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Abstract. In this work we examine the hardness of solving various
search problems by hybrid quantum-classical strategies, namely, by al-
gorithms that have both quantum and classical capabilities. Specifically,
for search problems that are allowed to have multiple solutions and in
which the input is sampled according to uniform or Bernoulli distribu-
tions, we establish their hybrid quantum-classical query complexities—
i.e., given a fixed number of classical and quantum queries, determine
what is the probability of solving the search task. At a technical level,
our results generalize the framework for hybrid quantum-classical search
algorithms recently proposed by Rosmanis [Ros22]. Namely, for an ar-
bitrary distribution D on Boolean functions, the probability that an al-
gorithm equipped with τc classical queries and τq quantum queries suc-
ceeds in finding a preimage of 1 for a function sampled from D is at most
νD · (2

√
τc + 2τq + 1)2, where νD captures the average (over D) fraction

of preimages of 1.

As applications of our results, we first revisit and generalize the for-
mal security treatment of the Bitcoin protocol called the Bitcoin back-
bone [Eurocrypt 2015], to a setting where the adversary has both quan-
tum and classical capabilities, presenting a new hybrid honest majority
condition necessary for the protocol to properly operate. Secondly, we
re-examine the generic security of hash functions [PKC 2016] against
quantum-classical hybrid adversaries.



1 Introduction

The query model is an elegant abstraction and is widely adopted in cryptogra-
phy. A notable example is the random oracle (RO) model [BR93], where a hash
function f is modeled as a random black-box function, and all parties includ-
ing the adversary can evaluate it only by issuing a query x and receiving f(x)
in response. Numerous cryptosystems have been designed and analyzed in the
random oracle model (e.g., [BR94, BR96, Sho01, FOPS04, FO13]).

Quantum computing brings about a new quantum query model, where superposi-
tion queries to the hash function f are permitted in the form of

∑
x,y αx,y|x⟩|y⟩ 7→∑

x,y αx,y|x⟩|y ⊕ f(x)⟩. This equips quantum adversaries with new capabili-
ties. Indeed, some classically secure digital signature and public-key encryp-
tion schemes are broken in the quantum random oracle (QRO) model, where
a quantum adversary makes superposition queries to f [YZ21]. A significant
amount of effort has been devoted to address such quantum-query adversaries
(cf., [BDF+11, ES15, Unr15, HHK17, AHU19, DFMS19, CMS19, ES20, DFMS22])
and often , in order to maintain security, we need to pay a considerable efficiency
overhead, such as more complex constructions or larger key sizes.

The threat is alarming, but it also requires running a large-scale quantum com-
puter coherently for a long time. The quantum devices available in the near-to-
intermediate term are likely to be computationally restricted as well as expen-
sive [Pre18]. This reality inspires a hybrid query model, where one is granted a
quota of both classical queries and quantum queries, a model which subsumes
classical and fully quantum queries as special cases. Establishing a trade-off be-
tween classical and quantum queries allows us to give a more accurate estimation
of security and hence optimized parameter choices of a cryptosystem depending
on what resources are available to a (near-term) quantum adversary.

Recently, Rosmanis presented the first analysis of the basic unstructured search
problem in the hybrid query model [Ros22], where given oracle function f :
X → {0, 1}, one wants to find a “marked” input, i.e., x with f(x) = 1. In
fact, this problem has been extensively studied when all queries are quantum.
Grover’s quantum algorithm [Gro96] shows a quadratic speedup over classical
algorithms, which is also proven optimal [BBBV97]. The generalized search ver-
sion, when there are multiple marked inputs or they are randomly chosen, is also
well understood [Zal99, DH09, Zha19]. Rosmanis’s work proves the hardness of
searching in the domain of a function with a unique marked input x∗ in the
hybrid query model and shows that for any quantum algorithm with τc classical
queries and τq quantum queries, it succeeds in finding x∗ with probability at
most 1

|X| · (2
√
τc+2τq +1)2. This result also holds when x∗ is chosen at random,

but other generalizations are unknown.
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1.1 Our Contributions

In this paper we prove hardness of generalized search problems in the hybrid
query model. We consider an arbitrary distribution D on the function family
F = {f : X → {0, 1}}, and give a precise upper bound on the probability of
finding a pre-image x with f(x) = 1 when f ← D, for any quantum algorithm
spending τc classical and τq quantum queries. Specifically,

Pr
f←D

[f(x) = 1 : x← Af ] ≤ νD · (2
√
τc + 2τq + 1)2 ,

where νD
def
= supφ:∥φ∥2≤1

(
Ef←D

∥∥∥(∑x:f(x)=1 |x⟩⟨x|
)
φ
∥∥∥2
2

)
captures the average fraction of preimages of 1, and is solely determined by the
distribution D.

With our generalized bound, deriving hardness bounds for specific distributions
becomes remarkably convenient. All we need to do is analyze νD, and this usually
can be done by a simple combinatorial argument. For instance, let D be the
uniform distribution over functions with exactly one marked input. Then we
can observe that νD = Prf←D[f(x) = 1] = 1/|X| for an arbitrary x, which
coincides with the result of Rosmanis [Ros22]. By a similar token, the hardness
of searching a function with w marked items can be obtained.

We further demonstrate our result on another distribution Dη, where each input
is marked according to a Bernoulli trial. Namely, for every x ∈ X, we set f(x) = 1
with probability η independently. By determining νD in this case, we obtain the
hardness of search in f ← Dη.

This search problem under Dη, which we call Bernoulli Search, is particularly
useful in several cryptographic applications. Firstly, we can prove generic secu-
rity bounds for hash function properties, such as preimage-resistance, second-
preimage resistance and their multi-target extensions, against hybrid quantum-
classical adversaries. This follows almost verbatim by plugging in our hybrid
hardness bound of Bernoulli Search to the result of [HRS16], where the authors
relate the hash properties to Bernoulli Search in the fully quantum query set-
ting. In another application, Bernoulli search was shown to dictate the security
of proofs of work (PoWs) and security properties of Bitcoin-like blockchains
in the random oracle model (with fully quantum queries) [CGK+23]. This al-
lows us to identify a new honest-majority condition under which the security of
Bitcoin blockchain holds against hybrid adversaries with classical and quantum
queries.

At a technical level, the proof of our hardness bound follows the overall strategy
of [Ros22]. As in the standard optimality proof of Grover’s algorithm [BBBV97],
one would consider running an adversary’s algorithm with respect to the input
function f ← D or a constant-0 function. Then one argues that each query
diverges the states in these two cases, which is called a progress measure, by a
small amount. On the other hand, in order to find a marked input in f , the
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final states need to differ significantly. Therefore, sufficiently many queries are
necessary for the cumulative progress to grow adequately.

Now, when classical queries are mixed with quantum queries, the quantum states
would collapse after each classical query and it becomes unclear how to measure
the progress. To address this, Rosmanis considers instead an intermediate ora-
cle named pseudo-classical. Namely, consider a quantum query with the output
register initialized in |0⟩:

∑
x αx|x⟩|0⟩ 7→

∑
x αx|x⟩|f(x)⟩. We can then view a

classical query as the result of measuring the input register that collapses to x
and receiving f(x), whereas a pseudo-classical oracle measures the output reg-
ister, resulting in one of two possible outcomes,

∑
x:f(x)=0 αx|x⟩|0⟩ (denoted as

the 0-outcome branch) or
∑

x:f(x)=1 αx|x⟩|1⟩ (denoted as the 1-outcome branch).
With this change, one instead tracks the progress between the 0-outcome branch
in case of f ← D and the state in case of the constant-0 function (which always
stays in the 0-outcome branch). The algorithm fails if its state stays in the 0-
outcome branch and is close to the state in the constant-0 case. A key ingredient
in our proof is to deliberately separate the evolution of various objects on an
individual function and what characteristics of the distribution D influence the
evolution and in what way. This enables us to obtain a clean and concise bound
for the generalized hybrid search problem.

