
Entropy Suffices for Key Guessing

Timo Glaser, Alexander May , and Julian Nowakowski

Ruhr-University Bochum, Bochum, Germany
{timo.glaser,alex.may,julian.nowakowski}@rub.de

Abstract. Modern (lattice-based) cryptosystems typically sample their
secret keys component-wise and independently from a discrete probabil-
ity distribution χ. For instance, Kyber has secret key entries from the
centered binomial distribution,Dilithium from the uniform distribution,
and Falcon from the discrete Gaussian. As attacks may require guessing
of a subset of the secret key coordinates, the complexity of enumerating
such sub-keys is of fundamental importance.
Any length-n sub-key with entries sampled from χ has entropy H(χ)n,
where H(χ) denotes the entropy of χ. If χ is the uniform distribution,
then it is easy to see that any length-n sub-key can be enumerated with
2H(χ)n trials. However, for sub-keys sampled from general probability
distributions, Massey (1994) ruled out that the number of key guesses
can be upper bounded by a function of the entropy alone.
In this work, we bypass Massey’s impossibility result by focussing on
the typical cryptographic setting, where key entries are sampled inde-
pendently component-wise from some distribution χ, i.e., we focus on
χn.
We study the optimal key guessing algorithm that enumerates keys in
χn in descending order of probability, but we abort at a certain prob-
ability. As our main result, we show that for any discrete probability
distribution χ our aborted key guessing algorithm tries at most 2H(χ)n

keys, and its success probability asymptotically converges to 1
2
. Our al-

gorithm allows for a quantum version with at most 2H(χ)n/2 key guesses.
In other words, for any distribution χ, we achieve a Grover-type square
root speedup, which we show to be optimal.
For the underlying key distributions of Kyber and Falcon, we explicitly
compute the expected number of key guesses and their success probabil-
ities for our aborted key guessing for all sub-key lengths n of practical
interest. Our experiments strongly indicate that our aborted key guess-
ing, while sacrificing only a factor of two in success probability, improves
over the usual (non-aborted) key guessing by a run time factor exponen-
tial in n.

1 Introduction

The security of any cryptosystem has to be based on a proper choice of its secret
key, which at the bare minimum protects against key guessing. As a counter
example for a proper choice, the widely used DES standard had to be replaced
by AES not because of structural weaknesses, but primarily due to the fact

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0000-0003-3066-0133

that its keys did no longer provide sufficient security against key guessing at-
tacks [Fou98]. Thus, a crypto designer’s first check is to validate that the secret
key is sufficiently hard to guess.

Sub-Key Guessing in Hybrid Attacks. Modern lattice-based cryptosystems like
NTRU [HPS06,CDH+21], Kyber [BDK+18], Dilithium [DKL+18], and
Falcon [FHK+18] certainly have hard to guess secret keys. However, in general
there exist more sophisticated hybrid attacks on these schemes that combine
guessing of sub-keys with other techniques like lattice reduction.

These more sophisticated lattice attacks include e.g. the hybrid Meet-in-the-
Middle attack of Howgrave-Graham [How07] that combines guessing of sub-keys
with lattice reduction on the primal lattice. This hybrid attack was used to
analyze NTRU’s security [CDH+21], and Nguyen [Ngu21] showed how to boost
the attack by providing a more efficient sub-key guessing technique.

The more recent attack of Guo-Johannson [GJ21] considers LWE’s dual lat-
tice, and balances the complexity of sub-key guessing and lattice reduction, sim-
ilarly to Howgrave-Graham’s hybrid attack. The Guo-Johannson attack is ex-
tended and refined in MATZOV [IDF22]. MATZOV claims improved attack com-
plexities, presumably reducing the security of e.g. Kyber and Dilithium below the
required NIST security level. The recent work of Ducas and Pulles [DP23], how-
ever, heavily questions some of the heuristics used in the analysis of [GJ21,IDF22].

The Complexity of Key Guessing. Among the heuristics used in [IDF22] is the
estimation of the complexity of key guessing. Let a length-n sub-key be sampled
coordinate-wise, independently from some probability distribution χ. The au-
thors of [IDF22] estimate the key guessing complexity as 2H(χ)n, whereas Ducas
and Pulles [DP23] criticize that this estimation lacks theoretical justification.

In this work, we provide the missing theoretical justification for the 2H(χ)n

estimate. 1 Before we dive into our results, let us first provide some intuition as
to why on the one hand 2H(χ)n appears to be a natural bound, and on the other
hand such an upper bound for key guessing has not yet been proven, despite its
fundamental nature and importance for cryptography as a whole.

In the past, most cryptographic schemes chose their secret keys from the
uniform distribution χn. Let χ take m values with probability 1

m each, then

H(χ) = logm and H(χn) = n logm. Enumerating all keys costs mn = 2H(χn)

trials. Thus, for the uniform distribution χn we can (trivially) upper bound key
guessing as a function of H(χn).

Massey [Mas94] showed that any key guessing algorithm has to make at least
1
42

H(χ)n−1 trials on average. However, Massey also showed that in general there
is no matching upper bound. More precisely, he constructed counter-example
distributions, for which key guessing cannot be upper bounded by a function
of their entropy alone. The latter observation of Massey is usually taken as an

1 This however neither contradicts the results of Ducas and Pulles [DP23], nor does
it heal other issues in the analysis of [GJ21,IDF22].

2

impossibility result in the cryptographic community. However, Massey’s counter-
example does not rule out that for the most relevant crytographic setting of
distributions χn, where every component is independently sampled from χ, key
guessing might be upper bounded by a function of H(χn) after all.

The existence of an entropy-dependent upper bound is supported by the
following compression argument from information theory. We know that the
output of a source that samples n times from a probability distribution χ can
asymptotically be compressed into (1+ δ)H(χ)n bits for any constant δ > 0, see
e.g. [MU17]. This already gives us a key guessing algorithm that enumerates the
compressed keys with 2(1+δ) H(χ)n trials. However, this argument only reaches
the desired bound of 2H(χ)n up to a term 2δn exponential in n.

In the light of our information theoretic argument, it does not come as a
surprise that recent upper bounds for key guessing from a discrete Gaussian
distribution [AS22] are exponentially in n away from the entropy bound. Sim-
ilarly, experiments for the centered binomial distribution [DP23] indicate that
key guessing requires an additional exponential factor in n as well.

On quantum computers, the famous Grover search [Gro96a] allows to achieve
(up to) square root speedups over classical key guessing. However, a generaliza-
tion of Grover search by Montanaro [Mon11] opened the door for even larger
speedups for key guessing. Namely, Montanaro explicitly constructed distribu-
tions (different from product distributions χn), for which his quantum algorithm
achieves exponential speedups over any classical key guessing algorithm. The al-
gorithm of Montanaro was used in [AS22] for quantum key guessing for the
discrete Gaussian distribution, using QRAM access.

Our results. We study the most common setting of cryptographic keys from
an n-fold product distribution χn, where our result holds for any probability
distribution χ.

Similar to previous work, we study the optimal key guessing algorithm that
enumerates keys in descending order of probability. To this end, we extend the
enumeration strategy of Budroni and Mårtenson [BM23]. However, in contrast to
previous work, we drop the limiting restriction that our key guessing algorithm
has to succeed with probability 1. Instead, we abort our key guessing when the
success probability for the remaining keys drops below the threshold 2−H(χ)n.

This enables us to show that our aborted key guessing uses at most
T = 2H(χ)n trials. Moreover, using the Central Limit Theorem, we show that the
success probability ε (taken over all keys) of our aborted key guessing converges
to 1

2 . Thus, with our aborted key guessing, we provide an algorithm that, for the

first time, achieves a ratio T
ε that is upper bounded by 2H(χ)n+1, whereas a pre-

vious result of Albrecht, Shen [AS22] achieved a ratio T
ε for discrete Gaussians

that is inferior by a factor exponential in n.

In a nutshell, our results show that for all n-fold key distributions χn, it
does not pay off to guess unlikely keys2. Namely, in order to go significantly

2 For the uniform distribution, in our terminology all keys are likely.

3

above success probability 1
2 , one has to pay an excessive, disproportionally large

exponential overhead.
We also provide a quantum Grover-type version of our classical aborted

key guessing algorithm that achieves a square root speedup, i.e, we quantumly
achieve key guessing within 2H(χ)n/2 trials and success probability 1

2 . As opposed
to the quantum algorithm of [AS22], our quantum algorithm does not require
QRAM. Moreover, we prove a matching lower bound for the number of trials
for any quantum key guessing algorithm of 1

poly(n)2
H(χ)n/2. This shows that our

quantum algorithm is optimal up to polynomial factors. Moreover, our matching
lower bound also rules out that we can achieve more than polynomial speedups
with Montanaro’s algorithm for the cryptographic setting of probability distri-
butions χn.

We also study the impacts of our asymptotic results for concrete crypto-
graphic settings. To this end, we study the centered binomial distributions used
in Kyber, and the discrete Gaussian distributions used in Falcon for reason-
ably sized n. Our experiments show that, for these cryptographically relevant
distributions,

(1) the convergence to success probability ε = 1
2 is from above, i.e., for almost

all n we achieve ε ≥ 1
2 ,

(2) our entropy-based upper bound 2H(χ)n tightly matches the maximum num-
ber of trials of our aborted key guessing (up to a

√
n factor), i.e., the entropy

bound is essentially optimal,
(3) our aborted key guessing outperforms the usual key guessing (without aborts)

by a factor exponential in n, i.e., we observe an exponential factor speedup
with our aborted key guessing,

(4) the number of trials in our Grover-type version of aborted key guessing
tightly matches the number of trials in Montanoro’s key guessing algorithm
(again up to roughly a factor of

√
n), i.e., Montanaro’s algorithm does not

provide significant speedups for probability distributions χn.

