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Abstract

Witness encryption is a generalization of public-key encryption where the public key can be any NP statement 𝑥
and the associated decryption key is any witness𝑤 for 𝑥 . While early constructions of witness encryption relied
on multilinear maps and indistinguishability obfuscation (𝑖O), recent works have provided direct constructions of
witness encryption that are more efficient than 𝑖O (and also seem unlikely to yield 𝑖O). Motivated by this progress,
we revisit the possibility of using witness encryption to realize advanced cryptographic primitives previously known
only in “obfustopia.”

In this work, we give new constructions of trustless encryption systems from plain witness encryption (in
conjunction with the learning-with-errors assumption): (1) flexible broadcast encryption (a broadcast encryption
scheme where users choose their own secret keys and users can encrypt to an arbitrary set of public keys); and (2)
registered attribute-based encryption (a system where users choose their own keys and then register their public key
together with a set of attributes with a deterministic and transparent key curator). Both primitives were previously
only known from 𝑖O. We also show how to use our techniques to obtain an optimal broadcast encryption scheme in
the random oracle model.

Underlying our constructions is a novel technique for using witness encryption based on a new primitive which
we call function-binding hash functions. Whereas a somewhere statistically binding hash function statistically binds
a digest to a few bits of the input, a function-binding hash function statistically binds a digest to the output of a
function of the inputs. As we demonstrate in this work, function-binding hash functions provide us new ways to
leverage the power of plain witness encryption and use it as the foundation of advanced cryptographic primitives.
Finally, we show how to build function-binding hash functions for the class of disjunctions of block functions from
leveled homomorphic encryption; this in combination with witness encryption yields our main results.

1 Introduction
In the last decade, indistinguishability obfuscation (𝑖O) [BGI+01, GGH+13] has emerged as a central hub for cryp-
tography, and in combination with one-way functions or somewhere statistically binding hash functions [HW15],
have yielded solutions to a broad range of cryptographic problems [SW14, BZ14, GGHR14, BPR15, CLP15, KRR17,
AL18, CPP20]; we refer to [JLS21, Corollary 1.1] for a more comprehensive list. Witness encryption [GGSW13]
is another cryptographic notion that is often considered alongside indistinguishability obfuscation, and has been
used successfully to construct a number of cryptographic primitives such as public-key encryption, identity-based
encryption, attribute-based encryption [GGSW13], oblivious transfer [BGI+17], laconic arguments [FNV17, BISW18],
and null-𝑖O [GKW17, WZ17]. However, compared to indistinguishability obfuscation, there has been significantly
less success in leveraging witness encryption to realize other cryptographic notions, and indeed, many of the notions
implied by witness encryption can be achieved directly from standard number-theoretic or lattice-based assumptions.

Witness encryption. Intuitively, witness encryption [GGSW13] is a generalization of public-key encryption where
the public key can be any NP statement 𝑥 and the associated decryption key is any witness𝑤 for 𝑥 . Here, a user can
encrypt a message𝑚 with respect to the statement 𝑥 and anyone who knows a witness 𝑤 for 𝑥 can decrypt. The
security requirement is that if the statement 𝑥 is false, then the message is computationally hidden.
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Although witness encryption appears to be a substantially weaker primitive than 𝑖O (both in terms of its
applications and with respect to black-box separations [GMM17]), early constructions nonetheless either relied on
𝑖O [GGH+13] or techniques that sufficed for 𝑖O (e.g., assumptions over multilinear maps [GGSW13, GLW14]). This
state of affairs changed recently with several works providing constructions from lattice-based assumptions [CVW18,
Tsa22, VWW22] or suggesting new routes from group-based approaches [BIOW20]. Of particular note, the recent
results [Tsa22, VWW22] construct witness encryption from the “evasive LWE” assumption, a new knowledge
assumption on lattices [Wee22, Tsa22]. Theseworks give a direct construction ofwitness encryption that is significantly
more efficient than existing 𝑖O approaches. Moreover, the current techniques do not seem to extend to give 𝑖O.
This work: cryptography from plain witness encryption. Motivated by the recent progress in constructing
witness encryption, our goal in this work is to revisit the possibility of using witness encryption to realize advanced
cryptographic primitives. Much like how the punctured programming framework [SW14] and notions like somewhere
statistically binding hash functions [HW15] allowed us to leverage the power of 𝑖O, our goal is to develop analogous
techniques in the setting of (plain) witness encryption. Previous approaches to use witness encryption for realizing
new cryptographic primitives have focused on augmenting witness encryption with additional properties such as
“position-hiding” [GLW14, GVW19] or “extractability” [GKP+13, FNV17]. However, positional witness encryption
is only known from 𝑖O [GLW14, GVW19] while extractable witness encryption currently relies on a knowledge
assumption over multilinear maps or the stronger notion of differing-inputs obfuscation [GKP+13]. Moreover, the
recent advancements in construction witness encryption seem insufficient for realizing these stronger notions. As
such, we focus on techniques that use plain witness encryption.

Function-binding hash functions. In this work, we introduce a new cryptographic primitive called a function-
binding hash function. Similar to how somewhere statistically binding (SSB) hash functions [HW15] statistically bind
to a few bits of an input to the hash function, our function-binding hash function statistically binds to the output of a
function of the inputs. In fact, we can view SSB hash functions as a special case of function-binding hash functions
for the class of index functions (see Remark 3.2). Similar to the setting of SSB hash function, a function-binding hash
function should allow a user to locally open one or more bits of the input. The size of the opening should be small
compared to the size of the input.

To illustrate the function-binding property, consider a (keyed) hash function 𝐻 that is statistically binding for
the or function. Suppose that dig ← 𝐻 (hk, 𝑏1, . . . , 𝑏𝑛) where hk is the hash key and 𝑏1 = · · · = 𝑏𝑛 = 0. If 𝐻 is
(statistically) function-binding for the or function, then it should not be possible to locally open any index 𝑖 to a
value 𝑏′𝑖 = 1. This is because the output of the or function on all inputs (𝑏′1, . . . , 𝑏′𝑛) is 1 ≠ 0, irrespective of the values
of 𝑏′𝑗 for 𝑗 ≠ 𝑖 . More generally, a function-binding hash function only supports local openings to values that are
consistent with the output of the associated function (i.e., the locally-opened value(s) can be extended into an input
to the function that maps to the value associated with the digest).

We provide a formal definition of this notion in Section 3 and a high-level overview in Section 1.1. We then
show how to construct a function-binding hash function using leveled homomorphic encryption, which can in turn
be based on standard lattice assumptions [BV11, BGV12, Bra12, GSW13]. Our construction here follows a similar
structure as the construction of somewhere statistically binding hash functions [HW15] from leveled homomorphic
encryption.

Our results. Using function-binding hash functions together with plain witness encryption, we are able to realize
new trustless encryption notions like flexible broadcast encryption and registered attribute-based encryption (for
general policies) [HLWW23] without indistinguishability obfuscation. These examples are intended to illustrate the
usefulness of function-binding hash functions in conjunction with witness encryption, and we expect to see further
applications in the future. We summarize our main results below:

• Flexible broadcast encryption. In a flexible broadcast encryption scheme, users generate their own pub-
lic/private key-pair (pk, sk) (much like in vanilla public-key encryption) and then post their public key pk to a
public bulletin board. The encryption algorithm takes a collection of user public keys 𝑆 = (pk1, . . . , pk𝑛) along
with a message𝑚 and outputs a single ciphertext ct that can be decrypted by any user who possesses a secret
key corresponding to a public key in the broadcast set 𝑆 . The size of the ciphertext ct scales polylogarithmically
with the size of the broadcast set 𝑆 . Flexible broadcast encryption generalizes both the traditional notion of
broadcast encryption [FN93] which assumes a central trusted authority issues keys to users as well as the
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notion of distributed broadcast encryption [BZ14]. In distributed broadcast encryption, users generate their
own public and private keys, but the syntax stipulates that each user is associated with a particular “index”
(like in standard broadcast encryption); in turn, one can only encrypt to users associated with different indices.
Flexible broadcast encryption eliminates all user coordination and supports encryption to an arbitrary set of
user public keys. Previously, distributed broadcast encryption was only known from 𝑖O [BZ14]. In this work,
we show how to construct flexible broadcast encryption from plain witness encryption and function-binding
hash functions (which implies a distributed broadcast encryption scheme). Previously, it was not even known
how to obtain vanilla broadcast encryption from witness encryption; instead, previous approaches relied on
the stronger notion of positional witness encryption [GLW14, GVW19].

• Registered attribute-based encryption. A second application we show is to registered attribute-based
encryption [HLWW23]. Much like how flexible broadcast encryption removes the trusted key issuer from
broadcast encryption, registered ABE removes the trusted key issuer from traditional ABE [SW05, GPSW06].
In the registered ABE model, instead of a key issuer generating decryption keys for user attributes, users
instead generate their own public/secret keys and then register their public key along with their attributes with
a key curator. The key curator in this case is a deterministic and transparent algorithm that is responsible
for aggregating the keys and attributes for the different users into a short master public key (whose size is
polylogarithmic in the number of registered users). The aggregated public key functions as a public key for
a standard ABE scheme. Since the key curator maintains no long-term secrets and can be publicly audited,
registered ABE serves as a new paradigm for enabling the access-control capabilities of ABE without introducing
a trusted key-issuing authority into the picture. Previously, the work of [HLWW23] showed how to construct
registered ABE for an a priori bounded number of users using pairing-based assumptions in a model with a
structured common reference string, as well as a scheme for an unbounded number of users in the common
random string model from 𝑖O. In this work, we show how to obtain a registered ABE scheme with the same
properties as the previous construction from 𝑖O using plain witness encryption and function-binding hash
functions.

• Optimal broadcast encryption. As an additional application, we show how to adapt our flexible broadcast
encryption scheme to obtain an optimal broadcast encryption scheme (in the traditional centralized model with
a trusted key issuer) in the random oracle model from plain witness encryption and function-binding hash
functions. An optimal broadcast encryption scheme is one where all of the scheme parameters (public key
size, secret key size, and ciphertext size) all scale polylogarithmically with the number of users 𝑛, and was
previously known from multilinear maps [BWZ14], positional witness encryption [GVW19], on combinations
of (non-falsifiable or idealized) pairing-based and lattice-based assumptions [AY20, AWY20], or from new
(non-falsifiable) lattice assumptions [BV22, Wee22].

By instantiating the underlying witness encryption scheme with the recent constructions [Tsa22, VWW22] based
on evasive LWE, we realize for the first time flexible (and distributed) broadcast encryption and registered ABE for
general policies from lattice assumptions. Previously, these were only known from 𝑖O. As we elaborate in Section 1.1,
our approach to the above problem is to start from an approach that relies on obfuscation and SSB hash functions, and
then roughly speaking, replace 𝑖O with plain witness encryption and the SSB hash function with a function-binding
hash function. In some sense, we are able to substitute the strong notion of 𝑖O with the comparatively weaker notion
of witness encryption by using the more expressive notion of function-binding hash functions in place of an SSB hash
function. Broadly speaking, we are optimistic that the techniques we develop will allow us to use witness encryption
in place of 𝑖O in other settings, and thus, bring us closer to simpler and more practical realizations of many advanced
cryptographic primitives.

Whywitness encryption? Since witness encryption is often regarded as an “obfustopia” primitive, a natural question
one might ask is whether it is interesting to study cryptographic constructions from plain witness encryption. We
believe the answer is yes. As noted previously, recent advances have introduced new routes [BJK+18, BIOW20] and
constructions [CVW18, Tsa22, VWW22] for building (plain) witness encryption in ways that do not seem sufficient for
indistinguishability obfuscation (nor stronger forms of witness encryption). Moreover, these constructions are simpler
and far more efficient than all existing constructions of indistinguishability obfuscation. Thus, witness encryption
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can be an easier primitive to build, and provide a more efficient path towards realizing advanced cryptographic
notions that are currently only known from obfuscation. In more detail, [BJK+18] show how to construct a non-trivial
exponentially-efficient witness encryption assuming sub-exponential hardness of the standard learning with errors
(LWE) assumption, and [BIOW20] show how to construct witness encryption in the generic (pairing-free) group
model under the hypothesis that approximating the minimal distance in linear codes isNP-hard (for super-logarithmic
approximation factors). Recent works [Tsa22, VWW22] construct witness encryption under a new “evasive LWE”
assumption, a new knowledge assumption that conjectures hardness of LWE even given some trapdoor information.
Moreover, at least with respect to black-box separations [GMM17], witness encryption is a demonstrably weaker
notion than indistinguishability obfuscation.

1.1 Technical Overview
In this section, we provide a general overview of our notion of function-binding hash functions and how to combine it
with witness encryption to realize new cryptographic applications. To demonstrate our approach, we first introduce
our notion of flexible broadcast encryption (which generalizes the notion of distributed broadcast encryption from
[BZ14]) and describe a simple construction of flexible broadcast encryption from indistinguishability obfuscation
and somewhere statistically binding hash functions. We then show how we instantiate an analogous template using
witness encryption and function-binding hash functions.

Flexible broadcast encryption. In a traditional broadcast encryption scheme [FN93], each user is associated with
an index 𝑖 ∈ [𝑛] and a broadcaster can encrypt a message to a set of recipients 𝑆 ⊆ [𝑛]. Any user in the set 𝑆 can
use their private key to decrypt the encrypted broadcast, while users outside the set 𝑆 should learn no information
about the message (even if they combine their keys together). The efficiency requirement is that the size of the
ciphertext should be sublinear in the size of 𝑆 (ideally, polylogarithmic in |𝑆 |). Note that we assume that the decrypter
knows the set 𝑆 . In traditional broadcast encryption, a central authority is needed to issue the decryption keys to
users. The central authority is fully trusted, and if compromised, their long-term secret key can be used to decrypt
all ciphertexts. Broadcast encryption is a well-studied primitive and construction are known from a broad range
of cryptographic assumptions [FN93, NNL01, HS02, DF02, BGW05, BW06, GW09, BW13, BZ14, BWZ14, CGW15,
GVW19, AY20, AWY20, Wee21, BV22, Wee22].

Distributed broadcast encryption [BZ14] provides an elegant approach to remove the trusted key issuer in the
setting of broadcast encryption. Here, instead of a central authority issuing keys, users generate their own key. Like
broadcast encryption, each user in a distributed broadcast encryption is still associated with an index 𝑖 ∈ [𝑛], and the
implicit assumption is that indices for different users are unique. The encrypter in this case can encrypt a message
by specifying a set 𝑆 ⊆ [𝑛] of user indices. As before, the size of the broadcast ciphertext should be sublinear, or
preferably, polylogarithmic, in the number of users in the broadcast set. Anyone in the broadcast set can decrypt
using their own secret key. Analogous to broadcast encryption where we assume the decrypter knows the set of
users associated with an encrypted broadcast, we assume the decrypter in the distributed broadcast scheme knows
the set of public keys associated with the broadcast ciphertext. Unlike the case with traditional broadcast encryption,
distributed broadcast is currently only known from 𝑖O [BZ14].

Flexible broadcast encryption is a further generalization of distributed broadcast encryption where we remove the
index-dependence for users. Here, users simply generate their public key and post it to the public bulletin board (e.g.,
a public-key directory). There is no notion of a user “index” and indeed users can generate their keys independently
and without any coordination.1 We do assume that there is a global set of public parameters for the scheme (that
users use when generating keys).

An obfuscation-based approach for flexible broadcast encryption. We start by describing a simple approach
to construct a flexible broadcast encryption from indistinguishability obfuscation and somewhere statistically bind-
ing (SSB) hash functions [HW15]. The approach we take here is an adaptation of the registered ABE scheme
1Note that we can generically obtain a flexible broadcast encryption scheme from a distributed broadcast encryption scheme by having users
sample their index randomly. To support a maximum of ℓ users, we would instantiate the scheme with 𝑛 = Ω (ℓ2 ) indices. This is sufficient
if the number of users is a priori bounded, though it may incur a quadratic blowup in the size of some scheme parameters. If the underlying
distributed broadcast encryption scheme supports a super-polynomial number of users (i.e., 𝑛 = _𝜔 (1) ), then it directly implies a flexible broadcast
encryption for an arbitrary polynomial number of users.

4



from [HLWW23] (rather than the Boneh-Zhandry approach [BZ14] based on a reduction to key-agreement).

• The public parameters pp = (pk, hk) for the scheme contains a public key pk for a standard public-key
encryption scheme and a hash key hk for an SSB hash function.

• To join the system, a user samples randomness 𝑟 and computes an encryption of 1 under pk with randomness 𝑟 :
𝑐 = PKE.Enc(pk, 1; 𝑟 ). The user’s public key is the ciphertext 𝑐 and the decryption key is the randomness 𝑟 .

• To encrypt a message𝑚 to an (ordered) set of public keys (𝑐1, . . . , 𝑐𝑛), the encrypter now proceeds as follows:

– The encrypter starts by hashing the public keys using the SSB hash function to obtain a digest dig =

𝐻 (hk, (𝑐1, . . . , 𝑐𝑛)). Recall that in an SSB hash function, one can give a succinct proof (of size poly(_, log𝑛)
where _ is a security parameter) that the value at index 𝑖 is 𝑐𝑖 (with respect to (hk, dig)).

– The encrypter now prepares a program P that has message𝑚, the public parameters pp = (hk, pk), and
the digest dig hard-wired inside. The program takes as input an index 𝑖 ∈ [𝑛], a public key 𝑐 , an opening
𝜋 , and a secret key 𝑟 and checks the following:

∗ Inclusion in broadcast set: The opening 𝜋 is a valid opening for 𝑐 at index 𝑖 with respect to (hk, dig).
∗ Knowledge of secret key: The pair (𝑐, 𝑟 ) is a valid public/secret key-pair: 𝑐 = PKE.Enc(pk, 1; 𝑟 ).

If all of these properties are satisfied, then the program outputs the message𝑚. Otherwise, it outputs ⊥.
– The broadcast ciphertext is an obfuscation of program P: ct← 𝑖O(P).

• During decryption, the user know both the ciphertext ct = 𝑖O(P) and the set of public keys (𝑐1, . . . , 𝑐𝑛)
associated with ct.2 Suppose the user’s public key is 𝑐𝑖 ∈ (𝑐1, . . . , 𝑐𝑛) and let 𝑟𝑖 be their secret key. The user
starts by computing dig = 𝐻 (hk, (𝑐1, . . . , 𝑐𝑛)) together with an opening 𝜋 for (𝑖, 𝑐𝑖 ) with respect to (hk, dig). It
runs the obfuscated program ct on input (𝑖, 𝑐𝑖 , 𝜋, 𝑟𝑖 ).

Correctness of the scheme follows as long as the obfuscation scheme is functionality-preserving. Security follows via
a simple hybrid argument:

• In the normal flexible broadcast encryption security game, the challenge ciphertext is an encryption of 𝑚
to a set 𝑆 = (𝑐1, . . . , 𝑐𝑛), where 𝑐𝑖 = PKE.Enc(pk, 1; 𝑟 ). Since the adversary cannot be in the broadcast set in
the security game, each public key 𝑐𝑖 is an honestly-generated encryption of 1: 𝑐𝑖 = PKE.Enc(pk, 1; 𝑟𝑖 ). We
appeal to semantic security of the public-key encryption scheme to replace each 𝑐𝑖 with an encryption of 0 (i.e.,
𝑐𝑖 = PKE.Enc(pk, 0; 𝑟𝑖 )).

• Next, we replace the hash key hkwith one that is statistically binding at position 1. This is computationally indis-
tinguishable from the normal hash key if the SSB scheme satisfies index hiding. Now dig = 𝐻 (hk, (𝑐1, . . . , 𝑐𝑛))
and 𝑐1 is now an encryption of 0. We conclude that every input (𝑖, 𝑐, 𝜋, 𝑟 ) where 𝑖 = 1 causes the program P to
output ⊥. This is because the only valid opening for index 𝑖 = 1 is 𝑐 = 𝑐1 (since the hash function is statistically
binding at index 1). However, 𝑐1 is an encryption of 0, so it cannot be the case that 𝑐1 = PKE.Enc(pk, 1; 𝑟 ) by
(perfect) correctness of PKE. Then, by 𝑖O security, we can replace P with an obfuscation of the program P1
that outputs ⊥ whenever 𝑖 = 1.

• More generally, we can let P𝑡 be the program P that always outputs ⊥ whenever the input index satisfies 𝑖 ≤ 𝑡 .
By the above argument, if we sample hk to be statistically binding at index 𝑡 , then the obfuscations of programs
P𝑡−1 and P𝑡 are computationally indistinguishable.

• Finally, the program P𝑛 outputs ⊥ on all indices 𝑖 ≤ 𝑛. This program outputs ⊥ on all inputs, so an obfuscation
of P𝑛 is computationally indistinguishable from an obfuscation of the program that outputs ⊥ on all inputs.

2Note that set of public keys could just be a set of indices if we include a mapping between indices and user public keys (i.e., a public-key directory)
as part of the public parameters of the flexible broadcast encryption scheme. This is the setting considered in [BZ14]. More generally, the set of
users could admit a succinct description (e.g., “all computer science students”) and the decrypter would look up the public keys associated with
the members of the set.
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In the final hybrid where the ciphertext is an obfuscated program that always outputs ⊥, the adversary’s view is
independent of the message𝑚, and semantic security holds.
Using witness encryption instead of 𝑖O. Suppose we try to implement the above strategy using witness encryption
in place of indistinguishability obfuscation. Observe that the program P defined above is a program that is checking
membership in an NP language and outputting 𝑚 if the input is a valid witness. Specifically, we can view the
hard-wired components (hk, pk, dig) as the statement and the input (𝑖, 𝑐, 𝜋, 𝑟 ) as the witness. The associated NP
relation then checks the inclusion-in-broadcast-set and knowledge-of-secret-key properties defined above. Thus, we
can derive the same functionality as above by replacing the obfuscation of P with a witness encryption of𝑚 with
respect to the statement (hk, pk, dig). Correctness now follows exactly as before.

The challenge is in the security proof. Suppose we try a similar strategy as above where we first replace the
public keys (𝑐1, . . . , 𝑐𝑛) with encryptions of 0. Let dig = 𝐻 (hk, (𝑐1, . . . , 𝑐𝑛)) as before. To leverage security of the
witness encryption scheme and argue that the message is computationally hidden, we need to show that there does
not exist a witness (𝑖, 𝑐, 𝜋, 𝑟 ) for the statement (hk, pk, dig). Certainly, any 𝑐 where 𝑐 ∈ (𝑐1, . . . , 𝑐𝑛) cannot be part of
a valid witness. However, we cannot rule out inputs where 𝑐 ∉ (𝑐1, . . . , 𝑐𝑛) because it is possible for there to exist
some 𝑐 = PKE.Enc(pk, 1; 𝑟 ) and opening 𝜋 such that 𝜋 is a valid opening for (𝑖, 𝑐) with respect to (hk, dig). While
finding such an opening is computationally hard (by SSB security), such openings can certainly exist for some index
𝑖 ∈ [𝑛]. The crux of the issue is that SSB hash functions can only bind to a single component of the input, whereas to
appeal to security of witness encryption, we need to argue that the digest dig rules out invalid openings to all indices.

Using 𝑖O, the ability to statistically bind to a single index was sufficient to argue security because we are able to
“save our progress” within the obfuscated program. Namely, we can iteratively rule out inputs (𝑖, 𝑐, 𝜋, 𝑟 ) where 𝑖 ≤ 𝑡 ,
and then just focus on ruling out inputs where 𝑖 ≤ 𝑡 + 1. In this step, we only have to consider inputs of the form
(𝑡 + 1, 𝑐, 𝜋, 𝑟 ) which we can handle by programming the SSB hash function to statistically bind on index 𝑡 + 1. A similar
step-by-step approach does not work if we use witness encryption. While we can certainly embed the threshold 𝑡 into
the NP relation (i.e., only accept witnesses (𝑖, 𝑐, 𝜋, 𝑟 ) where 𝑖 > 𝑡 ), witness encryption does not provide any hiding
property for 𝑡 in this case. Indeed, the adversary can distinguish between a witness encryption ciphertext encrypted
with respect to threshold 𝑡 and one encrypted with respect to threshold 𝑡 + 1. In the case of 𝑖O, the thresholds
themselves are hidden. In fact, this limitation motivated the formulation of a stronger version of “positional witness
encryption” [GLW14, GVW19] which augments witness encryption with an additional “index hiding” property that
allows one to secretly embed a threshold within a witness encryption ciphertext. Using positional witness encryption,
it is possible to carry out the proof strategy defined above. Unfortunately, positional witness encryption appears to
be a much stronger notion than plain witness encryption and the only known instantiations are from 𝑖O.
Function-binding hash functions. The key barrier to instantiating the above framework is that SSB hash functions
only bind statistically to a single input, but to rule out the existence of any valid tuple (𝑖, 𝑐, 𝜋, 𝑟 ), we would seemingly
need to statistically bind on all inputs simultaneously. The latter is clearly impossible if we require that the digest be
compressing. We take a different approach. Instead of statistically binding to part of the input to the hash function, we
instead statistically bind to the output of a function of the inputs. Namely, let 𝑓 : ({0, 1}ℓ )𝑛 → {0, 1}𝑡 be a function. We
say that a keyed function 𝐻 with hash key hk is statistically function-binding for 𝑓 if for all inputs 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}ℓ
and computing dig = 𝐻 (hk, (𝑥1, . . . , 𝑥𝑛)), there does not exist an opening 𝜋 for ( 𝑗, 𝑥 𝑗 ) with respect to (hk, dig)
whenever

∀(𝑥 ′1, . . . 𝑥 ′𝑗−1, 𝑥 ′𝑗+1, . . . , 𝑥 ′𝑛) : 𝑓 (𝑥 ′1, . . . , 𝑥 ′𝑗−1, 𝑥 𝑗 , 𝑥 ′𝑗+1, . . . , 𝑥 ′𝑛) ≠ 𝑓 (𝑥1, . . . , 𝑥𝑛).
In other words, the only possible openings at any index 𝑗 are to values 𝑥 𝑗 where there exists an assignment to the
remaining variables that are consistent with an evaluation of 𝑓 (𝑥1, . . . , 𝑥𝑛). As in the case of SSB hash functions, we
require succinct local openings to any index. We describe two cases of interest:

• Index functions: As a special case, an SSB hash function is a function-binding hash function for the index
function ind𝑖 : ({0, 1}ℓ )𝑛 → {0, 1}ℓ where ind𝑖 (𝑥1, . . . , 𝑥𝑛) B 𝑥𝑖 .

• Disjunction of predicates: Let 𝑔 : {0, 1}ℓ → {0, 1} be a binary-valued predicate and let 𝑓𝑔 : ({0, 1}ℓ )𝑛 → {0, 1}
be the block-wise disjunction function

𝑓𝑔 (𝑥1, . . . , 𝑥𝑛) B
∨
𝑖∈[𝑛]

𝑔(𝑥𝑖 ). (1.1)
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Suppose a hash key hk is statistically binding for the function 𝑓𝑔, and suppose dig = 𝐻 (hk, (𝑥1, . . . , 𝑥𝑛)) for an
input (𝑥1, . . . , 𝑥𝑛) where 𝑔(𝑥𝑖 ) = 0 for all 𝑖 ∈ [𝑛]. Function-binding security now says that there does not exist
any opening ( 𝑗, 𝑥 𝑗 ) for any 𝑗 ∈ [𝑛] and 𝑥 𝑗 ∈ {0, 1}ℓ where 𝑔(𝑥 𝑗 ) = 1.

Like index hiding in the context of SSB hash functions, we additionally require that the hash key hk associated with a
predicate 𝑓 computationally hides the function 𝑓 . Similarly, we require that given a digest dig = 𝐻 (hk, (𝑥1, . . . , 𝑥𝑛)),
one can efficiently compute a succinct local opening 𝜋 to any index ( 𝑗, 𝑥 𝑗 ), where |𝜋 | = poly(_, ℓ, log𝑛), where ℓ is
the output length of 𝑓 . We provide the formal definition in Section 3.

Using function-binding hash functions. Consider again our template for constructing flexible broadcast encryption,
except we replace the SSB hash function in the construction with a function-binding hash function. Our security
reduction now proceeds as follows:

• As before, we start by switching the honest users’ public keys 𝑐1, . . . , 𝑐𝑛 ← PKE.Enc(pk, 0) to encryptions of 0.

• Next, we sample the hash key hk to be statistically function-binding for the function 𝑓𝑔 (𝑐1, . . . , 𝑐𝑛) where 𝑓𝑔
is the disjunction-of-predicates function from Eq. (1.1) and 𝑔(𝑐) = PKE.Dec(sk, 𝑐), and sk is the decryption
key associated with pk in the public-key encryption scheme. Observe now that in the challenge ciphertext,
𝑓𝑔 (𝑐1, . . . , 𝑐𝑛) = 0 since each 𝑐𝑖 is an encryption of 0.

• Security now follows by security of the witness encryption scheme. We claim that with overwhelming
probability over the choice of the hash key hk, the statement (hk, pk, dig) is false. Take any candidate witness
(𝑖, 𝑐, 𝜋, 𝑟 ). For this to be a valid witness, it must be the case that 𝑐 = PKE.Enc(pk, 1; 𝑟 ) and 𝜋 is a valid opening
for (𝑖, 𝑐) with respect to (hk, dig) where dig = 𝐻 (hk, (𝑐1, . . . , 𝑐𝑛)). Since 𝑐 is an encryption of 1, 𝑔(𝑐) = 1. Since
𝑓𝑔 is a disjunction, the output of 𝑓𝑔 on any tuple of inputs that includes 𝑐 is necessarily 1 ≠ 0 = 𝑓𝑔 (𝑐1, . . . , 𝑐𝑛).
Function-binding security now says that there does not exist any valid 𝜋 for (𝑖, 𝑐) with respect to (hk, dig).

The use of the function-binding hash function eliminates the need for a step-by-step hybrid strategy. As such, we can
rely directly on plain witness encryption to complete the analysis. This yields the first flexible (and correspondingly,
distributed) broadcast encryption scheme that does not rely on 𝑖O. Like the Boneh-Zhandry distributed broadcast
encryption scheme from 𝑖O, the size of the ciphertexts in our scheme scale with poly(_, log𝑛), where 𝑛 is the number
of users in the broadcast set. We provide the full construction and analysis in Section 4.

Optimal broadcast encryption. A flexible broadcast encryption scheme immediately implies a traditional broadcast
encryption scheme with a central key issuer. Here, the central key issuer would generate the public/private keys for
all of the users and publish the public keys for each user as the master public key for the broadcast encryption system.
Instantiated with our flexible broadcast encryption scheme, this yields a construction with a linear-size public key,
but short ciphertexts and secret keys (scaling polylogarithmically with the number of users). It is straightforward to
extend our scheme to an optimal broadcast encryption where the size of the public key also scales polylogarithmically
with the number of users by working in the random oracle model.

The reason our basic approach has a linear-size public key is because we concatenate 𝑛 user keys 𝑐1, . . . , 𝑐𝑛 to form
the master public key for the broadcast encryption scheme. The key idea behind our optimal broadcast encryption
scheme is to instead derive each user’s public key from a hash of the user index 𝑖: that is, we compute 𝑐𝑖 ← ℎ(𝑖),
where ℎ is modeled as a random oracle. On the one hand, the master public key only needs to contain the public
parameters for our flexible broadcast encryption system, which is now independent of the number of users in the
scheme. On the flip side, we need a way to generate decryption keys for the users.

To recover functionality, we start with a more general view of our scheme. Recall that in our scheme, an honestly-
generated public key 𝑐𝑖 is an encryption of 1 and the associated secret key is a proof that 𝑐𝑖 is an encryption of 1. In
this case, the proof is the encryption randomness. In the security analysis, each 𝑐𝑖 is replaced with an encryption
of 0. In this case, there no longer exists a proof (i.e., encryption randomness) that asserts 𝑐𝑖 to be an encryption of
1. We can more abstractly view this as implementing a set system where the honestly-generated public keys 𝑐𝑖 are
elements of some set 𝑆 (i.e., encryptions of 1 in our case), and the associated secret key is a (statistically sound) proof
of membership that 𝑐𝑖 ∈ 𝑆 . In the security proof, the public keys are sampled from some set 𝑇 that is disjoint from 𝑆

(i.e., encryptions of 0 in our case). Finally, we also require that a random element in 𝑆 should be computationally
indistinguishable from a random element in 𝑇 so we can change the distribution of the honest users’ keys in the
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security proof. Now, suppose we can construct sets 𝑆,𝑇 ⊆ {0, 1}𝑘 where 𝑆 is dense (i.e., a random element in {0, 1}𝑘
is contained in 𝑆 with all but negligible probability), and moreover, given a trapdoor, it is possible to construct a proof
of membership for any element 𝑐 ∈ 𝑆 . We refer to this notion as a “trapdoor proof system.” Trapdoor proof systems
can be constructed in a straightforward manner from a non-interactive zero-knowledge proof in conjunction with a
public-key encryption scheme with pseudorandom ciphertexts (see Section 5.1). Using a trapdoor proof system, we
can now adapt our flexible broadcast encryption scheme to obtain an optimal broadcast encryption scheme in the
random oracle model:

• The setup algorithm for the broadcast encryption scheme samples a trapdoor td for our trapdoor proof system.
Let 𝑆,𝑇 ⊆ {0, 1}𝑘 be the sets associated with the trapdoor proof system. Let ℎ : [𝑛] → {0, 1}𝑘 be a hash function
that is modeled as a random oracle.

• The public key for user 𝑖 is 𝑐𝑖 ← ℎ(𝑖). With overwhelming probability, 𝑐𝑖 ∈ 𝑆 . The secret key 𝑟𝑖 is a proof of
membership that 𝑐𝑖 ∈ 𝑆 , which can be sampled using the trapdoor td for the trapdoor proof system.

• Encryption and decryption proceed exactly as in the flexible broadcast encryption scheme.

The security analysis also proceeds analogously to that for our flexible broadcast encryption scheme. Namely, we
first move the honest users’ public keys from 𝑆 to 𝑇 (so no proofs of membership exist), and then appeal to statistical
function-binding and security of witness encryption. We refer to Section 5 for the full details.

Registered attribute-based encryption. In Section 6, we show that function-binding hash functions and plain
witness encryption can also be used to obtain a registered ABE scheme that supports an arbitrary number of
users and supporting general policies. Previously, this was also only known from indistinguishability obfusca-
tion [HLWW23]. Non-obfuscation-based constructions of registered ABE could only support a bounded number
of users [HLWW23] or support less-expressive policies such as Boolean formulas [HLWW23] or equality pred-
icates [GHMR18, GHM+19, GV20, CES21, GKMR23]. We sketch the basic idea here (which closely parallels the
𝑖O-based approach from [HLWW23]):

• The common reference string for the registered ABE scheme consists of a public key pk for a public-key
encryption scheme and the hash key for a function-binding hash function.

• As in our flexible broadcast encryption scheme, to generate a public key, a user samples randomness 𝑟 and
computes their public key as 𝑐 = PKE.Enc(pk, 1; 𝑟 ). Their secret key is the encryption randomness 𝑟 .

• Suppose 𝑛 users register with public keys (𝑐1, . . . , 𝑐𝑛) and attributes (𝑥1, . . . , 𝑥𝑛). The aggregated public key
is a hash of the public keys and associated attributes: mpk = dig = 𝐻 (hk, ((𝑐1, 𝑥1), . . . , (𝑐𝑛, 𝑥𝑛))). The helper
decryption key for user 𝑖 is an opening 𝜋𝑖 for (𝑐𝑖 , 𝑥𝑖 ) with respect to (hk, dig).

• An encryption of message𝑚 under a policy P consists of a witness encryption ciphertext for𝑚 with respect to
the statement (pk, hk, dig,P). A witness (𝑖, 𝑐, 𝑥, 𝜋, 𝑟 ) is valid if the following holds:

– Valid opening: The opening 𝜋 is a valid opening for (𝑐, 𝑥) at index 𝑖 with respect to (hk, dig).
– Policy satisfiability: The associated attribute satisfies the policy: P(𝑥) = 1.
– Knowledge of secret key: The pair (𝑐, 𝑟 ) is a valid public/secret key-pair: 𝑐 = PKE.Enc(pk, 1; 𝑟 ).

We show that this scheme is secure in a selective model where the adversary commits to its challenge policy P at the
beginning of the security game. The security proof follows a similar hybrid structure as the security proof for our
flexible broadcast encryption scheme:

• We first replace the honest users’ public keys with encryptions of 0.

