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Abstract. A classic result in the theory of interactive proofs shows that
a special-sound Σ-protocol is automatically a proof of knowledge. This
result is very useful to have, since the latter property is typically tricky
to prove from scratch, while the former is often easy to argue— if it is
satisfied. While classic Σ-protocols often are special-sound, this is un-
fortunately not the case for many recently proposed, highly efficient in-
teractive proofs, at least not in this strict sense. Motivated by this, the
original result was recently generalized to k-special sound Σ-protocols
(for arbitrary, polynomially bounded k), and to multi-round versions
thereof. This generalization is sufficient to analyze (e.g.) Bulletproofs-
like protocols, but is still insufficient for many other examples.
In this work, we push the relaxation of the special soundness property
to the extreme, by allowing an arbitrary access structure Γ to specify
for which subsets of challenges it is possible to compute a witness, when
given correct answers to these challenges (for a fixed first message). Con-
cretely, for any access structure Γ , we identify parameters tΓ and κΓ ,
and we show that any Γ -special sound Σ-protocol is a proof of know-
ledge with knowledge error κΓ if tΓ is polynomially bounded. Similarly
for multi-round protocols.
We apply our general result to a couple of simple but important example
protocols, where we obtain a tight knowledge error as an immediate
corollary. Beyond these simple examples, we analyze the FRI protocol.
Here, showing the general special soundness notion is non-trivial, but
can be done (for a certain range of parameters) by recycling some of
the techniques used to argue ordinary soundness of the protocol (as an
IOP). Again as a corollary, we then derive that the FRI protocol, as
an interactive proof by using a Merkle-tree commitment, is a proof of
knowledge with almost optimal knowledge error.
Finally, building up on the technique for the parallel repetition of k-
special sound Σ-protocols, we show the same strong parallel repetition
result for Γ -special sound Σ-protocol and its multi-round variant.
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1 Introduction

Background. A key feature of an interactive proof is soundness, which re-
quires that the verifier will not accept a false statement, i.e., an instance x that
is not in the considered language, except with bounded probability. In many sit-
uations however, a stronger notion of soundness is needed: knowledge soundness.
Informally, knowledge soundness requires the prover to know a witness w that
certifies that x is a true statement, in order for the verifier to accept (except
with bounded probability). More formally, this is captured by the existence of
an efficient extractor, which has (rewindable) oracle access to any, possibly dis-
honest, prover, and which outputs a witness w for the considered statement x
with a probability that is tightly related to the probability of the prover making
the verifier accept.

Since their introduction, interactive proofs that satisfy knowledge soundness,
typically referred to proofs of knowledge then, have found a myriad of applica-
tions. However, showing that an interactive proof satisfies knowledge soundness
is typically non-trivial—often significantly more involved than showing ordinary
soundness. By default, it involves designing the extractor, and proving that it
“does the job.” We got spoiled in the past, where most of the considered inter-
active proofs were Σ-protocols, i.e., public-coin 3-round interactive proofs, and
had the additional property of being special-sound. Indeed, this made life rather
easy since special-soundness is a property that is usually quite easy to prove,
and that implies ordinary and knowledge soundness via a general classical re-
sult. Thus, knowledge soundness was often obtained (almost) for free. However,
this has changed in recent years, where the focus has shifted towards finding
highly efficient interactive proofs (where efficiency is typically measured via the
communication complexity, verification time, etc.); many of these highly efficient
solutions are not special-sound, and thus require a knowledge-soundness proof
from scratch.

Given this situation, it would be desirable to have stronger versions of the
generic “special-soundness ⇒ knowledge soundness” result that applies to a
weaker notion of special-soundness, which then hopefully is satisfied by these
new cutting-edge interactive proofs. One step in this direction was recently made
in [1, 2], where the above implication was extended to k-special-sound interac-
tive proofs, and, even more generally, to (k1, . . . , kµ)-special-sound multi-round
public-coin interactive proofs, for arbitrary positive integer parameters, subject
to being suitably bounded from above (e.g., k ≤ poly(|x|)). Rather naturally,
k-special-soundness means that from accepting responses to k pairwise distinct
challenges for one fixed message, a witness can be efficiently computed (so that
2-special-soundness coincides with the classical special-soundness property); for
the multi-round version, a suitable tree of transcripts is needed for computing
the a witness. This weaker notion of special-soundness is in particular suffi-
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cient to analyze Bulletproofs-like protocols, and so we directly obtain knowledge
soundness for these protocols.5

However, this weaker notion still falls short of capturing many of the recent
highly-efficient interactive proofs. For instance, a commonly used amortization
technique, where the prover proves a random linear combination of n statements
(instead of proving all the statements individually), requires correct responses for
n linearly independent challenge vectors in order to compute a witness. Another
example comes from the design principle to first construct a highly efficient
probabilistically checkable proof (PCP) or interactive oracle proof (IOP), and
then to compile it into a standard (public-coin) interactive proof in the natural
way by means of a Merkle-tree commitment [15, 16, 17]. Also here, one does not
obtain a special-sound protocol in the above generalized sense (or then only for
a too large parameter); instead, one requires challenges that correspond to sets
whose union covers all (or sufficiently many of) the leaves of the Merkle tree, in
order to obtain a witness.

Our Technical Results. In this paper, we push the weakening of the special-
soundness property to the extreme. For Σ-protocols, in the spirit of ordinary
or k-special-soundness, the notion of special-soundness that we consider in this
work requires that a witness can be efficiently computed from accepting re-
sponses to sufficiently many pairwise distinct challenges, but now “sufficiently
many” is captured by an arbitrary monotone (access) structure Γ , i.e., an arbi-
trary monotone set of subsets of the challenge set. This gives rise to the notion
of Γ -special-soundness, which coincides with k-special-soundness in the special
case where Γ is the threshold access structure with threshold k. This naturally
extends to multi-round public-coin interactive proofs, leading to the notion of
(Γ1, . . . , Γµ)-special-soundness. Similar notions were considered in [14, 13] in the
setting of commit-and-open Σ-protocols, and in some more constrained form,
where the monotone structures are replaced by matroids, in [18, 19].