1.2 Organization of the Paper

The rest of the paper is organized as follows. The generalized search problem—
which we termDistributional Search (Dist-Search)—with hybrid quantum-classical
queries is presented in Section 2. The problem is defined in Section 2.1, its hard-
ness is established in Section 2.2—the core of our technical contributions—and
two case studies—Grover-like Search and Bernoulli Search—are presented in Sec-
tion 2.3. Section 3 is dedicated to applications of the Bernoulli Search results,
namely, the generic security of hash functions and the security of the Bitcoin
blockchain against hybrid adversaries (Sections 3.1 and 3.2, respectively). We
offer some conclusions and directions for future work in Section 4.

2 Distributional Search with Hybrid Strategies

2.1 The Distributional Search Problem

The problem we consider is to search a preimage of 1 in an arbitrarily distributed
black-box function.

Distributional Search Problem (Dist-Search)

Let D be an arbitrary distribution supported on the function family F :=
{f : X → {0, 1}}.

Given: Black-box access to function f drawn from distribution D.
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Goal: Find x such that f(x) = 1 if there exists such an x.

It is not surprising that the hardness of the problem is crucially influenced by the
number of preimages of 1 on average underD; however, what is interesting about
our study is that we can show a clean quantitative relation. Let f : X → {0, 1}
be an arbitrary function. Define a projector on the space spanned by preimages
of 1:

πf
def
=

∑
x:f(x)=1

|x⟩⟨x| and Πf
def
= πf ⊗ 1 .

Denote π⊥f
def
= 1− πf and Π⊥f

def
= 1−Πf , and let D be a distribution on F . We

define the value that captures the average fraction of preimages of 1 as:

Definition 1 (νD). The average fraction of preimages of 1 is defined as:

νD
def
= sup

φ:∥φ∥≤1

(
Ef←D ∥πfφ∥2

)
(1)

where ∥·∥ is the Euclidean norm.

In this paper, we are able to establish the following bound for the success prob-
ability of solving Dist-Search, which constitutes our main result:

Theorem 1 (Hardness of Dist-Search). For any algorithm A making up to
τc classical queries and τq quantum queries, it holds that:

SuccA,D := Pr
f←D

[f(x) = 1 : x← Af ] ≤ νD · (2
√
τc + 2τq + 1)2 .

Next, we turn to proving the above result.

2.2 Hardness of Dist-Search

2.2.1 Preliminaries and Overview

We first formally describe an oracle function for the case of quantum and pseudo-
classical queries.

Definition 2 (Query Operators). We define the following operators, which
describe the actions of quantum and pseudo-classical oracles for a hybrid algo-
rithm given a function f .

– A pseudo-classical oracle is described by

Pf,b
def
=

∑
x:f(x)=b

|x⟩⟨x| ⊗ 1⊗ |b⟩
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– A quantum oracle is described by

Qf
def
=
∑
x,b

|x⟩⟨x| ⊗ 1⊗ |b⊕ f(x)⟩⟨b|

Namely, on a pseudo-classical query, the two operators Pf,0 = Π⊥f ⊗ |0⟩ and
Pf,1 = Πf⊗|1⟩ correspond to the two possible measurement outcomes. It is more
convenient to answer quantum queries by the corresponding phase oracle:

Qf
def
= 1− 2Πf .

This can be seen as setting the output register of the standard oracle in |−⟩, and
as a result, a quantum query flips the signs of the 1-preimages.

When running a hybrid query algorithm with f , we will keep track of the (sub-

normalized) pure state ψ
(t)
f , which denotes the state of the algorithm on in-

put f after t queries in the situation where every pseudo-classical query mea-
sures 0 (we will call this the 0-branch of Af ). Namely, consider an arbitrary
algorithm with at most τ queries (τq quantum and τc pseudo-classical) spec-
ified by a sequence of unitary operators4 (U (0), U (1), . . . , U (τ)). Let Tc = {t :

t-th query is pseudo-classical} and Tq = {t : t-th query is quantum}. Then ψ(t)
f

is defined recursively by

ψ
(t)
f

def
=

{
U (t)Pf,0ψ

(t−1)
f , if t ∈ Tc ;

U (t)Qfψ
(t−1)
f if t ∈ Tq .

(2)

From this definition, the projection of ψ
(t)
f under Π⊥f characterizes the event

that an algorithm fails to find a 1-preimage.

Lemma 1. For any algorithm A, the failure probability of finding a 1-preimage
of f after t queries is

δ
(t)
f = Pr[f(x) ̸= 1 : x← Af ] ≥

∥∥∥Π⊥f ψ(t)
f

∥∥∥2 .
Hence, the failure probability with respect to distribution D satisfies

δ
(t)
D = Ef←Dδ

(t)
f ≥ Ef←D

∥∥∥Π⊥f ψ(t)
f

∥∥∥2 .
Thus, our goal becomes lower-bounding

∥∥∥Π⊥f ψ(t)
f

∥∥∥. To do this, we consider run-

ning the same algorithm, but with a null function:

f∅ : x 7→ 0,∀x ∈ X .

4 Dimensions may grow depending on the arrangement of the pseudo-classical queries.
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In this case, a quantum query is equivalent to applying identity (denoted Q∅
def
=

1), and a pseudo-classical query does not tamper the input state either but just
appends |0⟩. To be precise, we define

P∅,0
def
= 1⊗ |0⟩ ,

and at each step t ≥ 0, the state of the algorithm denoted by ϕ(t) can be described
as:

ϕ(t) =

{
U (t)P∅,0ϕ

(t−1), if t ∈ Tc ;
U (t)ϕ(t−1) if t ∈ Tq .

Without loss of generality we assume initially ψ
(0)
f = ϕ(0) = |0⟩, and hence∥∥∥Π⊥f ψ(0)

f

∥∥∥ =
∥∥∥Π⊥f ϕ(0)∥∥∥ = 1. In order to succeed, algorithm Af needs to move

ψ
(t)
f away from the kernel of Π⊥f or reduce its norm. This motivates defining the

progress measures below.

Definition 3 (Progress Measures (A(t), B(t))). For any function f and t ≥
0, define

A
(t)
f

def
=
∣∣∣⟨ϕ(t), ψ(t)

f ⟩
∣∣∣2 , B

(t)
f

def
=
∥∥∥ψ(t)

f

∥∥∥2 − ∣∣∣⟨ϕ(t), ψ(t)
f ⟩
∣∣∣2 .

Given a distribution D on F , define the expected progress measures by

A
(t)
D

def
= Ef←D

(
A

(t)
f

)
, B

(t)
D

def
= Ef←D

(
A

(t)
f

)
.

Notice that:

A
(t)
f +B

(t)
f =

∥∥∥ψ(t)
f

∥∥∥2 A
(0)
f = 1, B

(0)
f = 0 .

We will show that A
(t)
D − B

(t)
D essentially lower bounds the failure probability

δ
(t)
D (Lemma 5). Hence, an algorithm’s objective would be to reduce A

(t)
D and

increase B
(t)
D . However, we can limit how much change can occur after τ queries

(Proposition 1). This is by carefully analyzing the effect of each quantum or
pseudo-classical query (Lemmas 7 and 8). Roughly speaking,

– A quantum query reduces A
(t)
D by at most 4

√
νD ·B(t)

D and increases B
(t)
D

by the same amount (as a quantum query does not affect
∥∥∥ψ(t)

f

∥∥∥2);
– A pseudo-classical query increases B

(t)
D by at most νD, while a part z(t) of

B
(t)
D can also be spent to decrease A

(t)
D by

√
νD · z(t).
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πf

∑
x:f(x)=1 |x⟩⟨x|

Πf πf ⊗ 1 (1 on ancilla registers)

δf Pr[f(x) ̸= 1 : x← Af ] (Failure probability with f)

δD EDδf (Failure probability with f ← D)

ϕ(0) = ψ(0) Initial state

ϕ(t) State after t-th query in Af∅

ψ
(t)
f State on the 0-branch after t-th query in Af

Qf 1− 2Πf (quantum oracle of f)

Q∅ 1 (quantum oracle of f∅)

Pf,0 Π⊥
f ⊗ |0⟩ (pseudo-classical oracle of f)

Pf,1 Πf ⊗ |1⟩ (pseudo-classical oracle of f)

P∅,0 1⊗ |0⟩ (pseudo-classical oracle of f∅)

γ
(t)
f

∥∥∥Πfϕ
(t)

∥∥∥2

γ(t) ED(γ
(t)
f )

Table 1: Summary of variables and quantities used in our Dist-Search analysis.

