
New SIDH Countermeasures
for a More Efficient Key Exchange

Andrea Basso1 and Tako Boris Fouotsa2

1 University of Bristol, Bristol, United Kingdom
andrea.basso@bristol.ac.uk

2 EPFL, Lausanne, Switzerland
tako.fouotsa@epfl.ch

Abstract. The Supersingular Isogeny Diffie-Hellman (SIDH) protocol has been the main and most
efficient isogeny-based encryption protocol, until a series of breakthroughs led to a polynomial-time
key-recovery attack. While some countermeasures have been proposed, the resulting schemes are
significantly slower and larger than the original SIDH.
In this work, we propose a new countermeasure technique that leads to significantly more efficient
and compact protocols. To do so, we introduce the concept of artificially oriented curves, which are
curves with an associated pair of subgroups. We show that this information is sufficient to build
parallel isogenies and thus obtain an SIDH-like key exchange, while also revealing significantly less
information compared to previous constructions.
After introducing artificially oriented curves, we formalize several related computational problems
and thoroughly assess their presumed hardness. We then translate the SIDH key exchange to the
artificially oriented setting, obtaining the key-exchange protocols binSIDH, or binary SIDH, and
terSIDH, or ternary SIDH, which respectively rely on fixed-degree and variable-degree isogenies.
Lastly, we also provide a proof-of-concept implementation of the proposed protocols. Despite being
implemented in a high-level language, terSIDH has very competitive running times, which suggests
that terSIDH might be the most efficient isogeny-based encryption protocol.

1 Introduction

Given two elliptic curves, finding an isogeny between them is widely believed to be a computationally
hard problem. This has led to the development of several cryptographic protocols, whose security relies
on the hardness of some isogeny-related problem. While the first constructions date back to 1996 [Cou06],
the first practical isogeny-based protocol was the Supersingular Isogeny Diffie-Hellman (SIDH) key
exchange [JD11]. After a decade of improvements and analysis, the protocol became the most efficient
and well-known encryption scheme from isogenies, and it progressed through the four rounds of the NIST
standardization process.

The security of the protocol, however, did not rely on the pure isogeny problem: finding an isogeny
between two supersingular curves. The problem is hard, but its lack of structure makes it hard to obtain
cryptographic functionalities off it. Thus, SIDH needed to reveal additional information in the form of
torsion images: not only were the domain and codomain of the secret isogenies known, but also their
actions on a torsion subgroup of coprime order. This additional information has been studied over the
years, and it has been shown to lead to some active attacks [GPST16] and key-recovery attacks when
the endomorphism ring of the two curves is known [GPST16] or when the protocol uses unbalanced
parameters [Pet17,dQKL+21]. However, all these attacks came short of affecting the security of SIDH.
The situation changed when a series of works [CD23,MMP+23,Rob23] developed a polynomial-time attack
against SIDH for all possible parameters.

These attacks do not affect other isogeny-based protocols, such as CSIDH [CLM+18] and SQISign [DKL+20],
but they affect those protocols that reveal images of torsion points, such as SÉTA [DdF+21]. Some
countermeasures against the SIDH attacks have been proposed [FMP23]: they are based on scaling the
torsion images (M-SIDH) or computing variable-degree isogenies (MD-SIDH). However, the complexity of
the attacks against these protocols scale with number of distinct primes dividing the isogeny degrees:
thus, to be secure, these protocols require extremely large parameters, which lead to high running times
and communication costs.

Besides M-SIDH and MD-SIDH, the only valid encryption protocols based on isogenies are CSIDH [CLM+18],
pSIDH [Ler22], and FESTA [BMP23]. However, the first two are both vulnerable to a subexponential

quantum attack [Pei20], which makes it hard to estimate the quantum security of a given parameter set.
The more conservative estimates require large primes, which lead to impractically inefficient running
times [CSCDJRH22]. While pSIDH has never been implemented, we can expect even lower efficiency
than CSIDH, which leaves no practical encryption protocols based on isogenies. Very recently, the SIDH
attacks were used constructively to develop a new public-key encryption protocol, FESTA. While the
initial results are encouraging, the lack of an optimized implementation makes it hard to estimate the
practicality of its running times.

In this work, we aim to fill the gap by proposing new countermeasures against the SIDH attacks
that lead to a practically efficient SIDH-like key-exchange protocol. To do so, we introduce the concept
of artificial orientations: an artificial A-orientation A on a supersingular curve E is a pair of cyclic
disjoint subgroups of E[A] of order A. Given an artificial orientation A = (G1, G2), an A-isogeny ϕ
is an isogeny whose kernel is a cyclic subgroup of G1 ⊕ G2. In other words, ϕ can be written as the
composition ϕ = ϕ2 ◦ ϕ1, where kerϕ1 ⊂ G1, kerϕ2 ⊂ ϕ1(G2), and the degrees of ϕ1 and ϕ2 are coprime.
While an artificial orientation does not reveal the same information as a real orientation [CK20], it
provides an interpolation between the original SIDH construction and the oriented protocols, such as
CSIDH [CLM+18], OSIDH [CK20], and SCALLOP [DFFK+23]. On one hand, artificial orientations and
their images provide enough information to compute parallel isogenies, similarly to torsion images in
SIDH; on the other, orientations always imply an artificial orientation, because given an orientation it
is possible to recover the images of two cyclic disjoint groups, i.e. an artificial orientation. For example,
in CSIDH, the images of the groups ker(π − 1) ∩ E[ℓ] and ker(π + 1) ∩ E[ℓ] under the secret isogeny
ϕ : E → E′ are given by ker(π − 1) ∩ E′[ℓ] and ker(π + 1) ∩ E′[ℓ], respectively [CHM+23, Section 6.1].

Contributions. In this paper, we formalize the concept of artificial orientations and introduce some
computational problems related to artificially oriented isogenies. We thoroughly assess the presumed
hardness of these problems and we survey potential attacks. Then, we propose binSIDH, or binary SIDH,
the first protocol that translates SIDH to the artificially-oriented setting. As in SIDH, this key exchange
is limited to fixed-degree isogenies, which is helpful to develop constant-time implementations and
zero-knowledge proofs of isogeny knowledge. Then, we generalize binSIDH to the case of variable-degree
isogenies to obtain terSIDH, or ternary SIDH, which achieves smaller parameters.

The two protocols, binSIDH and terSIDH, require both parties to use artificially oriented isogenies,
which results in a balanced protocol where the computational requirements of both parties is similar. We
thus propose a new technique that allows one party to compute SIDH-like isogenies, at the cost of the
other party computing longer oriented ones. This allows one party to be significantly more efficient, which
is particularly useful in advanced protocols between clients and servers with unbalanced computational
power: not only the client can be more efficient than the server, but if the protocol requires proofs of
isogeny knowledge, those of the client can be computed much more efficiently as well. Since the same
technique can be applied to binSIDH and terSIDH, we obtain two new variants: binSIDHhyb and terSIDHhyb.

Lastly, we generate parameter sets for all four protocols, for all security levels, and we provide a
SageMath proof-of-concept implementation of all proposed protocols. Despite being implemented in a high-
level language, terSIDH has very competitive running times when compared to existing implementations
of other isogeny-based encryption schemes.

2 Preliminaries

In this section, we briefly introduce the SIDH protocol and the recent key-recovery attacks. For more
background information on elliptic curves and isogenies, we refer the reader to [Sil09].

2.1 SIDH

SIDH, or Supersingular Isogeny Diffie-Hellman [JD11], is a key-exchange protocol based on isogenies
between supersingular elliptic curves. The main protocol parameter is a prime p of the form p = ABf − 1,
where A = 2a and B = 2b, and a starting supersingular curve E0 defined over Fp2 . The protocol also
specifies two bases PA, QA and PB , QB that generate, respectively, E0[A] and E0[B].