We cannot expect for every Γ that a Γ -special-sound protocol is a proof
of knowledge. Instead, we identify parameters tΓ and κΓ , determined by the
structure Γ , and for any Γ -special-sound Σ-protocol we prove existence of an
extractor that has an knowledge error κΓ and an expected run time that scales
with tΓ . Thus, as long as tΓ ≤ poly(|x|), Γ -special-soundness implies knowledge
soundness. Similarly for (Γ1, . . . , Γµ)-special-sound multi-round protocols.

The construction of our extractor for Γ -special-sound protocols (and its
multi-round generalization) is inspired by the extractor construction from [2]. As
5 Certain Bulletproofs-like protocols are not exactly (k1, . . . , kµ)-special-sound, but,
e.g., require the ki different challenges also to be different modulo the sign. But
this can easily be dealt with, either by increasing ki by a factor 2, or by halving
the challenge space (so that if c is a valid challenge then −c is not). In [12], they
also observe this issue and generalize the extraction procedure to allow for general
equivalence relations; however, by the above, this is not really necessary: instead,
one can just restrict the challenge space to consist of one representative of each
equivalence class.
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a nice consequence, we can recycle the line of reasoning from [2] to prove strong
parallel repetition and extend it to our general notion of special-soundness, show-
ing that also here the knowledge error of a parallel repetition decreases expo-
nentially with the number of repetitions.

Applications. Our general technique gives immediate, tight results for simple
but important example protocols. For example, applied to the above mentioned
amortization technique of proving a random linear combination, we directly ob-
tain knowledge extraction with a knowledge error that matches the trivial cheat-
ing probability. Similarly, applied to the natural interactive proof for a Merkle
commitment, where the prover is challenged to open a random subset (of a cer-
tain size), we obtain a knowledge error that matches the probability of one faulty
node not being opened.

In order to demonstrate the usefulness of our result beyond the above sim-
ple examples, we analyze the (interactive) FRI protocol [5] and prove that for
a certain range of the parameters, when instantiated with a Merkle tree com-
mitment using a collision resistant hash function (or with any non-interactive,
computationally binding vector commitment scheme with local openings), the
protocol is a proof of knowledge with almost optimal knowledge error.6 In more
detail, for any proximity parameter δ up to δ < 1−ρ

4 , where ρ is the relative rate
of the considered code, we show a knowledge error of (1− δ)t +O(N/|F|), where
N is the length of the code; this is close to the trivial cheating probability of
max{(1− δ)t, 1/|F|}. In contrast to the above simple examples, arguing that the
FRI protocol is (Γ1, . . . , Γµ)-special-soundness is not trivial; however, technical
results from [5] can be recycled in order to show this, and knowledge soundness
then follows immediately from our generic result.

A final example, which we would like to briefly discuss, is parallel repeti-
tion. This example shows that our generic technique does not always work. For
simplicity, consider a k-special-sound Σ-protocol with k > 2 (but the discussion
also applies to multi-round protocols, and to our generalized notion of special
soundness). Then, its t-fold parallel repetition is not k-special sound anymore
(unless k = 2). One can argue that it is

(
(k − 1)t + 1

)
-special sound—but this

parameter is exponential in t, and thus one cannot directly conclude knowledge
soundness. On the other hand, equipped with our generalized notion, one can
observe that the parallel repetition is Γ -special sound for Γ being the structure
that accepts a list of challenge vectors, each vector of length t, if there is one
position where the challenge vectors feature at least k different values. Unfor-
tunately, also here, the crucial parameter tΓ turns out to be exponential for
this structure Γ , and so our generic result does not imply knowledge soundness.
Fortunately, for this particular and important example, the parallel repetition
result from [2] applies in case of k-special sound protocols (and its multi-round
6 We point out that, when considering the FRI protocol for an actual hash function
(rather than the random oracle), ordinary soundness is meaningless: the existence of
an opening of a Merkle commitment with a certain (not too obscure) property holds
trivially. Thus, it is crucial to argue knowledge soundness in this case.

4



generalization), and our extension of the parallel repetition applies in case of
arbitrary (Γ1, . . . , Γµ)-special-sound protocols. Thus, after all, we can still argue
(optimal) knowledge soundness in this case.

In conclusion, we expect that with our generic result for (Γ1, . . . , Γµ)-special-
sound protocols (which requires control over certain parameters to be applica-
ble), and with our general parallel repetition result, our work offers powerful tools
for proving knowledge soundness of many sophisticated proofs of knowledge.

2 Preliminaries

We write N0 = N∪{0} for the set of nonnegative integers. Further, for any q ∈ Z,
Zq = Z/qZ denotes the ring of integers modulo q.

2.1 Interactive Proofs

Let us now introduce some standard terminology and definitions with respect to
interactive proofs. We follow standard conventions as presented in [3].

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation, containing statement-witness
pairs (x;w). We assume all relations to be NP-relations, i.e., verifying that
(x;w) ∈ R takes time polynomial in |x|. An interactive proof for a relation
R aims to allow a prover P to convince a verifier V that a public statement x
admits a (secret) witness w, i.e., (x;w) ∈ R, or even that the knows a witness w
for x.

Definition 1 (Interactive Proof). An interactive proof Π = (P,V) for rela-
tion R is an interactive protocol between two probabilistic machines, a prover P
and a polynomial time verifier V. Both P and V take as public input a statement
x and, additionally, P takes as private input a witness w such that (x;w) ∈ R.
The verifier V either accepts or rejects. Accordingly, we say the corresponding
transcript (i.e., the set of all messages exchanged in the protocol execution) is
accepting or rejecting.