Organization of our paper. After fixing some preliminaries in Section 2, we intro-
duce and analyze our aborted key guessing algorithm in Section 3. Its quantum
version is provided in Section 4. The experimental results for the centered bino-
mial distribution of Kyber and the centered Gaussian distribution of Falcon
are presented in Section 5.

Source code. We provide the source code for our experimental results from Sec-
tion 5 via https://anonymous.4open.science/r/Entropy.

2 Preliminaries

Throughout the paper, all probability distributions are discrete. We writeX ← χ
to denote that a random variable X is drawn from some probability distribu-
tion χ. Expected value and variance of X are denoted by E[X] and Var[X],

4

https://anonymous.4open.science/r/Entropy

respectively. For a probability distribution χ over some set A, the probablity
mass function of χ is defined as

P : A→ [0, 1], a 7→ Pr
X←χ

[X = a].

The support of χ is defined as supp(χ) := {a ∈ A | P (a) > 0} . The base-2 loga-
rithm is denoted by log(·).

Definition 2.1 (Entropy). Let χ be a probability distribution with support A
and probability mass function P : A→ (0, 1]. The entropy of χ is defined as

H(χ) := −
∑
a∈A

P (a) logP (a) = E
X←χ

[− logP (X)].

We note that entropy is usually defined with respect to random variables. How-
ever, for our purposes, Definition 2.1 is more convenient.

We use the following variant of the Central Limit Theorem.

Lemma 2.2 (Berry-Esseen Theorem [Ber41,Ess45]). Let X1, X2, . . . be
a sequence of i.i.d random variables with E[Xi] < ∞, 0 < Var[Xi] < ∞ and
E[|Xi|3] < ∞. Define µ := E[Xi], σ

2 := Var[Xi] and Xn := 1
n

∑n
i=1Xi. Then

the distribution of
√
n(Xn − µ) converges to a Gaussian distribution with mean

0 and variance σ2 at rate O(1/√n). That is, for every t ∈ R it holds true that

Pr[
√
n(Xn − µ) ≤ t] =

∫ t

−∞

1

σ
√
2π

exp

(
− x2

2σ2

)
dx±O

(
1√
n

)
.

Lemma 2.3 (Grover’s Algorithm [Gro96b,Høy00,BHMT02]). Let |Ψ⟩
be a uniform superposition over some finite set A, and let τ : A → {0, 1} be a
function, such that τ(a) = 1 for at most one a ∈ A. Given |Ψ⟩ and oracle access
to τ , Grover’s algorithm outputs a ∈ A with τ(a) = 1, if it exists, and an error
symbol ⊥ otherwise. Grover’s algorithm achieves this, using ⌈π4

√
|A|⌉+1 queries

to τ .

3 Classical Key Guessing

In this section, we introduce our new classical key guessing algorithm, which has
worst case runtime at most 2H(χ)n and asymptotic success probability 1

2 . We
start by defining the key guessing problem, and provide a high-level description
of our aborted key guessing algorithm in Section 3.1. Its runtime and success
probability are analyzed in Section 3.2.

Additionally, in Section 3.3, we show how to efficiently instantiate the algo-
rithm in practice, by building on an approach by Budroni and Mårtenson [BM23].
For the typical scenario arising in practice, where the underlying probability
distribution is symmetric, we furthermore show that the Budroni-Mårtenson
approach admits for a significant speedup.

5

3.1 Key Guessing Problem and Algorithms

Let us start by defining the key guessing problem.

Definition 3.1 (Key Guessing Problem). Let χ be a probability distribution
with finite support A and probability mass function P : A→ (0, 1]. Let X← χn,
and let τ : An → {0, 1} be a predicate such that

τ(a) :=

{
1 , if a = X,
0 , else.

An instance of the key guessing problem is to find the key X on input n, a
description of P and A, and oracle access to τ .

We note that for typical cryptographic distributions, the condition |A| < ∞
imposes essentially no constraint, e.g., even when χ is a discrete Gaussian, then
χ is close to a distribution χ′ with finite support, and we can simply switch to
the key guessing problem for χ′. In Section 5, we show how to approximate in
practice the discrete Gaussians used in Falcon512 and Falcon1024.

Key Enumeration. Obviously, the optimal strategy for solving the key guess-
ing problem with success probability ε = 1 is to enumerate all possible keys in
decreasing order of probability, until the correct key is found. This strategy re-
quires access to an algorithm KeyEnumeration with the following properties.

1. KeyEnumeration outputs all keys a[1],a[2], . . . in order of decreasing prob-
ability, i.e., we have P (a[i]) ≥ P (a[i+ 1]) for 1 ≤ i < |An|.

2. KeyEnumeration outputs the keys only on demand, as a stream. That
it, on its first invocation it outputs a[1], and keeps its state. On its second
invocation, KeyEnumeration outputs a[2], etc.
In particular, KeyEnumeration’s runtime solely depends on the number
of invocations and a polynomial in n, but not on |An|.

For the moment, we simply assume the existence of such an algorithm KeyEnu-
meration. Thus, the complexity of all key guess algorithms is the number of
invocations of KeyEnumeration, i.e., the number of key trials.

In Section 3.3, we will show how to efficiently instantiate KeyEnumera-
tion. We also efficiently implemented KeyEnumeration as the basis for our
experimental validations in Section 5.

Key Guess Algorithm. The ordinary key guess algorithm KeyGuess is pro-
vided in Algorithm 1.

Let us denote by pi := P (a[i]) the probability of the i-th most likely key in
An. Then KeyGuess has expected number of key trials

E[TKG] =
|An|∑
i=1

pi · i. (1)

Tightly bounding Eq. (1) for distributions of cryptographic interest like the
centered binomial or discrete Gaussian distribution is an open problem, let alone
for arbitrary distributions χ.

6

Algorithm 1: KeyGuess

Input: Key guessing instance (n, P,A, τ),
access to algorithm KeyEnumeration(n, P,A)

Output: Key X ∈ An satisfying τ(X) = 1
1 i← 1; a[1]← KeyEnumeration(n, P,A);
2 while τ(a[i]) ̸= 1 do
3 i← i+ 1; a[i]← KeyEnumeration(n, P,A)
4 end
5 return a[i]

The Core Set. Our algorithm builds on top of KeyGuess, but aborts once
keys become too unlikely. More precisely, we only enumerate keys lying in the
core set, as defined below in Definition 3.2.

This simple modification slightly lowers our success probability asymptoti-
cally to ε = 1

2 . In turn, it allows us to easily bound the number of key guesses

for any distribution χn by 2H(χn). As we demonstrate in Section 5 experimen-
tally, in comparison to Eq. (1), we save an exponential factor of key guesses by
sacrificing only a factor of 2 of success probability.

Definition 3.2 (Core Set). Let χ be a probability distribution with support A
and probability mass function P : A→ [0, 1]. The core set of χn is defined as

Cnχ :=

{
(a1, . . . , an) ∈ An |

n∏
i=1

P (ai) ≥ 2−H(χ)n

}
.

Notice that the product
∏n

i=1 P (ai) in Definition 3.2 is the probability

Pr
X←χn

[X = (a1, . . . , an)] =

n∏
i=1

P (ai).

Aborted Key Guessing. Our modified key guessing algorithm Aborted-
KeyGuess (Algorithm 2) now simply aborts once we have exhausted all keys
from the core set Cnχ .

We first show that KeyGuess and AbortedKeyGuess behave identical on
the uniform distribution χ, and succeed to recover the key in the desired amount
of key trials.

Theorem 3.3. Let χ be the uniform distribution with probability mass func-
tion P : A → (0, 1]. Then KeyGuess and AbortedKeyGuess solve any key
guessing instance (n, P,A, τ) with probability 1 using at most 2H(χ)n key trials.

Proof. Since χ has finite support A, we have m = |A| <∞,

H(χ) =

m∑
i=1

1

m
· log(m) = log(m),

7

Algorithm 2: AbortedKeyGuess (high level description)

Input: Key guessing instance (n, P,A, τ),
access to algorithm KeyEnumeration(n, P,A)

Output: Key X ∈ An satisfying τ(X) = 1 or ⊥ (abort).
1 i← 1; a[1]← KeyEnumeration(n, P,A);

2 while (τ(a[i]) ̸= 1) and (P (a[i]) ≥ 2−H(χ)n) do
3 i← i+ 1; a[i]← KeyEnumeration(n, P,A)
4 end
5 if τ(a[i]) = 1 then return a[i];
6 else return ⊥;

and therefore
2−H(χ)n = m−n.

Since all |An| = mn key have the same probability m−n, the core set condition
P (a[i]) ≥ 2−H(χ)n in line 2 of AbortedKeyGuess is always satisfied. There-
fore KeyGuess and AbortedKeyGuess behave identical, and both succeed
to recover the key with probability 1 after at most |An| = 2H(χ)n key trials. ⊓⊔

3.2 Analysis of AbortedKeyGuess for any distribution

Recall that AbortedKeyGuess aborts after exhausting all keys from the core
set Cnχ . In our main theorem, we show that the following two statements hold
for any distribution χ:

(1) We have |Cnχ | ≤ 2H(χ)n, bounding the number of key trials as desired.

