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Abstract. Vector commitment schemes are compressing commitments
to vectors that make it possible to succinctly open a commitment for
individual vector positions without revealing anything about other po-
sitions. We describe vector commitments enabling constant-size proofs
that the committed vector is small (i.e., binary, ternary, or of small
norm). As a special case, we obtain range proofs featuring the short-
est proof length in the literature with only 3 group elements per proof.
As another application, we obtain short pairing-based NIZK arguments
for lattice-related statements. In particular, we obtain short proofs (com-
prised of 3 group elements) showing the validity of ring LWE ciphertexts
and public keys. Our constructions are proven simulation-extractable in
the algebraic group model and the random oracle model.
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1 Introduction

Vector commitments (VCs) [84,26] allow a user to commit to a vector of messages
m = (m1, . . . ,mn) ∈ Dn over some domainD by generating a short commitment
string. Later, the committer should be able to succinctly open individual entries
of m. Here, “succinctly” means that the partial opening information (called
“proof”) should have constant size – no matter how large the committed vector
is – and still convince the verifier that the opened coordinate is correct. As in
standard commitments, a vector commitment scheme should satisfy two security
properties: (i) The binding property, which ensures that no efficient adversary
can open a commitment to two different values at the same position i ∈ [n]; (ii)
The hiding property, which guarantees that revealing a subset of components
does not reveal any information about messages at remaining positions.

Vector commitments found a number of applications in the context of zero-
knowledge databases [84], verifiable data streaming [80], authenticated dictionar-
ies [101], de-centralized storage [25], succinct arguments [11,81], cryptocurrencies
[32,100] and blockchain transactions [11,63].

In this paper, we consider the problem of extending vector commitments
with optimally short proofs that the committed vector m has small entries. A
straightforward solution is to generically use a general-purpose succinct non-
interactive argument (SNARK) for all NP languages [91]. While the SNARKs of
[67,56,69] would give constant-size proofs, they would require to represent the



statement as an arithmetic circuit. Then, the latter would have to compute the
opening algorithm (including exponentiations in a group) of the commitment
scheme, which would result in a complex circuit. In turn, this would require a
large structured common reference string (CRS) and make the proof generation
very expensive since, in pairing-based SNARKs with very short proofs [56,69,51],
the CRS size grows linearly with the number of multiplication gates in the arith-
metic circuit. Inevitably, the computational cost of the prover grows (at least)
linearly with the circuit size as well. In this paper, we aim at proving smallness
more efficiently than by generically using a SNARK for all NP statements.

1.1 Our Contributions

We revisit the vector commitment scheme of Libert and Yung [84] and propose a
technique allowing to argue the smallness of committed vectors without chang-
ing the commitment algorithm nor its public parameters. Using a very small
number of group elements (typically 2 or 3), we can prove that a committed
vector is binary, ternary or that it has small infinity norm. By slightly increasing
the proof length, we can also prove that a committed vector has small Euclidean
norm or a small Hamming weight.

A key building block of our non-interactive arguments of smallness is a tech-
nique of generating a short proof that a committed m has binary entries. The
proof is made of only two group elements and is proven knowledge-sound in the
combined algebraic group model (AGM) [49] and random oracle model. In addi-
tion, the scheme retains the useful properties of the original vector commitment
[84]. In particular, its CRS size remains linear in the dimension n of committed
vectors and it remains possible to succinctly open the commitment for individ-
ual vector positions. As in [83], it is also possible to prove that a committed
(binary) m ∈ Zp satisfies a linear equation ⟨m, t⟩ = x for a public t ∈ Znp and a
public x ∈ Zp. Finally, it retains the aggregation properties [83,63] that make it
possible to generate a constant-size proof for a sub-vector opening.

As a first application of our arguments of binarity, we obtain a new construc-
tion of range proof featuring extremely short proofs. Regardless of the range
magnitude, each proof consists of only 3 group elements, which matches the
proof size of Groth’s SNARK [69] and improves upon the shortest known range
proof due to Boneh et al. [14]. The construction extends to simultaneously prove
possibly distinct ranges for the individual entries of a vector x = (x1, . . . , xm)
without affecting the proof size. As a special case, it implies very short proofs
that a committed x ∈ Zn has small infinity norm.

As a second main application, we provide short pairing-based non-interactive
zero-knowledge (NIZK) arguments for many natural statements appearing in
lattice-based cryptography. Specifically, we can argue knowledge of small-norm
elements s1, . . . , sn of a cyclotomic ring R = Z[X]/(Xd+1) that satisfy a linear

relation
∑M
i=1 ai · si = t, for public vectors of ring elements a1, . . . ,aM , t ∈ RNq ,

where Rq = R/(qR). Using only 3 group elements, we can prove the validity
of a ring LWE (RLWE) ciphertext [88], an RLWE public key, or even FHE ci-
phertexts [19,45,33]. We can also prove that a committed vector is a solution to
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an instance of the subset sum problem, which is useful for all the applications
considered in [46]. For the specific task of proving the validity of a ciphertext in
the Lyubashevsky-Peikert-Regev cryptosystem [88], we provide efficiency com-
parisons with Groth’s SNARK [69], which is the state-of-the art construction
featuring the same proof size. We estimate that the size of the common ref-
erence string is reduced by a factor 2. While slower on the verifier’s side, our
scheme decreases the number of exponentiations at the prover by a factor 4. The
reason is that, on the prover and verifier sides, the number of exponentiations
only depends on the length of the witness and not on the size of the arithmetic
circuit describing the relation. Our construction thus provides a more balanced
tradeoff than SNARKs between the complexities of the prover and the verifier.
As such, it can be useful in cloud or blockchain applications where it is desirable
to minimize the overhead of the client even at the cost of increasing the workload
of the server. For example, in FHE-based private smart contracts [38,97] (which
explicitly require ZK proofs of input awareness), a resource-constrained client
has to prove the validity of its input FHE ciphertexts before sending them to a
computationally powerful server performing homomorphic operations.

Our NIZK arguments of range membership and ciphertext validity can be
proven simulation-extractable in the algebraic group model [49] and the random
oracle model (recall that all such succinct arguments have to rely on an ideal-
ized model [59]). Simulation-extractability guarantees knowledge-soundness even
when the adversary can observe proofs generated by honest parties. It thus pro-
vides non-malleability [42] guarantees against a malicious prover attempting to
create a proof of its own by mauling honestly generated proofs. As pointed out
in, e.g., [55,53], it is an important security property in all applications where
succinct arguments are easily observable in the wild. For example, if a malleable
range proof is used to demonstrate the validity of confidential transactions (as
in the use case of [21]), it may fail to ensure transaction independence.

Luckily, we can prove simulation-extractability without increasing the proof
length while even the random-oracle-optimized variants [18,6] of Groth’s SNARK
have longer proofs. For the optimal proof length, existing SNARKs either pro-
vide a relaxed flavor of simulation-extractability [5] or they are computationally
more demanding [70] than [69].

1.2 Technical Overview

In asymmetric pairings e : G×Ĝ→ GT , the scheme of [84] uses a CRS containing

group elements (g, {gi = g(α
i)}i∈[2n]\{n+1}) and (ĝ, {ĝi = ĝ(α

i)}ni=1). The sender

commits to m = (m1, . . . ,mn) ∈ Znp by choosing γ R← Zp and computing

C = gγ ·
n∏
j=1

g
mj

j = gγ+
∑n

j=1mi·αj

.
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To open a position i ∈ [n] of m, the committer reveals a proof

πi = gγn+1−i ·
n∏

j=1,j ̸=i

g
mj

n+1−i+j =
(
C/gmi·αi

)αn+1−i

which is verified by checking that e(C, ĝn+1−i) = e(πi, ĝ) · e(g1, ĝn)mi .
To aggregate multiple proofs, PointProofs [63] uses the observation [83] that

the commitment of [84] allows proving that a committed m ∈ Znp satisfies an
inner product relation ⟨m, t⟩ = x for public t = (t1, . . . , tn) ∈ Znp and x ∈ Zp.
By raising the verification equation to the power ti ∈ Zp and taking the product
over all i ∈ [n], we obtain

e
(
C,

n∏
i=1

ĝtin+1−i
)
= e
( n∏
i=1

πtii , ĝ
)
· e(g1, ĝn)

∑n
i=1mi·ti . (1)

PointProofs [63] aggregates proofs {πi}i∈S for a sub-vector S ⊆ [n] by deriving
aggregation coefficients {ti}i∈S from a random oracle and defining the aggregated
proof as the product πS =

∏
i∈S π

ti
i . Verification then proceeds by testing the

equality e(C, ĝn+1−i)
∑

i∈S ti = e(πS , ĝ) · e(g1, ĝn)
∑

i∈S mi·ti .

Proving Binarity. Let a commitment Ĉ = ĝγ ·
∏n
i=1 ĝ

xi
i to x ∈ {0, 1}n.1

Using its proof aggregation properties, we prove that, for each i ∈ [n], we have
xi · (xi−1) = 0. To this end, we use a similar batching technique to BulletProofs
[21] and show that

∑n
i=1 yi · xi · (xi − 1) = 0, where y = (y1, . . . , yn) ∈ Znp is a

vector of random aggregation coefficients obtained by hashing y = H(Ĉ) using
a random oracle H : {0, 1}∗ → Znp . As long as y ∈ Znp is chosen uniformly after
{xi}ni=1, the probability to have

∑n
i=1 yi · xi · (xi − 1) = 0 is only 1/p if there

exists i ∈ [n] such that xi ̸∈ {0, 1}.
In order to prove the statement using a constant number of group elements,

we first choose γy
R← Zp and generate an auxiliary commitment

Cy = gγy ·
n∏
j=1

g
yj ·xj

n+1−j , (2)

to the Hadamard product y ◦ x = (y1 · x1, . . . , yn · xn) (in the reversed order).
Then, we proceed in two steps.

In a first step, our prover has to demonstrate that it really computed Cy as
a commitment to (yn · xn, . . . , y1 · x1). Since the commitment (2) satisfies

e(Cy, ĝi) = e
(
g
γy
i ·

n∏
j=1,j ̸=i

g
yj ·xj

n+1−j+i, ĝ
)
· e(g1, ĝn)yi·xi ∀i ∈ [n] (3)

1 For our applications, we will assume that the commitment is in Ĝ rather than G in
order for the proof of knowledge-soundness to work out.
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and the initial commitment Ĉ = ĝγ ·
∏n
j=1 ĝ

xj

j satisfies

e(gn+1−i, Ĉ) = e
(
gγn+1−i ·

n∏
j=1,j ̸=i

g
xj

n+1−i+j , ĝ
)
· e(g1, ĝn)xi ∀i ∈ [n], (4)

we can choose random exponents t = (t1, . . . , tn)
R← Znp and use them to raise

(4) to the power ti · yi and (3) to the power ti, respectively. If we then take the
products over all indices i ∈ [n] and divide them, we find that

πeq =

∏n
i=1

(
gγn+1−i ·

∏
j∈[n]\{i} g

xj

n+1−i+j

)ti·yi
∏n
i=1

(
g
γy
i ·

∏
j∈[n]\{i} g

yj ·xj

n+1−j+i

)ti .

satisfies
e(
∏n
i=1 g

ti·yi
n+1−i, Ĉ)

e(Cy,
∏n
i=1 ĝ

ti
i )

= e(πeq, ĝ), (5)

The reason why πeq is a convincing proof that the prover computed Cy as
a commitment to (yn · xn, . . . , y1 · x1) is the following. Suppose that Cy is a
commitment Cy = gγy ·

∏n
j=1 g

zn+1−j

n+1−j to some (z1, . . . , zn). Then, (3) becomes

e(Cy, ĝi) = e
(
πz,i, ĝ

)
· e(g1, ĝn)zn+1−i ∀i ∈ [n], (6)

where πz,i =
∏n
j=1,j ̸=i g

zn+1−j

n+1−j+i is the proof that a prover can compute to open
the (n+1− i)-th position of Cy. Now, if we raise (6) to the power ti and divide
it from (4) raised to the power ti · yi, we obtain

e(
∏n
i=1 g

ti·yi
n+1−i, Ĉ)

e(Cy,
∏n
i=1 ĝ

ti
i )

= e
( n∏
i=1

(
πyix,i/πz,i

)ti
, ĝ
)
· e(g1, ĝn)

∑n
i=1 ti·(yi·xi−zn+1−i),

where πx,i =
∏
j∈[n]\{i} g

xj

n+1−i+j is the computable proof that allows opening the

i-th position of Ĉ in (4). If t is chosen uniformly after (z1, . . . , zn), (y1, . . . , yn)
and (x1, . . . , xn), then the probability to have

∑n
i=1 ti · (yi · xi − zn+1−i) = 0

is 1/p if there exists i ∈ [n] such that zn+1−i ̸= yi · xi. In the construction, we
derive t = (t1, . . . , tn) = H(y, Ĉ, Cy) ∈ Znp from a random oracle to make sure
that t is computed after y, (x1, . . . , xn) and (z1, . . . , zn).

The proof πeq of the first step implies that Cy ·
∏n
j=1 g

−yj
n+1−j is a commitment

to the vector (yn · (xn − 1), . . . , y1 · (x1 − 1)), where (x1, . . . , xn) is the vector
committed in Ĉ. In a second step, we prove that (yn · (xn − 1), . . . , y1 · (x1 − 1))
is orthogonal to (xn, . . . , x1): i.e.,

∑n
i=1 yi · xi · (xi − 1) = 0. From (1), we notice

that such a proof can be obtained as

πy = Cγy ·
n∏
i=1

(
g
γy
i ·

∏
j∈[n]\{i}

g
yj ·(xj−1)
n+1−j+i

)xi
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and satisfies

e
(
Cy ·

n∏
j=1

g
−yj
n+1−j , Ĉ

)
= e(πy, ĝ)·e(g1, ĝn)

∑n
i=1 yi·xi·(xi−1) = e(πy, ĝ) (7)

In order to minimize the proof size, we will exploit the linearity of verifica-
tion equations (5) and (7) to aggregate πeq and πy into a single group element

π = π
δeq
eq · πδyy using random aggregation coefficients (δeq, δy) ∈ Z2

p.

Eventually, the proof π = (Cy, π) ∈ G2 that Ĉ commits to a binary vector
consists of the commitment Cy to (yn · xn, . . . , y1 · x1) and π ∈ G.

Proving Range Membership. To obtain a constant-size range proof, we use
the fact that the commitment scheme of [84] is also an inner product functional
commitment. The prover has a Pedersen commitment [94] V̂ = ĝr · ĝx1 in the

group Ĝ. In order to prove the statement x ∈ [0, 2ℓ − 1], the prover considers
the bit representation (x1, . . . , xℓ) ∈ {0, 1}ℓ of x and computes a commitment

Ĉ = ĝγ ·
∏ℓ
j=1 g

xj

j , for a random γ ∈ Zp. Using the aggregation properties of

the commitment, it will prove that the committed x = (x1, . . . , xℓ | 0n−ℓ) ∈ Znp
satisfies: (i)

∑ℓ
i=1 xi · 2i−1 = x; (ii) xi ∈ {0, 1} for each i ∈ [n].

In order to prove (i), the prover can adapt (1) and generate a short proof∏n
i=1 π

2i−1

i ∈ G such that

e
( ℓ∏
i=1

g2
i−1

n+1−i, Ĉ
)
= e
( ℓ∏
i=1

π2i−1

i , ĝ
)
· e(g1, ĝn)

∑ℓ
i=1 xi·2i−1

(8)

and show that the exponent above e(g1, ĝn) in (8) is equal to the committed x
in V̂ = ĝr · ĝx1 . Since V̂ satisfies e(gn, V̂ ) = e(g1, ĝn)

x · e(grn, ĝ), the prover can

actually compute πx =
∏ℓ
i=1 π

2i−1

i /grn such that

e
(∏ℓ

i=1 g
2i−1

n+1−i, Ĉ
)

e(gn, V̂ )
= e
(
πx, ĝ

)
. (9)

Proving (ii) is addressed as explained earlier. Note that we do not need to prove
that the n− ℓ last positions of x are zeroes since the inner product in the right-
hand-side member of (8) only involves the first ℓ positions of x.

In order to minimize the proof size, we will exploit the linearity of verification
equations (9), (5) and (7) to aggregate πx, πeq and πy into a single group element.
In order to ensure knowledge soundness in the algebraic group model, we also
need to aggregate a proof element πv showing that V̂ is a commitment to a vector
of the form (x, 0, . . . , 0). The entire proof π = (Ĉ, Cy, π) ∈ Ĝ × G2 eventually

consists of the commitment Ĉ to the bits of x, the auxiliary commitment Cy to
(yn · xn, . . . , y1 · x1) and the aggregated proof π ∈ G.

Batching Range Proofs. The above technique extends to prove multiple
range membership statements at once about the entries of a committed vector.
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For a commitment V̂ = ĝr ·
∏m
k=1 ĝ

xk

k , the prover will convince the verifier that
xk ∈ [0, 2ℓ− 1] for each k ∈ [m] using only 3 group elements (we assume for now
that the same range is proven for each xk but distinct ranges can be handled).

To this end, we can use the same aggregation technique as BulletProofs
[21, Section 4.3] and compute Ĉ as a commitment to a vector of dimension
n = ℓ̄ ·m (where ℓ̄ is an upper bound for ℓ) obtained by appending the binary
expansions of all {xk}mk=1. Then, we can use a single group element to prove
that, for each k ∈ [m], the k-th sub-vector xk = (xk,1, . . . , xk,ℓ, 0, . . . , 0) hidden

by the commitment Ĉ is a binary vector satisfying xk =
∑ℓ
i=1 xk,i ·2i−1. Namely,

for the k-th slot, the prover can compute πk ∈ G such that

e
( ℓ∏
i=1

g2
i−1

n+1−((k−1)ℓ̄+i), Ĉ
)
= e(g1, ĝn)

xk · e(πk, ĝ) (10)

Since V̂ is itself a vector commitment, the prover can compute πv,k such that

e
(
gk, V̂

)
= e(g1, ĝn)

xk · e(πv,k, ĝ) (11)

Then, by dividing (11) from (10), raising the result to a random power ξk ∈ Zp
and taking the product over all indices k ∈ [m], we find that the prover is able
to compute a short π =

∏m
k=1(πk/πv,k)

ξk such that

e
(∏m

k=1

(∏ℓ
i=1 g

2i−1

n+1−((k−1)ℓ̄+i)

)ξk , Ĉ)
e
(∏m

k=1 g
ξk
k , V̂

) = e(π, ĝ), (12)

which argues that xk =
∑ℓ
i=1 xk,i · 2i−1 for all k ∈ [m]. Indeed, otherwise, we

have
∑m
k=1 ξk · (xk−

∑ℓ
i=1 xk,i · 2i−1) = 0 with negligible probability 1/p as long

as (ξ1, . . . , ξm) are chosen uniformly after the commitments V̂ and Ĉ.
The remaining proof elements are computed exactly as in the single-slot

setting, so that the final proof π still lives in Ĝ×G2. This immediately provides
a short proof that a committed vector has small infinity norm. By introducing a
few more group elements in the proof, we can also prove small Euclidean norms.

Proving Relations in Lattices. Here, we build on an approach considered
by del Pino, Lyubashevsky and Seiler [41] to prove lattice-related statements
assuming the hardness of computing discrete logarithms. The difference that
we replace the BulletProofs component [21] by our more compact proof that a
committed vector is binary. We also exploit the fact that the underlying vector
commitment [84] allows proving inner-product relations as in (1).

Let the polynomial rings R = Z[X]/(Φ), for some cyclotomic polynomial Φ of
degree d, and Rq = R/(qR). As in [41], we aim at proving the existence of small-

norm ring elements s = (s1, . . . , sM ) ∈ RM such that
∑M
i=1 ai ·si = t mod (q, Φ),

for public t ∈ RNq and a1, . . . ,aM ∈ RNq . To this end, we proceed as in [41] and
re-write the relation as the following equality over Z[X]/(Φ)

M∑
i=1

ai · si = t+ r · q mod (Φ) , (13)
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where r ∈ RN is a vector of polynomials of degree ≤ d − 1 and the compo-
nents of {ai}Mi=1 and t are interpreted as polynomials with integer coefficients
in {−⌊q/2⌋, . . . , ⌊q/2⌋}. If ∥si∥∞ ≤ Bi for each i ∈ [M ], r contains polynomials
with coefficients of magnitude ∥r∥∞ ≤ dM ·maxi∈[M ](Bi)/2.

If we denote by ϕ : R → Zd the coefficient embedding that maps si =∑d
j=1 si,j · Xj−1 to its coefficient vector ϕ(si) = (si,1, . . . , si,d) ∈ Zd, we can

re-write (13) as a matrix-vector product over Z

[A1 | . . . | AM | − q · INd ] · [ϕ(s1) | . . . | ϕ(sM ) | ϕ(r)]⊤︸ ︷︷ ︸
≜ x

= ϕ(t) (14)

for structured matrices A1, . . . ,AM ∈ ZNd×dq interpreted as integer matrices
over {−⌊q/2⌋, . . . , ⌊q/2⌋}. In order to prove (14), the prover can commit to the
vector x ∈ ZMd+Nd using a vector commitment. Then, it can generate short
proof that ∥ϕ(si)∥∞ ≤ Bi for each i ∈ [M ] and ∥ϕ(r)∥∞ ≤ dM ·maxi∈[M ](Bi)/2.
Finally, it can prove that (14) holds over Zp, where p is the order of pairing-
friendly groups. If p > 2Mqdmaxi(Bi), this ensures that (14) also holds over the
integers. In order to optimize the proof size, we commit to the binary decompo-
sition of (ϕ(s1), . . . , ϕ(sM ), ϕ(r)) and prove a relation like (14) where the blocks
of the matrix are multiplied by a suitable “powers-of-2” gadget matrix [92].

In order to minimize the number of exponentiations, we apply the Schwartz-
Zippel lemma in a different way than [41]: Instead of proving (13) by considering
evaluations of degree-2d polynomials,2 we compress (14) by left-multiplying both
members with a random vector θ ∈ ZNdp , which allows processing all the rows
of (14) using a short proof for a single inner product relation.

Besides the shorter proof length, replacing BulletProofs by our arguments of
binarity has the side effect of decreasing the number of exponentiations at the
prover in the approach of del Pino et al. [41]: We need at most 340000 exponenti-
ations to prove the validity of an LPR ciphertext [88] whereas [41] requires about
700000 exponentiations to prove an RLWE instance with smaller parameters.

Of course, neither of the two protocols preserves soundness against quantum
adversaries. However, they still provide viable solutions in applications that only
need to guarantee soundness at the moment of the protocol execution. In par-
ticular, they do not affect the post-quantum security of the encryption scheme
as their zero-knowledge property does not rely on any assumption.

Achieving Simulation-Extractability. In our security proofs, one of the
main difficulties is to properly simulate proofs for adversarially-chosen state-
ments while remaining able to extract a witness (or break some assumption)
from a proof generated by the adversary. As noticed in, e.g. [53], the simulator
cannot use the trapdoor α ∈ Zp of the CRS since it would be incompatible with
a reduction from a q-type assumption in the AGM.

To address this problem, we build a trapdoor-less simulator [53] that can

2 More precisely, [41] proceeds by proving a relation
∑M

i=1 ai ·si−r1 ·q−r2 ·Φ = t over
Z[X], where r1 and r2 contain polynomials of degree 2(d−1) and d−2, respectively.
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simulate proofs for adversarially-chosen statements by programming the random
oracles and without using α. To do this, we exploit the fact that our range proofs
and our proof of valid RLWE encryption are obtained by aggregating various
sub-proofs satisfying verifications of the form (5), (7) or (8). In each simulated
proof π = (Ĉ, Cy, π), we compute Ĉ and Cy as commitments to vectors which
are programmed (as functions of previously chosen aggregation coefficients) in
such a way that the uniquely determined proof π is computable without knowing
the missing element g(α

n+1) of the CRS. At the same time, we can argue that,
with overwhelming probability, the adversary can only come up with a state-
ment and a proof π from which the reduction can extract either a witness or a
representation of π that depends on g(α

n+1).