An interactive proof with three communication rounds, where we may assume
the prover to send the first and final message, is called a Σ-protocol. Further, an
interactive proof is said to be public-coin if the verifier publishes all its random
coins. In this case, we may assume all the verifier’s messages to be sampled
uniformly at random from finite (challenge) sets.

An interactive proof is said to be complete if for any statement witness pair
(x;w) an honest execution results in an accepting transcript (with high proba-
bility). It is sound if a dishonest prover cannot convince an honest verifier on
public inputs x that do not admit a witness w, i.e., on false statements x. More
precisely, (P,V) is sound if V rejects false statements x with high probability.
The stronger notion of knowledge soundness requires that (potentially dishon-
est) provers that succeed in convincing the verifier with large enough probability
must actually “know” a witness w. We will mainly be interested in analyzing the
knowledge soundness of interactive proofs. For this reason, we formally define
this property below.
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Definition 2 (Knowledge Soundness). An interactive proof (P,V) for rela-
tion R is knowledge sound with knowledge error κ : N → [0, 1] if there exists a
positive polynomial q and an algorithm E, called a knowledge extractor, with the
following properties. Given input x and black-box oracle access to a (potentially
dishonest) prover P∗, the extractor E runs in an expected number of steps that is
polynomial in |x| (counting queries to P∗ as a single step) and outputs a witness
w ∈ R(x) with probability

Pr
(
(x; EP

∗
(x)) ∈ R

)
≥ ε(P∗, x)− κ(|x|)

q(|x|) ,

where ε(P∗, x) := Pr
(
(P∗,V)(x) = accept

)
is the success probability of P∗ on

public input x.

Remark 1 (Interactive Arguments). In some cases, soundness and knowledge
soundness only hold with respect to computationally bounded provers, i.e., un-
bounded provers can falsely convince a verifier. Computationally (knowledge)
sound protocols are referred to as interactive arguments. Proving soundness of
interactive arguments can be significantly more complicated than proving sound-
ness of interactive proofs. However, in the context of knowledge soundness, an
interactive argument for relation R can oftentimes be cast as an interactive proof
for a modified relation

R′ = {(x;w) : (x;w) ∈ R or w solves some computational problem} .

Hence, in this case the knowledge extractor will either output a witness w with
respect to the original relation w, or it will output the solution to some com-
putational problem, e.g., a discrete logarithm relation. In fact, our analysis of
the FRI protocol in Section 8 exemplifies this general principle. For this rea-
son, knowledge soundness of interactive arguments can typically be analyzed via
knowledge extractors that are originally defined for interactive proofs. Therefore,
we will focus on the analyzes of interactive proofs.

Proving knowledge soundness of Σ-protocols directly is a nontrivial task, as it
requires the construction of an efficient knowledge extractor. It is typically much
easier to prove a related threshold special-soundness property, which states that
a witness can be extracted from a sufficiently large set of colliding and accepting
transcripts.

Definition 3 (k-out-of-N Special-Soundness). Let k,N ∈ N. A 3-round
public-coin interactive proof Π = (P,V) for relation R, with challenge set of
cardinality N ≥ k, is k-out-of-N special-sound if there exists an algorithm that,
on input a statement x and k accepting transcripts (a, c1, z1), . . . (a, ck, zk) with
common first message a and pairwise distinct challenges c1, . . . , ck, runs in time
polynomial in |x| and outputs a witness w such that (x;w) ∈ R. We also say Π
is k-special-sound and, if k = 2, it is simply said to be special-sound.
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It is known that k-out-of-N special-soundness implies knowledge sound-
ness with knowledge error (k − 1)/N . Recently, the multi-round generalization
(k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-soundness has become relevant. It is now
known that also this generalization tightly implies knowledge soundness [1]. For
a formal definition, we refer either to [1] or to Section 6 where we generalize this
(multi-round) notion beyond the threshold setting.

Remark 2. Formally, the parameters k and N of a k-out-of-N special-sound
interactive proof may depend on the size of the public input |x|. For notational
convenience, we leave this dependency implicit.

2.2 Geometric Distribution

This work adapts the extractor of [2]. For this reason, we also need the following
preliminaries on the geometric distribution from their work.

A random variable B with two possible outcomes, denoted 0 (failure) and
1 (success), is said to follow a Bernoulli distribution with parameter p if p =
Pr(B = 1). Sampling from a Bernoulli distribution is also referred to as running
a Bernoulli trial. The probability distribution of the number X of independent
and identical Bernoulli trials needed to obtain a success is called the geometric
distribution with parameter p = Pr(X = 1). In this case Pr(X = k) = (1 −
p)k−1p for all k ∈ N and we write X ∼ Geo(p). For two independent geometric
distributions we have the following lemma.

Lemma 1. Let X ∼ Geo(p) and Y ∼ Geo(q) be independently distributed.
Then,

Pr(X ≤ Y ) = p

p+ q − pq
≥ p

p+ q
.

Proof. It holds that

Pr(X ≤ Y ) =
∞∑
k=1

Pr(X = k) Pr(Y ≥ k) =
∞∑
k=1

(1− p)k−1p · (1− q)k−1

= p

1− (1− p)(1− q) = p

p+ q − pq
≥ p

p+ q
.

3 A Generalized Notion of Special-Soundness for
Σ-Protocols

In this section, we define a generalized notion of special-soundness. To this end,
we first recall the definition of monotone structures.