The first party, say Alice, generates her public key by sampling a random secret key skA = α ∈ ZA,
computing the isogeny ϕA : E0 → EA with kernel kerϕA = ⟨PA+[α]QA⟩, and revealing pkA = (EA, RA =

2

ϕA(PB), SA = ϕA(QB)). The second party, say Bob, proceeds analogously with an isogeny of degree B:
he samples skB = β ∈ ZB , computes the isogeny ϕB : E0 → EB with kernel kerϕB = ⟨PB + [β]QB⟩, and
reveals pkB = (EB , RB = ϕB(PA), SB = ϕB(QA)). Then, after exchanging public keys, both parties can
obtain the same shared secret by computing the push-forward of their isogeny under the other party’s
isogeny. Concretely, Alice computes the isogeny ϕ′A : EB → EAB with kernel kerϕ′A = ⟨RB + [α]SB⟩ =
ϕB(kerϕA), while Bob computes the isogeny ϕ′B : EA → EBA with kernel kerϕ′B = ⟨RA + [b]SA⟩ =
ϕA(kerϕB). The two isogenies are the correct push-forwards, and thus ϕA, ϕB , ϕ′A, ϕ

′
B form a commutative

diagram. Hence, the codomain curves EAB and EBA are isomorphic, and their j-invariant is the shared
secret known to both Alice and Bob.

2.2 Polynomial time attacks on SIDH

The security of the SIDH protocol relies on the hardness of recovering a secret isogeny from its action on
a torsion basis. In a series of works by Castryck and Decru [CD23], Maino, Martindale, Panny, Pope and
Wesolowski [MMP+23], and Robert [Rob23], the authors show the problem can be solved in polynomial
time when the torsion information is sufficiently large compared to the degree of the isogeny. This leads
to an efficient key-recovery attack on all instances of SIDH.

The attacks slightly vary in their techniques, but they all rely on Kani’s theorem [Kan97], which
states that given an SIDH square with specific properties, there exists a genus-two isogeny between the
abelian surface obtained by gluing two curves in the SIDH square to the abelian surface obtained by
gluing the other two curves in the square. It is possible to generate an SIDH square with the desired
properties and compute the genus-two isogeny from the image points revealed in SIDH; evaluating such
an isogeny allows an attacker to evaluate the secret isogeny on any point, which in turn can be used to
recover the secret isogeny.

For the purpose of this work, the SIDH attacks can be abstracted as a generic algorithm that recovers
a isogeny ϕ : E0 → E1 of degree d when it receives the curves E0, E1, the degree d, and the points P0, Q0

and ϕ(P0), ϕ(Q0), where P0, Q0 are linearly independent points of order n and n2 ≥ d. There is no known
technique that allows extending such attacks to a case where the image points are not known exactly:
indeed, all attacks on the proposed countermeasures [FMP23], as well as the potential attacks discussed
in this work, need to recover the exact torsion images to apply the attacks.

3 Artificial orientations

In this section, we introduce artificial orientations, the main ingredient that powers the countermeasures
against the SIDH attacks. Unless stated otherwise, the integers A and B are assumed to be smooth and
co-prime.

Artificial orientations are composed of two independent subgroups. This is formalized in the Definition 1,
and we provide more information on how to explicitly compute such isogenies in Eq. (2) in Section 4.1.

Definition 1. Let E be a supersingular curve defined over Fp2 , and let A be an integer. An artificial
A-orientation (of E) is a pair A = (G1, G2) where G1, G2 ⊂ E[A] are cyclic groups of order A and
G1 ∩G2 = {0}. (E,A) is called an artificially A-oriented curve.

Given an artificially A-oriented curve (E,A), one can compute a range of isogenies whose kernels arise
from A = (G1, G2). We formalize this concept, which we call A-isogenies, in the following definition.

Definition 2. Let (E,A) where A = (G1, G2) be an artificially A-oriented curve. An isogeny ϕ : E → E′

is said to be an A-isogeny if kerϕ is the direct sum of a subgroup of G1 and a subgroup of G2, that is
kerϕ = H1 ⊕H2 where Hi is a subgroup of Gi for i = 1, 2.

If (E,A) is an artificially A-oriented curve and ϕ : E → E′ is a non-trivial A-isogeny, then the artificially
A-orientation on E cannot be carried onto E′ through ϕ. In fact, since ϕ is non-trivial and kerϕ is the
direct sum of a subgroup of G1 and a subgroup of G2, then at least one of the groups ϕ(G1) and ϕ(G2)
has order strictly smaller than A. In order to be able to carry the artificially A-orientation on E onto E′

it is necessary that the degree of the isogeny considered is coprime to A. We have to following definition
for artificially A-oriented B-isogenous curves.

3

Definition 3. Let (E,A) and (E′,A′) be two artificially A-oriented curves and let B be an integer
coprime to B. We say that (E,A) and (E′,A′) are B-isogenous if there exist an isogeny ϕ : E → E′

of degree B such that A′ = ϕ(A), that is if A = (G1, G2) and A′ = (G′
1, G

′
2), then G′

1 = ϕ(G1) and
G′

2 = ϕ(G2).

Remark 4. Note that B-isogenous oriented curves include images of subgroups. These can be represented
by a choosing a random generator. Thus, fixed generators ⟨P1⟩ = G1 and ⟨P2⟩ = G2, the subgroups G′

1

and G′
2 are represented by [α]ϕ(P1) and [β]ϕ(P2) respectively, for some unknown α, β ∈ ZA.

3.1 A comparison of A-isogenies with existing techniques

In this section, we discuss the main differences between artificially oriented isogenies and isogenies arising
from group actions (real orientations) on one hand, SIDH-like isogenies and M-SIDH-like isogenies.

A-isogenies vs group actions. Artificially oriented isogenies share similarities with those that arise from
group actions, such as the isogenies in CSIDH, OSIDH, and SCALLOP. In both instances, isogenies are
restricted to specific subsets of all possible isogenies, and the action of secret isogenies on two independent
subgroups is revealed. However, artificially oriented isogenies are significantly different from those in
CSIDH and SCALLOP: first, given any supersingular curve, it is always possible to attach an artificial
orientation to it, unlike in CSIDH, where the curves need to be defined over Fp and the orientation is
already available through the Frobenius; or SCALLOP, where not all supersingular curves are oriented
and a real orientation needs to be provided. Most importantly, artificial orientations do not give rise to a
commutative group action like in real orientations, which means that the quantum subexponential attack
by Childs, Jao, and Soukharev [CJS14] does not apply. Similarly, artificial orientations are also immune
to the attacks on OSIDH [DD21].

A-isogenies vs SIDH. The main difference between SIDH-like isogenies and artificially A-oriented
isogenies is the amount of information needed to compute their push-forwards. In the SIDH case, the
kernel of the isogeny (say ψ) is generated by a point of the form P + [α]Q. The kernel of the push-forward
of ψ through ϕ is generated by the point ϕ(P) + [α]ϕ(Q). Therefore, the images of torsion points P
and Q are needed in order to compute the push-forward of ψ through ϕ. Conversely, A-isogenies are
limited to those that arise from A. Hence, only the push-forward of the artificial orientation is needed,
which means only the images of two cyclic torsion groups are revealed. This prevents torsion point
attacks [Pet17,dQKL+21,CD23,MMP+23,Rob23].

A-isogenies vs M-SIDH. In M-SIDH and MD-SIDH [FMP23], isogenies are defined as in SIDH, but
to compute their push-forwards, the torsion points images are revealed while scaled (or masked) with the
same scalar β. This means that instead of revealing ϕ(P) and ϕ(Q) as in SIDH, one reveals [β]ϕ(P) and
[β]ϕ(Q). This is significantly more information than what is revealed to compute the push-forwards of
A-isogenies, since the image of an artificial orientation is equivalent, as discussed in Remark 4, to revealing
[α]ϕ(P) and [β]ϕ(Q), for independent values α and β. From a subgroup perspective, push-forwards of
A-isogenies require the images of two cyclic disjoint subgroups, whereas M-SIDH reveals two image points
scaled with the same value, which is equivalent to the images of three cyclic disjoint groups of order
ord(P) (see [BKM+21, Lemma 1] and [FP22, Lemma 1]).