1.3 Related Work

Vector commitments with logarithmic-size proofs are known since the Merkle-
tree-based construction [90]. In the last decade, a number of number-theoretic
candidates have emerged and offered useful advantages such as additive ho-
momorphism, very short proofs [84], stateless updatability [26], or sub-vector
openings [81,11,100]. The first candidate with constant-size proofs was put forth
by Libert and Yung [84] under a q-type assumption. Constructions based on
the standard Diffie-Hellman assumption (in pairing-friendly groups) and the
RSA assumption appeared in the work of Catalano and Fiore [26]. Lattice-based
schemes were suggested by Peikert et al. [95]. While more versatile than their
hash-based counterparts, algebraic VCs also seem to require more fancy math-
ematical tools. Indeed, Catalano et al. [27] recently proved negative results on
the possibility of discrete-log-based vector commitments without pairings.

Polynomial and Functional Commitments. As first introduced by Kate,
Zaverucha and Goldberg [77], polynomial commitments allow one to commit to
a polynomial and subsequently prove evaluations of this polynomial on specific
inputs via a short proof (i.e., of length sub-linear in the degree of the commit-
ted polynomial). Succinct polynomial commitments were used in a number of
SNARKs realizations (see, e.g., [89,51,22,13]). As shown in, e.g. [24, Section 3.1],
polynomial commitments imply vector commitments.

Functional commitments (FC) for inner products [74,83] generalize both vec-
tor commitments and polynomial commitments by allowing the sender to com-
mit to a vector m and succinctly prove linear functions of the committed vector.
The first flavor of inner product functional commitment was considered in the
interactive setting [74] while non-interactive solutions with constant-size proofs
are enabled by SNARKs. Libert, Ramanna and Yung [83] generalized the vec-
tor commitment of [84] into a non-interactive inner product FC in the standard
model while preserving its short proof size. Constructions with short public pa-
rameters in hidden-order groups were put forth in [34,4]. Lai and Malavolta [81]
proposed the notion of linear map commitments that allows a prover to reveal a
linear map evaluation, instead of just an inner product. At the expense of losing
the homomorphic property, Lipmaa and Pavlyk [86] provided an FC candidate

9



for sparse polynomials. Recently, lattice-based realizations were given for general
bounded-depth circuits [40,102]. Boneh et al. [15] considered the dual notion of
function-hiding FC schemes (where the committer commits to a function instead
of a message) for arithmetic circuits, which also generalizes vector commitments
and other primitives. More recently, Albrecht et al. described [1] a construc-
tion for constant-degree polynomials over the integers as a building block for
lattice-based SNARKs. Back in 2015, Gorbunov et al. [64] implicitly described
non-succinct functional commitments for circuits. Succinct FC candidates for
circuits recently appeared in the work of Wee and Wu [102]. Independently, de
Casto and Peikert [40] proposed a lattice-based function-hiding FC for circuits,
but without fully succinct evaluation proofs.

Vector commitments with succinct proofs of smallness can be seen as a spe-
cial case of functional commitments for Boolean predicates, where the smallness
bound is hard-wired in the circuit. However, functional commitments for general
circuits [40,102] seem ill-suited to our purposes since we aim at computationally
efficient schemes with very short proofs. Indeed, the function-hiding FC scheme
proposed by de Castro and Peikert [40] does not provide succinct openings (i.e.,
the opening size grows with the input length). While succinct, the construction
of Wee and Wu [102] would not compete with ours in terms of proof length and
CRS size (which is quadratic in the dimension of committed vectors in [102]).
Moreover, in our application to NIZK arguments, the scheme of [102] would
require the use of ad hoc knowledge assumptions in lattices for lack of a well-
defined lattice analogue of the algebraic group model. Balbás et al. [7] suggested
an alternative realization of FC for arithmetic circuits. However, its proof length
grows at least linearly with the depth of the arithmetic circuit, which would
translate into much longer proofs than ours.

In an earlier work, Catalano, Fiore and Tucker [28] proposed additively ho-
momorphic FCs for constant-degree polynomials and monotone span programs.
While their construction for polynomials and the Lipmaa-Pavlyk construction
[86] are both amenable to proving smallness statements, they would be less
efficient than our constructions, as discussed in Supplementary Material A.
Moreover, their more complex CRS structure would make it harder to prove
knowledge-soundness in our setting, where the evaluation-binding property con-
sidered in [86,28] would not suffice.

Aggregation and Sub-vector Openings. On several occasions, we rely on
sub-vector openings and proof aggregation in the vector commitment of [84].

The notion of sub-vector openings was independently introduced and real-
ized by Lai and Malavolta [81] and by Boneh, Bünz and Fisch [11]. It allows
a sender to generate a short proof πS that opens a sub-vector mS of m, for a
subset S ⊆ [n]. Sub-vector openings are implied by the proof aggregation prop-
erty considered in [11,101,100,25,63,98], which allows anyone (and not only the
committer) to aggregate n individual proofs {πi}i∈S for a committed sub-vector
mS into a constant-size proof πS . Boneh, Bünz and Fisch [11] and Tomescu
et al. [100] realized same-commitment aggregation in hidden-order groups and
under q-type assumptions in pairing-friendly groups, respectively. Campanelli et
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al. [25] introduced incrementally aggregatable vector commitments, which allow
different sub-vector openings to be merged into a shorter opening for the union
of their sub-vectors. Moreover, aggregated proofs support further aggregation.

By leveraging the linearity properties of the vector commitment from [84],
Gorbunov et al. [63] obtained the first VC scheme enabling cross-commitment
aggregation, which is useful in blockchain applications. The same-commitment
variant of their aggregation method is obtained by introducing a random oracle in
the inner product functional commitment of [83]. Our technique of proving that a
committed vector is a reversed Hadamard product of another committed vector
x and a public vector y is inspired by the randomized aggregation technique
of PointProofs [63]. The difference is that, while [63] uses proof aggregation to
succinctly prove sub-vector openings, we use it to prove linear relations between
related positions in distinct committed vectors.

By instantiating vector commitments from polynomial commitments, Boneh
et al. [12,13] obtained an alternative VC system supporting cross-commitment
aggregation. Hyperproofs et al. [98] is yet another VC scheme allowing cross-
commitment aggregation with the additional feature that all proofs can be up-
dated in sub-linear time when the vector changes.

Other Proofs of Binarity. Prior works on pairing-based commitments
[61,60] considered the problem of constructing constant-size proofs that a com-
mitted string is binary. However, these techniques apply to variants of Groth-
Sahai commitments [71] that are not succinct vector commitments: i.e., either
the commitment or partial openings (or both) do not have constant size. The
first candidate [61] was designed for perfectly-binding commitments, where the
commitment is longer than the committed message. The case of perfectly hiding
(compressing) commitments was considered in [60, Section 4.2] but the under-
lying commitments do not natively support constant-size partial openings. As
briefly alluded to in [60, Section 4.2.1], it is actually possible to build a succinct
vector commitment to bitstrings on top of the perfectly hiding commitments
from [60, Chapter 4]. However, the resulting construction has several limita-
tions: (i) The CRS has quadratic size in the dimension of committed vectors
(like the Diffie-Hellman-based vector commitment of [26]); (ii) It does not seem
to support constant-size proofs that the committed m ∈ Znp satisfies inner prod-
uct relations ⟨m, t⟩ = x for public t ∈ Znp and x ∈ Zp; (iii) Proofs are somewhat
long and contain more than 20 group elements (according to Table 4.1 in [60]).

Range Proofs. Range proofs were introduced by Brickell et al. [20] and inves-
tigated in a large body of work [30,23,17,85,68,29,37,62] since then.

A standard approach [20,23,68,62,21] consists in breaking integers into bits
and committing to these bits using homomorphic commitments. When it comes
to proving membership of a range [0, 2ℓ−1], the resulting proofs generally contain
O(ℓ) group elements (and thus O(λ · ℓ) bits, where λ is the security parameter)
although somewhat shorter proofs [23,68,62] are achievable using pairings. Using
a clever recursive folding technique, Bulletproofs [21] decreased the communi-
cation complexity to O(log ℓ) group elements (i.e., O(λ · log ℓ) bits) in general
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discrete-logarithm-hard groups without a bilinear map.
Another approach [17,85,65,37] relies on integer commitments in hidden-

order groups, by decomposing positive integers as a sum of squares. The sum-
of-squares method was transposed [36,35] to groups of (sufficiently large) public
prime order. It was also adapted to class groups and lattices. For some parame-
ters in the standard discrete logarithm setting, the constructions of [36,35] were
shown to compare favorably with BulletProofs.

For some applications where the proof size is the primary concern (e.g., con-
fidential transactions in the blockchain [21]), it may be desirable to have even
shorter proofs than [21,36,35], even at the expense of losing the transparent setup
property. Using polynomial commitments, Boneh et al. [14] suggested another
range proof inspired by SNARK arithmetization techniques [51]. Their construc-
tion can be realized from a variety of polynomial commitments [77,22,82]. In in-
stantiations from pairing-based polynomial commitments [77,83], it provides the
smallest communication cost to date, with proofs as short as 3 group elements
and 3 scalars. In our range proof construction, we further decrease the proof
length to that of the shortest known SNARKs [69]. A detailed comparison with
[14] is given in Section B.1.

Discrete-Log-Based Proofs for Lattice Relations. The use of special-
ized pairing-based arguments to prove lattice relations was considered to prove
the correct evaluation of FHE ciphertexts [48]. However, the modulus of the lev-
eled FHE scheme had to match the group order of the pairing. This limitation
does not appear in the del Pino et al. approach [41] nor in our construction. We
note that the motivation of [48] was different since, in their setting, the prover
was the server while the verifier was a computationally constrained client. Here,
we consider use cases like [97] where the prover is the client (generating the proof
on its browser using a single thread) and the verifier runs on a computationally
powerful machine that can afford the use of multiple threads.

In applications to private FHE-based private smart contracts [97], the pro-
tocol of [41] was actually preferred to SNARKs in order to obtain faster prover.
Our system can offer a similarly fast prover with the benefit of shorter proofs.

2 Background and Definitions

2.1 Hardness Assumptions

Let groups (G, Ĝ,GT ) of prime order p with a bilinear map e : G× Ĝ→ GT .
We rely on the hardness of computing a discrete logarithm α ∈ Zp given

{gαi}i∈[2n] and {ĝαi}i∈[n]. This assumption is similar to the n-discrete loga-
rithm assumption considered in, e.g. [49], except that powers αi are given in the

exponents in both groups G and Ĝ.

Definition 1 ([49]). Let (G, Ĝ,GT ) be asymmetric bilinear groups of prime
order p. For integers m,n, the (m,n)-Discrete Logarithm ((m,n)-DLOG)

problem is, given (g, gα, g(α
2), . . . , g(α

m), ĝ, ĝα, . . . , ĝ(α
n)), where α R← Zp, g R← G,

ĝ R← Ĝ, to compute α ∈ Zp.
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2.2 Non-interactive Arguments

A NIZK argument for a language L = {(x,w) ∈ R}, where R is an NP relation,
consists of algorithms (CRS-Gen,Prove,Verify) with the following specifications.
On input of a security parameter λ ∈ N (and, optionally, language-dependent
parameters), CRS-Gen generates a common reference string pp and a simulation
trapdoor τ . Algorithm Prove takes as input the common reference string pp,
a statement x and a witness w and outputs a proof π. Verify takes in pp, a
statement x and a proof π and returns 0 or 1. Correctness requires that, for any
(x,w) ∈ R, honestly generated proofs are always (or at least with overwhelming
probability) accepted by the verifier.

From a security point of view, NIZK argument systems should satisfy two
properties. The zero-knowledge property requires that proofs leak no informa-
tion about the witness. This is formalized by asking that the trapdoor τ (hidden
in pp) allows simulating proofs that are (statistically or computationally) indis-
tinguishable from real proofs. The knowledge-soundness property requires that
there exists an extractor that can compute a witness whenever the adversary
generates a valid proof. The extractor has access to the adversary’s internal
state, including its random coins. In a NIZK argument for a relation R, these
properties are defined as follows.

Completeness: For any λ ∈ N, and any statement-witness pair (x,w) ∈ R,
there is a negligible function negl : N→ N such that

Pr
[
Verifypp(x, π) = 1

| (pp, τ)← CRS-Gen(1λ), π ← Provepp(x,w)
]
= 1− negl(λ).

Knowledge-soundness: For any PPT adversary A, there is a PPT extractor
EA that has access to A’s internal state and random coins ρ such that

Pr
[
Verifypp(x, π) = 1 ∧ (x,w) ̸∈ R | (pp, τ)← CRS-Gen(1λ),

(x, π)← A(pp; ρ), w ← EA(pp, (x, π), ρ)
]
= negl(λ).

(Statistical) Zero-knowledge: There exists a PPT simulator Sim such that,
for any λ ∈ N and any pair (x,w) ∈ R, the distributions D0 = {π ←
Provepp(x,w) : (pp, τ) ← CRS-Gen(1λ)} and D1 = {π ← Sim(pp, τ, x) :
(pp, τ)← CRS-Gen(1λ)} are statistically close.

For many applications, it is desirable to consider an adversary that can ob-
serve simulated proofs (for possibly false statements) and exploit some malleabil-
ity of these proofs to generate a fake proof of its own. To prevent such attacks,
the notion of simulation-extractability strengthens knowledge-soundness by giv-
ing the adversary access to a simulation oracle.

Simulation-Extractability: For any PPT adversary A, there is a PPT ex-
tractor EA that has access to A’s internal state/randomness ρ such that

Pr
[
Verifypp(x, π) = 1 ∧ (x,w) ̸∈ R ∧ (x, π) ̸∈ Q | (pp, τ)← CRS-Gen(1λ),

(x, π)← ASimProve(pp; ρ), w ← EA(pp, (x, π), ρ,Q)
]
= negl(λ),
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where SimProve(pp, τ, ·) is an oracle that returns a simulated proof π ←
Sim(pp, τ, x) for a given statement x and Q = {(xi, πi)}i denotes the set of
queried statements and the simulated proofs returned by SimProve.

In the following sections, we extend the syntax with an algorithm Com that
inputs a vector x ∈ Dn over a domain D and outputs a commitment C.

2.3 Algebraic Group Model

The algebraic group model (AGM) [49] is an idealized model, where all algo-
rithms are assumed to be algebraic. Algebraic algorithms [16,93] generalize the
notion of a generic algorithm [96] in that, whenever they compute a group el-
ement, they do it using generic operations, by taking linear combinations of
available group elements so far. Hence, whenever they output a group element
X ∈ G, they also output a representation {αi}Ni=1 of X =

∏N
i=1 g

αi
i as a function

of previously observed group elements (g1, . . . , gN ) ∈ GN in the same group.
In contrast with generic algorithms, algebraic algorithms can exploit the

structure of the group and obtain more information than they would in the
generic group model. Although its relation with the generic group model is un-
clear [78], the AGM provides a powerful framework to analyze the security of
efficient protocols via reductions. In particular, it has been widely used in the
context of SNARKs [49,89,51,13,55,53].

3 Proving That a Committed Vector is Binary

Our construction for binary strings goes as follows.

CRS-Gen(1λ, 1n): On input of a security parameter λ and the maximal dimen-
sion n ∈ poly(λ) of committed vectors, do the following:

1. Choose asymmetric bilinear groups (G, Ĝ,GT ) of prime order p > 2l(λ),

for some function l : N→ N, and g R← G, ĝ R← Ĝ.
2. Pick α R← Zp. Compute g1, . . . , gn, gn+2, . . . , g2n ∈ G and ĝ1, . . . , ĝn ∈ Ĝ,

where gi = g(α
i) for each i ∈ [2n]\{n+1} and ĝi = ĝ(α

i) for each i ∈ [n].
3. Choose hash functions H,Ht : {0, 1}∗ → Znp and Hagg : {0, 1}∗ → Z2

p.

The public parameters are

pp =
(
(G, Ĝ,GT ), g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n],H

)
where H = {H,Ht, Hagg} are hash functions.

Compp(x) To commit to a vector x = (x1, . . . , xn) ∈ Znp , choose a random

γ R← Zp and compute Ĉ = ĝγ ·
∏n
j=1 ĝ

xj

j . Return Ĉ ∈ Ĝ and the opening
information aux = γ ∈ Zp.
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Provepp
(
Ĉ, (x, aux)

)
: given a commitment Ĉ and witnesses

(
x; aux

)
consisting

of a vector x = (x1, . . . , xn) ∈ Znp and randomness aux = γ ∈ Zp, return ⊥
if (x1, . . . , xn) ̸∈ {0, 1}n. Otherwise, do the following:

1. Compute y = (y1, . . . , yn) = H(Ĉ) ∈ Znp . Choose γy
R← Zp and compute

Cy = gγy ·
n∏
j=1

g
yj ·xj

n+1−j

Then, compute t = (t1, . . . , tn) = Ht(y, Ĉ, Cy) ∈ Znp .
2. Generate a proof

πeq =

∏n
i=1

(
gγn+1−i ·

∏
j∈[n]\{i} g

xj

n+1−i+j

)ti·yi
∏n
i=1

(
g
γy
i ·

∏
j∈[n]\{i} g

yj ·xj

n+1−j+i

)ti (15)

which satisfies
e(
∏n
i=1 g

ti·yi
n+1−i, Ĉ)

e(Cy,
∏n
i=1 ĝ

ti
i )

= e(πeq, ĝ) , (16)

and argues that Cy commits to (yn · xn, . . . , y1 · x1) ∈ Znp .
3. Compute a proof

πy = Cγy ·
n∏
i=1

(
g
γy
i ·

∏
j∈[n]\{i}

g
yj ·(xj−1)
n+1−j+i

)xi

(17)

showing that
∑n
i=1 yi · xi · (xi − 1) = 0 and satisfying

e
(
Cy ·

n∏
j=1

g
−yj
n+1−j , Ĉ

)
= e(πy, ĝ) (18)

4. Compute (δeq, δy) = Hagg(Ĉ, Cy) ∈ Z2
p and then π = π

δeq
eq · πδyy .

Output the final proof π :=
(
Cy, π

)
∈ G2.

Verify pp

(
Ĉ,π

)
: Given Ĉ ∈ Ĝ and a purported proof π =

(
Cy, π

)
∈ G2,

1. Compute y = H(Ĉ) ∈ Znp , (δeq, δy) = Hagg(Ĉ, Cy) ∈ Z2
p and t =

Ht(y, Ĉ, Cy) ∈ Znp .
2. Return 1 if the following equations is satisfied and 0 otherwise:

e
(
C
δy
y ·

∏n
i=1 g

(δeq·ti−δy)·yi
n+1−i , Ĉ

)
e
(
Cy,

∏n
i=1 ĝ

δeq·ti
i

) = e(π, ĝ) . (19)

Correctness follows from the observation that equation (19) is obtained by
aggregating (16)-(18), for which a detailed proof of correctness can be found in
Supplementary Material B.2.

15



In the algebraic group model, the construction can be proven zero-knowledge
(for commitments chosen by an algebraic adversary) and knowledge-sound. The
proof of knowledge-soundness can be inferred from the proof of Theorem 2 (in
Section 4), of which it is a sub-case. In the upcoming sections, we will combine
the system with other components in such a way that the combined arguments
satisfy the stronger notion of simulation-extractability.

The construction easily extends to prove that a committed x ∈ {−1, 0, 1}n
is ternary, by showing that x is the difference between two binary vectors. In
Supplementary Material D, we give an optimized extension allowing to prove that
a committed vector is ternary using only 3 group elements. In Supplementary
Material F, we also explain how to prove the exact Hamming weight (or an upper
bound thereof) of committed binary/ternary vectors using 4 group elements.

4 A Range Proof With Very Short Proofs

Using the non-interactive argument for binary vectors from Section 3, we can
build range arguments made of a constant number of group elements.

In the description below, we assume ranges [0, B] such that B+1 is a power
of 2 but the approach easily extends to general ranges. The standard approach to
this problem is to consider the integer ℓ ∈ N such that 2ℓ−1 ≤ B < 2ℓ and gener-
ate two range proofs showing that x ∈ [0, 2ℓ−1] and x+(2ℓ−1−B) ∈ [0, 2ℓ−1],
where the second part is proven by leveraging the additive homomorphic prop-
erty of the commitment. Instead of generating two independent range proofs, we
can double the size of the CRS (by setting n = 2ℓ̄, where ℓ̄ ≥ ℓ is the maximal
bitlength of the range) and avoid increasing the proof size. In Supplementary
Material C.4, we provide more details on the treatment of general ranges.

4.1 Description

For public ĝ, ĝ1 ∈ Ĝ, the range membership relation is formally defined as

R =
{
(x,w) =

(
(Ĉ = ĝr · ĝx1 , ℓ) ∈ Ĝ× N, (r, x) ∈ Zp × [0, 2ℓ − 1]

)}
Since the commitment is perfectly-hiding, the proven relation is trivially satisfied
because, for any group element V̂ , there exist a witness x in the stated range
and a corresponding randomness r ∈ Zp such that V̂ = gr · gx1 . However, we
prove that the scheme is an argument of knowledge of a valid (r, x).

We assume that the initial Pedersen commitment V̂ = ĝr · ĝx1 to the witness

x ∈ [0, 2ℓ − 1] is computed using the group elements (ĝ, ĝ1) ∈ Ĝ2 contained in
the CRS of the range argument.3 We note that a similar assumption is made
(see, e.g., [99]) in the polynomial-commitment-based construction of [14], where
the integer x is committed as a polynomial f [X] such that f(1) = x.

3 We note that committing x to a different, pairing-free, group G would not strengthen
security in any way since an adversary that would be able to compute α from pp
would still break knowledge-soundness.
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CRS-Gen(1λ, 1n): On input of a security parameter λ and the maximal bitlength
n ∈ poly(λ) of ranges, do the following:

1. Choose asymmetric bilinear groups (G, Ĝ,GT ) of prime order p > 2l(λ),

for some polynomial function l : N→ N, and g R← G, ĝ R← Ĝ.
2. Pick a random α R← Zp and compute g1, . . . , gn, gn+2, . . . , g2n ∈ G as

well as ĝ1, . . . , ĝn ∈ Ĝ, where gi = g(α
i) for each i ∈ [2n] \ {n + 1} and

ĝi = ĝ(α
i) for each i ∈ [n].

3. Choose hash functions H,Ht : {0, 1}∗ → Znp , Hs : {0, 1}∗ → Zp and
Hagg : {0, 1}∗ → Z4

p that will be modeled as random oracles.

The public parameters are defined to be

pp =
(
(G, Ĝ,GT ), g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n],H

)
where H = {H,Hs, Ht, Hagg} are hash functions.

Compp(x) To commit to an integer x ∈ Z, choose a random r R← Zp and compute

a Pedersen commitment V̂ = ĝr · ĝx1 ∈ Ĝ. Return com = V̂ ∈ Ĝ and the
opening information aux = r ∈ Zp.

Provepp
(
com, (x, aux)

)
: given com = V̂ and witnesses

(
x; aux

)
consisting of an

integer x ∈ [0, 2ℓ − 1] with binary expansion (x1, . . . , xℓ) ∈ {0, 1}ℓ, where
ℓ ≤ n, and aux = r ∈ Zp such that V̂ = ĝr · ĝx1 , do the following:

1. Set (xℓ+1, . . . , xn) = 0n−ℓ. Choose γ R← Zp and compute

Ĉ = ĝγ ·
ℓ∏
j=1

ĝ
xj

j

together with a proof πx ∈ G that Ĉ commits to (x1, . . . , xn) ∈ Znp such

that
∑ℓ
i=1 xi · 2i−1 = x. This proof πx satisfies

e(
∏ℓ
i=1 g

2i−1

n+1−i, Ĉ)

e(gn, V̂ )
= e(πx, ĝ) (20)

and is obtained as

πx = g−rn ·
ℓ∏
i=1

(
gγn+1−i ·

∏
j∈[ℓ]\{i}

g
xj

n+1−i+j

)2i−1

.

2. Compute y = (y1, . . . , yn) = H(V̂ , Ĉ) ∈ Znp . Pick γy
R← Zp and compute

Cy = gγy ·
ℓ∏
j=1

g
yj ·xj

n+1−j

Then, compute t = (t1, . . . , tn) = Ht(y, V̂ , Ĉ, Cy) ∈ Znp .
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3. Prove that Cy commits to (y1 ·x1, . . . , yn ·xn) ∈ Znp by computing a short
πeq ∈ G (as specified in (15)) satisfying

e(
∏n
i=1 g

ti·yi
n+1−i, Ĉ)

e(Cy,
∏n
i=1 ĝ

ti
i )

= e(πeq, ĝ). (21)

4. Prove that
∑n
i=1 yi · xi · (xi − 1) = 0 by computing πy ∈ G via (17),

which satisfies

e
(
Cy ·

n∏
j=1

g
−yj
n+1−j , Ĉ

)
= e(πy, ĝ) (22)

5. Generate an aggregated proof that V̂ = ĝr · ĝx1 is a commitment to a
vector that contains 0 in its last n − 1 coordinates. Namely, compute

πv =
∏n
i=2

(
grn+1−i · gxn+2−i

)si
∈ G such that

e
( n∏
i=2

gsin+1−i, V̂
)
= e(πv, ĝ). (23)

where si = Hs(i, [2, n], V̂ , Ĉ, Cy) ∈ Zp for each i ∈ [2, n].