Definition 4 (Monotone Structure). Let C be a nonempty finite set and let
Γ ⊆ 2C be a family of subsets of C. Then, Γ or (Γ, C) is said to be a monotone
structure if it is closed under taking supersets, i.e., S ∈ Γ and S ⊆ T ⊆ C
implies T ∈ Γ .
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In some textbooks monotone structures Γ do not contain the empty set ∅ by
definition, which is equivalent to Γ 6= 2C , and they are required to be nonempty,
which is equivalent to C ∈ Γ . For convenience, we also consider Γ = ∅ and
Γ = 2C to be monotone structures. Then, for any D ⊆ C, the restriction

Γ |D = {S ⊆ D : S ∈ Γ} ⊆ 2D

defines a monotone structure (Γ |D,D).

Definition 5 (Minimal Set). Let (Γ, C) be a monotone structure. A set S ∈ Γ
is minimal if none of its proper subsets are in Γ , i.e., for all T ( S it holds that
T /∈ Γ . Further, M(Γ ) ⊆ Γ denotes the set of minimal elements of Γ .

Definition 6 (Distance to a Monotone Structure). For a nonempty mono-
tone structure (Γ, C), we define the following distance function:

dΓ : 2C → N0 , S 7→ min
T∈Γ

|T \ S| .

Equivalently,
dΓ : 2C → N0 , S 7→ min

T⊆C
{|T | : S ∪ T ∈ Γ} .

If Γ = ∅, we define dΓ to be identically equal to ∞.

The value dΓ (S) ∈ N0 equals the minimum number of elements that have to
be added to the set S to obtain an element of Γ . In particular, dΓ (S) = 0 if and
only if S ∈ Γ . Hence, it shows how close S is to the monotone structure Γ .

The key observation is now that typical knowledge extractors for interactive
proofs proceed by extracting some set of accepting transcripts from a dishonest
prover attacking the interactive proof. Subsequently, the knowledge extractor
computes a witness from this set of accepting transcripts. Clearly, the set of
sets of accepting transcripts from which a witness can be computed is closed
under taking supersets, i.e., it is a monotone structure. Therefore, the following
special-soundness notion for 3-round Σ-protocols follows naturally.

Definition 7 (Γ -out-of-C Special-Soundness). Let (Γ, C) be a monotone
structure. A 3-round public-coin interactive proof (P,V) for relation R, with
challenge set C, is Γ -out-of-C special-sound if there exists an algorithm that, on
input a statement x and a set of accepting transcripts (a, c1, z1), . . . , (a, ck, zk)
with common first message a and such that {c1, . . . , ck} ∈ Γ , runs in time poly-
nomial in |x| and outputs a witness w ∈ R(x). We also say (P,V) is Γ -special-
sound.

The above definition is a generalization of k-out-of-N special-soundness,
where the extractability is guaranteed when given k colliding accepting tran-
scripts with common first message a and pairwise distinct challenges ci that are
elements of a challenge set with cardinality N . Hence, when Γ contains all sets
of cardinality at least k, i.e., it is a threshold monotone structure, Γ -out-of-C
special-soundness reduces to k-out-of-N special-soundness, where N = |C|.
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Remark 3. Formally, the monotone structure (Γ, C) of Definition 7 may depend
on the size |x| of the public input x, i.e., it should actually be replaced by an
ensemble (Γλ, Cλ) of monotone structures indexed by the size λ ∈ N of the
public input of (P,V). For simplicity, we will abuse notation by ignoring this
dependency and simply writing (Γ, C). See also Remark 2.

4 Knowledge Extraction for Γ -out-of-C Special-Sound
Σ-Protocols

Our goal is to prove that, for certain monotone structures (Γ, C), Γ -out-of-C
special-soundness (tightly) implies knowledge soundness, and to determine the
corresponding knowledge error. In order to prove this, we construct a knowledge
extractor that, by querying a prover P∗ attacking the interactive proof, obtains
a set of accepting transcripts with common first message and for which the
challenges form a set in Γ . Without loss of generality we may assume P∗ to be
deterministic,7 i.e., P∗ always outputs the same first message a. Hence, P∗ can
be viewed as a (deterministic) function

P∗ : C → {0, 1}∗ c 7→ y = (a, c, z) ,

that on input a challenge c ∈ C outputs a protocol transcript y = (a, c, z).
Let A ⊆ C be the set of challenges for which P∗ succeeds, i.e., A = {c ∈ C :

V (P∗(c)) = 1}. Then the goal of the extractor is to find a set B ∈ Γ |A. The
difficulty is that the extractor is only given oracle access to P∗ and therefore does
not know the set A. For this reason, extractors typically proceed recursively as
follows: if at some point the extractor has found some S ⊆ A with S /∈ Γ , it will
try new challenges c ∈ C until P∗ succeeds. The hope is then that S ∪ {c} ⊆ A
is “closer” to Γ |A than S. More precisely, the extractor tries to find a c ∈ A ⊆ C
such that dΓ |A(S ∪ {c}) < dΓ |A(S). Note that not all challenges c shorten the
distance to Γ |A, e.g., dΓ |A(S ∪ {c}) = dΓ |A(S) for all c ∈ S. Since the extractor
does not know the set A, it cannot evaluate this distance function.

However, for any S, the challenge set C can be partitioned into a partition
of “useless” challenges and a partition of “potentially useful” challenges. The
useless challenges are the c ∈ C such that dΓ |A(S ∪ {c}) = dΓ |A(S) for all A ⊆ C
containing S, i.e., for all A useless challenges will not shorten the distance to
Γ |A. For instance, all c ∈ S are useless challenges for any S and any Γ . However,
in some settings the set of useless challenges is larger than S, and in general this
observation is crucial for the extractor to be efficient. In fact, this is the case
for all interactive proofs that warrant a generalization of the existing threshold
special-soundness notion. All challenges c ∈ C that are not useless are potentially
useful, i.e., for these challenges there exist an A ⊆ C containing S such that
dΓ |A(S ∪ {c}) < dΓ |A(S). The set of useful challenges is denoted UΓ (S), where
the function UΓ is formally defined below.
7 See [2] for a proof of this claim.
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Definition 8 (Useful Elements). For a monotone structure (Γ, C), we define
the following function:

UΓ : 2C → 2C , S 7→
{
c ∈ C \ S : ∃A ∈ Γ s.t. S ⊂ A ∧ A \ {c} /∈ Γ

}
.