• Next, we sample the hash key to be statistically function-binding for the function 𝑓𝑔 ((𝑐1, 𝑥1), . . . , (𝑐𝑛, 𝑥𝑛)) where
𝑓𝑔 is the disjunction-of-predicates function from Eq. (1.1) and 𝑔(𝑐, 𝑥) B PKE.Dec(sk, 𝑐) ∧ P(𝑥). Since we need
to program the challenge policy P into the hash key, we are only able to argue selective security.
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• Security now follows by security of the witness encryption scheme. Specifically, with overwhelming probability
over the choice of the hash key, the statement (hk, pk, dig) is false. This is because 𝑓𝑔 ((𝑐1, 𝑥1), . . . , (𝑐𝑛, 𝑥𝑛)) = 0
by construction3 whereas a valid witness (𝑖, 𝑐, 𝑥, 𝜋, 𝑟 ) must satisfy 𝑔(𝑐, 𝑥) = 1.

Constructing function-binding hash functions. To complete the loop, we finally show how to construct function-
binding hash functions. In this work, we describe a construction that supports the disjunction-of-blocks family of
functions 𝑓𝑔 (for arbitrary 𝑔) from Eq. (1.1). This is the function family used in our applications to flexible broadcast
encryption and registered ABE. Our construction proceeds very similarly to the construction of SSB hash functions
from fully homomorphic encryption [HW15].

Specifically, let (𝑥1, . . . , 𝑥𝑛) be the input to our function-binding hash function; for ease of exposition, suppose that
𝑛 = 2𝑑 is a power of two. We combine a Merkle tree [Mer89] with a (leveled) homomorphic encryption scheme. We
construct a complete binary tree of depth 𝑑 , where the leaves of the binary tree are associated with the labels 𝑥1, . . . , 𝑥𝑛 .
At the base level (the leaves), we homomorphically evaluate the function 𝑔 on the input. Note that the description of
𝑔 itself is encrypted as part of the hash key, since we require the hash key to hide the function. The value of each
internal node is then obtained by homomorphically evaluated the or function on its child ciphertexts. Observe that
at the end of this process, the root of the tree will be an encryption of 𝑓𝑔 (𝑥1, . . . , 𝑥𝑛). The function-binding property
now follows from (perfect) correctness of the encryption scheme. We provide the full details and proof in Section 3.1.

From selective to adaptive security in the random oracle model. The aforementioned constructions of flexi-
ble/optimal broadcast encryption and registered ABE all satisfy a selective notion of security where the adversary
has to pre-commit to the set of corrupted users in the security game. We do note that our flexible/optimal broadcast
encryption schemes, however, satisfy a stronger notion of “semi-static security” [GW09] where the adversary only
needs to commit to a super-set of its challenge set (but is not allowed to corrupt any users in its committed set).
Previously, Gentry and Waters [GW09] showed that a broadcast encryption scheme with semi-static security implies
an adaptively-secure scheme in the random oracle model. Using the techniques of [GW09], we show in Appendix B
how to transform the flexible broadcast encryption scheme above into one that satisfies adaptive security in the
random oracle model. Similarly, our registered ABE construction described above satisfies a weaker policy-selective
security without corruption queries. Namely, in the security game, the adversary has to declare its challenge policy
upfront and it is not allowed to corrupt honestly-generated keys (but it can still generate its own keys and register
those). We show in Appendix C that in the random oracle model, we can apply a similar approach based on [GW09]
to support corruption queries in our registered ABE scheme.4 We note that the 𝑖O-based construction of registered
ABE of [HLWW23] achieves full adaptive security. We leave it as an open question to satisfy this stronger notion
from plain witness encryption.

Flexible broadcast encryption from registered ABE. As a final contribution, we also show that a registered ABE
scheme generically implies a flexible broadcast encryption scheme.5 The idea is simple: the public parameters for
the flexible broadcast encryption scheme is the CRS for the registered ABE scheme. Now, to broadcast to a set of
public keys (pk1, . . . , pk𝑛), the encrypter initializes a registered ABE scheme and registers pk1, . . . , pk𝑛 to a dummy
attribute 𝑥 to obtain a master public key mpk. It then encrypts the message𝑚 with respect to the master public key
and a dummy policy 𝑃 where 𝑃 (𝑥) = 1. To decrypt, a user would run the registration algorithm itself, derive the
associated helper decryption key, and combine with their own secret key to recover the message𝑚. We describe this
transformation in Section 7.

By applying the generic transformation to our registered ABE scheme, we obtain another approach for constructing
flexible broadcast encryption from witness encryption and function-binding hash functions. We do note though that
the flexible broadcast encryption scheme obtained via this generic approach satisfies a weaker notion of static security
3Specifically, if 𝑐𝑖 is the public key of an honest user, then PKE.Dec(sk, 𝑐𝑖 ) = 0 whereas if 𝑥𝑖 belongs to a corrupted user, then P(𝑥𝑖 ) = 0 by the
admissibility restriction on the registered ABE adversary. In either case, 𝑔 (𝑐𝑖 , 𝑥𝑖 ) = 0 for all 𝑖 ∈ [𝑛].

4The transformed scheme is still policy-selective; however, this can be removed generically via complexity leveraging and assuming subexponential
hardness. Note that one cannot use complexity leveraging to handle corruption queries without having the ciphertext size grow with the number
of registered users.

5Note that the direct approach of encoding the broadcast set as part of the policy in the ABE scheme does not yield a flexible broadcast encryption
scheme with the required efficiency. Namely, in existing registered ABE schemes (including the one in this work), the size of the ciphertext scales
with the size of the policy. Using this to implement broadcast encryption yields a flexible broadcast encryption scheme where the size of the
ciphertext scales linearly with the number of users.
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(as opposed to semi-static security). Thus, the generic transformation does not subsume our direct construction of
flexible broadcast encryption which satisfies semi-static security. As noted above, a semi-statically secure scheme can
be bootstrapped to an adaptively-secure one in the random oracle model, but a similar transformation is not known if
we start from a statically-secure scheme.

The transformation described here critically assumes that the key-generation process is “stateless:” namely, users
can independently generate their keys without knowledge of the current state of the key curator. In schemes like
the pairing-based construction of [HLWW23], the registration process is not stateless and users need to know the
current number of registered users when registering. In this setting, our transformation can still be applied to obtain
a distributed broadcast encryption scheme from assumptions over pairing groups. We provide additional details in
Remark 7.6. Ultimately, in conjunction with [HLWW23], we also obtain the first distributed broadcast encryption
scheme from pairing-based assumptions (over a composite-order group). The resulting scheme supports an a priori
bounded number of users, requires a quadratic-size CRS (inherited from [HLWW23]), and satisfies static security.

2 Preliminaries
In this section, we introduce the notation and definitions of standard cryptographic primitives that we use in this
paper. We let N = {1, 2, 3, . . .} denote the set of natural numbers, and for any 𝑛 ∈ N, we write [𝑛] to denote the
set [𝑛] = {1, . . . , 𝑛}. For integers 𝑎, 𝑏 ∈ Z with 𝑎 ≤ 𝑏, we write [𝑎, 𝑏] to denote the set {𝑎, 𝑎 + 1, . . . , 𝑏}. For a set Σ,
referred to as the alphabet, we denote Σ∗ the set of strings consisting of 0 or more elements from Σ. We let Σ𝑛 denote
the set of 𝑛-character strings from Σ and Σ≤𝑛 the set of string of length at most 𝑛. For a string 𝑠 ∈ Σ∗, we let |𝑠 | denote
the length of 𝑠 . Unless specified otherwise, we assume that a string 𝑠 is defined over the binary alphabet {0, 1}.

We write _ ∈ N to denote the security parameter. We say that a function 𝑝 : N→ N is in the set poly(_) and is
polynomially-bounded if there exists a constant 𝑐 and an index 𝑖 ∈ N such that 𝑝 (_) ≤ _𝑐 for all _ ≥ 𝑖 . We say that a
function negl : N→ R is negligible if for every constant 𝑐 > 0 there exists 𝑖 ∈ N such that negl(_) ≤ _−𝑐 for all _ ≥ 𝑖 .

We use PPT to denote the acronym probabilistic polynomial time. We say that an algorithm is stateful if when
invoked multiple times in succession, it implicitly takes its entire view so far, including previous inputs and random
coins used, as input. We say that a function 𝑓 : N→ N is efficiently computable if there exists a PPT algorithm that
computes 𝑓 on all inputs.

For a distribution𝑋 , we write 𝑥 ← 𝑋 to denote the process of sampling a value 𝑥 from the distribution𝑋 . For a set
X, we use 𝑥 r← X to denote the process of sampling a value 𝑥 from the uniform distribution over X. We use 𝑥 = 𝐴(·)
to denote the output of a deterministic algorithm and 𝑥 ← 𝐴(·) to denote the output of a randomized algorithm. We
write 𝑥 ← 𝐴(𝑦; 𝑟 ) to denote the output of running the randomized algorithm 𝐴 on input 𝑦 with explicit randomness
𝑟 . We write 𝑥 B 𝑦 to denote the assignment of value 𝑦 to 𝑥 . For a distribution 𝐷 , we define Supp (𝐷) to denote the
support of the distribution 𝐷 .

Boolean circuits. A Boolean circuit consist of input and output wires (each labeled with a bit) and gates (either and,
or, or not gates unless specified otherwise) that are arranged according to a directed acyclic graph. We define the
size of a circuit to be the number of input/output wires and gates in the circuit. We assume a canonical description for
all Boolean circuits of a given size. We define the circuit depth to be the depth of the graph representing the circuit.

Message spaces. For a function 𝑚 : N → N, we say that a sequence M = {M_}_∈N is a message space with
message-length𝑚 if for every msg ∈ M_ , |msg| = 𝑚(_). We reserve the special character ⊥ to denote an invalid
message.

Languages and witness relations. We consider sequences of languages L = {L_}_∈N that are parameterized
by a security parameter _. We say that a language has instance length 𝑚 = 𝑚(_) if for all security parameters
_ ∈ N and statements 𝑥 ∈ L_ , we have that |𝑥 | =𝑚(_). We say a language L = {L_}_∈N is polynomially-bounded
if there exists a polynomial 𝑝 such that for all _ ∈ N, max{|𝑥 | : 𝑥 ∈ L_} ≤ 𝑝 (_). A witness relation for an NP
language L = {L_}_∈N with instances of length𝑚 is a deterministic, binary relation RL that can be computed in
time poly(_,𝑚(_)) and characterizes L by L_ = {𝑥 : ∃𝑤, (1_, 𝑥,𝑤) ∈ RL}. We say that a string 𝑤 ∈ {0, 1}∗ is a
witness for an instance 𝑥 ∈ L_ if (1_, 𝑥,𝑤) ∈ RL . We let RL (1_, 𝑥) denote the set of all witnesses for 𝑥 : namely,
RL (1_, 𝑥) = {𝑤 : RL (1_, 𝑥,𝑤) = 1}. We say that L is efficiently samplable with ℓ uniform bits if there exists an
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efficient algorithm Sample such that

{𝑥 ← Sample(1_ ; 𝑟 ) : 𝑟 r← {0, 1}ℓ } ≡ {𝑥 r← L_}.

We say that L is efficiently-recognizable if there exists an efficient algorithm Decide that takes as input the security
parameter _ and an instance 𝑥 ∈ {0, 1}𝑚 and outputs whether 𝑥 ∈ L_ .

2.1 Witness Encryption
Witness encryption [GGSW13] allows users to encrypt a message with respect to an instance 𝑥 of an NP language
L. Anyone who has a corresponding witness𝑤 for 𝑥 should be able to decrypt, whereas if 𝑥 is false, the ciphertext
should computationally hide the underlying message. We formalize this as follows.

Definition 2.1 (Witness Encryption). Let𝑚 ∈ poly(_) andM = {M_}_∈N be a message space of length𝑚. A witness
encryption scheme WE for an NP language L = {L_}_∈N with instance length 𝑛 = 𝑛(_) and witness relation RL
consists of polynomial-time algorithms (Enc,Dec) with the following syntax:

• Enc(1_,msg, 𝑥) → ct: A probabilistic algorithm that on input a security parameter _, a message msg ∈ M_ ,
and an instance 𝑥 for the language L, outputs a ciphertext ct. We implicitly assume that ct includes 1_ and 𝑥 .

• Dec(ct,𝑤) → msg: A deterministic algorithm that on input a ciphertext ct and a witness𝑤 , outputs a message
msg ∈ M_ ∪ {⊥}.

We require that (Enc,Dec) satisfy the following properties:

• (Perfect) correctness: For all _ ∈ N, messages msg ∈ M_ , and tuples (1_, 𝑥,𝑤) ∈ RL , it holds that

Pr
[
ct← Enc(1_,msg, 𝑥) : Dec(ct,𝑤) = msg

]
= 1.

• Message indistinguishability: For all stateful PPT algorithms 𝐴, there exists a negligible function negl such
that for all _ ∈ N, it holds that

Pr


(𝑥,msg0,msg1) ← 𝐴(1_)
𝑏

r← {0, 1}
ct★← Enc(1_,msg𝑏, 𝑥)
𝑏′ ← 𝐴(ct★)

: 𝑥 ∉ L_ ∧ 𝑏′ = 𝑏

 ≤ 1/2 + negl(_).

2.2 Public-Key Encryption
We recall the standard definition of semantically-secure public-key encryption.

Definition 2.2 (Public-Key Encryption). Let𝑚 ∈ poly(_) andM = {M_}_∈N be a message space of length𝑚. A
(semantically-secure) public-key encryption scheme PKE for message spaceM consists of polynomial-time algorithms
(KeyGen, Enc,Dec) with the following syntax:

• KeyGen(1_) → (pk, sk): A probabilistic algorithm that on input a security parameter _, outputs a public key
pk and a secret key sk. We implicitly assume that pk includes 1_ and sk includes pk.

• Enc(pk,msg) → ct: A probabilistic algorithm that on input a public key pk and a message msg ∈ M_ , outputs
a ciphertext ct.

• Dec(sk, ct) → msg: A deterministic algorithm that on input a secret key sk and a ciphertext ct, outputs a
message msg ∈ M_ ∪ {⊥}.

We require that (KeyGen, Enc,Dec) satisfy the following properties:
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• (Perfect) correctness: For all _ ∈ N, messages msg ∈ M_ , it holds that

Pr
[
(pk, sk) ← KeyGen(1_)
ct← Enc(pk,msg) : Dec(sk, ct) = msg

]
= 1.

• Semantic security: For all stateful PPT algorithms 𝐴, there exists a negligible function negl such that for all
_ ∈ N, it holds that

Pr


(pk, sk) ← KeyGen(1_)
(msg0,msg1) ← 𝐴(pk)
𝑏

r← {0, 1}
ct★← Enc(pk,msg𝑏)
𝑏′ ← 𝐴(ct★)

: 𝑏′ = 𝑏


≤ 1/2 + negl(_).

We say that the encryption scheme is a bit encryption scheme ifM_ = {0, 1} for all _ ∈ N.

Remark 2.3 (Randomness Complexity). We assume for simplicity that the algorithms KeyGen, Enc in Definition 2.2
use at most _ bits of randomness. This is without loss of generality since we can always expand the randomness
using a pseudorandom generator (PRG).

2.3 Leveled Homomorphic Encryption
A (public-key) leveled homomorphic encryption scheme [Gen09] enables homomorphic evaluation on encrypted
messages. Specifically, given any ciphertext ct encrypting a message 𝑥 and a circuit 𝐶 , the evaluation algorithm
outputs a ciphertext for the message 𝐶 (𝑥). A leveled homomorphic encryption scheme can only support circuits 𝐶
with a priori bounded depth (specified during key generation). We formalize this as follows:

Definition 2.4 (Leveled Homomorphic Encryption). Let𝑚 ∈ poly(_) andM = {M_}_∈N be a message space of
length𝑚. A (public-key) leveled homomorphic encryption scheme LHE for a message spaceM consists of polynomial-
time algorithms (KeyGen, Enc,Dec, Eval), where (Enc,Dec) have syntax corresponding to a standard public-key
encryption scheme, and (KeyGen, Eval) have the following syntax:

• KeyGen(1_, 1𝐿) → (pk, sk): A probabilistic algorithm that on input a security parameter _ and a depth bound
𝐿, outputs a public key pk and a secret key sk. We implicitly assume that pk includes 1_ and 1𝐿 and sk includes
pk.

• Eval(pk,𝐶, ct) → ct′: A deterministic algorithm that on input a public key pk, a Boolean circuit 𝐶 , and a
ciphertext ct, outputs another ciphertext ct′.

We require that (KeyGen, Enc,Dec) is a correct public-key encryption scheme for all depth bounds 𝐿 ∈ N given
to KeyGen and satisfies semantic security for all polynomially-bounded depth bounds 𝐿(_) given to KeyGen. We
additionally require the following properties:

• Correct evaluation: For any _ ∈ N, 𝐿 ∈ N, 𝑥 ∈ M_ , and Boolean circuits 𝐶 of depth at most 𝐿, it holds that

Pr

(pk, sk) ← KeyGen(1_, 1𝐿)
ct← Enc(pk, 𝑥)
ct′ = Eval(pk,𝐶, ct)

: Dec(sk, ct′) = 𝐶 (𝑥)
 = 1.

• Compactness: There exists a polynomial 𝑝 such that for any _ ∈ N, 𝐿 ∈ N, public/private key-pair (pk, sk) ∈
Supp

(
KeyGen(1_, 1𝐿)

)
, message 𝑥 ∈ M_ , ct ∈ Supp (Enc(pk, 𝑥)), and Boolean circuit 𝐶 of depth at most 𝐿, it

holds that
|Eval(pk,𝐶, ct) | ≤ 𝑝 (_, 𝐿, |𝐶 (𝑥) |).
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We emphasize that the definition above stipulates perfect correctness, meaning that any honestly generated
ciphertext (output from either encryption or the result of evaluation) corresponding to a message𝑚 will correctly
decrypt to𝑚. We use this property to guarantee statistical function binding in our construction of Section 3.

Polylogarithmic depth decryption. A long sequence of works (c.f., [BV11, BGV12, Bra12, GSW13]) have shown
how to construct leveled homomorphic encryption schemes from the plain learning with errors (LWE) assumption.
Moreover, in these constructions, the decryption circuit can be computed by a circuit of polylogarithmic depth, which
we formally define as follows:

Definition 2.5 (Polylogarithmic Depth Decryption). We say that a leveled homomorphic encryption scheme LHE =

(KeyGen, Enc,Dec, Eval) supports polylogarithmic depth decryption if there exists a polynomial 𝑝 such that for any
_ ∈ N, 𝐿 ∈ N, public/private key-pair (pk, sk) ∈ Supp

(
KeyGen(1_, 1𝐿)

)
, the depth of the decryption circuit computing

Dec(sk, ·) is at most 𝑝 (log _, log𝐿).

Theorem 2.6 (Leveled Homomorphic Encryption, [BV11, BGV12, Bra12, GSW13]). Assuming the plain learning with
errors (LWE) problem, there exists a leveled homomorphic encryption scheme LHE with polylogarithmic depth decryption.

3 Function-Binding Hash Functions
In this section, we introduce the notion of a function-binding hash function. In the following, we consider the setting
where the hash function satisfies statistical function binding and computational function hiding. This is the notion we
rely on for our applications. However, we note that we can easily consider alternative notions where where function
binding is computational or function hiding is statistical.

Definition 3.1 (Function-Binding Hash Function). Let ℓblk = ℓblk (_) be the block size, ℓout = ℓout (_) be the output size.
Let F = {F_}_∈N be a class of functions where each F_ is a collection of functions 𝑓 : ({0, 1}ℓblk (_) )∗ → {0, 1}ℓout (_)
implementable by a circuit of size at most 𝑠 (_) ·poly(𝑘), where 𝑘 is the number of input blocks to 𝑓 . A function-binding
hash function for F is a tuple of polynomial-time algorithms (Setup, SetupBinding,Hash, ProveOpen,VerOpen) with
the following syntax:

• Setup(1_, 𝑛) → hk: A probabilistic algorithm that on input a security parameter _ and a bound on the number
of input blocks 𝑛 (in binary), outputs a hash key hk. We implicitly assume that hk includes 1_ and 𝑛.

• SetupBinding(1_, 𝑛, 𝑓 ) → hk: A probabilistic algorithm that on input a security parameter _, a bound on the
number of input blocks 𝑛, and a function 𝑓 ∈ F_ , outputs a hash key hk. We implicitly assume that hk includes
1_ and 𝑛.

• Hash(hk, (hinp1, . . . , hinp𝑘 )) → dig: A deterministic algorithm that on input a hash key hk and hash inputs
(hinp1, . . . , hinp𝑘 ) ∈ ({0, 1}ℓblk (_) )𝑘 for some 𝑘 ≤ 𝑛, outputs a digest dig.

• ProveOpen(hk, (hinp1, . . . , hinp𝑘 ), 𝑆) → 𝜋 : A deterministic algorithm that on input a hash key hk, a sequence
of hash inputs (hinp1, . . . , hinp𝑘 ) ∈ ({0, 1}ℓblk (_) )𝑘 for any 𝑘 ≤ 𝑛, and a subset of indices 𝑆 ⊆ [𝑘], outputs a
proof 𝜋 .

• VerOpen(hk, dig, 𝑆, {(𝑖, hinp𝑖 )}𝑖∈𝑆 , 𝜋) → {0, 1}: A deterministic algorithm that on input a hash key hk, a digest
dig, a subset 𝑆 ⊆ [𝑘] for any 𝑘 ≤ 𝑛, a set of hash inputs {(𝑖, hinp𝑖 )}𝑖∈𝑆 where each hinp𝑖 ∈ {0, 1}ℓblk (_) , and a
proof 𝜋 , outputs a bit 𝑏 ∈ {0, 1}.

We require that (Setup, SetupBinding,Hash, ProveOpen,VerOpen) satisfy the following properties:

• Efficiency: There exist polynomials 𝑝1, 𝑝2, 𝑝3 such that for all parameters _ ∈ N, 𝑘 ∈ N, 𝑛 ∈ N with 𝑘 ≤
𝑛, any function 𝑓 ∈ F_ , any hash key hk ∈ Supp

(
Setup(1_, 𝑛)

)
, any tuple of inputs (hinp1, . . . , hinp𝑘 ) ∈

({0, 1}ℓblk (_) )𝑘 , any digest dig ∈ Supp
(
Hash(hk, (hinp1, . . . , hinp𝑘 ))

)
, any subset 𝑆 ⊆ [𝑘], and any proof

𝜋 ∈ Supp
(
ProveOpen(hk, (hinp1, . . . , hinp𝑘 ), 𝑆)

)
, the following hold:

– Setup(1_, 𝑛) and SetupBinding(1_, 𝑛, 𝑓 ) run in time 𝑝1 (_, 𝑠 (_), log𝑛);
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– |dig| ≤ 𝑝2 (_, ℓout (_), log𝑘); and
– |𝜋 | ≤ |𝑆 | · 𝑝3 (_, ℓout (_), log𝑘).

• Perfect completeness: For all parameters _ ∈ N, 𝑘 ∈ N, 𝑛 ∈ N with 𝑘 ≤ 𝑛, inputs (hinp1, . . . , hinp𝑘 ) ∈
({0, 1}ℓblk (_) )𝑘 , and subsets 𝑆 ⊆ [𝑘], it holds that

Pr


hk← Setup(1_, 𝑛)
dig = Hash(hk, (hinp1, . . . , hinp𝑘 ))
𝜋 = ProveOpen(hk, (hinp1, . . . , hinp𝑘 ), 𝑆)
𝑏 = VerOpen(hk, dig, 𝑆, {(𝑖, hinp𝑖 )}𝑖∈𝑆 , 𝜋)

: 𝑏 = 1

 = 1.

• Statistical function binding: For all stateful unbounded adversaries 𝐴 and efficiently-computable functions
𝑛 ∈ poly(_), there exists a negligible function negl such that for all _ ∈ N,

Pr
[
ExptFB

𝐴,𝑛 (_) (_) = 1
]
≤ negl(_),

where ExptFB
𝐴,𝑛
(_) is defined via the following security game between the adversary 𝐴 and a challenger on

common input 1_ :

1. On input the security parameter _, 𝐴 outputs a function 𝑓 ∈ F_ .
2. The challenger samples a hash key hk← SetupBinding(1_, 𝑛, 𝑓 ) for the function 𝑓 and gives hk to 𝐴.
3. Algorithm 𝐴 outputs a sequences of hash inputs (hinp1, . . . , hinp𝑘 ) where each hinp𝑖 ∈ {0, 1}ℓblk (_) and

𝑘 ≤ 𝑛. Additionally, 𝐴 outputs a set 𝑆 ⊆ [𝑘] with associated values {(𝑖, hinp★𝑖 )}𝑖∈𝑆 and a proof 𝜋 .
4. The experiment outputs 0 if there exists an extension of remaining inputs {( 𝑗, hinp★𝑗 )} 𝑗∈[𝑘 ]\𝑆 such that

𝑓 (hinp1, . . . , hinp𝑘 ) = 𝑓 (hinp★1 , . . . , hinp★𝑘 ). Otherwise, let dig = Hash(hk, (hinp1, . . . , hinp𝑘 )). The
output of the experiment is VerOpen(hk, dig, 𝑆, {(𝑖, hinp★𝑖 )}𝑖∈𝑆 , 𝜋).

• Computational function hiding: For all stateful PPT algorithms 𝐴 and efficiently-computable functions
𝑛 ∈ poly(_), there exists a negligible function negl such that for all _ ∈ N, it holds that

Pr


𝑓 ← 𝐴(1_)
hk0 ← Setup(1_, 𝑛(_))
hk1 ← SetupBinding(1_, 𝑛(_), 𝑓 )
𝑏

r← {0, 1}

: 𝑓 ∈ F_ ∧𝐴(hk𝑏) = 𝑏

 ≤ 1/2 + negl(_).

Remark 3.2 (Somewhere Statistically Binding Hash Functions). Definition 3.1 captures the notion of a somewhere
statistically binding hashing [HW15] as a special case where the function class F is the class of index functions (i.e.,
functions 𝑓𝑖 where 𝑓𝑖 (hinp1, . . . , hinp𝑛) = hinp𝑖 ).

3.1 Function-Binding Hash Functions for Disjunctions of Block Functions
We construct a function-binding hash for the function class consisting of disjunctions of block functions:

Definition 3.3 (Disjunction of Block Functions). Let ℓblk = ℓblk (_) be an input length parameter. We say a function
𝑓𝑔 : ({0, 1}ℓblk )∗ → {0, 1} is a disjunction of block function if we can express it as

𝑓𝑔 (𝑥1, . . . , 𝑥𝑘 ) =
∨
𝑖∈[𝑘 ]

𝑔(𝑥𝑖 ), (3.1)

and where the function 𝑔 : {0, 1}ℓblk → {0, 1} is a predicate on ℓblk-bit inputs. We say that F = {F_}_∈N is the class of
disjunctions for block functions with input length ℓblk = ℓblk (_), size 𝑠 = 𝑠 (_), and depth 𝑑 = 𝑑 (_) if F_ contains all
functions 𝑓𝑔 : ({0, 1}ℓblk )∗ → {0, 1} where the function 𝑔 can be computed by a Boolean circuit of size 𝑠 and depth 𝑑 .
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Our construction closely follows the construction of somewhere statistically binding hash functions of [HW15],
which uses a Merkle tree [Mer89] where the underlying two-to-one hash function is built from a leveled homomorphic
encryption scheme. We first introduce some preliminary notation and background on Merkle trees and then describe
our full construction.
Merkle tree preliminaries. We recall some preliminary definitions regarding Merkle trees [Mer89] that we will use
in our construction. A Merkle tree MT with depth 𝛼 is a complete binary tree with 2𝛼 leaf nodes at level 0 in the
tree. Each leaf node is associated with an arbitrary fixed-length value. The values of the intermediate nodes in level
𝑖 ∈ [0, 𝛼 − 1] is defined by applying a two-to-one hash function to the two values associated with its child nodes. As
such, there are 2𝛼− 𝑗 nodes at level 𝑗 in the treeMT, and a single node at level 𝛼 , which we refer to as the root node.
We view the Merkle tree MT as a directed acyclic graph with edges running from each node to its parent. We index
each node in the tree by a pair ( 𝑗, 𝑖) ∈ [0, 𝛼] × [1, 2𝛼− 𝑗 ] corresponding to its level 𝑗 and its index 𝑖 at level 𝑗 , ordered
from left to right.
Merkle tree notation. We also introduce some helpful notation for referring to different sets of nodes in the tree.
Our treatment follows the generalization of authentication paths in Merkle trees used by [EFKP20]. Let MT be a
depth 𝛼 Merkle tree. For a leaf at index 𝑖 ∈ [2𝛼 ], we write path(𝑖) to denote the set of nodes along the directed path
from leaf 𝑖 to the root. For a set of leaves 𝑆 ⊆ [2𝛼 ], we define the subtree corresponding to 𝑆 , denoted ST(𝑆), to be the
union of all paths associated with the leaf nodes 𝑖 ∈ 𝑆 : ST(𝑆) = ⋃

𝑖∈𝑆 path(𝑖). This is sometimes referred to as the
Steiner tree for 𝑆 (c.f., [NNL01]). We define the sibling of a node ( 𝑗, 𝑖), denoted sib(( 𝑗, 𝑖)), to be the adjacent node in
the tree who shares a parent with the node; this is either node ( 𝑗, 𝑖 − 1) if 𝑖 is even or node ( 𝑗, 𝑖 + 1) is 𝑖 is odd.

Definition 3.4 (Dangling Nodes). Let MT be a depth 𝛼 Merkle tree, and let 𝑆 ⊆ [2𝛼 ]. We define the set dangling(𝑆)
to be the set of nodes “dangling” off of the subtree ST(𝑆). These are the siblings of nodes in ST(𝑆) which are not
contained in ST(𝑆). Formally,

dangling(𝑆) = {sib(node) : node ∈ ST(𝑆) ∧ sib(node) ∉ ST(𝑆)}.

Normally, one can prove membership of a leaf node 𝑖 in a Merkle tree (with respect to a Merkle root) by providing
the values associated with dangling({𝑖}); this is referred to as the authenticating path of 𝑖 . To check the proof of
membership, the verifier uses the value of node 𝑖 together with the values of the nodes in dangling({𝑖}) to compute
the root of the Merkle tree and compare with the given value. More generally, dangling(𝑆) defines an authentication
path for a set of leaves. Namely, given the values of the nodes in 𝑆 together with those in dangling(𝑆), one can again
compute the value of the root. Assuming the underlying two-to-one hash function is collision-resistant, the value
at the root is computationally unique, so the values in dangling(𝑆) can be used to authenticate the values of 𝑆 with
respect to the root.

Construction 3.5 (Function-Binding Hash for Disjunctions). Let ℓblk = ℓblk (_) be an input length parameter. Fix a
size parameter 𝑠𝑔 = 𝑠𝑔 (_) and depth parameter 𝑑𝑔 = 𝑑𝑔 (_). We define the function class F = {F_}_∈N to consist of all
disjunction-of-block-functions 𝑓𝑔 : ({0, 1}ℓblk )∗ → {0, 1} where

𝑓𝑔 (hinp1, . . . , hinp𝑘 ) =
∨
𝑖∈[𝑘 ]

𝑔(hinp𝑖 ), (3.2)

and𝑔 : {0, 1}ℓblk → {0, 1} is a function that can be computed by a Boolean circuit𝐶𝑔 of size 𝑠𝑔 and depth𝑑𝑔 . In particular,
the function 𝑓𝑔 can be computed by a circuit of size at most 𝑠𝑔 (_) · (2𝑘 + 1) ∈ 𝑠𝑔 (_) · poly(𝑘). Our construction relies
on the following building blocks:

• Let𝑈 (·, ·) be a universal circuit that takes as input a circuit 𝐶𝑔 of size 𝑠𝑔 and depth 𝑑𝑔 as well as an input 𝑥 ∈
{0, 1}ℓblk and outputs 𝐶𝑔 (𝑥). Such a universal circuit exists with size 𝑠 ∈ poly(𝑠𝑔) and depth 𝑑0 ∈ 𝑂 (𝑑𝑔) [CH85].

• Let LHE = (KeyGen, Enc,Dec, Eval) be a leveled homomorphic encryption scheme with polylogarithmic depth
decryption (Definition 2.5). Let 𝑑0 (_) ∈ 𝑂 (𝑑𝑔 (_)) be the depth of the universal circuit 𝑈 defined above, and for
𝑗 = 1, 2, . . . , ⌈log2 𝑛⌉, we recursively define 𝑑 𝑗 (_) to be the depth of the decryption circuit LHE.Dec instantiated
with security parameter _ and depth parameter 𝑑 𝑗−1 (_). Note that since LHE supports polylogarithmic depth
decryption, there exists a polynomial 𝑝 such that 𝑑 𝑗 (_) ≤ 𝑝 (_, log 𝑗) for all 𝑗 ∈ [0, ⌈log2 𝑛⌉].
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We show how to construct a function-binding hash for the function family F . We construct the function-binding
hash function FBH = (Setup, SetupBinding,Hash, ProveOpen,VerOpen) for the class of functions F as follows:

• Setup(1_, 𝑛): On input the security parameter _ and a bound on the number of inputs 𝑛 ∈ N, let 𝛼 = ⌈log2 𝑛⌉.
For 𝑗 ∈ [0, 𝛼], sample encryption keys (pk𝑗 , sk𝑗 ) ← LHE.Setup(1_, 1𝑑 𝑗 (_)+1), where 𝑑 𝑗 (_) is defined above. Let
𝑐 𝑗 ← LHE.Enc(pk𝑗 , sk𝑗−1) for 𝑗 ∈ [𝛼]. Let 𝑐𝑔 ← LHE.Enc(pk0, 𝑔⊥) where 𝑔⊥ : {0, 1}ℓblk (_) → {0, 1} is a dummy
circuit of size 𝑠 (_) that outputs 0 on all inputs. Output the hash key hk = (pk0, . . . , pk𝛼 , 𝑐1, . . . , 𝑐𝛼 , 𝑐𝑔).

• SetupBinding(1_, 𝑛, 𝑓𝑔): On input the security parameter _, a bound on the number of inputs 𝑛, and a target
function 𝑓𝑔 ∈ F , the binding setup function samples (pk0, . . . , pk𝛼 , 𝑐1, . . . , 𝑐𝛼 ) exactly as in Setup(1_, 𝑛). It then
samples 𝑐𝑔 ← LHE.Enc(pk0, 𝑔) and outputs the hash key hk = (pk0, . . . , pk𝛼 , 𝑐1, . . . , 𝑐𝛼 , 𝑐𝑔).

• Hash(hk, (hinp1, . . . , hinp𝑘 )): On input the hash key hk = (pk0, . . . , pk𝛼 , 𝑐1, . . . , 𝑐𝛼 , 𝑐𝑔), and a tuple of inputs
(hinp1, . . . , hinp𝑘 ) ∈ ({0, 1}ℓblk )𝑘 , the hash algorithm sets 𝛼 ′ = ⌈log2 𝑘⌉ and 𝑘 ′ = 2𝛼 ′ . Then, for each 𝑖 ∈ [𝑘 ′], it
constructs ciphertexts as follows:

– If 𝑖 ≤ 𝑘 , it homomorphically computes ct𝑖 = LHE.Eval(pk0,𝑈 (·, hinp𝑖 ), 𝑐𝑔) where 𝑈 (·, hinp𝑖 ) is the
universal circuit defined above.

– If 𝑖 > 𝑘 , it deterministically sets ct𝑖 ← LHE.Enc(pk0, 0; 0_) using fixed randomness 0_ .

The hash algorithm now constructs a Merkle tree MT of depth 𝛼 ′:

– It associates leaf 𝑖 with the value ct𝑖 .
– It uses the following two-to-one hash function ℎ 𝑗 to compute the values of the nodes at level 𝑗 ∈ [0, 𝛼 ′]

in the tree (recall that level 0 corresponds to the leaves):

ℎ 𝑗 (node1, node2) B LHE.Eval
(
pk𝑗 , 𝑓node1,node2, 𝑗 , 𝑐 𝑗

)
, (3.3)

where

𝑓node1,node2, 𝑗 (sk) B
{
1 LHE.Dec(sk, node1) = 1 ∨ LHE.Dec(sk, node2) = 1
0 otherwise.

By design, 𝑓node1,node2, 𝑗 can be computed by a circuit of depth 𝑑 𝑗 (_) + 1.

Output dig = (root, 𝑘) where root is the value associated with the root of the Merkle tree MT.

• ProveOpen(hk, (hinp1, . . . , hinp𝑘 ), 𝑆): On input the hash key hk and a tuple of inputs (hinp1, . . . , hinp𝑘 ) ∈
({0, 1}ℓblk )𝑘 , the prove algorithm starts by computing the Merkle tree MT according to the specification of
Hash(hk, (hinp1, . . . , hinp𝑘 )). Let dvals to be a map consisting of the values associated with the nodes in
dangling(𝑆) inMT. Output 𝜋 = dvals.