(2) Asymptotically, a random key X← χn lies in Cnχ with probability 1
2 .

Theorem 3.4 (Main Theorem). Let χ be any (but the uniform3) distribution
with probability mass function P : A→ (0, 1]. Then AbortedKeyGuess solves
a random key guessing instance (n, P,A, τ), taken over the random key choice
X← χn, with probability 1

2 ±O(1√
n
), using at most 2H(χ)n key trials.

Proof. The number of key trials in AbortedKeyGuess is at most |Cnχ |. Let us
first show that |Cnχ | ≤ 2H(χ)n. Let Pn : An → (0, 1] denote the probability mass
function of χn. By definition of Cnχ , it holds that

1 =
∑
a∈An

Pn(a) ≥
∑
a∈Cnχ

Pn(a) ≥
∑
a∈Cnχ

2−H(χ)n = |Cnχ |2−H(χ)n.

Multiplying the above inequality by 2H(χ)n, we obtain |Cnχ | ≤ 2H(χ)n.
It remains to show that a random keyX = (X1, . . . , Xn)← χn lies in the core

set with probability PrX←χn

[
X ∈ Cnχ

]
= 1

2 ±O(1√
n
). Since P is the probability

3 For the uniform distribution see the stronger statement from Theorem 3.3.

8

mass function of χ, by definition of Cnχ it holds that

Pr
[
X ∈ Cnχ

]
= Pr

[
n∏

i=1

P (Xi) ≥ 2−H(χ)n

]
.

W.l.o.g we assume P > 0, which allows us to define Yi := − logP (Xi). We set
Yn := 1

n

∑n
i=1 Yi, and rewrite the above probability as

Pr
[
X ∈ Cnχ

]
= Pr

[
−

n∑
i=1

Yi ≥ −H(χ)n

]
= Pr

[
Yn −H(χ) ≤ 0

]
.

We now make three important observations:

1. By definition of entropy, E[Yi] = H(χ) <∞.
2. Since χ is not the uniform distribution, Yi is not constant and thus we have

Var[Yi] > 0.
3. Since χ has finite support, both Var[Yi] and E[|Yi|3] are finite.

By the Berry-Esseen Theorem (Lemma 2.2), the distribution of
√
n(Yn −H(χ))

thus converges at rate O(1/√n) to a Gaussian distribution with mean 0 and
variance σ2 := Var[Yi]. Hence,

Pr
[
X ∈ Cnχ

]
= Pr

[
Yn −H(χ) ≤ 0

]
= Pr

[√
n(Yn −H(χ)) ≤ 0

]
=

∫ 0

−∞

1

σ
√
2π

exp

(
− x2

2σ2

)
dx±O

(
1√
n

)
=

1

2
±O

(
1√
n

)
,

which proves our main theorem. ⊓⊔

3.3 Efficiently Enumerating the Core Set

Let us now show how to construct an efficient algorithm KeyEnumeration
that outputs all keys a[1],a[2], . . . in decreasing order of probability, as required
for algorithms KeyGuess and AbortedKeyGuess. We build on an approach
suggested by Budroni and Mårtenson [BM23].

Budroni-Mårtenson Revisited. Let (n, P,A, τ) be a key guessing instance,
where P is the probability mass function of some distribution to χ. Recall that
for X← χn and a = (a1, . . . , an), it holds that

Pr[X = a] =

n∏
i=1

P (ai).

If a′ ∈ An is a permutation of a, then it follows that

Pr[X = a] = Pr[X = a′].

Based on this simple, yet important observation, Budroni and Mårtenson suggest
to represent χn via the following set, which we call a compact dictionary of χn.

9

Definition 3.5 (Compact Dictionary). Let χ be a probability distribution
with finite support A and probability mass function P : A → (0, 1], and let

n ∈ N. Let Ãn denote a largest subset of An, such that no distinct a,a′ ∈ Ãn

are permutations of each other. Then we call the following set

Dn
χ :=

{(
(a1, . . . , an),

n∏
i=1

P (ai)

)
| (a1, . . . , an) ∈ Ãn

}
a compact dictionary of χn.

By construction, any compact dictionary Dn
χ contains all probabilities, that the

probability mass function of χn assumes. This allows us to easily enumerate all
elements of An in order of decreasing probability as follows: Given A and P , we
construct a compact dictionary Dn

χ and then sort it by its second component
in decreasing order. After that, we simply iterate over (the sorted) Dn

χ and
enumerate for every tuple (a, p) ∈ Dn

χ all permutations of a. A formal description
of this approach is given in KeyEnumeration (Algorithm 3).

Algorithm 3: KeyEnumeration

Input: n, P,A
Output: Keys a[1],a[2], . . . with P (a[i]) ≥ P (a[i+ 1]) for all i < |An|

1 Construct a compact dictionary Dn
χ = {(a,∏n

i=1 P (ai) | a ∈ An} .
2 Sort Dn

χ by 2nd component in decreasing order of probabilities
∏n

i=1 P (ai).
3 i← 1
4 foreach (a, p) ∈ Dn

χ do
5 foreach permutation a′ of a do
6 Output a[i] := a′; i← i+ 1;
7 end

8 end

As the following Theorem 3.6 shows, the size |Dn
χ| of a compact dictionary is

polynomial in n, and Dn
χ can be efficiently constructed. The Budroni-Mårtenson

approach for representing χn compactly via Dn
χ thus significantly improves over

the naive approach of storing
∏n

i=1 P (ai) for all (a1, . . . , an) ∈ An, since it
reduces the required runtime and amount of memory from exponential in n to
polynomial in n.

Theorem 3.6 (Budroni, Mårtenson [BM23]). Let χ be a probability dis-
tribution with finite support A and probability mass function P : A→ [0, 1]. For
every compact dictionary Dn

χ, it holds that

|Dn
χ| =

(
n+ |A| − 1

n

)
= O(n|A|−1). (2)

Furthermore, there exists an algorithm with runtime O(n|A|−1), that on input A
and P outputs Dn

χ.

10

Proof. Let Ãn be defined as in Definition 3.5, and write A = {a1, . . . , am}, where
m := |A|. For any a ∈ Ãn, let ωi(a) denote the number of coordinates of a, that
are equal to ai.

By definition of Ãn, the following map φ is a bijection

φ : Ãn → {(α1, . . . , αm) ∈ Nm |∑m
i=1 αi = n} ,

a 7→ (ω1(a), . . . , ωm(a)).
(3)

Recall that there are exactly
(
n+m−1

n

)
ways to write n as the sum of m non-

negative integers. Hence, |Ãn| =
(
n+m−1

n

)
.

Together with |Dn
χ| = |Ãn| and(

n+m− 1

n

)
=

1

(m− 1)!

m−1∏
i=1

(n+ i) = O(nm−1),

this proves Equation (2).
To prove that there exists an O(n|A|−1)-time algorithm for constructing Dn

χ,
simply observe that the bijection φ from Equation (3) allows us to efficiently

construct Ãn, from which we then easily construct Dn
χ. ⊓⊔

Improvement for Symmetric Distributions. In practice, χ usually is a
symmetric distribution over Z with center 0, i.e., for X ← χ and a ∈ Z it holds
that

Pr[X = a] = Pr[X = −a].
Consequently, for X← χn and a = (a1, . . . , an) ∈ Zn, it then holds that

Pr[X = a] = Pr[X = (|a1|, . . . , |an|)],
i.e., the probability of a does not depend on the signs of the ai’s.

In that case, we may safely remove all tuples (a, p) from our compact dic-
tionary Dn

χ in which a has at least one negative coordinate, and still obtain a
dictionary that fully describes the distribution χn.4 As the following theorem
shows, this allows us to save an additional square root in runtime and memory
for constructing a compact dictionary.

Theorem 3.7. Let χ be a symmetric probability distribution with finite support
A ⊂ Z and probability mass function P : A → (0, 1]. Let Dn,≥0

χ denote the
set, that is obtained by removing all tuples (a, p) from a compact dictionary Dn

χ,
where ai has at least one negative coordinate. Then it holds that

|Dn,≥0
χ | =

(
n+ |A|−12

n

)
= O

(
n

|A|−1
2

)
.

Furthermore, there exists an algorithm with runtime O
(
n

|A|−1
2

)
, that on input

A and p outputs Dn,≥0
χ .

4 In this case, we modify line 5 of Algorithm 3 to iterate over all signed permutations
of a′ of a.

11

Proof. As the proof is very similar to that of Theorem 3.6, we only give a rough
outline. Let B := {a ∈ A | a ≥ 0} and m := |B|. Let B̃n denote a largest subset

of Bn, such that no distinct b,b′ ∈ B̃n are permutations of each other. Then
there is a natural bijection between B̃n and the following set

{(α1, . . . , αm) ∈ Nm |∑m
i=1 αi = n} ,

similar to the bijection from Equation (3). Now arguing exactly as in the proof
of Theorem 3.6, it easily follows that

|Dn,≥0
χ | = |B̃n| =

(
n+m− 1

n

)
=

(
n+ |A|−12

n

)
= O

(
n

|A|−1
2

)
,

and that there exists an O
(
n

|A|−1
2

)
-time algorithm for constructing Dn,≥0

χ . ⊓⊔

4 Quantum Key Guessing

In this section, we study the quantum complexity of the key guessing problem.
In Section 4.1, we give a simple quantum key guessing algorithm, which achieves
a square root speedup over the runtime of our classical algorithm from Section 3,
while maintaining its asymptotic success probability of 1

2 . We explicitly show in
Section 4.2 how to efficiently instantiate the required superpositions in our algo-
rithm, without QRAM. Here, we build on techniques developed in Section 3.3.
Finally, we show in Section 4.3 that the runtime of our algorithm is optimal up
to polynomial factors.