3.2 Security assumptions

Having introduced artificial orientations, we now introduce three computational problems that relate
to artificially oriented curves and isogenies. The first problem, which we refer to as the Supersingular
Isogeny Problem for artificially A-oriented curves (SSIP-A), asks to recover an isogeny given its domain,
together with an artificial orientation, and its codomain, together with a compatible orientation.

Problem 5 (SSIP-A). Let (E,A) be an artificially A-oriented curve and let B be an integer coprime to
A. Let ϕ : E → E′ be a cyclic isogeny of degree B and let A′ = ϕ(A). Given (E,A) and (E′,A′) and the
degree deg ϕ, compute ϕ.

4

In Problem 5, there is no constraint on the isogeny ϕ, apart from its degree being B. When an artificial
B-orientation B is provided on E, then one may restrict to B-isogenies. This leads to the (supersingular)
Artificially Oriented Isogeny Problem (AOIP).

Problem 6 (AOIP). Let (E,A) an artificially A-oriented curve and let B be an integer coprime to B.
Let B be an artificial B-orientation on E. Let ϕ : E → E′ be a cyclic B-isogeny of degree B and let
A′ = ϕ(A). Given (E,A) and (E′,A′), compute ϕ.

We can also study a problem that is, in some sense, the converse of Problem 5. Rather than considering
general isogenies and the image of an artificial orientation, we can focus on the case where the isogeny
is artificially oriented, but more torsion image information is revealed. This is summarized in the
Supersingular Isogeny Problem for B-isogenies (SSIP-B) problem.

Problem 7 (SSIP-B). Let (E,A) be an artificially A-oriented curve and let B be an integer coprime to
A. Let ϕ : E → E′ be a cyclic A-isogeny of degree A, with B ≪ A. Given (E,A), the curve E′ and the
unscaled image of the B-torsion ϕ(E[B]), compute ϕ.

Such a problem can be solved with the techniques introduced in the SIDH attacks [CD23,MMP+23,Rob23].
However, as we will see in Section 5, it is useful to study Problem 7 for those parameters where the SIDH
attacks do not apply.

3.3 Hardness analysis

In this section, we study the computational problems that we introduced, analyze potential attacks, and
justify their assumed hardness.

Finding an isogeny from the orientation image. The first problem, Problem 5 is already known in
the literature, as it was recently introduced with a different notation in [BMP23, Problem 7], where it
was called the Computational isogeny with scaled-torsion (CIST) problem. As argued in [BMP23], the
problem appears to be hard because the images of two subgroups do not provide enough information for
the SIDH attacks to be applicable. Given two images [α]ϕ(P) and [β]ϕ(Q), scaled by independent values
α and β, an attacker can easily recover the product αβ from pairing computations, but this is similarly
insufficient to recover the exact images that would enable the SIDH attacks. An attacker may attempt
to bruteforce the missing information, but this is computationally infeasible if the degree of the secret
isogeny is sufficiently long, which in turn makes the order of the torsion information to be guessed large
enough for the attack to be infeasible. Note that the information revealed in Problem 5 is comparable to
that in CSIDH and SCALLOP, and significantly less than that in M-SIDH and MD-SIDH. It is thus likely
that an attack that can solve Problem 5 in its most general form, can do so for such protocols as well.

Since not enough information is revealed for the SIDH attacks to apply, the attack on starting curves
with small endomorphisms [FMP23] does also not apply here. It is thus possible to choose a starting
curve with known endomorphism ring. Very recent analysis [CV23] has shown it is possible to recover an
isogeny from its scaled action and thus solve Problem 5 when the starting curve E0 and the corresponding
orientation have specific properties relative to the Frobenius conjugate of E0. It is thus important to
select parameters that avoid these issues; since the endomorphism ring of the starting curve can be public,
this can be done in a transparent manner without the need of a trusted setup.

Finding an oriented isogeny from the orientation image. In Problem 6, the degree of the isogeny
ϕ is not necessarily known: the degree of a B-isogeny can range across all values dividing the order B of
the subgroups in B, which poses a first barrier to the application of the SIDH attacks. However, even
if we restrict to isogenies of full degree, i.e. deg ϕ = B, the torsion information that is revealed is the
same as that in Problem 5, and thus a similar analysis follows. The fact that the unknown isogeny is
a B-isogeny does not interact in any meaningful way with the SIDH attacks or the revealed torsion
information: as such, it appears to be hard for an attacker to exploits such attacks to solve Problem 6.
Hence, it seems likely that any attack would have to disregard the artificial orientation and focus on
recovering an isogeny between two given curves; however, since the isogeny is a B-isogeny, this problem is
easier than the general case.

5

First, an attacker can simply brute force all the possible isogenies. If we restrict ourselves to isogenies
of full degrees, there are 2t possible B-isogeny, where t is the numbers of primes dividing B. This suggests
that the degree of the isogeny should be the product of at least t = λ distinct primes. Second, generic
attacks to recover an isogeny between to given curves, such as the meet-in-the-middle, van Orschoot-
Wiener [vW99], Delfs-Galbraith [DG16] attacks, are not applicable since the prime characteristic and the
isogeny degree, being the product of at least λ distinct primes, are sufficiently large to make these attacks
computationally infeasible. However, it is possible to devise an enhanced meet-in-the-middle attack that
exploits the nature of the B-isogenies: fixed an attack parameter 0 ≤ t′ ≤ t, the attacker computes 2t

′

B-isogenies starting from E0. These are chosen of the largest degree, i.e. the attacker first computes
the isogenies with degree corresponding to the largest primes dividing B, so that the end curves are as
close to E′ as possible. The attacker stores the j-invariants of the codomain curves and starts a random
walk of the correct degree from E′, in the hope of finding a collision. The cost of the attack depends on
the choice of t′: the first part requires 2t

′
computations, while the second part requires computing all

the possible isogenies of a specific degree (the product of the smaller t− t′ primes dividing B, assuming
that B is square-free) starting from E′. This technique yields a better attack than a simple bruteforce
approach, and thus it would require larger parameters, albeit only moderately larger ones.

Example 8. For instance, when B is the product of the first 128 primes (the case most suitable to this
attack), the attack is optimal for t = 106, which corresponds to an attack where 2106 isogenies are
computed and 2106 j-invariants are stored in memory. Thus, to obtain λ = 128 bits of security, we would
need the B-isogeny needs to have a degree B that is the product of the t = 154 smallest primes. We
remark that the security estimates depend not only on the number of distinct primes dividing B, but also
on the size of the specific primes.

The previous attack considers an attacker that has accesses to unbounded memory. This is far from
realistic, and we can obtain better estimates of the attack possibilities when we impose an upper bound
to the amount of memory available. We follow the security analysis of SIDH [ACC+19,JAC+20], and we
limit our analysis to attackers with 280 units of memory for any security level.3 In this setting, the best
attack is a van Orschoot-Wiener version of the enhanced meet-in-the-middle attack presented before,
which allows the attacker to trade higher computational costs for a lower memory requirement. As shown
in [ACC+19], a van Orschoot-Wiener search has a computational cost of approximately

N3/2/w1/2,

where N is the number of collision points and w is the memory units available. In our case, we have
N = 2t

′
, and w = 280. This suggests that, for λ = 128, this attack outperforms a bruteforce search, but

only marginally. If we set the degree B to be the product of the first t distinct primes, the enhanced van
Orschoot-Wiener attack requires t = 137 (compared to t = 128, as suggested by the bruteforce attack).
However, for higher security levels, the bruteforce attack outperforms enhanced van Orschoot-Wiener
attack, because the memory bound remains constant across all security levels, and thus it has a larger
performance impact on higher security levels. Thus, for λ ∈ {192, 256}, we can choose t = λ.

The case with variable-degree isogenies follows similarly. The parameter t initially needs to be selected
to avoid the bruteforce attack, where the specific value depends on the exponents of the primes dividing B.
The enhanced MITM and vOW attacks similarly apply to the variable-degree case: in this case, however,
the enhanced vOW attack outperforms the bruteforce attack at all commonly used security levels, and
thus the parameters need to be slightly larger than what the bruteforce attack would suggest.