Note that Γ = ∅ implies UΓ (S) = ∅ for all S ⊆ C. Moreover, if Γ is nonempty,
UΓ (S) = ∅ if and only if S ∈ Γ .

The following lemma shows that for any c ∈ UΓ (S), there exists an A ∈ Γ
containing S ∪ {c} such that

dΓ |A(S ∪ {c}) < dΓ |A(S) ,

i.e., the challenges c ∈ UΓ (S) are indeed potentially useful to the extractor. Even
more so, it is essential that the extractor considers all challenges c ∈ UΓ (S). For
every c ∈ UΓ (S), it might namely be the case that the A ∈ Γ that “certifies” c,
i.e., the A such that S ⊂ A and A \ {c} /∈ Γ , corresponds to the challenges for
which the prover P∗ succeeds. Since A \ {c} /∈ Γ , the extractor can only succeed
if it considers the challenge c ∈ UΓ (S) at some point.

The same lemma shows that challenges c /∈ UΓ (S) will never decrease the
distance, i.e., they are indeed useless to the extractor. More precisely, if c /∈
UΓ (S), for every A ∈ Γ containing S ∪ {c} it holds that

dΓ |A(S ∪ {c}) = dΓ |A(S) .

Lemma 2. Let (Γ, C) be a monotone structure and S ⊂ C. Then c ∈ UΓ (S) if
and only if there exists an A ∈ Γ containing S ∪ {c} such that

dΓ |A(S ∪ {c}) < dΓ |A(S) .

Proof. Let us first prove that c ∈ UΓ (S) implies the existence of an appropriate
set A ∈ Γ . If c ∈ UΓ (S), then c /∈ S and there exists an A such that S ⊂ A and
A \ {c} /∈ Γ . Now, let T ∈ Γ |A (i.e, T ⊆ A and T ∈ Γ ) be such that

dΓ |A(S) = |T \ S| .

Then, T \ {c} ⊆ A \ {c} /∈ Γ , which implies that c ∈ T \ S. Hence,

dΓ |A(S ∪ {c}) ≤ |T \ (S ∪ {c})| = |T \ S| − 1 = dΓ |A(S)− 1 ,

which proves the first implication of the lemma.
Let us now prove the other implication. To this end, let A ∈ Γ containing

S ∪ {c} be such that

dΓ |A(S ∪ {c}) + 1 ≤ dΓ |A(S) .

Further, let T ∈ Γ |A ⊆ 2A be such that dΓ |A(S∪{c}) = |T \ (S ∪ {c})|. Without
loss of generality we may assume that S ⊂ T . Then

dΓ |A(S) ≤ |T \ S| ≤ |T \ (S ∪ {c})|+ 1 = dΓ |A(S ∪ {c}) + 1 .
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Hence,

dΓ |A(S) = |T \ S| = |T \ (S ∪ {c})|+ 1 = dΓ |A(S ∪ {c}) + 1 ,

which implies that c ∈ T \S and T \{c} /∈ Γ |A. It follows that c ∈ UΓ (S), which
completes the proof of the lemma.

We also derive the following lemma, which shows that even if all useless
challenges c ∈ C \UΓ (S) are added to the set S ∈ 2C \ Γ , the resulting subset is
still not in Γ .

Lemma 3. Let (Γ, C) be a monotone structure and S ∈ 2C \ Γ . Then,
(C \ UΓ (S)) ∪ S /∈ Γ .

Proof. Suppose, to the contrary, that (C \ UΓ (S)) ∪ S ∈ Γ . Further, let A ⊆
C \ (UΓ (S) ∪ S) be such that A ∪ S ∈ Γ and A′ ∪ S /∈ Γ for all A′ ( A. Note
that A 6= ∅, because S /∈ Γ .

Now let c ∈ A ⊆ C \ (UΓ (S) ∪ S) ⊆ C \ UΓ (S), then A ∪ S ∈ Γ and
(A∪S)\{c} /∈ Γ . Hence, c ∈ UΓ (S), which contradicts the fact that c /∈ C\UΓ (S).
It follows that (C \ UΓ (S)) ∪ S /∈ Γ , which completes the proof.

The knowledge extractor will be restricted to sampling challenges that are
potentially useful. The value tΓ defines the maximum number of accepting tran-
scripts that the extractor has to find, before it succeeds and obtains the accepting
transcripts for a set S ∈ Γ . The efficiency of our knowledge extractor will depend
on tΓ . A formal definition is given below. Further, in Section 5, we describe the
monotone structure and corresponding k-values for three (classes of) interactive
proofs and explain their relevance.

Definition 9 (t-value). Let (Γ, C) be a monotone structure and S ⊆ C. Then

tΓ (S) := max
{
t ∈ N0 : ∃c1, . . . , ct ∈ C s.t.

ci ∈ UΓ
(
S ∪ {c1, . . . , ci−1}

)
∀i

}
.

Further,
tΓ := tΓ (∅) .

It is easily seen that tΓ (S) = 0 if and only if S ∈ Γ or Γ = ∅. Further, the
following lemma shows that adding an element c ∈ UΓ (S) to S decreases the
corresponding k-value. This lemma plays a pivotal role in our recursive extraction
algorithm.

Lemma 4. Let (Γ, C) be a nonempty monotone structure and let S ⊆ C such
that S /∈ Γ . Then, for all c ∈ UΓ (S),

tΓ (S ∪ {c}) < tΓ (S) .