4.1 A Simple 2H(χ)n/2-Time Quantum Algorithm

Recall that our classical algorithm AbortedKeyGuess (Algorithm 2) from
Section 3 simply enumerates all keys that lie in the core set Cnχ , as defined in
Definition 3.2. A natural quantum version of our algorithm is to run Grover’s
algorithm on the core set, as depicted in Algorithm 4.

Algorithm 4: QuantumKeyGuess (high level description)

Input: Key guessing instance (n, P,A, τ).
Output: Key X ∈ An satisfying τ(X) = 1 or ⊥.

1 Instantiate a uniform superposition |Ψ⟩ over Cnχ .
2 Run Grover’s algorithm on |Ψ⟩ with oracle access to τ and return the result.

In the subsequent Section 4.2, we show that Step 1 of QuantumKeyGuess
has only polynomial complexity, even without QRAM. Together with Lemma 2.3
and Theorem 3.4, this shows that QuantumKeyGuess achieves a square root
speedup over the runtime of AbortedKeyGuess, while still having asymptotic
success probability of 1

2 . In particular, we have the following quantum version
of Theorem 3.4.

12

Theorem 4.1. Let χ be any (but the uniform) distribution with probability mass
function P : A→ (0, 1]. Then QuantumKeyGuess solves a random key guess-
ing instance (n, P,A, τ), taken over the random key choice X← χn, with prob-
ability 1

2 ±O(1√
n
) using at most ⌈π4 2H(χ)n/2⌉+ 1 key trials.

4.2 Efficiently Instantiating a Superposition Over the Core Set

Using the techniques from Section 3.3, we now show how to efficiently construct
a uniform superposition over the core set Cnχ in Step 1 of QuantumKeyGuess,
without QRAM.

High-Level Description. Let us first fix some notation. Let (n, P,A, τ) be an
instance of the key guessing problem, where P is the probability mass function
of some distribution χ, and write A = {a1, . . . , am}.

The main idea for efficiently enumerating the core set Cnχ in Section 3.3 is to
represent the distribution χ via a compact dictionary Dn

χ (see Definition 3.5).

Then, for every tuple (a, p) ∈ Dn
χ with p ≥ 2−H(χ)n, enumerate all permutations

of a. To construct a uniform superposition over Cnχ , we now follow a similar
approach. Loosely speaking, we first create a non-uniform superposition |Φ⟩,
that represents all (a, p) ∈ Dn

χ with p ≥ 2−H(χ)n, and then apply a unitary
operator PermAn to |Φ⟩, that turns |Φ⟩ into a uniform superposition over all
permutations of such a’s.

We proceed as follows: Let a ∈ An. Following the notation of the proof
of Theorem 3.6, we denote by ωi(a) the number of coordinates of a that are
equal to ai. We compute a compact dictionary Dn

χ of χ in polynomial time (see
Theorem 3.6), and initialize the following superposition

|Φ⟩ :=
∑

(a,p)∈Dn
χ ,

p≥2−H(χ)n

√
1

|Cnχ |

(
n

ω1(a), . . . , ωm(a)

)
|(ω1(a), . . . , ωm(a))⟩ ⊗ |0n⟩ .

Notice that by Theorem 3.6, the size of Dn
χ is polynomial in n. We can therefore

efficiently initialize the above superposition |Φ⟩ without QRAM.

Next, we apply an operator PermAn to |Φ⟩, which on input of a base state

|(i1, . . . , im)⟩ ⊗ |0n⟩ ,

where i1, . . . , im ∈ N and i1 + . . .+ im = n, results in

|0m⟩ ⊗ |ϕ⟩ ,

where |ϕ⟩ is a uniform superposition over the following set

{a ∈ An | ωj(a) = ij , for all 1 ≤ j ≤ m.} .

13

Before we dive into the technicalities of construction of PermAn , we note that
the resulting quantum state then is a uniform superposition over the core set
Cnχ , i.e.,

PermAn(|Φ⟩) = |0m⟩ ⊗
∑
a∈Cnχ

1√
|Cnχ |

· |a⟩ ,

as required.

A formal description of this approach is given in Algorithm 5.

Algorithm 5: QuantumKeyGuess (detailed description)

Input: Key guessing instance (n, P,A, τ).
Output: Key X ∈ An satisfying τ(X) = 1 or ⊥ (abort).

1 H(χ) := −∑
a∈A P (a) logP (a).

2 Construct a compact dictionary Dn
χ.

3 |Φ⟩ := ∑
(a,p)∈Dn

χ ,

p≥2−H(χ)n

√
1

|Cn
χ |

(
n

ω1(a),...,ωm(a)

)
|(ω1(a), . . . , ωm(a))⟩ ⊗ |0n⟩.

4 |0|A|⟩ ⊗ |Ψ⟩ := PermAn |Φ⟩.
5 Run Grover’s algorithm on |Ψ⟩ with oracle access to τ and return the result.

The Perm operator. We construct PermAn as a product of the following
operators UA,k, using ideas from [Sch22, Chapter 5].

Definition 4.2 (UA,k). Let A = {a1, . . . , am} and n, k ∈ N with 1 ≤ k ≤ n. We
define UA,k as a unitary operator, that maps

|(i1, . . . , im)⟩ ⊗ |a,0n−k+1⟩ ,

where a ∈ Ak−1, and i1, . . . , im ∈ N with i1 + . . .+ im = n− k + 1, to

m∑
j=1

√
ij

n− k + 1
|(i1, . . . , ij−1, ij − 1, ij+1, . . . , im)⟩ ⊗ |a, aj ,0n−k⟩ .

It is easy to see that for fixed A, we can implement UA,k efficiently, even without
QRAM.

We now define PermAn as follows.

Definition 4.3 (PermAn). Let A be a finite set and n ∈ N. We define PermAn

as

PermAn |ψ⟩ := UA,n · UA,n−1 · . . . · UA,1 |ψ⟩ .

As the following theorem shows, PermAn yields the desired superposition.

14

Theorem 4.4. Let A = {a1, . . . , am}, and let i1, . . . , im ∈ N be such that
i1 + . . .+ im = n. Define

P := {a ∈ An | ωj(a) = ij , for all 1 ≤ j ≤ m} ,

where ωj(a) denotes the number of coordinates of a, that are equal to aj. Then
it holds that

PermAn (|(i1, . . . , im)⟩ ⊗ |0n⟩) = |(0m)⟩ ⊗
∑
a∈P

1√
|P|
|a⟩ .

Before we prove Theorem 4.4, let us illustrate the intuition behind the PermAn

operator with an example. Suppose we have A = {◦, •, ∗}. We apply PermA4 to

|ψ⟩ := |(2, 1, 1⟩ ⊗ |04⟩ .

One can easily verify that |ψ⟩ then evolves as shown in Figure 1.
Notice that in every base state |(α, β, γ)⟩ |a,0n−k⟩ in Figure 1, α, β and γ

denote the amount of ◦’s, •’s and ∗’s that we can append to a to obtain a 4-
tuple, where two coordinates equal ◦, one coordinate equals • and one coordinate
equals ∗. As Figure 1 shows, after application of UA,4, the quantum state is a
superposition over all such 4-tuples. Furthermore, each of the 12 base states has
amplitude √

1 · 1 · 1 · 2
4 · 3 · 2 · 1 =

√
1

12
.

Hence, as required, the quantum state is a uniform superposition over the set P
(as defined in Theorem 4.4).

Proof (Theorem 4.4). Let k ∈ N with 1 ≤ k ≤ n, and fix an arbitrary a ∈ An−k

with ωj(a) ≤ ij , for all 1 ≤ j ≤ m, where i1, . . . , im ∈ N with i1 + . . .+ im = n.
We consider the following quantum state

|ϕ⟩ := UA,k · UA,k−1 · . . . · UA,1 (|(i1, . . . , im)⟩ ⊗ |0n⟩) .