2.2.2 Proof of Theorem 1

First off, we state the following simple fact on expectations which is used in
multiple places of our analysis.

Lemma 2. Let Z be a discrete random variable. Let g(Z) and h(Z) be two
non-negative functions. Then it holds that

EZ

(√
g(Z) · h(Z)

)
≤
√
EZg(Z) · EZh(Z) .

Proof. Let pz := Pr(Z = z). By definition,

EZ

(√
g(Z) · h(Z)

)
=
∑
z

pz
√
g(z)h(z)

=
∑
z

√
pzg(z) ·

√
pzh(z)

≤
√∑

z

pzg(z) ·
√∑

z

pzh(z) (Cauchy-Schwarz)

=
√

EZg(Z) ·
√
EZh(Z) .

In multiple places of our analysis, it is helpful to consider a two-dimensional
plane, which we now define explicitly.
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Definition 4 (Useful 2-D Plane). For t ≥ 0, let

ϕ
(t)
f

def
=

Πfϕ
(t)∥∥Πfϕ(t)
∥∥ = Πfϕ

(t)/

√
γ
(t)
f , ϕ

(t)⊥
f

def
=

Π⊥f ϕ
(t)∥∥∥Π⊥f ϕ(t)∥∥∥ = Π⊥f ϕ

(t)/

√
1− γ(t)f

be the normalized vectors resulting of projecting ϕ on the orthogonal subspaces
spanned by 1 and 0 preimages of f respectively.

Let Φ(t) to be the 2-dimensional plane spanned by {ϕ(t)f , ϕ
(t)⊥
f }. Then ϕ(t)⊥ is

identified as the normalized state perpendicular to ϕ(t) in Φ(t), i.e.,

ϕ(t)⊥
def
= ϕ

(t)
f

√
1− γ(t)f − ϕ

(t)⊥
f

√
γ
(t)
f .

It is then useful to decompose ψt
f with respect to Φ(t).

Lemma 3 (Decomposition of ψ
(t)
f wrt Φ(t)). Let a and b be projecting ψ

(t)
f

on the plane Φ(t) and then decomposing it under basis {ϕ, ϕ⊥}, and let c be the

remaining component of ψ
(t)
f orthogonal to Φ(t), i.e., c ⊥ Φ(t). Then ψ

(t)
f can be

expressed as ψ
(t)
f = a+ b+ c with

a = ϕ(t)
√
A

(t)
f , b = ω

√
B

(t)
f − ∥c∥

2 · ϕ(t)⊥ ,

where ω is a complex phase (i.e., |ω| = 1) of the vector ψ
(t)
f −⟨ψ

(t)
f , ϕ

(t)
f ⟩ ·ϕ(t)−c.

As a result,

Π⊥f ψ
(t)
f = ϕ

(t)⊥
f

(√
1− γ(t)f

√
A

(t)
f −

√
γ
(t)
f · ω

√
B

(t)
f − ∥c∥

2

)
+ c⊥f ,

with c⊥f := Π⊥f c.

Lemma 4. For any fixed f and t ≥ 0,

δ
(t)
f ≥ A

(t)
f − γ

(t)
f − 2

√
γ
(t)
f ·B

(t)
f .

Proof. For convenience, we omit writing the superscript (t) in this proof. We

first show that
∥∥∥π⊥f ψf

∥∥∥ ≥√(1− γf )Af −
√
γfBf . By Lemma 3, we have that

Π⊥f ψf = ϕ⊥f

(√
1− γf

√
Af −

√
γf · ω

√
Bf − ∥c∥2

)
+ c⊥f ,

with c⊥f := π⊥f c. Since c ⊥ Φ, it follows that

⟨ϕ⊥f , c⊥f ⟩ = ⟨ϕ⊥f , Π⊥f c⟩ = ⟨Π⊥f ϕ⊥f , c⟩ = ⟨ϕ⊥f , c⟩ = 0 .
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We can then obtain

∥∥Π⊥f ψf

∥∥ =

∣∣∣∣√1− γf ·
√
Af −

√
γf · ω

√
Bf − ∥c∥2

∣∣∣∣+ ∥∥c⊥f ∥∥
Hence by choosing c = 0, ω = 1, we get that

∥∥Π⊥f ψf

∥∥ ≥√(1− γf )Af −
√
γfBf .

Therefore we can lower bound the failure probability

δf ≥
∥∥π⊥f ψf

∥∥2
≥ (1− γf )Af − 2

√
(1− γf )γfBf

≥ Af − γf − 2
√
γfBf (Af , γf ≤ 1)

Taking the expectation over D, we can express the failure probability with re-
spect to the distribution.

Lemma 5. For any distribution D and t ≥ 0,

δ
(t)
D ≥ A

(t) − γ(t) − 2
√
γ(t) ·B(t) .

Proof.

δ
(t)
D = Ef←D(δ

(t)
f )

≥ ED(A
(t)
f )− ED(γ

(t)
f )− 2ED

√
γ
(t)
f ·B

(t)
f (Linearity of expectation)

≥ A(t) − γ(t) − 2

√
ED(γ

(t)
f ) · ED(B

(t)
f ) (Lemma 2)

= A(t) − γ(t) − 2
√
γ(t) ·B(t)

We can also relate γ(t) to the value νD determined by the distribution D:

Lemma 6. For any t ≥ 0 and any distribution D, we have: γ(t) ≤ νD.
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Proof.

γ(t) := Ef←D

∥∥∥Πfϕ
(t)
∥∥∥2 = Ef←D

∥∥∥(πf ⊗ 1)ϕ(t)∥∥∥2
We will use Schmidt decomposition for the state ϕ(t) ∈ H1⊗H2. Namely, Schmidt
decomposition ensures that there exist orthonormal states {|ui⟩} ⊂ H1 for the
first system and orthonormal states {|vi⟩} ⊂ H2 for the second system such that:
ϕ(t) =

∑
i αi|ui⟩ ⊗ |vi⟩, where αi ≥ 0 such that

∑
i α

2
i = 1 (known as Schmidt

coefficients). Then we can rewrite γ(t) as:

γ(t) := Ef←D

∥∥∥(πf ⊗ 1)ϕ(t)∥∥∥2 = Ef←D

∥∥∥∥∥(πf ⊗ 1)
(∑

i

αi|ui⟩ ⊗ |vi⟩

)∥∥∥∥∥
2

= Ef←D

∥∥∥∥∥∑
i

αi(πf |ui⟩)⊗ |vi⟩

∥∥∥∥∥
2

= Ef←D

∑
i

α2
i ∥(πf |ui⟩)⊗ |vi⟩∥

2
(|vi⟩ are orthogonal)

= Ef←D

∑
i

α2
i ∥πf |ui⟩∥

2 · ∥|vi⟩∥2 (∥a⊗ b∥ = ∥a∥ · ∥b∥)

= Ef←D

∑
i

α2
i ∥πf |ui⟩∥

2

=
∑
i

α2
iEf←D ∥πf |ui⟩∥2

≤
∑
i

α2
i νD (definition of νD)

= νD
∑
i

α2
i = νD

Proposition 1 (Bounding the Progress Measures). After τ = τc + τq
queries,

A(τ) ≥ 1− 4νD · (
√
τc + τq)

2 , B(τ) ≤ νD · (
√
τc + 2τq)

2 .

As it turns out, proving Proposition 1 is the most involved step technically speak-
ing. For the sake of modularity, we present the details separately in Section 2.2.3,
and here we assume its validity and use it to prove Theorem 1.

Proof of Theorem 1. Assuming the bounds above on the two progress measures,
we obtain that
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δ(τ) ≥ 1− 4γ(τ) · (
√
τc + τq)

2 − γ(τ) − 2γ(t) · (
√
τc + 2τq) (Proposition 1)

= 1− γ(τ) · (4(
√
τc + τq) + 2

√
τc + 4τq + 1)

≥ 1− γ(τ) · (2(
√
τc + τq) + 1)2 (τc ≥ 0)

≥ 1− νD · (2
√
τc + 2τq + 1)2 (γ(τ) ≤ νD Lemma 6)

Therefore,

SuccA,D ≤ 1− δ(τ) ≤ νD · (2
√
τc + 2τq + 1)2 .