6. Compute (δx, δeq, δy, δv) = Hagg(V̂ , Ĉ, Cy) ∈ Z4
p and an aggregated proof

π = πδxx · πδyy · πδeqeq · πδvv .

Output the final range argument which consists of

π :=
(
Ĉ, Cy, π

)
. (24)

Verifypp
(
com,π

)
: Given a commitment com = V̂ ∈ Ĝ and a purported proof π,

parse the latter as in (24).

1. Compute y = H(V̂ , Ĉ) ∈ Znp , (δx, δeq, δy, δv) = Hagg(V̂ , Ĉ, Cy) ∈ Z4
p,

t = Ht(y, V̂ , Ĉ, Cy) ∈ Znp . Set s1 = 0 and si = Hs(i, [2, n], V̂ , Ĉ, Cy) for
all indices i ∈ [2, n].

2. Return 1 if and only if

e
(
C
δy
y ·

∏ℓ
i=1 g

δx,i·2i−1+(δeq·ti−δy)·yi
n+1−i , Ĉ

)
e
(
gδxn ·

∏n
i=2 g

−δv·si
n+1−i, V̂

)
· e
(
Cy,

∏n
i=1 ĝ

δeq·ti
i

) = e(π, ĝ), (25)

where δx,i = δx if i ∈ [ℓ] and δx,i = 0 if i ∈ [ℓ+ 1, n].

Correctness. The verification equation (25) is obtained by raising equalities
(20), (21), (22) and (23) to the powers δx, δeq, δy, and δv, respectively, and
multiplying the results together. In Supplementary Material B.2, we provide
detailed proofs of correctness for individual verification equations (20)-(23).
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Efficiency. The computational cost of the prover is dominated by O(n) expo-

nentiations in G and two exponentiations in Ĝ. Indeed, computing Ĉ at step 1
only requires one exponentiation and a subset product (which is cheaper than

an exponentiation) in Ĝ. Step 2 requires n + 1 exponentiations in G. Each of
the proof elements (πx, πeq, πy, πv) requires at most 2n exponentiations when
terms are suitably re-arranged. The entire product π at step 6 is actually com-
putable using roughly 2n exponentiations since (πx, πeq, πy, πv) can be computed

after the commitments (Ĉ, Cy) and the aggregation coefficients. Overall, the

prover’s overhead amounts to 3n exponentiations in G, 2 exponentiations in Ĝ,
and cheaper multiplications over Zp. Of course, the prover can be optimized us-
ing specialized multi-exponentiation algorithms. The verifier’s work is dominated
by 2n+ 1 exponentiations in G, n exponentiations in Ĝ and 4 pairings.

In terms of proof length, π only requires one element of Ĝ, and 2 element
of G, which matches the optimal size of simulation-extractable pairing-based
SNARKs [70]. Using the KSS18 family of pairing-friendly curves suggested by

Kachisa et al. [76], each element of G (resp. Ĝ) can have a 348-bit (resp. 1044-
bit) representation at the 128-bit security level according to [44]. Assuming that

elements of Ĝ are three times as large as those of G, the overall proof length
does not exceed the equivalent of 5 elements of G, which amounts to 1740 bits.

In Supplementary Material B.1, we give a detailed comparison among existing
constant-size range proofs. As shown in Table 1, our scheme provides the shortest
proof length and the smallest computational cost at the prover.

As shown in Supplementary Material C, the construction extends to prove
multiple ranges at once for a committed vector of integers.

4.2 Security in the AGM & ROM

We first prove the zero-knowledge property in the random oracle model.

Theorem 1. The construction provides statistical zero-knowledge in the ROM.
(The proof is given in Supplementary Material B.3.)

The simulator in the proof of Theorem 1 proceeds by programming the ran-
dom oracles and also uses the trapdoor of the CRS. On the other hand, it works
for any given V̂ ∈ Ĝ without knowing an algebraic representation of V̂ . If we
restrict V̂ to be chosen by an algebraic adversary, it is possible to build an
algebraic simulator that does not rely on random oracles.

In the proof of Theorem 2, we assume that the construction is instantiated
with either Type-2 or Type-3 pairings [52] (i.e., no isomorphism is efficiently

computable from G to Ĝ). Specifically, we rely on the fact that the Pedersen

commitment V̂ lives in Ĝ instead of G. If it was in G, the output of an algebraic
adversary could depend on generators {gi}2ni=n+2, which would hinder knowledge

extraction. Since only {ĝi}i∈[n] are given in Ĝ, the algebraic group model in
asymmetric bilinear groups (see, e.g., [10]) allows assuming that an adversarially-
chosen commitment V̂ comes with a representation with respect to (ĝ, {ĝi}i∈[n]).
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We do not know how to extend the proof to support symmetric pairings but
this is not really a restriction given that Type-1 pairings are much less efficient
for the same security level.

Theorem 2. Under the (2n, n)-DLOG assumption, the scheme is simulation-
extractable in the algebraic group model and in the random oracle model. (The
proof is detailed in Supplementary Material B.4.)

The intuition of the proof of Theorem 2 is as follows. The main difficulty is
that we cannot immediately apply the simulator from the proof of Theorem 1
because it uses the secret exponent α as a simulation trapdoor. We thus use
a trapdoor-less simulator [53] that can simulate proofs for adversarially-chosen
statements by programming the random oracles and without using α.

We are to show that, if the adversary can output a proof for which the
knowledge extractor fails, the reduction is able to compute α ∈ Zp from a (2n, n)-

discrete-logarithm instance (g, {gi = g(α
i)}2ni=1), (ĝ, {ĝi = ĝ(α

i)}ni=1). These ele-

ments are used to form the CRS, where gn+1 = g(α
n+1) is not included.

To simulate proofs for adversarially-chosen commitments V̂ , we use the ob-
servation that, in equations (20)-(23), the left-hand-side member can always
be written e(g, ĝ)Pi(α), for some polynomial Pi[X] which is computable by the
reduction (either because it computes the paired commitments itself or us-
ing an algebraic representation of V̂ supplied by the adversary). In the aggre-
gated verification equation (25), the left-hand-side member is thus of the form
e(g, ĝ)

∑
i δi·Pi(α), where {δi}i are random coefficients derived from a random or-

acle, and the simulator has to compute π such that e(g, ĝ)
∑

i δi·Pi(α) = e(π, ĝ).
In the simulated proof π = (Ĉ, Cy, π), it computes Ĉ and Cy by programming
the committed vectors as a function of all aggregation coefficients in such a
way that the polynomial

∑
i δi · Pi(α) does not depend on the monomial Xn+1.

Then, it patches the appropriate random oracles so as to make them hit the pre-
viously chosen aggregation coefficients. Since

∑
i δi ·Pi(α) has no degree-(n+1)

term, the unique proof π satisfying e(g, ĝ)
∑

i δi·Pi(α) = e(π, ĝ) is computable
from {gi}i∈[2n]\{n+1}. This way, the adversary never gets to see a group element
whose algebraic representation depends on gn+1.

Hence, when an algebraic adversary outputs a proof π⋆ = (Ĉ⋆, C⋆y , π
⋆) of

its own, it also outputs a representation of π⋆ that does not depend on gn+1

either. At the same time, if the knowledge extractor fails, the reduction can
compute another representation of π⋆ that does depend on gn+1 w.h.p. Proving
this fact requires some care as we have to distinguish cases where the adver-
sary recycles Ĉ⋆ or C⋆y from a simulated proof. For example, since y = H(V̂ , Ĉ)
does not depend on Cy, we have to prove that the adversary cannot output

(V̂ ⋆,π⋆ = (Ĉ⋆, C⋆y , π
⋆)) where (V̂ ⋆, Ĉ⋆) appeared in a simulated proof. In this

case, we can still rely on the fact that t is defined after (V̂ ⋆, Ĉ⋆, C⋆y ) to obtain a
representation of π⋆ that depends on gn+1.

Then, the two distinct representations of π⋆ reveal a non-zero polynomial of
which α ∈ Zp is a root.
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5 Shorter Proofs for Ring LWE Ciphertexts

In this section, we show that the techniques of previous sections can be used
to obtain very short proofs for natural statements that arise in lattice-based
cryptography. For example, they can be used for all the applications described in
[46]. It includes proving the validity of an LPR ciphertext [88], a BGV ciphertext
[19], a ring GSW ciphertext [58], a TFHE ciphertext [33], a ring LWE public key
or an NTRU public key [73]. They can also be used to prove that a committed
vector contains a GPV signature [57].

We adapt the approach of del Pino et al. [41] with the difference that we
replace the BulletProofs range proof by our more compact proofs of smallness.
We also exploit the fact that the underlying vector commitment [84] allows
proving inner-product relations as in [83].

Let the polynomial rings R = Z[X]/(Xd + 1) and Rq = R/(qR), where
d is a power of two. As in [41], we aim at proving the existence of a witness
s = (s1, . . . , sM ) ∈ RM comprised of small-norm ring elements such that

M∑
i=1

ai · si = c mod (q,Xd + 1) (26)

for public c,a1, . . . ,aM ∈ RNq . The relation is defined as the set of pairs

(x,w) =
(
(c,a1, . . . ,aM

)
∈ (RNq )M+1, (s1, . . . , sM ) ∈ RM

)
satisfying (26). To prove this relation, we proceed as in [41] and re-write (26) as
the following equality over Z[X]/(Xd + 1)

M∑
i=1

ai · si = c+ r · q mod (Xd + 1), (27)

where r = (r1, . . . , rN )⊤ ∈ RN is a vector of polynomials of degree ≤ d− 1 and
the components of {ai}Mi=1 and c are interpreted as polynomials with coefficients
in {−⌊q/2⌋, . . . , ⌊q/2⌋}. If ∥si∥∞ ≤ Bi for each i ∈ [M ], r contains polynomials
with coefficients of magnitude smaller than ∥r∥∞ ≤ Br ≜ dM ·maxi∈[M ](Bi)/2.

Let us parse ai = (ai,1, . . . , ai,N )⊤ ∈ RNq . Let the coefficient embedding ϕ :

R→ Zd that maps si to its coefficient vector ϕ(si) ∈ Zd. Let rot(ai,j) ∈ Zd×d the
anti-circulant matrix such that ϕ

(
ai,j · si mod (Xd +1)

)
= rot(ai,j) · ϕ(si) ∈ Zd.

If we re-write (27) as a matrix-vector product over Z, we obtain the relation

[A1 | . . . | AM ] ·
[
ϕ(s1) | . . . | ϕ(sM )

]⊤
=

M∑
i=1

Ai · ϕ(si) = ϕ(c) + ϕ(r) · q

where Ai = [rot(ai,1)
⊤ | . . . | rot(ai,N )⊤]⊤ ∈ ZNd×dq for all i ∈ [M ], ϕ(c) ∈ ZNdq ,

and ϕ(r) ∈ ZNd. Equivalently, this can be written
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[A1 | . . . | AM | − q · INd ] ·
[
ϕ(s1) | . . . | ϕ(sM ) | ϕ(r)

]⊤︸ ︷︷ ︸
≜ w̄

= ϕ(c) (28)

In order to prove (28), a natural idea is to have the prover commit to the vector

w̄ ∈ ZMd+Nd using a vector commitment over Ĝ. Then, using the batched range
proof of Section C.1, it can generate short range proof that ∥ϕ(si)∥∞ ≤ Bi
for each i ∈ [M ] and ∥ϕ(r)∥∞ ≤ dM · maxi∈[M ](Bi)/2. Using the approach of

[41], it can then prove that (28) holds over Zp,4 where p is the order of Ĝ. If
p > 2Mqdmaxi(Bi), this ensures that (28) also holds over the integers. Instead
of using the batched range proof of Section C.1, we can make the proof shorter
(and spare one commitment in Ĝ) by directly committing to the bits of w̄.

For any integer z ∈ Z, we define gz = (1, 2, 4, . . . , 2z−2,−2z−1)⊤ ∈ Z1×z and
Gz = Id ⊗ g⊤

z ∈ Zd×dz. We also define G−1
z (v) as the decomposition function

that inputs an integer vector v ∈ [−2z−1, 2z−1−1]d and outputs a decomposition
G−1
z (v) ∈ {0, 1}d·z such that Gz ·G−1

z (v) = v. Then, for each i ∈ [M ], we define

Ãi ≜
[
G⊤

1+logBi
· rot(ai,1)⊤ | . . . | G⊤

1+logBi
· rot(ai,N )⊤

]⊤ ∈ ZNd×d(1+logBi)
q

and we prove that

[
Ã1 . . . ÃM | − q ·

(
IN ⊗G1+logBr

) ]︸ ︷︷ ︸
≜ Ã

·



s1
...

sM
r1
...
rN


︸ ︷︷ ︸
≜ w̃

= ϕ(c), (29)

where we set si = G−1
1+logBi

(ϕ(si)) ∈ {0, 1}d·(1+logBi) for each i ∈ [M ], and

ri = G−1
1+logBr

(ϕ(ri)) ∈ {0, 1}d·(1+logBr) for each i ∈ [N ].

The prover will thus commit to the bit-decomposition w̃ ∈ {0, 1}D of the

witness, where D = d · (
∑N
i=1(1 + logBi) + N(1 + logBr)). In order to prove

that relation (29) holds modulo p (and thus also over Z since both members
have infinity norm smaller than p/2), the prover will use a random θ ∈ ZNdp
(derived from a random oracle) and prove that the committed w̃ ∈ {0, 1}D
satisfies θ⊤ · Ã · w̃ = θ⊤ · ϕ(c) mod p. If Ã · w̃ ̸= ϕ(c) mod p, then we have
θ⊤ ·(Ã ·w̃−ϕ(c)) = 0 mod p with probability 1/p. Proving θ⊤ ·Ã ·w̃ = θ⊤ ·ϕ(c)
is doable using one element of G as explained in the introduction.5

4 Here, x mod p is defined as the value y ∈ (−p/2, p/2) such that y ≡ x (mod p)
5 We actually prove (29) using the linear map commitment of Lai and Malavolta
[81, Appendix D.2]. While their scheme is only proven weakly function-binding (as
defined in [81]) in the random oracle model, it can be proven strongly function-
binding in the AGM+ROM and it still allows us to prove simulation-extractability
in the AGM+ROM.
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5.1 Description

In the description below, the CRS does not depend on a specific public key, but
we allow it to depend on upper bounds on the RLWE dimension d, the modulus
q of (26) and the infinity norms {Bi}Mi=1. The reason is that they impact the
dimension n of committed vectors and/or the order of the pairing-friendly group.
Therefore the CRS-Gen algorithm inputs an upper bound d̄ for the dimension,
an upper bound q̄ for the modulus and maximal values B̄i for the infinity norm
bounds Bi to be proven. The prover is allowed to choose a different dimension
d ≤ d̄, a different noise bound Bi ≤ B̄i, and a different modulus q ≤ q̄ in each
proof. For simplicity, we assume that each norm bound Bi is a power of two.

CRS-Gen(1λ, 1d̄, 1q̄, 1M̄ , 1N̄ , {1B̄i}N̄i=1): Given a security parameter λ, a maxi-
mal dimension d̄ ∈ poly(λ), integers N̄ , M̄ ∈ poly(λ), q̄ ∈ poly(λ), B̄i ∈
poly(λ), set Br ≜ d̄M̄ ·maxi∈[M ](B̄i)/2 and do the following.

1. Generate asymmetric pairing-friendly groups (G, Ĝ,GT ) of prime order
p > max(2l(λ), 2M̄ q̄d̄maxi(B̄i)), for some polynomial l : N → N. Let
n > d̄ · (

∑N̄
i=1(1 + log B̄i) + N̄(1 + logBr)).

2. Pick a random α R← Zp and compute g1, . . . , gn, gn+2, . . . , g2n ∈ G as

well as ĝ1, . . . , ĝn ∈ Ĝ, where gi = g(α
i) for each i ∈ [2n] \ {n + 1} and

ĝi = ĝ(α
i) for each i ∈ [n].

3. Choose hash functions H,Ht : {0, 1}∗ → Znp , Hagg : {0, 1}∗ → Z3
p and

Hlmap : {0, 1}∗ → ZN̄d̄+1
p that will be modeled as random oracles.

Output the CRS

pp =
(
(G, Ĝ,GT ), g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n],H

)
where H = {H,Ht, Hagg, Hlmap} are hash functions.

Provepp
(
x,w

)
: Given a statement x = (q, d,M,N, {Bi}Ni=1, {ai}Mi=1, c) consist-

ing of dimensions d ≤ d̄, M ≤ M̄ , N ≤ N̄ , a modulus q ≤ q̄, vectors of ring
elements {ai ∈ RNq }Mi=1, c ∈ RNq , and norm bounds Bi ≤ B̄i, as well as a

witness w = (s1, . . . , sM ) ∈ RM such that (26) holds with ∥si∥∞ ≤ Bi for
each i ∈ [M ], do the following.

1. Compute polynomials (r1, . . . , rN ) ∈ RN such that ∥ri∥∞ ≤ Br for each
i ∈ [N ] and satisfying (27). Encode (s1, . . . , sM ) and (r1, . . . , rN ) as

w̃ =
[
s⊤1 | . . . | s⊤M | r⊤1 | . . . | r⊤N

]⊤ ∈ {0, 1}D,
using bit decompositions si = G−1

1+logB(ϕ(si)) ∈ {0, 1}d(1+logBi) for each

i ∈ [M ] and ri = G−1
log d(ϕ(ri)) ∈ {0, 1}d·(1+logBr) for each i ∈ [N ], where

D = d · (
∑N
i=1(1 + logBi) +N(1 + logBr)).
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2. Commit tow ≜ (w̃ | 0n−D) = (w1, . . . , wD, 0, . . . , 0) ∈ {0, 1}n and prove
that w is binary. Namely,

a. Choose γ R← Zp and compute Ĉ = ĝγ ·
∏D
j=1 ĝ

wj

j .

b. Compute y = (y1, . . . , yn) = H
(
x, Ĉ

)
∈ Znp . Next, choose γy

R← Zp
and compute

Cy = gγy ·
D∏
j=1

g
yj ·wj

n+1−j

Then, compute t = (t1, . . . , tn) = Ht(y,x, Ĉ, Cy) ∈ Znp .
c. Using (15), compute πeq ∈ G such that

e(
∏n
i=1 g

ti·yi
n+1−i, Ĉ)

e(Cy,
∏n
i=1 ĝ

ti
i )

= e(πeq, ĝ). (30)

which shows that Cy commits to the (reversed) product y ◦w ∈ Znp .

d. Compute πy = Cγy ·
∏n
i=1

(
g
γy
i ·

∏
j∈[n]\{i} g

yj ·(wj−1)
n+1−j+i

)wi

such that

e
(
Cy ·

n∏
j=1

g
−yj
n+1−j , Ĉ

)
= e(πy, ĝ) (31)

which shows that
∑n
i=1 yi · wi · (wi − 1) = 0.

3. Compute θ̄ = Hlmap

(
x, Ĉ, Cy

)
∈ ZN̄d̄+1

p and define Ã ∈ ZNd×D and

ϕ(c) ∈ ZNd as in (29). Let θ ∈ ZNd+1
p the first Nd+ 1 entries of θ̄.

4. Parse θ as θ =
(
θ⊤
0 | δθ

)⊤
, with θ0 ∈ ZNdp . Let tθ = θ⊤

0 ·ϕ(c) mod p and

a⊤
θ = θ⊤

0 · Ã mod p. Generate a proof πθ ∈ G satisfying

e

(
D∏
k=1

g
aθ[k]
n+1−k, Ĉ

)
· e(g1, ĝn)−tθ = e(πθ, ĝ) (32)

by computing πθ =
∏D
k=1(g

γ
n+1−k ·

∏
j∈[D]\[k] g

wj

n+1−k+j)
aθ[k].

5. Compute (δeq, δy, δθ) = Hagg(x, Ĉ, Cy) ∈ Z3
p and an aggregated proof

π = πδyy · πδeqeq · π
δθ
θ .

Output the final proof π =
(
Ĉ, Cy, π

)
.

Verifypp
(
x,π

)
: Given a statement x = (q, d,M,N, {Bi}Ni=1, {ai}Mi=1, c) and a

candidate π, return 0 if π does not parse properly. Otherwise,

1. Compute (δeq, δy, δθ) = Hagg(x, Ĉ, Cy) ∈ Z3
p, y = H(x, Ĉ) ∈ Znp , t =

Ht(y,x, Ĉ, Cy) ∈ Znp .
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2. Compute θ̄ = Hlmap

(
x, Ĉ, Cy

)
∈ ZN̄d̄+1

p and let θ =
(
θ⊤
0 | δθ

)⊤ ∈ ZNd+1
p

the first Nd + 1 coordinates of θ̄. Compute tθ = θ⊤
0 · ϕ(c) ∈ Zp and

ã⊤
θ = θ⊤

0 · Ã ∈ ZDp . Define a⊤
θ = (ã⊤

θ | 0n−D) ∈ Znp .
3. Return 1 if the following equality holds and 0 otherwise:

e(π, ĝ) = e
(
Cδyy ·

n∏
i=1

g
(δeq·ti−δy)·yi+δθ·aθ[i]
n+1−i , Ĉ

)
· e
(
Cy,

D∏
i=1

ĝ
δeq·ti
i

)−1

· e(g1, ĝn)−tθ·δθ . (33)

Correctness. Equation (33) is obtained by aggregating (30), (31), and (32)
using randomness (δeq, δy, δθ). The correctness of (30)-(31) can be shown as in
Section 4 while (32) is a special case of the verification equation of the inner
product functional commitment of [83] (recalled in the introduction, cf. (1)).

Efficiency. We note that a 256-bit p is more than enough to satisfy the con-
straint p > 2M · qdmaxi(Bi) since d is typically 1024 or 2048, q ≈ 264, and M is
a small constant (concrete numbers are given in Supplementary Material G.3).

The CRS is comprised of 2n elements of G and n elements of Ĝ. As in
PointProofs [63], the verifier does not need {gi}2ni=n+2, which are only used by

the prover. The proof only consists of one element of Ĝ and two elements of
G. Compared to the most efficient simulation-extractable variant [6] of Groth’s

SNARK [69], our proofs are shorter by one element of Ĝ. This matches the op-
timal proof size of the simulation-extractable SNARK of Groth and Maller [70],
which is significantly more expensive than [69] in terms of prover time and CRS
size (see, e.g., [6] for detailed comparisons among them).

In terms of computation, π = π
δy
y ·πδeqeq ·πδθθ can be computed using 2n expo-

nentiations. At first, computing the corresponding exponents seems to require
O(n2) multiplications over Zp, which can be quite expensive for a very large
n. Fortunately, these exponents can be obtained via two products of degree-n
polynomials,6 using only O(n · log n) Zp-multiplications for a suitable prime p.

At step 4, the prover computes a product a⊤
θ = θ⊤

0 · Ã mod p, which takes time
O(Nd · D) in general. When it comes to proving many natural statements in
structured lattices, the matrix Ã has a special structure allowing to compute
θ⊤
0 · Ã using only O(d · log d) multiplications in Zp, as explained in Supplemen-

tary Material G.4. The prover’s cost is thus dominated by 3n exponentiations in
G and a product of D = d · (

∑N
i=1(1 + logBi) +N(1 + logBr)) elements in Ĝ.

The verifier computes 3 pairings and n exponentiations in each source group.
The scheme is not fully succinct since the number of exponentiations at the

verifier grows with the length of the witness. On the prover side, however, it
enables significant savings compared to R1CS-based SNARKs as the number of

6 These polynomial products are implicitly computed in the exponent by the pairings
in the right-hand-side member of (33). One of these two products is much faster to
compute as it involves a polynomial of which almost all coefficients are binary.
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exponentiations only grows with the size of the witness, rather than the size of
the arithmetic circuit that computes the encryption function. Indeed, the num-
ber of ring operations in the encryption algorithm does not affect the number of
exponentiations in the argument system.

