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function g ∈ F and two non-torsion points Pi ∈ Eg
i . Whenever E1 is a quadratic

twist of E0 (unique over Fq), their result gives rise to a natural deterministic map
Fq → (E0×E1)(Fq) or just Fq → E0(Fq) if we do not need a point in E1(Fq). The
latter map is known in the cryptographic literature under the name simplified
SWU map [15, Section 7], [46, Section 4.1]. By the way, its bottleneck likewise
consists in extracting one square root in Fq.

Here, we are on the contrary interested in the tweaked case E0 = E1 =: E.
Roughly speaking, constant-timeness is sacrificed for the second point on the
same curve. In this case, Mestre–Kuwata–Wang’s formulas have the form

x0 :=
b(u6 − 1)

au2(1− u4)
, x1 := x0u

2, y := u3.

These functions satisfy the equation f(x0)y
2 = f(x1). Therefore, we possess the

points
P0 := (x0, 1), P1 := (x1, y) (4)

on the twist E = Eg with respect to

g := f(x0) =
f(x1)

y2
=

num

den
,

where

num := b
(
b2u12 + 3b2u10 + (a3 + 6b2)u8 + (2a3 + 7b2)u6 + (a3 + 6b2)u4 + 3b2u2 + b2

)
,

den := −
(
au2(u2 + 1)

)3
.

All the above formulas are verified in Magma [30].
Furthermore, this computer algebra system allows to compute the canonical

height (pairing). Be careful, Magma’s height ĥ is two times larger than in the

definition (2), while the pairing ⟨·, ·⟩ is consistent. It turns out that ĥ0 = ĥ1 = 2
and e = 0 for the current points P0, P1. Consequently, det(M2) = 16 ̸= 0 and so
P0, P1 are independent over Z, confirming the fact already established in [33].
Thus, the Mordell–Weil rank r of E , i.e., the rank of E(F ) is no less than 2.
In accordance with Theorem 1 and Lemma 3, the points P0, P1 are moreover
independent over Z[τ ] (in particular, r ⩾ 4) unless E is isogenous to a j = 1728
curve denoted by E4. If so, this does not imply that there is a Z[τ ]-dependency
between P0, P1. We just do not know an answer concerning this question.

Even if E ∼ E4, another pair of short F -points on E probably exists for which
the premise of Theorem 1 holds. Nonetheless, there is no essential advantage of
such a curve E as compared with E4 itself. First, a (multi-)scalar multiplication
on E is slower than on E4, because the latter enjoys the GLV decomposition
technique [25, Section 11.3.3] with an order 4 automorphism as τ . And second,
the curve E is not much secure than E4, generally speaking. With rare exception,
we are able to reduce the DLP from E to E4 by evaluating an Fq-isogeny E → E4

(of degree c =
√
−D/2) in a polylogarithmic time. These words are justified by

the recent breakthrough [36] (cf. [37]) in evaluating isogenies of large prime
degrees, not to mention those of smooth degrees (see, e.g., [25, Section 25.6]).
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In fact, Fq-curves E4 are not so popular among implementers in contrast
to Fq-curves E3 of j-invariant 0. This is due to the fact that Aut(E3) ≃ Z/6 is
greater than Aut(E4) ≃ Z/4. As a consequence, curves E3 have more symmetries
than ones E4, which impacts on performance of various cryptographic primitives
such as pairings [22, Section 3.2.5]. To sum up, Algorithm 2 instantiated by the
points (4) is always relevant in real-world cryptography unless j(E) = 0. In turn,
the previous source [29] treats this special case by providing a generator up to
four “independent” Fq-points on E3. If desired, a multi-point generator can be
likewise constructed without any problems for curves E4. The author is sure
about that, because as well as for F -curves of j = 0, there are many F -curves
of j = 1728 having moderate Mordell–Weil ranks (see again [33]).
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4 Appendix. Relationship of algebraic surface
cryptography and isogeny-based cryptography

Consider two elliptic curves Ei : y
2
i = fi(xi) := x3

i + aixi + bi (where i ∈ {0, 1})
over a finite field Fq of characteristic > 3. Let’s introduce the Kummer surface
K := (E0 × E1)/[−1] discussed, e.g., in [40, Example 11.6 and Section 11.2.1].
It has the form

K : f0(x0)y
2 = f1(x1) ⊂ A3

(x0,x1,y)
, where y :=

y1
y0

.

For the sake of compactness, put F := Fq(x0). The F -curve K ⊂ A2
(x1,y)

is the
quadratic twist of E1 with respect to f0. In Section 3 we already encountered K
in the case E0 = E1.