By induction over k, it easily follows that the amplitude of

|(i1 − ω1(a), . . . , i1 − ωm(a))⟩ ⊗ |a,0n−k⟩ ,

in |ψ⟩ is √
i
ω1(a)

1 · . . . · iωm(a)
m

nk
,

where xy := x · (x− 1) · . . . · (x− y + 1) denotes the falling factorial.
In particular, for a ∈ P, i.e., for k = n and ωj(a) = ij , it follows that the

amplitude of

|(0m)⟩ ⊗ |a⟩ ,

15

UA,4UA,3UA,2UA,1

|03⟩ |◦ ◦ •∗⟩

|03⟩ |◦ ◦ ∗•⟩

|03⟩ |◦ • ◦∗⟩

|03⟩ |◦ • ∗◦⟩

|03⟩ |◦ ∗ ◦•⟩

|03⟩ |◦ ∗ •◦⟩

|03⟩ |• ◦ ◦∗⟩

|03⟩ |• ◦ ∗◦⟩

|03⟩ |• ∗ ◦◦⟩

|03⟩ |∗ ◦ ◦•⟩

|03⟩ |∗ ◦ •◦⟩

|03⟩ |∗ • ◦◦⟩

|(0, 0, 1)⟩ |◦ ◦ •01⟩

|(0, 1, 0)⟩ |◦ ◦ ∗01⟩

|(0, 0, 1)⟩ |◦ • ◦01⟩

|(1, 0, 0)⟩ |◦ • ∗01⟩

|(0, 1, 0)⟩ |◦ ∗ ◦01⟩

|(1, 0, 0)⟩ |◦ ∗ •01⟩

|(0, 0, 1)⟩ |• ◦ ◦01⟩

|(1, 0, 0)⟩ |• ◦ ∗01⟩

|(1, 0, 0)⟩ |• ∗ ◦01⟩

|(0, 1, 0)⟩ |∗ ◦ ◦01⟩

|(1, 0, 0)⟩ |∗ ◦ •01⟩

|(1, 0, 0)⟩ |∗ • ◦01⟩

|(0, 1, 1)⟩ |◦ ◦ 02⟩

|(1, 0, 1)⟩ |◦ • 02⟩

|(1, 1, 0)⟩ |◦ ∗ 02⟩

|(1, 0, 1)⟩ |• ◦ 02⟩

|(2, 0, 0)⟩ |• ∗ 02⟩

|(1, 1, 0)⟩ |∗ ◦ 02⟩

|(2, 0, 0)⟩ |∗ • 02⟩

|(1, 1, 1)⟩ |◦03⟩

|(2, 0, 1)⟩ |•03⟩

|(2, 1, 0)⟩ |∗03⟩

|(2, 1, 1)⟩ |04⟩

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2
2

1
2

1
2

2
2

1
3

1
3

1
3

2
3

1
3

2
3

1
3

2
4

1
4

1
4

Fig. 1. Evolution of |ψ⟩ = |(2, 1, 1⟩⊗ |04⟩, when applying Perm4
A, where A = {◦, •, ∗}.

The fractions on the edges of the graph denote the squared amplitudes.

in

|ψ⟩ = UA,n · UA,n−1 · . . . · UA,1 (|(i1, . . . , im)⟩ ⊗ |0n⟩)
= PermAn (|(i1, . . . , im)⟩ ⊗ |0n⟩) .

is √
i
i1
1 · . . . · i

im
m

nn
=

√
i1! · . . . · im!

n!
=

√(
n

i1, . . . , im

)−1
=

1√
|P|

.

Hence, PermAn (|(i1, . . . , im)⟩ ⊗ |0n⟩) is a uniform superposition over P, as re-
quired. ⊓⊔

16

4.3 A 2H(χ)n/2 Lower Bound for Quantum Algorithms

Montanaro [Mon11] proved the following lower bound on the complexity of any
quantum algorithm that solves the key guessing problem with success probability
1.

Theorem 4.5 (Proposition 2.4 in [Mon11]). Let (n, P,A, τ) be a key guess-
ing problem where P is the probability mass function of some distribution χ with
support A. Let p1 ≥ p2 ≥ . . . ≥ p|An| denote the values that the probability mass
function of χn assumes. Every quantum algorithm that solves the key guessing
instance (n, P,A, τ) with success probability 1 makes at least

0.206 ·
|An|∑
i=1

pi
√
i− 1

oracle queries to τ on expectation.

In [Mon11], Montanaro gave a quantum algorithm with query complexity match-
ing the lower bound from Theorem 4.5 (up to a constant factor). Furthermore,
for the special case of n = 1, Montanaro showed [Mon11, Corollary 2.6] that
there exist distributions for which the best classical algorithm requires at least
Ω(|A|1/2−ε) queries to τ , whereas the best quantum algorithm requires only
Θ(1) – suggesting that the key guessing problem admits for a significantly better
speedup than the generic Grover square root bound. However, as the following
Theorem 4.6 shows, when n is not fixed to 1, then the lower bound from Theo-
rem 4.5 is at most a polynomial factor better than the Grover bound of 2H(χ)n/2.
Hence, our simple algorithm QuantumKeyGuess from Section 4.1 essentially
is optimal.

We point out that one may view our Theorem 4.6 as a quantum variant of
Massey’s [Mas94] lower bound for the classical complexity.

Theorem 4.6. Let (n, P,A, τ) be a key guessing instance, where P : A→ (0, 1]
is the probability mass function of some distribution χ with support A. Let p1 ≥
p2 ≥ . . . ≥ p|An| denote the values, that the probability mass function of χn

assumes. Then it holds that

|An|∑
i=1

pi
√
i >

1

poly(n)
· 2H(χ)n/2.

Proof. Let A := {a1, . . . , am} and qi := P (ai). We construct an a ∈ An, such
that qin coordinates of a are equal to ai for every i = 1, . . . ,m. (We deliberately
ignore rounding issues here, since they contribute only to polynomial factors.)

It is easy to see that for X← χn it holds that

Pr[X = a] = 2−H(χ)n.

and that An contains

β :=

(
n

q1n, q2n, . . . , qmn

)
>

1

poly(n)
· 2H(χ)n

17

permutations of a.

It follows that there are at least β/2 terms pi
√
i in the sum

∑|An|
i=1 pi

√
i, such

that

pi
√
i ≥ 2−H(χ)n

√
β/2 >

1

poly(n)
· 2−H(χ)n/2

Hence, the sum is lower bounded by

|An|∑
i=1

pi
√
i >

β

2
· 1

poly(n)
· 2−H(χ)n/2 >

1

poly(n)
· 2H(χ)n/2,

proving the theorem. ⊓⊔

5 AbortedKeyGuess Applied to Kyber and Dilithium

In this Section, we apply ourAbortedKeyGuess algorithm to the distributions
χ chosen in Kyber and Falcon. Kyber [BDK+18] takes the following centered
binomial distribution.

Definition 5.1. Let η ∈ N. We denote as centered binomial distribution the
probability distribution over {−η, . . . , η} with probability distribution function

pi =

(
2η
η+i

)
22η

.

Sampling from this distribution is denoted by X← B(η).

Kyber512 chooses its keys fromB(3)512, whereasKyber768 andKyber1024
choose their keys from B(2)768 and B(2)1024, respectively.

Falcon [FHK+18] takes the following discrete Gaussian distribution.

Definition 5.2. Let σ ∈ R>0. We denote as discrete gaussian distribution (cen-
tered around 0) the probability distribution over Z with probability distribution
function

pi =
exp(−i

2

2σ2)∑
j∈Z exp(

−j2
2σ2)

.

Sampling from this distribution is denoted by X← D(σ).

Falcon usesD(σ) with σ = 1.17
√

q
2n for modulus q and secret key dimension

n. This leads to Falcon512 keys being chosen from D(4.05)512 and Falcon1024
keys being chosen from D(2.87)1024.

To make calculations feasible, instead of using D(σ), we opted to use an
approximation of D(σ) instead, denoted with D(σ). Such an approximate distri-
bution was obtained by sampling 219 times from D(σ) and using the resulting
mass as probability distribution. D(4.05) and D(2.87) for Falcon512 and Fal-
con1024 are provided in Figure 12, Appendix A, having supports {−20, . . . , 20}
and {−13, . . . , 13}, respectively.

18

B(2) B(3) D(4.05) D(2.87)
n ε ε ε ε
1 0.88 0.78 0.73 0.62
2 0.77 0.61 0.62 0.61
3 0.67 0.53 0.60 0.59
4 0.59 0.65 0.59 0.59
5 0.53 0.60 0.58 0.58
6 0.49 0.59 0.58 0.58
7 0.48 0.54 0.57 0.57
8 0.60 0.58 0.57 0.57
9 0.59 0.54 0.56 0.56

10 0.57 0.56 0.56 0.56
11 0.56 0.53 0.56 0.56
12 0.54 0.55 0.55 0.55
13 0.52 0.53 0.55 0.55
14 0.51 0.55 0.55 0.55
15 0.50 0.53 0.55 0.55
16 0.56 0.54 0.55 0.55
17 0.55 0.55 0.55 0.55
18 0.55 0.54 0.54 0.54
19 0.54 0.55 0.54 0.54
20 0.53 0.53 0.54 0.54
21 0.52 0.55 0.54 0.54
22 0.51 0.53 0.54 0.54
23 0.51 0.54 0.54 0.54
24 0.54 0.52 0.54 0.54
25 0.54 0.54 0.54 0.54

B(2) B(3) D(4.05) D(2.87)
n ε ε ε ε
26 0.53 0.52 0.54 0.54
27 0.53 0.54 0.54 0.54
28 0.52 0.52 0.54 0.54
29 0.52 0.53 0.54
30 0.51 0.53 0.53
31 0.51 0.53 0.53
32 0.54 0.53 0.53
33 0.53 0.53 0.53
34 0.53 0.53 0.53
35 0.52 0.52 0.53
36 0.52 0.53 0.53
37 0.52 0.52 0.53
38 0.51 0.53 0.53
39 0.51 0.52 0.53
40 0.53 0.53
41 0.53 0.52
42 0.52 0.53
43 0.52 0.52
44 0.52 0.53
45 0.51 0.52
46 0.51 0.52
47 0.51 0.52
48 0.53 0.52
49 0.52 0.52
50 0.52 0.52

Fig. 2. Success probabilities ε of AbortedKeyGuess for Kyber and Falcon distri-
butions.