• VerOpen(hk, dig, 𝑆, {(𝑖, hinp𝑖 )}𝑖∈𝑆 , 𝜋): On input the hash key hk = (pk0, . . . , pk𝛼 , 𝑐1, . . . , 𝑐𝛼 , 𝑐𝑔), a digest dig =

(root, 𝑘), a set 𝑆 , values {(𝑖, hinp𝑖 )}𝑖∈𝑆 , and a proof 𝜋 = dvals, the verification algorithm first checks that
𝑆 ⊆ [𝑘] and moreover that dvals corresponds to dangling(𝑆) for a Merkle tree with 𝑘 ′ = 2⌈log2 (𝑘 ) ⌉ leaves.
If either check fails, it outputs 0. Otherwise, it computes ct𝑖 = LHE.Eval(pk0,𝑈 (·, hinp𝑖 ), 𝑐𝑔) for each 𝑖 ∈ 𝑆 .
Then, using the values of {ct𝑖 }𝑖∈𝑆 together with the values in dvals for the set dangling(𝑆), the verification
algorithm computes the root root′ of the Merkle tree using the two-to-one hash function from the specification
of Hash(hk, ·) (Eq. (3.3)). If root = root′, it outputs 1. Otherwise, it outputs 0.

Correctness and security analysis. We now show that FBH from Construction 3.5 is a secure function binding
hash for F . First, we note that completeness of Construction 3.5 holds by construction since VerOpen and ProveOpen
perform identical operations to compute the dig. As such, VerOpen will always accept on honestly generated proofs.
We proceed to prove efficiency, computational function hiding, and statistical function binding in Theorems 3.6 to 3.8
below:
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Theorem 3.6 (Efficiency). Let 𝑝 = 𝑝 (·, ·) be a fixed polynomial. Assuming that LHE satisfies efficiency and compactness
and 𝑑 𝑗 (_) ≤ 𝑝 (_, log 𝑗) for all _ ∈ N and 𝑗 ∈ [0, ⌈log2 𝑛⌉], then Construction 3.5 satisfies efficiency.

Proof. We show each of the efficiency properties individually:

• Setup efficiency: First, we analyze the efficiency of Setup and SetupBinding. Note that Setup runs LHE.
Setup(1_, 1𝑑 𝑗 (_)+1) for each 𝑗 ∈ [⌈log2 𝑛⌉]. As 𝑑 𝑗 (_) ≤ 𝑝 (_, log 𝑗), this takes time poly(_, log𝑛). Computing
ciphertexts 𝑐1, . . . , 𝑐𝛼 then also takes time poly(_, log𝑛) by the efficiency of LHE. Computing 𝑐𝑔 takes time
poly(_, 𝑠𝑔 (_), log𝑛) as 𝑔⊥ is of size poly(_, 𝑠𝑔 (_)). So, Setup (and SetupBinding by the same argument) runs in
total time poly(_, 𝑠𝑔 (_), log𝑛), as required.

• Digest size: Note that root is an encryption of a bit under LHE for public key pk𝛼 ′ where 𝛼 ′ = ⌈log2 𝑘⌉. As
𝑑𝛼 ′ (_) ≤ 𝑝 (_, log𝛼 ′), it follows by the efficiency and compactness of LHE that |root| ∈ poly(_, log𝑘). Also,
|𝑘 | ≤ 𝛼 ′, so together |dig| ∈ poly(_, log𝑘).

• Proof size: The proof consists of at most |𝑆 | · 𝛼 ′ ciphertexts corresponding to the values of nodes in the Merkle
tree. As argued for the digest size, each of the ciphertexts are of size poly(_, log𝑘), so in total the size of the
proof 𝜋 ∈ |𝑆 | · poly(_, log𝑘), as required. □

Theorem 3.7 (Computational Function Hiding). Assuming LHE is semantically secure, then Construction 3.5 satisfies
computational function hiding.

Proof. Suppose function hiding does not hold. Namely, there exists a stateful PPT algorithm𝐴, a function 𝑛 ∈ poly(_),
and a polynomial 𝑞 such that for infinitely many _ ∈ N,

Pr


𝑓 ← 𝐴(1_)
hk0 ← Setup(1_, 𝑛(_))
hk1 ← SetupBinding(1_, 𝑛(_), 𝑓 )
𝑏

r← {0, 1}

: 𝑓 ∈ F_ ∧𝐴(hk𝑏) = 𝑏

 ≥ 1/2 + 1/𝑞(_).

We construct a stateful algorithm 𝐵 that breaks the semantic security of LHE with depth parameter 𝑑0 (_) + 1. We
define 𝐵 as follows.

1. Algorithm 𝐵 first takes as input a uniformly sampled public key p̂k for the LHE scheme with depth parameter
𝑑0 (_) + 1. It computes 𝑓𝑔 ← 𝐴(1_). Algorithm 𝐵 then outputs (msg0,msg1) where msg1 is the description of
the circuit 𝑔 and msg0 is the description of the dummy circuit 𝑔⊥ (from Setup).

2. Algorithm 𝐵 receives as input a challenge ciphertext ct★ corresponding to msg𝑏 for a random 𝑏
r← {0, 1}.

Algorithm 𝐵 computes Setup(1_, 𝑛(_)) to compute the hash key hk, except it sets 𝑐𝑔 = ct★. Finally, 𝐵 outputs
𝑏′ ← 𝐴(hk).

By construction, if algorithm𝐴 is efficient, then so is 𝐵. It remains to show that 𝐵 succeeds with the correct probability.
Note that whenever the challenge bit 𝑏 = 1, hk is distributed identically to SetupBinding(1_, 𝑛(_), 𝑓𝑔), and whenever
the challenge bit 𝑏 = 0, hk is distributed identically to Setup(1_, 𝑛(_)). Furthermore, whenever 𝑓𝑔 ∈ F_ , it holds that
|𝑔| = |𝑔⊥ | by construction. So, the probability that 𝐵 wins is given by

Pr[𝑏′ = 𝑏] = Pr[𝑏′ = 𝑏 ∧ 𝑓𝑔 ∉ F_] + Pr[𝑏′ = 𝑏 ∧ 𝑓𝑔 ∈ F_] ≥ 1/2 + 1/𝑞(_). □

Theorem 3.8 (Statistical Function Binding). Assuming LHE satisfies perfect correctness, then Construction 3.5 satisfies
function binding.

Proof. Consider any stateful unbounded algorithm 𝐴 and function 𝑛 ∈ poly(_). We prove a stronger statement
and show that perfect function binding holds (i.e., function binding holds for the negligible function negl(_) = 0
for all _ ∈ N). Let 𝑓𝑔 ∈ F_ be any initial function output by 𝐴, and let hk ∈ Supp

(
SetupBinding(1_, 𝑛(_), 𝑓𝑔)

)
.

Let (hinp1, . . . , hinp𝑘 ) for 𝑘 ≤ 𝑛(_) be any set of hash inputs (that may depend on hk) and (root, 𝑘) = dig =
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Hash(hk, (hinp1, . . . , hinp𝑘 )). For any set 𝑆 ⊆ [𝑘], set of inputs {(𝑖, hinp★𝑖 )}𝑖∈𝑆 , and proof 𝜋 = dvals, let 𝑏 =

VerOpen(hk, dig, 𝑆, {(𝑖, hinp★𝑖 )}𝑖∈𝑆 , 𝜋). We show that(
�{( 𝑗, hinp★𝑗 )} 𝑗∈[𝑘 ]\𝑆 : 𝑓𝑔 (hinp1, . . . , hinp𝑘 ) = 𝑓𝑔 (hinp★1 , . . . , hinp★𝑘 )

)
⇒ 𝑏 = 0, (3.4)

which suffices to prove the claim. Specifically, we show the following invariant holds for all of the nodes at level
𝑗 ∈ [0, 𝛼 ′] in the tree:

• If 𝑔(hinp𝑖 ) = 0 for all 𝑖 ∈ [𝑘], then all of the nodes at level 𝑗 in the tree are encryptions of 0 under pk𝑗 .

• Otherwise, if there exists some index 𝑖 ∈ [𝑘] such that 𝑔(hinp𝑖 ) = 1, then there exists some node at level 𝑗 that
is an encryption of 1 under pk𝑗 .

For the root node (at level 𝛼 ′), there is just a single node, so it is either an encryption of 1 if there exists 𝑖 ∈ [𝑘] such
that 𝑔(hinp𝑖 ) = 1 (i.e., 𝑓𝑔 (hinp1, . . . , hinp𝑘 ) = 1) and is an encryption of 0 otherwise (i.e., 𝑓𝑔 (hinp1, . . . , hinp𝑘 ) = 0).
We now show the invariant inductively:

• Base case: For the base case 𝑗 = 0, each leaf node 𝑖 ∈ [𝑘] has value LHE.Eval(pk0,𝑈 (·, hinp𝑖 ), 𝑐𝑔). By correctness
of LHE, this is an encryption of𝑔(hinp𝑖 ). For indices 𝑖 ≥ 𝑘 , each leaf node has value LHE.Eval(pk0,𝑈 (·, hinp𝑖 ), 𝑐⊥),
which is an encryption of 0 by definition of 𝑐⊥ and correctness of LHE. If 𝑔(hinp𝑖 ) = 0 for all 𝑖 ∈ [𝑘], then
every leaf node is an encryption of 0 under pk0. Otherwise, if 𝑔(hinp𝑖 ) = 1 for some 𝑖 ∈ [𝑘], then the 𝑖th leaf
node is an encryption of 1 under pk0. The invariant holds.

• Inductive step: This follows by definition of ℎ 𝑗 in Eq. (3.3). Specifically, suppose there exists a node that is an
encryption of 1 under pk𝑗 at level 𝑗 . Then, this will result in an encryption of 1 under pk𝑗+1 in the next level
𝑗 + 1 (specifically, the parent node of any node that encrypts 1 in level 𝑗 + 1 will also be an encryption of 1 by
construction of Eq. (3.3)). Alternatively, if all of the nodes at level 𝑗 are encryptions of 0 under pk𝑗 , then the
nodes at level 𝑗 + 1 will be encryptions of 0 under pk𝑗+1.

To complete the argument, we now consider the following cases and show that the implication in Eq. (3.4) holds in
each case:

• Case 1a: Suppose 𝑓𝑔 (hinp1, . . . , hinp𝑘 ) = 1 and 𝑆 = [𝑘]. In this case, the inputs hinp★1 , . . . , hinp★𝑘 are all fixed
since 𝑆 = [𝑘]. To show Eq. (3.4) holds, it suffices to show that if 𝑓𝑔 (hinp★1 , . . . , hinp★𝑘 ) = 0, then 𝑏 = 0. Let
root′ be the root of the Merkle tree computed on inputs (hinp★1 , . . . , hinp★𝑘 ). By our invariant above, root′ is
an encryption of 1 under pk𝛼 ′ . At the same time, root is an encryption of 0 = 𝑓𝑔 (hinp1, . . . , hinp𝑘 ) under pk𝛼 ′ .
Perfect correctness of LHE now implies that root ≠ root′, in which case VerOpen outputs 𝑏 = 0.

• Case 1b: Suppose 𝑓𝑔 (hinp1, . . . , hinp𝑘 ) = 1 and 𝑆 ≠ [𝑘]. Since 𝑆 ≠ [𝑘], we can take any hinp★𝑗 for 𝑗 ∉ 𝑆 such that
𝑔(hinp★𝑗 ) = 1. Note that if such an hinp★𝑗 does not exist, then it cannot be the case that 𝑓𝑔 (hinp1, . . . , hinp𝑘 ) = 1.
Thus, there always exists a set of inputs {( 𝑗, hinp★𝑗 )} 𝑗∈𝑆\[𝑘 ] such that 𝑓𝑔 (hinp★1 , . . . , hinp★𝑘 ) = 1. Eq. (3.4) now
holds trivially as the hypothesis is always false in this case.

• Case 2: Suppose 𝑓𝑔 (hinp1, . . . , hinp𝑘 ) = 0. Suppose there exists 𝑖 ∈ 𝑆 where 𝑔(hinp★𝑖 ) = 1 for some 𝑖 ∈ 𝑆 ;
otherwise there always exists values hinp★𝑗 for 𝑗 ∈ [𝑘] \ 𝑆 that make 𝑓𝑔 (hinp★1 , . . . , hinp★𝑘 ) = 0. Let root′ be the
root of the Merkle tree computed on an input that contains hinp★𝑖 . By our invariant above, this means that
root′ is an encryption of 1 under pk𝛼 ′ . However, root is an encryption of 0 = 𝑓𝑔 (hinp1, . . . , hinp𝑘 ) under pk𝛼 ′ .
It again follows that root ≠ root′ by perfect correctness of LHE, so VerOpen outputs 𝑏 = 0, as required. □

4 Flexible Broadcast Encryption
In this section, we introduce the notion of flexible broadcast encryption. As described in Section 1.1, a flexible
broadcast encryption allows anyone to encrypt a message to an arbitrary set of public keys with a ciphertext whose
size scales sublinearly with the size of the broadcast set. Unlike traditional broadcast encryption [FN93], there is no
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central authority that is responsible for issuing decryption keys to users. Instead, users generate their own public
and secret keys, and the encryption algorithm takes in the list of public keys for the users in a broadcast set and
outputs a single short ciphertext that can be decrypted by every member in the broadcast set. Note that this notion of
broadcast encryption implies standard broadcast encryption with short ciphertexts and a long public key (by having
a central broadcast authority generate the keys for each user and publishing all of them as part of the master public
key). Flexible broadcast encryption also generalizes the notion of distributed broadcast encryption introduced by
Boneh and Zhandry [BZ14]. The main difference is that in distributed broadcast encryption, users generate keys with
respect to a specific index and one can broadcast to at most one key for each index. Flexible broadcast encryption
imposes no requirement on the public keys to which one may broadcast. We now give the formal definition:

Definition 4.1 (Flexible Broadcast Encryption). Let𝑚 ∈ poly(_) andM = {M_}_∈N be a message space for messages
of length𝑚. A flexible broadcast encryption scheme FBEwith message spaceM consists of polynomial-time algorithms
(Setup,KeyGen, Enc,Dec) with the following syntax:

• Setup(1_, 𝑛) → pp: A probabilistic algorithm that on input a security parameter _ and a bound on the size of
the broadcast set 𝑛 (in binary), outputs public parameters pp. We implicitly assume that pp contains 1_ and 𝑛.

• KeyGen(pp) → (pk, sk): A probabilistic algorithm that on input public parameters pp, outputs a public key pk
and a secret key sk.

• Enc(pp,msg, (pk1, . . . , pk𝑘 )) → ct: A probabilistic algorithm that on input public parameters pp, a message
msg ∈ M_ , and an ordered sequence of 𝑘 public keys (pk1, . . . , pk𝑘 ) for some 𝑘 ≤ 𝑛, outputs a ciphertext ct.6

• Dec(pp, ct, ( 𝑗, sk𝑗 ), (pk1, . . . , pk𝑘 )) → msg: A deterministic algorithm that on input public parameters pp, a
ciphertext ct, an index and secret key pair ( 𝑗, sk𝑗 ), and public keys (pk1, . . . , pk𝑘 ) where 𝑘 ≤ 𝑛, outputs a
message msg ∈ M_ ∪ {⊥}.

We require that (Setup,KeyGen, Enc,Dec) satisfy the following properties:

• Succinct ciphertexts: There exists a polynomial 𝑝 such that for all _ ∈ N, 𝑘 ∈ N, 𝑛 ∈ N with 𝑘 ≤ 𝑛, public
parameters pp ∈ Supp

(
Setup(1_, 𝑛)

)
, public/secret keys (pk𝑖 , sk𝑖 ) ∈ Supp (KeyGen(pp)) for 𝑖 ∈ [𝑘], messages

msg ∈ M_ , and ciphertexts ct ∈ Supp
(
Enc(pp,msg, (pk1, . . . , pk𝑘 ))

)
, it holds that |ct| ≤ 𝑝 (_,𝑚(_), log𝑛).

• Correctness: There exists a negligible function negl such that for all _ ∈ N, 𝑛 ∈ poly(_), 𝑘 ≤ 𝑛(_), 𝑗 ∈ [𝑘],
and msg ∈ M_ , it holds that

Pr


pp← Setup(1_, 𝑛(_))
∀𝑖 ∈ [𝑘], (pk𝑖 , sk𝑖 ) ← KeyGen(pp)
ct← Enc(pp,msg, (pk1, . . . , pk𝑘 ))
msg′ = Dec(pp, ct, ( 𝑗, sk𝑗 ), (pk1, . . . , pk𝑘 ))

: msg′ = msg

 ≥ 1 − negl(_).

We say that the scheme satisfies perfect correctness if the above probability is equal to 1.

• Adaptive security: For all stateful PPT adversaries 𝐴 and all efficiently-computable functions 𝑛 ∈ poly(_),
there exists a negligible function negl such that for all _ ∈ N,

Pr
[
ExptFBE

𝐴,𝑛 (_) (_) = 1
]
≤ 1/2 + negl(_),

where ExptFBE
𝐴,𝑛
(_) is defined via the following security game between the adversary 𝐴 and a challenger on

common input 1_ :

– Setup phase: The challenger samples pp← Setup(1_, 𝑛) and sends pp to𝐴. The challenger also initializes
a counter ctr B 0, a dictionary D, and a set of (corrupted) indices C = ∅.

6Here, we assume an ordered list of public keys for simplicity. However, we could have alternatively encrypted to an (unordered) set of public keys
by first ordering the public keys in lexicographic order.

19



– Pre-challenge query phase: The adversary 𝐴 can now issue the following queries:
∗ Key-generation query: In a key-generation query, the challenger increments ctr B ctr + 1, samples
a key-pair (pk, sk) ← KeyGen(pp), and replies to 𝐴 with (ctr, pk). The challenger adds the mapping
ctr ↦→ (pk, sk) to the dictionary D.

∗ Corruption query: In a corruption query, the adversary specifies a counter value 𝑐 ∈ [ctr]. In
response, the challenger looks up (pk, sk) B D[𝑐], replies to 𝐴 with sk, and adds ctr to C.

– Challenge phase: Algorithm 𝐴 computes two messages msg0,msg1 ∈ M_ and an ordered list 𝑆★ =

(𝑖1, . . . , 𝑖𝑘★) ⊆ [ctr] that it sends to the challenger. If 𝑆★∩C ≠ ∅, the experiment outputs 0. Otherwise, the
challenger samples a bit 𝑏 r← {0, 1} and computes an encryption of msg𝑏 under the keys corresponding
to 𝑆★: ct★← Enc(pp,msg𝑏, (pk𝑖1 , . . . , pk𝑖𝑘★ )). The challenger sends ct

★ to 𝐴.
– Output phase: Algorithm 𝐴 outputs a bit 𝑏′ ∈ {0, 1}. The experiment outputs 1 if 𝑏′ = 𝑏 and 0 otherwise.

Semi-static security. In this work, we also consider a weaker notion of semi-static security introduced by Gentry
and Waters [GW09] in the context of broadcast encryption. In the setting of flexible broadcast encryption, semi-static
security corresponds to the setting where the adversary is allowed to make any number of honest key-generation
queries, and then declares its challenge set to be some subset of these keys. The adversary cannot make any corruption
queries in this model. In the context of broadcast encryption, Gentry and Waters showed that semi-static security
implies adaptive security in the random oracle model. In Appendix B, we show that the same technique also applies
in the case of flexible broadcast encryption.

Definition 4.2 (Semi-Static Security [GW09, adapted]). We say that a flexible broadcast encryption scheme (Setup,
KeyGen, Enc,Dec) satisfies semi-static security if instead of adaptive security, it satisfies the following:

• Semi-static security: For all stateful PPT adversaries 𝐴 and all efficiently-computable functions 𝑛 ∈ poly(_),
there exists a negligible function negl such that for all _ ∈ N,

Pr
[
ExptFBE,SS

𝐴,𝑛 (_) (_) = 1
]
≤ 1/2 + negl(_),

where ExptFBE,SS
𝐴,𝑛

(_) is identical to the adaptive security game ExptFBE
𝐴,𝑛 (_) (_), except the adversary 𝐴 is not

allowed to make any corruption queries.

4.1 Constructing Flexible Broadcast Encryption
We now show how to construct a flexible broadcast encryption scheme by combining a witness encryption scheme
with a function-binding hash function and a vanilla public-key encryption scheme. Note that public-key encryption
is implied by combining witness encryption and one-way functions [GGSW13]. Thus, the additional assumption of
public-key encryption is technically unnecessary (since function-binding hash functions imply one-way functions).
Our construction satisfies semi-static security. However, we show in Appendix B how to use this to construct an
adaptively secure scheme via a transformation following the approach of [GW09].

Construction 4.3 (Flexible Broadcast Encryption). Let 𝑠 = 𝑠 (_), ℓblk = ℓblk (_), and 𝑑 = 𝑑 (_) be polynomials, and
𝑚 = 𝑚(_) be any function. LetM = {M_}_∈N be a message space for messages of length𝑚. Our construction of
flexible broadcast encryption relies on the following primitives:

• Let PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec) be a semantically-secure public-key bit encryption scheme where
for (pk, sk) ∈ Supp

(
PKE.KeyGen(1_)

)
, ciphertexts have length at most ℓblk (_) and decryption can be computed

by a circuit of size 𝑠 (_) and depth 𝑑 (_).

• Let FBH = (FBH.Setup, FBH.SetupBinding, FBH.Hash, FBH.ProveOpen, FBH.VerOpen) be a function-binding
hash for the class F of disjunctions of block functions for input length ℓblk, size 𝑠 , and depth 𝑑 (Definition 3.3).
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• LetWE = (WE.Enc,WE.Dec) be a witness encryption scheme for the language L = {L_}_∈N defined by the
relation RL as follows. Instances of the language L_ are of the form (hk, pkPKE, dig) and the relation RL is
given by

RL
(
1_, (hk, pkPKE, dig), (𝑖, hinp𝑖 , 𝑟 , 𝜋)

)
= 1

⇔ hinp𝑖 = PKE.Enc(pkPKE, 1; 𝑟 ) ∧ FBH.VerOpen(hk, dig, {𝑖}, {(𝑖, hinp𝑖 )}, 𝜋) = 1.

We construct a flexible broadcast encryption scheme FBE = (Setup,KeyGen, Enc,Dec) with message spaceM as
follows:

• Setup(1_, 𝑛): On input the security parameter _ and a bound on the broadcast set size 𝑛, the setup algorithm
samples (pkPKE, skPKE) ← PKE.KeyGen(1_), hk ← FBH.Setup(1_, 𝑛), and outputs the public parameters
pp = (pkPKE, hk). Note that we implicitly assume that pp contain 1_ and 𝑛.

• KeyGen(pp): On input the public parameters pp = (pkPKE, hk), the key-generation algorithm samples 𝑟 r←
{0, 1}_ and computes ct = PKE.Enc(pkPKE, 1; 𝑟 ). Output the public key pk = ct and the secret key sk = 𝑟 .

• Enc(pp,msg, (pk1, . . . , pk𝑘 )): On input the public parameters pp = (pkPKE, hk), the message msg ∈ M_ , and
public keys pk1, . . . , pk𝑘 , the encryption algorithm computes the digest dig = FBH.Hash(hk, (pk1, . . . , pk𝑘 ))
and outputs the ciphertext ct←WE.Enc(1_,msg, (hk, pkPKE, dig)).

• Dec(pp, ct, ( 𝑗, sk𝑗 ), (pk1, . . . , pk𝑘 )): On input the public parameters pp = (pkPKE, hk), the ciphertext ct, an index
𝑗 ∈ [𝑛], the associated secret key sk𝑗 , and the public keys pk1, . . . , pk𝑘 , the decryption algorithm computes
the digest dig = FBH.Hash(hk, (pk1, . . . , pk𝑘 )), the opening 𝜋 = FBH.ProveOpen(hk, (pk1, . . . , pk𝑘 ), { 𝑗}), and
finally, outputs the message msg = WE.Dec(1_, ct, ( 𝑗, pk𝑗 , sk𝑗 , 𝜋)).

Correctness and security analysis. We now show that FBE from Construction 4.3 is a flexible broadcast encryption
scheme.

Theorem 4.4 (Correctness and Succinctness). Assuming PKE andWE are correct, and FBH is complete, then Construc-
tion 4.3 has succinct ciphertexts and is correct.

Proof. We consider each property separately:

• Succinct ciphertexts: This follows by efficiency ofWE and FBH. Specifically, checking the relation RL requires
time at most poly(_, 𝑠 (_), log𝑛) by the efficiency of FBH, which is poly(_, log𝑛) for polynomially-bounded
𝑠, ℓblk. Correspondingly, efficiency ofWE implies that |ct| ∈ poly(_,𝑚(_), log𝑛), as required.

• Perfect correctness: We show perfect correctness of the scheme. Take any security parameter _ ∈ N, bound
on the number of participants 𝑛 ∈ poly(_), 𝑘 ≤ 𝑛(_), index 𝑗 ∈ [𝑘], and message msg ∈ M_ . Then, we have
the following:

– Let pp = (pkPKE, hk) ← Setup(1_, 𝑛(_)), and for each 𝑖 ∈ [𝑘], let (pk𝑖 , sk𝑖 ) ← KeyGen(pp). By construc-
tion, this means pk𝑖 = PKE.Enc(pkPKE, 1; 𝑟𝑖 ) and sk𝑖 = 𝑟𝑖 .

– Let ct← Enc(pp,msg, (pk1, . . . , pk𝑘 )). Then, ct←WE.Enc(1_,msg, (hk, pkPKE, dig)) where the digest is
dig = FBH.Hash(hk, (pk1, . . . , pk𝑘 )).

– We now argue that Dec(pp, ct, ( 𝑗, sk𝑗 ), (pk1, . . . , pk𝑘 )) = msg. The decryption algorithm computes the di-
gest dig as above and the proof 𝜋 = FBH.ProveOpen(hk, (pk1, . . . , pk𝑘 ), { 𝑗}). By completeness of FBH, we
conclude FBH.VerOpen(hk, dig, { 𝑗}, {( 𝑗, pk𝑗 )}, 𝜋) = 1. By construction pk𝑗 = PKE.Enc(pkPKE, 1; skPKE).
This means that

RL
(
1_, (hk, pkPKE, dig), ( 𝑗, pk𝑗 , sk𝑗 , 𝜋)

)
= 1,

and correctness now follows by correctness of WE. □
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Theorem 4.5 (Semi-Static Security). Assuming PKE is semantically secure and satisfies perfect correctness, FBH satisfies
computational function hiding and statistical function binding, and WE satisfies message indistinguishability, then
Construction 4.3 satisfies semi-static security.

Proof. Suppose by way of contradiction that FBE does not satisfy semi-static security. Namely, there exists a stateful
PPT algorithm 𝐴, an efficiently-computable function 𝑛 ∈ poly(_), a polynomial 𝑞, and an infinite set Λ ⊆ N such that
for all _ ∈ Λ, it holds that

Pr
[
ExptFBE,SS

𝐴,𝑛 (_) (_) = 1
]
≥ 1/2 + 1/𝑞(_).

For fixed parameters as above, we define the following sequence of hybrid experiments for each _ ∈ N.

• 𝐻𝑏,0 (_): This hybrid is the experiment ExptFBE,SS
𝐴,𝑛 (_) (_) where the challenge bit is fixed to 𝑏 ∈ {0, 1}.

• 𝐻𝑏,1 (_): This hybrid experiment is the same as 𝐻𝑏,0 except the challenger computes pk to be an encryption of 0
under pkPKE for each honest key-generation query. Specifically, the challenger uses (pk, sk) = (ct, 𝑟 ) where
𝑟 ← {0, 1}_ and ct = PKE.Enc(pkPKE, 0; 𝑟 ).

• 𝐻𝑏,2 (_): In this hybrid, the challenger instead computes hk← FBH.SetupBinding(1_, 𝑛(_), 𝑓𝑔), where 𝑓𝑔 is the
function from Eq. (3.1) and 𝑔 is the function computing PKE.Dec(skPKE, ·).

• 𝐻𝑏,3 (_): In this hybrid, instead of encrypting msg𝑏 in the semi-static security game, the challenger encrypts
the lexicographically-first message msg★ inM_ : ct★← Enc(pp,msg★, (pk𝑖1 , . . . , pk𝑖★𝑘 )).

Since the challenge bit is sampled uniformly (i.e., 𝑏 r← {0, 1}), the success probability of 𝐴 on any security parameter
_ is equal to

Pr[𝐴 wins] = 1
2 ·

(
Pr[𝐻0,0 (_) = 1] + Pr[𝐻1,0 (_) = 1]

)
.

For each 𝑏 ∈ {0, 1} and 𝑖 ∈ {1, 2, 3}, we define

𝛿𝑏,𝑖 (_) = Pr[𝐻𝑏,𝑖−1 (_) = 1] − Pr[𝐻𝑏,𝑖 (_) = 1] .

It follows by our assumption that for all _ ∈ Λ,

1
2 +

1
𝑞(_) ≤

1
2 ·

(
Pr[𝐻0,0 (_) = 1] + Pr[𝐻1,0 (_) = 1]

)
=
1
2 ·

(
Pr[𝐻0,3 (_) = 1] + 𝛿0,1 (_) + 𝛿0,2 (_) + 𝛿0,3 (_)

+ Pr[𝐻1,3 (_) = 1] + 𝛿1,1 (_) + 𝛿1,2 (_) + 𝛿1,3 (_)
)
.

As 𝐻𝑏,3 (_) is independent of 𝑏 for each 𝑏 ∈ {0, 1}, it holds that Pr[𝐻𝑏,3 (_) = 1] ≤ 1/2. It follows that for all _ ∈ Λ,

1
𝑞(_) ≤

1
2 ·

(
𝛿0,1 (_) + 𝛿0,2 (_) + 𝛿0,3 (_) + 𝛿1,1 (_) + 𝛿1,2 (_) + 𝛿1,3 (_)

)
.

As Λ is an infinitely large subset of N, it must be the case that for some 𝑏 ∈ {0, 1} and 𝑖 ∈ {1, 2, 3}, 𝛿𝑏,𝑖 (_) ≥ 1/(3𝑞(_))
for infinitely many _ ∈ N. In the following three claims, we show that this must contradict one of our assumptions
from the statement of Theorem 4.5. We prove the following claims for 𝑏 = 0 without loss of generality.

Claim 4.6. If 𝛿0,1 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N, then PKE does not satisfy semantic security.

Proof. Let 𝑄 (_) be a polynomial upper bounding the number of honest key-generation queries that 𝐴 makes, which
must exist as 𝐴 is PPT. We construct an adversary 𝐵 that uses 𝐴 to break the semantic security of PKE. We define 𝐵
as follows:

1. Algorithm 𝐵 first takes as input a public key p̂k for the PKE scheme and outputs msg0 = 0 and msg1 = 1 as its
challenge message.
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2. Algorithm 𝐵 then receives a challenge ciphertext ĉt, corresponding to the message 𝑏 which is either 0 or 1. It
computes the guess 𝑏′ for 𝑏 as follows:

(a) Algorithm 𝐵 computes 𝑄 (_) and samples a uniformly random index 𝑖★← [𝑛(_)].
(b) Algorithm 𝐵 then samples hk← FBH.Setup(1_, 𝑛(_)), sets pp = (p̂k, hk), and sends pp to 𝐴.
(c) For each counter value ctr ∈ [𝑄 (_)], algorithm 𝐵 computes the response pk to 𝐴’s honest key-generation

for ctr as follows:
• If ctr = 𝑖★, 𝐵 sets pk = ĉt.
• If ctr > 𝑖★, 𝐵 samples sk r← {0, 1}_ and sets pk = PKE.Enc(p̂k, 1; sk).
• If ctr < 𝑖★, 𝐵 samples sk r← {0, 1}_ and sets pk = PKE.Enc(p̂k, 0; sk).

(d) Algorithm 𝐵 then receives the challenge messages msg0,msg1 and challenge set 𝑆★ from 𝐴, computes
ct★← Enc(pp,msg0, (pk𝑖1 , . . . , pk𝑖𝑘★ )) where 𝑆

★ = {𝑖1, . . . , 𝑖𝑘★}, and sends ct★ to 𝐴.
(e) The adversary 𝐴 outputs a bit 𝑏′ ∈ {0, 1}, which 𝐵 outputs.

If 𝐴 is PPT, then so is algorithm 𝐵 by construction. It remains to analyze the success probability of 𝐵. To do so, we
define a sequence of sub-hybrids. For each 𝑖 ∈ [0, 𝑄 (_)], we define 𝐻0,0,𝑖 (_) as follows:

• 𝐻0,0,𝑖 (_): This experiment is the same as 𝐻0,0 (_) except that we sample the public keys for 𝑗 ≤ 𝑘 where 𝑗 ≤ 𝑖 to
be encryptions of 0. Namely, we set pk𝑗 = PKE.Enc(pkPKE, 0; 𝑟 ) for a random 𝑟 ← {0, 1}_ as in 𝐻0,1 (_).

Note that 𝐻0,0,0 (_) is identical to 𝐻0,0 (_) and 𝐻0,0,𝑄 (_) is identical to 𝐻0,1 (_), so in particular, it holds that

𝛿0,1 (_) = Pr[𝐻0,0 (_) = 1] − Pr[𝐻0,1 (_) = 1]

=

𝑄 (_)∑︁
𝑖=1

(
Pr[𝐻0,0,𝑖−1 (_) = 1] − Pr[𝐻0,0,𝑖 (_) = 1]

)
.

We proceed to analyze the success probability of 𝐵 conditioned on 𝑖★ = 𝑖 . Note that when 𝑏 = 1, the view of 𝐴
corresponds to the hybrid 𝐻0,0,𝑖 since pk𝑖★ is an encryption of 0. If 𝑏 = 0, this corresponds to the hybrid 𝐻0,0,𝑖−1. Since
𝐵 outputs 𝑏′ = 𝑏′, it follows if 𝑏 = 1, then 𝑏′ = 𝑏 whenever 𝑏′ = 1 so 𝐻0,0,𝑖 (_) = 0 (i.e. 𝐴 loses since 𝑏 is fixed to 0).
Similarly, if 𝑏 = 0, then 𝑏′ = 𝑏 whenever 𝑏′ = 0 so 𝐻0,0,𝑖−1 (_) = 1 (i.e. 𝐴 wins). Thus, the success probability of 𝐵 for
any 𝑖 ∈ [𝑄 (_)] conditioned on 𝑖★ = 𝑖 is given by the following:

Pr[𝑏′ = 𝑏 | 𝑖★ = 𝑖] = 1
2 ·

(
1 − Pr[𝐻0,0,𝑖 (_) = 1]

)
+ 1
2 · Pr[𝐻0,0,𝑖−1 (_) = 1]

=
1
2 +

1
2 ·

(
Pr[𝐻0,0,𝑖−1 (_) = 1] − Pr[𝐻0,0,𝑖 (_) = 1]

)
.

It follows that the success probability of 𝐵, where 𝐵 chooses a random 𝑖★, is equal to

Pr[𝑏′ = 𝑏] =
𝑄 (_)∑︁
𝑖=1

Pr[𝑖★ = 𝑖] · Pr[𝑏′ = 𝑏 | 𝑖★ = 𝑖]

=

𝑄 (_)∑︁
𝑖=1

1
𝑄 (_) ·

(
1
2 +

1
2 ·

(
Pr[𝐻0,0,𝑖−1 (_) = 1] − Pr[𝐻0,0,𝑖 (_) = 1]

) )
=
1
2 +

1
2 ·𝑄 (_) ·

𝑄 (_)∑︁
𝑖=1

(
Pr[𝐻0,0,𝑖−1 (_) = 1] − Pr[𝐻0,0,𝑖 (_) = 1]

)
=
1
2 +

1
2 ·𝑄 (_) · 𝛿0,1 (_).

As 𝑄 ∈ poly(_) and 𝛿0,1 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N by assumption, it follows that 𝐵 succeeds with
inverse polynomial probability for infinitely many _ ∈ N. This violates semantic security of PKE, as required. □
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Claim 4.7. If 𝛿0,2 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N, then FBH does not satisfy computational function hiding.

Proof. We construct a stateful PPT adversary 𝐵 that uses the adversary 𝐴 to break the function hiding security of
FBH. We define 𝐵 as follows:

1. On input the security parameter _, algorithm 𝐵 samples (pkPKE, skPKE) ← PKE.KeyGen(1_) and outputs the
function 𝑓𝑔 from Eq. (3.1) where 𝑔 is the function computing Dec(skPKE, ·). Note that 𝑓𝑔 ∈ F since 𝑔 can be
computed by a size 𝑠 (_) circuit by assumption.