2.2.3 Bounding the Progress Measures (Proposition 1)

Proposition 1 is proven via a series of steps. First, we consider a fixed func-

tion f , and bound how much each query can possibly reduce A
(t)
f and increase

B
(t)
f .

Lemma 7 (Progress Measures for a Fixed Function). For every t the
progress measures after the t+1-th query satisfy the following recurrent relations:

– If the t+1-th query is pseudo-classical, then there exists a sequence
(
z
(t)
f

)
t≥0

,

satisfying 0 ≤ ztf ≤ B
(t)
f , such that:

A
(t+1)
f ≥ A(t)

f − 2γ
(t)
f − 2 ·

√
z
(t)
f ·

√
γ
(t)
f

B
(t+1)
f ≤ B(t)

f + γ
(t)
f − z

(t)
f

(3)

– If the t+ 1-th query is quantum, then:

A
(t+1)
f ≥ A(t)

f − 4γ
(t)
f − 4 ·

√
B

(t)
f ·

√
γ
(t)
f

B
(t+1)
f ≤ B(t)

f + 4γ
(t)
f + 4 ·

√
B

(t)
f ·

√
γ
(t)
f

(4)

Proof. We analyze the two cases separately.

Pseudo-classical query case. If the (t + 1)-th query is pseudo-classical, ac-
cording to the evolution of the state definition (Eq. (2)), the states after the t+1
query are

ψ
(t+1)
f = U (t+1)Pf,0ψ

(t)
f , ϕ(t+1) = U (t+1)P∅,0ϕ

(t) .
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Therefore, we have:

A
(t+1)
f = |⟨ϕ(t+1), ψ

(t+1)
f ⟩|2

= |⟨P∅,0ϕ(t), Pf,0ψ
(t)
f ⟩|

2

= |⟨ϕ(t)|0⟩, Π⊥f ψ
(t)
f |0⟩⟩|

2

= |⟨ϕ(t), Π⊥f ψ
(t)
f ⟩|

2

By the decomposition of ψ
(t)
f (Lemma 3), we know that:

Π⊥f ψ
(t)
f = ϕ

(t)⊥
f

(√
1− γ(t)f

√
A

(t)
f −

√
γ
(t)
f · ω

√
B

(t)
f − ∥c∥

2

)
+ c⊥f ,

where |ω| = 1 and c⊥f := Π⊥f c and c ⊥ Φ = span{ϕ(t), ϕ(t)⊥}.

Note that ⟨ϕ(t), c⊥f ⟩ = ⟨ϕ
(t)⊥
f , c⊥f ⟩ = 0 and ⟨ϕ(t), ϕ(t)⊥f ⟩ =

√
1− γ(t)f . As a result,

we obtain:

|⟨ϕ(t), Π⊥f ψ
(t)
f ⟩|

2 =

∣∣∣∣√1− γ(t)f

√
A

(t)
f −

√
γ
(t)
f · ω

√
B

(t)
f − ∥c∥

2

∣∣∣∣2 · (1− γ(t)f )

≥ (1− γ(t)f )2A
(t)
f − 2 ·

√
γ
(t)
f ·

√
B

(t)
f − ∥c∥

2

≥ A(t)
f − 2γ

(t)
f − 2 ·

√
γ
(t)
f ·

√
B

(t)
f − ∥c∥

2
.

Noting that ||c⊥f ||2 = ||Π⊥f c||2 = ||c−Πfc||2 ≤ ||c||2, we get:

A
(t+1)
f ≥ A(t)

f − 2γ
(t)
f − 2 ·

√
γ
(t)
f ·

√
B

(t)
f −

∥∥∥c⊥f ∥∥∥2
Hence, by setting z

(t)
f

def
= B

(t)
f −

∥∥∥c⊥f ∥∥∥2 ∈ [0, B
(t)
f ], we have that:

A
(t+1)
f ≥ A(t)

f − 2γ
(t)
f − 2

√
z
(t)
f ·

√
γ
(t)
f .

Next we analyze B
(t+1)
f . By definition,

B
(t+1)
f =

∥∥∥ψ(t+1)
f

∥∥∥2 −A(t+1)
f

=
∥∥∥U (t+1)Pf,0ψ

(t)
f

∥∥∥2 −A(t+1)
f

=
∥∥∥Π⊥f ψ(t)

f

∥∥∥2 −A(t+1)
f .

12



Denote E(t) def
=

∣∣∣∣√1− γ(t)f

√
A

(t)
f −

√
γ
(t)
f · ω

√
B

(t)
f − ∥c∥

2

∣∣∣∣2. Observe that:

∥∥∥Π⊥f ψ(t)
f

∥∥∥2 =
∥∥ϕ⊥f ∥∥2 · E(t) +

∥∥c⊥f ∥∥2 = E(t) +
∥∥c⊥f ∥∥2 .

Meanwhile from above,

A
(t+1)
f = |⟨ϕ(t), Π⊥f ψ

(t)
f ⟩|

2 = E(t)(1− γ(t)f ) .

Since E(t) ≤ A(t)
f +B

(t)
f ≤ 1, we have that

B
(t+1)
f =

∥∥∥Π⊥f ψ(t+1)
f

∥∥∥2 −A(t+1)
f = E(t)γ

(t)
f +

∥∥c⊥f ∥∥2 ≤ B(t)
f + γ

(t)
f − z

(t)
f .

where recall that the sequence (z
(t)
f )t is equal to z

(t)
f := B

(t)
f −

∥∥∥c⊥f ∥∥∥2 ∈ [0, B
(t)
f ].

Quantum query case. If the (t + 1)-th query is quantum, according to the
evolution of the state definition (Eq. (2)), the algorithm states after the t + 1
query are:

ψ
(t+1)
f = U (t+1)Qfψ

(t)
f ; ϕ(t+1) = U (t+1)ϕ(t).

where U (t+1) is a unitary independent of input, and Qf = I − 2Πf .

Then, we have that:√
A

(t+1)
f = |⟨ϕ(t+1), ψ

(t+1)
f ⟩|

= |⟨ϕ(t)U (t+1), U (t+1)Qfψ
(t)
f ⟩|

= |⟨ϕ(t), Qfψ
(t)
f ⟩|

= |
√
A

(t)
f − 2⟨Πfϕ

(t), Πfψ
(t)
f ⟩|

By the decomposition of ψ
(t)
f (Lemma 3), we know that:

ψ
(t)
f =

√
A

(t)
f · ϕ

(t) + ω

√
B

(t)
f − ||c||2 · ϕ

(t)⊥ + c

where |ω| = 1 and c ⊥ Φ = span{ϕ(t), ϕ(t)⊥}. Then, we have:

⟨Πfϕ
(t), Πfψ

(t)
f ⟩ = ⟨Πfϕ

(t),

√
A

(t)
f ·Πfϕ

(t) + ω

√
B

(t)
f − ||c||2 ·Πfϕ

(t)⊥ +Πfc⟩

=

√
A

(t)
f · γ

(t)
f + ω

√
B

(t)
f − ||c||2⟨Πfϕ

(t), Πfϕ
(t)⊥⟩

13



where in the last equality we used that ⟨ϕ(t)|Πfc⟩ = 0, Using the definition of
the state ϕ(t)⊥ (Def. 4), we have that:

Πfϕ
(t)⊥ = Πf

(
ϕ
(t)
f

√
1− γ(t)f − ϕ

(t)⊥
f

√
γ
(t)
f

)
=

√
1− γ(t)f ϕ

(t)
f

⟨Πfϕ
(t), Πfϕ

(t)⊥⟩ = ⟨
√
γ
(t)
f ϕ

(t)
f ,

√
1− γ(t)f ϕ

(t)
f ⟩ =

√
γ
(t)
f ·

√
1− γ(t)f

As a result, we can rewrite A
(t+1)
f as:√

A
(t+1)
f =

∣∣∣∣(1− 2γ
(t)
f )

√
A

(t)
f − 2ω

√
B

(t)
f − ||c||2 ·

√
γ
(t)
f ·

√
1− γ(t)f ||

∣∣∣∣
Using the inequality |a− b| ≥ ||a| − |b|| ≥ |a| − |b| for any a, b complex numbers:√