As said in [41, Proposition 3.1], there is the natural group isomorphism

Φ : K(F ) → Hom(E0, E1)⊕E1(Fq)[2]
(
X1(x0), Y (x0)

)
7→
(
X1(x0), Y (x0)y0

)
,

where Hom(E0, E1) is the group of all Fq-isogenies E0 → E1. Moreover, taking
into account the definition (2), we have:

2ĥ(P ) = h(P ) = deg(Φ(P ))

for each P ∈ K(F ). In other words, Hom(E0, E1) turns out to be a Mordell–Weil
lattice (up to the multiplication by 2). Among other things, K(F )tor ≃ E1(Fq)[2]
and K(F ) is of rank

r =

0 if E0 ̸∼Fq E1,
2 if E0 ∼Fq E1 and End(Ei) are quadratic orders,
4 if E0 ∼Fq E1 and End(Ei) are (maximal) quaternion orders.

(5)

Here, End(Ei) := Hom(Ei, Ei) as usual. In contrast to the first two cases, the
last one is possible only for the supersingular curves Ei. In this way, K (as a
surface) is said to be supersingular too (see, e.g., [40, Section 12.4]).

The above view on isogenies allows to reformulate the famous isogeny-finding
problem (IFP) for the two given elliptic curves Ei. In the new notation, it consists
in searching for a non-torsion F -point on K. Note that Mestre–Kuwata–Wang’s
formulas give (if ai, bi ̸= 0) a rational Fq-curve on the Kummer surface K, but
it is not the image of an F -point on K as a curve. The task under consideration
is a specific instance of the so-called section-finding problem (SFP) on an irre-
ducible (not necessarily elliptic) F -curve C ⊂ A2. Let’s dive into a brief historical
excursion on the topic.

Based on the SFP, Akiyama–Goto invented (in a series of works [3,4,5]) a
type of PQC under the name algebraic surface cryptography (ASC). To be more
precise, they proposed several versions of some public-key encryption scheme.
Afterwards, all their ciphers were fully broken in [24,27]. The last noteworthy
attempt to repair the ASC encryption scheme was timed to the NIST PQC
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competition. Akiyama–Goto in collaboration with many other Japanese cryp-
tographers announced a cryptosystem dubbed Giophantus [6,7]. However, the
latter was also successfully attacked in [12,21].

It is worth stressing that the original SFP itself remains resistant (even to
a quantum computer) provided an appropriate choice of parameters. Generally
speaking, the given problem boils down (in a natural way) to solving a large
system of polynomial equations, which is intractable at the moment. In the
situation C = K, the SFP in addition becomes equivalent to the IFP. This
makes the SFP more reliable, because numerous isogenists fail to break the IFP.
Besides, it happened historically that in ASC the coordinates of F -points on C
have small degrees. Nevertheless, without any problems they can have smooth
degrees to resemble even more chains of short isogenies.

Several years ago, Voloch [45] tried to revive ASC. Instead of public-key
encryption, he discusses possibility of constructing a commitment scheme based
on the SFP. This is relevant, because the Pedersen commitment is not quantum-
safe. In order to prevent from obvious cheating in Voloch’s commitment, the
curve C has to have a unique F -point. This requirement seems quite restrictive
and thereby affects negatively ease of generating the desired curve C.

One year later, Sterner [44] invented a similar commitment scheme in the
language of supersingular isogenies, that is, for the supersingular C = K. Unfor-
tunately, he missed Voloch’s article. According to (5), there are a lot of F -points
on K, hence this curve does not meet the uniqueness requirement. Sterner cir-
cumvented this trouble with the help of a trusted setup, whose goal is to return
a random starting curve E0 with unknown End(E0). In this circumstance, the
committer knows solely the initial F -point on K corresponding via Φ to a cyclic
isogeny. The fact is that having another “cyclic” F -point amounts to obtaining
a non-trivial endomorphism on E0.

To summarize, the present appendix establishes an unexpected connection
between two areas of PQC that earlier seemed too far from each other. Con-
sequence of the new notice is twofold. On the one hand, this should animate
research on ASC, which is in long-term decline in comparison with popular IBC.
Perhaps, certain isogeny-based schemes may be carried over to the more general
setting C ̸= K. Who knows if this will lead to a faster or more compact cryp-
tosystem for a carefully chosen curve C. On the other hand, attacks discovered in
ASC may be potentially extended to some suspicious protocols on isogenies. The
author hopes that the isomorphism Φ (despite its elementary form) will become
the cornerstone to bring together representatives of the two PQC communities.
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