2. Algorithm 𝐵 receives hk
𝑏
as input for some 𝑏 ∈ {0, 1} and computes pp = (pkPKE, hk). It then proceeds as in

the experiment 𝐻0,1 (_), setting hk = hk
𝑏
, until 𝐴 outputs a bit 𝑏′, which 𝐵 outputs.

Note that 𝐵 only runs 𝐴 and otherwise performs polynomial-time computation, so it remains to analyze the success
probability of 𝐵 at distinguishing hk0 ← Setup(1_, 𝑛(_)) versus hk1 ← SetupBinding(1_, 𝑛(_), 𝑓𝑔). When hk is
sampled from Setup (the case where 𝑏 = 0), algorithm 𝐴’s view is distributed identically to hybrid 𝐻0,1 (_), so 𝑏 = 𝑏′

whenever 𝐴 outputs 𝑏′ = 0, which corresponds to the event that 𝐴 wins since 𝑏 is fixed to 0. Therefore, 𝐵 wins in
this case with probability Pr[𝐻0,1 (_) = 1]. Similarly, when hk is sampled from SetupBinding (the case where 𝑏 = 1),
algorithm 𝐴’s view is identically distributed to hybrid 𝐻0,2 (_), so 𝑏 = 𝑏′ whenever 𝐴 loses, which happens with
probability (1 − Pr[𝐻0,2 (_) = 1]). It follows that

Pr


𝑓𝑔 ← 𝐵(1_)
hk0 ← Setup(1_, 𝑛(_))
hk1 ← SetupBinding(1_, 𝑛(_), 𝑓𝑔)
𝑏

r← {0, 1}

: 𝑓𝑔 ∈ F_ ∧ 𝐵(hk𝑏) = 𝑏


≥ 1

2 · Pr[𝐻0,1 (_) = 1] + 1
2 · (1 − Pr[𝐻0,2 (_) = 1])

= 1/2 + 𝛿0,2 (_)/2.

As 𝛿0,2 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N, this violates computational function hiding of FBH, as required. □

Claim 4.8. If 𝛿0,3 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N and PKE satisfies (perfect) correctness, then eitherWE does
not satisfy message indistinguishability or FBH does not satisfy statistical function binding.

Proof. We construct a PPT adversary 𝐵 that uses adversary 𝐴 to either break the message indistinguishability security
ofWE, or the statistical function binding of FBH. We define 𝐵 as follows:

1. Algorithm 𝐵 takes 1_ as input and uses 𝐴 to compute (𝑥,msg0,msg1) to send to the WE challenger as follows:

(a) Algorithm 𝐵 samples (pkPKE, skPKE) ← PKE.KeyGen(1_) and hk ← FBH.SetupBinding(1_, 𝑛(_), 𝑓𝑔). It
gives pp = (pkPKE, hk) to 𝐴.

(b) Whenever 𝐴 makes an honest key-generation query for counter value ctr ∈ N, algorithm 𝐵 samples
sk r← {0, 1}_ , sets pk = PKE.Enc(pkPKE, 0; sk), and returns pk.

(c) In the challenge phase, algorithm 𝐴 then outputs two messages msg′0, msg′1 along with an ordered list
𝑆★ = (𝑖1, . . . , 𝑖𝑘★). Algorithm 𝐵 computes the digest dig = FBH.Hash(hk, (pk𝑖1 , . . . , pk𝑖𝑘★ )) as in Enc.

(d) Algorithm 𝐵 sets 𝑥 = (hk, pkPKE, dig),msg0 = msg′0, andmsg1 is the lexicographically first messagemsg★

inM_ .

2. The WE challenger samples a random bit 𝑏 r← {0, 1}, and algorithm 𝐵 receives a challenge ciphertext ct★
corresponding toWE.Enc(1_,msg

𝑏
, 𝑥). Algorithm 𝐵 uses ct★ as the challenge ciphertext for 𝐴. Let 𝑏′ ∈ {0, 1}

be the final output of 𝐴 in the experiment, which 𝐵 outputs.
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Note that 𝐵 runs 𝐴 and otherwise performs polynomial-time operations, so 𝐵 is PPT. It remains to analyze the success
probability of 𝐵 for guessing 𝑏′ = 𝑏′ such that 𝑏′ = 𝑏. For any _ ∈ N, let Wit(_) be the event that there exists a valid
witness ( 𝑗, hinp𝑗 , 𝑟 , 𝜋) for the instance 𝑥 = (hk, pkPKE, dig) such that

hinp𝑗 = PKE.Enc(pkPKE, 1; 𝑟 ) ∧ FBH.VerOpen(hk, dig, { 𝑗}, {( 𝑗, hinp𝑗 )}, 𝜋) = 1. (4.1)

Note that the view of 𝐴 is identical to hybrid 𝐻0,2 (_) if 𝑏 = 0 and is identical to hybrid 𝐻0,3 (_) if 𝑏 = 1 since
msg1 = msg★. Furthermore, when 𝑏 = 0, 𝑏′ = 𝑏 whenever 𝑏′ = 0, so 𝐻0,2 (_) = 1 since 𝑏 = 0. When 𝑏 = 1,
𝑏′ = 𝑏 whenever 𝑏′ = 1, so 𝐻0,3 (_) = 0 since 𝑏 = 0. Additionally, if Wit(_) holds, then 𝐵 always loses the message
indistinguishability game since it implies that 𝑥 ∈ L_ . Thus, the success probability of 𝐵 is at least

Pr[𝐵 wins] ≥ Pr[𝑏′ = 𝑏] − Pr[Wit(_)]

≥ 1
2 · Pr[𝐻0,2 (_) = 1] + 1

2 · (1 − Pr[𝐻0,3 (_) = 1]) − Pr[Wit(_)]

=
1
2 +

1
2 · 𝛿0,3 (_) − Pr[Wit(_)] .

We now consider two cases depending on the value of Pr[Wit(_)]:

• If Pr[Wit(_)] ≤ 1/(12𝑞(_)) for infinitely many _ ∈ Λ, then this violates message indistinguishability of WE
since 𝛿0,3 (_) ≥ 1/(3𝑞(_)).

• Suppose Pr[Wit(_)] > 1/(12𝑞(_)) for infinitely many _ ∈ N. This means Eq. (4.1) occurs with probability at
least 1/(12𝑞(_)) for infinitely many _ ∈ N. In the above construction, dig = FBH.Hash(hk, (pk𝑖1 , . . . , pk𝑖𝑘★ ))
where

𝑔(pk𝑖 𝑗 ) = PKE.Dec(skPKE, pk𝑖 𝑗 ) = 0,

by perfect correctness of PKE. Thus,

𝑓𝑔
(
pk𝑖1 , . . . , pk𝑖𝑘★

)
=

∨
𝑗∈[𝑘★]

𝑔
(
pk𝑗𝑖

)
= 0.

Next, if hinp𝑗 = PKE.Enc(pkPKE, 1; 𝑟 ) for some randomness 𝑟 ∈ {0, 1}_ , then 𝑔(hinp𝑗 ) = 1, and the output of 𝑓𝑔
on any input that contains hinp𝑗 is necessarily 1 ≠ 𝑓𝑔

(
pk𝑖1 , . . . , pk𝑖𝑘★

)
. As such, if such an input hinp𝑗 exists

such that Eq. (4.1) holds with probability at least 1/(12𝑞(_)), then a computationally unbounded adversary
would break statistical function binding of FBH with the same advantage.

Thus, algorithm 𝐵 either breaks message indistinguishability of the witness encryption scheme or statistical function
binding of the function-binding hash. □

The proof now follows from Claims 4.6, 4.7, and 4.8. □

Remark 4.9 (Transparent Setup). We note that the public parameters in our construction consist of a hash key for the
function-binding hash and a public key for a public-key encryption scheme. If we instantiate the function-binding hash
function using Construction 3.5, then the hash key consists of a sequence of public keys and ciphertexts for a leveled
homomorphic encryption scheme. Using a suitable encryption scheme (e.g., [GSW13]), these are all pseudorandom.
In other words, the public parameters in Construction 4.3 is pseudorandom and can be instantiated with a uniform
random string. This yields a flexible broadcast encryption scheme with a transparent setup.

5 Optimal Broadcast Encryption in the Random Oracle Model
As noted in Section 4, a flexible broadcast encryption scheme immediately implies a traditional broadcast encryption
scheme with a central trusted authority. Namely, to construct a scheme for 𝑛 users, the central authority would
sample 𝑛 different public/secret keys (pk1, sk1), . . . , (pk𝑛, sk𝑛). The master public key for the broadcast encryption
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scheme is the concatenation of all 𝑛 public keys while the secret key for user 𝑖 is sk𝑖 . While this yields a scheme with
short secret keys and ciphertexts, the master public key is very long (scales linearly with the number of users). In this
section, we show a simple adaptation of our approach yields an optimal broadcast encryption scheme in the random
oracle mode. In an optimal broadcast encryption scheme [BWZ14], we require that all of the scheme parameters (i.e.,
the master public key, the user decryption keys, and the ciphertext) to be short (e.g., polylogarithmic with the number
of users). We start by defining broadcast encryption:

Definition 5.1 (Broadcast Encryption). Let𝑚 ∈ poly(_) andM = {M_}_∈N be a message space for messages of
length𝑚. An broadcast encryption scheme with message spaceM consists of polynomial-time algorithms (Setup,
KeyGen, Enc,Dec) with the following syntax:

• Setup(1_, 1𝑛) → (pp,msk): A probabilistic algorithm that on input a security parameter _ and a bound on the
number of users 𝑛, outputs public parameters pp and a master secret key msk. We implicitly assume that pp
and msk contain 1_ and 1𝑛 .

• KeyGen(msk, 𝑖) → sk: A probabilistic algorithm that on input a master secret key msk and an index 𝑖 ∈ [𝑛],
outputs a secret key sk.

• Enc(pp,msg, 𝑆) → ct: A probabilistic algorithm that on input public parameters pp, a message msg ∈ M_ , and
a set 𝑆 ⊆ [𝑛], outputs a ciphertext ct.

• Dec(pp, ct, ( 𝑗, sk𝑗 ), 𝑆) → msg: A deterministic algorithm that on input public parameters pp, a ciphertext ct,
an index and secret key pair ( 𝑗, sk𝑗 ), and a set 𝑆 , outputs a message msg ∈ M_ ∪ {⊥}.

We require that (Setup,KeyGen, Enc,Dec) satisfy the following properties:

• Succinct ciphertexts: There exists a polynomial 𝑝 such that for all _ ∈ N, 𝑛 ∈ N, 𝑆 ⊆ [𝑛], (pp,msk) ∈
Supp

(
Setup(1_, 𝑛)

)
, sk𝑖 ∈ Supp (KeyGen(msk, 𝑖)) for all 𝑖 ∈ 𝑆 , msg ∈ M_ , and ct ∈ Supp (Enc(pp,msg, 𝑆)), it

holds that
|ct| ≤ 𝑝 (_,𝑚(_), log𝑛).

• Correctness: There exists a negligible function negl such that for all _ ∈ N, 𝑛 ∈ poly(_), 𝑆 ⊆ [𝑛(_)], 𝑗 ∈ 𝑆 ,
and msg ∈ M_ , it holds that

Pr


(pp,msk) ← Setup(1_, 𝑛(_))
sk𝑗 ← KeyGen(msk, 𝑗)
ct← Enc(pp,msg, 𝑆)
msg′ = Dec(pp, ct, ( 𝑗, sk𝑗 ), 𝑆)

: msg′ = msg

 ≥ 1 − negl(_).

We say that the scheme satisfies perfect correctness if the above probability is equal to 1.

• Adaptive security: For all stateful PPT adversaries 𝐴 and efficiently-computable functions 𝑛 ∈ poly(_), there
exists a negligible function negl such that for all _ ∈ N,

Pr
[
ExptBE

𝐴,𝑛 (_) (_) = 1
]
≤ 1/2 + negl(_),

where ExptBE
𝐴,𝑛
(_) is defined via the following security game between the adversary 𝐴 and a challenger on

common input 1_ :

– Setup phase: The challenger samples (pp,msk) ← Setup(1_, 𝑛) and sends pp to 𝐴. The challenger also
initializes a set of corrupted indices C B ∅.

– Pre-challenge query phase: The adversary 𝐴 can now issue key-corruption queries for indices 𝑖 ∈ [𝑛].
On each query, the challenger responds to 𝐴 with sk𝑖 ← KeyGen(msk, 𝑖) and adds 𝑖 to C. Without loss of
generality, we assume the adversary queries each index 𝑖 at most once.
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– Challenge phase: Algorithm𝐴 outputs twomessagesmsg0,msg1 ∈ M_ and a set 𝑆★ ⊆ [𝑛]. If 𝑆★∩C ≠ ∅,
then the experiments halts with output 0. Otherwise, the challenger samples a bit 𝑏 r← {0, 1} and gives
the challenge ciphertext ct★← Enc(pp,msg𝑏, 𝑆

★) to 𝐴.
– Output phase: Algorithm 𝐴 outputs a bit 𝑏′ ∈ {0, 1}. The output of the experiment is 1 if 𝑏′ = 𝑏 and 0

otherwise.

Semi-static security. Similar to the case with flexible broadcast encryption (c.f., Section 4 and Definition 4.2), we also
consider the weaker notion of semi-static security from [GW09]. A broadcast encryption scheme satisfies semi-static
security if the adversary has to pre-commit to a set 𝑆 ⊆ [𝑛] at the beginning of the security game. The adversary can
then make adaptive key-corruption queries for indices 𝑖 ∉ 𝑆 ; for the challenge ciphertext, the adversary is allowed to
choose any subset 𝑆★ ⊆ 𝑆 . This is a stronger security model than selective security where the adversary is required to
commit to its challenge set 𝑆★ at the beginning of the security game. In the semi-static model, the adversary only
needs to commit to a super-set of its challenge set. Gentry and Waters previously showed that in the random oracle
model, a broadcast encryption scheme satisfying semi-static security implies one that satisfies adaptive security. The
transformation only incurs a constant factor overhead in the scheme parameters. We now recall the formal definition:

Definition 5.2 (Semi-Static Security [GW09]). We say that a broadcast encryption scheme (Setup,KeyGen, Enc,Dec)
satisfies semi-static security if for all stateful PPT adversaries 𝐴 and efficiently-computable functions 𝑛 ∈ poly(_),
there exists a negligible function negl such that for all _ ∈ N,

Pr
[
ExptBE,SS

𝐴,𝑛 (_) (_) = 1
]
≤ 1/2 + negl(_),

where ExptBE,SS
𝐴,𝑛
(_) is defined via the following security game between the adversary 𝐴 and a challenger on common

input 1_ :

• Commit phase: Algorithm 𝐴 begins by committing to a set of indices 𝑆 ⊆ [𝑛].

• Setup phase: The challenger samples (pp,msk) ← Setup(1_, 𝑛) and sends pp to 𝐴.

• Pre-challenge query phase: The adversary can now make adaptive key queries for indices 𝑖 ∈ [𝑛] \ 𝑆 . On
each query 𝑖 ∈ [𝑛] \ 𝑆 , the challenger responds with the key sk𝑖 ← KeyGen(msk, 𝑖). Without loss of generality,
we assume the adversary queries each index 𝑖 at most once.

• Challenge phase: Algorithm𝐴 now outputs two messagesmsg0,msg1 ∈ M_ and a set 𝑆★ ⊆ 𝑆 . The challenger
samples a bit 𝑏 r← {0, 1} replies to 𝐴 with the ciphertext ct★← Enc(pp,msg𝑏, 𝑆

★).

• Output phase: Algorithm 𝐴 outputs a bit 𝑏′ ∈ {0, 1}. The experiment outputs 1 if 𝑏′ = 𝑏 and outputs 0
otherwise.

Optimal broadcast encryption. In an optimal broadcast encryption scheme, we additionally require that all of the
scheme parameters (i.e., the public parameters pp and the decryption keys sk) be short. We give the formal definition
below:

Definition 5.3 (Optimal Broadcast Encryption). A broadcast encryption scheme (Setup,KeyGen, Enc,Dec) satisfies
optimal succinctness if it satisfies the following property (in addition to the properties in Definition 5.1):

• Succinct public key and secret keys: There exists a polynomial 𝑝 such that for all _ ∈ N, 𝑛 ∈ N, 𝑖 ∈ [𝑛],
(pp,msk) ∈ Supp

(
Setup(1_, 𝑛)

)
and sk𝑖 ∈ Supp (KeyGen(msk, 𝑖)), it holds that

|pp| ≤ 𝑝 (_, log𝑛) and |sk𝑖 | ≤ 𝑝 (_, log𝑛).
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5.1 Trapdoor Proof Generator
As outlined in Section 1.1, the main building block we use to construct our optimal broadcast encryption scheme is a
trapdoor proof generator. A trapdoor proof generator is defined over a family of sets X = {X_}_∈N. There is a public
verification algorithm that verifies proofs associated with elements 𝑥 ∈ X. The trapdoor proof generator consists of
two setup algorithms: a “normal” setup and an “alternative” setup:

• Normal mode: The normal setup algorithm outputs a set of public parameters pp (used for verifying proofs)
along with a trapdoor td (used for generating proofs). Specifically, using the trapdoor, one can generate proofs
𝜋 for random instances 𝑥 r← X_ .

• Alternative mode: The alternative setup algorithm outputs a set of public parameters pp★ that are compu-
tationally indistinguishable from that in the normal mode. However, pp★ effectively partitions X into two
disjoint sets: (1) a dense subsetX𝑇 ⊂ X; and (2) a sparse pseudorandom subsetX𝐹 ⊂ X. There are two sampling
algorithms: (1) a SampleTrue algorithm that jointly samples an instance 𝑥 ∈ X𝑇 together with an accepting
proof 𝜋 for 𝑥 (whose distributions are computationally indistinguishable from sampling 𝑥 r← X and using a
normal-mode trapdoor to sample the proof); and (2) a SampleFalse algorithm that samples an instance 𝑥 ∈ X𝐹
for which there does not exist any proof 𝜋 that verifies with respect to pp★. Finally, in the alternative mode,
there is a trapdoor that allows one to efficiently decide membership in X𝑇 and X𝐹 .

We formalize this notion below:

Definition 5.4 (Trapdoor Proof Generator). LetX = {X_}_∈N be a sequence of efficiently samplable and recognizable
sets. A trapdoor proof generator (TPG) for X consists of a tuple of polynomial-time algorithms (Setup,CreateProof,
Verify, SetupAlt, SampleTrue, SampleFalse, TDDecide) with the following syntax:

• Setup(1_) → (pp, td): A probabilistic algorithm that on input a security parameter _, outputs public parameters
pp and a trapdoor td. We implicitly assume that pp includes 1_ and td includes pp.

• CreateProof (td, 𝑥) → 𝜋 : A deterministic algorithm that on input a trapdoor td and an instance 𝑥 ∈ X_ , outputs
a proof 𝜋 .

• Verify(pp, 𝑥, 𝜋) → 𝑏: A deterministic algorithm that on input the public parameters pp, an instance 𝑥 , and a
proof 𝜋 , outputs a bit 𝑏 ∈ {0, 1}.

• SetupAlt(1_) → (pp, td): A probabilistic algorithm that on input a security parameter _, outputs public
parameters pp and a trapdoor td. We assume for simplicity that pp includes 1_ and td includes pp.

• SampleTrue(pp) → (𝑥, 𝜋): A probabilistic algorithm that on input the public parameters pp, outputs an instance
𝑥 ∈ X_ and a proof 𝜋 .

• SampleFalse(pp) → 𝑥 : A probabilistic algorithm that on input the public parameters pp, outputs a instance
𝑥 ∈ X_ .

• TDDecide(td, 𝑥) → 𝑏: A deterministic algorithm that on input a trapdoor td and an instance 𝑥 ∈ X_ , outputs a
bit 𝑏.

We require that (Setup,CreateProof,Verify, SetupAlt, SampleTrue, SampleFalse, TDDecide) satisfy the following prop-
erties:

• Correctness: There exists a negligible function negl such that for all _ ∈ N, it holds that

Pr

(pp, td) ← Setup(1_)
𝑥

r← X_
𝜋 ← CreateProof (td, 𝑥)

: Verify(pp, 𝑥, 𝜋) = 1
 ≥ 1 − negl(_).
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• Mode indistinguishability: For all stateful PPT algorithms 𝐴, there exists a negligible function negl such that
for all _ ∈ N, it holds that

Pr
[
ExptMI

𝐴 (_) = 1
]
≤ 1/2 + negl(_),

where ExptMI
𝐴
(_) is defined via the following security game between the adversary 𝐴 and a challenger on

common input 1_ :

– Setup phase: The challenger samples a bit 𝑏 r← {0, 1}. If 𝑏 = 0, the challenger samples (pp, td) ←
Setup(1_), and if 𝑏 = 1, the challenger samples (pp, td) ← SetupAlt(1_). The challenger sends pp to 𝐴.

– Query phase: Algorithm 𝐴 makes adaptive queries for either true or false instances. The challenger
responds to the queries as follows:

∗ True-instance query: If 𝑏 = 0, the challenger samples 𝑥 r← X_ and 𝜋 ← CreateProof (td, 𝑥) and
replies with (𝑥, 𝜋). If 𝑏 = 1, the challenge responds with (𝑥, 𝜋) ← SampleTrue(pp).

∗ False-instance query: The challenger replies with 𝑥
r← X_ if 𝑏 = 0 and 𝑥 ← SampleFalse(pp) if

𝑏 = 1.
– Output phase: Algorithm 𝐴 computes a guess 𝑏′ ∈ {0, 1} for 𝑏, and the experiment outputs 1 if 𝑏 = 𝑏′

and 0 otherwise.

• Trapdoor decidability: The following hold regarding the algorithm TDDecide:

– Accepting true instances: For all (possibly unbounded) algorithms 𝐴, there exists a negligible function
negl such that for all _ ∈ N, it holds that

Pr
[
(pp, td) ← SetupAlt(1_)
(𝑥, 𝜋) ← 𝐴(pp) : Verify(pp, 𝑥, 𝜋) = 1 ∧ TDDecide(td, 𝑥) ≠ 1

]
≤ negl(_) .

– Rejecting false instances: There exists a negligible function negl such that for all _ ∈ N, it holds that

Pr
[
(pp, td) ← SetupAlt(1_)
𝑥 ← SampleFalse(pp) : TDDecide(td, 𝑥) = 0

]
≥ 1 − negl(_).

5.2 Trapdoor Proof Generator Building Blocks
In Section 5.3, we show how to construct a trapdoor proof generator from a public-key encryption scheme with
pseudorandom ciphertexts together with a computational non-interactive zero-knowledge (NIZK) proof system for
NP. We start by recalling these notions below:

Definition 5.5 (PKE with Pseudorandom Ciphertexts). Let ℓ = ℓ (_) be a length parameter. We say that a public-key
encryption scheme (KeyGen, Enc,Dec) has pseudorandom ciphertexts of length ℓ if for all stateful PPT algorithms 𝐴,
there exists a negligible function negl such that for all _ ∈ N, it holds that

Pr



(pk, sk) ← KeyGen(1_)
msg← 𝐴(pk)
ct★0 ← Enc(pk,msg)
ct★1

r← {0, 1}ℓ (_)
𝑏

r← {0, 1}
𝑏′ ← 𝐴(ct★

𝑏
)

: 𝑏′ = 𝑏


≤ 1/2 + negl(_).

Definition 5.6 (Non-Interactive Zero Knowledge). A computational non-interactive zero knowledge (NIZK) proof
system for an NP language L = {L_}_∈N with witness relation RL consists of polynomial-time algorithms (Setup,
Prove,Verify) with the following syntax:

• Setup(1_) → crs: A probabilistic algorithm that on input a security parameter _, outputs a common reference
string crs. We implicitly assume that crs includes 1_ .
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• Prove(crs, 𝑥,𝑤) → 𝜋 : A deterministic algorithm that on input a common reference string crs, an instance 𝑥 ,
and a witness𝑤 , outputs a proof 𝜋 .

• Verify(crs, 𝑥, 𝜋) → 𝑏: A deterministic algorithm that on input a common reference string crs, an instance 𝑥 ,
and a proof 𝜋 , outputs a bit 𝑏 ∈ {0, 1}.

We require that (Setup, Prove,Verify) satisfy the following properties:

• Completeness: There exists a negligible function negl such that for all _ ∈ N, tuple (1_, 𝑥,𝑤) ∈ RL , it holds
that

Pr
[
crs← Setup(1_)
𝜋 ← Prove(crs, 𝑥,𝑤) : Verify(crs, 𝑥, 𝜋) = 1

]
≥ 1 − negl(_).

• Statistical soundness: For all (possibly unbounded) algorithms 𝐴, there exists a negligible function negl such
that for all _ ∈ N, it holds that

Pr
[
crs← Setup(1_)
(𝑥, 𝜋) ← 𝐴(crs) : 𝑥 ∉ L_ ∧ Verify(crs, 𝑥, 𝜋) = 1

]
≤ negl(_).

• (Multi-theorem) computational zero knowledge: There exist PPT algorithms (SimSetup, SimProve) such
that for all stateful PPT adversaries𝐴, there exists a negligible function negl such that for all _ ∈ N, it holds that

Pr


𝑏

r← {0, 1}
crs0 ← Setup(1_)
(crs1, 𝜎) ← SimSetup(1_)
𝑏′ ← 𝐴O𝑏 ( ·,· ) (crs𝑏)

: 𝑏′ = 𝑏

 ≤ 1/2 + negl(_),

where O0 (·, ·) and O1 (·, ·) are defined as follows:

– O0 (𝑥,𝑤) outputs Prove(crs0, 𝑥,𝑤) if (1_, 𝑥,𝑤) ∈ RL and ⊥ otherwise.
– O1 (𝑥,𝑤) outputs SimProve(crs1, 𝑥, 𝜎) if (1_, 𝑥,𝑤) ∈ RL and ⊥ otherwise.

Instantiations. Computational NIZK proofs are known from standard pairing-based assumptions [GOS06, CHK03]
and lattice-based assumptions [PS19]. Public-key encryption with pseudorandom ciphertexts can be constructed from
standard assumptions over groups (with or without a pairing) [Gam84] and from lattice-based assumptions [Reg05].

5.3 Constructing a Trapdoor Proof Generator
We now show how to construct a trapdoor proof generator from a public-key encryption scheme with pseudorandom
ciphertexts in conjunction with a computational NIZK proof system for NP. We remark that this is just one way to
construct such a primitive. However, we believe that this primitive may be of more general interest, and there are
likely other constructions from potentially simpler building blocks. We leave it as an interesting open question to
explore such directions.

Construction 5.7 (Trapdoor Proof Generator). Let ℓ = ℓ (_) be a polynomial and X = {X_}_∈N be a sequence of sets
where X_ = {0, 1}ℓ (_) . Our construction relies on the following building blocks:

• Let PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec) be a semantically-secure public-key bit encryption scheme with
pseudorandom ciphertexts of length ℓ . Without loss of generality, we assume that the encryption randomness
to PKE is _-bits long.7

• Let NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify,NIZK.SimSetup,NIZK.SimProve) be a computational non-
interactive zero knowledge proof for the languageL = {L_}_∈N defined by the relation RL as follows. Instances
of the language L_ are of the form (pk, ct) and the relation RL is given by

RL
(
1_, (pk, ct), 𝑟

)
= 1⇔ PKE.Enc(pk, 1; 𝑟 ) = ct.

7If PKE.Enc requires more than _-bits of randomness, we can first stretch the randomness using a pseudorandom generator.
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We construct a trapdoor proof generator TPG = (Setup,CreateProof,Verify, SetupAlt, SampleTrue, SampleFalse,
TDDecide) for X as follows:

• Setup(1_): On input the security parameter _, the setup algorithm samples (pk, sk) ← PKE.KeyGen(1_),
(crsNIZK, 𝜎) ← NIZK.SimSetup(1_), and output the public parameters pp = (pk, crsNIZK) and a trapdoor td = 𝜎 .
Note that we implicitly assume that pp contains 1_ and 𝑛, and td contains pp.

• CreateProof (td, 𝑥): On input a trapdoor td = 𝜎 with associated public parameters pp = (pk, crsNIZK) and an
instance 𝑥 ∈ X_ , the algorithm generates the associated proof 𝜋NIZK = NIZK.SimProve(crsNIZK, (pk, 𝑥), 𝜎).

• Verify(pp, 𝑥, 𝜋): On input the public parameters pp = (pk, crsNIZK), an instance 𝑥 ∈ X_ , and a proof 𝜋 , the
verification algorithm outputs NIZK.Verify(crsNIZK, (pk, 𝑥), 𝜋).

• SetupAlt(1_): On input the security parameter _, the alternative setup algorithm starts by sampling (pk, sk) ←
PKE.KeyGen(1_), crsNIZK ← NIZK.Setup(1_), and outputs the public parameters pp = (pk, crsNIZK) and
trapdoor td = sk. Recall that we implicitly assume that pp contains 1_ and 𝑛 and td contains pp.

• SampleTrue(pp): On input the public parameters pp = (pk, crsNIZK), the true-instance sampling algorithm
samples 𝑟 r← {0, 1}_ , computes ct = PKEEnc(pk, 1; 𝑟 ), and outputs the instance 𝑥 = ct and proof 𝜋 =

NIZK.Prove(crsNIZK, (pk, ct), 𝑟 ).

• SampleFalse(pp): On input the public parameters pp = (pk, crsNIZK), the false-instance sampling algorithm
computes ct← PKE.Enc(pk, 0), and outputs the instance 𝑥 = ct.

• TDDecide(td, 𝑥): On input the trapdoor td = sk and an instance 𝑥 ∈ X_ , the trapdoor decision algorithm
outputs 1 if PKE.Dec(sk, 𝑥) = 1 and 0 otherwise.

Correctness and security analysis. We now show that TPG from Construction 5.7 satisfies each of the correctness
and security properties in Definition 5.4.

Theorem 5.8 (Correctness). Assuming PKE has pseudorandom ciphertexts and NIZK satisfies completeness and
computational zero knowledge, then Construction 5.7 satisfies correctness.

Proof. We consider the following sequence of hybrid experiments, defined as a function of the security parameter
_ ∈ N.

• 𝐻0 (_): This experiment corresponds to the correctness criteria. Namely, (pp, td) ← Setup(1_), 𝑥 r← X_ ,
𝜋 = CreateProof (td, 𝑥), and then the experiment output the results of Verify(pp, 𝑥, 𝜋).

• 𝐻1 (_): This hybrid is the same as 𝐻0, except the challenger instead computes 𝑥 ← PKE.Enc(pk, 1; 𝑟 ), where pk
is the public key specified in the public parameters pp, and 𝑟 r← {0, 1}_ is freshly-sampled randomness.

• 𝐻2 (_): In this hybrid, we now compute crsNIZK ← NIZK.Setup(1_) and𝜋NIZK ← NIZK.Prove(crsNIZK, (pk, 𝑥), 𝑟 ).

It remains to show that there exists a negligible function negl such that Pr[𝐻0 (_) = 1] ≥ 1 − negl(_). We now
argue that there exist negligible functions `, `′ such that Pr[𝐻2 (_) = 1] − Pr[𝐻0 (_) = 1] ≤ ` (_) and moreover, that
Pr[𝐻2 (_) = 1] ≥ 1 − `′ (_). This implies that Pr[𝐻0 (_) = 1] ≥ 1 − negl(_) for some negligible function negl, as
required for correctness.

Claim 5.9. Assuming PKE has pseudorandom ciphertexts, there exists a negligible function ` such that for all _ ∈ N,
Pr[𝐻1 (_) = 1] − Pr[𝐻0 (_) = 1] ≤ ` (_).

Proof. Suppose by way of contradiction that there exists a polynomial 𝑞 such that Pr[𝐻1 (_) = 1] − Pr[𝐻0 (_) = 1] >
1/𝑞(_). We construct a PPT adversary 𝐵 that breaks that pseudorandom ciphertext property of PKE:

1. On input a public key pk, 𝐵 sends the message msg = 1.
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2. The challenger samples a bit 𝑏 r← {0, 1} and sends the challenge ciphertext ct★
𝑏
, which is either equal to

ct★0 ← PKE.Enc(pk, 1) or ct★1
r← {0, 1}ℓ (_) , where ℓ is the length of ciphertexts for PKE.

3. Algorithm 𝐵 samples (crsNIZK, 𝜎) ← NIZK.SimSetup(1_) and 𝜋 ← NIZK.SimProve(crsNIZK, (pk, ct★𝑏 ), 𝜎).

4. Algorithm 𝐵 then computes 𝑏′ = Verify(pp, (pk, ct★
𝑏
)) and outputs 1 − 𝑏′ as its guess for 𝑏.

Algorithm 𝐵 runs in polynomial time by construction. To analyze the success probability of 𝐵, note that if the
challenger chooses the bit 𝑏 = 0, then the output of 𝐵 corresponds to 1 −𝐻1 (_), so 𝐵 wins if 𝐻1 (_) outputs 1. If 𝑏 = 1,
then the output of 𝐵 corresponds to 1 − 𝐻0 (_), so 𝐵 wins if 𝐻0 (_) outputs 0. Therefore, 𝐵 succeeds with probability

1
2 · Pr[𝐻1 (_) = 1] + 1

2 · Pr[𝐻0 (_) = 0] = 1
2 +

1
2 · (Pr[𝐻0 (_) = 1] − Pr[𝐻1 (_) = 1]) .

As Pr[𝐻1 (_) = 1] − Pr[𝐻0 (_) = 1] > 1/𝑞(_) by assumption, this violates the pseudorandom ciphertext property of
PKE, as required. □

Claim 5.10. Assuming NIZK satisfies computational zero knowledge, there exists a negligible function ` such that for
all _ ∈ N, Pr[𝐻2 (_) = 1] − Pr[𝐻1 (_) = 1] ≤ ` (_).

Proof. Suppose by way of contradiction, there exists a polynomial 𝑞 such that Pr[𝐻2 (_) = 1] − Pr[𝐻1 (_) = 1] > 𝑞(_).
We construct a PPT adversary 𝐵 that breaks the computational zero knowledge property of NIZK:

1. The NIZK challenger starts by sampling a random bit 𝑏 r← {0, 1} and sends crs𝑏 , which is either equal to
crs0 ← NIZK.Setup(1_) or (crs1, 𝜎) ← NIZK.SimSetup(1_).

2. On input crs𝑏 , algorithm 𝐵 samples (pk, sk) ← PKE.KeyGen(1_) and sets pp = (pk, crs𝑏). Algorithm 𝐵

computes ct ← PKE.Enc(pk, 1; 𝑟 ) for randomness 𝑟 r← {0, 1}_ and queries its oracle on the instance (pk, ct)
with witness 𝑟 .

• If 𝑏 = 0, the oracle returns 𝜋0 ← NIZK.Prove(crs0, (pk, ct), 𝑟 ).
• If 𝑏 = 1, the oracle returns 𝜋1 ← SimProve(crs1, (pk, ct), 𝜎).

3. Algorithm 𝐵 computes 𝑏′ = Verify(pp, (pk, ct), 𝜋𝑏) and outputs 1 − 𝑏′ as its guess for 𝑏.

Algorithm 𝐵 runs in polynomial time by construction. To analyze the success probability of 𝐵, note that if the
challenger chooses the bit 𝑏 = 0, then the output of 𝐵 corresponds to 1 −𝐻2 (_), so 𝐵 wins if 𝐻2 (_) outputs 1. If 𝑏 = 1,
the output of 𝐵 corresponds to 1−𝐻1 (_), so 𝐵 wins if 𝐻1 (_) outputs 0. Therefore, the success probability of 𝐵 is given
by

1
2 · Pr[𝐻2 (_) = 1] + 1

2 · Pr[𝐻1 (_) = 0] = 1
2 +

1
2 · (Pr[𝐻2 (_) = 1] − Pr[𝐻1 (_) = 1]) .

As Pr[𝐻2 (_) = 1] − Pr[𝐻1 (_) = 1] > 1/𝑞(_) by assumption, this violates the computational zero knowledge property
of NIZK, as required. □

Claim 5.11. Assuming NIZK is complete, there exists a negligible function ` such that for all _ ∈ N, it holds that
Pr[𝐻2 (_) = 1] ≥ 1 − ` (_).