A
(t+1)
f ≥

∣∣∣1− 2γ
(t)
f

∣∣∣√A(t)
f − 2|ω| ·

√
γ
(t)
f ·

√
1− γ(t)f

√
B

(t)
f − ||c||2

≥
∣∣∣1− 2γ

(t)
f

∣∣∣√A(t)
f − 2 ·

√
γ
(t)
f

√
B

(t)
f

Using that
√
A

(t)
f ≤ 1 and the observation that if x ≥ a − b, this implies that

x2 ≥ a(a− 2b) for any a, b > 0, we can determine the lower bound on A
(t+1)
f :

A
(t+1)
f ≥

∣∣∣1− 2γ
(t)
f

∣∣∣√A(t)
f ·

(∣∣∣1− 2γ
(t)
f

∣∣∣√A(t)
f − 4 ·

√
γ
(t)
f

√
B

(t)
f

)
≥
(
1− 2γ

(t)
f

)2
A

(t)
f − 4

∣∣∣1− 2γ
(t)
f

∣∣∣√γ(t)f

√
B

(t)
f

≥ A(t)
f − 4γ

(t)
f − 4

√
γ
(t)
f

√
B

(t)
f

As for a quantum query we have: A
(t+1)
f +B

(t+1)
f = A

(t)
f +B

(t)
f , we get:

B
(t+1)
f = A

(t)
f +B

(t)
f −A

(t+1)
f ≤ A(t)

f +B
(t)
f −A

(t)
f + 4γ

(t)
f + 4

√
γ
(t)
f

√
B

(t)
f

≤ B(t)
f + 4γ

(t)
f + 4

√
γ
(t)
f

√
B

(t)
f

Lemma 8 (Progress Measures for Dist-Search). For every t, the progress
measures after the t+ 1-th query satisfy the following recurrent relations:

– If the t+ 1-th query is pseudo-classical, there exists zt ∈ [0, B(t)] s.t.:

A(t+1) ≥ A(t) − 2νD − 2
√
νD ·
√
zt

B(t+1) ≤ B(t) − zt + νD
(5)
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– If the t+ 1-th query is quantum, then we have:

A(t+1) ≥ A(t) − 4 · νD − 4 ·
√
νD ·

√
B(t)

B(t+1) ≤ B(t) + 4 · νD + 4 ·
√
νD ·

√
B(t)

(6)

Proof. Letting zt
def
= Ef←D(ztf ), we can observe that zt ∈ [0, B(t)]. Taking ex-

pectations over D, and applying Lemma 2 (E
√
g(Z) · h(Z) ≤

√
Eg(Z) · Eh(Z))

and Lemma 6 (γ(t) ≤ νD), the relations for A(t) and B(t) follow.

Next, since we intend to lower bound A(τ) and upper bound B(τ), we can change
the inequalities to equalities and analyze instead the new sequences (at, bt) de-
fined below. It is clear that A(τ) ≥ aτ and B(τ) ≤ bτ .

Definition 5 (Sequences (at)t≥0, (bt)t≥0). We define the following sequences
based on the evolution of the progress measures A and B:

a0
def
= A(0) = 1

b0
def
= B(0) = 0

at+1
def
=

{
at − 2 · νD − 2 · √νD ·

√
zt , if t+ 1 ∈ Tc

at − 4 · νD − 4 · √νD ·
√
bt , if t+ 1 ∈ Tq

bt+1
def
=

{
bt + νD − zt , if t+ 1 ∈ Tc
bt + 4 · νD + 4 · √νD ·

√
bt , if t+ 1 ∈ Tq

where (zt)t≥1 is the sequence defined in the proof of Lemma 8, which satisfies
0 ≤ zt ≤ B(t) for any t.

Lemma 9 (Bounding aτ and bτ).

aτ ≥ 1− 4νD · (
√
τc + τq)

2 , bτ ≤ νD · (
√
τc + 2τq)

2 . (7)

Proof. The proof consists of four steps.

(1) First we show that bτ ≤
(√
τc + 2τq

)2 · νD.

To get an upper bound for each term of this sequence, we can consider zt = 0,
and hence instead use the sequence:

dt+1
def
=

{
dt + νD , if t+ 1 ∈ Tc
dt + 4 · νD + 4 · √νD ·

√
dt , if t+ 1 ∈ Tq

As a result we have: bt ≤ zt for any t ∈ [τ ].
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Our task is to determine the maximum value of the last term of the sequence,
i.e. dτ . We can see from the definition of dt that every hybrid strategy that
uses τc classical queries and τq quantum queries induces a sequence (dt)t. More
concretely, we can write each such strategy A as a sequence of τ bits, A =
[x1, · · · , xτ ], which indicate if the i-th query of the strategy A is classical or
quantum. Namely if xi = 0 this represents that the i-th query of A is classical and
if xi = 1 then the i-th query is quantum and we know that that there are exactly
τc values of 0 and τq values of 1. Therefore, the sequence (dt)t parameterized by
the strategy A, denoted as (dAt )t, can be re-written as:

dAt+1
def
=

{
dAt + νD , if xt+1 = 0

dAt + 4 · νD + 4 · √νD ·
√
dt , if xt+1 = 1

(8)

With this representation in mind, our task reduced to determining the strategy
A∗ which achieves the maximum dA

∗

τ over all possible strategies.

The starting point is the following observation. Let the following two strategies
A = [x1, · · · , xi, xi+1, · · · , xτ ] and B = [y1, · · · , yi, yi+1, · · · , yτ ] which only differ
in the order between a classical query and a quantum query for the i and i+ 1-
th queries, namely: xi = 0, xi+1 = 1 and yi = 1, yi+1 = 0 and xj = yj for
j ∈ {1, · · · , τ} − {i, i + 1}. We will show next that the strategy A results in a
greater last term than the last term in the strategy B, namely: dAτ > dBτ .
As x1 = y1, · · ·xi−1 = yi−1, this implies directly that dAi−1 = dBi−1. Then for the
i-th and i+ 1 terms of the two sequences we have:

dAi = dAi−1 + νD ; dAi+1 = dAi−1 + 5νD + 4
√
νD

√
dAi−1 + νD

dBi = dBi−1 + 4νD + 4
√
νD

√
dBi−1 ; dBi+1 = dBi−1 + 5νD + 4

√
νD

√
dBi−1

Then, as dAi−1 = dBi−1 it is clear that dAi+1 > dBi+1. As xj = yj for all i+2 ≤ j ≤ τ ,
this also implies that dAτ > dBτ , which concludes the claim.

Denote the following swap operation on strategies. Given as input a strategy
A = [x1, ..., xi, xi+1, · · · , xτ ] the function swapi outputs a strategy A′:

swapi(A) = A′ where A′ = [x1, ..., xi+1, xi, · · · , xτ ]

Then, our previous observation implies that for a strategy A such that xi = 0

and xi+1 = 1, we have: dAτ > d
swapi(A)
τ .

Let the strategy:

A∗
def
= [0, · · · , 0, 1, · · · , 1].

We claim that A∗ is the strategy that achieves the maximum last term over all
possible strategies. It is not hard to see that any strategy A = [x1, ..., xτ ] can be
obtained from starting with A∗ and applying a sequence of swapi operations:

A∗
def
= [0, · · · , 0, 1, · · · , 1]

swapi1−−−−→ · · ·
swapik−−−−→ A for some indices i1, ..., ik
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Applying the previous observation implies that for any strategy A, we have that
dA

∗

τ ≥ dAτ , which shows that A∗ is the optimal strategy. Now, let us compute
the last term of the optimal strategy, i.e.: dA

∗

τ . We can rewrite the sequence
corresponding to this sequence as:

dA
∗

t+1 =

d
A∗

t + νD , if 0 ≤ t < τc

dA
∗

t + 4 · νD + 4 · √νD ·
√
dA

∗
t =

(√
dA

∗
t + 2

√
νD

)2
, if τc ≤ t < τ

As dA
∗

0 = 0, it is clear that we have: dA
∗

τc = τc · νD. For τc ≤ t ≤ τ , we will prove
by induction that:

dA
∗

t = (
√
τc + 2(t− τc))2 · νD

For the base case t = τc, we already showed that dA
∗

τc = τc ·νD. For the inductive
step, we have that:

dA
∗

t+1 =

(√
(
√
τc + 2(t− τc))2 · νD + 2

√
νD

)2

from induction hypothesis

= (
√
τc + 2(t− τc + 1)) · νD

which concludes the inductive proof. Hence, by putting things together we have:

bτ ≤ dτ ≤ dA
∗

τ = (
√
τc + 2τq)

2 · νD (9)

(2) Secondly, we show that
∑

t∈Tq

√
bt−1 ≤

√
νD · τq(

√
τc + τq − 1).