11



Proof. Let c ∈ UΓ (S) and t := tΓ (S ∪ {c}). Then, by definition, there exist
c0 := c, c1, . . . , ct ∈ C such that ci ∈ UΓ

(
S ∪ {c0, . . . , ci−1}

)
for all i. Hence,

tΓ (S) ≥ k + 1 = tΓ (S ∪ {c}) + 1 > tΓ (S ∪ {c}) ,

which completes the proof.

As in [2], we describe our technical results in a more abstract language.
This will later allow us to easily derive composition results and handle more
complicated scenarios, such as multi-round interactive proofs and parallel com-
positions. To this end, let us consider a finite set C, a probabilistic algorithm
A : C → {0, 1}∗ and a verification function V : C × {0, 1}∗ → {0, 1}. An output
y ← A(c) of the algorithm A on input c ∈ C is said to be accepting or correct if
V (c, y) = 1. The success probability of A is denoted as

ε(A) := Pr
(
V
(
C,A(C)

)
= 1
)
,

where C is uniformly random in C. The obvious instantiation of A is given by a
deterministic dishonest prover P∗ attacking an interactive proof Π on input x.
Note that even though it is sufficient to consider deterministic provers P∗, we
allow the algorithm A to be probabilistic. This generalization is essential when
considering multiround interactive proofs and parallel repetitions [2].

Now let Γ ⊆ 2C be a nonempty monotone structure. Then, for any S ⊂ C
with UΓ (S) 6= ∅, we define

εΓ (A, S) := Pr
(
V (C,A(C)) = 1 | C ∈ UΓ (S)

)
.

Typically, UΓ (∅) = C and thus ε(A) = εΓ (A, ∅), i.e., all challenges c ∈ C are
potentially useful. However, this is not necessarily the case.

Given oracle access to A, the goal of the extractor is to find correct outputs
y1, . . . , yk for challenges c1, . . . , ck ∈ C such that {c1, . . . , ck} ∈ Γ , i.e., such that
V (ci, yi) = 1 for all i. If A corresponds to a dishonest prover attacking a Γ -out-
of-C special-sound interactive proof on some input x, a witness w for statement x
can be efficiently computed from the outputs y1, . . . , yk.

Let us further define the following quality measure for the algorithm A:

δΓ (A) := min
S/∈Γ

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
.

The value δΓ (A) defines a “punctured” success probability of A, i.e., it equals the
success probability of A when the challenge c is sampled uniformly at random
from some set C \ S ⊇ UΓ (S) such that S is not in the monotone structure.
We will show that the value δΓ (A) measures how well we can extract from the
algorithm A. The value δΓ (A) is a natural generalization of the measure

δk(A) := min
S⊆C:|S|<k

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
,

defined in [2]. More precisely, if Γ is equal to the collection of subsets of cardi-
nality at least k, then δΓ (A) = δk(A).
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For any set T ∈ 2C \ Γ , we also define

δΓ (A, T ) := min
S:S∪T /∈Γ

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
.

Since S ∪ T /∈ Γ implies S ∪ T ′ /∈ Γ for all T ′ ⊆ T , it follows that

δΓ (A, T ′) ≤ δΓ (A, T ), ∀T ′ ⊆ T . (1)

Further, by Lemma 3, it follows that
(
C \ UΓ (T )

)
∪ T /∈ Γ for all T /∈ Γ .

Hence,

δΓ (A, T ) = min
S:S∪T /∈Γ

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
≤ Pr

(
V (C,A(C)) = 1 | C /∈ C \ UΓ (T )

)
= Pr

(
V (C,A(C)) = 1 | C ∈ UΓ (T )

)
= εΓ (A, T ) .

(2)

We are now ready to define and analyze our extraction algorithm for Γ -out-
of-C special-sound interactive Σ-protocols. The extractor is defined in Figure 1
and its properties are summarized in the following lemma.

Lemma 5 (Extraction Algorithm - Σ-protocols). Let (Γ, C) be a nonempty
monotone structure and let V : C × {0, 1}∗ → {0, 1}. Then there exists an oracle
algorithm EΓ with the following properties: The algorithm EAΓ , given oracle access
to a (probabilistic) algorithm A : C → {0, 1}∗, requires an expected number of at
most 2tΓ − 1 queries to A and, with probability at least δΓ (A)/tΓ , it outputs
pairs (c1, y1), (c2, y2), . . . , (c`, y`) ∈ C × {0, 1}∗ with V (ci, yi) = 1 for all i and
{c1, . . . , ck} ∈ Γ .

Fig. 1. Recursive Expected Polynomial Time Extractor EAΓ (S).

Parameters: a nonempty monotone structure (Γ, C) and an S ∈ 2C \ Γ .
Oracle access to: Algorithm A : C → {0, 1}∗ and verification function
V : C × {0, 1}∗ → {0, 1}.

– Sample c1 ∈ UΓ (S) uniformly at random and evaluate y1 ← A(c1).
– If V (c1, y1) = 0, abort and output ⊥.
– If V (c1, y1) = 1 and {c1} ∪ S ∈ Γ , output (c1, y1) ∈ C × {0, 1}∗.
– Else, set coin = 0 and repeat
• run EAΓ (S ∪ {c1});
• set coin← V

(
d,A(d)

)
for d ∈ UΓ (S) sampled uniformly at random;

until either EAΓ (S ∪ {c1}) outputs pairs (c2, y2), . . . , (ck, yk) (for some k) with
V (ci, yi) = 1 for all i and S ∪ {c1, c2, . . . , ck} ∈ Γ or until coin = 1.

Output: In the former case, output pairs (c1, y1), . . . , (ck, yk) ∈ C × {0, 1}∗ with
V (ci, yi) = 1 for all i and {c1, . . . , ck} ∪ S ∈ Γ . In the latter case, output ⊥.
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Proof. The extractor EAΓ (S) is formally defined in Figure 1. It takes as input a
subset S ∈ 2C \ Γ . The input S represents the set of accepting challenges that
the extractor has already found, i.e., the goal of EAΓ (S) is to find pairs (ci, yi)
such that V (ci, yi) = 1 and {c1, . . . , ck} ∪ S ∈ Γ . Further, we define

EAΓ := EAΓ (∅) .