In Supplementary Material G.3, we provide concrete proof/CRS sizes to-
gether with an estimation of the prover’s complexity when it comes to proving
the validity of a ciphertext in the LPR cryptosystem [88]. For such a statement,
we provide a detailed comparison with SNARKs [69] providing similarly short
proofs. Our construction is shown advantageous in applications (e.g., [97]) that
seek to decrease the prover’s computational effort, even at the cost of increasing
the verifier’s. We also provide a comparison with [41].

5.2 Security

We first describe a simple zero-knowledge simulator.

Theorem 3. The above non-interactive argument is perfectly zero-knowledge.
(The proof is given in Supplementary Material G.1.)

We note that the zero-knowledge simulator of Theorem 3 is not trapdoor-
less [53] as it relies on the trapdoor of the CRS to simulate proofs. On the other
hand, it works in the standard model, without relying on random oracles. In the
proof of Theorem 4, we describe a trapdoor-less simulator that does not use the
trapdoor of the CRS, but rather proceeds by programming the random oracles.

Theorem 4. If the (2n, n)-DLOG assumption holds, the above non-interactive
argument provides simulation-extractability in the algebraic group model and in
the random oracle model. (The proof is given in Supplementary Material G.2.)

References

1. M. Albrecht, V. Cini, R.-F. Lai, G. Malavolta, and S.-A. Thyagarajan. Lattice-
based SNARKs: Publicly verifiable, preprocessing, and recursively composable.
In Crypto, 2022.

2. D. Aranha, Y. El Housni, and A. Guillevic. A survey of elliptic curves for proof
systems. Designs, Codes & Cryptography, 2022.

3. D. Aranha, L. Fuentes-Castaneda, E. Knapp, A. Menezes, and F. Rodriguez-
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Supplementary Material

A On Proving Smallness via Functional Commitments
for Constant-Degree Polynomials

Catalano, Fiore and Tucker [28] recently built additively homomorphic FCs for
constant-degree multivariate polynomials and monotone span programs. The for-
mer could be used to build short proofs of binarity by showing that the degree-2
polynomial f(x1, . . . , xn) =

∑n
i=1 yi · xi · (xi − 1) evaluates to 0 for random co-

efficients {yi}ni=1. Nevertheless, their construction for degree-d polynomials has
a CRS size O(nd). If we were to use it as is to prove that a committed vector is
binary, we would end up with a quadratic-size CRS (instead of linear in our con-
struction) and longer commitments containing two group elements. Moreover,
the shape of the CRS would make it harder to prove knowledge-soundness in the
algebraic group model (note that their notion of evaluation-binding7 would not
suffice for our purposes). The reason is that their CRS contains elements of the

form (gα
j

, gβ·α
j

)j∈[n2], for some secret β, α ∈ Zp, while some components of hon-

estly generated commitments are of the form g
∑n

j=1 xj ·(αj) and only depend on
{gαj}j∈[n]. Hence, it is not clear how the AGM would enable knowledge extrac-
tion from an adversarially-generated commitment/proof since the commitment

can depend on all generators contained in the CRS, including {gβ·αj}j∈[n2].
To avoid these difficulties and decrease the CRS size to O(n) group elements,

it is tempting to exploit the sparsity of the polynomial
∑
i yi ·xi · (xi−1). Then,

in the closest adaptation of the technique from [28, Section 4] that we can think
of, either the commitment or the opening is longer than ours by at least one
group element: The prover would include a commitment C̄ ∈ G to the product
x ◦ x = (x21, . . . , x

2
n) in the opening before proving that x ◦ x − x satisfies an

inner product relation ⟨x◦x−x,y⟩ = 0 and that C̄ is consistent with the initial
commitment Ĉ = ĝγ ·

∏n
j=1 g

xj

j to x, which is part of the statement. To do this,
the prover would have to include at least one additional group element (typi-
cally, an auxiliary commitment C to a reversed version of y ◦x in G if the initial
commitment Ĉ lives in Ĝ) either in the commitment or in the opening. Then, it
would have to prove that C, and C̄ and Ĉ are consistent with one another by
computing a pairing e(C, Ĉ) and a pairing of C̄ with some public encoding of y.
Hence, the auxiliary commitment C would have to be part of either the initial
commitment or the opening, thus increasing the global communication overhead
(besides the main commitment Ĉ) to 3 group elements (C, C̄, π) if π is an aggre-
gated proof showing the consistency of all commitments. In our applications to
range proofs and short proofs for ring LWE ciphertexts, this would increase the
proof length by at least one group element. Our approach avoids this overhead

7 In short, evaluation-binding means that no PPT adversary can prove distinct eval-
uations for a given function of the committed vector.
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since, instead of including a commitment to (x21, . . . , x
2
n) in the proof, we include

a commitment to the reversed Hadamard product (yn ·xn, . . . , y1 ·x1) so that we
only need two group elements to argue that

∑
i yi · xi · (xi − 1) = 0. This allows

us to reach the smallest proof length of SNARKs [69] in our proofs of smallness
and valid ring LWE encryption.

We also note that the technique of [28, Section 4.1] could be used to prove
that a committed vector has infinity norm ≤ B by showing that the polyno-
mial Py(x1, . . . , xn) =

∑
i=1 yi ·

∏
j∈[−B,B](xi − j) evaluates to 0 for a random

y ∈ Znp . However, the commitment size would grow with B (since it grows with
the degree of the polynomial) while the proof length would grow with logB. In
contrast, both sizes are constant in our construction of Section C.1.

In an earlier work [86], Lipmaa and Pavlyk used the arithmetization of
SNARKs [56] to construct succinct FC for sparse polynomials, where the num-
ber monomials is small w.r.t. the number n of variables. Their construction
could be used as well to prove that a committed vector (x1, . . . , xn) satisfies∑n
i=1 yi · xi · (xi − 1) = 0, for a random y ∈ Zp derived from a random oracle.

While their openings only consist of one group element, their scheme is more
complex and using it in our setting would be significantly less efficient than our
construction from Section 3 in other metrics. First, their commitments are larger
and contain element of both sources groups G and Ĝ (concretely, 2 elements of

G and one element of Ĝ). In our applications of sections 4, C and 5, this would
lengthen the proofs by at least one element of G. Also, their CRS is more complex
and contains 2ν + µ elements of G and ν elements of Ĝ, where ν is the number
of multiplication gates in the arithmetic circuit that computes the polynomial
(which would be ν = 2n in our setting) and µ is the number of wires (here,
we would have µ ≥ 2n). Their prover is more expensive as well and computes
more than ν + µ+ µα + 2µβ exponentiations in G, where µα and µα denote the
lengths of private and public inputs (in our setting, this would amount to at
least 7n exponentiations in G). Moreover, their verification algorithm computes
a product of 5 pairings (instead of 3 in Section 3) and µβ = n exponentiations
in both source groups.

Finally, the complex structure of their CRS would make it harder to prove
knowledge-soundness in our context as it contains multiple monomials αiyj in
the exponent (with j > 1), while “valid” commitments have components that
only depend on monomials αiy, which have degree one in y. In the AGM, this
would complicate the task of the knowledge extractor since maliciously gener-
ated commitments come with a representation that possibly depends on all group
elements contained in the CRS.

B Deferred Material for the Range Proof of Section 4

B.1 Comparisons

Our construction of Section 4.1 assumes that the witness x is committed using a
Pedersen commitment in the pairing-friendly group specified by the CRS of the
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range proof. The range proof of Boneh et al. [14] makes a similar assumption
as it requires x to be committed as a constant polynomial using the CRS of a
polynomial commitment scheme.

The BFGW range proofs [14] have the shortest length to date and they also
feature constant verification time (whereas our verifier computesO(n) exponenti-
ations, where n is the maximal bitlength of the range, as in BulletProofs). When
they are instantiated with KZG commitments [77] and the cross-commitment
evaluation techniques of [13, Section 4.1], their proofs consist of 2 commitments
to polynomials (each of which takes an element of G), 3 elements of Zp repre-
senting evaluations of committed polynomials, and a batched evaluation proof
comprised of a group element and at least one scalar.8 If their construction is in-
stantiated with the polynomial commitment of [83, Section 4.1]9 and the batched
evaluation protocol of [13, Section 4.1], the communication cost decreases to 2
elements of G (which commit to polynomials), 3 scalars (for polynomial evalua-
tions) and a single element of G for the batched evaluation proof. In the latter
case, the range proof of [14] only requires 3 elements of G and 3 elements of

Zp. On the downside, combining [14,83] induces 2n exponentiations in Ĝ at the
verifier (instead of O(1) using KZG commitments) and increases the prover’s
overhead to 7n exponentiations in G.

Not only does our construction ensure simulation-extractability in the AGM,
it also features the shortest proof length and the smallest number of exponenti-
ations at the prover (which is reduced by at least 40%, as shown in Table 1). In
addition, the underlying vector commitment can be used to prove other prop-
erties about the committed short vector (e.g., upper bounds on its Hamming
weight or its Euclidean norm) besides its infinity norm.

In terms of space, the above construction also improves upon BulletProofs
[21], which requires the prover to send 2⌈log ℓ⌉+4 group elements and 5 elements
of Zp. If we compare our construction with SNARKs, we obtain the same proof
size as optimally short candidates [69,70] with the advantage that our CRS size
is much shorter: It only depends on the maximal bitlength n of a range rather
than the size of a circuit representation of the statement. Also, our prover only
needs to compute O(n) exponentiations instead of a number of exponentiations
growing with the size of an arithmetic circuit that computes a commitment open-
ing (which would be very large as the circuit would have to compute modular
exponentiations).

In Table 1, we compare our constant-size range proofs with existing pairing-
based solutions (including SNARK-based ones) featuring similarly short proofs.
Several instantiations of [12] are considered for different polynomial commit-

8 In randomized versions of the KZG commitment (described in [77, Section 3.3], [13,
Appendix B.2] and [103]), each evaluation proof consists of an element of G and at
least one scalar or an additional element of G.

9 In order to prove the knowledge soundness of the range proof of [14] when the poly-
nomial commitment of [83] is used, it is necessary to rely on the latter’s knowledge
soundness in the AGM (as defined in [13, Appendix C.1.3]) but we believe this
property holds under the (2n, n)-DLOG assumption.
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ment schemes that are known to provide constant-size evaluation proofs. Among
schemes that do not generically rely on SNARKs, we only consider those where
the CRS size is at most logarithmic in the range magnitude (i.e., linear in n).
For example, Table 1 does not include range proofs based on lookup arguments
[50, Section 5] which do not meet the latter criterion when instantiated with
KZG commitments.

Table 1. Efficiency comparisons between constant-size range proofs

Schemes Proof size CRS size⋄ Prover cost† Verifier cost∗

BFGW [14] 3× |G| (4n+ 2)× |G| 5n expG 3P + 4 expĜ
+ KZG [77, Section 3.3] + 4× |Zp| + 4× |Ĝ| +1 expG

BFGW 4× |G| (2n+ 1)× |G| 5n expG 3P + 4 expĜ
+ Zhang et al. [103] + 3× |Zp| + 3× |Ĝ| +1 expG

BFGW 3× |G| 4n× |G| 7n expG 3P + 2n expĜ
+ LRY [83] + 3× |Zp| + 2n× |Ĝ| + 2 expG

Groth16 [69] 1× |Ĝ| 3 · |C| × |G| △ 4 · |C| expG 3P + O(1) expG
+2× |G| +|C| × |Ĝ| |C| expĜ

New construction 1× |Ĝ| 2n× |G| 3n expG 4P + 2n expG
(Section 4) +2× |G| +n× |Ĝ| +1 expĜ +n expĜ

+ n multĜ
⋄ expG and expĜ denote exponentiations in G and Ĝ while multĜ denotes a multiplication in Ĝ.
† n denotes the bitlength of the range.
∗ P stands for a pairing computation.
△ |C| denotes the number of multiplication gates in the arithmetic circuit computing a commit-
ment opening.

B.2 Proof of Correctness

The first verification equation (20) is satisfied because

e(

n∏
i=1

g2
i−1

n+1−i, Ĉ) =

n∏
i=1

e(gn+1−i, Ĉ)
2i−1

=

n∏
i=1

e
(
gn+1−i, ĝ

γ ·
n∏
j=1

ĝ
xj

j

)2i−1

=
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i=1

e
(
gγ ·

n∏
j=1

g
xj

j , ĝn+1−i
)2i−1

,

=

n∏
i=1

e
(
gγn+1−i ·

n∏
j=1

g
xj

n+1+j−i, ĝ
)2i−1

= e(g1, ĝn)
∑n

i=1 xi·2i−1

· e
( n∏
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(
gγn+1−i ·

∏
j∈[n]\{i}

g
xj

n+1−i+j
)2i−1

, ĝ
)

and e(gn, V̂ ) = e(g1, ĝn)
x · e(grn, ĝ), so that dividing out the two equations yields

e(
∏n
i=1 g

2i−1

n+1−i, Ĉ)
/
e(gn, V̂ ) = e(πx, ĝ) when x =

∑n
i=1 xi · 2i−1.
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Similarly, the second verification equation (21) follows by dividing the fol-
lowing two equalities:

e(

n∏
i=1

gti·yin+1−i, Ĉ) =
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ti·yi
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ĝ
xj

n+1+j−i
))ti·yi

=

n∏
i=1

(
e(g1, ĝn)
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ĝtii
)
=

n∏
i=1

e(Cy, ĝi)
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.

As for equation (22), we have

e(Cy ·
n∏
j=1

g
−yj
n+1−j , Ĉ) = e

(
gγy ·

n∏
j=1

g
yj ·(xj−1)
n+1−j , ĝγ ·

n∏
i=1

ĝxi
i

)
= e(Cy, ĝ)

γ ·
n∏
i=1

e
((
g
γy
i ·

n∏
j=1

g
yj ·(xj−1)
n+1−j+i

)xi
, ĝ
)

= e(g1, ĝn)
∑n

i=1 yi·xi·(xi−1) · e(Cγy , ĝ)

·
n∏
i=1

e
((
g
γy
i ·

∏
j∈[n]\{i}

g
yj ·(xj−1)
n+1−j+i

)xi
, ĝ
)

= e
(
Cγy ·

n∏
i=1

(
g
γy
i ·

∏
j∈[n]\{i}

g
yj ·(xj−1)
n+1−j+i

)xi
, ĝ
)
,
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where the last equality holds because xi(xi − 1) = 0 for each i ∈ [n].
Equation (23) is satisfied by πv =

∏n
i=2

(
grn+1−i · gxn+2−i

)si ∈ G since

e
( n∏
i=2

gsin+1−i, V̂
)
=

n∏
i=2

e
(
gn+1−i, ĝ

r · ĝx1
)si

=

n∏
i=2

e
(
gr · gx1 , ĝn+1−i

)si
=

n∏
i=2

e
(
grn+1−i · gxn+2−i, ĝ

)si
= e(πv, ĝ).

B.3 Proof of Theorem 1

Proof. We describe a simulator that perfectly simulates proofs using a trapdoor
tk = α ∈ Zp and by programming the random oracles. Given a commitment V̂ ∈
Ĝ, the simulator computes Cy = gθy ∈ G for a randomly chosen θy

R← Zp. Next,

it obtains si = Hs(i, [2, n], V̂ , Ĉ, Cy) for each index i ∈ [2, n]. It then uniformly

chooses y = (y1, . . . , yn)
R← Znp , t = (t1, . . . , tn)

R← Znp , δ = (δx, δeq, δy, δv)
R← Z4

p,
sets s0 = 0, and computes

λ =
δx · (αn)−

∑n
i=2 δv · si · (αn+1−i)

θy · δy +
∑n
i=1(δx,i · 2i−1 + (δeq · ti − δy) · yi + δ0 · ui) · (αn+1−i)

,

where δx,i = δx if i ∈ [ℓ] and δx,i = 0 for all i ∈ [ℓ+ 1, n].
Note that the denominator is uniformly distributed over Zp and non-zero

with probability 1− 1/p. Then, it chooses γ R← Zp and computes a commitment

Ĉ = V̂ λ · ĝγ . It aborts if y = H(V̂ , Ĉ), or Hagg(V̂ , Ĉ, Cy) or Ht(y, V̂ , Ĉ, Cy) was
already defined. If the simulator does not fail, it computes

π =
(
Cδyy ·

n∏
i=1

g
δx,i·2i−1+(δeq·ti−δy)yi
n+1−i

)γ
·
( n∏
i=1

ĝ
δeq·ti
i

)−θy
. (34)

Then, it programs the random oracles to have Hagg(V̂ , Ĉ, Cy) = (δx, δeq, δy, δv),

y = H(V̂ , Ĉ), t = Ht(y, V̂ , Ĉ, Cy) for each i ∈ [n]. This provides a valid proof

π = (Ĉ, Cy, π), where Ĉ and Cy are uniformly distributed over G and Ĝ, re-
spectively. Moreover, π satisfies the verification equation (25) since we have

gδxn ·
n∏
i=2

g−δv·sin+1−i =
(
Cδyy ·

n∏
i=1

g
δx,i·2i−1+(δeqti−δy)yi
n+1−i

)λ
,
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which implies

e
(
C
δy
y ·

∏n
i=1 g

δx,i·2i−1+(δeq·ti−δy)·yi
n+1−i , Ĉ

)
e
(
gδxn ·

∏n
i=2 g

−δv·si
n+1−i, V̂

)
· e
(
Cy,

∏n
i=1 ĝ

δeq·ti
i

)
=
e
(
C
δy
y ·

∏n
i=1 g

δx,i·2i−1+(δeq·ti−δy)·yi
n+1−i , V̂ λ · ĝγ

)
e
(
gδxn ·

∏n
i=2 g

−δv·si
n+1−i, V̂

)
· e
(
Cy,

∏n
i=1 ĝ

δeq·ti
i

)
=
e
(
C
δy
y ·

∏n
i=1 g

δx,i·2i−1+(δeq·ti−δy)·yi
n+1−i , V̂ λ

)
e
(
gδxn ·

∏n
i=2 g

−δv·si
n+1−i, V̂

)
·
e
((
C
δy
y ·

∏n
i=1 g

δx,i·2i−1+(δeq·ti−δy)yi
n+1−i

)γ
, ĝ
)

e
((∏n

i=1 ĝ
δeq·ti
i

)θy
, ĝ
) = e(π, ĝ)

⊓⊔

B.4 Proof of Theorem 2

Proof. In the AGM+ROM model, we show that, unless the (2n, n)-DLOG as-
sumption is false, there exists an extractor that can extract a witness from
any adversarially-generated proof π =

(
Ĉ, Cy, π

)
and statement (V̂ , [0, 2ℓ − 1]).

Specifically, we give an algorithm B that can either extract a witness (x, r) with
x ∈ [0, 2ℓ − 1] or solve an (2n, n)-DLOG instance by computing α ∈ Zp from

{(g, g1, . . . , g2n), (ĝ1, . . . , ĝn)}, where gi = g(α
i) and ĝi = ĝ(α

i) for all i.
The given problem instance {(g, g1, . . . , , g2n), (ĝ1, . . . , ĝn)} is used to define

the CRS pp. Note that gn+1 = g(α
n+1) is not included in pp although it is part

of B’s input.10 Our reduction/extractor B then interacts with A as follows.

Queries:WhenAmakes a random oracle query, B returns the previously defined
value if it exists. Otherwise, it returns a random element in the appropriate
range. When A queries a hash value Hagg(V̂ , Ĉ, Cy), B makes the corresponding

hash queries y = H(V̂ , Ĉ), t = Ht(y, V̂ , Ĉ, Cy), {si = Hs(i, V̂ , [2, n])}ni=2 for
itself before returning a tuple (δx, δeq, δy, δv). Since we are in the algebraic group

model, at the first hash query involving a group element in G, Ĝ, or GT , A
provides a representation of this group element as a linear combination of all the
group elements that A previously observed in the same group.

At any time, A can choose a commitment com = V̂ and ask for a simulated
proof that V̂ is a commitment to some integer in [0, 2ℓ − 1] for some ℓ ≤ n of
its choice. Since A is an algebraic adversary, it must provide a representation of
V̂ with respect to the generators {ĝi}i∈[0,n] and the commitments Ĉ contained
in earlier proofs generated by the simulator. However, the simulator used by

10 In fact, gn+1 = g(α
n+1) will not be used by B at all, so that the reduction also works

under the weaker assumption where gn+1 is not given. For simplicity, we consider
the (2n, n)-DLOG assumption, which is more widely used.
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B is itself algebraic and always simulates proofs by computing commitments
Ĉ as linear combinations of {ĝi}i∈[0,n] for coefficients of its choice. Hence, for

any V̂ chosen by the adversary, B can always compute a representation {vi}ni=0

such that V̂ = ĝv0 ·
∏n
i=1 ĝ

vi
i . We assume w.l.o.g. that either v1 ̸∈ [0, 2ℓ − 1] or

(v2, . . . , vn) ̸= 0 since, otherwise, B can generate a real proof using (v1, v0) as
witnesses. Then, B proceeds as follows to simulate a proof without using gn+1:

1. Choose random vectors δ = (δx, δeq, δy, δv)
R← Z4

p, y = (y1, . . . , yn)
R← Znp ,

t = (t1, . . . , tn)
R← Znp .

2. Let fn+1 =
∑n
i=2 vi · si for randomly chosen s2, . . . , sn

R← Zp. Define

a1 = v1 −
δv · fn+1

δx
ai = 0 ∀i ∈ [2, n]

zn = y1

Note that a1 ̸∈ {0, 1} w.h.p. if v1 ̸∈ [0, 2ℓ− 1] or (v2, . . . , vn) ̸= 0. Then, find
an arbitrary (z1, . . . , zn−1) ∈ Zn−1

p such that

n∑
i=2

ti · zn+1−i = t1 · (a1 · y1 − y1).

3. Choose random a0, z0
R← Zp and compute simulated commitments

Ĉ = ĝa0 ·
n∏
i=1

ĝaii = ĝa0 · ĝa1 , Cy = gz0 ·
n∏
i=1

gzii .

4. If one of the random oracle values Hagg(V̂ , Ĉ, Cy), H(V̂ , Ĉ), Ht(y, V̂ , Ĉ, Cy)

or {Hs(i, [2, n], V̂ , Ĉ, Cy)}ni=2 was already defined, then abort and report fail-

ure. Otherwise, set y = H(V̂ , Ĉ), t = Ht(y, V̂ , Ĉ, Cy), δ = Hagg(V̂ , Ĉ, Cy)

and si = Hs(i, [2, n], V̂ , Ĉ, Cy) for each i ∈ [2, n].

5. Define the polynomials

Qx[X] =
( n∑
i=0

ai ·Xi
)
·
( ℓ∑
i=1

2i−1 ·Xn+1−i
)
−
( n∑
i=0

vi ·Xi+n
)
=

n+ℓ∑
i=0

qi ·Xi,

Qy[X] =
( n∑
i=0

zi ·Xi −
n∑
i=1

yi ·Xn+1−i
)
·
( n∑
i=0

ai ·Xi
)

=
(
z0 +

n∑
i=1

(
zn+1−i − yi

)
·Xn+1−i

)
·
( n∑
i=0

ai ·Xi
)
=

2n∑
i=0

σi ·Xi
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Qeq[X] =
( n∑
i=0

ai ·Xi
)
·
( n∑
i=1

ti · yi ·Xn+1−i
)

−
( n∑
i=0

zi ·Xi
)
·
( n∑
i=1

ti ·Xi
)
=

2n∑
j=0

ej ·Xj ,

Qv[X] =
( n∑
i=0

vi ·Xi
)
·
( n∑
i=2

si ·Xn+1−i
)
=

2n∑
j=0

fj ·Xj .

Their degree-(n+ 1) coefficients are fn+1 =
∑n
i=2 vi · si and

qn+1 = −v1 +
ℓ∑
i=1

ai · 2i−1 = −v1 + a1 = −δv · fn+1

δx
,

σn+1 =

n∑
i=1

ai · (zn+1−i − yi) = a1 · (zn − y1) = 0

en+1 =

n∑
i=1

ti · (ai · yi − zn+1−i) = t1 · (a1 · y1 − y1)−
n∑
i=2

ti · zn+1−i = 0

due to the definition of committed a = (a1, . . . , an) and z = (z1, . . . , zn).
Observe that

δx · qn+1 + δeq · en+1 + δy · σn+1 + δv · fn+1 = 0 (35)

6. Define the polynomial

Qagg[X] = δx ·Qx[X] + δeq ·Qeq[X] + δy ·Qy[X] + δv ·Qv[X]

=

2n∑
i=0

ηi ·Xi

for which ηn+1 = 0 by construction. Compute

π =
2n∏

i=1,i̸=n+1

gηii (36)

using (g, {gi}i∈[2n]\{n+1}) and return the simulated proof π = (Ĉ, Cy, π).