Proof. By construction, 𝐻2 (_) corresponds to the completeness experiment for NIZK for the language L_ with
instance (pk, ct) for ct ← PKE.Enc(pk, 1) and witness 𝑟 . Thus, (1_, (pk, ct), 𝑟 ) ∈ RL , so by completeness of NIZK,
there exists a negligible function ` such that Pr[𝐻2 (_) = 1] ≥ 1 − ` (_). □

This proof now follows from Claims 5.9 to 5.11. □

Theorem 5.12 (Mode Indistinguishability). Assuming PKE has pseudorandom ciphertexts and NIZK satisfies computa-
tional zero knowledge, then Construction 5.7 satisfies mode indistinguishability.
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Proof. Suppose by way of contradiction that mode indistinguishability does not hold. Then there exists a stateful PPT
algorithm 𝐴 and a polynomial 𝑞 such that for infinitely many _ ∈ N, it holds that

Pr
[
ExptMI

𝐴 (_) = 1
]
> 1/2 + 1/𝑞(_).

We now define the following sequence of hybrid experiments, each parameterized by the security parameter _ ∈ N:

• 𝐻0 (_): This experiment corresponds to the mode indistinguishability experiment where 𝑏 is fixed to 0, and the
hybrid outputs the final value 𝑏′ output by 𝐴.

• 𝐻1 (_): This hybrid is the same as 𝐻0 except that the challenger samples 𝑥 ← PKE.Enc(pk, 1) for true-instance
queries, and 𝑥 ← PKE.Enc(pk, 0) for false-instance queries.

• 𝐻2 (_): This hybrid corresponds to the mode indistinguishability experiment where 𝑏 is fixed to 1. Specifically,
compared to hybrid 𝐻1 (_), the challenger now samples (𝑥, 𝜋) ← SampleTrue(pp) for true-instance queries.

For 𝑖 ∈ {1, 2}, we define 𝛿𝑖 (_) = Pr[𝐻𝑖 (_) = 1] −Pr[𝐻𝑖−1 (_) = 1]. Then, the success probability of𝐴 can be written as

Pr[𝐴 wins] = 1
2 · Pr[𝐻0 (_) = 0] + 1

2 · Pr[𝐻2 (_) = 1]

=
1
2 · Pr[𝐻0 (_) = 0] + 1

2 · (Pr[𝐻0 (_) = 1] + 𝛿1 (_) + 𝛿2 (_))

=
1
2 +

1
2 · (𝛿1 (_) + 𝛿2 (_)) .

It follows from our assumption that, for infinitely many _ ∈ N, 𝛿1 (_) +𝛿2 (_) > 2/𝑞(_). Thus, either 𝛿1 (_) > 1/𝑞(_) or
𝛿2 (_) > 1/𝑞(_). We show in the subsequent claims that if either case holds, it must contradict one the of assumptions
in the theorem statement.

Claim 5.13. If 𝛿1 (_) > 1/𝑞(_) for infinitely many _ ∈ N, then PKE does not have pseudorandom ciphertexts.

Proof. Let 𝑄 = 𝑄 (_) be polynomial upper bounding the number of queries that 𝐴 makes in the mode indistinguisha-
bility experiment. We construct an adversary 𝐵 that breaks the pseudorandom ciphertext property of PKE:

1. At the beginning of the security game, algorithm 𝐵 receives a public key pk as input from the PKE challenger.

2. Algorithm 𝐵 samples (crsNIZK, 𝜎) ← NIZK.SimSetup(1_) and sets pp = (pk, crsNIZK), td = 𝜎 . It gives pp to 𝐴.

3. Algorithm 𝐵 samples an index 𝑖★ r← [0, 𝑄 (_) − 1]. Whenever 𝐴 makes its 𝑖th query, algorithm 𝐵 responds as
follows.

• If 𝑖 < 𝑄 (_) − 𝑖★, algorithm 𝐵 responds as in hybrid 𝐻0 (_) by sampling a random 𝑥
r← X_ and additionally

providing a proof 𝜋 = CreateProof (td, 𝑥) on queries for true instances.
• If 𝑖 = 𝑄 (_) − 𝑖★, algorithm 𝐵 sends the messagemsg = 1 to the PKE challenger if𝐴 made a query for a true
instance and the message msg = 0 for a false query. The challenger replies with a challenge ciphertext
ct★ which algorithm 𝐵 forwards to 𝐴. In addition, if the query was for a true instance, algorithm 𝐵 also
gives a proof 𝜋 = CreateProof (td, 𝑥) to 𝐴. Here, the challenge ciphertext is computed as follows. The
challenger samples a bit 𝑏 r← {0, 1} and sets the challenge ciphertext ct★ ← Enc(pk,msg) if 𝑏 = 0 and
ct★ r← {0, 1}ℓ (_) if 𝑏 = 1.

• If 𝑖 > 𝑄 (_) − 𝑖★, 𝐵 sets 𝑥 ← Enc(pk, 0) on false-instance queries and 𝑥 ← Enc(pk, 1) on true-instance
queries. On true-instance queries, it also provides a proof 𝜋 = CreateProof (td, 𝑥) for true-instance queries.

4. 𝐴 computes a guess 𝑏′ for 𝑏 and 𝐵 outputs the guess 𝑏′ = 1 − 𝑏′.

It is clear that 𝐴 runs in polynomial-time if 𝐵 does. To analyze the success probability of 𝐵, we define the following
sub-hybrid experiments.
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• 𝐻0,𝑖 (_): In this hybrid, 𝐵 responds to the first 𝑄 (_) − 𝑖 queries according to 𝐻0 and the final 𝑖 queries according
to 𝐻1.

Note that 𝐻0,0 (_) corresponds to 𝐻0 (_) and 𝐻0,𝑄 (_) (_) corresponds to 𝐻1 (_). For a fixed index 𝑖★ = 𝑖 , we observe that
if 𝑏 = 1, then 𝐴’s response is distributed as in hybrid 𝐻0,𝑖 , and if 𝑏 = 0, then 𝐴’s response is distributed as in hybrid
𝐻0,𝑖+1. It follows that 𝐵 succeeds with probability

𝑄 (_)−1∑︁
𝑖=0

Pr[𝑖★ = 𝑖] · Pr[𝑏′ = 𝑏′ | 𝑖★ = 𝑖]

=
1

𝑄 (_) ·
𝑄 (_)−1∑︁

𝑖=0

(
1
2 · Pr[𝐻0,𝑖 (_) = 0] + 1

2 · Pr[𝐻0,𝑖+1 (_) = 1]
)

=
1
2 +

1
2𝑄 (_) ·

𝑄 (_)−1∑︁
𝑖=0

(
Pr[𝐻0,𝑖+1 (_) = 1] − Pr[𝐻0,𝑖 (_) = 1]

)
=
1
2 +

1
2𝑄 (_) · (Pr[𝐻1 (_) = 1] − Pr[𝐻0 (_) = 1]) .

By our assumption, this is at least 1/2 + 1/(2 · 𝑄 (_) · 𝑞(_)). Since 𝑄 and 𝑞 are both polynomially bounded, this
contradicts the psuedorandom ciphertext property of PKE, as required. □

Claim 5.14. If 𝛿2 (_) > 1/𝑞(_) for infinitely many _ ∈ N, then NIZK does not satisfy multi-theorem computational zero
knowledge.

Proof. We construct an adversary 𝐵 that breaks the computational zero knowledge property of NIZK:

1. The NIZK challenger samples a bit 𝑏 r← {0, 1}. If 𝑏 = 0, it sends crs← NIZK.Setup(1_), and if 𝑏 = 1, it sends
crs where (crs, 𝜎) ← NIZK.SimSetup(1_).

2. Algorithm 𝐵 computes (pk, sk) ← PKE.KeyGen(1_), sets pp = (pk, crs), and sends pp to 𝐴.

3. Whenever 𝐴 makes a true-instance query, algorithm 𝐵 samples ct← Enc(pk, 1; 𝑟 ) for 𝑟 r← {0, 1}_ and queries
the NIZK proof oracle on ((pk, ct), 𝑟 ) to get a proof 𝜋 . Algorithm 𝐵 responds to 𝐴 with (ct, 𝜋). Whenever 𝐴
makes a false-instance query, algorithm 𝐵 samples ct← Enc(pk, 0) and returns the instance ct.

4. 𝐴 outputs a guess 𝑏′ for 𝑏, and 𝐵 outputs the same guess 𝑏′ = 𝑏′ for 𝑏.

Algorithm 𝐵 clearly runs in polynomial-time if 𝐴 does. For correctness, observe that if 𝑏 = 0, then the view of 𝐴 is
identically distributed as in hybrid 𝐻1 (_), and if 𝑏 = 1, then the view of 𝐴 is identically distributed as in hybrid 𝐻2 (_).
So, 𝐵 succeeds with probability

Pr[𝐵 wins] = 1
2 · Pr[𝐻1 (_) = 0] + 1

2 · Pr[𝐻2 (_) = 1] = 1
2 +

1
2 · (Pr[𝐻2 (_) = 1] − Pr[𝐻1 (_) = 1]) .

As Pr[𝐻2 (_) = 1] − Pr[𝐻1 (_) = 1] = 𝛿2 (_) > 1/𝑞(_) by assumption, this violates the computational zero knowledge
property of NIZK, as required. □

The proof now follows via Claims 5.13 and 5.14. □

Theorem 5.15 (Decidability in Trapdoor Mode). Assuming PKE is correct and NIZK satisfies completeness and is
statistically sound, then Construction 5.7 satisfies decidability in trapdoor mode.

Proof. For any _ ∈ N, let (pp, td) ← SetupAlt(1_). Recall that pp = (pk, crsNIZK) and td = sk, where crsNIZK ←
NIZK.Setup(1_). We show the two properties separately:
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• Accepting true instances: Suppose that there exists a proof 𝜋 such that Verify(pp, 𝑥, 𝜋) = 1. By construction,
this implies that NIZK.Verify(crsNIZK, (pk, 𝑥), 𝜋) = 1. By statistical soundness of NIZK, there exists a negligible
function negl such that that (pk, 𝑥) ∈ L_ with probability at least 1− negl(_). If (pk, 𝑥) ∈ L_ , then there exists
𝑟 ∈ {0, 1}_ such that PKE.Enc(pk, 1; 𝑟 ) = 𝑥 . By correctness of PKE, this means that PKE.Dec(sk, 𝑥) = 1. In this
case, TDDecide(pp, 𝑥) outputs 1 with probability at least 1 − negl(_), and the claim follows.

• Rejecting false instances: Suppose 𝑥 ← SampleFalse(pp). This implies that 𝑥 ∈ Supp (PKE.Enc(pk, 0)), so
PKE.Dec(sk, 𝑥) = 0. That immediately implies that TDDecide(td, 𝑥) outputs 0, as required. □

5.4 Constructing Optimal Broadcast Encryption
We are now ready to construct an optimal broadcast encryption scheme from witness encryption and function-binding
hash functions. Our construction follows the following template:

• We first construct a (non-optimal) broadcast encryption scheme with short ciphertexts and secret keys, but long
public parameters. In particular, the public parameters contains a uniform random string of length 𝑛, where 𝑛 is
the number of users.

• To obtain an optimal broadcast encryption scheme in the random oracle model, we instantiate the above
construction, but now derive the long random string in the public parameters as the output of a random oracle.
The rest of the scheme is unchanged. The random oracle is only used to “compress” the long public parameters.

We now describe our broadcast encryption scheme:

Construction 5.16 (Broadcast Encryption with Long Public Key). Let 𝑠 = 𝑠 (_), ℓblk = ℓblk (_), 𝑑 = 𝑑 (_), and 𝑟 = 𝑟 (_)
be polynomials, and let 𝑚 = 𝑚(_) be any function. Let M = {M_}_∈N be a message space of length 𝑚. Let
X = {X_}_∈N be a set of strings of size ℓblk that is efficiently-recognizable. Our broadcast encryption scheme relies on
the following primitives:

• First, let TPG = (TPG.Setup, TPG.CreateProof, TPG.Verify, TPG.SetupAlt, TPG.SampleTrue, TPG.SampleFalse,
TPG.TDDecide) be a trapdoor proof generator for X. For all security parameters _ ∈ N and parameters
(ppTPG, tdTPG) ∈ Supp

(
TPG.SetupAlt(1_)

)
, we require that TPG.TDDecide(tdTPG, ·) can be computed by a

circuit of size 𝑠 (_) and depth 𝑑 (_).

• Let FBH = (FBH.Setup, FBH.SetupBinding, FBH.Hash.FBH.ProveOpen, FBH.VerOpen) be a function-binding
hash for the class F of disjunctions of block functions for input length ℓblk, size 𝑠 , and depth 𝑑 (Definition 3.3).

• Let WE be a witness encryption scheme for the language L = {L_}_∈N defined by the relation RL as follows.
An instance of the language L_ has the form (hk, ppTPG, dig) and the relation RL is given by

RL (1_, (hk, ppTPG, dig), (𝑖, hinp𝑖 , 𝜋TPG, 𝜋FBH)) = 1
⇔ TPG.Verify(ppTPG, hinp𝑖 , 𝜋TPG) = 1 ∧ FBH.VerOpen(hk, dig, {𝑖}, {(𝑖, hinp𝑖 )}, 𝜋FBH) = 1.

We construct an optimal broadcast encryption scheme BE = (Setup,KeyGen, Enc,Dec) as follows:

• Setup(1_, 1𝑛): On input the security parameter _ and a bound on the number of users 𝑛, the setup algorithm
first samples (ppTPG, tdTPG) ← TPG.Setup(1_) and hk ← FBH.Setup(1_, 𝑛). Then, for each 𝑖 ∈ [𝑛], it
samples 𝑥𝑖 r← X_ . It now outputs the public parameters pp = (ppTPG, hk, (𝑥1, . . . , 𝑥𝑛)) and master secret key
msk = (tdTPG, (𝑥1, . . . , 𝑥𝑛)).

• KeyGen(msk, 𝑖): On input the master secret key msk = (tdTPG, (𝑥1, . . . , 𝑥𝑛)), the key-generation algorithm
computes the proof 𝜋TPG = TPG.CreateProof (tdTPG, 𝑥𝑖 ), and outputs the secret key sk𝑖 = 𝜋TPG.

• Enc(pp,msg, 𝑆): On input the public parameters pp = (ppTPG, hk, (𝑥1, . . . , 𝑥𝑛)), a message msg ∈ M_ , and a
set 𝑆 = {𝑖1, . . . , 𝑖𝑘 } ⊆ [𝑛] for some 𝑘 ≤ 𝑛 where 𝑖1 < · · · < 𝑖𝑘 , the encryption algorithm computes the digest
dig = FBH.Hash(hk, (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 )) and outputs ct←WE.Enc(1_,msg, (hk, ppTPG, dig)).
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• Dec(pp, ct, ( 𝑗, sk𝑗 ), 𝑆): On input the public parameters pp = (ppTPG, hk, (𝑥1, . . . , 𝑥𝑛)), a ciphertext ct, an
index/secret-key pair ( 𝑗, sk𝑗 ), and a set 𝑆 = {𝑖1, . . . , 𝑖𝑘 } ⊆ [𝑛] for some 𝑘 ≤ 𝑛 where 𝑖1 < · · · < 𝑖𝑘 , the
decryption algorithm computes 𝜋FBH = FBH.ProveOpen(hk, (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ), { 𝑗 ′}), where 𝑗 ′ ∈ [𝑘] is the index
such that 𝑗 = 𝑖 𝑗 ′ ∈ 𝑆 . It then outputs msg = WE.Dec(1_, ct, ( 𝑗 ′, 𝑥 𝑗 , sk𝑗 , 𝜋FBH)).

Correctness and efficiency. We first that the broadcast encryption scheme in Construction 5.16 satisfies correctness
and has succinct ciphertexts and secret keys.

Theorem 5.17 (Correctness and Efficiency). Assuming TPG and WE are correct and efficient, and FBH satisfies
completeness and efficiency, then Construction 5.16 is correct and has succinct ciphertexts and secret keys.

Proof. We consider each property separately:

• Succinct ciphertexts and secret keys: Take any _ ∈ N, 𝑛 ∈ N, msg ∈ M_ , 𝑆 ⊆ [𝑛], (pp,msk) ∈
Supp

(
Setup(1_, 𝑛)

)
and ct ∈ Supp (Enc(pp,msg, 𝑆)). To show that the scheme has succinct ciphertexts, we

need to show that |ct| ∈ poly(_,𝑚(_), log𝑛). First, sinceWE is efficient, |ct| ∈ poly(_,𝑚(_),𝑇 ) where 𝑇 is the
time required to check RL on instances in L_ . Checking instances of RL requires running TPG.Verify(ppTPG,
hinp𝑖 , 𝜋TPG) and FBH.VerOpen(hk, dig, {𝑖}, {(𝑖, hinp𝑖 )}, 𝜋FBH). It suffices to bound the length of the inputs to
TPG.Verify and FBH.VerOpen:

– For the inputs TPG.Verify, note that |ppTPG | ∈ poly(_), |hinp𝑖 | = ℓblk (_), and |𝜋TPG | ∈ poly(_, ℓblk (_)),
which are all of size poly(_) by assumption.

– For the inputs to FBH.VerOpen, first observe that |hk| ∈ poly(_, 𝑠 (_), log𝑛) by the efficiency of FBH, which
is poly(_, log𝑛) as 𝑠 is polynomially-bounded. Also by the efficiency of FBH, |dig|, |𝜋FBH | ∈ poly(_, log |𝑆 |).
Lastly, |𝑖 | ≤ log𝑛 and |hinp𝑖 | = ℓblk (_) ∈ poly(_). Thus the inputs to FBH.VerOpen have size at most
poly(_, log𝑛), as required.

To argue that the scheme has short secret keys, take any index 𝑖 ∈ [𝑛] and consider any secret key sk𝑖 ∈
Supp (KeyGen(msk, 𝑖)). By construction, sk𝑖 = 𝜋TPG. By our above analysis, |𝜋TPG | = poly(_, ℓblk) = poly(_).

• Correctness: Let 𝑛 = 𝑛(_) be a bound on the number of participants. Take any _ ∈ N, subset of users
𝑆 = {𝑖1, . . . , 𝑖𝑘 } ⊆ [𝑛], index 𝑗 ∈ 𝑆 , and message msg ∈ M_ . The, we have the following:

– Let (pp,msk) ← Setup(1_, 𝑛(_)), where pp = (ppTPG, hk, (𝑥1, . . . , 𝑥𝑛)), and msk = tdTPG. Let sk𝑗 ←
KeyGen(msk, 𝑗). By construction, sk𝑗 = 𝜋TPG = TPG.CreateProof (tdTPG, 𝑥 𝑗 ).

– By correctness of TPG, TPG.Verify(ppTPG, 𝑥 𝑗 , sk𝑗 ) = 1with probability at least 1−` (_) for some negligible
function ` = ` (_).

– Let ct ← Enc(pp,msg, 𝑆). By construction, Enc computes dig = FBH.Hash(hk, (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 )). The
ciphertext ct is a witness encryption of msg for the instance (hk, ppTPG, dig).

– Consider the output of Dec(pp, ct, ( 𝑗, sk𝑗 ), 𝑆). Let 𝑗 ′ ∈ [𝑘] be the index such that 𝑗 = 𝑖 𝑗 ′ . Now, the
decryption algorithm computes 𝜋FBH = FBH.ProveOpen(hk, (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ), { 𝑗 ′}). By completeness of
FBH, FBH.VerOpen(hk, dig, 𝑆, {( 𝑗 ′, 𝑥 𝑗 )}, 𝜋FBH) = 1. Thus, ( 𝑗 ′, 𝑥 𝑗 , sk𝑗 , 𝜋FBH) = ( 𝑗 ′, 𝑥𝑖 , 𝜋TPG, 𝜋FBH) is a valid
witness for the instance (hk, ppTPG, dig) with probability at least 1 − ` (_). By correctness of WE, Dec
outputs msg with the same probability. Since ` is negligible, correctness follows. □

Security. Next, we show that Construction 5.16 satisfies semi-static security. The structure of the proof is similar
to that of Theorem 4.5, but we provide the details for completeness and to provide another example for how to use
function-binding hash functions in conjunction with witness encryption.

Theorem 5.18 (Semi-Static Security). Assuming TPG satisfies mode indistinguishability and trapdoor decidability, FBH
satisfies computational function hiding and statistical function binding, andWE satisfies message indistinguishability,
then Construction 5.16 satisfies semi-static security.
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Proof. Suppose by way of contradiction that semi-static security does not hold. Namely, there exists a stateful PPT
algorithm 𝐴, an efficiently computable function 𝑛 ∈ poly(_), a polynomial 𝑞, and an infinite set Λ ⊆ N such that for
all _ ∈ Λ, it holds that

Pr
[
ExptBE,SS

𝐴,𝑛 (_) (_) = 1
]
≥ 1/2 + 1/𝑞(_).

For fixed parameters as above, we define the following sequence of hybrid experiments for each _ ∈ N.

• 𝐻𝑏,0 (_): This hybrid is identical to the experiment ExptBE,SS
𝐴,𝑛 (_) (_) for the fixed value of 𝑏.

• 𝐻𝑏,1 (_): This hybrid is the same as 𝐻𝑏,0 except the challenger samples the public parameters pp using the
following modified algorithm:

– First, it samples (ppTPG, tdTPG) ← TPG.SetupAlt(1_).
– The hash key hk← FBH.Setup(1_, 𝑛) is sampled as in 𝐻𝑏,0.
– Let 𝑆 ⊆ [𝑛] be the set the adversary commits to at the beginning of the security game. For each 𝑖 ∈ [𝑛] \𝑆 ,

the challenger samples (𝑥𝑖 , 𝜋𝑖 ) ← TPG.SampleTrue(ppTPG). For each 𝑖 ∈ 𝑆 , the challenger samples
𝑥𝑖 ← TPG.SampleFalse(ppTPG).

The public parameters pp is still defined to be pp = (ppTPG, hk, (𝑥1, . . . , 𝑥𝑛)). Then, when answering the
key-generation queries for an index 𝑖 ∈ [𝑛] \ 𝑆 , the challenger responds with 𝜋𝑖 .

• 𝐻𝑏,2 (_): In this hybrid, the challenger instead computes hk← FBH.SetupBinding(1_, 𝑛(_), 𝑓𝑔) where 𝑓𝑔 is the
function from Eq. (3.1) and 𝑔 is the function TPG.TDDecide(tdTPG, ·).

• 𝐻𝑏,3 (_): In this hybrid, instead of encrypting msg𝑏 in the semi-static security game, the challenger encrypts
the lexicographically first message msg★ ∈ M_ : ct★← Enc(pp,msg★, 𝑆★).

Since the challenge bit is sampled uniformly (i.e., 𝑏 r← {0, 1}), the success probability of 𝐴 on any security parameter
_ is given by

Pr[𝐴 wins] = 1
2 ·

(
Pr[𝐻0,0 (_) = 1] + Pr[𝐻1,0 (_) = 1]

)
.

For each 𝑏 ∈ {0, 1} and 𝑖 ∈ {1, 2, 3}, we define

𝛿𝑏,𝑖 (_) = Pr[𝐻𝑏,𝑖−1 (_) = 1] − Pr[𝐻𝑏,𝑖 (_) = 1] .

It follows by our assumption that for all _ ∈ Λ,

1
2 +

1
𝑞(_) ≤

1
2 ·

(
Pr[𝐻0,3 (_) = 1] + 𝛿0,1 (_) + 𝛿0,2 (_) + 𝛿0,3 (_)

+ Pr[𝐻1,3 (_) = 1] + 𝛿1,1 (_) + 𝛿1,2 (_) + 𝛿1,3 (_)
)
.

Since Pr[𝐻𝑏,3 (_) = 1] ≤ 1/2 for each 𝑏 ∈ {0, 1}, it follows that for all _ ∈ Λ that

1
𝑞(_) ≤

1
2 ·

(
𝛿0,1 (_) + 𝛿0,2 (_) + 𝛿0,3 (_) + 𝛿1,1 (_) + 𝛿1,2 (_) + 𝛿1,3 (_)

)
.

As Λ is an infinitely large subset of N, it must be the case that for some 𝑏 ∈ {0, 1} and 𝑖 ∈ {1, 2, 3}, 𝛿𝑏,𝑖 (_) ≥ 1/(3𝑞(_))
for infinitely many _ ∈ N. In the following three claims, we show that this must contradict one of our assumptions
from the statement of Theorem 5.18. We prove the following claims for 𝑏 = 0 without loss of generality.

Claim 5.19. If 𝛿0,1 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N, then TPG does not satisfy mode indistinguishability.

Proof. We construct a stateful PPT adversary 𝐵 that uses the adversary 𝐴 to break the mode indistinguishability of
TPG. We define 𝐵 as follows:
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1. At the beginning of the game, algorithm 𝐵 receives the public parameters ppTPG for TPG as input from the
challenger. Specifically, the mode-indistinguishability challenger samples a bit 𝑏 r← {0, 1} and computes
(ppTPG, td) ← TPG.Setup(1_) if 𝑏 = 0 and (ppTPG, td) ← TPG.SetupAlt(1_) if 𝑏 = 1.

2. Algorithm 𝐵 computes hk← FBH.Setup(1_, 𝑛) as in 𝐻0,0 and 𝐻0,1.

3. Algorithm 𝐵 starts running adversary 𝐴 who starts by committing to a set 𝑆 ⊆ [𝑛]. For each 𝑖 ∈ 𝑆 , algorithm
𝐵 makes a false-instance query to its challenger to obtain 𝑥𝑖 . For each 𝑖 ∈ [𝑛] \ 𝑆 , algorithm 𝐵 makes a
true-instance query to its challenger to obtain (𝑥𝑖 , 𝜋𝑖 ).

• If 𝑏 = 0, then in both cases, 𝑥𝑖 r← X_ and for the true-instance queries, 𝜋𝑖 ← CreateProof (td, 𝑥𝑖 ).
• If 𝑏 = 1, then for the true-instance queries, the challenger samples (𝑥𝑖 , 𝜋𝑖 ) ← SampleTrue(ppTPG) and for
the false-instance queries, 𝑥𝑖 ← SampleFalse(ppTPG).

Algorithm 𝐵 gives pp = (ppTPG, hk, (𝑥1, . . . , 𝑥𝑛)) to 𝐴.

4. Whenever algorithm 𝐴 makes a key-generation query for an index 𝑖 ∈ [𝑛] \ 𝑆 , algorithm 𝐵 replies with the
secret key sk𝑖 = 𝜋𝑖 .

5. When algorithm 𝐴 makes its challenge query on messages msg0,msg1 and a set 𝑆★ ⊆ 𝑆 , algorithm 𝐵 computes
ct★← Enc(pp,msg0, 𝑆

★) as in 𝐻0,0 and 𝐻0,1 (using the pp constructed above).

6. Algorithm 𝐴 responds with a bit 𝑏′ ∈ {0, 1}, which 𝐵 also outputs.

If 𝐴 is efficient, then so is 𝐵, so it is sufficient to analyze the advantage of 𝐵. By construction, if the mode indistin-
guishability challenger samples 𝑏 = 0, then the view of 𝐴 is distributed exactly as in 𝐻0,0, and if 𝑏 = 1 is sampled, then
the view of 𝐴 is distributed exactly as in 𝐻0,1. Therefore, when 𝑏 = 0, algorithm 𝐵 succeeds if 𝑏′ = 0 which means
that 𝐻0,0 (_) = 1, and when 𝑏 = 1, algorithm 𝐵 succeeds if 𝑏′ = 1 which means that 𝐻0,1 (_) = 0. Thus, the success
probability of 𝐵 is given by

Pr[𝑏′ = 𝑏] = 1
2 · Pr[𝐻0,0 (_) = 1] + 1

2 ·
(
1 − Pr[𝐻0,1 (_) = 1]

)
=
1
2 + 𝛿0,1 (_).

If 𝛿0,1 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N, then this violates the mode indistinguishability property of TPG. □

Claim 5.20. If 𝛿0,2 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N, then FBH does not satisfy computational function hiding.

Proof. The proof of this claim follows nearly identically to the proof of Claim 4.7. □

Claim 5.21. If 𝛿0,3 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N, then either (1) WE does not satisfy message indistin-
guishability; (2) FBH does not satisfy statistical function binding; or (3) TPG does not satisfy trapdoor decidability.

Proof. We construct a PPT adversary 𝐵 that uses the adversary 𝐴 to break the message indistinguishability security
ofWE or we show that either 𝐴 breaks the statistical function binding of FBH or trapdoor decidability of TPG. We
construct algorithm 𝐵 as follows:

1. Algorithm 𝐵 takes 1_ as input and starts running algorithm 𝐴. After algorithm 𝐴 commits to its set 𝑆 ⊆ [𝑛], it
constructs the public parameters pp exactly as described in 𝐻0,3. Similarly, it answers key-generation queries
according to the specification in 𝐻0,3.

2. When algorithm𝐴 makes its challenge query on messagesmsg0,msg1 and a set 𝑆★ = {𝑖1, . . . , 𝑖𝑘 } ⊆ 𝑆 , algorithm
𝐵 computes dig = FBH.Hash(hk, (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 )). It then outputs the statement 𝑥 = (hk, ppTPG, dig) and challenge
messages (msg0,msg★), where msg★ is the lexicographically-first message inM_ .

3. The FBH challenger replies with a challenge ciphertext ct★ which algorithm 𝐵 forwards to 𝐴. Specifically, the
witness encryption challenger samples a random bit 𝑏 r← {0, 1} and sets ct★←WE.Enc(1_,msg0, 𝑥) if 𝑏 = 0
and ct★←WE.Enc(1_,msg★, 𝑥) if 𝑏 = 1.
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4. At the end of the game, algorithm 𝐴 outputs a bit 𝑏′ ∈ {0, 1}, which 𝐵 also outputs.

It 𝐴 is efficient, then so is 𝐵, so it suffices to compute the advantage of algorithm 𝐵. For any _ ∈ N, let Wit(_) be the
event that there exists a valid witness ( 𝑗, hinp𝑗 , 𝜋TPG, 𝜋FBH) for the instance 𝑥 = (hk, ppTPG, dig) such that

TPG.Verify(ppTPG, hinp𝑗 , 𝜋TPG) = 1 ∧ FBH.VerOpen(hk, dig, { 𝑗}, {( 𝑗, hinp𝑗 )}, 𝜋FBH) = 1. (5.1)

By construction, the view of 𝐴 is identical to hybrid 𝐻0,2 (_) if 𝑏 = 0 and is identical to hybrid 𝐻0,3 (_) if 𝑏 = 1. When
𝑏 = 0, algorithm 𝐴 outputs 𝑏′ = 0 if 𝐻0,2 (_) = 1 (since 𝑏 = 0). Similarly, when 𝑏 = 1, algorithm 𝐴 outputs 𝑏′ = 1 if
𝐻0,3 (_) = 0. Additionally, if Wit(_) holds, then 𝐵 always loses the message indistinguishability game since it implies
that 𝑥 ∈ L_ . Thus, the success probability of 𝐵 is at least

Pr[𝐵 wins] ≥ Pr[𝑏′ = 𝑏] − Pr[Wit(_)]

≥ 1
2 · Pr[𝐻0,2 (_) = 1] + 1

2 · (1 − Pr[𝐻0,3 (_) = 1]) − Pr[Wit(_)]

≥ 1
2 +

1
2 · 𝛿0,3 (_) − Pr[Wit(_)] .

If Pr[Wit(_)] ≤ 1/(12𝑞(_)) for infinitely many _ ∈ Λ, then this violates message indistinguishability of WE since
𝛿0,3 (_) ≥ 1/(3𝑞(_)). To complete the proof, we show that if Pr[Wit(_)] > 1/(12𝑞(_)) for infinitely many _ ∈ N, then
we can either break the statistical function binding of FBH or the statistical binding for false instances and trapdoor
decidability of TPG. Suppose

Pr[Wit(_)] > 1/(12𝑞(_)) (5.2)

for infinitely many _ ∈ N. This means that there exists a witness ( 𝑗, hinp𝑗 , 𝜋TPG, 𝜋FBH) that satisfies Eq. (5.1) with
probability at least 1/(12𝑞(_)) for infinitelymany _ ∈ N. In the above construction, dig = FBH.Hash(hk, (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 )).
Recall also that in 𝐻0,3, the hash key hk is sampled to be function binding for the function 𝑓𝑔 where

𝑔(𝑥) B TPG.TDDecide(tdTPG, 𝑥).

Let E(_) be the event (taken over the random coins of SetupAlt and SampleFalse) that there exists an index ℓ ∈ [𝑘]
such that 𝑔(𝑥𝑖ℓ ) = 1. We consider two cases:

• Suppose for infinitely many _ ∈ N, Pr[E(_)] ≤ 1/(24𝑞(_)). Under the assumption that Eq. (5.2), this means
that Pr[Wit(_) ∧ ¬E(_)] > 1/(24𝑞(_)). In this case, for all ℓ ∈ [𝑘], 𝑔(𝑥𝑖ℓ ) = 0, so

𝑓𝑔 (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) =
∨
ℓ∈[𝑘 ]

𝑔(𝑥𝑖ℓ ) = 0.

SinceWit(_) holds, there exists a witness ( 𝑗, hinp𝑗 , 𝜋TPG, 𝜋FBH) that satisfies Eq. (5.1) for 𝑥 = (hk, ppTPG, dig)
from the experiment. This means that TPG.Verify(ppTPG, hinp𝑗 , 𝜋TPG) = 1. Then there are two possibilities:

– Suppose TPG.TDDecide(tdTPG, hinp𝑗 ) = 0. This violates the trapdoor decidability property of TPG.
– Suppose 𝑔(hinp𝑗 ) = TPG.TDDecide(tdTPG, hinp𝑗 ) = 1. Then the output of 𝑓𝑔 on any input that contains

hinp𝑗 is 1 ≠ 𝑓𝑔 (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ) = 0. Since dig = FBH.Hash(hk, (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 )), the existence of an opening
𝜋FBH for ( 𝑗, hinp𝑗 ) with respect to dig breaks statistical function binding of FBH.

If Pr[Wit(_) ∧ ¬E(_)] > 1/(24𝑞(_)), then at least one of the two events above happens with probability at
least 1/(48𝑞(_)). This breaks either statistical function binding of FBH or trapdoor decidability of TPG.

• Suppose for infinitely many _ ∈ N, Pr[E(_)] > 1/(24𝑞(_)). This means that with probability 1/(24𝑞(_)), there
exists an index ℓ ∈ [𝑘] such that 𝑔(𝑥𝑖ℓ ) = TPG.TDDecide(tdTPG, 𝑥𝑖ℓ ) = 1. Since in 𝐻0,2 and 𝐻0,3, the challenger
samples 𝑥𝑖ℓ ← SampleFalse(ppTPG), this translates to an attack on the trapdoor decidability property of TPG
with advantage 1/(24𝑞(_) · 𝑘 (_)), which is non-negligible since 𝑘 ≤ 𝑛 is polynomially-bounded.
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We conclude that assuming statistical function binding of FBH and trapdoor decidability of TPG, it cannot be the
case that Pr[Wit(_)] > 1/(12𝑞(_)), and the claim follows. □

The proof follows from Claims 5.19 to 5.21. □

Remark 5.22 (Optimal Broadcast Encryption in the Random Oracle Model). Construction 5.16 gives a broadcast
encryption scheme with short ciphertexts and secret keys. However, the public parameters are long (i.e., scales
linearly with the number of users 𝑛). Specifically, the public parameters consist of the public parameters ppTPG for the
trapdoor proof system, a hash key hk for a function-binding hash function, and 𝑛 random values 𝑥1, . . . , 𝑥𝑛 r← X from
the domain of the trapdoor proof system. By definition, the size of the public parameters ppTPG is poly(_) and the size
of the hash key hk is poly(_, log𝑛); see Theorem 5.17 for a more detailed calculation. Since the points 𝑥1, . . . , 𝑥𝑛 are
uniformly random over X (and independent of all other parameters), we can “compress” them in the random oracle
model. Namely, suppose O : [𝑛] → X is a hash function modeled as a random oracle. Then, in Construction 5.16,
we can define 𝑥𝑖 ← O(𝑖). In this way, the public parameters only needs to contain ppTPG and hk, both of which are
short. This yields an optimal broadcast encryption scheme from witness encryption, function-binding hash functions,
and trapdoor proof generators in the random oracle model. The resulting construction satisfies semi-static security,
but can be generically boosted to full adaptive security via the Gentry-Waters [GW09] transformation (which also
relies on the random oracle model).

6 Registered Attribute-Based Encryption
In this section, we recall the notion of a slotted registered attribute-based encryption (ABE) scheme [HLWW23] and
then show how to construct it from a witness encryption scheme together with a function binding hash function. To ob-
tain a standard registered ABE scheme (without slots), we can then apply the generic transformation from [HLWW23]
(restated in Theorem A.4). We recall the formal definition of a registered ABE scheme from [HLWW23] in Appendix A.
Our (slotted) registered ABE supports general policies over an attribute universe of super-polynomial size, an un-
bounded number of users, and has a transparent setup. In contrast, the pairing-based construction from [HLWW23]
could only support monotone Boolean formula policies over a polynomial-size attribute universe, an a priori bounded
number of users, and relied on a structured reference string whose size scales quadratically with the number of users.
On the flip side, the pairing-based construction from [HLWW23] is adaptively secure whereas our construction is
only selectively secure.