5.1 Success Probability Larger Than 1
2

We first study the success probabilities of our AbortedKeyGuess for distribu-
tions B(2),B(3),D(2.87), and D(4.05). For the binomial distributions we went up
to key length n = 50, whereas we stopped earlier for the computationally heavy
approximate discrete Gaussians. The success probabilities ε = Pr[X ∈ Cnχ] are
provided in Fig. 2, the convergence towards 1

2 is visualized in Fig. 3.
The binomial distribution B(2) has the most narrow support {−2, . . . , 2}.

This results in a large amount of keys (relative to |An|) that share the same
probability. As a consequence, we see in Fig. 3 the largest oscillation bumps, re-
flecting the fact that at each upward jump keys from the next smaller probability
level were taken into account. As one can see, this oscillation effect disappears
when we broaden the support.

While Theorem 3.4 only guarantees the convergence towards 1
2 , our exper-

iments show that, for our cryptographic distributions, the convergence is from
above, thereby lower bounding our success probability by ε ≥ 1

2 (for all but very
few exceptions in B(2)).

19

5 10 15 20 25 30 35 40 45 50
0.45

0.5

0.55

0.6

n

ε

B(2) B(3)
D(4.05) D(2.87)

Fig. 3. Convergence of Success Probabilities ε of AbortedKeyGuess for Kyber and
Falcon distributions.

5.2 AbortedKeyGuess Trials Tightly Match the Entropy Bound

Recall that our AbortedKeyGuess algorithm enumerates all keys from the
core set Cnχ , and therefore makes at most |Cnχ | key guesses. Our main theorem

(Theorem 3.4) upper bounds |Cnχ | ≤ 2H(χ)n. In this section, we study how tight
this upper bound actually is.

To this end, in Fig. 6, we compare the bit complexity bKG := log(|Cnχ |) of the
maximum number of key guesses |Cnχ | in AbortedKeyGuess to H(χ)n. Their
difference ∆ = H(χ)n− bKG is visualized in Fig. 4. We see that ∆ seems to grow
slightly faster than 1

2 log n, implying that the quotient 2H(χ)n/|Cnχ | grows at least
as fast as

√
n, independently of the underlying distribution χ.

In Fig. 5, we express 2H(χ)n/|Cnχ | = nc for some c. The polynomial exponent

c seems to converge to 1
2 , which lets us conclude that the maximal amount of

10 20 30 40 50
0

1

2

3

4

n

lo
g

2
H
(
χ
)
n

|C
n χ
|

1
2
logn

B(2) B(3)
D(4.05) D(2.87)

Fig. 4. Difference between H(χ)n and
bit complexity log(|Cnχ |) of Aborted-
KeyGuess.

5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

n

c

c ∈ R such that |Cnχ | = 1
nc 2

H(χ)n

B(2) B(3)
D(4.05) D(2.87)

Fig. 5. Polynomial exponent c ∈ R such
that |Cnχ | = 1

nc 2
H(χ)n.

20

B(2) B(3) D(4.05) D(2.87)
n H(χ)n bKG ∆ H(χ)n bKG ∆ H(χ)n bKG ∆ H(χ)n bKG ∆
1 2.0 1.6 0.4 2.3 1.6 0.7 4.1 3.2 0.9 3.6 2.3 1.2
2 4.1 3.2 0.9 4.7 3.2 1.5 8.1 6.7 1.5 7.1 5.6 1.5
3 6.1 4.8 1.3 7.0 5.0 2.0 12.2 10.5 1.7 10.7 8.9 1.8
4 8.1 6.3 1.8 9.3 7.9 1.5 16.3 14.4 1.9 14.3 12.3 1.9
5 10.2 8.0 2.2 11.7 9.8 1.9 20.3 18.3 2.0 17.8 15.8 2.0
6 12.2 9.7 2.4 14.0 12.0 2.0 24.4 22.2 2.2 21.4 19.2 2.2
7 14.2 11.6 2.6 16.3 14.0 2.3 28.5 26.2 2.3 25.0 22.7 2.3
8 16.2 14.4 1.8 18.7 16.6 2.1 32.5 30.2 2.4 28.5 26.2 2.4
9 18.3 16.3 1.9 21.0 18.6 2.4 36.6 34.1 2.4 32.1 29.6 2.4

10 20.3 18.2 2.1 23.3 21.0 2.3 40.7 38.1 2.5 35.7 33.2 2.5
11 22.3 20.1 2.2 25.7 23.0 2.6 44.7 42.1 2.6 39.2 36.7 2.6
12 24.4 22.0 2.4 28.0 25.5 2.5 48.8 46.1 2.6 42.8 40.2 2.6
13 26.4 23.8 2.6 30.3 27.6 2.7 52.9 50.2 2.7 46.4 43.6 2.7
14 28.4 25.7 2.7 32.7 30.1 2.6 56.9 54.2 2.8 49.9 47.2 2.8
15 30.5 27.7 2.8 35.0 32.2 2.8 61.0 58.2 2.8 53.5 50.7 2.8
16 32.5 30.1 2.3 37.3 34.6 2.7 65.0 62.2 2.8 57.0 54.2 2.8
17 34.5 32.1 2.4 39.7 37.0 2.7 69.1 66.2 2.9 60.6 57.7 2.9
18 36.6 34.0 2.5 42.0 39.2 2.8 73.2 70.3 2.9 64.2 61.2 2.9
19 38.6 36.0 2.6 44.3 41.6 2.7 77.2 74.3 3.0 67.7 64.8 3.0
20 40.6 37.9 2.7 46.7 43.7 2.9 81.3 78.3 3.0 71.3 68.3 3.0
21 42.6 39.8 2.8 49.0 46.3 2.8 85.4 82.3 3.0 74.9 71.9 3.0
22 44.7 41.8 2.9 51.3 48.3 3.0 89.4 86.4 3.1 78.4 75.4 3.1
23 46.7 43.7 3.0 53.7 50.8 2.8 93.5 90.4 3.1 82.0 78.9 3.1
24 48.7 46.1 2.6 56.0 52.9 3.1 97.6 94.4 3.1 85.6 82.4 3.1
25 50.8 48.1 2.7 58.3 55.4 2.9 101.6 98.5 3.2 89.1 86.0 3.1
26 52.8 50.0 2.8 60.7 57.5 3.2 105.7 102.5 3.2 92.7 89.5 3.2
27 54.8 52.0 2.9 63.0 60.0 3.0 109.8 106.6 3.2 96.3 93.1 3.2
28 56.9 53.9 2.9 65.3 62.2 3.2 113.8 110.6 3.2 99.8 96.6 3.2
29 58.9 55.9 3.0 67.7 64.6 3.1 117.9 103.4 100.1 3.3
30 60.9 57.8 3.1 70.0 66.8 3.2 122.0 107.0 103.7 3.3
31 62.9 59.8 3.2 72.3 69.2 3.1 126.0 110.5 107.2 3.3
32 65.0 62.1 2.9 74.7 71.6 3.1 130.1 114.1 110.8 3.3
33 67.0 64.1 2.9 77.0 73.8 3.2 134.2 117.7 114.3 3.4
34 69.0 66.1 3.0 79.3 76.1 3.2 138.2 121.2 117.9 3.4
35 71.1 68.0 3.0 81.7 78.4 3.3 142.3 124.8 121.4 3.4
36 73.1 70.0 3.1 84.0 80.8 3.2 146.4 128.4 124.9 3.4
37 75.1 72.0 3.2 86.3 83.0 3.3 150.4 131.9 128.5 3.4
38 77.2 73.9 3.2 88.7 85.5 3.2 154.5 135.5 132.0 3.5
39 79.2 75.9 3.3 91.0 87.6 3.4 158.6 139.1 135.6 3.5
40 81.2 78.2 3.0 93.3 90.1 3.2 162.6 142.6
41 83.3 80.2 3.1 95.7 92.2 3.4 166.7 146.2
42 85.3 82.2 3.1 98.0 94.7 3.3 170.7 149.8
43 87.3 84.1 3.2 100.3 96.8 3.5 174.8 153.3
44 89.3 86.1 3.2 102.7 99.3 3.3 178.9 156.9
45 91.4 88.1 3.3 105.0 101.5 3.5 182.9 160.4
46 93.4 90.0 3.4 107.3 103.9 3.4 187.0 164.0
47 95.4 92.0 3.4 109.7 106.2 3.5 191.1 167.6
48 97.5 94.3 3.2 112.0 108.5 3.5 195.1 171.1
49 99.5 96.3 3.2 114.3 110.9 3.4 199.2 174.7
50 101.5 98.3 3.3 116.7 113.2 3.5 203.3 178.3

Fig. 6. Bit complexity bKG := log(|Cnχ |) of the maximal amount of key guesses |Cnχ | in
AbortedKeyGuess in comparison to H(χ)n, and their difference ∆ := H(χ)n− bKG.

key guesses |Cnχ | is tightly upper bounded by 2H(χ)n (up to a small polynomial
factor that tends to

√
n).