Note that the simulated π from (36) satisfies the verification equation

e
(
C
δy
y ·

∏ℓ
i=1 g

δx·2i−1+(δeq·ti−δy)·yi
n+1−i ·

∏n
i=ℓ+1 g

(δeq·ti−δy)·yi
n+1−i , Ĉ

)
e
(
gδxn ·

∏n
i=2 g

−δv·si
n+1−i, V̂

)
· e
(
Cy,

∏n
i=1 ĝ

δeq·ti
i

) = e(π, ĝ). (37)

Moreover, π has the same distribution as a proof generated by the zero-knowledge
simulator in the proof of Theorem 1. Indeed, π is uniquely determined by the
commitments (Ĉ, V̂ , Cy) and the Zp-elements y, t, {si}ni=2, and δ in (37). Also,
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while the committed vectors a, z ∈ Znp are programmed in a special way, they

are perfectly hidden by the randomness a0 and z0 in Ĉ and Cy.
Consequently, the simulation is perfect, unless a collision occurs when ran-

dom oracles are programmed in one of the simulation queries. If QS (reps. QH)
denotes the number of queries made by A to the simulator (resp. to random
oracles), this happens with probability at most (QS +QH) ·QH/p.

Output: When the adversary A halts, it outputs a statement (V̂ , [0, 2ℓ−1]), for
some ℓ ∈ [1, n], together with a verifying proof π =

(
Ĉ, Cy, π

)
.

Since we are in the AGM, any malicious prover that comes up with a com-
mitment com = V̂ and a proof π =

(
Ĉ, Cy, π

)
must also provide a representation

of each group element w.r.t. the group elements
(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
and all other group elements that have been observed so far.11 In particular,
A must provide a representation of Cy w.r.t to (g, {gi}i∈[2n]\{n+1}) and the

group elements {C(i)
y , π(i)}i∈[QS ] contained in responses {π(i)}i∈[QS ] to simu-

lation queries. For the same reason, A must provide a representation of Ĉ
w.r.t (ĝ, {ĝi}i∈[n]) and the commitments {Ĉ(i)}i∈[QS ] contained in simulated

proofs {π(i)}i∈[QS ]. However, for each i ∈ [QS ], B knows a representation of

Ĉ(i) w.r.t. (ĝ, {ĝi}i∈[n]) and a representation of Cy w.r.t. (g, {gi}ni=1). It also

knows a representation of each simulated π(i) w.r.t (g, {gi}i∈[2n]\{n+1}). From
A’s output and the random coins of the simulation, B is able to compute scalars
{(θi, zi) ∈ Z2

p}i∈[0,2n]\{n+1}, {(ai, vi) ∈ Z2
p}i∈[0,n] such that

Ĉ =

n∏
i=0

ĝaii , Cy =

2n∏
i=0,i̸=n+1

gzii , V̂ =

n∏
i=0

ĝvii , π =

2n∏
i=0,i̸=n+1

gθii ,

where we define g0 = g and ĝ0 = ĝ for convenience.
If the representation (v0, v1, . . . , vn) ∈ Z2

p of V̂ is such that v1 ∈ [0, 2ℓ − 1]
and vi = 0 for all i ∈ [2, n], then B is done as it can simply output (v1, v0) ∈ Z2

p

as a valid opening of the Pedersen commitment V̂ to an integer v1 in the proper
range. We now assume that either v1 ̸∈ [0, 2ℓ − 1] or (v2, . . . , vn) ̸= 0n−1.

Solving (2n, n)-DLOG: By hypothesis, A’s statement (com = V̂ , [0, 2ℓ−1]) and
proof π =

(
Ĉ, Cy, π

)
satisfy the verification equation (37), where y = H(V̂ , Ĉ),

t = Ht(y, V̂ , Ĉ, Cy), s0 = 0, si = Hs(i, [2, n], V̂ , Ĉ, Cy) for each i ∈ [2, n], and

(δx, δeq, δy, δv) = Hagg(V̂ , Ĉ, Cy).

We first note that a non-trivial valid π cannot recycle (V̂ , Ĉ, Cy) obtained

from the simulation oracle (namely, we must have (V̂ , Ĉ, Cy) ̸= (V̂ (i), Ĉ(i), Cy)
for all i ∈ [QS ]) since the left-hand-side member of (37) is uniquely determined

by (V̂ (i), Ĉ(i), C
(i)
y ) and it in turn determines a unique valid π(i). Consequently,

the hash values Hagg(V̂ , Ĉ, Cy), Ht(y, V̂ , Ĉ, Cy) and {Hs(i, [2, n], V̂ , Ĉ, Cy)}ni=2

11 These representations are actually supplied by A at the first random oracle query
(or the first simulation query in the case of V ) involving the corresponding group
elements.
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were not programmed by the simulator in a simulation query.
We also note that the left-hand-side member of (37) is obtained by raising the

left-hand-side members of equations (20)-(23) to the powers (δx, δeq, δy, δv) and
multiplying the results together. Hence, it can be written e(g, ĝ)Pagg(α), where
Pagg[X] is the polynomial

Pagg[X] = δx · Px[X] + δy · Py[X] + δeq · Peq[X] + δv · Pv[X]

obtained as a linear combination of the polynomials

Px[X] =
( n∑
i=0

ai ·Xi
)
·
( ℓ∑
i=1

2i−1 ·Xn+1−i
)
−
( n∑
i=0

vi ·Xn+i
)
=

n+ℓ∑
i=0

ωi ·Xi,

Py[X] =
( 2n∑
i=0,i̸=n+1

zi ·Xi −
n∑
i=1

yi ·Xn+1−i
)
·
( n∑
i=0

ai ·Xi
)

=
(
z0 +

n∑
i=1

(
zn+1−i − yi

)
·Xn+1−i +

2n∑
i=n+2

zi ·Xi
)
·
( n∑
i=0

ai ·Xi
)

=

3n∑
i=0

γi ·Xi

Peq[X] =
( n∑
i=0

ai ·Xi
)
·
( n∑
i=1

ti · yi ·Xn+1−i
)

−
( 2n∑
i=0,i̸=n+1

zi ·Xi
)
·
( n∑
i=1

ti ·Xi
)
=

3n∑
j=0

βj ·Xj ,

Pv[X] =
( n∑
i=0

vi ·Xi
)
·
( n∑
i=2

si ·Xn+1−i
)
=

2n∑
j=0

µj ·Xj

for which the left-hand-side members of (20)-(23) can be written e(g, ĝ)Px(α),
e(g, ĝ)Peq(α), e(g, ĝ)Py(α), and e(g, ĝ)Pv(α), respectively.

Letting Pagg[X] =
∑3n
i=0 νi · Xi, the coefficient νn+1 of the degree-(n + 1)

term can be written

νn+1 = δx · (
ℓ∑
i=1

ai · 2i−1 − v1)︸ ︷︷ ︸
≜ ωn+1

+ δy ·
n∑
i=1

(
zn+1−i − yi

)
· ai︸ ︷︷ ︸

≜ γn+1

+ δeq ·
n∑
i=1

ti · (ai · yi − zn+1−i)︸ ︷︷ ︸
≜ βn+1

+ δv ·
n∑
i=2

vi · si︸ ︷︷ ︸
≜ µn+1

,

where (ωn+1, γn+1, βn+1, µn+1) are the coefficients of the degree-(n+1) terms of
(Px[X], Py[X], Peq[X], Pv[X]), respectively. We argue that, if v1 ̸∈ [0, 2ℓ − 1] or
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(v2, . . . , vn) ̸= 0n−1, we cannot have νn+1 = 0, except with negligible probability.
This follows from the following two arguments:

- The probability that ρ ≜ (ωn+1, γn+1, βn+1, µn+1) = 0 is negligible if v1 ̸∈
[0, 2ℓ − 1] or (v2, . . . , vn) ̸= 0n−1. Indeed, when (v2, . . . , vn) ̸= 0n−1, we
have µn+1 = 0, with probability 1/p over the random choice of {si}ni=2 since

{si = Hs(i, [2, n], V̂ , Ĉ, Cy)}ni=2 are derived uniformly after the choice of
{vi}ni=2. Likewise, when zn+1−i ̸= ai · yi for some i ∈ [n], we have βn+1 = 0

with probability 1/p since t = Ht(y, V̂ , Ĉ, Cy) is derived after the choice of
y, {ai}ni=0 and {zi}i∈[0,2n]\{n+1}. Then, if zn+1−i = ai · yi for all i ∈ [n], we
have γn+1 =

∑n
i=1 yi · (ai−1) ·ai, which cancels with probability 1/p if there

exists i ∈ [n] such that ai ̸∈ {0, 1}. To see this, we distinguish two cases:

a. If y = H(V̂ , Ĉ) was defined when answering a simulation query, we can
only have γn+1 = 0 with probability 1/p since the simulator programmed
(a1, . . . , an) to have γn+1 =

∑n
i=1 yi · ai · (ai − 1) = y1 · a1 · (a1 − 1) with

y1 ∈R Zp and a1 ̸∈ {0, 1}. This covers the case of A attempting to recycle

(V̂ , Ĉ) = (V̂ (i), Ĉ(i)) from a simulated proof π(i) = (Ĉ(i), C
(i)
y , π(i)), with

a modified Cy ̸= C
(i)
y .

b. If H(V̂ , Ĉ) was not programmed by the simulator, then the hash value
y = H(V̂ , Ĉ) was defined after B obtained the algebraic representation
{ai}ni=0 of Ĉ. Over the choice of y, we have

∑n
i=1 yi · (ai − 1) · ai = 0

with probability 1/p.

If none of the above unlikely events occurs and ωn+1 = 0, then we have

v1 =
∑ℓ
i=1 ai · 2i−1 and ai ∈ {0, 1} for all i ∈ [ℓ], which contradicts the

hypothesis that v1 ̸∈ [0, 2ℓ − 1].

- If ρ ̸= 0, then we have νn+1 ̸= 0 with probability 1 − 1/p since δ ≜
(δx, δeq, δy, δv) = Hagg(V̂ , Ĉ, Cy) is derived from a random oracle after the
choice of {(ai, vi)}ni=0, and {zi}i∈[0,2n]\{n+1}, which determine the coordi-
nates of ρ. Hence, a random independent δ ∈ Z4

p can only satisfy ⟨δ,ρ⟩ = 0
with probability 1/p.

If νn+1 ̸= 0, B can compute α ∈ Zp by observing that the aggregated verifi-
cation equation (37) implies

π = g
νn+1

n+1 ·
∏

i∈[0,3n]\{n+1}

gνii , (38)

where g2n+1 = g(α
2n+1),. . . , g3n = g(α

3n) are not available to B. However, B
knows {νi}3ni=0. Since νn+1 ̸= 0, we are guaranteed that the representation (38)

of π is different from its representation π =
∏2n
i=0,i̸=n+1 g

θi
i revealed by A as part

of its output. This means that α ∈ Zp is a root of the non-zero polynomial

R[X] =
∑

i∈[0,2n]\{n+1}

(νi − θi) ·Xi + νn+1 ·Xn+1 +

3n∑
i=2n+1

νi,

which allows computing α ∈ Zp by factoring R[X]. ⊓⊔

42



C Short Proofs that a Committed Vector is Small

We now show that the range proof of Section 4 can be batched in order to si-
multaneously prove possibly distinct ranges for the different slots of a multi-base
Pedersen commitment. In particular, we can prove that a vector commitment
commits to a vector of small infinity norm.

C.1 Description

Given a commitment V̂ = ĝr ·
∏m
k=1 ĝ

xk

k , the prover will convince the verifier that
xk ∈ [0, 2ℓk − 1] for each k ∈ [m] using only 3 group elements. The construction
proceeds as follows.

CRS-Gen(1λ, 1m, {1nk}mk=1): On input of a security parameter λ, a number of
slots m ∈ poly(λ), and the maximal bitlength nk ∈ poly(λ) of ranges for each
slot k ∈ [m], set n =

∑m
k=1 nk and do the following:

1. Choose asymmetric bilinear groups (G, Ĝ,GT ) of prime order p > 2ℓp ,
where ℓp = max(l(λ), n1, . . . , nm) for some polynomial l : N → N, and
generators g R← G, ĝ R← Ĝ.

2. Pick a random α R← Zp and compute g1, . . . , gn, gn+2, . . . , g2n ∈ G as

well as ĝ1, . . . , ĝn ∈ Ĝ, where gi = g(α
i) for each i ∈ [2n] \ {n + 1} and

ĝi = ĝ(α
i) for each i ∈ [n].

3. Choose hash functions H,Ht : {0, 1}∗ → Znp , Hs : {0, 1}∗ → Zp, Hagg :
{0, 1}∗ → Z4

p and Hξ : {0, 1}∗ → Zmp modeled as random oracles.

The public parameters are defined to be

pp =
(
(G, Ĝ,GT ), n, g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n],H

)
where H = {H,Hs, Ht, Hagg, Hξ} are hash functions.

Compp(x) To commit to a vector of integers x = (x1, . . . , xm) ∈ Zm, choose a

random r R← Zp and compute V̂ = ĝr ·
∏m
k=1 ĝ

xk

k ∈ Ĝ. Return the commit-

ment com = V̂ ∈ Ĝ and the opening information aux = r ∈ Zp.

Provepp
(
(com, {1ℓk}mk=1), (x, aux)

)
: given a commitment com = V̂ and witnesses(

x; aux
)
consisting of an integer vector x = (x1, . . . , xm) ∈ Zm such that

xk ∈ [0, 2ℓk − 1] for each k ∈ [m], where ℓk ≤ nk, and aux = r ∈ Zp is the

randomness such that V̂ = ĝr ·
∏m
k=1 ĝ

xk

k , do the following:

1. For each k ∈ [m−1], set jk = n1+· · ·+nk−1 with j1 = 0. For each k ∈ [m],
let the binary expansion (xk,1, . . . , xk,ℓk) ∈ {0, 1}ℓk of xk. Set xk,i = 0
for each i ∈ [ℓk + 1, nk] and define x̄k = (xk,1, . . . , xk,nk

) ∈ {0, 1}nk .
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2. Choose γ R← Zp and compute

Ĉ = ĝγ ·
m∏
k=1

ℓk∏
j=1

ĝ
xk,j

jk+j
.

Compute y = (y1, . . . , yn) = H(V̂ , Ĉ) ∈ Znp . Then, choose γy
R← Zp and

compute

Cy = gγy ·
m∏
k=1

ℓk∏
j=1

g
yjk+j ·xk,j

n+1−(jk+j)

3. Compute ξ = (ξ1, . . . , ξm) = Hξ(V̂ , Ĉ, Cy) and generate a proof πx that

Ĉ commits to (x̄1 | . . . | x̄m) ∈ Znp such that
∑ℓk
i=1 xk,i · 2i−1 = xk for

each k ∈ [m]. This proof πx ∈ G satisfies

e
(∏m

k=1

(∏ℓk
i=1 g

2i−1

n+1−(jk+i)

)ξk , Ĉ)
e
(∏m

k=1 g
ξk
n+1−k, V̂

) = e(πx, ĝ) (39)

and is obtained as per formula (46) in Supplementary Material C.2.
4. Compute t = (t1, . . . , tn) = Ht(y, V̂ , Ĉ, Cy) ∈ Znp . Generate a proof πeq

(as per formula (49) in Supplementary Material C.2) satisfying

e
(∏m

k=1

∏nk

i=1 g
tjk+i·yjk+i

n+1−(jk+i)
, Ĉ
)

e
(
Cy,

∏m
k=1

∏nk

i=1 ĝ
tjk+i

jk+i

) = e(πeq, ĝ), (40)

which shows that Cy is consistent with y and Ĉ.

5. Prove that
∑m
k=1

∑nk

i=1 yjk+i · xk,i · (xk,i − 1) = 0 by computing πy ∈ G
(as specified by (50) in Supplementary Material C.2) satisfying

e
(
Cy ·

m∏
k=1

nk∏
i=1

g
−yjk+i

n+1−(jk+i)
, Ĉ
)
= e(πy, ĝ). (41)

6. Generate an aggregated proof that V̂ = ĝr ·
∏m
k=1 ĝ

xk

k is a commitment to
a vector that contains 0 in its last n−m coordinates. Namely, compute
πv =

∏n
i=m+1

(
grn+1−i ·

∏m
k=1 g

xk

n+2−i+k
)si ∈ G such that

e
( n∏
i=m+1

gsin+1−i, V̂
)
= e(πv, ĝ). (42)

where si = Hs(i, [m+ 1, n], V̂ , Ĉ, Cy) ∈ Zp for each i ∈ [m+ 1, n].

7. Compute (δx, δeq, δy, δv) = Hagg(V̂ , Ĉ, Cy) ∈ Z4
p and compute an aggre-

gated proof
π = πδxx · πδyy · πδeqeq · πδvv .
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Output the final range argument which consists of

π :=
(
Ĉ, Cy, π

)
. (43)

Verifypp
(
com,π

)
: Given a commitment com = V̂ ∈ Ĝ and a candidate proof π,

parse the latter as in (43).

1. Compute (δx, δeq, δy, δv) = Hagg(V̂ , Ĉ, Cy) ∈ Z4
p, y = H(V̂ , Ĉ) ∈ Znp ,

ξ = (ξ1, . . . , ξm) = Hξ(V̂ , Ĉ, Cy) ∈ Zmp , t = Ht(y, V̂ , Ĉ, Cy) ∈ Znp , and
si = Hs(i, [m + 1, n], V̂ , Ĉ, C) for all indices i ∈ [m + 1, n]. Define the
vector (s1, . . . , sn) = (0m, sm+1, . . . , sn).

2. For each k ∈ [m], define δx,k,i = δx if i ∈ [ℓk] and δx,k,i = 0 if i ∈
[ℓk + 1, nk]. Return 1 if

e
(
Cδyy

m∏
k=1

nk∏
i=1

g
ξk·δx,k,i·2i−1+(δeq·tjk+i−δy)·yjk+i

n+1−(jk+i)
, Ĉ
)

· e
( m∏
k=1

gξkn+1−k

n∏
i=m+1

g−δv·sin+1−i, V̂
)−1

· e
(
Cy,

m∏
k=1

nk∏
i=1

ĝ
δeq·tjk+i

jk+i

)−1

= e(π, ĝ)

(44)

and 0 otherwise.

The correctness of the scheme can be proven in the same way as in the base
scheme of Section 4 and details are given in Supplementary Material C.2.

Efficiency. The proof size remains the same as in Section 4. If m denotes the
number of simultaneously performed range proofs, the computational cost of the
prover is now dominated by 3n exponentiations in G and m+1 exponentiations
in Ĝ since each subset product

∏nk

j=1 ĝ
xk,j

jk+j
is cheaper to compute than an expo-

nentiation in Ĝ (recall that nk < log p).
The verifier’s workload amounts to 2n+ 1 exponentiations in G, n exponen-

tiations in Ĝ and 4 pairings.

Extension to Prove Small Euclidean Norms. As explained in Supplemen-
tary Material E, the construction can be used to prove that V̂ = ĝr ·

∏m
k=1 ĝ

xi

k

commits to a vector of small Euclidean norm. In short, this can be achieved
by: (i) Generating an auxiliary commitment to x̄ = (x21, . . . , x

2
m) and proving

that it was done correctly; (ii) Proving that ⟨x̄, (1, 1, . . . , 1)⟩ mod p is sufficiently
small using its binary decomposition; (iii) Proving that ∥x∥2∞ ≤ p/m, so that∑m
i=1 x

2
i mod p is also

∑m
i=1 x

2
i over Z. To make sure that step (iii) does not

affect the zero-knowledge property, we restrict the scheme to prove Euclidean
norm bounds smaller than

√
p/m. Without optimizations, the proof length only

increases to 9 group elements.
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C.2 Correctness of Aggregated Range Proofs

The verification equation (44) is obtained by raising equalities (39), (40), (41)
and (42) to the powers δx, δeq, δy and δv, and multiplying them together. We now
consider the generation of proofs for individual verification equations (39)-(42).

The prover can compute πx ∈ G satisfying equation (39) because, for each
k ∈ [m], we have

e
( ℓk∏
i=1

g2
i−1

n+1−(jk+i)
, Ĉ
)
=

ℓk∏
i=1

e
(
gn+1−(jk+i), Ĉ

)2i−1

=

ℓk∏
i=1

e
(
gn+1−(jk+i), ĝ

γ ·
m∏
κ=1

ℓκ∏
j=1

ĝ
xκ,j

jκ+j

)2i−1

=

ℓk∏
i=1

e
(
gγ ·

m∏
κ=1

ℓκ∏
j=1

g
xjκ+j

jκ+j
, ĝn+1−(jk+i)

)2i−1

,

=

ℓk∏
i=1

e
(
gγn+1−(jk+i)

·
m∏
κ=1

ℓk∏
j=1

g
xκ,j

n+1+(jκ+j)−(jk+i)
, ĝ
)2i−1

= e(g1, ĝn)
∑ℓk

i=1 xk,i·2i−1

·e
( ℓk∏
i=1

(
gγn+1−(jk+i)

·
m∏
κ=1

∏
j∈[ℓκ]

(κ,j) ̸=(k,i)

g
xκ,j

n+1−(jk+i)+(jκ+j)

)2i−1

, ĝ
)

and thus

m∏
k=1

e
( ℓk∏
i=1

g2
i−1

n+1−(jk+i)
, Ĉ
)ξk = e(g1, ĝn)

∑m
k=1 ξk·(

∑ℓk
i=1 xk,i·2i−1)

·e
( m∏
k=1

( ℓk∏
i=1

(
gγn+1−(jk+i)

·
m∏
κ=1

∏
j∈[ℓκ]

(κ,j)̸=(k,i)

g
xκ,j

n+1−(jk+i)+(jκ+j)

)2i−1)ξk
, ĝ
)
.

(45)

We also have

e(

m∏
k=1

gξkn+1−k, V̂ ) = e(g1, ĝn)
ξk·xk · e

( m∏
k=1

(
grn+1−k ·

m∏
i=1,i̸=k

gxi

n+1+i−k
)ξk , ĝ),

so that dividing the latter from (45) yields (39) when xk =
∑n
i=1 xk,i · 2i−1 for

each k ∈ [m] and

πx =

∏m
k=1

(∏ℓk
i=1

(
gγn+1−(jk+i)

·
∏m
κ=1

∏
j∈[ℓκ],(κ,j)̸=(k,i) g

xκ,j

n+1−(jk+i)+(jκ+j)

)2i−1)ξk
∏m
k=1

(
grn+1−k ·

∏m
i=1,i̸=k g

xi

n+1+i−k
)ξk .

(46)
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The prover can also compute πeq satisfying the second verification equation
(40) by observing that, for each k ∈ [m], we have

e
( nk∏
i=1

g
tjk+i·yjk+i

n+1−(jk+i)
, Ĉ
)
=

nk∏
i=1

e(gn+1−(jk+i), Ĉ)
tjk+i·yjk+i (47)

=

nk∏
i=1

e
(
gn+1−(jk+i), ĝ

γ
m∏
κ=1

nκ∏
j=1

ĝ
xκ,j

jκ+j

)tjk+i·yjk+i

=

nk∏
i=1

(
e(g1, ĝn)

xk,i · e
(
g, ĝγn+1−(jk+i)

·
m∏
κ=1

∏
j∈[nκ]

(κ,j)̸=(k,i)

ĝ
xκ,j

n+1+(jκ+j)−(jk+i)

))tjk+i·yjk+i

=

nk∏
i=1

(
e(g1, ĝn)

xk,i · e
(
gγn+1−(jk+i)

·
m∏
κ=1

∏
j∈[nκ]

(κ,j)̸=(k,i)

g
xκ,j

n+1+(jκ+j)−(jk+i)
, ĝ
))tjk+i·yjk+i

= e(g1, ĝn)
∑ℓk

i=1 yjk+i·tjk+i·xk,i

· e
( nk∏
i=1

(
gγn+1−(jk+i)

·
m∏
κ=1

∏
j∈[nκ]

(κ,j)̸=(k,i)

g
xκ,j

n+1+(jκ+j)−(jk+i)

)tjk+i·yjk+i

, ĝ
)
.