6.1 Slotted Registered ABE Definition
In this section, we recall the notion of a slotted registered ABE scheme from [HLWW23]. In our setting, each user is
associated with an attribute of length ℓ = ℓ (_) and each ciphertext is associated with a policy 𝑃 : {0, 1}ℓ (_) → {0, 1}
taken from some policy space P = {P_}_∈N. We say that an attribute 𝑥 satisfies the policy 𝑃 if 𝑃 (𝑥) = 1. We now
recall the formal definition. We present the definition for the setting with a large (i.e., super-polynomial size) attribute
universe and for supporting an arbitrary number of users (c.f., [HLWW23, Remark 6.10]):

Definition 6.1 (Slotted Registered ABE [HLWW23, adapted]). Let ℓ = ℓ (_) be an attribute length and P = {P_}_∈N
be a policy space on ℓ-bit inputs (i.e., P_ is a set of functions 𝑃 : {0, 1}ℓ (_) → {0, 1}). Let𝑚 =𝑚(_) andM = {M_}_∈N
be a message space with message length𝑚. A slotted registered attribute-based encryption scheme for attributes of
length ℓ , policy space P, and message spaceM consists of polynomial-time algorithms (Setup,KeyGen,Aggregate,
Enc,Dec)8 with the following syntax:

• Setup(1_, 𝐿) → pp: A probabilistic algorithm that on input a security parameter _ and a number of slots 𝐿,
outputs public parameters pp. We implicitly assume that pp contains 1_ and 𝐿.

8The definition from [HLWW23] also includes an algorithm IsValid(pp, 𝑖, pk𝑖 ) → {0, 1} that checks if a given public key is valid. Our construction
does not require this check. However, to match their syntax, we could define it to simply output 1 on any public key of the correct length with
respect to the public parameters pp.
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• KeyGen(pp, 𝑖) → (pk, sk): A probabilistic algorithm that on input the public parameters pp and a slot index
𝑖 ∈ [𝐿], outputs a public key pk and a secret key sk.

• Aggregate(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)) → (mpk, hsk1, . . . , hsk𝐿): A deterministic algorithm that on input public
parameters pp and a list of public keys with associated attributes (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿) outputs a master public
key mpk and a sequence of helper decryption keys hsk1, . . . , hsk𝐿 .

• Enc(mpk, 𝑃,msg) → ct: A probabilistic algorithm that on input a master public key mpk, an access policy
𝑃 ∈ P_ , and a message msg ∈ M_ , outputs a ciphertext ct.

• Dec(mpk, hsk, sk, ct) → msg: A deterministic algorithm that on input a master public key mpk, a helper
decryption key hsk, a secret key sk, and a ciphertext ct, outputs a message msg ∈ M_ ∪ {⊥}.

We require that (Setup,KeyGen,Aggregate, Enc,Dec) satisfy the following properties:

• Compactness: There exists a polynomial 𝑝 such that for any _ ∈ N, 𝐿 ∈ N, public parameters pp ∈
Supp

(
Setup(1_, 𝐿)

)
, public/secret key-pairs (pk𝑖 , sk𝑖 ) ∈ Supp (KeyGen(pp, 𝑖)), and attributes 𝑥𝑖 ∈ {0, 1}ℓ (_) for

each 𝑖 ∈ [𝐿], and setting (mpk, hsk1, . . . , hsk𝐿) = Aggregate(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)), the following holds:

– |mpk| ≤ 𝑝 (_, ℓ, log𝐿), and
– |hsk𝑖 | ≤ 𝑝 (_, ℓ, log𝐿) for each 𝑖 ∈ [𝐿].

This compactness notion requires that the size of the master public key and the helper decryption keys scale
polylogarithmically with the size of the attribute universe (|{0, 1}ℓ | = 2ℓ ). We can define a weaker notion of
compactness where the size of the master public key and the helper decryption keys scale polynomially with
the size of the attribute universe. This weaker notion is the default in [HLWW23], as the parameters of their
pairing-based construction scale polynomially with the size of the attribute universe.

• Correctness: For any _ ∈ N, 𝐿 ∈ N, 𝑖 ∈ [𝐿], messagemsg ∈ M_ , attributes𝑥1, . . . , 𝑥𝐿 ∈ {0, 1}ℓ (_) , policy 𝑃 ∈ P_
where 𝑃 (𝑥𝑖 ) = 1, pp ∈ Supp

(
Setup(1_, 𝐿)

)
, (pk𝑖 , sk𝑖 ) ∈ Supp (KeyGen(pp, 𝑖)), and any public keys {pk𝑗 } 𝑗≠𝑖∈[𝐿]

(which may be correlated with pk𝑖 ), let (mpk, hsk1, . . . , hsk𝐿) = Aggregate(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)). Then,
it holds that

Pr
[
ct← Enc(mpk, 𝑃,msg)
msg′ = Dec(mpk, hsk𝑖 , sk𝑖 , ct)

: msg′ = msg
]
= 1.

• Adaptive security: For all stateful PPT adversaries 𝐴 and efficiently-computable function 𝐿 ∈ poly(_), there
exists a negligible function negl such that for all _ ∈ N,

Pr
[
ExptsrABE

𝐴,𝐿 (_) (_) = 1
]
≤ 1/2 + negl(_),

where ExptsrABE
𝐴,𝐿
(_) is defined via the following security game between the adversary 𝐴 and a challenger on

common input 1_ :

– Setup phase: The challenger samples pp← Setup(1_, 𝐿) and sends pp to 𝐴. The challenger initializes a
counter ctr B 0, a dictionary D, and a set of (corrupted) slot indices C B ∅.

– Pre-challenge query phase: The adversary 𝐴 can now issue the following queries:
∗ Key-generation query: In a key-generation query, the adversary specifies a slot index 𝑖 ∈ [𝐿]. The
challenger increments the counter value ctr B ctr + 1, samples (pk, sk) ← KeyGen(pp, 𝑖) and replies
with (ctr, pk) to 𝐴. The challenger adds the mapping ctr ↦→ (𝑖, pk, sk) to the dictionary D.

∗ Corruption query: In a corruption query, the adversary specifies a counter value 𝑐 ∈ [ctr]. In
response, the challenger looks up the tuple (𝑖, pk, sk) B D[𝑐] and replies to 𝐴 with sk.

– Challenge phase: For each slot 𝑖 ∈ [𝐿], the adversary 𝐴 specifies a tuple (𝑐𝑖 , 𝑥𝑖 , pk★𝑖 ) where either
𝑐𝑖 ∈ {1, . . . , ctr} to reference a challenger-generated key or 𝑐𝑖 = ⊥ to reference a key outside this set. The
adversary also sends a challenge policy 𝑃★ ∈ P_ and two messages msg0,msg1 ∈ M_ . The challenger
responds by first constructing pk𝑖 as follows for each 𝑖 ∈ [𝐿]:

41



∗ If 𝑐𝑖 ∈ {1, . . . , ctr}, then the challenger sets (𝑖′, pk, sk) B D[𝑐𝑖 ]. If 𝑖 = 𝑖′, then the challenger sets
pk𝑖 B pk. Moreover, if the adversary previously issued a corruption query on counter 𝑐𝑖 , then the
challenger adds the slot index 𝑖 to C. Otherwise, if 𝑖 ≠ 𝑖′, then the experiment halts and outputs 0.

∗ If 𝑐𝑖 = ⊥, the challenger sets pk𝑖 B pk★𝑖 and adds the slot index 𝑖 to C.
The challenger computes (mpk, hsk1, . . . , hsk𝐿) = Aggregate(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)), samples a ran-
dom bit 𝑏 ← {0, 1}, known as the challenge bit, and replies with the challenge ciphertext ct★ ←
Enc(mpk, 𝑃★,msg𝑏).9

– Output phase: At the end of the experiment, the adversary 𝐴 outputs a bit 𝑏′ ∈ {0, 1}. We say that
algorithm 𝐴 is admissible if 𝑃★(𝑥𝑖 ) = 0 for all 𝑖 ∈ C (i.e., the attributes associated with corrupted slots do
not satisfy the challenge policy). The experiment outputs 1 if 𝑏′ = 𝑏 and 𝐴 is admissible. Otherwise, the
experiment outputs 0.

Selective security. We now consider two versions of selective security that relax the notion of adaptive security
defined above. We consider (1) policy-selective security, where the adversary has to declare its challenge policy at
the beginning of the security game; and (2) policy-selective security without corruptions where the adversary has
to declare its challenge policy at the beginning of the security game, and moreover, it cannot make any corruption
queries. Our construction of slotted registered ABE will satisfy the weakest notion of policy-selective security
without corruptions. In Appendix C, we show how to adapt the two-key approach from [GW09] to transform a
slotted registered ABE scheme that satisfies policy-selective security without corruptions into one that satisfies
policy-selective security with corruptions in the random oracle model. We now give a formal definition of our relaxed
security definitions:

Definition 6.2 (Policy-Selective Security). We say that a slotted registered ABE scheme (Setup,KeyGen,Aggregate,
Enc,Dec) satisfies policy-selective security if instead of adaptive security, it satisfies the following:

• Policy-selective security: For all stateful PPT adversaries 𝐴 and efficiently-computable function 𝐿 ∈ poly(_),
there exists a negligible function negl such that for all _ ∈ N,

Pr
[
ExptsrABE,PS

𝐴,𝐿 (_) (_) = 1
]
≤ 1/2 + negl(_),

where ExptsrABE,PS
𝐴,𝐿

(_) is the adaptive security game ExptsrABE
𝐴,𝐿
(_) with the following modification:

– Setup phase: At the beginning of the setup phase, the adversary sends the challenge policy 𝑃★ to the
challenger. The rest of the setup phase proceeds as in ExptsrABE

𝐴,𝐿
(_).

The remainder of ExptsrABE,PS
𝐴,𝐿

(_) proceeds exactly as defined in ExptsrABE
𝐴,𝐿
(_).

Definition 6.3 (Policy-Selective Security without Corruptions). We say that a slotted registered ABE scheme (Setup,
KeyGen,Aggregate, Enc,Dec) satisfies policy-selective security without corruptions if instead of adaptive security, it
satisfies the following:

• Policy-selective security without corruptions: For all stateful PPT adversaries𝐴 and efficiently-computable
function 𝐿 ∈ poly(_), there exists a negligible function negl such that for all _ ∈ N,

Pr
[
ExptsrABE,PSWC

𝐴,𝐿 (_) (_) = 1
]
≤ 1/2 + negl(_),

where ExptsrABE,PSWC
𝐴,𝐿

(_) is the policy-selective security game ExptsrABE,PS
𝐴,𝐿

(_) with the following modifications:

– Pre-challenger query phase: Same as ExptsrABE
𝐴,𝐿
(_) except the adversary 𝐴 is not allowed to make any

corruption queries.

The remainder of ExptsrABE,PSWC
𝐴,𝐿

(_) proceeds exactly as defined in ExptsrABE
𝐴,𝐿
(_).

9Note that because Aggregate is deterministic and can be run by 𝐴 itself, there is no need to additionally provide (mpk, hsk1, . . . , hsk𝐿 ) to 𝐴.
Similarly, there is no advantage to allowing the adversary to select the challenge policy and messages after seeing the aggregated key.

42



6.2 Constructing Slotted Registered ABE
We now show how to construct a slotted registered ABE scheme from witness encryption, function binding hash
functions, and public-key encryption. Our scheme satisfies policy-selective security without corruptions. We
show in Appendix C how to use this to generically transform this scheme into one that satisfies policy-selective
security with corruptions in the random oracle model. As was the case for our flexible broadcast encryption scheme
(Construction 4.3), the public parameters for our registered ABE scheme is a uniform random string, and thus, our
scheme supports a transparent setup (see Remark 6.10).

Construction 6.4 (Slotted Registered ABE). Let ℓ = ℓ (_) be the attribute length and𝑚 =𝑚(_) be the message length.
Let 𝑠 = 𝑠 (_, ℓ), ℓblk = ℓblk (_), and 𝑑 = 𝑑 (_, ℓ) be polynomials. LetM = {M_}_∈N be a message space for message of
length𝑚. Let P = {P_}_∈N be a set of policies on ℓ-bit attributes (i.e., P_ consists of functions 𝑃 : {0, 1}ℓ (_) → {0, 1})
where each policy 𝑃 ∈ P_ can be implemented by a Boolean circuit of size 𝑠 and depth 𝑑 . Our construction of slotted
registered ABE relies on the following primitives:

• Let PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec) be a semantically-secure public-key bit encryption scheme where,
for (pk, sk) ∈ Supp

(
PKE.KeyGen(1_)

)
, ciphertexts have length at most ℓblk (_) and decryption can be computed

by a circuit of size 𝑠 and depth 𝑑 .

• Let FBH = (FBH.Setup, FBH.SetupBinding, FBH.Hash, FBH.ProveOpen, FBH.VerOpen) be a function-binding
hash for the class F of disjunctions of block functions for input length ℓblk (_) + ℓ (_), size 2𝑠 + 1, and depth 𝑑
(Definition 3.3).

• LetWE = (WE.Enc,WE.Dec) be a witness encryption scheme for the language L = {L_}_∈N defined by the
relation RL as follows. Instances of the language L_ are of the form (hk, pkPKE, dig, 𝑃) and the relation RL is
given by

RL ((hk, pkPKE, dig, 𝑃), (𝑖, ct, 𝑥, 𝑟, 𝜋)) = 1
⇔ ct = PKE.Enc(pkPKE, 1; 𝑟 ) ∧ 𝑃 (𝑥) = 1 ∧ FBH.VerOpen(hk, dig, {𝑖}, {(𝑖, (ct, 𝑥))}, 𝜋) = 1.

We construct a slotted registered ABE scheme srABE = (Setup,KeyGen,Aggregate, Enc,Dec) with attribute length ℓ ,
policy space P, and message spaceM as follows:

• Setup(1_, 𝐿): On input the security parameter _ and the number of slots 𝐿, the setup algorithm samples
(pkPKE, skPKE) ← PKE.KeyGen(1_), hk← FBH.Setup(1_, 𝐿), and outputs public parameters pp = (pkPKE, hk).

• KeyGen(pp, 𝑖): On input the public parameters pp = (pkPKE, hk) and an index 𝑖 ∈ [𝐿], the key-generation
algorithm samples 𝑟 r← {0, 1}_ and computes ct = PKE.Enc(pkPKE, 1; 𝑟 ). It then outputs the public key pk = ct
and secret key sk = 𝑟 .

• Aggregate(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)): On input the public parameters pp = (pkPKE, hk) and a ordered list
of public keys pk𝑖 with associated attributes 𝑥𝑖 ∈ {0, 1}ℓ , the aggregation algorithm first computes the di-
gest dig = FBH.Hash(hk, ((pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿))). Then, for each 𝑖 ∈ [𝐿], it computes the proof 𝜋𝑖 =

FBH.ProveOpen(hk, ((pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)), {𝑖}). Finally, it outputs the master public key mpk = (pp, dig)
and the helper decryption key hsk𝑖 = (𝑖, 𝜋𝑖 , pk𝑖 , 𝑥𝑖 ) for each 𝑖 ∈ [𝐿].

• Enc(mpk, 𝑃,msg): On input the master public key mpk = ((pkPKE, hk), dig), a policy 𝑃 ∈ P_ , and a message
msg ∈ M_ , the encryption algorithm outputs ct←WE.Enc(1_,msg, (hk, pkPKE, dig, 𝑃)).

• Dec(mpk, hsk, sk, ct): On input the master public key mpk, the helper decryption key hsk = (𝑖, 𝜋, pk, 𝑆), a
secret key sk, and a ciphertext ct, the decryption algorithm outputs msg = WE.Dec(1_, ct, (𝑖, pk, 𝑆, sk, 𝜋)).

Correctness and efficiency. We start by showing that Construction 6.4 satisfies (perfect) correctness and compact-
ness.
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Theorem6.5 (Correctness and Efficiency). Assuming PKE andWE are correct and FBH is complete, then Construction 6.4
is compact and correct.

Proof. We show each property separately:

• Compactness: Compactness follows by efficiency of WE and FBH. Specifically, |mpk| = |pp| + |dig|. First,
|pp| ∈ poly(_, log𝐿) by construction of Setup. Similarly, |dig| ∈ poly(_, log𝐿) by efficiency of FBH, so
the master public key is short. Next, consider the helper decryption keys. For any slot 𝑖 ∈ [𝐿], we have
|hsk𝑖 | = |𝑖 | + |𝜋𝑖 | + |pk𝑖 | + |𝑥𝑖 |. By construction, |𝑖 | ≤ log𝐿, |𝜋𝑖 | ∈ poly(_, log𝐿) by efficiency of FBH and
|pk𝑖 | ∈ poly(_) by efficiency of PKE, and |𝑥𝑖 | = ℓ . Thus, |hsk𝑖 | ∈ poly(_, ℓ, log𝐿), as required.

• Correctness: Take any security parameter _ ∈ N, number of slots 𝐿 ∈ N, index 𝑖 ∈ [𝐿], message msg ∈ M_ ,
attributes 𝑥1, . . . , 𝑥𝐿 ∈ {0, 1}ℓ , policy 𝑃 ∈ P_ such that 𝑃 (𝑥𝑖 ) = 1. Then, we have the following:

– Let pp = (pkPKE, hk) ← Setup(1_, 𝐿), and for each 𝑖 ∈ [𝐿], let (pk𝑖 , sk𝑖 ) ← KeyGen(pp, 𝑖). By construc-
tion, this means that pk𝑖 = PKE.Enc(pkPKE, 1; sk𝑖 ).

– Let (mpk, hsk1, . . . , hsk𝐿) = Aggregate(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)) and ct← Enc(mpk, 𝑃,msg). By con-
struction, ct← WE.Enc(1_,msg, (hk, pkPKE, dig, 𝑃)). The encryption algorithm computes the digest as
dig = FBH.Hash(hk, ((pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿))).

– We argue that Dec(mpk, hsk𝑖 , sk𝑖 , ct) = msg. Specifically, we show that using hsk𝑖 = (𝑖, 𝜋𝑖 , pk𝑖 , 𝑥𝑖 ) and sk𝑖 ,
we can construct a valid witness for the statement (hk, pkPKE, dig, 𝑃) ∈ L_ . Specifically, (𝑖, pk𝑖 , 𝑥𝑖 , sk𝑖 , 𝜋𝑖 )
is a valid witness. By construction 𝜋𝑖 = FBH.ProveOpen(hk, ((pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)), {𝑖}). By com-
pleteness of FBH, it follows that FBH.VerOpen(hk, dig, {𝑖}, {(𝑖, (pk𝑖 , 𝑥𝑖 ))}, 𝜋𝑖 ) = 1. Moreover, pk𝑖 =

PKE.Enc(pkPKE, 1; sk𝑖 ) and 𝑃 (𝑥𝑖 ) = 1 so we conclude that (𝑖, pk𝑖 , 𝑥𝑖 , sk𝑖 , 𝜋𝑖 ) is a valid witness. The claim
now follows by correctness of WE. □

Selective security. We now show that Construction 6.4 satisfies policy-selective security without corruptions. In
Appendix C, we show how to generically transform this scheme into one that satisfies policy-selective security with
corruptions in the random oracle mode. The analysis follows a similar structure as the security analysis for our
flexible broadcast encryption scheme (Theorem 4.5).

Theorem 6.6 (Policy-Selective Security without Corruptions). Assuming PKE is semantically secure and satisfies
perfect correctness, FBH satisfies computational function hiding and statistical function binding, andWE satisfies message
indistinguishability, then Construction 6.4 satisfies policy-selective security without corruptions.

Proof. Suppose by way of contradiction that srABE does not satisfy policy-selective security without corruptions.
Namely, there exists a stateful PPT adversary 𝐴, an efficiently computable function 𝐿 ∈ poly(_), a polynomial 𝑞, and
an infinite set Λ ⊆ N such that for all _ ∈ Λ, it holds that

Pr
[
ExptsrABE,PSWC

𝐴,𝐿 (_) (_) = 1
]
≥ 1/2 + 1/𝑞(_).

For fixed parameters as above, we define the following sequence of hybrid experiments for each _ ∈ N.

• 𝐻𝑏,0 (_): This is the experiment ExptsrABE,PSWC
𝐴,𝐿 (_) (_) where the challenge bit is fixed to the value 𝑏.

• 𝐻𝑏,1 (_): This hybrid is identical to the previous experiment, except in key generation queries, the challenger
samples (pk, sk) such that pk is an encryption of 0. Specifically, the challenger responds to key-generation
queries by sampling (pk, sk) = (ct, 𝑟 ) where 𝑟 ← {0, 1}_ and ct = PKE.Enc(pkPKE, 0; 𝑟 ) and replying with pk.

• 𝐻𝑏,2 (_): In this hybrid, the challenger instead computes hk← FBH.SetupBinding(1_, 𝐿(_), 𝑓𝑔) where 𝑓𝑔 is the
function from Eq. (3.1) and 𝑔 is defined as follows

𝑔(ct, 𝑥) B
{
1 PKE.Dec(skPKE, ct) = 1 ∧ 𝑃★(𝑥) = 1
0 otherwise.

Note that the secret key skPKE and the challenge policy 𝑃★ is hard-coded into the description of 𝑔.
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• 𝐻𝑏,3 (_): In this hybrid, instead of encrypting msg𝑏 in the policy-selective security game without corruptions,
the challenger encrypts the lexicographically-first message msg★ ∈ M_ : ct★← Enc(mpk, 𝑃★,msg★).

Since the challenge bit is sampled uniformly (i.e., 𝑏 r← {0, 1}), the success probability of 𝐴 on any security parameter
_ is equal to

Pr[𝐴 wins] = 1
2 ·

(
Pr[𝐻0,0 (_) = 1] + Pr[𝐻1,0 (_) = 1]

)
.

For each 𝑏 ∈ {0, 1} and 𝑖 ∈ {1, 2, 3}, we define

𝛿𝑏,𝑖 (_) = Pr[𝐻𝑏,𝑖−1 (_) = 1] − Pr[𝐻𝑏,𝑖 (_) = 1] .

It follows by our assumption that for all _ ∈ Λ,

1
2 +

1
𝑞(_) ≤

1
2 ·

(
Pr[𝐻0,0 (_) = 1] + Pr[𝐻1,0 (_) = 1]

)
=
1
2 ·

(
Pr[𝐻0,3 (_) = 1] + 𝛿0,1 (_) + 𝛿0,2 (_) + 𝛿0,3 (_)

+ Pr[𝐻1,3 (_) = 1] + 𝛿1,1 (_) + 𝛿1,2 (_) + 𝛿1,3 (_)
)
.

As 𝐻𝑏,3 is independent of 𝑏, it must be the case that Pr[𝐻𝑏,3 (_) = 1] ≤ 1/2 for each 𝑏 ∈ {0, 1}. Therefore, for all _ ∈ Λ,

1
𝑞(_) ≤

1
2 ·

(
𝛿0,1 (_) + 𝛿0,2 (_) + 𝛿0,3 (_) + 𝛿1,1 (_) + 𝛿1,2 (_) + 𝛿1,3 (_)

)
.

As Λ is an infinitely large subset of N, it must be the case that, for some 𝑏 ∈ {0, 1} and 𝑖 ∈ {1, 2, 3}, 𝛿𝑏,𝑖 (_) ≥ 1/(3𝑞(_))
for infinitely many _ ∈ N. We show in the following claims that this must contradict one of our assumptions from
the statement of Theorem 6.6. We prove the following claims for 𝑏 = 0 without loss of generality.

Claim 6.7. If 𝛿0,1 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N, then PKE does not satisfy semantic security.

Proof. Let𝑄 (_) be an upper bound on the number of key-generation queries that 𝐴 makes in the pre-challenge query
phase of the policy-selective security game without corruptions. Note that 𝑄 is polynomially-bounded since 𝐴 is
efficient. We construct a stateful PPT adversary 𝐵 that uses 𝐴 to break the semantic security of PKE:

1. Algorithm 𝐵 receives a public key p̂k for the PKE scheme. As PKE is a bit encryption scheme, 𝐵 outputs
challenge messages msg0 = 0 and msg1 = 1.

2. Algorithm 𝐵 receives a challenge ciphertext ĉt as input. The challenger samples 𝑏 r← {0, 1} and sets ĉt ←
PKE.Enc(p̂k, 𝑏).

(a) Algorithm 𝐵 computes 𝑄 (_) and samples a uniformly random index 𝑖★← [𝑄 (_)].
(b) Algorithm 𝐵 starts running 𝐴, which starts by committing to a challenge policy 𝑃★. Algorithm 𝐵 then

computes the public parameters pp = (pkPKE, hk) as in Setup except using pkPKE B p̂k. Algorithm 𝐵

sends the public parameters pp to 𝐴.
(c) For each counter value ctr ∈ [𝑄 (_)], algorithm 𝐵 computes the response pk to 𝐴’s key-generation queries

for ctr as follows:
• If ctr = 𝑖★ for an key-generation query, 𝐵 sets pk = ĉt.
• If ctr < 𝑖★ for an key-generation query, 𝐵 samples sk r← {0, 1}_ and sets pk = PKE.Enc(p̂k, 0; sk).
• If ctr > 𝑖★ for an key-generation query, 𝐵 samples sk r← {0, 1}_ and sets pk = PKE.Enc(p̂k, 1; sk).

(d) In the challenge phase, algorithm 𝐵 receives tuples (𝑐𝑖 , 𝑥𝑖 , pk★𝑖 ) from 𝐴 and constructs the challenge
ciphertext ct★ using the procedure described in hybrid 𝐻0,0 (_). Algorithm 𝐵 gives ct★ to 𝐴.

(e) The adversary 𝐴 outputs a bit 𝑏′ ∈ {0, 1}, which 𝐵 also outputs.
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If 𝐴 is efficient, then so is 𝐵 by construction. To analyze the success probability, we define a sequence of sub-hybrids.
For each 𝑖 ∈ [0, 𝑄 (_)], we define 𝐻0,0,𝑖 (_) as follows:

• 𝐻0,0,𝑖 (_): Same as 𝐻0,0 (_) except the challenger answers the first 𝑖 − 1 key-generation queries using the
procedure from 𝐻0,1 (_). More precisely, when ctr < 𝑖 , the challenger sets pk = PKE.Enc(pkPKE, 0; sk) for a
random sk r← {0, 1}_ (i.e., using the same procedure as in 𝐻0,1 (_)).

Note that hybrid 𝐻0,0,0 is identical to 𝐻0,0, and hybrid 𝐻0,0,𝑄 (_) (_) is identical to 𝐻0,1 (_). Therefore, it holds that

𝛿0,1 (_) = Pr[𝐻0,0 (_) = 1] − Pr[𝐻0,1 (_) = 1]

=

𝑄 (_)∑︁
𝑖=1

(
Pr[𝐻0,0,𝑖−1 (_) = 1] − Pr[𝐻0,0,𝑖 (_) = 1]

)
We proceed to analyze the success probability of 𝐵 conditioned on 𝑖★ being equal to a fixed values of 𝑖 . Note that
when 𝑏 = 1, the view of 𝐴 corresponds to hybrid 𝐻0,0,𝑖 since the public key pk for counter value 𝑖 is an encryption of
0, and when 𝑏 = 0, the view of 𝐴 corresponds to hybrid 𝐻0,0,𝑖−1. Since 𝐵 outputs 𝑏′, it follows that if 𝑏 = 1, then 𝑏′ = 𝑏

whenever 𝑏′ = 1, or equivalently, when 𝐻0,0,𝑖 (_) = 0 (i.e., algorithm 𝐴 loses since 𝑏 is fixed to 0). Similarly, if 𝑏 = 0,
then 𝑏′ = 𝑏 whenever 𝑏′ = 0, or equivalently, when 𝐻0,0,𝑖−1 (_) = 1 (i.e., 𝐴 wins). The success probability of 𝐵 for any
𝑖 ∈ [𝐿(_)] conditioned on 𝑖★ = 𝑖 is given by the following:

Pr[𝑏′ = 𝑏 | 𝑖★ = 𝑖] = 1
2 ·

(
1 − Pr[𝐻0,0,𝑖 (_) = 1]

)
+ 1
2 · Pr[𝐻0,0,𝑖−1 (_) = 1]

=
1
2 +

1
2 ·

(
Pr[𝐻0,0,𝑖−1 (_) = 1] − Pr[𝐻0,0,𝑖 (_) = 1]

)
.

It follows that the success probability of 𝐵, where 𝐵 chooses a random 𝑖★, is equal to

Pr[𝑏′ = 𝑏] =
𝑄 (_)∑︁
𝑖=1

Pr[𝑖★ = 𝑖] · Pr[𝑏′ = 𝑏 | 𝑖★ = 𝑖]

=
1

𝑄 (_) ·
𝑄 (_)∑︁
𝑖=1

(
1
2 +

1
2 ·

(
Pr[𝐻0,0,𝑖−1 (_) = 1] − Pr[𝐻0,0,𝑖 (_) = 1]

) )
=
1
2 +

1
2 ·𝑄 (_) ·

𝑄 (_)∑︁
𝑖=1

(
Pr[𝐻0,0,𝑖−1 (_) = 1] − Pr[𝐻0,0,𝑖 (_) = 1]

)
=
1
2 +

1
2 ·𝑄 (_) · 𝛿0,1 (_).

As𝑄 ∈ poly(_) and 𝛿0,1 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N, it follows that 𝐵 succeeds with inverse polynomial
probability for infinitely many _ ∈ N, which violates the semantic security of PKE, as required. □

Claim 6.8. If 𝛿0,2 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N, then FBH does not satisfy computational function hiding.

Proof. The proof of this claim follows nearly identically to the proof of Claim 4.7. □

Claim 6.9. If 𝛿0,3 (_) ≥ 1/(3𝑞(_)) for infinitely many _ ∈ N and PKE satisfies (perfect) correctness, then eitherWE does
not satisfy message indistinguishability or FBH does not satisfy statistical function binding.

Proof. We construct a PPT adversary 𝐵 that uses adversary 𝐴 to either break the message indistinguishability security
ofWE, or we show that 𝐴 can be used to break statistical function binding of FBH. We define 𝐵 as follows:

1. Algorithm 𝐵 starts running 𝐴. The adversary 𝐴 sends the challenger policy 𝑃★ to 𝐵. Algorithm 𝐵 computes
pp = (pkPKE, hk) according to the specification in hybrid 𝐻0,2 (_) and sends pp to 𝐴.
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2. Whenever 𝐴 makes a key-generation query, algorithm 𝐵 responds as in hybrid 𝐻0,2 (_).

3. In the challenge phase, algorithm 𝐴 outputs two messages msg′0,msg′1 and tuples (𝑐𝑖 , 𝑥𝑖 , pk★𝑖 ) for each slot
𝑖 ∈ [𝐿(_)]. Algorithm 𝐵 computes public key pk𝑖 for each slot as in hybrid 𝐻0,2 (_) and computes dig =

FBH.Hash(hk, ((pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿))) as done in Aggregate.

4. Algorithm 𝐵 outputs the statement (hk, pkPKE, dig, 𝑃★) and a pair of messages (msg0,msg1) wheremsg0 = msg′0
and msg1 = msg★ is the lexicographically first message inM_ .

5. Algorithm 𝐵 receives a challenge ciphertext ct★ corresponding to WE.Enc(1_,msg
𝑏
, 𝑥), where 𝑏 r← {0, 1} is

sampled by the challenger. Algorithm 𝐵 gives ct★ to 𝐴.

6. At the end of the experiment, algorithm 𝐴 outputs a bit 𝑏′ ∈ {0, 1}, which 𝐵 also outputs.

If 𝐴 is efficient, then so is 𝐵. It suffices to analyze the success probability of 𝐵. Let Wit(_) be the event that there
exists a valid witness ( 𝑗, ct, 𝑥, 𝑟, 𝜋) for the instance (hk, pkPKE, dig, 𝑃★) such that

ct = PKE.Enc(pkPKE, 1; 𝑟 ) ∧ 𝑃★(𝑥) = 1 ∧ FBH.VerOpen(hk, dig, { 𝑗}, {( 𝑗, (ct, 𝑥))}, 𝜋) = 1. (6.1)

Note that the view of 𝐴 is identical to hybrid 𝐻0,2 (_) if 𝑏 = 0 and is identical to 𝐻0,3 (_) if 𝑏 = 1 since msg1 = msg★.
Furthermore, when 𝑏 = 0, 𝐵 wins whenever 𝑏′ = 0, so 𝐻0,2 (_) = 1 since 𝑏 is fixed to 0. When 𝑏 = 1, 𝐵 wins
whenever 𝑏′ = 1, so 𝐻0,3 (_) = 0 since 𝑏 is fixed to 0. Additionally, ifWit(_) holds, then 𝐵 always loses the message
indistinguishability game since it implies that 𝑥 ∈ L_ . Thus, the success probability of 𝐵 is at least

Pr[𝐵 wins] ≥ Pr[𝑏′ = 𝑏] − Pr[Wit(_)]

≥ 1
2 · Pr[𝐻0,2 (_) = 1] + 1

2 ·
(
1 − Pr[𝐻0,3 (_) = 1]

)
− Pr[Wit(_)]

=
1
2 +

1
2 · 𝛿0,3 (_) − Pr[Wit(_)]

If Pr[Wit(_)] ≤ 1/(12𝑞(_)) for infinitely many _ ∈ Λ, then this violates the message indistinguishability ofWE since
𝛿0,3 (_) ≥ 1/(3𝑞(_)). We next argue below that if Pr[Wit(_)] > 1/(12𝑞(_)) for infinitely many _ ∈ N, then this violates
the statistical function binding of FBH, as required for the statement of the claim. Suppose Pr[Wit(_)] > 1/(12𝑞(_))
for infinitely many _ ∈ N (i.e., Eq. (6.1) occurs with probability at least 1/(12𝑞(_))). In the above construction,
dig = FBH.Hash(hk, ((pk1, 𝑥1) . . . , (pk𝐿 (_) , 𝑥𝐿))). For each 𝑖 ∈ [𝐿], we have that

𝑔(pk𝑖 , 𝑥𝑖 ) = 1 if and only if PKE.Dec(skPKE, pk𝑖 ) = 1 ∧ 𝑃★(𝑥𝑖 ) = 1.

By construction of hybrid 𝐻0,2 (_), it must be the case that either:

• 𝑖 ∈ C, so 𝑃★(𝑥𝑖 ) = 0 for admissible 𝐴; or

• 𝑖 ∉ C and corresponds to a key-generation query where pk𝑖 ∈ Supp
(
PKE.Enc(pkPKE, 0)

)
. For this case, perfect

correctness of PKE implies that PKE.Dec(skPKE, pk𝑖 ) = 0.

Thus, for all 𝑖 ∈ [𝐿], we have that 𝑔(pk𝑖 , 𝑥𝑖 ) = 0, and correspondingly,

𝑓𝑔
(
(pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)

)
=

∨
𝑗∈[𝐿]

𝑔(pk𝑗 , 𝑥 𝑗 ) = 0.

Therefore, if Eq. (6.1) is satisfied for some witness ( 𝑗, ct, 𝑥, 𝑟, 𝜋) corresponding to instance (hk, pkPKE, dig, 𝑃★), then
it must be the case that 𝑔(ct, 𝑥) = 1. But then the output of 𝑓𝑔 on any input that contains (ct, 𝑥) is necessarily
1 ≠ 𝑓𝑔 ((pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)). As such, if Wit(_) holds with probability at least 1/(12𝑞(_)) for infinitely many
_ ∈ N, then there exists an adversary that break statistical function binding of FBH with the same (non-negligible)
advantage. □
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This proof follows by combining Claims 6.7 to 6.9. □

Remark 6.10 (Transparent Setup). As as the case with the flexible broadcast encryption scheme from Section 4, the
public parameters in Construction 6.4 is pseudorandom with a suitable instantiation of the function-binding hash
function and public-key encryption scheme (see Remark 4.9). Correspondingly, we obtain slotted registered ABE
scheme for general policies with a transparent setup.

Instantiation. Combining our slotted registered ABE scheme from Construction 6.4 with the generic transformation
from [HLWW23] (see also Appendix A), we obtain a registered ABE scheme for general policies. We summarize this
construction below:

Corollary 6.11 (Registered ABE for General Policies). Let _ be a security parameter and ℓ = ℓ (_) be an attribute
length parameter. Let P = {P_}_∈N be a set of policies on ℓ-bit attributes where each policy 𝑃 ∈ P_ can be implemented
by a Boolean circuit of size at most 𝑠 = 𝑠 (_). LetM = {M_}_∈N be a message space for messages of length𝑚. Then,
assuming witness encryption for NP and the plain learning with errors (LWE) assumption, there exists a registered ABE
scheme for attributes of length ℓ , policy family P, and message spaceM with the following properties:

• The public parameters consists of a uniform random string of length poly(_, 𝑠).