Finding an isogeny from the full torsion image. Lastly, Problem 7 is vulnerable to the SIDH
attacks, as discussed when introduced. However, the A-isogeny needs to have a large degree A to be
secure from the attacks outlined above, and thus the torsion points would need a large order B for the
SIDH attacks to be applicable. More precisely, the attacks are possible when B2 ≥ A, but an attacker
could guess part of the isogeny so that the remaining part is short enough to be recovered through the
SIDH attacks. This would suggest that if 2t

′
B2 ≈ A, an attacker can recover the unknown isogeny after

3 More precisely, we consider attackers that can store up to 280 j-invariants. Given the size of the primes used,
this corresponds to more than 290 bits of memory.

6

iterating through 2t
′

isogenies. This is the case for generic isogenies, but in the case of oriented ones,
the attacker can bruteforce much longer isogenies at the same cost, since there are only limited options
for any prime degree dividing A. In particular, after 2t

′
computations, the attacker obtains isogenies of

degree At′ , the product of the t′ largest primes dividing A. Thus, Problem 7 is secure against the SIDH
attacks when At′B

2 ≤ A.
Assuming this condition is satisfied, Problem 7 appears to be secure since the oriented-isogeny structure

does not interact with the revealed torsion information, which does not make the problem easier. Lastly,
before the attacks by Castryck and Decru, Maino, Martindale, Panny, Pope and Wesolowski, and Robert,
SIDH with unbalanced parameter was vulnerable to torsion-point attacks [Pet17,dQKL+21] that relied
on knowledge of the endomorphism ring of the starting curve. These attacks similarly do not apply to
Problem 7 since the torsion information is much lower than what is needed.

4 The binSIDH and terSIDH protocols

In this section, we propose two new protocols: binSIDH and terSIDH. Both protocols translate the SIDH
key exchange to the setting of artificially oriented curves and isogenies. The former restricts itself to
fixed-degree isogenies, while the latter relies on variable-degree isogenies to improve on efficiency and
compactness.

4.1 binSIDH

We first introduce binSIDH, which restricts itself to isogenies of full degree. The protocols rely on the
fact that A-oriented curves provide sufficient information to compute parallel isogenies. More formally,
let A be a product of t distinct primes A =

∏t
i=1 pi and write A = A1A2 for a multiplicative splitting

of A with gcd(A1, A2) = 1. Then, given two A-oriented curves (E,A) and (E′,A′) connected by a
B-isogeny ϕ : E → E′, where A = (⟨G1⟩, ⟨G2⟩) and A′ = (⟨G′

1⟩, ⟨G′
2⟩), the isogenies

ψ : E → E/⟨[A1]G1 + [A2]G2⟩, ψ′ : E′ → E′/⟨[A1]G
′
1 + [A2]G

′
2⟩

are parallel, i.e. we have kerψ′ = ϕ(kerψ) and the codomain curves are also B-isogenous, connected by
the isogeny ϕ′ with kernel kerϕ′ = ψ(kerϕ).

The isogenies ψ and ψ′ are thus determined by the splitting of A as A = A1A2. In other words, if we
represent the subgroups ⟨G1⟩ and ⟨G2⟩ as

⟨G1⟩ = ⟨G1
1, G

2
1, . . . , G

t
1⟩,

⟨G2⟩ = ⟨G1
2, G

2
2, . . . , G

t
2⟩,

where

{
ord(G1

i) = pi,

ord(G2
i) = pi,

(1)

then the kernel of ψ is determined by selectively choosing either Gi
1 or Gi

2 to be in the kernel of ψ, for
every i ∈ [t]. The same holds for the isogeny ψ′ and the generators G′

1 and G′
2. This suggests the following

notation: fixed an artificial A-orientation (E,A = (G1, G2)), where A =
∏t

i=1 pi, we can associate a
vector a ∈ {1, 2}t to any A-oriented isogeny ϕ by writing

kerϕ = ⟨G1
a1
, G2

a2
, . . . , Gt

at
⟩, (2)

where the points Gj
1 and Gj

2 are defined as in Eq. (1) and ai denotes the i-th element of a. Throughout
the rest of the paper, we write ⟨a,A⟩ to denote the subgroup corresponding to the orientation A with
secret vector a, as computed in Eq. (2).

We showed in Section 3.2 that we consider secure to reveal artificially oriented curves since the SIDH
attacks are inapplicable. Moreover, artificial orientations allow computations of parallel isogenies, and if
the order A is sufficiently composite, the number of potential parallel isogenies is exponentially large. That
is because the value A is the product of t distinct primes, which means there are 2t potential splittings
A = A1A2. This suggests it is possible to replicate the SIDH key exchange with artificially oriented
isogenies and to obtain a secure protocol that is immune to the SIDH attacks. We call the resulting
construction binSIDH, and we represent it in Fig. 1.

7

Setup. Let λ be the security parameter and t an integer depending on λ. Let p = ABf −1 be a prime such
that A =

∏t
i=1 ℓi and B =

∏t
i=1 qi are coprime integers, ℓi, qi are distinct small primes, A ≈ B ≈ √

p and
f is a small cofactor. Let E0 be a supersingular curve defined over Fp2 . Let A be an artificial A-orientation
on E0 and let B be an artificial B-orientation on E0. The public parameters are E0, p, A, B, A and B.

KeyGen. Alice samples uniformly at random a vector a from {1, 2}t and computes the A-oriented isogeny
ϕA : E0 → EA of degree A defined by a. She also computes the push forward B′ of B on EA through
ϕA. Her secret key is a and her public key is (EA,B

′). Analogously, Bob samples uniformly at random
a vector b from {1, 2}t and computes the B-oriented isogeny ϕB : E0 → EB of degree B defined by b.
He also computes the push forward A′ of A on EA through ϕB . His secret key is b and his public key is
(EB ,A

′).

SharedKey. Upon receiving Bob’s public key (EB ,A
′), Alice checks that A′ is an artificial A-

orientation on EB, if not she aborts. She computes the A′-oriented isogeny ϕ′A : EB → EBA

of degree A defined by a. Her shared key is j(EBA). Similarly, upon receiving (EA,B
′), Bob

checks that B′ is an artificial B-orientation on EA, if not he aborts. He computes the B′-
oriented isogeny ϕ′B : EA → EAB of degree B defined by b. His shared key is j(EAB).

Fig. 1: The binSIDH protocol.

4.2 The terSIDH variant

We now introduce terSIDH, a variant of binSIDH that is more efficient and more compact, but these
improvements come at the cost of relying on variable-degree isogenies. In binSIDH, every A-oriented
isogeny ϕ is determined by a binary choice for each prime pi dividing A: the pi-degree isogeny has kernel
generated by either Gi

1 or Gi
2. However, we can introduce a third option by allowing the isogeny to not

have a pi component. In other words, write ϕ as the composition of t isogenies ϕ = ϕt ◦ . . . ϕ2 ◦ ϕ1; then,
the isogeny ϕi has kernel generated by Gi

1, Gi
2, or O. We thus extend the notation introduced in the

previous section by letting the vector a to have entries in {0, 1, 2}, and we set Gi
0 = O for all i ∈ [t]. The

full protocol is described in Fig. 2.
Compared to binSIDH, terSIDH introduces more choices for each prime pi. In particular, it provides

three choices, which means that every pi dividing p+1 provides log2 3 ≈ 1.6 bits of security. Interestingly,
terSIDH is the first countermeasure technique against the SIDH attacks that can provide more than one bit
of security per prime pi. This means that, to provide enough security, the isogeny degrees should be at least
the product of t ≈ λ/1.6 primes, and thus terSIDH can use significantly smaller parameters and shorter
isogenies, leading to a more efficient and more compact protocol. However, to achieve this, we necessarily
rely on variable-degree isogenies. This has some disadvantages: from an implementation perspective,
the varying degree may make it harder to obtain constant-time implementations, as seen in the case
of CSIDH implementations [BBC+21,CSCDJRH22]. The other issue, as argued in [Bas23,BFGP23], is
that it appears to be hard to construct zero-knowledge proofs of variable-degree isogenies because all
known approaches invariably leak the secret isogeny degree. This causes a major issue in the development
of proofs of terSIDH public key correctness, and it may prevent terSIDH from being an SIDH drop-in
replacement for advanced constructions.