As for bτ , to get an upper bound we let zt = 0, and thus use the sequence (dAt )t.
From the definition of the sequence (Equation 8), it is clear that (dAt )t is a strictly
increasing sequence for any strategy A. This also implies that for any strategy
A we have: ∑

t∈Tq

√
dAt−1 ≤

∑
τc≤t≤τ

√
dAt

In other words,
∑

t∈Tq

√
dAt−1 is maximized when the strategy performs first

all τc classical queries and then the τq quantum queries. Hence, the maximum
is achieved for the strategy described above by the sequence (dA

∗

t )t. Using the
previous result in Equation 9:∑

τc≤t≤τ

dA
∗

t = νD ·
∑

τc≤t≤τ

(
√
τc + 2(t− τc))2
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This gives us:∑
t∈Tq

√
bt−1 ≤

∑
τc≤t≤τ

√
dA

∗
t =

√
νD

∑
τc≤t≤τ

√
τc + 2(t− τc)

≤
√
νD

τq(√τc − 2τc) + 2
∑

τc≤t≤τ

t


=
√
νD

(
τq
√
τc(1− 2

√
τc + 2

√
τc) + 2 · (τq − 1)τq

2

)
=
√
νDτq(

√
τc + τq − 1)

(3) Thirdly, we show that
∑

t∈Tc

√
zt−1 ≤

√
νD · (τc + 2

√
τcτq).

By definition of the sequence zt (Def. 5), we know that for t ∈ Tc:∑
t∈Tc

zt−1 = νD · τc +
∑
t∈Tc

(bt−1 − bt)

For the rest of the proof it hence suffices to derive an upper bound on
∑

t∈Tc
(bt−1−

bt). We can rewrite bτ as:

bτ = b0 +

τ∑
t=1

(bt − bt−1) =
∑

bt≥bt−1

(bt − bt−1) +
∑

bt<bt−1

(bt − bt−1)

As a result, we have that:∑
t∈Tc ∧ bt<bt−1

(bt−1 − bt) <
∑

bt<bt−1

(bt−1 − bt) =
∑

bt≥bt−1

(bt − bt−1)− bτ

In other words we also have:∑
t∈Tc ∧ bt<bt−1

(bt−1 − bt) <
∑

t∈Tc ∧ bt≥bt−1

(bt − bt−1) +
∑

t∈Tq ∧ bt≥bt−1

(bt − bt−1)

For t ∈ Tq, from the sequence definition (Def. 5), we have that bt > bt−1, thus
we can rewrite previous inequality as:∑
t∈Tc ∧ bt<bt−1

(bt−1 − bt) <
∑

t∈Tc ∧ bt≥bt−1

(bt − bt−1) + 4τq · νD + 4
√
νD
∑
t∈Tq

√
bt−1

By applying step (2), we get:∑
t∈Tc ∧ bt<bt−1

(bt−1−bt) <
∑

t∈Tc ∧ bt≥bt−1

(bt−bt−1)+4νDτq+4νDτq(
√
τc+τq−1)
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By subtracting the first sum from the right hand side we get:

∑
t∈Tc

zt−1 = νD · τc +
∑
t∈Tc

(bt−1 − bt) < νD ·
(
τc + 4τ2q + 4τq

√
τc
)

Finally, by using the Cauchy-Schwarz inequality:∑
t∈Tc

√
zt−1 ≤

√
νD ·

(
τc + 4τ2q + 4τq

√
τc
)
·
√
τc ≤

√
νD · (τc + 2τq

√
τc)

(4) In the final step, we show that aτ ≥ 1− 4νD(
√
τc + τq)

2 .

From the definition of at (Def. 5):

aτ = a0 +

τ∑
t=1

(at − at−1)

= 1−
∑
t∈Tc

(
2νD + 2

√
νD ·
√
zt−1

)
−
∑
t∈Tq

(
4νD + 4

√
νD ·

√
bt−1

)
= 1− 2τcνD − 4τqνD − 2

√
νD
∑
t∈Tc

√
zt−1 − 4

√
νD
∑
t∈Tq

√
bt−1

Using the bounds derived in steps (2) and (3), we get :

aτ ≥ 1− 2τcνD − 4τqνD − 2νD · (τc + 2
√
τcτq)− 4νD · τq(

√
τc + τq − 1)

= 1− 4νD(
√
τc + τq)

2

2.3 Case Studies

In this section, we will apply our main result to two common function distri-
butions. As a common ingredient, it will be helpful to consider the following
indicator random variable:

1f
x

def
=

{
1 if f(x) = 1 ;

0 if f(x) = 0 ,

for all f ∈ F and x ∈ X. Then, for a distribution D,

Ef←D(1f
x) = Pr

f←D
[f(x) = 1] .
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2.3.1 Grover-like Search

The first interesting case is a general Grover-type search. We consider a distri-
bution Dw which is uniform over functions that exactly map w inputs to 1. In
other words, drawing f ← Dw is equivalent to sampling a subset S ⊆ X with
|S| = w uniformly at random and set f(x) = 1 if and only if x ∈ S. We consider
the resulting multi-uniform search problem:

Multi-Uniform Search

Given: f ← Dw, which maps a uniform size-w subset to 1.

Goal: Find x such that f(x) = 1.

Theorem 2. For any adversary A making up to τc classical queries and τq
quantum queries,

SuccA,Dw
≤ w

M
· (2
√
τc + 2τq + 1)2 ,

where M = |X| is the domain size.

Proof. We just need to show that νD = supφ:∥φ∥≤1 Ef←Dw
(∥πfφ∥2) ≤ w

M in this

case. Consider an arbitrary unit vector φ =
∑

x αx|x⟩ with
∑

x |αx|2 = 1.

Ef←Dw(∥πfφ∥
2
) = Ef←Dw(

∣∣∣∣∣∑
x

αx1
f
x|x⟩

∣∣∣∣∣
2

)

=
∑
x

|αx|2 · Ef←Dw
(1f

x)

=
∑
x

|αx|2 · Pr
f←Dw

[f(x) = 1]

=
w

M
.

We note two special scenarios. When w = 1, this reproduces Rosmanis’s re-
sult [Ros22], and when τc = 0, our result reproduces the fully quantum query
complexity of Grover search with multiple marked items (cf. [BBBV97, Zal99]).

2.3.2 Bernoulli Search

The second interesting case is what we call a Bernoulli distribution Dη on F , as
specified below:

Bernoulli Search

Given: f ← Dη drawn via the following sampling procedure:
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For each x ∈ X, independently set

f(x) =

{
1, with probability η
0, otherwise

.

Goal: Find x such that f(x) = 1.

Theorem 3. For any adversary A making up to τc classical queries and τq
quantum queries,

SuccA,Dη ≤ η · (2
√
τc + 2τq + 1)2 .

Proof. Consider an arbitrary unit vector φ =
∑

x αx|x⟩ with
∑

x |αx|2 = 1.

Again, we just need to show that Ef←Dη
(∥πfφ∥2) ≤ η. Similarly as above,

Ef←Dη
(∥πfφ∥2) =

∑
x

|αx|2 · Pr
f←Dη

[f(x) = 1] = η .

Note that when τc = 0, this bound reproduces the complexity of Bernoulli search
using fully quantum queries (cf. [HRS16, ARU14]).

3 Applications of Bernoulli Search

3.1 Generic Security of Hash Functions against Hybrid
Adversaries

In this section we study the generic security of hash functions, i.e., security
properties such as one-wayness, second-preimage resistance and extended target
collision resistance [HRS16] against hybrid classical-quantum attacks.

The analysis of these generic security properties of hash functions against hybrid
classical-quantum adversaries reduces to the study of a family of distributional
search problems. Namely, the central problem is the Bernoulli Search problem, in
which the target function to be queried is sampled from the Bernoulli distribution
Dη, defined in Section 2.3.2.