21

B(2) B(3)
n bE[KG] bE[AKG] ∆ bE[KG] bE[AKG] ∆
1 1.1 1.0 0.1 1.3 1.1 0.2
2 2.8 2.4 0.4 3.3 2.7 0.7
3 4.7 4.1 0.7 5.6 4.5 1.1
4 6.8 5.7 1.0 8.0 7.1 0.9
5 8.8 7.4 1.4 10.4 9.1 1.3
6 10.9 9.2 1.7 12.8 11.3 1.5
7 13.0 11.1 1.9 15.2 13.4 1.8
8 15.1 13.6 1.4 17.7 15.8 1.9
9 17.2 15.6 1.6 20.1 17.9 2.2

10 19.3 17.5 1.8 22.6 20.3 2.3
11 21.4 19.4 2.0 25.0 22.4 2.7
12 23.5 21.3 2.2 27.5 24.8 2.7
13 25.6 23.2 2.5 30.0 26.9 3.1
14 27.8 25.1 2.7 32.4 29.3 3.1
15 29.9 27.0 2.9 34.9 31.5 3.4
16 32.0 29.4 2.6 37.4 33.9 3.5
17 34.1 31.3 2.8 39.9 36.2 3.7
18 36.3 33.3 3.0 42.3 38.4 3.9
19 38.4 35.2 3.2 44.8 40.9 4.0
20 40.5 37.2 3.4 47.3 43.0 4.3
21 42.6 39.1 3.5 49.8 45.5 4.3
22 44.8 41.0 3.7 52.3 47.6 4.7
23 46.9 43.0 3.9 54.8 50.0 4.7
24 49.0 45.3 3.7 57.3 52.1 5.1
25 51.2 47.3 3.9 59.7 54.6 5.1

B(2) B(3)
n bE[KG] bE[AKG] ∆ bE[KG] bE[AKG] ∆
26 53.3 49.2 4.1 62.2 56.7 5.5
27 55.4 51.2 4.2 64.7 59.2 5.5
28 57.6 53.2 4.4 67.2 61.4 5.8
29 59.7 55.1 4.6 69.7 63.8 5.9
30 61.9 57.1 4.8 72.2 66.1 6.1
31 64.0 59.0 4.9 74.7 68.4 6.3
32 66.1 61.3 4.8 77.2 70.8 6.4
33 68.3 63.3 5.0 79.7 73.0 6.7
34 70.4 65.3 5.1 82.2 75.3 6.8
35 72.6 67.2 5.3 84.7 77.6 7.1
36 74.7 69.2 5.5 87.2 80.0 7.2
37 76.8 71.2 5.6 89.7 82.2 7.5
38 79.0 73.2 5.8 92.1 84.6 7.5
39 81.1 75.1 6.0 94.6 86.8 7.8
40 83.3 77.4 5.9 97.1 89.3 7.9
41 85.4 79.4 6.0 99.6 91.4 8.2
42 87.5 81.4 6.2 102.1 93.9 8.3
43 89.7 83.3 6.4 104.6 96.0 8.6
44 91.8 85.3 6.5 107.1 98.5 8.6
45 94.0 87.3 6.7 109.6 100.7 8.9
46 96.1 89.3 6.8 112.1 103.1 9.0
47 98.3 91.3 7.0 114.6 105.4 9.3
48 100.4 93.5 6.9 117.1 107.7 9.4
49 102.6 95.5 7.1 119.6 110.1 9.6
50 104.7 97.5 7.2 122.1 112.3 9.8

Fig. 7. Bit complexities bE[KG] := log(E[TKG]) and bE[AKG] := log(E[TAKG]) of expected
amount of key trials of KeyGuess and AbortedKeyGuess, respectively. ∆ denotes
the difference in bit complexities.

5.3 The Benefit of AbortedKeyGuess over KeyGuess

Let the i-th key candidate ai have success probability pi. Then the expected
number of trials in KeyGuess is

E[TKG] =
|An|∑
i=1

pi · i.

In AbortedKeyGuess we only enumerate keys from the core set Cnχ . In case
that our key is not in the core set, our algorithm aborts after |Cnχ | key trials.
Therefore, the expected number of trials of AbortedKeyGuess is

E[TAKG] =
|Cnχ |∑
i=1

pi · i+ (1− Pr[X ∈ Cnχ]) · |Cnχ |.

In this section, we study the gain E[TKG]/E[TAKG] achieved by our aborted guess-
ing algorithm that comes at the mild cost of losing a factor of 2 in the success
probability ε.

Since the computation of E[TAKG] requires the full enumeration of the com-
pact dictionary Dn

χ from Definition 3.5, we are unable to perform this computa-

tion for distributions with a large support like D(2.87) and D(4.05). Therefore,

22

slop
e ≈

0.1
298

slo
pe
≈ 0.1

82
4

0 20 40 60 80 100 120 140
0

5

10

15

20

25

n

lo
g

E[
T
K
G
]

E[
T
A
K
G
]

B(2) B(3)

Fig. 8. Logarithm of our gain E[TKG]/E[TAKG] as a function of n.

in this section we solely consider B(2) and B(3). The computations of their bit
complexities for E[TKG] and E[TAKG] are depicted in Fig 7.

In Fig. 8, we plot the logarithm of our gain E[TKG]/E[TAKG]. For B(2) this
logarithmic gain is 0.13n, whereas for B(3) the logarithmic gain is 0.18n. The
logarithmic gain in turn implies that we save exponential factors of 20.13n, re-
spectively 20.18n, for the expected amount of key trials when using Aborted-
KeyGuess rather than KeyGuess.

Our experiments are in line with Ducas and Pulles [DP23], who experimen-
tally observed an exponential factor between E[TKG] and 2H(χ)n. Furthermore,
Albrecht and Shen [AS22] provided an upper bound for E[TKG] for the discrete
Gaussian distribution of the form 2Θ(n) · 2H(χ)n.

5.4 QuantumKeyGuess compares well to Montanaro’s algorithm

Our QuantumKeyGuess from Section 4 requires 2H(χ)n/2 many key guesses.
Although our algorithm is a comparatively simple Grover-type application, we
already showed in Theorem 4.6 for Montanaro’s more involved algorithm a lower
bound that matches our number of key trials by a polynomial factor.

This section is devoted to experimentally evaluate the limitations of the
speedup that can be achieved by using Montanaro’s algorithm. Our Quan-
tumKeyGuess does not only have worst case complexity 2H(χ)n/2, but we also
expect E[TQKG] = 2H(χ)n/2 many key trials. Montanaro’s algorithm —applied to
our core set Cnχ to enable fair comparison— instead achieves an amount of key
trials of

E[TMon] =

|Cnχ |∑
i=1

pi
√
i.

on expectation.
The bit complexities of E[TQKG] and E[TMon] are provided in Fig. 9. Their

differences are visualized in Fig. 10. Independent of the distribution, on this

23

B(2) B(3) D(4.05) D(2.87)
n bE[QKG] bE[Mon] ∆ bE[QKG] bE[Mon] ∆ bE[QKG] bE[Mon] ∆ bE[QKG] bE[Mon] ∆
1 0.8 0.2 0.6 0.8 0.1 0.7 1.6 0.6 1.0 1.2 0.0 1.1
2 1.6 0.6 1.0 1.6 0.3 1.3 3.3 1.9 1.4 2.8 1.4 1.4
3 2.4 1.1 1.3 2.5 0.9 1.6 5.2 3.7 1.5 4.5 2.9 1.6
4 3.2 1.6 1.5 3.9 2.4 1.5 7.2 5.6 1.6 6.2 4.5 1.6
5 4.0 2.2 1.8 4.9 3.3 1.6 9.1 7.4 1.7 7.9 6.2 1.7
6 4.9 3.0 1.9 6.0 4.3 1.7 11.1 9.3 1.8 9.6 7.8 1.8
7 5.8 3.8 2.0 7.0 5.2 1.8 13.1 11.3 1.8 11.4 9.5 1.8
8 7.2 5.4 1.8 8.3 6.5 1.8 15.1 13.2 1.9 13.1 11.2 1.9
9 8.2 6.3 1.8 9.3 7.4 1.9 17.1 15.1 1.9 14.8 12.9 1.9