Setup. Let λ be the security parameter and t an integer depending on λ. Let p = ABf −1 be a prime such
that A =

∏t
i=1 ℓi and B =

∏t
i=1 qi are coprime integers, ℓi, qi are distinct small primes, A ≈ B ≈ √

p and
f is a small cofactor. Let E0 be a supersingular curve defined over Fp2 . Let A be an artificial A-orientation
on E0 and let B be an artificial B-orientation on E0. The public parameters are E0, p, A, B, A and B.

8

KeyGen. Alice samples uniformly at random a vector a from {0, 1, 2}t and computes the A-oriented
isogeny ϕA : E0 → EA of degree A defined by a. She also computes the push forward B′ of B on EA

through ϕA. Her secret key is a and her public key is (EA,B
′). Analogously, Bob samples uniformly

at random a vector b from {0, 1, 2}t and computes the B-oriented isogeny ϕB : E0 → EB of degree B
defined by b. He also computes the push forward A′ of A on EA through ϕB . His secret key is b and his
public key is (EB ,A

′).

SharedKey. Upon receiving Bob’s public key (EB ,A
′), Alice checks that A′ is an artificial A-orientation

on EB, if not she aborts. She computes the A′-oriented isogeny ϕ′A : EB → EBA of degree A defined
by a. Her shared key is j(EBA). Similarly, upon receiving (EA,B

′), Bob checks that B′ is an artificial
B-orientation on EA, if not he aborts. He computes the B′-oriented isogeny ϕ′B : EA → EAB of degree B
defined by b. His shared key is j(EAB).

Fig. 2: The terSIDH protocol. This is nearly the same as Fig. 1, with the main difference being that
KeyGen samples ternary secrets.

4.3 One more variant

It is possible to define a third variant of these protocols that relies on partial artificial orientations. Rather
than revealing the images of two linearly independent points G1 and G2, the protocol only reveals the
image of one point G. Then, for each Gi of coprime order that make up G, the possible isogenies are
computed by choosing whether Gi in the kernel of the isogeny or not. Using the vector notation, its
entries are chosen in {0, 1}.

Since the choice is binary, such a protocol would require similar parameters as binSIDH, while also
having the disadvantages of variable-degree isogenies discussed in the context of terSIDH. As such, it does
not appear to have any meaningful advantage over the proposed constructions. However, the information
that is revealed about the secret isogeny is less: not only its degree remains unknown, as in terSIDH,
but its action on a single cyclic group is revealed. This suggests that such a variant might be relevant if
further cryptanalytic breakthroughs affect the security of binSIDH and terSIDH.

5 An oriented/non-oriented hybrid approach

There are applications where it is desirable for one party to be significantly more efficient than the other.
For example, this is the case for resource-constrained devices communicating to powerful servers, but it
also arises in advanced constructions: for instance, in oblivious pseudorandom function protocols, it is
generally desired that the client is more efficient than the server. In this section, we propose a technique
that allows us to introduce trade-offs between the two parties and enable one participant to obtain more
efficient zero-knowledge proofs, which makes this approach more appealing for advanced protocols that
requires proofs of isogeny knowledge. This technique has the added benefit of reducing the overall prime
size for binSIDH, while the ternary variant has primes of comparable size as terSIDH.

In the previously presented protocols, both parties relied on artificially oriented isogenies to avoid the
SIDH attacks. However, the artificial orientation also requires to use significantly longer isogenies than
those used in the original SIDH protocol. This suggests that it may be possible to reveal some unscaled
torsion information without affecting the security of the protocol, and if the isogeny is sufficiently long, the
revealed torsion may be large enough to allow the computation of parallel isogenies that also guarantee
sufficient security. In other words, we can build a secure protocol through a hybrid approach where
one party computes binSIDH-like (or terSIDH-like) isogenies while the other party computes SIDH-like
isogenies.

More formally, let Bob denote the party computing binSIDH-like isogenies, which means he computes
artificially B-oriented isogenies where B = ℓ1 · · · ℓn; let Alice be the party computing SIDH-like isogenies
of degree A, i.e. isogenies whose kernel is generated by PA + [α]QA, for some secret α ∈ ZA and fixed
points PA, QA. Fix a starting curve E0, points PA, QA, and a B-orientation B = (G1, G2), Alice’s public
key consists of the codomain of her secret isogeny, together with the image of B under her secret isogeny,

9

while Bob’s public key includes the codomain of his secret B-oriented isogeny, together with the images
of PA and QA.

Since Alice is computing SIDH-like isogenies, the degree of her secret isogeny can be very smooth
(concretely, this will be a power of two); while this reduces the size of the isogeny degree of one party,
the degree of the other party needs to increase to guarantee sufficient security. Thus, the resulting prime
p is generally of comparable size to that used in binSIDH and terSIDH. With this setup, we can take
A to be considerably smaller and smoother than B; this means that Alice can be much more efficient
in computing her isogenies. Not only that, but zero-knowledge proofs of knowledge of an A-isogeny,
both ad-hoc [DDGZ22] and generic [CLL23], can be much more compact and efficient. More generally,
computing SIDH-like isogenies allows one party to fully reuse the range of techniques developed for SIDH.
The resulting schemes are described in Fig. 3.

Setup. Let λ be the security parameter and t an integer depending on λ. Let p = ABf −1 be a prime such
that A = 2a (a ≈ 2λ) and B =

∏t
i=1 ℓi are coprime integers, ℓi are distinct small odd primes, and f is a

small cofactor. Let E0 a be a supersingular curve defined over Fp2 . Let B be an artificial B-orientation
on E0 and set E0[A] = ⟨PA, QA⟩. The public parameters are E0, p, PA, QA and B.

KeyGen (Alice). Alice samples uniformly at random an integer α ∈ Z/AZ and computes ϕA : E0 → EA of
kernel ⟨PA + [α]QA⟩. Her secret key is skA = α and her public key is the artificially B-oriented curve
pkA = (EA, ϕA(B)).

KeyGen (Bob). Bob samples uniformly at random a vector b from {1, 2}t and computes the B-oriented
isogeny ϕB : E0 → EB of degree B defined by b. His secret key is skB = b and his public key is
pkB = (EB , ϕB(PA), ϕB(QA)).

SharedKey (Alice). Upon receiving Bob’s public key (EB , R, S), Alice checks that eA(R,S) = eA(PA, QA)
B ,

if not she aborts. She computes the isogeny ϕ′A : EB → EBA of kernel ⟨R + [α]S⟩. Her shared key is
j(EBA).

SharedKey (Bob). Upon receiving (EA,B
′), Bob checks that B′ is an artificial B-orientation on EA, if

not he aborts. He computes the B′-oriented isogeny ϕ′B : EA → EAB of degree B defined by b. His shared
key is j(EAB).

Fig. 3: The binSIDHhyb protocol. A similar variant, based on terSIDH, can be obtained by changing the
Bob’s KeyGen algorithm to sample vectors from {0, 1, 2}.

6 Security analysis

In this section, we analyze the security of the proposed protocols, both binSIDH and terSIDH, as well as
their hybrid variants binSIDHhyb and terSIDHhyb.

We analyzed the hardness assumptions relative to artificial orientations in Section 3.2, which guarantees
it is unfeasible for an attacker to recover a secret key from a public key. In particular, the hardness
of Problem 5 guarantees the hardness of key-recovery attacks against binSIDH and terSIDH, while the
hardness of Problem 6 and 7 protects binSIDHhyb and terSIDHhyb from key-recovery attacks. However,
the security of the key-exchange protocols, as well as any other protocol built on those, depends on the
hardness of a different problem, which we call the Artificially Oriented Computational Diffie-Hellman
(AO-CDH) problem.