Fist note that, since Γ 6= ∅ and thus UΓ (S) 6= ∅ for all S /∈ Γ , the extractor
is well-defined. Let us now analyze the success probability and the expected
number of A-queries of the extractor.

Success Probability. By induction over tΓ (S), we will prove that EAΓ (S)
succeeds with probability at least

δΓ (A, S)
tΓ (S) .

We first consider the base case. To this end, let S ⊆ C with tΓ (S) = 1. Then,
by Lemma 4, for all c1 ∈ UΓ (S) tΓ (S ∪ {c1}) = 0 and thus S ∪ {c1} ∈ Γ .
Therefore, the extractor succeeds if and only if V

(
c1,A(c1)

)
= 1 for the c1

sampled from UΓ (S). Hence, the success probability of the extractor equals

εΓ (A, S) ≥ δΓ (A, S) ,

where the inequality follows from Equation 2. This proves the bound on the
success probability for the base case tΓ (S) = 1.

Let us now consider an arbitrary subset S ⊆ C with tΓ (S) > 1 and assume
that the claimed bound holds for all subsets T ⊆ C with tΓ (T ) < tΓ (S).

In the first step, the extractor succeeds with probability εΓ (A, S) in finding
a c1 ∈ UΓ (S) and y1 ← A(c1) with V (c1, y1) = 1. If {c1} ∪ S ∈ Γ , the extrac-
tor has successfully completed its task. If not, the extractor starts running two
geometric experiments until one of them finishes. In the first geometric exper-
iment the extractor repeatedly runs EAΓ (S ∪ {c1}). By Lemma 4, it holds that
tΓ (S ∪ {c1}) < tΓ (S). Hence, by the induction hypothesis, EAΓ (S∪{c1}) succeeds
with probability

p ≥ δΓ (A, S ∪ {c1})
tΓ (S ∪ {c1})

≥ δΓ (A, S)
tΓ (S)− 1 ,

where the second inequality follows from Equation 1 and Lemma 4. In the sec-
ond geometric experiment, the extractor tosses a coin that returns heads with
probability

q := εΓ (A, S) .

The second step of the extractor succeeds if the second geometric experiment
does not finish before the first, and so by Lemma 1 this probability is lower
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bounded as follows

Pr
(
Geo(p) ≤ Geo(q)

)
≥ p

p+ q
≥

δΓ (A,S)
tΓ (S)−1

δΓ (A,S)
tΓ (S)−1 + εΓ (A, S)

≥
δΓ (A,S)
tΓ (S)−1

εΓ (A,S)
tΓ (S)−1 + εΓ (A, S)

= δΓ (A, S)
tΓ (S) · εΓ (A, S) ,

where the second inequality follows from the monotonicity of the function x 7→
x
x+q and the third inequality follows from the fact that δΓ (A, S) ≤ εΓ (A, S)
(Equation 2).

Since the first step of the extractor succeeds with probability εΓ (A, S), it
follows that EAΓ (S) succeeds with probability at least δΓ (A, S)/tΓ (S) for all
S ∈ 2C \ Γ , which proves the claimed bound. In particular, EAΓ succeeds with
probability at least δΓ (A)/tΓ .

Expected Number of A-Queries. By induction over tΓ (S), we will prove
that the expected number of A-queries QΓ (S) made by EAΓ (S) is upper bounded
as follows:

QΓ (S) ≤ 2tΓ (S)− 1 .
We first consider the base case. To this end, let S ⊆ C with tΓ (S) = 1. In this
case, {c1}∪S ∈ Γ for all c1 ∈ UΓ (S). Hence, EAΓ (S) either succeeds or fails after
making exactly one A-query, i.e., QΓ (S) = 1 = 2tΓ (S) − 1, which proves the
base case.

Let us now consider an arbitrary subset S ⊆ C with tΓ (S) > 1 and assume
that QΓ (T ) ≤ 2tΓ (T )− 1 for all subsets T ⊆ C with tΓ (T ) < tΓ (S).

The extractor EAΓ (S) first samples c1 ←R UΓ (S) uniformly at random and
evaluates y1 ← A(c1). This requires exactly one A-query. After this step the
extractor aborts with probability 1− εΓ (A, S). Otherwise, and if {c1} ∪ S /∈ Γ ,
it continues running the two geometric experiments until either one of them
finishes. The second geometric experiment finishes in an expected number of
1/εΓ (A, S) trials and requires exactly one A-query per trial. Hence, the total
expected number of trials for both experiments is at most 1/εΓ (A, S). Further,
since tΓ (S ∪ {c1}) < tΓ (S) (Lemma 4) and by the induction hypotheses, the
expected number of A-queries of the first geometric experiment is at most

QΓ (S ∪ {c1}) ≤ 2tΓ (S ∪ {c1})− 1 ≤ 2tΓ (S)− 3 ,

per iteration, where the second inequality follows again from Lemma 4. Hence,
every iteration of the repeat loop requires an expected number of at most
2tΓ (S)− 2 A-queries.

From this it follows that

QΓ (S) ≤ 1 + εΓ (A, S)2tΓ (S)− 2
εΓ (A, S) = 2tΓ (S)− 1 ,

for all S ∈ 2C \ Γ . In particular, EAΓ requires an expected number of at most
2tΓ − 1 A-queries, which completes the proof of the lemma.
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Remark 4 (Expected Polynomial Runtime). The (expected) runtime of the ex-
tractor is typically measured in the number of queries it makes to the adver-
sary P∗. To make a query, the extractor has to sample a challenge c ∈ UΓ (S) for
some S /∈ Γ with |S| < tΓ . Additionally, it must verify the transcript outputted
by the adversary. Since the verification of a transcript takes polynomial time by
definition, it follows that the extractor runs in expected polynomial time if it
can efficiently sample c ∈ UΓ (S) for all S /∈ Γ with |S| < tΓ .