10 9.1 7.2 1.9 10.5 8.6 1.9 19.1 17.1 2.0 16.6 14.6 2.0
11 10.0 8.1 1.9 11.5 9.5 2.0 21.1 19.0 2.0 18.3 16.3 2.0
12 11.0 9.0 2.0 12.8 10.8 2.0 23.1 21.0 2.1 20.1 18.0 2.1
13 11.9 9.9 2.1 13.8 11.7 2.1 25.1 23.0 2.1 21.8 19.7 2.1
14 12.9 10.8 2.1 15.0 12.9 2.1 27.1 24.9 2.1 23.6 21.4 2.1
15 13.8 11.7 2.1 16.1 14.0 2.1 29.1 26.9 2.2 25.3 23.2 2.2
16 15.1 13.0 2.1 17.3 15.2 2.1 31.1 28.9 2.2 27.1 24.9 2.2
17 16.0 14.0 2.1 18.5 16.3 2.2 33.1 30.9 2.2 28.9 26.6 2.2
18 17.0 14.9 2.1 19.6 17.4 2.2 35.1 32.9 2.3 30.6 28.4 2.3
19 18.0 15.8 2.2 20.8 18.6 2.2 37.1 34.8 2.3 32.4 30.1 2.3
20 18.9 16.7 2.2 21.9 19.6 2.3 39.2 36.8 2.3 34.2 31.8 2.3
21 19.9 17.7 2.2 23.1 20.9 2.2 41.2 38.8 2.3 35.9 33.6 2.3
22 20.9 18.6 2.3 24.2 21.9 2.3 43.2 40.8 2.4 37.7 35.3 2.4
23 21.9 19.6 2.3 25.4 23.1 2.3 45.2 42.8 2.4 39.5 37.1 2.4
24 23.0 20.8 2.2 26.5 24.1 2.3 47.2 44.8 2.4 41.2 38.8 2.4
25 24.0 21.8 2.3 27.7 25.4 2.3 49.2 46.8 2.4 43.0 40.6 2.4
26 25.0 22.7 2.3 28.8 26.4 2.4 51.3 48.8 2.5 44.8 42.3 2.5
27 26.0 23.7 2.3 30.0 27.6 2.4 53.3 50.8 2.5 46.5 44.1 2.5
28 27.0 24.6 2.3 31.1 28.7 2.4 55.3 52.8 2.5 48.3 45.8 2.5
29 27.9 25.6 2.4 32.3 29.9 2.4 50.1 47.6 2.5
30 28.9 26.5 2.4 33.4 31.0 2.4 51.8 49.3 2.5
31 29.9 27.5 2.4 34.6 32.1 2.5 53.6 51.1 2.5
32 31.1 28.7 2.4 35.8 33.3 2.5 55.4 52.8 2.6
33 32.0 29.7 2.4 36.9 34.4 2.5 57.2 54.6 2.6
34 33.0 30.6 2.4 38.1 35.6 2.5 58.9 56.3 2.6
35 34.0 31.6 2.4 39.2 36.7 2.5 60.7 58.1 2.6
36 35.0 32.5 2.5 40.4 37.9 2.5 62.5 59.8 2.6
37 36.0 33.5 2.5 41.5 38.9 2.6 64.2 61.6 2.6
38 37.0 34.5 2.5 42.7 40.2 2.5 66.0 63.4 2.7
39 37.9 35.4 2.5 43.8 41.2 2.6 67.8 65.1 2.7
40 39.1 36.6 2.5 45.0 42.5 2.6
41 40.1 37.6 2.5 46.1 43.5 2.6
42 41.1 38.6 2.5 47.4 44.8 2.6
43 42.1 39.5 2.5 48.4 45.8 2.6
44 43.1 40.5 2.6 49.7 47.0 2.6
45 44.0 41.5 2.6 50.8 48.1 2.7
46 45.0 42.4 2.6 52.0 49.3 2.7
47 46.0 43.4 2.6 53.1 50.4 2.7
48 47.2 44.6 2.6 54.3 51.6 2.7
49 48.1 45.6 2.6 55.4 52.8 2.7
50 49.1 46.5 2.6 56.6 53.9 2.7

Fig. 9. Bit complexities bE[TQKG] := log(E[TQKG]) and bE[Mon] := log(E[TMon]) of Quan-
tumKeyGuess and Montanaro’s algorithm, respectively.

logarithmic scale all differences in Fig. 10 tend to 1
2 log n. This implies that the

ratio E[TQKG]/E[TMon] is approximately
√
n.

Fig. 11 demonstrates that for large n the ratio E[TQKG]/E[TMon] becomes even
a bit smaller than

√
n. As a conclusion, taking Montanaro’s more involved algo-

rithm instead of QuantumKeyGuess results only in a rather minor polynomial
speedup of approximately

√
n for our distributions of cryptographic interest.

24

10 20 30 40 50
0

1

2

3

n

lo
g

E[
T
Q
K
G
]

E[
T
M
o
n
]

1
2
logn

B(2) B(3)
D(4.05) D(2.87)

Fig. 10. Difference of bit complexities be-
tween QuantumKeyGuess and Monta-
naro’s algorithm.

10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

n

c

c ∈ R such that E[TMon] =
1
ncE[TQKG]

B(2) B(3)
D(4.05) D(2.87)

Fig. 11. Polynomial exponent c ∈ R such
that E[TMon] =

1
ncE[TQKG].

References

AS22. Martin R Albrecht and Yixin Shen. Quantum augmented dual attack. arXiv
preprint arXiv:2205.13983, 2022.

BDK+18. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
Crystals-kyber: a cca-secure module-lattice-based kem. In 2018 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P), pages 353–367.
IEEE, 2018.

Ber41. Andrew C Berry. The accuracy of the gaussian approximation to the sum of
independent variates. Transactions of the american mathematical society,
49(1):122–136, 1941.

BHMT02. Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quan-
tum amplitude amplification and estimation. Contemporary Mathematics,
305:53–74, 2002.

BM23. Alessandro Budroni and Erik Mårtensson. Improved estimation of key enu-
meration with applications to solving LWE. Cryptology ePrint Archive,
Report 2023/139, 2023. https://eprint.iacr.org/2023/139.

CDH+21. C Chen, O Danba, J Hoffstein, A Hülsing, J Rijneveld, T Saito, JM Schanck,
P Schwabe, W Whyte, K Xagawa, et al. Ntru: A submission to the nist
post-quantum standardization effort, 2021.

DKL+18. Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
based digital signature scheme. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 238–268, 2018.

DP23. Léo Ducas and Ludo Pulles. Does the dual-sieve attack on learning with
errors even work? Cryptology ePrint Archive, 2023.

Ess45. Carl-Gustav Esseen. Fourier analysis of distribution functions. a mathe-
matical study of the laplace-gaussian law. 1945.

FHK+18. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier Lattice-based
Compact Signatures over NTRU. In Submission to NIST’s post-quantum
cryptography standardization process, 2018.

25

https://eprint.iacr.org/2023/139

Fou98. Electronic Frontier Foundation. Cracking des: Secrets of encryption re-
search, wiretap politics and chip design, 1998.

GJ21. Qian Guo and Thomas Johansson. Faster dual lattice attacks for solving
LWE with applications to CRYSTALS. In Mehdi Tibouchi and Huaxiong
Wang, editors, Advances in Cryptology – ASIACRYPT 2021, Part IV, vol-
ume 13093 of Lecture Notes in Computer Science, pages 33–62. Springer,
Heidelberg, December 2021.

Gro96a. Lov K. Grover. A fast quantum mechanical algorithm for database search.
In 28th Annual ACM Symposium on Theory of Computing, pages 212–219.
ACM Press, May 1996.

Gro96b. Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996, pages 212–219. ACM, 1996.

How07. Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle
attack against NTRU. In Alfred Menezes, editor, Advances in Cryptology –
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages
150–169. Springer, Heidelberg, August 2007.

Høy00. Peter Høyer. Arbitrary phases in quantum amplitude amplification. Phys-
ical Review A, 62(5):052304, 2000.

HPS06. Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based
public key cryptosystem. In Algorithmic Number Theory: Third Interna-
tional Symposiun, ANTS-III Portland, Oregon, USA, June 21–25, 1998
Proceedings, pages 267–288. Springer, 2006.

IDF22. MATZOV IDF. Report on the security of lwe:improved dual lattice attack,
2022. https://zenodo.org/record/6412487#.ZCrT7-xBxqs.

Mas94. James L. Massey. Guessing and entropy. In Proceedings of 1994 IEEE
International Symposium on Information Theory, page 204. IEEE, 1994.

Mon11. Ashley Montanaro. Quantum search with advice. In Theory of Quantum
Computation, Communication, and Cryptography: 5th Conference, TQC
2010, Leeds, UK, April 13-15, 2010, Revised Selected Papers 5, pages 77–93.
Springer, 2011.

MU17. Michael Mitzenmacher and Eli Upfal. Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis. Cam-
bridge university press, 2017.

Ngu21. Phong Q Nguyen. Boosting the hybrid attack on ntru: torus lsh, permuted
hnf and boxed sphere. In NIST Third PQC Standardization Conference,
2021.

Sch22. Lars Schlieper. Quantum cryptanalysis with minimal amount of qubits. PhD
thesis, Ruhr-Universität Bochum, 2022.

26

https://zenodo.org/record/6412487#.ZCrT7-xBxqs

A Approximation of Falcon distribution

In Figure 12, we see our approximate distributions D(4.05) and D(2.87) for
Falcon512 and Falcon1024. These approximations were taken by sampling 219

times from D(4.05) and D(2.87). In order to make this approximate distribution
symmetric, we set pi as the average amount of samples of i and−i and normalized
it such that

∑
pi = 1.

i pi · 220
D(4.05) D(2.87)

0 104,098 145,946
1 100,876 137,664
2 91,062 113,981
3 77,952 84,393
4 63,141 55,367
5 47,872 31,864
6 34,803 16,198
7 23,297 7,422
8 14,642 2,930
9 8,718 1,055
10 4,887 307
11 2,613 109
12 1,323 22
13 608 3
14 260
15 117
16 43
17 19
18 3
19 2
20 1

Fig. 12. Distribution approximations D(4.05) and D(2.87) for Falcon512 and Fal-
con1024, respectively. These approximate distributions were taken by sampling 219

times from D(σ) for σ = 1.17 ·
√

12289
2n

.

27

	 Entropy Suffices for Key Guessing