Problem 9 (AO-CDH). Let the notation be as in Fig. 1. Let ϕA : E0 → EA be a A-isogeny, and
ϕB : E0 → EB be a B-isogeny. Given (EA, ϕA(B)) and (EB , ϕB(A)), compute j(EAB), where EAB is the
codomain of the push-forward of ϕA under ϕB (or vice versa).

10

The problem, as stated, guarantees the security of terSIDH. We can easily obtain similar problems for
the remaining protocols by requires that the isogenies have fixed degrees (binSIDH) or allowing one party
to use unoriented isogenies (binSIDHhyb, terSIDHhyb). We can also consider a decisional variant of these
problems, where given an additional j-invariant j′, the problem asks to determine whether j′ = j(EAB).
While the security of the proposed protocols does not depend on such decisional problems, advanced
constructions based on these protocol might require such an assumption.

The relationship between these problems and those introduced in Section 3.2 is similar to that
between the Computational Diffie-Hellman problem and the Discrete Logarithm problem, or between
the Supersingular Computational Diffie-Hellman problem and the Computational Supersingular Isogeny
problem [JD11]. While there is no reduction from the problems in Section 3.2 to Problem 9, it is likely that
any attack that breaks the proposed protocols would need to efficiently solve the problems of Section 3.2.

Remark 10. In binSIDH and terSIDH, the two parties reveal the codomain of their secret isogenies, together
with only the images of two disjoint cyclic subgroups. This is, in some sense, optimal, as it is the minimum
amount of information needed for the other party to compute the push-forwards. Thus, if any major
cryptanalytic breakthrough managed to break binSIDH and terSIDH, it seems likely that any possible
SIDH-like construction would equally be broken, including the existing countermeasures against the SIDH
attacks [FMP23].

Lastly, we analyze the choice of starting curve E0 and its effects on the security of the protocols. In
unbalanced variants of SIDH, the curve E0 could be backdoored to enable key-recovery attacks [dQKL+21],
while the M-SIDH and MD-SIDH [FMP23] are vulnerable to the SIDH attacks when the starting curve has
small endomorphisms. In the key-exchange variant, this can be solved through a trusted setup [BCC+23].
However, none of these attacks seem to apply to our protocols. In binSIDH and terSIDH, the lack of torsion
information prevents both the small-endomorphism attack from [FMP23] and the torsion-point attacks
that were used in the backdoor attack, which means that the starting curve E0 can be easily generated
and can, for instance, be chosen to be the curve satisfying j(E0) = 1728. In the case of binSIDHhyb and
terSIDHhyb, one party does reveal exact torsion information. However, the degree of the secret isogeny is
much larger than the order of the points whose image is revealed, which prevents both types of attacks.
Hence, even in binSIDHhyb and terSIDHhyb, it is secure to start from a curve of known endomorphism
ring, such as in the case when j(E0) = 1728.

6.1 Adaptive security

SIDH has been known to be vulnerable to active adaptive attacks [GPST16,FP22], i.e. attacks where the
target has a long-term static key and the attacker is a participant of the key exchange. In this section, we
show how the proposed protocols are unfortunately similarly vulnerable to adaptive attacks.

In binSIDHhyb and terSIDHhyb, one party computes SIDH-like isogenies. As such, they are vulnerable
to exactly the same attacks that SIDH is. We can thus focus on active attacks against oriented isogenies,
which covers the remaining cases.

Let us assume Alice is the target party, while Bob plays the role of the attacker; For simplicity, let us
also assume we are in the case of binSIDH, where Alice’s secret is the binary vector a ∈ {1, 2}t. The case
of terSIDH follows similarly.

Bob can use potentially malicious public keys and check whether both parties obtained the same
shared secret. In other words, the attacker has access to the following oracle:

O(E,A, j′) =

{
true if j(E/⟨a,A⟩) = j′,

false otherwise.

Write A, the order of the artificial orientation A, as A =
∏t

i=1 pi. To target the i-th bit of the secret
key ai, the attacker can honestly compute the curve EB and the image orientation A = (G1, G2) and write
Gj = H1

j ⊕ . . .⊕Ht
j for j ∈ {1, 2}, where each Hk

j has coprime order pj . Then, if Ii1 is any cyclic subgroup
of order pi such that Ii1 ∩Hi

1 = ∅, the attacker can define A′ = (G′
1, G2), where G′ is the same subgroup

as G with Hi
1 replaced by Ii1, i.e. G′

1 = H1
1 ⊕ Ii1 ⊕ . . .⊕Ht

1. The attacker can also obtain the j-invariant
jAB corresponding to the shared secret of an honest exchange and query the oracle O(EB ,A

′, jAB). If

11

the oracle returns true, the shared secret is unchanged: this means that modified subgroup did not affect
the computations, and thus ai = 2. Otherwise, the modified subgroup did change the shared secret, and
thus ai = 1.

The active attack against the proposed protocols is slightly more powerful than the GPST attack. It
does not involve carefully crafted torsion points, and it allows to target any bit of the secret key without
necessarily proceeding in order. In the PKE setting, one party can achieve long-term security with the use
of the Fujsaki-Okamoto transform [FO97], while in the key exchange setting, it is possible to obtain active
security for both parties, thus obtaining a non-interactive key exchange, by introducing a proof of public
key correctness. For artifically oriented curves, this can be achieved by adapting the zero-knowledge proof
of masked public keys from [Bas23] to work with independently scaled points.

7 Implementation

7.1 Parameter selection

Following the security analysis of Section 3.2, we generated parameter sets for the four proposed protocols
at security levels λ ∈ {128, 192, 256}.

In binSIDH and terSIDH, both parties rely on oriented isogenies, and thus the degrees corresponding
to both isogenies need to be quite large: in the case of binSIDH, at least the product of λ distinct primes.
This is reduced to λ/ log3(2) for terSIDH, since each prime provides log3(2) bits of security. To obtain a
balanced trade-off between the two parties, we assign consecutive primes to different parties; in other
words, the degree of Alice’s isogenies is the product of t even-index primes, while Bob’s isogenies degree is
the product of t odd-index primes. Moreover, the isogeny degrees need to be coprime for the key exchange
to be commutative, and thus the underlying prime necessarily needs to be larger than the product of the
first 2λ in binSIDH (2λ/ log3(2) in terSIDH). The resulting parameter sets for binSIDH and terSIDH are
summarized in Table 1, where we also list the corresponding public key sizes.

Remark 11 (Public-key compression). As in SIDH, public keys can be compressed by expressing the the
torsion points with respect to a deterministically generated basis [CJL+17]. This requires three coefficients
in SIDH since both points can be scaled by the same value without affecting the SIDH computations,
which means that one of the four coefficients can be fixed to one. In our case, however, the two points
that generate artificial orientations can be scaled independently: this means that the public keys of the
proposed protocols can be compressed to only two coefficients.

The size of the primes and public keys of binSIDH and terSIDH is a stark improvement over those of
the existing countermeasures M-SIDH and MD-SIDH [FMP23]. For instance, at λ = 128, the primes of
binSIDH and terSIDH are 2.5× and 8.8× smaller than those in M-SIDH and MD-SIDH, respectively.4

While terSIDHhyb requires larger parameters than terSIDH, binSIDHhyb manages to be smaller and more
efficient than binSIDH. When compared to M-SIDH, the underlying prime in binSIDHhyb is 2.9× smaller.

7.2 Implementation results

We developed a proof-of-concept implementation of all four protocols in SageMath [The23], based on the
Kummer Line library [Pop23] to estimate the running times of the proposed protocols5. We report the
average running times on an Apple M1 PRO CPU in Table 2.

The results of Table 2 show that the ternary variants significantly outperforms the binary ones,
especially at higher security levels. This is because binSIDH uses larger prime fields and larger-degree
isogenies than terSIDH.6 Moreover, terSIDH does not need to compute full-degree isogenies due to its
4 Interestingly, in the terSIDH case, the variable-degree isogenies allow us to achieve smaller parameters, while in

MD-SIDH, the variable-degree isogenies require larger parameters because of the information leakage due to
pairing computations.