We also have

e
(
Cy,

m∏
k=1

nk∏
i=1

ĝ
tjk+i

jk+i

)
=

m∏
k=1

nk∏
i=1

e(Cy, ĝjk+i)
tjk+i (48)

=

m∏
k=1

nk∏
i=1

e
(
gγy ·

m∏
κ=1

nκ∏
j=1

g
yjκ+j ·xκ,j

n+1−(jκ+j)
, ĝjk+i

)tjk+i

=

m∏
k=1

nk∏
i=1

e
(
g
γy
jk+i
·
m∏
κ=1

nκ∏
j=1

g
yjκ+j ·xκ,j

n+1−(jκ+j)+(jk+i)
, ĝ
)tjk+i

= e(g1, ĝn)
∑m

k=1

∑ℓk
i=1 yjk+i·tjk+i·xk,i

· e
( m∏
k=1

nk∏
i=1

(
g
γy
jk+i
·
m∏
κ=1

∏
j∈[nκ]

(κ,j)̸=(k,i)

g
yjκ+j ·xκ,j

n+1−(jκ+j)+(jk+i)

)tjk+i
, ĝ
)
.

By taking the product of (47) for all k ∈ [m] and dividing (48) out of the result,
we obtain (40) when πeq is computed as

πeq =

∏m
k=1

∏nk

i=1

(
gγn+1−(jk+i)

·
∏m
κ=1

∏
j∈[nκ],(κ,j)̸=(k,i) g

xκ,j

n+1+(jκ+j)−(jk+i)

)tjk+i·yjk+i

∏m
k=1

∏nk

i=1

(
g
γy
jk+i
·
∏m
κ=1

∏
j∈[nκ],(κ,j) ̸=(k,i) g

yjκ+j ·xκ,j

n+1−(jκ+j)+(jk+i)

)tjk+i

(49)
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As for equation (41), the prover can compute

πy = Cγy ·
m∏
κ=1

nκ∏
j=1

(
g
γy
jκ+j

·
m∏
k=1

∏
i∈[nk]

(k,i)̸=(κ,j)

g
yjk+i·(xk,i−1)

n+1−(jk+i)+(jκ+j)

)xκ,j
, (50)

which satisfies (41) because we have

e(Cy ·
m∏
k=1

nk∏
i=1

g
−yjk+i

n+1−(jk+i)
, Ĉ) = e

(
gγy ·

m∏
k=1

nk∏
i=1

g
yjk+i·(xk,i−1)

n+1−(jk+i)
, ĝγ ·

m∏
κ=1

nκ∏
j=1

ĝ
xκ,j

jκ+j

)
= e(Cy, ĝ)

γ ·
m∏
κ=1

nκ∏
j=1

e
((
g
γy
jκ+j

·
m∏
k=1

nk∏
i=1

g
yjk+i·(xk,i−1)

n+1−(jk+i)+(jκ+j)

)xκ,j
, ĝ
)

= e(g1, ĝn)
∑m

k=1

∑nk
i=1 yjk+i·xk,i·(xk,i−1) · e(Cγy , ĝ)

·
m∏
κ=1

nκ∏
j=1

e
((
g
γy
jκ+j

·
m∏
k=1

∏
i∈[nk]

(k,i) ̸=(κ,j)

g
yjk+i·(xk,i−1)

n+1−(jk+i)+(jκ+j)

)xκ,j
, ĝ
)

= e
(
Cγy ·

m∏
κ=1

nκ∏
j=1

(
g
γy
jκ+j

·
m∏
k=1

∏
i∈[nk]

(k,i) ̸=(κ,j)

g
yjk+i·(xk,i−1)

n+1−(jk+i)+(jκ+j)

)xκ,j
, ĝ
)
,

where the last equality holds since xk,i · (xk,i− 1) = 0 for all indices k ∈ [m] and
i ∈ [nk].

Equation (42) is satisfied by πv =
∏n
i=m+1

(
grn+1−i ·

∏m
k=1 g

xk

n+2−i+k
)si

since

e
( n∏
i=m+1

gsin+1−i, V̂
)
=

n∏
i=m+1

e
(
gn+1−i, ĝ

r ·
m∏
k=1

ĝxk

k

)si
=

n∏
i=m+1

e
(
gr ·

m∏
k=1

gxk

k , ĝn+1−i

)si
=

n∏
i=m+1

e
(
grn+1−i ·

m∏
k=1

gxk

n+1−i+k, ĝ
)si

= e(πv, ĝ).

C.3 Security

Theorem 5. The construction provides zero-knowledge in the ROM.

Proof. The proof is identical to that of Theorem 1 and omitted. ⊓⊔

Theorem 6. Under the (2n, n)-DLOG assumption, the scheme is simulation-
extractable in the algebraic group model and in the random oracle model.

Proof. The proof is similar to that of Theorem 2 and we only detail the changes
in the interaction between the reduction/extractor B and the adversary A.
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Queries: At any time, A can choose a commitment com = V̂ and ask for a sim-
ulated proof that V̂ commits to an integer vector (x1, . . . , xm) ∈ Zm such that
xk ∈ [0, 2ℓk−1] for some integers {ℓk}k∈[m] of its choice such that ℓk ≤ nk. Since
A is algebraic, it must provide a representation of V̂ with respect to the genera-
tors {ĝi}i∈[0,n] and the commitments Ĉ contained in previous simulated proofs.

Since the simulator B is itself algebraic, for any V̂ chosen by A, B can always find
a representation {vi}ni=0 such that V̂ = ĝv0 ·

∏n
i=1 ĝ

vi
i . We assume w.l.o.g. that ei-

ther: (i) There exists k ∈ [m] such that vk ̸∈ [0, 2ℓk−1]; or (ii) (vm+1, . . . , vn) ̸= 0.
Otherwise, B can faithfully generate a proof using (v0, v1, . . . , vm) as witnesses.
Then, B proceeds as follows to simulate a proof without using gn+1:

1. Choose random vectors ξ = (ξ1, . . . , ξm) R← Zmp , δ = (δx, δeq, δy, δv)
R← Z4

p,

y = (y1, . . . , yn)
R← Znp , t = (t1, . . . , tn)

R← Znp .

2. Let fn+1 =
∑n
i=m+1 vi · si, for randomly chosen si

R← Zp for all indices
i ∈ [m+ 1, n]. Let an arbitrary k ∈ [m] such that

ajk+1 ≜ vk +
1

ξk
·
(
− δv · fn+1

δx
+

∑
κ∈[m]\{k}

ξκvκ

)
̸∈ {0, 1}

Such a k ∈ [m] must exist w.h.p. since we assumed that (vm+1, . . . , vn) ̸= 0
or there exists k ∈ [m] such that vk ̸∈ [0, 2ℓk − 1]. Then, set

ai = 0 ∀i ∈ [n] \ {jk + 1}
zn−jk = yjk+1

Then, find arbitrary scalars {zj}j∈[n]\{n−jk} such that

nk∑
i=2

tjk+i · zn+1−(jk+i) +

m∑
κ=1
κ̸=k

nκ∑
i=1

tjκ+i · zn+1−(jκ+i)

= tjk+1 · (ajk+1 · yjk+1 − yjk+1).

3. Choose random a0, z0
R← Zp and compute simulated commitments

Ĉ = ĝa0 ·
n∏
i=1

ĝaii = ĝa0 · ĝajk+1

jk+1 , Cy = gz0 ·
n∏
i=1

gzii .

4. If one of the hashes Hξ(V̂ , Ĉ, Cy), Hagg(V̂ , Ĉ, Cy), H(V̂ , Ĉ), Ht(y, V̂ , Ĉ, Cy)

or {si = Hs(i, [m + 1, n], V̂ , Ĉ, Cy)}ni=m+1 was already defined, abort. Oth-

erwise, set δ = Hagg(V̂ , Ĉ, Cy),

ξ = Hξ(V̂ , Ĉ, Cy), y = H(V̂ , Ĉ), t = Ht(y, V̂ , Ĉ, Cy),

and si = Hs(i, [m+ 1, n], V̂ , Ĉ, Cy) for each i ∈ [m+ 1, n].
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5. Define the polynomials

Qx[X] =
( n∑
i=0

ai ·Xi
)
·
( m∑
k=1

ℓk∑
i=1

2i−1 · ξk ·Xn+1−(jk+i)
)

−
( n∑
i=0

vi ·Xi
)
·
( m∑
k=1

ξk ·Xn+1−k
)
=

2n∑
i=0

qi ·Xi,

Qy[X] =
( n∑
i=0

zi ·Xi −
m∑
κ=1

nκ∑
i=1

yjκ+i ·Xn+1−(jκ+i)
)
·
( n∑
i=0

ai ·Xi
)

=
(
z0 +

m∑
κ=1

nκ∑
i=1

(
zn+1−(jκ+i) − yjκ+i

)
·Xn+1−(jκ+i)

)
·
( n∑
i=0

ai ·Xi
)

=
2n∑
i=0

σi ·Xi

Qeq[X] =
( n∑
i=0

ai ·Xi
)
·
( m∑
κ=1

nκ∑
i=1

tjκ+i · yjκ+i ·Xn+1−(jκ+i)
)

−
(
z0 +

m∑
κ=1

nκ∑
i=1

zn+1−(jκ+i) ·X
n+1−(jκ+i)

)
·
( m∑
κ=1

nκ∑
i=1

tjκ+i ·Xjκ+i
)

=

2n∑
j=0

ej ·Xj ,

Qv[X] =
( n∑
i=0

vi ·Xi
)
·
( n∑
i=m+1

si ·Xn+1−i
)
=

2n∑
j=0

fj ·Xj .

Their degree-(n+ 1) coefficients are fn+1 =
∑n
i=m+1 vi · si and

qn+1 =

m∑
κ=1

ξκ ·

(
−vκ +

ℓκ∑
i=1

ajκ+i · 2i−1

)

= ξk · ajk+1 −
∑
κ∈[m]

ξκ · vκ = −δv · fn+1

δx
,

σn+1 =

m∑
κ=1

nκ∑
i=1

ajκ+i · (zn+1−(jκ+i) − yjκ+i) = ajk+1 · (zn−jk − yjk+1) = 0

en+1 =

m∑
κ=1

nκ∑
i=1

tjκ+i · (ajκ+i · yjκ+i − zn+1−(jκ+i))

= tjk+1 · (ajk+1 · yjk+1 − yjk+1)−
nk∑
i=2

tjk+i · zn+1−(jk+i)

−
m∑

κ=1
κ̸=k

nκ∑
i=1

tjκ+i · zn+1−(jκ+i) = 0
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due to the definition of committed a = (a1, . . . , an) and z = (z1, . . . , zn).
Observe that

δx · qn+1 + δeq · en+1 + δy · σn+1 + δv · fn+1 = 0 (51)

6. Define the polynomial

Qagg[X] = δx ·Qx[X] + δeq ·Qeq[X] + δy ·Qy[X] + δv ·Qv[X] =

2n∑
i=0

ηi ·Xi

for which ηn+1 = 0 by construction. Compute

π =

2n∏
i=1,i̸=n+1

gηii (52)

using (g, {gi}i∈[2n]\{n+1}) and return the simulated proof π = (Ĉ, Cy, π).

We remark that the simulated π from (52) satisfies the verification equation
(44) by construction. Moreover, the proof π has the same distribution as a proof
generated by the zero-knowledge simulator. Indeed, π is uniquely determined by
the commitments (Ĉ, V̂ , Cy) and the aggregation coefficients ξ, y, t, {si}ni=m+1

and δ in (44). Also, the committed vectors a, z ∈ Znp are perfectly hidden by

the randomness a0 and z0 in Ĉ and Cy, respectively.
Therefore the simulation is perfect, unless a collision occurs when random

oracles are programmed in the simulation queries. IfQS (reps.QH) is the number
of queries made by A to the simulator (resp. to random oracles), this happens
with probability ≤ (QS +QH) ·QH/p.

Output: When A terminates, it outputs a statement (V̂ , {1ℓk}mk=1), for some

integers ℓ1 ∈ [n1], . . . , ℓm ∈ [nm], together with a valid proof π =
(
Ĉ, Cy, π

)
.

Since we are in the AGM, A must provide a representation of Cy w.r.t to

(g, {gi}i∈[2n]\{n+1}) and the group elements {C(i)
y , π(i)}i∈[QS ] contained in re-

sponses {π(i)}i∈[QS ] to simulation queries. Likewise, it must provide a represen-

tation of Ĉ w.r.t (ĝ, {ĝi}i∈[n]) and the commitments {Ĉ(i)}i∈[QS ] contained in

simulated proofs {π(i)}i∈[QS ]. Also, for each i ∈ [QS ], B knows a representa-

tion of Ĉ(i) w.r.t. (ĝ, {ĝi}i∈[n]) and a representation of Cy w.r.t. (g, {gi}ni=1).

It also knows a representation of each simulated π(i) w.r.t (g, {gi}i∈[2n]\{n+1}).
From A’s output and the randomness of the simulation, B can infer scalars
{(θi, zi) ∈ Z2

p}i∈[0,2n]\{n+1}, {(ai, vi) ∈ Z2
p}i∈[0,n] such that

Ĉ =

n∏
i=0

ĝaii , Cy =

2n∏
i=0,i̸=n+1

gzii , V̂ =

n∏
i=0

ĝvii , π =

2n∏
i=0,i̸=n+1

gθii ,

where we define g0 = g and ĝ0 = ĝ for convenience.
If the representation (v0, v1, . . . , vn) ∈ Z2

p of V̂ is such that vk ∈ [0, 2ℓk − 1]
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for all k ∈ [m] and vi = 0 for all i ∈ [m + 1, n], then B can simply output
(v0, v1, . . . , vm) ∈ Zm+1

p as a valid witness. We henceforth assume that either

(vm+1, . . . , vn) ̸= 0n−m or there exists k ∈ [m] such that vk ̸∈ [0, 2ℓk − 1].

Solving (2n, n)-DLOG: We first note that a non-trivial valid proof π cannot
recycle (V̂ , Ĉ, Cy) from an output of the simulation oracle (namely, we must

have (V̂ , Ĉ, Cy) ̸= (V̂ (i), Ĉ(i), Cy) for all i ∈ [QS ]) since the left-hand-side mem-

ber of (44) is uniquely determined by (V̂ (i), Ĉ(i), C
(i)
y ) and it in turn deter-

mines a unique valid π(i) ∈ G. As a consequence, Hagg(V̂ , Ĉ, Cy), Hξ(V̂ , Ĉ, Cy),

Ht(y, V̂ , Ĉ, Cy) and {Hs(i, [m + 1, n], V̂ , Ĉ, Cy)}ni=m+1 are not part of the ran-
dom oracle values that have been programmed by the simulator.

Since the left-hand-side member of (44) is obtained by raising the right-
hand-side members of (39)-(42) to the powers (δx, δeq, δy, δv) and multiplying
the results, it can be written e(g, ĝ)Pagg(α), where Pagg[X] is the polynomial

Pagg[X] = δx · Px[X] + δy · Py[X] + δeq · Peq[X] + δv · Pv[X]

obtained as a linear combination of the polynomials

Px[X] =
( n∑
i=0

ai ·Xi
)
·
( m∑
k=1

ℓk∑
i=1

2i−1 · ξk ·Xn+1−(jk+i)
)

−
( n∑
i=0

vi ·Xi
)
·
( m∑
k=1

ξk ·Xn+1−k
)
=

2n∑
i=1

ωi ·Xi,

Py[X] =
( 2n∑
i=0,i̸=n+1

zi ·Xi −
m∑
κ=1

nκ∑
i=1

yjκ+i ·Xn+1−(jκ+i)
)
·
( n∑
i=0

ai ·Xi
)

=
(
z0 +

m∑
κ=1

nκ∑
i=1

(
zn+1−(jκ+i) − yjκ+i

)
·Xn+1−(jκ+i) +

2n∑
i=n+2

zi ·Xi
)

·
( n∑
i=0

ai ·Xi
)
=

3n∑
i=0

γi ·Xi

Peq[X] =
( n∑
i=0

ai ·Xi
)
·
( m∑
κ=1

nκ∑
i=1

tjκ+i · yjκ+i ·Xn+1−(jκ+i)
)

−
( 2n∑
i=0,i̸=n+1

zi ·Xi
)
·
( m∑
κ=1

nκ∑
i=1

tjκ+i ·Xjκ+i
)
=

3n∑
j=0

βj ·Xj ,

Pv[X] =
( n∑
i=0

vi ·Xi
)
·
( n∑
i=m+1

si ·Xn+1−i
)
=

2n∑
j=0

µj ·Xj

for which the left-hand-side members of (39)-(42) can be written e(g, ĝ)Px(α),
e(g, ĝ)Peq(α), e(g, ĝ)Py(α) and e(g, ĝ)Pv(α), respectively.
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If we write Pagg[X] =
∑3n
i=0 νi ·Xi, the coefficient νn+1 of its degree-(n+ 1)

term can be written

νn+1 = δx·
m∑
κ=1

ξκ ·

(
ℓκ∑
i=1

ajκ+i · 2i−1 − vκ

)
︸ ︷︷ ︸

≜ ωn+1

+ δy·
m∑
κ=1

nκ∑
i=1

(
zn+1−(jκ+i) − yjκ+i

)
· ajκ+i︸ ︷︷ ︸

≜ γn+1

+ δeq ·
m∑
κ=1

nκ∑
i=1

tjκ+i · (ajκ+i · yjκ+i − zn+1−(jκ+i))︸ ︷︷ ︸
≜ βn+1

+ δv ·
n∑

i=m+1

vi · si︸ ︷︷ ︸
≜ µn+1

,

where (ωn+1, γn+1, βn+1, µn+1) are the coefficients of the degree-(n + 1) terms
of (Px[X], Py[X], Peq[X], Pv[X]).

We now argue that, if there exists k ∈ [m] such that vk ̸∈ [0, 2ℓk − 1] or
if (vm+1, . . . , vn) ̸= 0n−m, then we can only have νn+1 = 0 with negligible
probability. This follows from the following arguments:

- The probability to have ρ ≜ (ωn+1, γn+1, βn+1, µn+1, ζn+1) = 0 is negligi-
ble. Indeed, when (vm+1, . . . , vn) ̸= 0n−m, we have µn+1 = 0, with proba-
bility 1/p over the choice of {si = Hs(i, [m + 1, n], V̂ , Ĉ, Cy)}ni=m+1. When
zn+1−(jκ+i) ̸= ajκ+i · yjκ+i for some κ ∈ [m] and i ∈ [nκ], we have βn+1 = 0

with probability 1/p since t = Ht(y, V̂ , Ĉ, Cy) is derived after the choice of
y, {ai}ni=0 and {zi}i∈[0,2n]\{n+1}. Then, if zn+1−(jκ+i) = ajκ+i · yjκ+i for all
κ ∈ [m], i ∈ [nκ], we have γn+1 =

∑m
κ=1

∑nκ

i=1 yjκ+i ·(ajκ+i−1) ·ajκ+i, which
cancels with probability 1/p if there exists κ ∈ [m] and i ∈ [ℓκ] such that
ajκ+i ̸∈ {0, 1}. This can be seen by distinguishing two cases:

a. If y = H(V̂ , Ĉ) was programmed when answering a simulation query,
we can only have γn+1 = 0 with probability 1/p since the simulator
programmed (a1, . . . , an) to have

γn+1 = ajk+1 · (zn−jk − yjk+1) = yjk+1 · ajk+1 · (ajk+1 − 1)

for some index jk ∈ [n] such that ajk+1 ̸∈ {0, 1} and yjk+1 ∈R Zp.
This captures the case of A attempting to re-use (V̂ , Ĉ) = (V̂ (i), Ĉ(i))

contained in an output π(i) = (Ĉ(i), C
(i)
y , π(i)) of the simulator, with a

different Cy ̸= C
(i)
y .

b. If H(V̂ , Ĉ) was not programmed by the simulator, then y = H(V̂ , Ĉ)
was defined after B obtained the algebraic representation {ai}ni=0 of Ĉ.
Over the choice of y, we have

∑m
κ=1

∑nκ

i=1 yjκ+i · (ajκ+i − 1) · ajκ+i = 0
with probability 1/p.

If there exists k ∈ [m] such that vk ̸=
∑ℓk
i=1 ajk+i · 2i−1, the probability to

have ωn+1 = 0 is only 1/p since ξ = Hξ(V̂ , Ĉ, Cy) are chosen uniformly
after {vk}mk=1 and {ai}ni=0. If none of the above events occurs, then we have
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vk =
∑ℓk
i=1 ajk+i · 2i−1 for each k ∈ [m] and ajk+i ∈ {0, 1} for each i ∈ [ℓk].

This contradicts the hypothesis that vk ̸∈ [0, 2ℓk − 1] for some k ∈ [m].

- If ρ ̸= 0, then we have νn+1 ̸= 0 with probability 1−1/p since the aggregation
coefficients δ ≜ (δx, δeq, δy, δv) = Hagg(V̂ , Ĉ, Cy) are derived after the choice
of {(ai, vi)}ni=0, and {zi}i∈[0,2n]\{n+1}, which determine the coordinates of
ρ. Hence, a random independent δ ∈ Z5

p can only satisfy ⟨δ,ρ⟩ = 0 with
probability 1/p.

If νn+1 ̸= 0, then B can compute α ∈ Zp by factoring a non-zero polynomial
as in the proof of Theorem 2. ⊓⊔

C.4 Range Proofs for Non-Power-of-Two Ranges

In order to prove membership of a range [0, B] where B + 1 is not a power of
2, a common approach to to use an additively homomorphic commitment and
consider the integer ℓ ∈ N such that 2ℓ−1 < B < 2ℓ. Then, we generate two
range proofs showing that x ∈ [0, 2ℓ − 1] and x+ (2ℓ − 1−B) ∈ [0, 2ℓ − 1].

To do this without increasing the proof size, we can commit to vectors of
dimension n = 2ℓ̄ (where ℓ̄ is an upper bound on ℓ) containing a concate-
nation (x | x′) of the binary decompositions x = (x1, . . . , xℓ, 0, . . . , 0) and
x′ = (x′1, . . . , x

′
ℓ, 0, . . . , 0) of x and x + (2ℓ − 1 − B), respectively. Then, the

prover can compute πx, π
′
x ∈ G

e(
∏ℓ̄
i=1 g

2i−1

n+1−i, Ĉ)

e(gn, V̂ )
= e(πx, ĝ)

e(
∏n
i=ℓ̄+1 g

2i−ℓ̄−1

n+1−i , Ĉ)

e(gn, V̂ · ĝ2ℓ−1−B)
= e(π′

x, ĝ),

where V̂ = ĝr ·ĝx1 . In the above equalities, πx and π′
x show that x =

∑ℓ̄
i=1 xi ·2i−1

and x + (2ℓ − 1 − B) =
∑ℓ̄
i=1 x

′
i · 2i−1. The rest of the proof follows the basic

construction of Section 4. The two proofs πx and π′
x can be aggregated (using

additional randomization components derived from a random oracle) with other
proof components to obtain a proof of the same form as in Section 4.

D Proving that a Committed Vector is Ternary

We now describe arguments showing that a commitment Ĉ = ĝγ ·
∏ℓ
j=1 ĝ

xj

j com-

mits to a ternary vector x = (x1, . . . , xℓ) ∈ {−1, 0, 1}ℓ.
A natural approach is to write x as the difference x = x0 − x1 between two

binary vectors x0,x1 ∈ {0, 1}ℓ. The prover can generate two vector commit-
ments Ĉ0, Ĉ1 to x0 and x1, respectively, before proving that: (i) Ĉ0, Ĉ1 are both
commitments to bitstrings; (ii) Ĉ0 · Ĉ−1

1 and Ĉ commit to the same vector. Even

if we aggregate proofs, each proof π still requires 2 elements of Ĝ and 3 elements
of G since Ĉ0 and Ĉ1 both require an auxiliary commitment in G.