• The running time of key generation is poly(_).

• The size of the master public key and the size of the helper decryption keys is poly(_, 𝑠, log𝐿) where 𝐿 is the number
of registered users.

• Both the encryption and decryption algorithms run in time poly(_, 𝑠,𝑚, log𝐿).

The scheme satisfies policy-selective security without corruptions. In the random oracle model, we can further amplify the
scheme to satisfy policy-selective security with corruptions (see Appendix C).

Remark 6.12 (Comparison with [HLWW23]). Corollary 6.11 is the first registered ABE scheme that supports
general policies that does not rely on indistinguishability obfuscation. The parameter sizes of Corollary 6.11 are
consistent with those obtained from the obfuscation-based construction from [HLWW23]. However, the obfuscation-
based construction satisfies adaptive security whereas Corollary 6.11 only provides policy-selective security without
corruptions. To conclude, we also compare Corollary 6.11 with the pairing-based construction from [HLWW23]:

• Setup assumptions: The pairing-based construction relies on a structured public parameters whose size scales
quadratically with the maximum number of registered users. Thus, [HLWW23] requires a trusted setup to
generate the public parameters. The public parameters in Corollary 6.11 consist of a uniform random string
and thus, the scheme supports a transparent setup.

• Unbounded users: The pairing-based construction imposes an a priori polynomial bound on the maximum
number of registered users 𝐿 in the system, and moreover, the size of the public parameters, the running time
of key generation, and the running time of registration scales with the bound 𝐿. Corollary 6.11 supports an
arbitrary number of users (e.g., an implicit bound of 2_ users).

• Policy family: The pairing-based construction supports monotone Boolean formulas whereas Corollary 6.11
supports arbitrary circuit policies.

• Security: The pairing-based construction follows a dual-system methodology and satisfies adaptive security.
In contrast, Corollary 6.11 satisfies the weaker notion of policy-selective security without corruptions (and
with corruptions if we work in the random oracle model).
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7 Flexible and Distributed Broadcast Encryption from Registered ABE
In this section, we show that it is also possible to generically obtain either a flexible broadcast encryption scheme or a
distributed broadcast encryption scheme from a registered ABE scheme (defined in Appendix A). For instance, an
alternative approach to obtaining flexible broadcast encryption is to apply our transformation to the registered ABE
scheme from Section 6. We do note however that the scheme obtained via our generic transformation satisfies a weaker
notion of static security (Definition 7.3) as opposed to the notion of semi-static security satisfied by Construction 4.3.
We can boost semi-static security to adaptive security (see Appendix B) in the random oracle model, but an analogous
notion is not known starting from only a statically-secure scheme.

We also note that we can apply our transformation to the previous pairing-based registered ABE scheme
from [HLWW23]. For reasons that we discuss below (see Remark 7.6), our transformation in the pairing-based setting
yields the more restricted notion of distributed broadcast encryption where each user’s public key must be associated
with a unique index.

Transformation overview. As mentioned in Section 1.1, our transformation only requires the registered ABE
scheme to support a single attribute and a single “always-accept” policy. The idea is simple:

• The public parameters for the flexible broadcast encryption scheme is simple the public parameters for the
registered ABE scheme.

• To join the system, a user generates a public key for the underlying registered ABE scheme.

• To encrypt to a collection of public keys (pk1, . . . , pk𝑘 ), the encrypter simulates the role of the key curator
for the underlying registered ABE scheme and derives the master public key mpk associated with registering
public keys pk1, . . . , pk𝑘 (with the dummy attribute). Then, the user encrypts the message with respect to mpk
and the “always-accept” policy.

• To decrypt a ciphertext encrypted to (pk1, . . . , pk𝑘 ) using a secret key sk𝑖 for some 𝑖 ∈ [𝑘], the decrypter runs
the same registration algorithm on the keys (pk1, . . . , pk𝑘 ) and uses it to compute the helper decryption key
hsk𝑖 for user 𝑖 . Using its own secret key sk𝑖 together with hsk𝑖 , the user can now run the decryption algorithm
for the registered ABE scheme to recover the message.

Critically, the above transformation requires that users can generate their public keys in the registered ABE scheme
independently and without coordination. This is the notion satisfied by our registered ABE scheme from Section 6. In
some registered ABE schemes such as the pairing-based construction of [HLWW23], user public keys are associated
with an index, and functionality requires that different users register public keys to distinct indices. In this case,
the above transformation is still applicable, except when users join the system, they must generate their key to a
specific index and one can only broadcast to a set of public keys where each public key occupies a different slot. This
corresponds to the notion of distributed broadcast encryption [BZ14]. We provide additional discussion in Remark 7.6.

Construction 7.1 (Flexible Broadcast Encryption from Registered ABE). Let 𝑚 = 𝑚(_) and M = {M_}_∈N
be a message space with messages of length 𝑚. Let rABE = (rABE.Setup, rABE.KeyGen, rABE.RegPK, rABE.Enc,
rABE.Update, rABE.Dec) be a registered ABE scheme for 1-bit attributes and the policy family P = {P_}_∈N where
P_ = {𝑃on} and 𝑃on : {0, 1} → {1} is the “always-accept” policy. We additionally require that rABE support stateless
key generation (Remark A.5). We construct a flexible broadcast encryption scheme FBE = (Setup,KeyGen, Enc,Dec)
with message spaceM as follows:

• Setup(1_, 𝑛): On input the security parameter _ and a bound on the number of recipients 𝑛, the setup algorithm
samples and outputs pp← rABE.Setup(1_).

• KeyGen(pp): On input the public parameters pp, the key-generation algorithm samples and outputs (pk, sk) ←
rABE.KeyGen(pp). Here, we assume that rABE supports stateless key generation (Remark A.5) so rABE.KeyGen
only takes pp as input.

• Enc(pp,msg, (pk1, . . . , pk𝑘 )): On input the public parameters pp, a message msg ∈ M_ , and a list of public
keys (pk1, . . . , pk𝑘 ), the encryption algorithm does the following:
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– Initializes an empty master public key and auxiliary input (mpk, aux) B (⊥,⊥).
– It now registers each public key pk𝑖 with the dummy attribute 1. Specifically, for each 𝑖 ∈ [𝑘], it computes
(mpk, aux) B (mpk′, aux′) = rABE.RegPK(pp, aux, pk𝑖 , 1).

– Finally, it encrypts the message with respect to the aggregated master public key and the “always-accept”
policy: ct← rABE.Enc(mpk, 𝑃on,msg).

• Dec(pp, ct, ( 𝑗, sk𝑗 ), (pk1, . . . , pk𝑘 )): On input the public parameters pp, a ciphertext ct, an index/secret-key pair
( 𝑗, sk𝑗 ), and a list of public keys (pk1, . . . , pk𝑘 ), the decryption algorithm does the following:

– Initializes an empty master public key and auxiliary input (mpk, aux) B (⊥,⊥). Like Enc, the decryption
algorithm now registers each public key pk𝑖 with the dummy attribute 1. Specifically, for each 𝑖 ∈ [𝑘], it
computes (mpk, aux) B (mpk′, aux′) = rABE.RegPK(pp, aux, pk𝑖 , 1).

– Compute the helper decryption key hsk = rABE.Update(pp, aux, pk𝑗 ) for public key pk𝑗 .
– Output msg = rABE.Dec(mpk, hsk, sk𝑗 , ct).

Correctness and efficiency. We now show Construction 7.1 is correct and satisfies the efficiency requirements on a
flexible broadcast encryption scheme.

Theorem 7.2 (Correctness and Efficiency). Assuming rABE is efficient, compact, and correct, then Construction 7.1 has
succinct ciphertexts and is correct.

Proof. We consider each property separately:

• Succinct ciphertexts: Consider a master public key mpk and ciphertext ct constructed by the encryption
algorithm Enc. By compactness of rABE, we have that |mpk| ∈ poly(_, ℓ, log𝑘). Since ℓ = 1 and |𝑃on | ∈ 𝑂 (1), it
follows that |ct| ∈ poly(_,𝑚(_), log𝑘), as required.

• Correctness: Take any _ ∈ N, 𝑛 ∈ poly(_), 𝑘 ≤ 𝑛(_), 𝑗 ∈ [𝑘], and msg ∈ M_ . Then, we have the following:

– Let pp ← Setup(1_, 𝑛(_)), and for 𝑖 ∈ [𝑘], sample (pk𝑖 , sk𝑖 ) ← KeyGen(pp). By construction, pp and
(pk𝑖 , sk𝑖 ) are sampled from rABE.Setup(1_) and rABE.KeyGen(pp), respectively.

– Let ct ← Enc(pp,msg, (pk1, . . . , pk𝑘 )). By construction, it follows that ct ← rABE.Enc(mpk, 𝑃on,msg)
wherempk is derived from a series of calls to RegPK with each public key pk𝑖 with the dummy attribute 1.

– We now argue that Dec(pp, ct, ( 𝑗, sk𝑗 ), (pk1, . . . , pk𝑘 )) = msg. As rABE.RegPK is deterministic, Enc and
Dec compute the same master public key mpk. As a result, if Dec does not output msg, that violates the
correctness of rABE. So, there exists a negligible function negl such that Dec output msg with probability
at least 1 − negl(_). Moreover, if rABE satisfies perfect correctness, then so does FBE. □

Static security. The flexible broadcast scheme in Construction 7.1 satisfies a weaker notion of static security, where
the adversary has to commit to the exact set of keys in the challenge ciphertext; this is the analog of selective
security in the context of traditional broadcast encryption. Static security is a weaker property than semi-static
security (Definition 4.2) where the adversary is able to choose which subset of honestly-generated keys it can use
in the challenge ciphertext. We formally define static security for flexible broadcast encryption and then show that
Construction 7.1 is statically secure in Theorem 7.4.

Definition 7.3 (Static Security). We say that a flexible broadcast encryption scheme (Setup,KeyGen, Enc,Dec)
satisfies static security if instead of adaptive security, it satisfies the following:

• Static security: For all stateful PPT adversaries 𝐴 and all efficiently-computable functions 𝑛 ∈ poly(_), there
exists a negligible function negl such that for all _ ∈ N,

Pr
[
ExptFBE,Static

𝐴,𝑛
(_) = 1

]
≤ 1/2 + negl(_),

where ExptFBE,Static
𝐴,𝑛

(_) is defined via the following security game between the adversary 𝐴 and a challenger on
common input 1_ :
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– Setup phase: The adversary starts by choosing an integer 𝑘 ≤ 𝑛. The challenger samples pp ←
Setup(1_, 𝑛) and samples key-pairs (pk𝑖 , sk𝑖 ) ← KeyGen(pp) for each 𝑖 ∈ [𝑘]. It gives pp and (pk1, . . . , pk𝑘 )
to 𝐴.

– Challenge phase: Algorithm 𝐴 outputs two messages msg0,msg1 ∈ M_ . The challenger samples
a bit 𝑏 r← {0, 1} and computes an encryption of msg𝑏 under the set 𝑆★ = (pk1, . . . , pk𝑘 ): ct★ ←
Enc(pp,msg𝑏, (pk1, . . . , pk𝑘 )). The challenger gives ct★ to 𝐴.

– Output phase: Algorithm 𝐴 outputs a bit 𝑏′ ∈ {0, 1}. The experiment outputs 1 if 𝑏′ = 𝑏 and 0 otherwise.

Theorem 7.4 (Static Security). Assuming rABE satisfies policy-selective security without corruption queries, then Con-
struction 7.1 satisfies static security.

Proof. Suppose by way of contradiction that FBE does not satisfy static security. Namely, there exists a stateful PPT
adversary 𝐴, an efficiently computable function 𝑛 ∈ poly(_), and a polynomial 𝑞 such that for infinitely many _ ∈ N,
it holds that

Pr
[
ExptFBE,Static

𝐴,𝑛 (_) (_) = 1
]
> 1/2 + 1/𝑞(_).

We construct an adversary 𝐵 that breaks policy-selective security without corruption queries of rABE:

• Setup phase: Algorithm 𝐵 sends the unique challenge policy 𝑃★ = 𝑃on ∈ P_ to the rABE challenger. Algorithm
𝐵 then receives the public parameters pp from the challenger, which 𝐵 then forwards to 𝐴. The adversary 𝐴
specifies a number of keys 𝑘 ≤ 𝑛(_) that it will generate.

• Pre-challenge query phase: The adversary 𝐴 makes 𝑘 key-generation queries. On the 𝑖th query, algorithm 𝐵

makes a corresponding register-honest-key query to the rABE challenger for attribute set 1 to obtain a public
key pk𝑖 . Algorithm 𝐵 sends pk𝑖 to 𝐴.

• Challenge phase: In the challenge phase, 𝐴 sends two messages msg0,msg1. Algorithm 𝐵 sends the same
messages msg0,msg1 to its challenger. The challenger samples a bit 𝑏 r← {0, 1} and replies with the challenge
ciphertext ct★← Enc(mpk, 𝑃★,msg𝑏), which 𝐵 forwards to 𝐴.

• Output phase: The adversary 𝐴 outputs a guess 𝑏′ for 𝑏, which 𝐵 outputs.

If 𝐴 is efficient, then so is 𝐵. To analyze the success probability of 𝐵, we observe that by construction of 𝐵 and the
definition of Enc, the challenge ciphertext ct★ defined above is distributed exactly as the challenge ciphertext in the
flexible broadcast encryption static security game. Specifically, this is because mpk is the result of registering keys
pk1, . . . , pk𝑘 in order, where each public key is registered with the attribute 1, and 𝑃★ = 𝑃on is the only allowable
policy. Therefore, if 𝐴 succeeds in guessing 𝑏′ = 𝑏 with probability 1/2 + 1/𝑞(_), then so does 𝐵. □

Remark 7.5 (On Adaptively-Secure Flexible Broadcast from Registered ABE). While we only know how to prove
static security for Construction 7.1, we believe this is mostly a caveat of the registered ABE definition from [HLWW23].
Namely, the [HLWW23] security definition does not allow for more adaptive capabilities where the adversary can
request that the challenger generate (honest) public keys and then adaptively choose which public keys it would like
to register. It is interesting to properly define such a stronger notion, and it seems plausible that existing constructions
can be adapted to satisfy this stronger property. We leave further exploration of the security notions underlying
registered ABE to future work.

Remark 7.6 (Distributed Broadcast Encryption from Pairings). Correctness of Construction 7.1 critically relies
on the underlying registered ABE scheme supporting stateless key-generation (Remark A.5). This is because the
subset of keys that are registered is determined at encryption time (rather than key-generation time); moreover, the
scheme needs to support registering to any subset of the user-generated keys. Thus, if the scheme requires that
users generate keys in a stateful manner, where each key can depend arbitrarily on the set of previously-registered
keys, then Construction 7.1 is no longer correct. While Construction 6.4 (in conjunction with Theorem A.4) yields a
registered ABE with stateless key generation, the previous pairing-based constructions of registered ABE [HLWW23]
have a stateful key-generation procedure, and thus Construction 7.1 cannot be directly applied to [HLWW23] to
obtain a pairing-based flexible broadcast encryption scheme.
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Nonetheless, we observe that the previous pairing-based registered ABE scheme of [HLWW23] has the property
that key generation does not depend arbitrarily on the auxiliary input. Instead, the key-generation algorithm only
demands knowledge of an index, with the stipulation that every user has a distinct index. For instance, the index could
be the current count on the number of registered users in the system. This means we can apply Construction 7.1 to
the pairing-based registered ABE scheme to obtain a distributed broadcast encryption scheme [BZ14]. In a distributed
broadcast encryption scheme, each user is associated with a unique index and when users generate their key, they
generate it with respect to their particular index. This coincides with the semantics of the pairing-based registered
ABE scheme from [HLWW23]. Thus, combining Construction 7.1 with the construction of [HLWW23], we obtain
the first distributed broadcast encryption scheme using composite-order bilinear groups. The resulting construction
supports an a priori bounded number of users and requires a structured reference string of size 𝑛2 ·polylog(𝑛), where 𝑛
is the bound on the number of users. The scheme satisfies static security (analogous to Definition 7.3 and Theorem 7.4).
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A Registered Attributed-Based Encryption
In this section, we recall the full notion of registered attribute-based encryption (ABE) from [HLWW23]. For simplicity
of notation, we describe our notion for the setting where the attribute is an arbitrary bit-string.

Definition A.1 (Registered Attributed-Based Encryption Syntax [HLWW23, adapted]). Let ℓ = ℓ (_) be an attribute
length and P = {P_}_∈N be a set of policies on ℓ-bit inputs (i.e., P_ is a set of functions 𝑃 : {0, 1}ℓ (_) → {0, 1}). Let
𝑚 =𝑚(_) andM = {M_}_∈N be a message space with message length𝑚. A registered attributed-based encryption
scheme for attributes of length ℓ , policy space P, and message spaceM consists of polynomial-time algorithms
(Setup,KeyGen,RegPK, Enc,Update,Dec) with the following syntax:

• Setup(1_) → pp: A probabilistic algorithm that on input the security parameter _, outputs the public parameters
pp. We implicitly assume that pp contains 1_ .

• KeyGen(pp, aux) → (pk, sk): A probabilistic algorithm that on input the public parameters pp and a (possibly
empty) auxiliary state aux, outputs a public key pk and a secret key sk.

• RegPK(pp, aux, pk, 𝑥) → (mpk, aux′): A deterministic algorithm that on input the public parameters pp, a
(possibly empty) auxiliary state aux, a public key pk, and an attribute 𝑥 ∈ {0, 1}ℓ (_) , outputs a master public
key mpk and an updated state aux′.

• Enc(mpk, 𝑃,msg) → ct: A probabilistic algorithm that on input a master public key mpk, a policy 𝑃 ∈ P_ , and
a message msg ∈ M_ , outputs a ciphertext ct.

• Update(pp, aux, pk) → hsk: A deterministic algorithm that on input the public parameters pp, a (possibly
empty) auxiliary state aux, and a public key pk, outputs a helper decryption key hsk.
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• Dec(mpk, hsk, sk, ct) → msg: A deterministic algorithm that on input a master public key mpk, a helper
decryption key hsk, a secret key sk, and a ciphertext ct, outputs either (1) a message msg ∈ M_ ; (2) a special
symbol ⊥ indicating decryption failure; or (3) a special flag GetUpdate that indicates an updated helper
decryption key is needed to decrypt.

Definition A.2 (Registered ABE Correctness and Efficiency). Let rABE = (Setup,KeyGen,RegPK, Enc,Update,
Dec) be a registered ABE scheme for attributes of length ℓ = ℓ (_), policy space P = {P_}_∈N, and message space
M = {M_}_∈N. For a security parameter _ and a stateful adversary 𝐴, we define the following experiment between
𝐴 and a challenger on common input 1_ :

• Setup phase: The challenger samples public parameters pp ← Setup(1_). It initializes its auxiliary state
aux B ⊥ and a master public key mpk B ⊥. It also initializes a counter ctr[reg] B 0 to keep track of the
number of registration queries and another counter ctr[enc] B 0 to keep track of the number of encryption
queries. Finally, it initializes ctr[reg]★ B ∞ as the index for the target key (which will be updated during the
course of the experiment). The challenger sends pp to 𝐴.

• Query phase: During the query phase, the adversary 𝐴 is able to make the following queries:

– Register non-target key query: In a non-target key-registration query, 𝐴 specifies a public key pk
and an attribute 𝑥 ∈ {0, 1}ℓ . The challenger increments ctr[reg] B ctr[reg] + 1 and registers the key
by computing (mpkctr[reg], aux

′) ← RegPK(pp, aux, pk, 𝑥). The challenger updates its auxiliary data by
setting aux B aux′ and replies to 𝐴 with (ctr[reg],mpkctr[reg], aux).

– Register target key query: In a target-key registration query, the adversary specifies an attribute
𝑥★ ∈ {0, 1}ℓ . If the adversary has previously made a target-key registration query, then the challenger
replies with ⊥. Otherwise, the challenger increments the counter ctr[reg] B ctr[reg] + 1, samples
(pk★, sk★) ← KeyGen(pp, aux), and registers (mpkctr[reg], aux

′) ← RegPK(pp, aux, pk★, 𝑥★). It computes
the helper decryption key hsk★ ← Update(pp, aux, pk★). The challenger updates its auxiliary data by
setting aux B aux′, stores the index of the target identity ctr[reg]★ B ctr[reg], and replies to 𝐴 with
(ctr[reg],mpkctr[reg], aux, pk

★, hsk★, sk★).
– Encryption query: In an encryption query, 𝐴 submits an index 𝑖 ∈ [ctr[reg]★, ctr[reg]] for a public

key, a message msgctr[enc] ∈ M_ , and a policy 𝑃ctr[enc] ∈ P_ . If the adversary has not yet registered a
target key, or if the target set of attributes 𝑥★ do not satisfy the policy 𝑃ctr[enc] , the challenger replies with
⊥. Otherwise, the challenger increments the counter ctr[enc] B ctr[enc] + 1 and computes ctctr[enc] ←
Enc(mpk𝑖 , 𝑃ctr[enc],msgctr[enc]). The challenger replies to 𝐴 with (ctr[enc], ctctr[enc]).

– Decryption query: In a decryption query, the adversary submits a ciphertext index 𝑗 ∈ [ctr[enc]].
The challenger computes msg′𝑗 ← Dec(mpk, sk★, hsk★, ct𝑗 ). If msg′𝑗 = GetUpdate, then the challenger
computes an updated helper decryption key hsk★ ← Update(pp, aux, pk★) and recomputes msg′𝑗 ←
Dec(mpk, hsk★, ct𝑗 ). If msg′𝑗 ≠ msg𝑗 , the experiment halts and outputs 0.

If the adversary has finished making queries and the experiment has not halted (as a result of a decryption
query), then the experiment outputs the bit 𝑏 = 1. We require the following properties for all (potentially
unbounded) adversaries 𝐴 making at most a polynomial number of queries:

– Correctness: There exists a negligible function negl such that for all _ ∈ N, Pr[𝑏 = 1] ≥ 1 − negl(_) in
the above game. We say that the scheme satisfies perfect correctness if Pr[𝑏 = 1] = 1.

– Compactness: Let 𝑁 be the number of registration queries the adversary makes in the above game. There
exists a university polynomial 𝑝 (·, ·, ·) such that for all 𝑖 ∈ [𝑁 ], |mpk𝑖 | ≤ 𝑝 (_, ℓ (_), log 𝑖). We also require
that the size of the helper decryption key hsk★ satisfy |hsk★ | ≤ 𝑝 (_, ℓ (_), log𝑁 ) at all times during the
experiment.

– Update efficiency: Let 𝑁 be the number of registration queries the adversary makes in the above game.
Then, in the course of the above game, the challenger invokes the update algorithm Update at most
𝑂 (log𝑁 ) times, where each invocation runs in time at most poly(log𝑁 ) in the RAMmodel of computation.
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Specifically, we model Update as a RAM program that has random access to its input, so the running time
of Update may be smaller than the input length.

Definition A.3 (Registered ABE Security). Let rABE = (Setup,KeyGen,RegPK, Enc,Update,Dec) be a registered
ABE scheme for attributes of length ℓ = ℓ (_), policy space P = {P_}_∈N, and message spaceM = {M_}_∈N. We say
that rABE satisfies adaptive security if for all stateful PPT adversaries 𝐴, there exists a negligible function negl such
that for all _ ∈ N

Pr
[
ExptrABE𝐴 (_) = 1

]
≤ 1/2 + negl(_),

where ExptrABE
𝐴
(_) is defined via the following security game between the adversary 𝐴 and a challenger on common

input 1_ :

• Setup phase: The challenger samples the public parameters pp← Setup(1_). In then initializes the auxiliary
input aux B ⊥, a master public key mpk B ⊥, a counter ctr B 0 for the number of honest key-registration
queries the adversary has made, an empty set of keys C = ∅ (to keep track of corrupted public keys), and an
empty dictionary mapping public keys to registered attribute sets D. The challenger sends pp to 𝐴.

• Query phase: The adversary 𝐴 can now issue the following queries:

– Register honest key query: In an honest key-generation query, the adversary specifies an attribute
𝑥 ∈ {0, 1}ℓ . The challenger increments ctr B ctr + 1, samples (pk, sk) ← KeyGen(pp, aux), and registers
(mpk′, aux′) ← RegPK(pp, aux, pk, 𝑥). The challenger updates its public key mpk B mpk′, its auxiliary
data aux B aux′, and D[pk] B D[pk] ∪ {𝑥}. The challenger replies to 𝐴 with (ctr,mpk, aux, pk).

– Corrupt honest key query: In a corrupt-honest-key query, the adversary specifies an index 𝑖 ∈ [ctr].
Let (pk𝑖 , sk𝑖 ) be the 𝑖th public/secret key query the challenger samples when responding to the 𝑖th honest
key-registration query. The challenger adds pk𝑖 to C and replies to 𝐴 with sk𝑖 .

– Register corrupted key query: In a corrupted key-registration query, the adversary 𝐴 specifies a public
key pk and an attribute 𝑥 ∈ {0, 1}ℓ . The challenger registers the key by computing (mpk′, aux′) ←
RegPK(pp, aux, pk, 𝑥). The challenger updates its copy of the public key mpk B mpk′, its auxiliary data
aux B aux′, adds pk to C, and updates D[pk] ← D[pk] ∪ {𝑥}. It replies to 𝐴 with (mpk, aux).

• Challenge phase: The adversary 𝐴 sends two messages msg0,msg1 ∈ M_ and an access policy 𝑃★ ∈ P_ . The
challenger samples a bit 𝑏 r← {0, 1}, known as the challenge bit, and replies with the challenge ciphertext
ct★← Enc(mpk, 𝑃★,msg𝑏).

• Output phase: Let X = {𝑥 ∈ D[pk] : pk ∈ C} be the set of corrupted attributes. We say that an adversary 𝐴 is
admissible if the challenger policy 𝑃★(𝑥) = 0 for all 𝑥 ∈ X. The experiment outputs 0 if 𝐴 is not admissible.
Finally, 𝐴 outputs a bit 𝑏′ and the experiment outputs 1 if 𝑏′ = 𝑏 and 0 otherwise.

Selective security. Similar to the setting of slotted registered ABE (Definitions 6.2 and 6.3), we will also the following
selective notions of security:

• Policy-selective security: This is the analog of Definition 6.2. In particular, in the policy-selective security
game, ExptrABE

𝐴
(_) is modified so that the adversary 𝐴 commits to its challenge policy 𝑃★ during the setup

phase before it receives the public parameters pp.

• Policy-selective security without corruptions: This is the analog of Definition 6.3, where in addition to
committing to the challenge policy 𝑃★ at the beginning of the security game, the adversary is also not allowed
to make any corrupt-honest-key queries.

From slotted registered ABE to registered ABE. Previously [HLWW23] showed how to construct a full (non-
slotted) registered ABE from any slotted registered ABE scheme. The transformation preserves the policy family of
the underlying scheme and only incurs overhead that is logarithmic in the number of registered users. We state the
theorem below:
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Theorem A.4 (Registered ABE from Slotted Registered ABE [HLWW23, §6]). Suppose there exists a slotted registered
ABE scheme srABE for attributes of length ℓ = ℓ (_), policy space P = {P_}_∈N, and message spaceM = {M_}_∈N. Then,
there exists a registered ABE scheme rABE for attributes of the same length ℓ = ℓ (_), policy space P, and message space
M. If srABE satisfies adaptive security (resp., policy-selective security or policy-selective security without corruptions),
then rABE satisfies adaptive security (resp., policy-selective security or policy-selective security without corruptions).

Remark A.5 (Stateless vs. Stateful Key Generation). The key-generation algorithm Definition A.1 is allowed to
depend on the auxiliary input aux. We can define a stronger notion of registered ABE where the key-generation
algorithm is independent of the auxiliary data. We refer to such schemes as supporting stateless key generation; namely,
users in such schemes can generate their keys independently of existing users. Earlier works on registration-based
encryption (i.e., registered identity-based encryption) all considered stateless key generation [GHMR18, GHM+19].

On the contrary, we refer to schemes where the key-generation algorithm can depend on the auxiliary input aux
(as in Definition A.1) as supporting stateful key generation. In the generic compilation from slotted registered ABE to
registered ABE from [HLWW23], users have to know the current number of registered users when generating their
keys; as such, the compiler produces a registered ABE scheme with a stateful key-generation procedure. However, we
observe that if the underlying slotted registered ABE scheme srABE has a slot-independent key-generation algorithm
(i.e., KeyGen in srABE does not depend on the slot index 𝑖), then the [HLWW23] compiler (i.e., Theorem A.4) yields a
registered ABE scheme with stateless key generation. Stateless key generation is necessary for using a registered
ABE scheme to obtain a flexible broadcast encryption (Section 7).

B Flexible Broadcast Encryption with Adaptive Security
In this section, we show how to apply the Gentry-Waters transformation [GW09] to upgrade a flexible broadcast
encryption scheme with semi-static security into one that satisfies full adaptive security in the random oracle model.
The transformation from [GW09] applied to traditional broadcast encryption, but the underlying two-key technique
directly applies to the setting of flexible broadcast encryption.

Construction B.1 (Adaptively-Secure Flexible Broadcast). Let _ ∈ N be a security parameter. Let𝑚 =𝑚(_) be any
function andM = {M_}_∈N be a message space with messages of length𝑚. Let 𝑛 be the number of users the scheme
supports. Our construction relies on the following primitives:

• Let FBESS = (FBESS.Setup, FBESS .KeyGen, FBESS.Enc, FBESS .Dec) be a flexible broadcast encryption scheme
with message spaceM that satisfies semi-static security.

• Let O : {0, 1}_ → {0, 1}𝑛 be a hash function (that we will model as a random oracle in the security analysis).

We construct an (adaptively-secure) flexible broadcast encryption scheme FBE = (Setup,KeyGen, Enc,Dec) as follows:

• Setup(1_, 𝑛): On input the security parameter _ and the number of users 𝑛, output pp← FBESS .Setup(1_, 𝑛).

• KeyGen(pp): On input the public parameters pp, sample two keys (pk0, sk0) ← FBESS .KeyGen(pp) and
(pk1, sk1) ← FBESS.KeyGen(pp) for the underlying flexible broadcast encryption scheme. Sample a random
bit 𝑎 r← {0, 1} and output pk = (pk0, pk1) and sk = (𝑎, sk𝑎).

• Enc(pp,msg, (pk1, . . . , pk𝑘 )): On input the public parameters pp, the message msg ∈ M_ , and a tuple of public
keys (pk1, . . . , pk𝑘 ), where each pk𝑖 = (pk𝑖,0, pk𝑖,1), the encryption algorithm samples a random 𝑟

r← {0, 1}_
and computes (𝑡1, . . . , 𝑡𝑛) = O(𝑟 ) ∈ {0, 1}𝑛 . Next, it constructs two ciphertexts

ct0 ← FBESS .Enc
(
pp,msg,

(
pk1,𝑡1 , . . . , pk𝑘,𝑡𝑘

) )
ct1 ← FBESS .Enc

(
pp,msg,

(
pk1,1−𝑡1 , . . . , pk𝑘,1−𝑡𝑘

) )
,

and outputs the ciphertext ct = (ct0, ct1, 𝑟 ).

• Dec(pp, ct, ( 𝑗, sk𝑗 ), (pk1, . . . , pk𝑘 )): On input the public parameters pp, the ciphertext ct = (ct0, ct1, 𝑟 ), the index
𝑗 , the secret key sk𝑗 = (𝑎, sk), and a tuple of public keys (pk1, . . . , pk𝑘 ) where each pk𝑖 = (pk𝑖,0, pk𝑖,1), the
decryption algorithm starts by computing (𝑡1, . . . , 𝑡𝑛) = O(𝑟 ) ∈ {0, 1}𝑛 .
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– If 𝑎 = 𝑡 𝑗 , the decryption algorithm outputs msg = FBESS .Dec
(
pp, ct0, ( 𝑗, sk),

(
pk1,𝑡1 , . . . , pk𝑘,𝑡𝑘

) )
.

– If 𝑎 = 1 − 𝑡 𝑗 , the decryption algorithm outputs msg = FBESS.Dec
(
pp, ct1, ( 𝑗, sk),

(
pk1,1−𝑡1 , . . . , pk𝑘,1−𝑡𝑘

) )
.

Correctness and security analysis. We now show that FBE of Construction B.1 is a correct flexible broadcast
encryption scheme that satisfies adaptive security.

TheoremB.2 (Correctness and Efficiency). Assuming FBESS has succinct ciphertexts and is correct, then Construction B.1
has succinct ciphertexts and is correct.

Proof. We consider each property separately:

• Succinct ciphertexts: Consider a ciphertext ct output by the encryption algorithm. By construction, ct =
(ct0, ct1, 𝑟 ) where ct0, ct1 are ciphertexts for FBESS and |𝑟 | = _ by construction. Thus, if the underlying flexible
broadcast encryption scheme FBESS has succinct ciphertexts, then so does FBE.

• Correctness: Take any _ ∈ N, 𝑛 ∈ poly(_), 𝑘 ≤ 𝑛(_), 𝑗 ∈ [𝑘], and msg ∈ M_ . Then, we have the following:

– Let pp← Setup(1_, 𝑛(_)), and for each 𝑖 ∈ [𝑘], sample (pk𝑖 , sk𝑖 ) ← KeyGen(pp). Note that pp is simply
the public parameters for FBESS. Each public key pk𝑖 consists of two public keys (pk𝑖,0, pk𝑖,1) for FBESS,
and sk𝑖 = (𝑎, sk𝑖,𝑎) is the corresponding secret key for one of the two public keys.

– Let ct ← Enc(pp,msg, (pk1, . . . , pk𝑘 )). Note that ct = (ct0, ct1, 𝑟 ) consists of two ciphertexts for FBESS.
The first ciphertext ct0 is encrypted with respect to the public keys

(
pk1,𝑡1 , . . . , pk𝑘,𝑡𝑘

)
while the second

ct1 is encrypted to the public keys
(
pk1,1−𝑡1 , . . . , pk𝑘,1−𝑡𝑘

)
, and (𝑡1, . . . , 𝑡𝑛) = O(𝑟 ).

– We argue that Dec(pp, ct, ( 𝑗, sk𝑗 ), (pk1, . . . , pk𝑘 )) = msg. Since sk𝑗 = (𝑎, sk𝑗,𝑎) and sk𝑗,𝑎 is the secret key
associated with public key pk𝑗,𝑎 , we can appeal to correctness of FBESS to conclude that sk𝑗,𝑎 can be used
to decrypt ciphertext ct0 if 𝑎 = 𝑡 𝑗 and ct1 if 𝑎 = 1 − 𝑡 𝑗 . □

Theorem B.3 (Adaptive Security). Assuming FBESS satisfies semi-static security and O is modeled as a random oracle,
then Construction B.1 satisfies adaptive security.

Proof. Suppose by way of contradiction that adaptive security does not hold. Namely, there exists a PPT adversary 𝐴,
an efficiently computable function 𝑛 ∈ poly(_), a polynomial 𝑞, and an infinite set Λ ⊆ N such that for all _ ∈ Λ, it
holds that

Pr
[
ExptFBE

𝐴,𝑛 (_) (_) = 1
]
> 1/2 + 1/𝑞(_).

Towards reaching a contradiction, we consider a series of hybrid experiments as follows:

• 𝐻𝑏,0 (_): This experiment is identical to ExptFBE
𝐴,𝑛 (_) (_) where the challenge bit is fixed to 𝑏.

• 𝐻𝑏,1 (_): This experiment is identical to 𝐻𝑏,0 (_) except the challenger encrypts the lexicographically first
message msg★ ∈ M_ instead of msg𝑏 for ct★0 in the challenge ciphertext ct★ = (ct★0 , ct★1 ). Specifically, the
challenger computes ct★0 ← FBESS.Enc(pp,msg★, (pk1,𝑡1 , . . . , pk𝑘,𝑡𝑘 )). The ciphertext ct

★
1 is computed as in the

real scheme (i.e., as in 𝐻𝑏,0).

• 𝐻𝑏,2 (_): In this experiment, the challenger encrypts the lexicographically first message msg★ ∈ M_ instead of
msg𝑏 for ct★1 in the challenge phase. Specifically, when constructing the challenge ciphertext ct★ = (ct★0 , ct★1 ),
the challenger computes ct★1 ← FBESS .Enc(pp,msg★, (pk1,1−𝑡1 , . . . , pk𝑘,1−𝑡𝑘 )). The ciphertext ct

★
0 is constructed

as in 𝐻𝑏,1.