5 The source code is available at https://github.com/binary-ternarySIDH/bin-terSIDH-SageMath
6 The specific SageMath implementation of VeluSqrt [BDFLS20] that we rely on does not outperform Velu’s

formulae [Vél71] until the isogeny degree is extremely large. We thus expect a low-level implementation to
significantly improve the computation times of high-degree isogenies, more so than for lower-degree ones.

12

https://github.com/binary-ternarySIDH/bin-terSIDH-SageMath

Alice Bob

λ log p t B |pk| |pkcmp| t B |pk| |pkcmp|

binSIDH 128 2421 134 211 1816 907 134 211 1816 909
192 3710 192 212 2783 1390 192 212 2783 1392
256 5201 256 212 3901 1949 256 212 3901 1950

terSIDH 128 1568 93 211 1176 587 93 211 1176 588
192 2295 128 211 1722 860 128 211 1722 861
256 3035 162 212 2277 1137 162 212 2277 1139

binSIDHhyb 128 2004 1 2 1503 937 203 211 1503 565
192 3126 1 2 2345 1465 296 211 2345 878
256 4267 1 2 3201 2004 387 212 3201 1195

terSIDHhyb 128 1532 1 2 1149 701 156 210 1149 447
192 2373 1 2 1780 1089 226 211 1780 690
256 3216 1 2 2412 1479 293 211 2412 932

Table 1: Parameters for binSIDH and terSIDH. The coloumn t reports the number of distinct primes
dividing the degrees of Alice’s and Bob’s isogenies, while their smoothness bound is reported in the B
column. The columns |pk| and |pkcmp| reports the size of the public keys of both parties, respectively
uncompressed and compressed.

varying-degree nature: it is thus likely that the benefits of this are reduced in a constant-time optimization.
Nonetheless, the results of terSIDH are encouraging. At security λ = 128, the SharedKey computations
take around 1.4 seconds, while key generation (which is run less often) requires about twos seconds. The
current implementation is only a proof of concept in a high-level language: we can thus expect it to be
several times faster once optimally implemented in a low-level language. Despite the lack of optimizations,
the current implementation already outperforms optimized implementations of CSIDH with parameters
sufficiently large to guarantee post-quantum security [CSCDJRH22], which require between 2.8 and 5.8
seconds to compute a group action at security level one.7 Similarly, our proof-of-concept implementation
outperforms the PoC implementation of FESTA [BMP23], which is based on the same SageMath library
and takes 3.5 seconds to encrypt and 10.1 seconds to decrypt. It is thus mostly likely that terSIDH
provides the most efficient key exchange and encryption protocol among all isogeny-based protocols.

Moreover, the results of the hybrid variants show that it is possible to have very low running times for
one party, at the cost of a slight increase in the running times of the other party. The hybrid variants
significantly reduce the overall running time of a complete key exchange.

8 Conclusion

In this work, we introduced artificial orientations, and proposed two new protocols, binSIDH and terSIDH,
that translate the SIDH key exchange to the artificially oriented isogeny setting. This allows us to
develop two protocols that are resistant against the SIDH attacks, while also achieving significantly
smaller parameters than the previously proposed countermeasures. We also proposed binSIDHhyb and
terSIDHhyb, hybrid variants of binSIDH and terSIDH respectively, that allow one party to have very short
and efficient isogenies. To validate the concrete efficiency of the protocols, we developed a proof-of-concept
implementation. Despite being far from optimal, it already outperforms existing implementations of other
isogeny-based encryption protocols, which suggests that optimized implementations of terSIDH and its
hybrid variant might have practical running times.

In future work, we are interested in developing efficient and optimized implementations of binSIDH
and terSIDH to accurately measure their running times. Moreover, this work opens up new possibilities
that were previously closed by the SIDH attacks. In particular, it is interesting to assess the impact of

7 Note, however, that these computations are constat-time, and that CSIDH does not require the Fujisaki-
Okamoto [FO99] to obtain IND-CCA security.

13

Timings (s)

λ log p KeyGenA KeyGenB SharedKeyA SharedKeyB

binSIDH 128 2421 13.69 13.86 9.40 9.46
192 3710 48.69 49.36 27.39 27.81
256 5201 140.79 140.57 94.13 95.67

terSIDH 128 1570 2.09 2.01 1.41 1.34
192 2297 6.84 6.83 4.50 4.39
256 3039 15.68 16.03 10.00 10.35

binSIDHhyb 128 2004 0.23 14.33 0.22 10.66
192 3126 0.62 56.77 0.61 42.85
256 4267 1.41 157.58 1.34 117.07

terSIDHhyb 128 1532 0.16 3.21 0.16 1.96
192 2373 0.47 13.44 0.44 10.01
256 3216 0.94 34.66 0.90 23.57

Table 2: Execution times in seconds of the SageMath proof-of-concept implementation. Since it is a PoC
in a high-level language, we expect an optimized implementation of the same protocols to be several
times more efficient.

the proposed protocols on the SIDH-based constructions, such as the round-optimal OPRF construction
by Basso [Bas23], where we expect binSIDH and terSIDH to have a significant impact in reducing prime
size and computational costs.

Acknowlegements. The first author has been supported in part by EPSRC via grant EP/R012288/1,
under the RISE (http://www.ukrise.org) programme.

References

ACC+19. Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred Menezes, and Francisco
Rodríguez-Henríquez. On the cost of computing isogenies between supersingular elliptic curves. In
Carlos Cid and Michael J. Jacobson Jr:, editors, SAC 2018, volume 11349 of LNCS, pages 322–343.
Springer, Heidelberg, August 2019. doi:10.1007/978-3-030-10970-7_15.

Bas23. Andrea Basso. A post-quantum round-optimal oblivious PRF from isogenies. Cryptology ePrint
Archive, Report 2023/225, 2023. https://eprint.iacr.org/2023/225.

BBC+21. Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael Meyer,
Benjamin Smith, and Jana Sotáková. CTIDH: faster constant-time CSIDH. IACR TCHES,
2021(4):351–387, 2021. https://tches.iacr.org/index.php/TCHES/article/view/9069. doi:10.
46586/tches.v2021.i4.351-387.

BCC+23. Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris Fouotsa, Guido Maria
Lido, Travis Morrison, Lorenz Panny, Sikhar Patranabis, and Benjamin Wesolowski. Supersingular
curves you can trust. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology –
EUROCRYPT 2023, pages 405–437, Cham, 2023. Springer Nature Switzerland.

BDFLS20. Daniel J Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster computation of
isogenies of large prime degree. Open Book Series, 4(1):39–55, 2020. doi:10.2140/obs.2020.4.39.

BFGP23. Ward Beullens, Luca De Feo, Steven D. Galbraith, and Christophe Petit. Proving knowledge of
isogenies – a survey. Cryptology ePrint Archive, Paper 2023/671, 2023. https://eprint.iacr.org/
2023/671. URL: https://eprint.iacr.org/2023/671.

BKM+21. Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Antonio Sanso. Cryptanal-
ysis of an oblivious PRF from supersingular isogenies. In Mehdi Tibouchi and Huaxiong Wang,
editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 160–184. Springer, Heidelberg,
December 2021. doi:10.1007/978-3-030-92062-3_6.

BMP23. Andrea Basso, Luciano Maino, and Giacomo Pope. FESTA: Fast Encryption from Supersingular
Torsion Attacks. Cryptology ePrint Archive, Paper 2023/660, 2023. https://eprint.iacr.org/2023/
660. URL: https://eprint.iacr.org/2023/660.