To show the security of a hash function in the hybrid classical-quantum security
model, we will adopt the strategy and proof techniques developed in [HRS16]
against quantum adversaries, which proceeds as follows:

Reduce the hardness of a hybrid classical-quantum adversary against secu-
rity of hash functions to the hardness of hybrid classical-quantum strategies
for the Bernoulli search problem. More concretely, show how an instance of
the Bernoulli search problem can be turned into an instance of the security
experiment.
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Determine the number of classical and quantum queries in the reduction.

Apply the bound on the success probability of a hybrid classical-quantum
algorithm to solve the Bernoulli search problem (Theorem 3) given the num-
ber of queries established in previous step. This gives us the bound on the
success probability of breaking the security properties of hash functions.

We now introduce notation and security definitions of hash functions to be an-
alyzed in the hybrid security model.

3.1.1 Hash Function Background

Let n ∈ N be the security parameter, m = poly(n), k = poly(n), and Hn :=
{HK : {0, 1}m → {0, 1}n}K∈{0,1}k be a family of hash functions, where K de-
notes the index of the hash function. We will denote by M the input of the hash
function.

Definition 6 (OW). For any QPT adversary A, we define the probability of
success of breaking the one-wayness (OW) of a family of hash functions Hn as:

SuccOW
Hn

(A) = Pr[K ← {0, 1}k , M ← {0, 1}m, Y ← HK(M) ;

M ′ ← A(K,Y ) : Y = HK(M ′)]

Similarly, we define single-function, multi-target preimage resistance (SMp − OW):

Succ
p−SMp−OW
Hn

(A) = Pr[K ← {0, 1}k , Mi ← {0, 1}m , Yi ← HK(Mi) 0 < i ≤ p;
M ′ ← A(K, (Y1, · · · , Yp)) : ∃0 < i ≤ p, Yi = HK(M ′)]

And we also define multi-function, multi-target preimage resistance (MMp − OW)
as:

Succ
MMp−OW
Hn

(A) = Pr[Ki ← {0, 1}k , Mi ← {0, 1}m , Yi ← HKi
(Mi) , 0 < i ≤ p

(j,M ′)← A((K1, Y1), · · · , (Kp, Yp)) : Yj = HKj
(M ′)]

Definition 7 (SPR). For any QPT adversary A = (A1,A2), we define the prob-
ability of success of breaking the second-preimage resistance (SPR) of a family
of hash functions Hn as:

SuccSPRHn
(A) = Pr[K ← {0, 1}k , M ← {0, 1}m ;

M ′ ← A(K,M) :M ′ ̸=M and HK(M) = HK(M ′)]

Definition 8 (eTCR). For any QPT adversary A, we define the probability of
success of breaking the extended target collision-resistance (eTCR) of a family of
hash functions Hn as:

SucceTCRHn
(A) = Pr[M ← A1(1

n) , K ← {0, 1}k;
(M ′,K ′)← A2(K,M) :M ′ ̸=M and HK(M) = HK(M ′)]

SM and MM definitions are defined analogously for second-preimage resistance
and extended target collision-resistance as in the one-way definition case.

22



3.1.2 Hybrid Security of Hash Functions

First, we state the hybrid adversarial success as a function of its quantum/classical
queries against the properties enumerated above, followed by the proof for OW.
The proofs for the other security properties proceed similarly as in [HRS16].

Lemma 10 (Hybrid Security of OW). Let m = cn for c > 1 constant and
p = o(2n). For any hybrid classical-quantum algorithm A with τc classical queries
and τq quantum queries we have:

SuccOW
Hn

(A) ≤ 1

2n
· (2
√
τc + 4τq + 1)2 ,

Succ
SMp−OW
Hn

(A) ≤ p · 1

2n
· (2
√
τc + 4τq + 1)2 ,

Succ
MMp−OW
Hn

(A) ≤ 1

2n
· (2
√
τc + 4τq + 1)2 .

Lemma 11 (Hybrid Security of SPR). For any hybrid classical-quantum al-
gorithm A with τc classical queries and τq quantum queries we have:

SuccSPRHn
(A) ≤ 1

2n
· (2
√
τc + 4τq + 1)2 ,

Succ
SMp−SPR
Hn

(A) ≤ p · 1

2n
· (2
√
τc + 4τq + 1)2 ,

Succ
MMp−SPR
Hn

(A) ≤ 1

2n
· (2
√
τc + 4τq + 1)2 .

Lemma 12 (Hybrid Security of eTCR). For any hybrid classical-quantum
algorithm A with τc classical queries and τq quantum queries we have:

SucceTCRHn
(A) ≤ 1

2n
· (2
√
τc + 4τq + 1)2 +

8(τc + τq)
2

2k
,

Succ
MMp−eTCR
Hn

(A) ≤ p ·
(

1

2n
· (2
√
τc + 4τq + 1)2 +

8(τc + τq)
2

2k

)
.

The results and the comparison with the quantum and classical adversary setting
are summarized in the following table:
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Classical
Adversary

Quantum
Adversary

Hybrid
Adversary

OW,MMp − OW,
SPR,MMp − SPR

q+1
2n

O( (q+1)2

2n
) O(

(
√
τc+τq+1)2

2n
)

SMp − OW,
SMp − SPR

p · q+1
2n

O(p (q+1)2

2n
) O(

p(
√
τc+τq+1)2

2n
)

eTCR q+1
2n

+ q

2k
O( (q+1)2

2n
+ q2

2k
) O(

(
√
τc+τq+1)2

2n
+

(τc+τq)
2

2k
)

MMp − eTCR p ·
(
q+1
2n

+ q

2k

)
O(p (q+1)2

2n
+ p q2

2k
) O(

p(
√
τc+τq+1)2

2n
+

p(τc+τq)
2

2k
)

Table 2: Security of hash functions Hn := {HK : {0, 1}m → {0, 1}n}K∈{0,1}k
against generic classical, quantum and hybrid adversaries. Entries represent the
probability of success of classical adversaries equipped with q classical queries,
quantum adversaries equipped with q quantum queries, respectively hybrid
classical-quantum adversaries equipped with τc classical and τq quantum queries.

Proof of Lemma 10 (OW). Given an Bernoulli Search instance,we will show how
to construct an instance of one-wayness (OW).

Bernoulli Search to OW Reduction

1 : Input : f : {0, 1}m → {0, 1} sampled from distribution Dη. Set η =
1

2n
;

2 : Sample y ∈ {0, 1}n;
3 : Let random function g : {0, 1}m → {0, 1}n − {y};
4 : Construct function G : {0, 1}m → {0, 1}n defined as:

5 : G(x) = y , if f(x) = 1

6 : G(x) = g(x) , else

7 : Output : OW instance (y,G).

OW Adversary

1 : Input: Given y and oracle access to G

2 : Task: Find x ∈ {0, 1}m such that G(x) = y

Analysis of the reduction. We want to argue that the output of the Bernoulli
Search to OW reduction (i.e., (y,G)) is negligibly close to the distribution of the
OW experiment. The sketch of this claim proceeds as follows:

– The output (y,G) is distributed identically to distribution D1 = {(z,H)},
where z is sampled uniformly at random from {0, 1}n and H : {0, 1}m →
{0, 1}n random function.

– Define distribution D0 := {(H(x), H)} where H is sampled uniformly at
random and x is sampled uniformly at random from domain {0, 1}m. Distri-
bution D0 is the distribution in the OW experiment.
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– Show that D1 are D0 are close:

SD(D0, D1) =
1

2

∑
z,H

∣∣∣∣Prz,H
[z,H]− Pr

x,H
[H(x), H]

∣∣∣∣
=

1

2

∑
z

∑
H

1

|H|

∣∣∣∣ |H−1(z)2m
− 1

2n

∣∣∣∣
Using Jensen’s inequality we get that: SD(D0, D1) ≤ 1

2 ·
√

2n

2m . By setting

m ≥ 2n, the distributions are negligibly close.