At the expense of doubling the CRS size, we can reduce the size of proofs to

54



one element of Ĝ and 2 elements of G. To do this, we can generate a commit-
ment to a binary vector x̄ = (x0 | x1) ∈ {0, 1}n, where n = 2ℓ. We can then
prove that: (i) x̄ = (x̄1, . . . , x̄n) is binary; (ii) For each i ∈ [ℓ], x̄i − x̄i+ℓ = xi.
In order to ensure knowledge-soundness (and even simulation-extractability), we
also need a proof component π0 showing that Ĉ commits to a vector containing
zeroes in its last ℓ positions. We can prove (i) as in previous constructions. As
for (ii), we can use the properties of the underlying commitment. Namely, if
Ĉx = ĝγx ·

∏n
j=1 ĝ

x̄j

j is a commitment to x̄ = (x1 | x2), the prover can compute
π̄θ,i,0, π̄θ,i,1 ∈ G such that

e(gn+1−i, Ĉx) = e(g1, ĝn)
x̄i · e(π̄θ,i,0, ĝ) (53)

and

e(gn+1−i−ℓ, Ĉx) = e(g1, ĝn)
x̄i+ℓ · e(π̄θ,i,1, ĝ) (54)

for each i ∈ [ℓ]. In the initial commitment Ĉ = ĝγ ·
∏ℓ
j=1 ĝ

xj

j to the ternary
x = (x1, . . . , xℓ), we also have

e(gn+1−i, Ĉ) = e(g1, ĝn)
xi · e(π̃θ,i, ĝ) ∀i ∈ [ℓ] (55)

for some π̃θ,i ∈ G computable by the prover. By combining (53)-(55), we have

e
(
gn+1−i · g−1

n+1−i−ℓ, Ĉx
)

e
(
gn+1−i, Ĉ

) = e
(
π̄θ,i,0

/
(π̄θ,i,1 · π̃θ,i)︸ ︷︷ ︸
≜ πθ,i

, ĝ
)
, (56)

where πθ,i is computable by the prover and argues that xi = x̄i − x̄i+ℓ. We can
then aggregate proofs for all positions i ∈ [ℓ] at once by raising (56) to a random
power θi ∈ Zp and taking the product over all indices i ∈ [ℓ]. Specifically, after

having computed Ĉx, the prover computes (θ1, . . . , θℓ) = Hθ(Ĉ, Ĉx) ∈ Zℓp, which
are used as aggregation coefficients to compute a proof πθ ∈ G such that

e
(∏ℓ

i=1 g
θi
n+1−i · g

−θi
n+1−i−ℓ, Ĉx

)
e
(∏ℓ

i=1 g
θi
n+1−i, Ĉ

) = e(πθ, ĝ), (57)

which shows that x = x0 − x1.
In the final proof π = (Ĉx, Cy, π) ∈ Ĝ × G2, the last component π is then

obtained by aggregating πθ with the proof that x̄ = (x1 | x2) is binary.

E Proving Small Euclidean Norms

In this section, we extend the construction of Section C to prove that a com-
mitment V̂ = ĝr ·

∏m
k=1 ĝ

xk

k is a commitment to some x = (x1, . . . , xm) ∈ Zm
such that ∥x∥ ≤ B. In order to preserve the zero-knowledge property, we need
to choose the group order p so that

√
p/m > B for any proven norm bound B.
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When the CRS is generated, we thus assume a maximal value B̄ for the norm
bounds to be proven and choose p so that B∞ ≜

√
p/m > B̄. For simplicity, we

assume that B2 +1 is a power of two but this restriction can be lifted using the
observations in Section C.4. In the setup phase, we also need parameters allowing
commitments to vectors of dimension n = max(m ·(1+⌈logB∞⌉), ⌈log(B̄2+1)⌉)
in order to use the scheme of Section C.1.

The prover has a commitment V̂ = ĝr̂ ·
∏m
k=1 ĝ

xk

k ∈ Ĝ to an integer vec-
tor x = (x1, . . . , xm) ∈ Zm and wishes to convince the verifier that ∥x∥ ≤ B
without revealing anything else. To this end, it chooses r R← Zp and computes
V = gr ·

∏m
k=1 g

xk

n+1−k, which commits to x̄ = (0n−m | (xm, . . . , x1)) in the first
source group G. Then, the prover generates a proof showing that V ∈ G commits
to the same vector as V̂ , but in the reversed order. This is done by computing
θ = (θ1, . . . , θm) = Hθ(V̂ , V ) ∈ Zmp using a random oracle Hθ and computing a
proof

πθ =

∏m
j=1

(
gr̂n+1−j ·

∏
k∈[m]\{j} g

xk

n+1+k−j

)θj
∏m
j=1

(
grj ·

∏
k∈[m]\{j} g

xk

n+1−k+j

)θj ,

satisfying

e
(∏m

j=1 g
θj
n+1−j , V̂

)
e
(
V,
∏m
j=1 ĝ

θj
j

) = e(πθ, ĝ). (58)

By itself, (58) only argues that the first m entries of x ∈ Znp coincide with the
last n −m entries of x̄ in the reversed order. To ensure knowledge soundness,
we also need to prove that the last n−m positions of x are zeroes, but this will
be addressed at a later step.

Next, assuming that V̂ and V were indeed computed by the prover as com-
mitments to ((x1, . . . , xm) | 0n−m) and ((∗, . . . , ∗) | (xm, . . . , x1)), respectively,
we observe that the pairing e(V, V̂ ) computes a product of polynomials in the
exponent, where the coefficient of αn+1 is ∥x∥2 = ⟨x,x⟩. This allows the prover
the compute πB =

∏m
k=1(g

rv
k ·

∏m
κ=1,κ̸=k g

xκ

n+1−κ+k)
xk such that

e(V, V̂ ) = e(g1, ĝn)
⟨x,x⟩ · e(πB , ĝ). (59)

However, πB is not disclosed. Instead, the prover computes the ℓB-bit represen-
tation of ∥x∥2 =

∑m
k=1 x

2
k (where ℓB = log(B2 + 1)) and commits to the vector

w = (w1, . . . , wℓB , 0, . . . , 0) ∈ {0, 1}n by choosing γ R← Zp, computing

Ĉw = ĝγ ·
ℓB∏
j=1

ĝ
wj

j (60)

and proving that the committed w is a binary vector. This is done by generating
a proof πw = (Cy,w, πw) ∈ G2 as in Section 3. Now, we observe that the prover

can compute π′
B =

∏ℓB
i=1

(
gγn+1−i ·

∏ℓB
j=1,j ̸=i g

wj

n+1−i+j
)2i−1

such that

e
( ℓB∏
i=1

g2
i−1

n+1−i, Ĉw
)
= e(g1, ĝn)

⟨x,x⟩ · e(π′
B , ĝ). (61)
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By dividing (61) from (59), we see that the prover is able to compute a short
π̄B = πB/π

′
B ∈ G such that

e(V, V̂ )

e
(∏ℓB

i=1 g
2i−1

n+1−i, Ĉw
) = e(π̄B , ĝ). (62)

Together with the proof πθ satisfying (58) and πw, π̄B shows that V̂ commits to
a vector ((x1, . . . , xm) | 0n−m) ∈ Znp (we still assume that its last n−m positions

are proven to be 0) such that
∑m
k=1 x

2
k mod p is at most 2ℓB − 1.

However, we also need to prove that
∑m
k=1 x

2
k mod p is actually

∑m
k=1 x

2
k

over Z, in which case we have ∥x∥ ≤ B. To this end, the prover uses the
construction of Section C.1 to prove that ∥x∥∞ ≤

√
p/m, which ensures that∑m

k=1 x
2
k does not wrap around modulo p. We note that this additional proof

component does not affect the zero-knowledge property because the proven
statement ∥x∥ ≤ B already implies ∥x∥∞ ≤

√
p/m (recall that we assumed

B ≤
√
p/m and we always have ∥x∥∞ ≤ ∥x∥). The prover thus generates

a proof π∞ = (Ĉ, Cy, π∞) ∈ Ĝ × G2 that ∥x∥∞ ≤ B∞ by proving that

0 ≤ xk +
√
p/m < 2

√
p/m for each k ∈ [m] using the construction of Sec-

tion C, which also demonstrates that V̂ commits to a vector containing zeroes
in its last n−m entries.

The entire proof π =
(
V,π∞, Ĉw,πw, πθ, π̄B

)
is eventually comprised of

π∞ = (Ĉ, Cy, π∞) ∈ Ĝ × G2, the commitment Ĉw and its proof of binarity
πw = (Cy,w, πw) ∈ G2, the commitment V and the proof πθ satisfying (58), and
the proof π̄B satisfying (62).

From a security standpoint, the knowledge-soundness property follows from
that of underlying proof components. Simulation-extractability is also preserved
as long as these components are bound together in a non-malleable way. To
do this, one option is to use a short one-time signature (such as the one from
[66, Section 5.4]) whose verification key is included in all random oracle inputs.
However, more efficient solutions are possible by suitably combining the various
sub-proofs together and including previously computed commitments in each
random oracle input.

In terms of efficiency, it is also possible to exploit the linearity of verification
equations and compress (π∞, πθ, πw, π̄B) ∈ G4 into a single group element π =
πδ∞∞ · πδθθ · πδww · π̄

δB
B using aggregation coefficients (δ∞, δθ, δw, δB) derived from

a random oracle. This shrinks the proof to 2 elements of Ĝ and 4 elements of G
while verification boils down to a product of 8 pairings.

F Proving Small Hamming Weights

In this section, we show that our argument of Section 3 can be extended to prove
that committed vectors have small Hamming weights.

Compact proofs of small Hamming weights were previously considered by
Damg̊ard et al. [39] in the context of perfectly binding commitments. To our
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knowledge, no efficient solution to this problem has been reported in the case
of perfectly hiding commitments if we aim at constant-size proofs. The only
solution we are aware of is to rely on SNARKs for general NP relations via an
expensive Karp reduction.

F.1 Proving Exact Hamming Weights for Binary Vectors

For a commitment Ĉ = ĝγ ·
∏n
j=1 ĝ

xj

j to a binary x ∈ {0, 1}n, we can also
prove that x has a fixed Hamming weight. This is useful in the context of FHE,
where secret keys are sometimes chosen with a special structure for efficiency
reasons. To prove that a committed x is a binary vector of Hamming weight k,
we can prove that: (i) x is binary; (ii) Its inner product with the all-one vector
(1, 1, . . . , 1) is exactly k. Our technique from Section 3 allows handling (i). In
order to prove (ii), the prover can generate a short πk ∈ G such that

e(

n∏
i=1

gn+1−i, Ĉ) = e(g1, ĝn)
k · e(πk, ĝ), (63)

which is possible as in (1). Again, we can aggregate πk with other proof compo-

nents to obtain a proof comprised of one element of Ĝ and two elements of G.
If we combine the above idea with the range proof construction, it is also

possible to prove that the Hamming weight HW (x) of the committed x is such
that HW (x) ≤ B, for some bound B, without revealing the exact weight. In Ap-
pendix F.3, we provide a more efficient way to prove the inequality HW (x) ≤ B
for arbitrary (i.e., not necessarily binary) vectors.

F.2 Proving Exact Hamming Weights for Ternary Vectors

If we want to prove the exact Hamming weight a committed x ∈ {−1, 0, 1}ℓ,
we can first generate a commitment to x̄ = x ◦ x, which is the Hadamard
product of x with itself. We can then prove that: (i) x̄ is indeed the product
x ◦ x = (x21, . . . , x

2
n); (ii) x̄ is binary and has Hamming weight B.

In order to prove (i), we need to compute Csq = gγsq ·
∏n
j=1 g

x2
j

j as an aux-

iliary commitment to x̄ = x ◦ x, for a random γsq
R← Zp, and prove that Csq

commits to x ◦x. This can be done by adapting the technique of Section 3. The
prover generates yet another commitment Cy = gγy ·

∏n
i=1 g

yi·xi

n+1−i and proves
that it commits to (yn · xn, . . . , y1 · x1) by proceeding exactly as in Section 3.
Specifically, by computing (y1, . . . , yn) = H(Ĉ, Csq) and adapting (7), the prover
can generate a short πy ∈ G such that

e
(
Cy, Ĉ

)
= e(πy, ĝ) · e(g1, ĝn)

∑n
i=1 yi·x

2
i (64)

Since the prover can also compute a short π′
y ∈ G such that Csq satisfies

e
(
Csq,

n∏
i=1

gyin+1−i
)
= e(π′

y, ĝ) · e(g1, ĝn)
∑n

i=1 yi·x
2
i , (65)
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it can compute πsq = πy/π
′
y ∈ G such that

e
(
Cy, Ĉ

)
e
(
Csq,

∏n
i=1 g

yi
n+1−i

) = e(πsq, ĝ), (66)

which follows by dividing (65) from (64). From Ĉ ∈ Ĝ, Cy ∈ G, Csq ∈ G, πsq
and πeq (which shows that Cy commits to (yn · xn, . . . , y1 · x1)), the verifier is
convinced that Csq is a commitment to x ◦ x.

We note that proving that x ◦x is binary provides an alternative method of
proving that x is ternary, but it is less efficient than the argument of Section D.

F.3 Proving Bounded Hamming Weights for Arbitrary Vectors

We now consider the problem of proving small Hamming weights for an arbitrary
vector x = (x1, . . . , xn) ∈ Znq committed as Ĉ = ĝγ ·

∏n
j=1 ĝ

xj

j . Using the additive
homomorphic property of the commitment scheme, this also allows proving that
two committed vectors are close in terms of Hamming distance.

In order to prove that x has at most B non-zero positions, we first generate
a commitment Cw to a random vector w = (w1, . . . , wn) ∈ {0, 1}n of Hamming
weight HW (w) = B for which wi = 1 for all i ∈ [n] such that xi ̸= 0. We can
then prove that: (i) w is binary and has Hamming weight B; (ii) For each i ∈ [n],
wi = 1 whenever xi ̸= 0, which implies HW (x) ≤ HW (w).

We can prove (i) as explained in Section F.1. In order to prove (ii), we will
prove that

∑n
i=1 yi · (1−wi) ·xi = 0 for a random vector y = (y1, . . . , yn), which

ensures that ∀i ∈ [n] : (xi ̸= 0) ⇒ (wi = 1) with probability 1 − 1/p. Indeed, if
there exists i ∈ [n] such that xi ̸= 0 and wi = 0, we have

∑n
i=1 yi ·(1−wi) ·xi = 0

with probability 1/p since y is computed after w and x.
In more details, the prover computes a commitment Ĉw = ĝγw ·

∏n
j=1 ĝ

wi
j to

w ∈ {0, 1}n, for some random γw
R← Zp, and proves that Ĉw is a commitment to

a binary vector using a short proof πw = (Cy,w, πw) ∈ G2. Then, the prover gen-
erates another commitment Cy = gγy ·

∏n
i=1 g

yi·wi

n+1−i and proves that it commits

to (yn · wn, . . . , y1 · w1), where (y1, . . . , yn) = H(Ĉ, Ĉw), by proceeding exactly
as in Section 3. Next, the prover can generate a short πy ∈ G such that

e
( n∏
i=1

gyin+1−i · C
−1
y , Ĉ

)
= e(πy, ĝ) · e(g1, ĝn)

∑n
i=1 yi·(1−wi)·xi = e(πy, ĝ), (67)

which is possible since
∏n
i=1 g

yi
n+1−i ·C−1

y = gγy ·
∏n
i=1 g

yi·(1−wi)
n+1−i , so that the sum∑n

i=1 yi · (1 − wi) · xi is the coefficient of αn+1 when we see the left-hand-side
member of (67) as a product of polynomials in the exponent.

The final proof then consists of Ĉw ∈ Ĝ, Cy,w, Cy ∈ G, and a short π ∈ G
obtained by aggregating the various proof components (including πw, πy, the

proof πB that Ĉw satisfies (63), and the proof that Cy is correctly formed).
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G Deferred Material for the Argument of Section 5

G.1 Proof of Theorem 3

Proof. To simulate a proof for a statement x = (q, d,M,N, {Bi}Ni=1, {ai}Mi=1, c),
we can use the trapdoor α ∈ Zp of the CRS as follows. First, the simulator

samples γ, r, γy
R← Zp and computes Ĉ = ĝγ and Cy = gγy as commitments to

the all-zeroes vector. Next, it computes the polynomial

P [X] = γ · γy · δy + γ ·
n∑
i=1

(
(δeq · ti − δy) · yi + δθ · aθ[i]

)
·Xn+1−i

− γy · δeq ·
n∑
i=1

ti ·Xi − tθ · δθ ·Xn+1

for which the right-hand-side member of (33) can be written e(g, ĝ)P (α). Using
the secret exponent α ∈ Zp, the simulator can then simulate a proof by com-

puting π = gP (α). It is easy to see that the resulting tuple π = (Ĉ, Cy, π) is

distributed as a real proof since the commitments Ĉ and Cy are uniformly dis-

tributed in their group and π ∈ G is uniquely determined by (Ĉ, Cy) and the
aggregation coefficients. ⊓⊔

G.2 Proof of Theorem 4

Proof. In the AGM+ROM model, we show that, under the (2n, n)-DLOG as-
sumption, there is an extractor that can extract a witness from any adversarially-
generated proof π and statement x = (q, d,M,N, {Bi}Ni=1, {ai}Mi=1, c). Con-
cretely, we show an algorithm B that either extracts a witness or solves an (2n, n)-
DLOG instance by computing α ∈ Zp from {(g, g1, . . . , g2n), (ĝ1, . . . , ĝn)}, where
gi = g(α

i) and ĝi = ĝ(α
i) for all i.

The problem instance {(g, g1, . . . , , g2n), (ĝ1, . . . , ĝn)} is used to define pp.

Note that gn+1 = g(α
n+1) is not included in pp although it is part of B’s input.

Our reduction/extractor B interacts with A as follows.

Queries: At any time, A can provide x = (q, d,M,N, {Bi}Ni=1, {ai}Mi=1, c) and
ask for a simulated proof that c ∈ RNq is a valid ciphertext for the public key
(a1, . . . ,aM ). To generate such a proof, the reduction B defines the public-key-
dependent matrix Ã ∈ ZNd×D and the ciphertext-dependent vector ϕ(c) ∈ ZNd
as in (29). It chooses θ0

R← ZNdp and δθ
R← Zp and computes ã⊤

θ = θ⊤
0 · Ã mod p

and tθ = θ⊤
0 · ϕ(c) mod p. We note that the first component ãθ[1] ∈ Zp of

ãθ ∈ ZDp is non-zero with overwhelming probability (as we may assume that

the first column Ã[1] of Ã ∈ ZNd×D is non-zero). If θ⊤
0 · Ã[1] = θ⊤

0 · ϕ(c), B
can generate a real proof using the witness w̃ = (1, 0, . . . , 0). We thus assume
θ⊤
0 ·Ã[1] ̸= θ⊤

0 ·ϕ(c), so that B can compute a non-binary w = (w1 | 0n−1) ∈ Znp
satisfying the equation

a⊤
θ ·w = tθ mod p,
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where a⊤
θ = (ã⊤

θ | 0n−D). It commits to w by computing Ĉ = ĝγ · ĝw1
1 for a

random γ R← Zp. Next, B simulates other proof elements as follows.

1. Choose random vectors δ = (δeq, δy, δθ)
R← Z3

p, y = (y1, . . . , yn)
R← Znp ,

t = (t1, . . . , tn)
R← Znp .

2. Set zn = y1 and find an arbitrary (z1, . . . , zn−1) ∈ Zn−1
p such that

n∑
i=2

ti · zn+1−i = t1 · y1 · (w1 − 1).

3. Choose a random z0
R← Zp and compute a simulated commitment

Cy = gz0 ·
n∏
i=1

gzii .

4. If one of the random oracle values Hagg(x, Ĉ, Cy), H(x, Ĉ), Hlmap

(
x, Ĉ, Cy

)
or Ht(y,x, Ĉ, Cy) was already defined, then abort and report failure. Oth-

erwise, set y = H(x, Ĉ), t = Ht(y,x, Ĉ, Cy), δ = Hagg(x, Ĉ, Cy) and

θ̄ = Hlmap

(
x, Ĉ, Cy

)
∈ ZN̄d̄+1

p for a random vector θ̄ ∈ ZN̄d̄+1
p whose first

Nd+ 1 components are (θ0 | δθ).
5. Define the polynomials

Qy[X] =
( n∑
i=0

zi ·Xi −
n∑
i=1

yi ·Xn+1−i
)
·
(
γ + w1 ·X

)
=
(
z0 +

n∑
i=1

(
zn+1−i − yi

)
·Xn+1−i

)
·
(
γ + w1 ·X

)
=

n+1∑
i=0

σi ·Xi

Qeq[X] =
(
γ + w1 ·X

)
·
( n∑
i=1

ti · yi ·Xn+1−i
)

−
( n∑
i=0

zi ·Xi
)
·
( n∑
i=1

ti ·Xi
)
=

2n∑
j=0

ej ·Xj ,

Qθ[X] =
( D∑
k=1

aθ[k] ·Xn+1−k
)
·
(
γ + w1 ·X

)
− tθ ·Xn+1 =

n+1∑
i=0

ζi ·Xi

Their degree-(n+ 1) coefficients are

σn+1 = w1 · (zn − y1) = 0

en+1 = w1t1y1 −
n∑
i=1

ti · zn+1−i = t1 · y1 · (w1 − 1)−
n∑
i=2

ti · zn+1−i = 0

ζn+1 = aθ[1] · w1 − tθ = 0

due to the definition of committed w = (w1, . . . , wn) and z = (z1, . . . , zn).
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6. Define the polynomial

Qagg[X] = δeq ·Qeq[X] + δy ·Qy[X] + δθ ·Qθ[X] =

2n∑
i=0

ηi ·Xi

for which ηn+1 = 0 by construction. Compute

π =

2n∏
i=1,i̸=n+1

gηii (68)

using (g, {gi}i∈[2n]\{n+1}) and return the simulated proof π = (Ĉ, Cy, π).

The proof π has the same distribution as an output of the simulator in the
proof of Theorem 3. Indeed, π is uniquely determined by x, (Ĉ, Cy) and the
Zp-elements y, t, and δ in the right-hand-side member (33). Moreover, while the
committed w, z ∈ Znp are programmed in a special way, they are completely

independent of A’s view due to the randomness γ and z0 in (Ĉ, Cy).
Consequently, the simulation is perfect, unless one of the random oracles has

to be programmed on an input where it was previously defined. If QS (reps. QH)
is the number of queries made by A to the simulator (resp. to random oracles),
this happens with probability ≤ (QS +QH) ·QH/p.

Output: When A halts, it outputs x = (q, d,M,N, {Bi}Ni=1, {ai}Mi=1, c) and a

valid proof π =
(
Ĉ, Cy, π

)
. Let Ã ∈ ZNd×D the matrix obtained by encoding

{ai ∈ RNq }Mi=1 in (29).

Since we are in the AGM, A must provide representations of Ĉ w.r.t to the
set of all Ĝ-elements that it could observe during the game. It also has to provide
representations of Cy and π w.r.t to all G-elements that it was allowed to see.
Since the simulator used by B is algebraic, it also knows a representation of each

simulated C
(i)
y and π(i) w.r.t (g, {gi}i∈[2n]\{n+1}). It also knows a representation

of each simulated Ĉ(i) w.r.t (ĝ, {ĝi}i∈[n]). From A’s output and the randomness
of the simulation, B can therefore compute scalars {(ψi, zi) ∈ Z2

p}i∈[0,2n]\{n+1}
and {wi ∈ Zp}i∈[0,n] such that

Ĉ =

n∏
i=0

ĝwi
i , Cy =

2n∏
i=0,i̸=n+1

gzii , π =

2n∏
i=0,i̸=n+1

gψi

i ,

where g0 = g and ĝ0 = ĝ.
If the representation w = (w0, w1, . . . , wn) ∈ Znp of the commitment Ĉ satis-

fies the conditions

(i) wk ∈ {0, 1} for all k ∈ [1, D];
(ii) Ã · w̃ = ϕ(c) mod p, where w̃ = (w1, . . . , wD) ∈ ZDp ;

then B can use the bits (w0, w1, . . . , wD) ∈ {0, 1}D to reconstruct witnesses
s1, . . . , sM ∈ Z[X]/(Xd + 1) such that ∥si∥∞ ≤ Bi for all i ∈ [M ] and (26)
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holds, meaning that {si}Mi=1 are valid outputs for the knowledge extractor. We
now assume that at least one of the conditions (i)-(ii) does not hold.

Solving (2n, n)-DLOG: We remark that a non-trivial valid proof π cannot re-
cycle (x, Ĉ, Cy) from a a simulated proof: That is, for all i ∈ [QS ], we must

have (x, Ĉ, Cy) ̸= (x(i), Ĉ(i), C
(i)
y ) since the right-hand-side member of (33)

is uniquely determined by (x(i), Ĉ(i), C
(i)
y ) and it in turn determines a unique

valid proof element π(i) ∈ G in the left-hand-side member. This implies that
(δy, δeq, δθ) = Hagg(x, Ĉ, Cy) is not one of the hashes programmed by the simu-

lator and neither are t = Ht(y,x, Ĉ, Cy), and θ̄ = Hlmap

(
x, Ĉ, Cy

)
.