Since the challenge bit is sampled uniformly (i.e., 𝑏 r← {0, 1}), the success probability of 𝐴 on any security parameter
_ is equal to

Pr[𝐴 wins] = 1
2 ·

(
Pr[𝐻0,0 (_) = 1] + Pr[𝐻1,0 (_) = 1]

)
.

For each 𝑏 ∈ {0, 1} and 𝑖 ∈ {1, 2}, we define

𝛿𝑏,𝑖 (_) = Pr[𝐻𝑏,𝑖−1 (_) = 1] − Pr[𝐻𝑏,𝑖 (_) = 1] .
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It follows by our assumption that for all _ ∈ Λ,

1
2 +

1
𝑞(_) ≤

1
2 ·

(
Pr[𝐻0,0 (_) = 1] + Pr[𝐻1,0 (_) = 1]

)
≤ 1

2 ·
(
Pr[𝐻0,2 (_) = 1] + 𝛿0,1 (_) + 𝛿0,2 (_)

+ Pr[𝐻1,2 (_) = 1] + 𝛿1,1 (_) + 𝛿1,2 (_)
)
.

As 𝐻𝑏,2 (_) is independent of 𝑏 for each 𝑏 ∈ {0, 1}, it holds that Pr[𝐻𝑏,2 (_) = 1] ≤ 1/2. Thus, for all _ ∈ Λ,

1
𝑞(_) ≤

1
2 ·

(
𝛿0,1 (_) + 𝛿0,2 (_) + 𝛿1,1 (_) + 𝛿1,2 (_)

)
.

As Λ is an infinitely large subset of N, it must be the case that for some 𝑏 ∈ {0, 1} and 𝑖 ∈ {1, 2}, 𝛿𝑏,𝑖 (_) ≥ 1/(2𝑞(_))
for infinitely many _ ∈ N. In the subsequent claims, we show that this contradicts semi-static security of FBESS. We
prove the claims for 𝑏 = 0 without loss of generality.

Claim B.4. If 𝛿0,1 (_) ≥ 1/(2𝑞(_)) for infinitely many _ ∈ N, then FBESS does not satisfy semi-static security.

Proof. Given an efficient adversary 𝐴 that breaks adaptive security of FBE, we construct an efficient adversary 𝐵 that
breaks semi-static security of FBESS as follows. In the security reduction, we model O as a random oracle (which
algorithm 𝐵 simulates for 𝐴):

• Random oracle queries: Whenever 𝐴 makes an oracle query to O, algorithm 𝐵 responds with a random
string of 𝑛(_) bits and stores the response so it can respond consistently to any future queries.

• Setup phase: In the setup phase, algorithm 𝐵 receives the public parameters pp from the FBESS challenger,
which it forwards to 𝐴. Algorithm 𝐵 initializes a counter ctr B 0, a dictionary D, and a set C = ∅.

• Pre-challenge query phase: In the pre-challenge query phase, algorithm 𝐵 simulates the queries for 𝐴 as
follows:

– Key-generation query: Whenever𝐴makes a key-generation query, algorithm 𝐵 increments ctr B ctr+1
and samples a bit 𝑎 r← {0, 1}. Algorithm 𝐵 then samples (pk𝑎, sk𝑎) ← FBESS.KeyGen(pp). In addition, it
makes a key-generation query to its challenger to obtain a public key pk1−𝑎 . Algorithm 𝐵 sends 𝐴 the key
(pk0, pk1) and adds the mapping ctr ↦→ (𝑎, (pk0, pk1), sk𝑎) to D.

– Corruption query: Whenever 𝐴 makes a corruption query for counter value 𝑐 ∈ [ctr], algorithm 𝐵

retrieves (𝑎, (pk0, pk1), sk𝑎) B D[𝑐] and returns (𝑎, sk𝑎). Algorithm 𝐵 adds 𝑐 to C.

• Challenge phase: In the challenge phase, 𝐴 sends two messages msg′0,msg′1 ∈ M_ and an ordered list
𝑆★ = (𝑖1, . . . , 𝑖𝑘★) ⊆ [ctr] to 𝐵. Algorithm 𝐵 proceeds as follows:

– For each index 𝑖 𝑗 ∈ 𝑆★, algorithm 𝐵 retrieves (𝑎, (pk0, pk1), sk𝑎) B D[𝑖 𝑗 ], and sets 𝑡 𝑗 = 1 − 𝑎. For indices
𝑗 ∈ {𝑘★ + 1, . . . , 𝑛}, algorithm 𝐵 samples 𝑡 𝑗 r← {0, 1}.

– Algorithm 𝐵 samples a random value 𝑟★ r← {0, 1}_ and programs the random oracle so that on input 𝑟 , the
value of O(𝑟★) = (𝑡1, . . . , 𝑡𝑘★) ∈ {0, 1}𝑛 . If adversary 𝐴 has previously queried O on 𝑟★, then algorithm 𝐵

aborts with output ⊥.
– Algorithm 𝐵 sends the same set 𝑆★ and messages msg0 = msg′0 and msg1 = msg★, which is the lexico-

graphically first message inM_ , to the FBESS challenger. Let ct★0 be the challenge ciphertext constructed
by the challenger. By construction, the challenger samples a bit 𝑏 r← {0, 1} and replies with an encryption
msg

𝑏
under the honestly-generated public keys for 𝑆★.

– Algorithm 𝐵 computes a ciphertext for the message msg0 using the public keys for 𝑆★ that it generated
itself. Algorithm 𝐵 sends ct★ = (ct★0 , ct★1 , 𝑟★) to 𝐴.

• Output phase: At the end of the game, algorithm 𝐴 outputs a bit 𝑏′ ∈ {0, 1}, which 𝐵 also outputs.
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Algorithm 𝐵 is efficient as long as 𝐴 is efficient, so it suffices to analyze its success probability. First, we define QE(_)
to be the event where 𝐴 queries O(𝑟★) before the challenge phase (in which case algorithm 𝐵 aborts). As 𝐴 runs in
polynomial-time, there exists some polynomial 𝑄 (_) bounding the number of queries that 𝐴 makes to the random
oracle before the challenge phase. Since algorithm 𝐵 samples 𝑟★ uniformly at random from {0, 1}_ , it follows that

Pr[QE(_)] ≤ 𝑄 (_)/2_ .

Conditioned onQE(_) not occurring, we observe that 𝑡1, . . . , 𝑡𝑘★ are uniformly distributed given the view of algorithm
𝐴 in the security game (this is because algorithm 𝐵 samples 𝑎 r← {0, 1} when responding to each key-generation
query). We proceed to analyze the probability that 𝐵 outputs the correct guess 𝑏′ for the challenge bit 𝑏, conditioned
on QE(_) not holding. If the challenge bit 𝑏 = 0, then the view of 𝐴 is distributed according to 𝐻0,0 (_). This means
that 𝐵 outputs the correct bit whenever 𝐴 wins since 𝑏′ = 𝑏 = 0. If the challenge bit 𝑏 = 1, then the view of 𝐴 is
distributed according to 𝐻0,1 (_). So, 𝐵 outputs the correct bit whenever 𝐴 loses since 𝑏′ ≠ 𝑏 = 0. It follows that the
success probability of 𝐵 is at least

Pr[𝐵 wins] ≥ Pr[¬QE(_)] · 12 ·
(
Pr[𝐻0,0 (_) = 1 | ¬QE(_)] + Pr[𝐻0,1 (_) = 0 | ¬QE(_)]

)
≥ 1

2 +
1
2 ·

(
Pr[𝐻0,0 (_) = 1] − Pr[𝐻0,1 (_) = 1]

)
− Pr[QE(_)] .

As 𝛿0,1 (_) > 1/(2𝑞(_)) by assumption and Pr[QE(_)] ≤ 𝑄 (_)/2_ is negligible, this violates the semi-static security of
FBESS. □

Claim B.5. If 𝛿0,2 (_) ≥ 1/(2𝑞(_)) for infinitely many _ ∈ N, then FBESS does not satisfy semi-static security.

Proof. The proof of this claim is essentially identical to the proof of Claim B.4, except the reduction algorithm 𝐵

programs the random oracle so that 𝑡 𝑗 = 𝑎 instead of 1−𝑎. It then follows that the honestly-generated keys correspond
to ct★1 instead of ct★0 . In this case, the challenge ciphertext is used to simulate ct★1 instead of ct★0 in the reduction.
Algorithm 𝐵 constructs ct★0 itself (according to the specification of 𝐻0,1). The rest of the proof then follows identically
to the previous proof. □

The claim now follows via Claims B.4 and B.5. □

C Slotted Registered ABE with Policy-Selective Security
In this section, we show how to transform a slotted registered ABE scheme that satisfies policy-selective security
without corruptions into one that satisfies policy-selective security with corruptions in the random oracle model. As
was the case with flexible broadcast encryption (Appendix B), our transformation is a simple adaptation of the two-key
approach from [GW09]. We note that the random oracle in our transformation is only used for key aggregation. We
could alternatively consider a notion of slotted registered ABE where we allow for a randomized key aggregation
procedure. This would yield a registered ABE scheme that satisfies policy-selective security in the plain model, albeit
with a randomized (though public-coin) aggregation procedure. We discuss this in more detail in Remark C.6.

Construction C.1 (Slotted Registered ABE with Policy-Selective Security). Let _ ∈ N be a security parameter and 𝐿
be the number of slots. Let ℓ = ℓ (_) be an attribute length and P = {P_}_∈N be a policy space on ℓ-bit inputs (i.e.,
P_ is a set of functions 𝑃 : {0, 1}ℓ (_) → {0, 1}). Let𝑚 =𝑚(_) andM = {M_}_∈N be a message space with message
length𝑚. Our construction relies on the following primitives:

• First, let srABEPSWC = (srABEPSWC.Setup, srABEPSWC .KeyGen, srABEPSWC .Aggregate, srABEPSWC .Enc,
srABEPSWC.Dec) be a slotted registered ABE scheme for attributes of length ℓ , policy space P, and message
spaceM. We require that srABEPSWC satisfies policy-selective security without corruptions.

61



• Let O : {0, 1}∗ → {0, 1}𝐿 be a hash function (that we will model as a random oracle in the security analysis). For
simplicity of notation, we assume O can take an arbitrary bit-string (of unbounded length) as input; however, it
suffices to have a hash function on bounded-length inputs of the form (pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)) where pp is
the public parameters for srABEPSWC, and each pk𝑖 consists of a two public keys for srABEPSWC along with a
_-bit string, and each 𝑥𝑖 ∈ {0, 1}ℓ is an attribute.

We construct a slotted registered ABE scheme srABE = (Setup,KeyGen,Aggregate, Enc,Dec) as follows:

• Setup(1_, 𝐿): On input the security parameter _ and the number of slots 𝐿, the setup algorithm outputs
pp← srABEPSWC .Setup(1_, 𝐿).

• KeyGen(pp, 𝑖): On input the public parameters pp and an index 𝑖 ∈ [𝐿], the key-generation algorithm samples
two public keys (pk0, sk0) ← srABEPSWC.KeyGen(pp, 𝑖) and (pk1, sk1) ← srABEPSWC .KeyGen(pp, 𝑖). It also
samples a random bit 𝑎 r← {0, 1} and 𝑟 r← {0, 1}_ and outputs pk = (pk0, pk1, 𝑟 ) and sk = (𝑎, sk𝑎).

• Aggregate(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)): On input the public parameters pp, a tuple of public keys pk𝑖 =

(pk𝑖,0, pk𝑖,1) and associated attributes 𝑥𝑖 ∈ {0, 1}ℓ , the aggregation algorithm first computes (𝑡1, . . . , 𝑡𝐿) =
O(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)). Then, it prepares two sets of public keys and secret keys as follows:

(mpk0, hsk1,0, . . . , hsk𝐿,0) = srABEPSWC .Aggregate
(
pp, (pk1,𝑡1 , 𝑥1), . . . ,

(
pk𝐿,𝑡𝐿 , 𝑥𝐿

) )
(mpk1, hsk1,1, . . . , hsk𝐿,1) = srABEPSWC .Aggregate

(
pp, (pk1,1−𝑡1 , 𝑥1), . . . ,

(
pk𝐿,1−𝑡𝐿 , 𝑥𝐿

) )
.

It outputs the master public key mpk = (mpk0,mpk1) and the helper decryption keys hsk𝑖 = (𝑡𝑖 , hsk𝑖,0, hsk𝑖,1)
for each 𝑖 ∈ [𝐿].

• Enc(mpk, 𝑃,msg): On input the master public key mpk = (mpk0,mpk1), the policy 𝑃 ∈ P_ , and the message
msg ∈ M_ , the encryption algorithm constructs two ciphertexts ct0 ← srABEPSWC .Enc(mpk0, 𝑃,msg) and
ct1 ← srABEPSWC .Enc(mpk1, 𝑃,msg). It outputs ct = (ct0, ct1).

• Dec(mpk, hsk, sk, ct): On input the master public key mpk = (msk0,msk1), the helper decryption key hsk =

(𝑡, hsk0, hsk1), the secret key sk = (𝑎, sk𝑎), and the ciphertext ct = (ct0, ct1), the decryption algorithm proceeds
as follows:

– If 𝑎 = 𝑡 , output msg = Dec(mpk0, hsk0, sk𝑎, ct0).
– If 𝑎 = 1 − 𝑡 , output msg = Dec(mpk1, hsk1, sk𝑎, ct1).

Correctness and security analysis. We now show that srABE of Construction C.1 is a correct slotted registered
ABE scheme that satisfies policy-selective security (with corruptions).

Theorem C.2 (Correctness and Efficiency). Assuming srABEPSWC is correct and compact, then Construction C.1 is
correct and compact.

Proof. We consider each property separately:

• Compactness: The master public key mpk consists of two master public keys (mpk0,mpk1) for srABEPSWC.
By compactness of srABEPSWC, |mpk0 |, |mpk1 | ∈ poly(_, ℓ, log𝐿) so the same holds for |mpk|. Similarly, each
helper decryption key hsk𝑖 consists of two helper secret keys (hsk𝑖,0, hsk𝑖,1) for srABEPSWC along with a single
additional bit. Again by compactness of srABEPSWC, it follows that |hsk𝑖 | ∈ poly(_, ℓ, log𝐿).

• Correctness: Take any _ ∈ N, 𝐿 ∈ N, 𝑖 ∈ [𝐿], messagemsg ∈ M_ , attributes 𝑥1, . . . , 𝑥𝐿 ∈ {0, 1}ℓ , policy 𝑃 ∈ P_
where 𝑃 (𝑥𝑖 ) = 1. Then, we have the following:

– Let pp← Setup(1_, 𝐿), (pk𝑖 , sk𝑖 ) ← KeyGen(pp, 𝑖), and {pk𝑗 } 𝑗≠𝑖 be any collection of public keys (which
may be arbitrarily correlated with pk𝑖 ). By construction, pp is simply the public parameters for the
underlying scheme srABEPSWC and the public key pk𝑖 = (pk𝑖,0, pk1, 𝑟 ) consists of a pair of public keys
(pk𝑖,0, pk𝑖,1) for srABEPSWC along with a random string 𝑟𝑖 ∈ {0, 1}_ . The associated secret key sk𝑖 =

(𝑎, sk𝑖,𝑎) is the corresponding secret key for pk𝑖,𝑎 .
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– Let (mpk, hsk1, . . . , hsk𝐿) = Aggregate(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)) and ct← Enc(mpk, 𝑃,msg). By con-
struction, ct = (ct0, ct1) consists of two ciphertexts for srABEPSWC. The first ciphertext ct0 is with respect
tompk0 which was obtained by aggregating the public keys (pk1,𝑡1 , . . . , pk𝐿,𝑡𝐿 ) while the second ciphertext
ct1 is with respect to mpk1 which was obtained by aggregating the public keys (pk1,1−𝑡1 , . . . , pk𝐿,1−𝑡𝐿 ).
Here, the bits 𝑡1, . . . , 𝑡𝐿 are derived by evaluating O(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)). In particular, we note
that pk𝑖,𝑎 is aggregated in mpk0 if 𝑎 = 𝑡𝑖 and mpk1 if 𝑎 = 1 − 𝑡𝑖 .

– We argue that Dec(pp, hsk𝑖 , sk𝑖 , ct) = msg. Note that sk𝑖 = (𝑎, sk𝑖,𝑎). By construction, the helper
decryption key hsk𝑖 contains the bit 𝑡𝑖 that specifies which of pk𝑖,0 and pk𝑖,1 was aggregated in mpk0 and
which was aggregated in mpk1. Since 𝑃 (𝑥𝑖 ) = 1, by correctness of srABEPSWC, either 𝑎 = 𝑡𝑖 in which case
sk𝑖,𝑎 correctly decrypts ct0, or 𝑎 = 1 − 𝑡𝑖 , in which case sk𝑖,𝑎 correctly decrypts ct1. □

Theorem C.3 (Policy-Selective Security). Assuming srABEPSWC satisfies policy-selective security without corruptions
and O is modeled as a random oracle, then Construction C.1 satisfies policy-selective security.

Proof. Suppose there exists a PPT adversary 𝐴, an efficiently computable function 𝐿 ∈ poly(_), a polynomial 𝑞, and
an infinite set Λ ⊆ N such that for all _ ∈ Λ, it holds that

Pr
[
ExptsrABE,PS

𝐴,𝐿 (_) (_) = 1
]
> 1/2 + 1/𝑞(_).

Towards reaching a contradiction, we consider a series of hybrid experiments as follows:

• 𝐻𝑏,0 (_): This experiment is identical to ExptsrABE,PS
𝐴,𝐿 (_) (_) where the challenge bit is fixed to 𝑏.

• 𝐻𝑏,1 (_): This experiment is identical to 𝐻𝑏,0 (_) except the challenger encrypts the lexicographically first
message msg★ ∈ M_ instead of msg𝑏 for ct★0 when constructing the challenge ciphertext ct★ = (ct★0 , ct★1 ).
Specifically, the challenger computes ct★0 ← srABEPSWC .Enc(mpk0, 𝑃

★,msg★). The ciphertext ct★1 is computed
as in the real scheme (i.e., as in 𝐻𝑏,0).

• 𝐻𝑏,2 (_): In this experiment, the challenger encrypts the lexicographically first message msg★ ∈ M_ instead of
msg𝑏 for ct★1 in the challenge phase. Specifically, when constructing the challenge ciphertext ct★ = (ct★0 , ct★1 ),
the challenger computes ct★1 ← srABEPSWC .Enc(mpk1, 𝑃

★,msg★). The ciphertext ct★1 is constructed as in 𝐻𝑏,1.

Since the challenge bit 𝑏 r← {0, 1} is sampled uniformly, the success probability of 𝐴 on any security parameter _ is
equal to

Pr[𝐴 wins] = 1
2 ·

(
Pr[𝐻0,0 (_) = 1] + Pr[𝐻1,0 (_) = 1]

)
.

For each 𝑏 ∈ {0, 1} and 𝑖 ∈ {1, 2}, we define

𝛿𝑏,𝑖 (_) = Pr[𝐻𝑏,𝑖−1 (_) = 1] − Pr[𝐻𝑏,𝑖 (_) = 1] .

It follows by our assumption that for all _ ∈ Λ,

1
2 +

1
𝑞(_) ≤

1
2 ·

(
Pr[𝐻0,0 (_) = 1] + Pr[𝐻1,0 (_) = 1]

)
≤ 1

2 ·
(
Pr[𝐻0,2 (_) = 1] + 𝛿0,1 (_) + 𝛿0,2 (_)

+ Pr[𝐻1,2 (_) = 1] + 𝛿1,1 (_) + 𝛿1,2 (_)
)
.

As 𝐻𝑏,2 (_) is independent of 𝑏 for each 𝑏 ∈ {0, 1}, it holds that Pr[𝐻𝑏,2 (_) = 1] ≤ 1/2. Thus, for all _ ∈ Λ,

1
𝑞(_) ≤

1
2 ·

(
𝛿0,1 (_) + 𝛿0,2 (_) + 𝛿1,1 (_) + 𝛿1,2 (_)

)
.

As Λ is an infinitely large subset of N, it must be the case that for some 𝑏 ∈ {0, 1} and 𝑖 ∈ {1, 2}, 𝛿𝑏,𝑖 (_) ≥ 1/(2𝑞(_))
for infinitely many _ ∈ N. In the subsequent claims, we show that this contradicts the policy-selective security of
srABEPSWC without corruption queries. We prove the claims for 𝑏 = 0 without loss of generality.
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Claim C.4. If 𝛿0,1 (_) ≥ 1/(2𝑞(_)) for infinitely many _ ∈ N, then srABEPSWC does not satisfy policy-selective security
without corruption queries.

Proof. Let 𝑄 = 𝑄 (_) be a polynomial that upper bounds the number of pre-challenge random oracle queries the
adversary 𝐴 makes. Additionally, we assume without loss of generality that the following conditions holds:

• Algorithm 𝐴 always queries O on the input to the Aggregate algorithm prior to the challenge phase.

• Algorithm 𝐴 does not query the random oracle on the same input multiple times.

If 𝐴 does not satisfy the first requirement, we can use 𝐴 to construct a new adversary that makes one additional
random oracle query and which succeeds with the same advantage. Similarly, if 𝐴 is an algorithm that queries O on
the same input multiple times, we can transform 𝐴 into an adversary that makes unique queries to O (and remembers
the responses to each oracle query so as to simulate future queries on a repeated input). This change also does not
affect the advantage of the adversary. We now use 𝐴 to construct an adversary 𝐵 for the policy-selective security
game for srABEPSWC without corruption queries:

• Setup phase: Algorithm 𝐵 starts running algorithm 𝐴 who starts by committing to a challenge policy 𝑃★.
Algorithm 𝐵 forwards the policy 𝑃★ to the challenger and receives the public parameters pp from the challenger,
which it forwards to 𝐴. Algorithm 𝐵 then initializes a counter ctr B 0, a dictionary D, and a set C = ∅.
Algorithm 𝐵 also samples a random index 𝑖★ r← [𝑄].

• Random oracle queries: When 𝐴 makes a random oracle query on a tuple
(
pp′, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)

)
,

algorithm 𝐵 proceeds as follows. If this is not the (𝑖★)th pre-challenge random oracle made by𝐴, then algorithm
𝐵 responds with a uniform random string of length 𝐿. If this is the (𝑖★)th pre-challenge random oracle made by
𝐴, then algorithm 𝐵 proceeds as follows:

– If pp′ ≠ pp, algorithm 𝐵 outputs a uniform random bit 𝑏′ r← {0, 1}.
– For each 𝑖 ∈ [𝐿], algorithm 𝐵 computes 𝑡𝑖 ∈ {0, 1} as follows:

∗ If 𝑃★(𝑥𝑖 ) = 0, algorithm 𝐵 samples 𝑡𝑖 r← {0, 1}.
∗ If 𝑃★(𝑥𝑖 ) = 1, 𝐵 checks if there is a tuple (𝑖, 𝑎𝑖 , pk𝑖 , sk𝑖 ) in D associated with some counter value 𝑐𝑖 . If
no such tuple exists, 𝐵 samples 𝑡𝑖 r← {0, 1}. Otherwise, 𝐵 sets 𝑡𝑖 = 1 − 𝑎𝑖 .

– Algorithm 𝐵 replies with (𝑡1, . . . , 𝑡𝐿) ∈ {0, 1}𝐿 .

• Pre-challenge query phase: In the pre-challenge query phase, algorithm 𝐵 responds to queries as follows:

– Key-generation query: Whenever 𝐴 makes a key generation query for slot 𝑖 ∈ [𝐿], algorithm 𝐵

increments ctr B ctr + 1 and samples a bit 𝑎 r← {0, 1} and string 𝑟 r← {0, 1}_ . Algorithm 𝐵 samples a key
(pk𝑎, sk𝑎) ← srABEPSWC .KeyGen(pp, 𝑖). It also makes a key-generation query to its own challenger to
obtain a public key pk1−𝑎 . Finally, algorithm 𝐵 samples 𝑟 r← {0, 1}_ and replies to 𝐴 with the public key
pk = (pk0, pk1, 𝑟 ). It also adds the mapping ctr ↦→ (𝑖, 𝑎, (pk0, pk1, 𝑟 ), sk𝑎) to D.

– Corruption query: Whenever 𝐴 makes a corruption query on an index 𝑐 ∈ [ctr], algorithm 𝐵 retrieves
(𝑖, 𝑎, (pk0, pk1, 𝑟 ), sk𝑎) B D[𝑐], and returns (𝑎, sk𝑎).

• Challenge phase: In the challenge phase, algorithm 𝐴 chooses two messages msg′0,msg′1 ∈ M_ and for
each slot 𝑖 ∈ [𝐿], it specifies a tuple (𝑐′𝑖 , 𝑥𝑖 , pk

★
𝑖 ). Algorithm 𝐵 now constructs the public keys (pk1, . . . , pk𝐿)

according to the specification of the adaptive security game:

– If 𝑐′𝑖 ∈ {1, . . . , ctr}, algorithm 𝐵 sets (𝑖′, 𝑎𝑖 , (pk𝑖,0, pk𝑖,1, 𝑟𝑖 ), sk𝑖 ) B D[𝑐′𝑖 ]. If 𝑖 ≠ 𝑖′, then algorithm 𝐵 aborts
and outputs a uniform random bit 𝑏′ r← {0, 1}. Otherwise, algorithm 𝐵 sets pk𝑖 = (pk𝑖,0, pk𝑖,1, 𝑟𝑖 ). If the
adversary previously issued a corruption query on counter 𝑐′𝑖 , then algorithm 𝐵 also adds the slot index 𝑖
to the corrupted set C.

– If 𝑐′𝑖 = ⊥, then algorithm 𝐵 sets pk𝑖 B pk★𝑖 and adds the slot index 𝑖 to the corrupted set C.
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Algorithm 𝐵 now checks that for all 𝑖 ∈ C, it holds that 𝑃★(𝑥𝑖 ) = 0. If not, algorithm 𝐵 aborts and outputs a
uniform random bit 𝑏′ r← {0, 1}. Otherwise, if 𝑃★(𝑥𝑖 ) = 0 for all 𝑖 ∈ C, algorithm 𝐵 constructs the challenge
ciphertext as follows:

– First, it checks whether algorithm 𝐴 has made at least 𝑖★ queries to the random oracle. If not, then
algorithm 𝐵 halts with output ⊥.

– If algorithm 𝐴 has made at least 𝑖★ queries to the random oracle and its (𝑖★)th query was not on input
(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)), then algorithm 𝐵 aborts and outputs a uniform random bit 𝑏′ r← {0, 1}.
Otherwise let (𝑡1, . . . , 𝑡𝐿) B O(pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)) be the value algorithm 𝐵 used to respond to
the (𝑖★)th random oracle query.

– For each 𝑖 ∈ [𝐿], algorithm 𝐵 sets 𝑐𝑖 B 𝑐′𝑖 .
– Algorithm 𝐵 outputs msg0 = msg′0 and msg1 = msg★ as its challenge message and (𝑐𝑖 , 𝑥𝑖 , pk𝑖,𝑡𝑖 ) for

each 𝑖 ∈ [𝐿] as its public keys. The challenger replies with a challenge ciphertext ct★0 . Specifically, the
challenger samples a bit 𝑏 r← {0, 1} and sends back an encryption of msg

𝑏
.

– Finally, algorithm 𝐵 also computes mpk1 = srABEPSWC .Aggregate(pp, (pk1,1−𝑡1 , 𝑥1), . . . , (pk𝐿,1−𝑡𝐿 , 𝑥𝐿))
and ct★1 ← srABEPSWC .Enc(mpk1, 𝑃

★,msg0).
– Algorithm 𝐵 sends ct★ = (ct★0 , ct★1 ) to 𝐴.

• Output phase: Algorithm 𝐴 outputs a bit 𝑏′ ∈ {0, 1}, which 𝐵 also outputs.

If 𝐴 is efficient, then algorithm 𝐵 is also efficient by construction. It suffices to analyze the success probability of
algorithm 𝐵. First, we note that if algorithm 𝐵 aborts before the output phase, then it always outputs a uniform
random bit 𝑏′ ∈ {0, 1}. In this case, the advantage of algorithm 𝐵 is exactly 1/2. Suppose algorithm 𝐵 does not abort
early. Then it must be the case that the following properties hold:

• Algorithm𝐴makes at least 𝑖★ queries to the random oracle prior to the challenge phase, and moreover, the (𝑖★)th
query algorithm 𝐴 makes to the random oracle is on the tuple (pp, (pk1, 𝑥1), . . . , (pk𝐿, 𝑥𝐿)) that algorithm 𝐵

constructs in the challenge phase.

• Every tuple (𝑐′𝑖 , 𝑥𝑖 , pk
★
𝑖 ) that algorithm𝐴 provides in the challenge phase has the property that if 𝑐′𝑖 ∈ {1, . . . , ctr},

then 𝑖 = 𝑖′ where (𝑖′, 𝑎𝑖 , (pk𝑖,0, pk𝑖,1, 𝑟𝑖 )) B D[𝑐′𝑖 ]. Similarly, for all 𝑖 ∈ C, it holds that 𝑃★(𝑥𝑖 ) = 0.

By construction, this means that algorithm 𝐵 is admissible. Next, let QE(_) be the event where the challenge query
contains an honestly-generated public key pk𝑖 , but algorithm 𝐴 makes a challenge query before pk𝑖 is actually
generated and inserted into D. Since each public key pk𝑖 contains a random string 𝑟 ← {0, 1}_ and 𝐴 makes at most
𝑄 (_) = poly(_) queries to O, it follows that

Pr[QE(_)] ≤ 𝑄 (_)/2_ = negl(_).

We now show that conditioned on event QE not happening, algorithm 𝐵 correctly simulates either hybrid 𝐻0,0 or
hybrid𝐻0,1. For this to be the case, ct★0 should be sampled according to srABEPSWC .Enc(mpk0, 𝑃

★,msg
𝑏
) wherempk0 =

srABEPSWC .Aggregate
(
pp, (pk1,𝑡1 , 𝑥1), . . . , (pk𝐿,𝑡𝐿 , 𝑥𝐿)

)
and each 𝑡𝑖 is uniformly random given 𝐴’s view. For each slot

𝑖 ∈ [𝐿], we show that the challenger uses the key pk𝑖,𝑡𝑖 as input to srABEPSWC .Aggregate and the corresponding bit 𝑡𝑖
output by O is uniformly random conditioned on 𝐴’s view. We consider two cases:

• Suppose 𝑐′𝑖 = ⊥. In this case, the challenger uses the public key pk𝑖,𝑡𝑖 provided by 𝐵 as the 𝑖th public key when
computing srABEPSWC.Aggregate. This means algorithm 𝐴 chose the public key itself. In this case, if 𝐴 is
admissible, then it must be the case that 𝑃★(𝑥𝑖 ) = 0. By construction of algorithm 𝐵, it sampled 𝑡𝑖 r← {0, 1} in
this case.

• Suppose 𝑐′𝑖 ≠ ⊥. Since 𝑐′𝑖 ≠ ⊥, then D[𝑐′𝑖 ] must contain a tuple (𝑖, 𝑎𝑖 , pk𝑖 , sk𝑖 ) where pk𝑖 = (pk𝑖,0, pk𝑖,1, 𝑟𝑖 ). In
this case, algorithm 𝐵 sets pk𝑖,𝑡𝑖 = pk𝑖,1−𝑎𝑖 . By construction, pk𝑖,1−𝑎𝑖 is the key chosen by the challenger in
response to the (𝑐′𝑖 )th key-generation query. Correspondingly, the challenger in this case uses pk𝑖,𝑡𝑖 to construct
the aggregated key. We again consider two cases:
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– If 𝑃★(𝑥𝑖 ) = 0, then 𝑡𝑖 is uniform by construction.
– If 𝑃★(𝑥𝑖 ) = 1, then conditioned on QE(_) not occurring, it must be the case case that 𝑡𝑖 = 1 − 𝑎𝑖 . Since

𝑃★(𝑥𝑖 ) = 1 and assuming 𝐴 is admissible, then algorithm 𝐴 does not make a corruption query on index
𝑐𝑖 = 𝑐′𝑖 . In this case, the value of 𝑎𝑖 is information-theoretically hidden from the view of𝐴. Since algorithm
𝐵 samples 𝑎𝑖 r← {0, 1} and sets 𝑡𝑖 = 1 − 𝑎𝑖 , the bit 𝑡𝑖 is correctly distributed in this case.

Since 𝑡𝑖 is appropriately distributed for each slot 𝑖 ∈ [𝐿], it also follows that ct★0 is distributed according to 𝐻0,0 when
𝑏 = 0 and according to 𝐻0,1 when 𝑏 = 1. Moreover, algorithm 𝐵 constructs ct★1 exactly according to the specification
of 𝐻0,0 and 𝐻0,1. Therefore, it follows that if 𝑏 = 0, algorithm 𝐵 wins whenever 𝐻0,0 (_) = 1 (since 𝑏 = 0), and if 𝑏 = 0,
algorithm 𝐵 wins whenever 𝐻0,1 (_) = 0. To complete the proof, we now compute the overall success probability of
𝐵. Let E(_) be the event that 𝐴 queries the challenge query on query 𝑖★. By assumption, algorithm 𝐴 is required to
query the random oracle on its challenge query at some point prior to the challenge phase, so if 𝐴 makes exactly
𝑄 = 𝑄 (_) queries, then

Pr[E(_)] = 1/|𝑄 |.

Let QE(_) denote the complement of QE(_). For notational convenience, in the following, we omit the explicit
dependence on the security parameter when it is clear from context. From the above analysis, we have that

Pr[𝐵 wins | E,QE] = 1
2 ·

(
Pr[𝐻0,0 (_) = 1] + Pr[𝐻0,1 (_) = 0]

)
=
1
2 +

1
2 ·

(
Pr[𝐻0,0 (_) = 1] − Pr[𝐻0,1 (_) = 1]

)
=
1
2 +

1
2𝛿0,1 (_).

Moreover, conditioned on E, we have by construction that Pr[𝐵 wins | E] = 1/2. Putting everything together, we can
now write

Pr[𝐵 wins] ≥ Pr[𝐵 wins | E,QE] · Pr[E | QE] · Pr[QE] + Pr[𝐵 wins | E] · Pr[E]

≥
(
1
2 +

1
2𝛿0,1 (_))

)
· 1
𝑄
·
(
1 − 𝑄

2_

)
+ 1
2 ·

(
1 − 1

𝑄

)
≥ 1

2 +
1
2𝑄𝛿0,1 (_) − negl(_),

whenever 𝑄 = 𝑄 (_) is polynomially-bounded. Thus, algorithm 𝐵 breaks policy-selective security of srABEPSWC
without corruption queries. □

Claim C.5. If 𝛿0,2 (_) ≥ 1/(2𝑞(_)) for infinitely many _ ∈ N, then srABEPSWC does not satisfy policy-selective security
without corruptions.

Proof. The proof of this claim is essentially identical to the proof of Claim C.4 with the following minor modifications:

• The reduction algorithm 𝐵 now programs 𝑡𝑖 B 𝑎𝑖 , instead of 𝑡𝑖 = 1 − 𝑎𝑖 when programming the random oracle
for the challenge query.

• When answering key-generation queries, after sampling the bit 𝑎 r← {0, 1}, algorithm 𝐵 now samples pk1−𝑎
itself (using the honest key-generation algorithm) and makes a key-generation query to its own challenger to
obtain pk𝑎 .

• When generating the challenge ciphertext, algorithm 𝐵 constructs ct★0 itself (according to the specification of
𝐻0,1 and 𝐻0,2). It uses the challenger to construct ct★1 using the public keys pk𝑖,1−𝑡𝑖 for each slot 𝑖 ∈ [𝐿] instead
of pk𝑖,𝑡𝑖 .

The rest of the proof follows identically to the proof of Claim C.4. □
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Combining Claims C.4 and C.5 completes the proof of the theorem. □

Remark C.6 (Registered ABE without Random Oracles). We note that the random oracle in Construction C.1 is only
invoked in the Aggregate algorithm. We could alternatively consider a notion of (slotted) registered ABE where we
allow key aggregation to be randomized. This yields a scheme satisfying policy-selective security in the plain model.
However, the security proof in this case would only hold for a semi-honest key curator that samples a uniform random
string for key aggregation. Security does not necessarily hold if the key curator behaves maliciously, and as such,
we find this notion significantly less compelling from a definitional perspective. A key motivation for considering
notions like registration-based encryption and registered ABE is that we do not need to trust any central authority.
As such, it is more natural to model the key curator as a public, deterministic entity whose behavior can be easily
audited.
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