Implementation of G using f . Now, we need to see how oracle access to G is
implemented using oracle access to f and knowledge of g and y, as well as how
many queries to f are needed:

– Quantum query to G:
∑

x,z ax,z|x, z⟩
H−→
∑

x,z ax,z|x, z +H(x)⟩.∑
x,z

ax,z|x⟩|z⟩|0⟩ (initial state to be queried)

7→
∑
x,z

ax,z|x⟩|z⟩|f(x)⟩ (evaluate f)

7→
∑
x,z

ax,z|x⟩|z + f(x) · y + (1− f(x)) · g(x)⟩|f(x)⟩

7→
∑
x,z

ax,z|x⟩|G(x)⟩|f(x)⟩

7→
∑
x,z

ax,z|x⟩|G(x)⟩|0⟩ (uncompute f)

It is clear that a quantum query to G requires two quantum queries to the
Bernoulli function f .

– Classical query to G:

x 7→ f(x) · y + (1− f(x)) · g(x) = G(x) .

A classical query to G requires a classical query to Bernoulli function f .

As a result, we have that the success of a hybrid adversary that has τc classical
queries and τq quantum queries to break OW is at most the success of a hybrid
algorithm that has τc classical queries and 2 · τq quantum queries to solve the
Bernoulli Search problem (Theorem 3, with η = 1

2n ):

SuccOW
Hn

(A) ≤ 1

2n
· (2
√
τc + 4τq + 1)2 (10)
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3.2 The Bitcoin Blockchain against Hybrid
Adversaries

A proof of work (PoW) enables a party to convince other parties that consider-
able effort has been invested in solving a computational task. In the blockchain
setting, the objective of a PoW is to confirm new transactions to be included
in the blockchain. To successfully create a PoW in Bitcoin, one needs to find a
value (“witness”) such that evaluating a hash function (SHA-256) on this value
together with (the hash of) the last block and new transactions to be incorpo-
rated, yields an output below a threshold. A party who produces such a PoW
gets to append a new block to the blockchain and is rewarded. A blockchain hence
consists of a sequence of such blocks. Each party maintains such a blockchain,
and attempts to extend it via solving a PoW.

Definition 9 (Blockchain PoW—Informal). Given a hash function h, a
positive integer T , and a string z representing the hash value of the previous
block, the goal is to find a value ctr such that:

h(ctr, z) ≤ T .

In this section we revisit the following question:

What is the complexity of PoW in the hybrid classical-quantum query
model? Can we formally establish the hybrid security of the Bitcoin back-
bone protocol [GKL15] to properly work against hybrid classical-quantum
adversaries in the random oracle model?

Next, we show the hybrid classical-quantum query complexity of PoW, and then
establish the hybrid security of the Bitcoin backbone protocol in the random
oracle model.

3.2.1 The Bitcoin Backbone Protocol

It is shown in [GKL15] that the blockchain data structure built by the Bitcoin
backbone protocol satisfies a number of basic properties. At a high level, the
first property, called common prefix, has to do with the existence, as well as
persistence in time, of a common prefix of blocks among the chains of honest
parties. The second, called chain quality, stipulates the proportion of honest
blocks in any portion of some honest party’s chain.

Definition 10 (Common Prefix). The common prefix property with parame-
ter k ∈ N, states that for any pair of honest players P1, P2 adopting chains C1, C2
at rounds r1 ≤ r2, it holds that C⌈k1 ⪯ C2 (the chain resulting from pruning the
k rightmost blocks of C1 is a prefix of C2).

Definition 11 (Chain Quality). The chain quality property with parameters
µ ∈ R and l ∈ N, states that for any honest party P with chain C, it holds that
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for any l consecutive blocks of C, the ratio of blocks created by honest players is
at least µ.

Parameters and random variables. Next, we recall some important notions
in the Bitcoin backbone protocol setting.

– τc and τq denotes the number of adversarial classical queries respectively
quantum queries per round;

– f is the probability that at least one honest party generates a PoW in a
round;

– ϵ will be used for the concentration quality of random variables;
– κ denotes the security parameter;
– k denotes the number of blocks for common prefix property and µ denotes

the chain quality parameter;
– s refers to the total number of rounds;
– p = T

2κ , where T denotes the difficulty parameter for solving a PoW. p can
be understood as the probability of success of generating a PoW using a
single classical query;

– f denotes the probability that at least one honest player generates a PoW
in a single round (e.g., in the Bitcoin system, f is about 2− 3%).

3.2.2 Hybrid Security of the Bitcoin Backbone Protocol

We will use the hybrid classical-quantum hardness of PoW to derive a quan-
tum analogue of an honest-majority condition, under which the common prefix
and chain quality properties occur with overwhelming probability. Intuitively,
the hybrid-majority reflects a condition on the computational power of the hy-
brid adversary that needs to be imposed such that the security properties of
the Bitcoin Backbone protocol would hold with overwhelming probability. The
following definition and lemmas are adapted from [CGK+23].

Definition 12 (Hybrid Honest-Majority). We say that the hybrid honest
majority condition holds if:

√
τc + 2τq ≤

1√
f(1− f)p

· negl(κ)

Lemma 13. Under the hybrid honest-majority condition (Def. 12), the desired
properties of a blockchain hold with probability 1− negl(κ):

The common prefix property of the Bitcoin backbone protocol holds with pa-
rameter k ≥ 2sf , for any s ≥ 2

f consecutive rounds;

the chain quality property holds with parameter l ≥ 2sf and ratio of honest
blocks µ with µ = f .
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Proof. From [CGK+23] it is known that the common prefix and chain quality
properties hold as long as in any round, the number of solved PoWs using τc
classical queries and τq quantum queries is at most E := (1−ϵ)f(1−f). It should
be clear from Definition 9 that solving a single PoW is equivalent to solving
the Bernoulli Search problem with distribution Dη, where we set η = p = T

2κ .
Then, the probability that a hybrid classical-quantum algorithm equipped with
τc classical and τq quantum queries to solve E PoWs is at most:

PPoW
Succ ≤ E · SuccA,Dη ≤ E · p · (2

√
τc + 4τq + 1)2.

As a result, the probability that the two security properties hold under the hybrid
honest-majority is:

Psec = 1− PPoW
Succ ≥ 1− (1− ϵ)f(1− f)p · (2

√
τc + 4τq + 1)2

≥ 1− negl(κ)

4 Conclusions and Future Work

We believe that the hybrid query model is both of theoretical and practical
importance. Since near-term quantum computers are likely to be limited and
also expensive, it is to the interest of a party to supplement it with massive
classical computational power. This also reflects the fact that those parties who
have early access to quantum computers (e.g., big companies and government
agencies) probably largely coincide with those who are capable of employing
classical clusters and supercomputers. Next, we discuss a few future research
directions worth exploring.

One immediate question is to study other problems in the hybrid query model.
Recent work [HLS22] proves the hardness of the collision problem by generalizing
the recording technique due to Zhandry [Zha19] in the hybrid query model. It
would be interesting to develop other techniques and generally establish further
query complexity results in this model.

Our applications to hash functions and Bitcoin blockchains can be seen as ana-
lyzing cryptographic constructions in the QRO model against hybrid adversaries.
Many block ciphers rely on a different model, known as the ideal cipher model. As
a simple example, the Even-Mansour cipher encrypts by Ek : m 7→ σ(k⊕m)⊕k,
where σ is a random permutation given as an oracle. As it turns out, this clas-
sically secure cipher is completely broken when quantum queries are allowed
to both Ek and σ [KM10]. Since the secret key k is managed by honest users,
it is debatable whether superposition access to Ek is realistic. There has been
progress in re-establishing the cipher’s security under a partially quantum adver-
sary with quantum access to σ but classical access to Ek [JST21, ABKM22]. The
hybrid query model we consider in this work suggests further relaxing the queries

28



to σ to be a hybrid of classical and quantum ones, and it would be valuable to
re-examine the security of such schemes in the ideal cipher model.

Querying an oracle is actually more commonplace in cryptography than the
aforementioned scenarios. Security definitions often give some component of
a cryptosystem as an oracle to the adversary, such as an encryption oracle
in the chosen-plaintext-attack (CPA) game and a signing oracle in formaliz-
ing unforgeability of digital signatures. There has been a considerable effort
of settling appropriate definitions and constructions (e.g., quantum-accessible
pseudorandom functions, encryption and signatures) when quantum adversaries
are granted superposition queries to these oracles (cf. [BZ13, Zha15, AMRS20,
Zha21, CEV23]). Extending such efforts to the hybrid-adversary landscape would
offer fine-grained security assessments of post-quantum cryptosystems.
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