Let the vector a⊤
θ = (ã⊤

θ | 0n−D) ∈ Znp defined in the Verify algorithm. From
the algebraic representations of A’s commitments and proof π, B can compute

Pθ[X] =
( D∑
k=1

aθ[k] ·Xn+1−k
)
·
( n∑
i=0

wi ·Xi
)
− tθ ·Xn+1 =

n+D∑
i=0

ωi ·Xi

as well as the polynomials

Py[X] =
( 2n∑
i=0,i̸=n+1

zi ·Xi −
n∑
i=1

yi ·Xn+1−i
)
·
( n∑
i=0

wi ·Xi
)

=
(
z0 +

n∑
i=1

(
zn+1−i − yi

)
·Xn+1−i +

2n∑
i=n+2

zi ·Xi
)
·
( n∑
i=0

wi ·Xi
)

=

3n∑
i=0

γi ·Xi

Peq[X] =
( n∑
i=0

wi ·Xi
)
·
( n∑
i=1

ti · yi ·Xn+1−i
)

−
( 2n∑
i=0,i̸=n+1

zi ·Xi
)
·
( n∑
i=1

ti ·Xi
)
=

3n∑
j=0

βj ·Xj ,

for which the left-hand-side members of (30)-(32) can be written e(g, ĝ)Peq(α),
e(g, ĝ)Py(α), and e(g, ĝ)Pθ(α), respectively.

The right-hand-side member of (33) can be written e(g, ĝ)Pagg(α), where
Pagg[X] is the polynomial

Pagg[X] = δy · Py[X] + δeq · Peq[X] + δθ · Pθ[X] =

3n∑
i=0

νi ·Xi
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In Pagg[X], the coefficient νn+1 of the degree-(n+ 1) term can be written

νn+1 = δy ·
n∑
i=1

(
zn+1−i − yi

)
· wi︸ ︷︷ ︸

≜ γn+1

+ δeq ·
n∑
i=1

ti · (wi · yi − zn+1−i)︸ ︷︷ ︸
≜ βn+1

δθ ·
( D∑
k=1

a[k] · wk − tθ
)

︸ ︷︷ ︸
≜ ωn+1

,

where ρ ≜ (γn+1, βn+1, ωn+1) is the vector containing the coefficients of the
degree-(n+ 1) terms of (Py[X], Peq[X], Pθ[X]).

We now argue that, if one of the conditions (i)-(ii) does not hold, the proba-
bility to have νn+1 = 0 is negligible. This follows from the following observations:

- The probability to have ρ = 0 is negligible. First, if zn+1−i ̸= wi ·yi for some
i ∈ [n], we have βn+1 = 0 with probability 1/p since t = Ht(y,x, Ĉ, Cy)
is derived after the choice of y, {wi}ni=0 and {zi}i∈[0,2n]\{n+1}. Now, if we
assume that zn+1−i = wi · yi for all i ∈ [n], then we have

γn+1 =

n∑
i=1

yi · (wi − 1) · wi,

which vanishes with probability 1/p if there exists i ∈ [n] such that wi ̸∈
{0, 1}. This can be seen by distinguishing two cases:

a. If y = H(x, Ĉ) was programmed when answering a simulation query,
we can only have γn+1 = 0 with probability 1/p since the simulator
programmed (w1, . . . , wn) so has to have

γn+1 =

n∑
i=1

yi · wi · (wi − 1) = y1 · w1 · (w1 − 1)

where w1 ̸∈ {0, 1} and y1 ∈R Zp. This captures the case of an adversary

attempting to re-use the components (x, Ĉ) = (x(i), Ĉ(i)) of a simulated

proof π(i) = (Ĉ(i), C
(i)
y , π(i)) with a modified Cy ̸= C

(i)
y .

b. If H(x, Ĉ) was not programmed by the simulator, then y = H(x, Ĉ)
was defined after B obtained the scalars {wi}ni=0 underlying Ĉ. We then
have the equality

∑n
i=1 yi · (wi − 1) · wi = 0 with probability 1/p over

the random choice of {yi}ni=1.

If none of the previous events occurs, we have wi ∈ {0, 1} for all i ∈ [D].
Then, we are left with bounding the probability that ωn+1 = 0 when condi-
tion (ii) does not hold. In this case, we have θ⊤

0 · (Ã · w̃ − ϕ(c)) = 0 mod p
with probability 1/p since θ̄ = Hlmap

(
x, Ĉ, Cy

)
is defined after Ã and ϕ(c).
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- If ρ ̸= 0, then we have νn+1 ̸= 0 with overwhelming probability 1 − 1/p
since the aggregation coefficients δ ≜ (δeq, δy, δθ) = Hagg(x, Ĉ, Cy) and

(θ0 | δθ) = Hlmap

(
x, Ĉ, Cy

)
are chosen uniformly after the choice of {wi}ni=0,

{zi}i∈[0,2n]\{n+1} and x, which determine ρ. Therefore, the probability to
have ⟨δ,ρ⟩ = 0 mod p is 1/p.

If νn+1 ̸= 0, B can compute α ∈ Zp using the algebraic representation of π
as in the proof of Theorem 2. ⊓⊔

G.3 Efficiency Comparisons for Proving the Validity of Ring LWE
Ciphertexts

We consider a special case of the statement in (26) which corresponds to a proof
of validity of an LPR ciphertext [88]. For this specific concrete statement, we
compare our approach with a generic use of SNARKs for arithmetic circuits.

Let a statement consisting of a public key (a, b) ∈ R2
q and an LPR ciphertext

(c1, c2) = (a·r+e1, b·r+e2+∆·m) ∈ R2
q , where∆ = ⌊q/2⌋ andm ∈ R/(2R) is the

plaintext.12 We consider a prover willing to convince a verifier that there exist
m ∈ R/(2R), r ∈ R/(2R), and noise terms e1, e2 ∈ R of norm ∥e1∥∞, ∥e2∥∞ ≤ B
such that

[
a 1
b ∆ 1

]
·


r
m
e1
e2

 =

[
c1
c2

]
mod q (69)

Following [41], we will prove the above statement by showing the existence of
small polynomials r,m ∈ R/(2R), e1, e2 ∈ R, and r1, r2 ∈ R such that

[
a(X) 1 − q
b(X) ∆ 1 − q

]
·


r(X)
m(X)
e1(X)
e2(X)
r1(X)
r2(X)

 =

[
c1(X)
c2(X)

]
mod (Xd + 1)

with ∥e1∥∞, ∥e2∥∞ ≤ B, and ∥r1∥∞, ∥r2∥∞ ≤ (d + 1)/2. Over Z, this can be
written

[
rot(a) Id − q · Id
rot(b) ∆ · Id Id − q · Id

]
︸ ︷︷ ︸

≜ Ā

·


ϕ(r)
ϕ(m)
ϕ(e1)
ϕ(e2)
ϕ(r1)
ϕ(r2)


︸ ︷︷ ︸

≜ w̄

=

[
ϕ(c1)
ϕ(c2)

]
︸ ︷︷ ︸
≜ ϕ(c)

, (70)

12 We consider a similar parameter setting to [45] where the secret r is chosen so that
∥r∥∞ = 1 an the noise is sampled from a Gaussian with larger standard deviation.
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where Ā is interpreted as a 2d×6dmatrix with coefficients in {−⌊q/2⌋, . . . , ⌊q/2⌋}.
The prover commits to the bits of w̄ and proves that

[
rot(a) G1+logB −q ·Glog d

rot(b) ∆ · Id G1+logB − q ·Glog d

]
︸ ︷︷ ︸

≜ Ã ∈ Z2d×D

·


ϕ(r)
ϕ(m)
e1
e2
r1
r2


︸ ︷︷ ︸

≜ w̃

=

[
ϕ(c1)
ϕ(c2)

]
︸ ︷︷ ︸
≜ ϕ(c)

,

(71)

where e1 = G−1
1+logB(ϕ(e1)), e2 = G−1

1+logB(ϕ(e2)), r1 = G−1
log d(ϕ(r1)) and r2 =

G−1
log d(ϕ(r2)). We note that there is no need to decompose m, r ∈ R/(2R) since

they are natively binary. The prover will thus commit to the decomposition of
the witness w̃ ∈ {0, 1}D, where D = 2d(2 + logB + log d).

It is also interesting to consider proofs of validity in an encryption scheme
proposed by Joye [75], which was designed to be used as a component of the
TFHE [33] homomorphic encryption scheme. The scheme of [75] can be seen
as a variant of the LPR cryptosystem where the second ciphertext component
computes an inner product over Zq instead of a multiplication over Rq. For a
plaintext m ∈ Zp and a noise e2 ∈ Z, ciphertexts are of the form

(c1, c2) =
(
a · r + e1, ⟨ϕ(b̄), ϕ(r)⟩+ e2 +∆ ·m

)
∈ Rq × Zq

where ∆ = ⌊q/t⌋ (for a plaintext modulus t) and ϕ(b̄) = (bn−1, . . . , b0) ∈ Znq
contains the coefficients of the polynomial b(x) = b0+b1X+· · ·+bn−1X

n−1 ∈ Rq
in reversed order. Note that c2 ∈ Zq can be seen as the extraction of the last slot
from the second component b · r +∆ ·m+ noise of an LPR ciphertext since the
degree-(n− 1) coefficient of the polynomial product b · r ∈ Rq is ⟨ϕ(b̄), ϕ(r)⟩. In
this case, relation (70) simplifies as

[
rot(a) Id − q · Id
ϕ(b̄) ∆ 1 − q

]
︸ ︷︷ ︸

≜ Ā

·


ϕ(r)
m

ϕ(e1)
e2

ϕ(r1)
r2


︸ ︷︷ ︸

≜ w̄

=

[
ϕ(c1)
c2

]
︸ ︷︷ ︸
≜ ϕ(c)

. (72)
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while (71) becomes[
rot(a) G1+logB − q ·Glog d

ϕ(b̄) ∆ · glog t g1+logB − q · glog d

]
︸ ︷︷ ︸

≜ Ã ∈ Z(d+1)×D

·


ϕ(r)
m
e1
e2
r1
r2


︸ ︷︷ ︸

≜ w̃

=

[
ϕ(c1)
c2

]
︸ ︷︷ ︸
≜ ϕ(c)

, (73)

with e2 = g−1
1+logB(e2) ∈ {0, 1}1+logB and r2 = g−1

log d(r2) ∈ {0, 1}log d. The
prover then commits to the decomposition of the witness w̃ ∈ {0, 1}D, where
D = d+ log t+ (d+ 1)(1 + logB + log d), where t is the plaintext modulus.

G.4 Efficiency Estimations

Application to the LPR cryptosystem. In an instantiation of LPR for
λ = 128, a common choice of parameters is d = 1024, q ≈ 264, with binary uni-
form r ∈ R/(2R) while e1, e2 are sampled from a discrete Gaussian distribution
with standard deviation αq ≈ 239. In this case, a given noise vector ei ∼ DZd,αq

has infinity norm ∥ei∥∞ ≤ B = αq
√
λ < 243 with overwhelming probability

by [87, Lemma 4.4]. The computational complexity and the CRS size are then
determined by n = D = 112640.

In order to obtain the coefficients allowing to compute π from the generators
{gi}i∈[2n]\{n+1}, the prover has to evaluate two products of degree-n polynomi-
als,13 which can be done using O(n·log n) multiplications. The prover also has to
compute the product a⊤

θ = θ⊤
0 · Ã mod p. In (71), each block of Ã has a special

structure allowing to compute the matrix-vector product using O(d · log d) mul-
tiplications over Zp. Indeed, computing θ⊤

0 · [rot(a)⊤ | rot(b)⊤]⊤ takes O(d · log d)
multiplications while computing θ⊤

0 · (I2 ⊗Gz) can be done using 2dz additions
over Zp since Gz is of the form Id ⊗ (1, 2, 4, . . . , 2z−2,−2z−1).

Eventually, the prover’s cost is dominated by 337920 exponentiations in G
and D + 1 multiplications, which are used to compute Ĉ. If we assume that
exponentiations in Ĝ are three times as expensive as in G, the overall workload
of the prover is roughly equivalent to 339150 exponentiations in G.

Given the relatively large value of n ≈ 217, we need to increase the group
order p by about 20 bits in order to obtain a sufficient security margin against
Cheon’s algorithm [31]. If we use a 275-bit group order, elements of G (resp.

13 The first product is cheaper since one of the factors is of the form γ +
∑D

i=1 wi ·Xi

for binary wi ∈ {0, 1}

67



Ĝ) can have a 374-bit (resp. 1122-bit) representation using KSS18 curves. With
these parameters, the CRS size amounts to 25712 KB and proofs fit in 1870 bits.

Application to Joye’s scheme. We now consider an instantiation of the
scheme in [75] for parameters of interest where d = 1024, q ≈ 264 and when
the noise has magnitude B ≤ 242. We assume that the plaintext modulus t
has 8 bits due to compatibility constraints with the bootstrapping of TFHE. In
order to encrypt 256-bit messages, we consider a packed version of the scheme
allowing to encrypt k = 32 slots of 8-bit messages each and where all slots
{c2,i = ⟨ϕ(b̄i), ϕ(r)⟩ + e2,i + ∆ ·mi}ki=1 share the same secret r ∈ R/(2R) but
use independent noise terms e2,i such that ∥e2,i∥∞ ≤ B.14 To prove a packed
version of relation (73), the prover commits to a vector w̃ of dimension

n > D = (d+ k log t) + (d+ k)(1 + logB + log d) = 57248.

Using KSS18 or BLS24 curves, this requires a CRS of 13068 KB or 14340 KB,
respectively. The prover computes at most 171744 exponentiations in G (143000
on average if the noise is sampled from a uniform distribution over [−B,B])

besides 57248 multiplications in Ĝ.
The prover also computes 2 multiplications of polynomials with degree 57248

over a 275-bit field Zp and a large matrix-vector product over Zp (which can be
fast since the matrix is structured). For a suitable prime p such that p − 1 is
divisible by the smallest power of 2 above n, all Zp-operations can be optimized
using the FFT.

Verification requires 57248 exponentiations in each source group of the pair-
ing.15 Assuming multiple threads at the verifier, we can speed up its computation
by splitting exponentiations in smaller batches to be processed in parallel. Also,
we can reduce the cost of Ĝ-exponentiations by observing that the exponents
t = (t1, . . . , tn) do not need to be uniformly distributed over Zp since they are
only used to perform a batch verification in the proof of Theorem 4 (i.e., to
guarantee that βn+1 ̸= 0 w.h.p. in the expression of νn+1). By [47, Theorem
3.2], we can choose each ti uniformly in a 128-bit interval (instead of a 275-bit
one) and change the verification equation (33) into

e(π, ĝ) = e
(
Cδyy ·

n∏
i=1

g
(δeq·ti−δy)·yi+δθ·aθ[i]
n+1−i , Ĉ

)
· e
(
Cδeqy ,

D∏
i=1

ĝtii

)−1

· e(g1, ĝn)−tθ·δθ ,

14 In this case, the matrix Ã in (73) is modified to have d + k rows, where the last k
rows encode public keys components {ϕ(b̄i)}ki=1 in the lower block.

15 We note that, in applications to private smart contracts [97], this is acceptable since
transaction validators can proceed in parallel, regardless of the number of validators.
Moreover, a transaction is often considered valid when 2N/3 out of N validators have
verified the proof.
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which makes it faster to compute
∏D
i=1 ĝ

ti
i for 128-bit exponents {ti}i.

We note that, in both schemes [88,75], the NIZK argument of ciphertext
validity does not impose any constraint on the modulus q of the encryption
scheme (so that any NTT-friendly ring can be used). We only need to choose a
sufficiently large group order p to make sure that no implicit modular reduction
occurs when we want to prove relations (70) and (72) over the integers.

Possible choices of elliptic curve. In order to optimize the prover’s cost,
one may prefer using pairing-friendly curves enabling faster exponentiations in
the first source group G. One option is to choose G as a subgroup of a curve
E(Fr), for which the base prime field Fr is as small as possible. In this case, the
BLS24 curves [9] are good candidates as they offer the fastest exponentiations

in G (but slower exponentiations in Ĝ). In order to obtain a sufficient security
margin against Cheon’s attack, we can choose p = |G| > 2275, in which case r
has 1.25 ·275 = 342 bits. By keeping r small, we also have a short representation
for group elements in G while elements of Ĝ are typically 4 times as long as
those of G (when they live in the twisted curve E′(Fr4)). This yields a proof size
of 2052 bits and a CRS size of 14340 KB.

As suggested in [2, Table 1], BLS24 curves E(Fr) ≜ {(x, y) ∈ F2
r : y

2 = x3+b}
can be generated via the following parameterization

r =
u10 − 2u9 + u8 − u6 + 2u5 − u4 + u2 + u+ 1

3

p = u8 − u4 + 1

where u can be tuned until r and p are both prime and p satisfies the conditions
216|p − 1 and p ∼ 2275. A concrete example is given by E(Fr) ≜ {(x, y) ∈ F2

r :
y2 = x3 + 4} with16

u = −234 − 232 − 217 + 214 + 212 = −21474947072
r = 0x31ac4ff9bfee67fff4d8255eff7c02ac913dc3c878932925def1a1036c086ae44b1456815ff5549daa1aab

p = 0x5f5f117f282a670f9e6589ab38900f75a509f7e50f735d99fe437e40f000000000001

and

t = (r + 1)−#E(Fr) = −0x50001afff

(which yields the co-factor #E(Fr)/|G|). Note that

p− 1 = 248 · 3 · 5 · 23 · 269 · 281 · 569 · 677 · 1709
· 52429074 · 37741559 · 328237261028613077

16 In the literature on pairing-friendly curves, p often denotes the characteristic of the
base field of the curve while r denotes the group order. Here, it is the other way
around.
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is divisible by 248, which allows high-dimension FFTs over Z∗
p.

At the higher 192-bit security level, BLS24 curves with |p| > 384 and |r| ≈
477 were suggested in [3, Section 7].17

One disadvantage of BLS24 curves is their slower arithmetic in Ĝ. In order
to obtain a more balanced tradeoff between the costs of multi-exponentiations
in G and Ĝ, one may prefer using BLS12 curves. Using BLS12-379 curves, a
multi-exponentiation in Ĝ with 57248 elements is computable in less than a
second according to the timings given in [43, Figure 4.2] for a 256-bit group
order. In order to obtain 128 bits of security and taking Cheon’s attack, one
may use the BLS12-446 curve suggested in [72],18 which is obtained from the
parameterization

p = u4 − u2 + 1

r = (u6 − 2 · u5 + 2 · u3 − u+ 1)/3 + u

with the seed

u = −(274 + 273 + 263 + 257 + 250 + 217 + 1)

and yields a group order p ≈ 2299 (such that 216 divides p−1) whereas elements

of G (resp. Ĝ) fit within 446 (resp. 892) bits.

G.5 Comparisons

For the above choice of parameters in the LPR cryptosystem, we commit to
vectors of dimension n = 112640, which translates into a prover computing
337920 exponentiations in G and 8196 exponentiations in Ĝ. In general, expo-
nentiations in Ĝ are at least 3 times as expensive as in G using KSS18 curves
(see, e.g., [8, Table 12]). In our setting, the prover computes the equivalent of
≈ 339150 exponentiations in G. In the example given in [41, Section 5.3] for
a smaller modulus q, del Pino et al. need about 724986 exponentiations at the
prover (and 200667 at the verifier). In general, their construction [41, Section
5.2] incurs up to 10n + 6 log n exponentiations at the prover (and 2n + 4 log n
exponentiations at the verifier) in order to generate a proof for a vector of di-
mension n. Here, we only need 3n exponentiations in G (and n multiplications

in Ĝ) at the prover and the equivalent of 4n G-exponentiations at the verifier.
Although we need a slightly larger group order than theirs (i.e., 275 bits vs 256),
we expect our prover to be faster and our verification algorithm to be slower.
On the other hand, we lose the transparent setup property of BulletProofs and
we need to rely on the algebraic group model.

If we want to prove the same statement using Groth’s SNARK [69] in order
to obtain a similar proof size, we have to express the statement in the language
of Quadratic Arithmetic Programs (QAPs) [56] and obtain a CRS size growing

17 See https://neuromancer.sk/std/bls/BLS24-477 for a concrete curve.
18 See also https://neuromancer.sk/std/bls/BLS12-446.
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with the number of arithmetic constraints. Then, we run into two issues that
increase the size of the arithmetic circuit. First, proving the smallness of noise
terms e1 = (e1,1, . . . , e1,d)

⊤, e2 = (e2,1, . . . , e2,d)
⊤ ∈ Z[X]/(Xd + 1) requires to

break their components into bits. Then, for each pair (b, j) ∈ {0, 1} × [d], prov-

ing that {eb,j,τ}1+logB
τ=1 are all bits requires d · (1+ logB) constraints of the form

eb,j,τ · (eb,j,τ − 1) = 0 mod p, each of which contributes to the number of multi-
plication gates. In our example, this would amount to 2d · (1 + logB) = 90112
arithmetic constraints. We also need 2d constraints to prove that r and m are
binary. Then, we need O(d·log d) additional constraints to compute the products
a·r and b·r over Zp[X]/(Xd+1) and map e1, e2 to the FFT domain. We note that
the prover can pre-compute (FFT(a),FFT(b)) and (FFT(c1),FFT(c2)) instead
of leaving it to the circuit,19 but the circuit still needs O(d · log d) multiplication
gates to compute FFT(r), FFT(e1) and FFT(e2).

The second issue is that constant-size SNARKs like [69,56] are designed to
handle arithmetic circuits over a large prime field Fp (where p > 2275 is the
order of the pairing-friendly group), whereas we need to prove a statement over
a ring Rq where q ≈ 264. As observed in [54], using finite field arithmetic to
emulate arithmetic over rings induces some overhead. For example, additions in
Rq may no longer be for free since adding two log q-bit integers over Fp may
result in a (1 + log q)-bit sum to be reduced in Rq. In [79], short-integer arith-
metic is emulated over Fp by reducing intermediate computation values modulo
q on carefully chosen occasions. In order to prove that a modular reduction
x mod q is performed correctly (when q is not a power of 2), the prover is re-
quired to provide wires x ÷ q and x mod q, allowing the circuit to check that
x = q · (x ÷ q) + (x mod q) and (x mod q) < q. In turn, the latter comparison
requires access to the bits of x mod q, which introduces log q arithmetic con-
straints. Using a greedy approach that only performs one reduction modulo q
per component of (c1, c2) = (a · r+ e1, b · r+ e2 +∆ ·m), the remainder checking
technique of [79] would require 2d · log q = 131072 constraints, thus leading to
an arithmetic circuit with more than 250000 multiplication gates. To improve
this, we can instead interpret the components of (c1, c2) ∈ R2

q as remainders of
the long division and prove the smallness of its quotients, which is also what our
construction is doing. Since each quotient has magnitude ≈ d/2, this decreases
the number of constraints from 2d · log q to 2d · log d when it comes to proving
correct reductions modulo q. Overall, we estimate that the entire process would
still cost nm = 2d(1+ logB) + 4d+5d · log d = 145408 arithmetic constraints to
prove the global statement.

While the number nm = 145408 of multiplication gates might seem only
slightly larger than our vector dimension n = 112640, it has a significant im-
pact. In the SNARK, the prover has to compute nm = 145408 exponentiations in
Ĝ (with possibly large exponents over Zp) besides 3nm+(nw − ℓs) ≈ 806913 G-

19 This allows computing FFT(a · r) and FFT(b · r) using 2d multiplications.
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exponentiations, where nw ≈ 374785 is the number of wires20 and ℓs = 4d = 4096
is the number of field elements describing the statement. In comparison, we only
need 337920 exponentiations in G and only 410 exponentiations in Ĝ. If we
count each exponentiation over Ĝ as 3 exponentiations in G, the SNARK of [69]
computes about 1243137 equivalent G-exponentiations. On the other hand, our
verification algorithm is more demanding and computes n exponentiations in
both groups Ĝ and G when the SNARK only needs ℓs exponentiations in G.

As far as the CRS size goes, the SNARK approach would cost nm ≈ 145408
elements of Ĝ and 2nm+(nw− ℓs) ≈ 661505 elements of G. Using KSS18 curves
with a 275-bit group order, it would take about 50116 KB. On the other hand,
the verifier only needs to store a small part of the CRS in Groth’s SNARK.

20 The number of wires is nw = nm+nin+nout, where nin = 4d+2d+2d(logB+1)+
2d log d is the number of input wires and nout = 1+2d+2d(logB+1)+2d log d is the
number of output wires (where we count one output wire per bit-proving constraint).
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