14

http://www.ukrise.org
https://doi.org/10.1007/978-3-030-10970-7_15
https://eprint.iacr.org/2023/225
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.2140/obs.2020.4.39
https://eprint.iacr.org/2023/671
https://eprint.iacr.org/2023/671
https://eprint.iacr.org/2023/671
https://doi.org/10.1007/978-3-030-92062-3_6
https://eprint.iacr.org/2023/660
https://eprint.iacr.org/2023/660
https://eprint.iacr.org/2023/660

CD23. Wouter Castryck and Thomas Decru. An Efficient Key Recovery Attack on SIDH. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, pages 423–447,
Cham, 2023. Springer Nature Switzerland. doi:10.1007/978-3-031-30589-4_15.

CHM+23. Wouter Castryck, Marc Houben, Simon-Philipp Merz, Marzio Mula, Sam van Buuren, and Frederik
Vercauteren. Weak instances of class group action based cryptography via self-pairings. Cryptology
ePrint Archive, Paper 2023/549, 2023. https://eprint.iacr.org/2023/549. URL: https://eprint.iacr.
org/2023/549.

CJL+17. Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David Urbanik.
Efficient compression of SIDH public keys. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 679–706. Springer, Heidelberg,
April / May 2017. doi:10.1007/978-3-319-56620-7_24.

CJS14. Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve isogenies in
quantum subexponential time. J. Math. Cryptol., 8(1):1–29, 2014. doi:10.1515/jmc-2012-0016.

CK20. Leonardo Colò and David Kohel. Orienting supersingular isogeny graphs. Cryptology ePrint
Archive, Report 2020/985, 2020. https://eprint.iacr.org/2020/985.

CLL23. Kelong Cong, Yi-Fu Lai, and Shai Levin. Efficient isogeny proofs using generic techniques.
Cryptology ePrint Archive, Report 2023/037, 2023. https://eprint.iacr.org/2023/037.

CLM+18. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH:
An efficient post-quantum commutative group action. In Thomas Peyrin and Steven Galbraith,
editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 395–427. Springer, Heidelberg,
December 2018. doi:10.1007/978-3-030-03332-3_15.

Cou06. Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291,
2006. https://eprint.iacr.org/2006/291.

CSCDJRH22. Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and Francisco Rodríguez-
Henríquez. The SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with
low exponents. Journal of Cryptographic Engineering, 12(3):349–368, September 2022. doi:
10.1007/s13389-021-00271-w.

CV23. Wouter Castryck and Frederik Vercauteren. A polynomial time attack on instances of M-SIDH
and FESTA. private communication, 2023.

DD21. Pierrick Dartois and Luca De Feo. On the security of OSIDH. Cryptology ePrint Archive, Report
2021/1681, 2021. https://eprint.iacr.org/2021/1681.

DdF+21. Luca De Feo, Cyprien de Saint Guilhem, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux,
Christophe Petit, Javier Silva, and Benjamin Wesolowski. Séta: Supersingular encryption from
torsion attacks. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV,
volume 13093 of LNCS, pages 249–278. Springer, Heidelberg, December 2021. doi:10.1007/
978-3-030-92068-5_9.

DDGZ22. Luca De Feo, Samuel Dobson, Steven D. Galbraith, and Lukas Zobernig. SIDH proof of knowledge.
In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part II, volume 13792 of LNCS,
pages 310–339. Springer, Heidelberg, December 2022. doi:10.1007/978-3-031-22966-4_11.

DFFK+23. Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp Merz, Lorenz
Panny, and Benjamin Wesolowski. Scallop: Scaling the csi-fish. In Alexandra Boldyreva and
Vladimir Kolesnikov, editors, Public-Key Cryptography – PKC 2023, pages 345–375, Cham, 2023.
Springer Nature Switzerland.

DG16. Christina Delfs and Steven D. Galbraith. Computing isogenies between supersingular elliptic
curves over Fp. Designs, Codes and Cryptography, 78(2):425–440, Feb 2016. doi:10.1007/
s10623-014-0010-1.

DKL+20. Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski. SQISign:
Compact post-quantum signatures from quaternions and isogenies. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 64–93. Springer, Heidelberg,
December 2020. doi:10.1007/978-3-030-64837-4_3.

dQKL+21. Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martindale, Lorenz Panny, Christophe
Petit, and Katherine E. Stange. Improved torsion-point attacks on SIDH variants. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 432–470, Virtual
Event, August 2021. Springer, Heidelberg. doi:10.1007/978-3-030-84252-9_15.

FMP23. Tako Boris Fouotsa, Tomoki Moriya, and Christophe Petit. M-SIDH and MD-SIDH: Countering
SIDH Attacks by Masking Information. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023, pages 282–309, Cham, 2023. Springer Nature Switzerland.
doi:10.1007/978-3-031-30589-4_10.

FO97. Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages
16–30. Springer, Heidelberg, August 1997. doi:10.1007/BFb0052225.

15

https://doi.org/10.1007/978-3-031-30589-4_15
https://eprint.iacr.org/2023/549
https://eprint.iacr.org/2023/549
https://eprint.iacr.org/2023/549
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1515/jmc-2012-0016
https://eprint.iacr.org/2020/985
https://eprint.iacr.org/2023/037
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w
https://eprint.iacr.org/2021/1681
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/BFb0052225

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 537–554. Springer,
Heidelberg, August 1999. doi:10.1007/3-540-48405-1_34.

FP22. Tako Boris Fouotsa and Christophe Petit. A new adaptive attack on SIDH. In Steven D. Galbraith,
editor, CT-RSA 2022, volume 13161 of LNCS, pages 322–344. Springer, Heidelberg, March 2022.
doi:10.1007/978-3-030-95312-6_14.

GPST16. Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security of supersingular
isogeny cryptosystems. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of LNCS, pages 63–91. Springer, Heidelberg, December 2016. doi:10.1007/
978-3-662-53887-6_3.

JAC+20. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil
Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost
Renes, Vladimir Soukharev, David Urbanik, Geovandro Pereira, Koray Karabina, and
Aaron Hutchinson. SIKE. Technical report, National Institute of Standards and
Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

JD11. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th International
Workshop, PQCrypto 2011, pages 19–34. Springer, Heidelberg, November / December 2011. doi:
10.1007/978-3-642-25405-5_2.

Kan97. Ernst Kani. The number of curves of genus two with elliptic differentials., 1997. URL: https:
//doi.org/10.1515/crll.1997.485.93.

Ler22. Antonin Leroux. A new isogeny representation and applications to cryptography. In Shweta
Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part II, volume 13792 of LNCS, pages
3–35. Springer, Heidelberg, December 2022. doi:10.1007/978-3-031-22966-4_1.

MMP+23. Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin Wesolowski. A
Direct Key Recovery Attack on SIDH. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023, pages 448–471, Cham, 2023. Springer Nature Switzerland.
doi:10.1007/978-3-031-30589-4_16.

Pei20. Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 463–492. Springer, Heidelberg, May
2020. doi:10.1007/978-3-030-45724-2_16.

Pet17. Christophe Petit. Faster algorithms for isogeny problems using torsion point images. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages
330–353. Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70697-9_12.

Pop23. Giacomo Pope. Kummer Isogeny SageMath Library. https://github.com/jack4818/KummerIsogeny,
2023.

Rob23. Damien Robert. Breaking SIDH in Polynomial Time. In Carmit Hazay and Martijn Stam, editors,
Advances in Cryptology – EUROCRYPT 2023, pages 472–503, Cham, 2023. Springer Nature
Switzerland. doi:10.1007/978-3-031-30589-4_17.

Sil09. Joseph H Silverman. The Arithmetic of Elliptic Curves, volume 106. Springer Science & Business
Media, 2009.

The23. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.8), 2023. URL:
https://www.sagemath.org.

Vél71. Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A, 273:305–347,
1971.

vW99. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic applications.
Journal of Cryptology, 12(1):1–28, January 1999. doi:10.1007/PL00003816.

16

https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1007/978-3-031-22966-4_1
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-70697-9_12
https://github.com/jack4818/KummerIsogeny
https://doi.org/10.1007/978-3-031-30589-4_17
https://www.sagemath.org
https://doi.org/10.1007/PL00003816

	New SIDH Countermeasures for a More Efficient Key Exchange