By basic probability theory, for any S /∈ Γ ,

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
=

Pr
(
V (C,A(C)) = 1 ∧ C /∈ S

)
Pr
(
C /∈ S

)
≥

Pr
(
V (C,A(C)) = 1)− Pr

(
C ∈ S

)
Pr
(
C /∈ S

)
=
ε(A)− Pr

(
C ∈ S

)
1− Pr

(
C ∈ S

)
= ε(A)− |S| / |C|

1− |S| / |C| .

Hence, taking the minimum over all S /∈ Γ shows that

δΓ (A) ≥ ε(A)− κΓ
1− κΓ

, (3)

where κΓ = maxS/∈Γ |S| / |C|. In Γ -out-of-C special-sound interactive proofs, a
dishonest prover can potentially take any S /∈ Γ and choose the first message so
that it will succeed if the verifier chooses a challenge c ∈ S. Hence, κΓ equals
the trivial cheating strategy for Γ -out-of-C special-sound interactive proofs.

Since the extractor succeeds with probability at least δΓ (A)/tΓ , the following
theorem follows.

Theorem 1. Let (P,V) be a Γ -out-of-C special-sound Σ-protocol such that tΓ
is polynomial in the size |x| of the the public input statement x of (P,V) and
sampling from UΓ (S) takes polynomial time (in |x|) for all S with |S| < tΓ .
Then (P,V) is knowledge sound with knowledge error κΓ = maxS/∈Γ |S| / |C|.

5 Examples

In this section, we describe three very simple interactive proofs and their special-
soundness properties. The first example shows that for the special case of k-out-
of-N special-soundness notion, we recover the known results. The second and
third example present techniques that have found numerous applications, but
cannot be analyzed via their threshold special-soundness properties, i.e., these
interactive proofs require an alternative analysis. Our knowledge extractor offers
the means to easily handle these interactive proof as well. Finally, the fourth
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example shows that our generic techniques do not always suffice. In Section 8, we
will consider a more complicated protocol and demonstrate how our techniques
enable a knowledge soundness analysis of the multi-round protocol FRI [5].

Example 1 (Threshold Access Structures). Let C be a finite set with cardinal-
ity N , and let Γ be the monotone structure that contains all subsets of C of
cardinality at least k ≤ N . Then a Γ -out-of-C special-sound interactive proof is
also k-out-of-N special-sound. Moreover, UΓ (A) = C \ A for all A /∈ Γ , tΓ = k,
and κΓ = (k − 1)/N . Hence, in the case of k-out-of-N special-soundness, we
recover the results from [2].

Example 2 (Standard Amortization Technique). Let F be a finite field and let Ψ
be an F-linear map. The following amortization technique, known from Σ-
protocol theory, allows a prover to prove knowledge of n Ψ -preimages x1, . . . , xn
of P1, . . . , Pn for essentially the cost of one. The amortization technique is a
2-round protocol that proceeds as follows. First, the verifier samples a challenge
vector c = (c1, . . . , cn) ∈ Fn uniformly at random. Second, upon receiving the
challenge vector c, the prover responds with the element z =

∑n
i=1 cixi. Finally,

the verifier checks that Ψ(z) =
∑n
i=1 ciPi. Hence, instead of sending n preimages

the prover only has to send one preimage.
The n preimages x1, . . . , xn of P1, . . . , Pn can be extracted from accepting

transcripts (c1, z1), . . . , (ck, zk) if the challenge vectors c1, . . . , ck span the vector
space Fn. Hence, the amortization protocol is Γ -out-of-Fn special-sound, where Γ
is the monotone structure that contains all subsets spanning Fn. Further, tΓ = n,
UΓ (A) = Fn \ span(A) for all A /∈ Γ ; and κΓ = 1/ |F|; thus, we obtain optimal
knowledge soundness.

At the same time, the amortization protocol is (|F|n−1+1)-out-of-|F|n special-
sound, i.e., the threshold special-soundness parameter of this protocol is |F|n−1+
1, which is much larger than tΓ = n. In fact, the parameter |F|n−1 + 1 is typically
not polynomially bounded, in which case knowledge soundness can not be derived
from this threshold special-soundness property.

Example 3 (Merkle Tree Commitments). Let us now consider an interactive
proof for proving knowledge of the opening of a Merkle tree commitment P ,
i.e., P is the root of a Merkle tree and the prover claims to know all n leafs. To
verify this claim, the verifier selects a subset S of k (distinct) indices between 1
and n uniformly at random. The prover sends the corresponding leafs together
with their validation paths, which are checked by the verifier.

An opening of the commitment P can be extracted from accepting transcripts
(S1, z1), . . . , (S`, z`) if the subsets Si cover {1, . . . , n}. Hence, this interactive
proof is Γ -out-of-C, where

C = {S ⊆ {1, . . . , n} : |S| = k} and Γ =
{
D ⊆ C :

⋃
S∈D

S = {1, . . . , n}
}
.

Further, tΓ = n− k + 1, UΓ (D) = {A ∈ C : A 6⊆
⋃
S∈D S} for all D /∈ Γ , and

κΓ = (n− k)/n; thus, we obtain optimal knowledge soundness.
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The threshold special-soundness parameter of this protocol is
(
n−1
k

)
+ 1 which

is typically much larger than tΓ = n − k + 1. Hence, also in this case our
generalization provides a much more efficient knowledge extractor.

This simple interactive proof is an essential component in many more compli-
cated protocols based on probabilistically checkable proofs (PCPs), interactive
oracle proofs (IOPs) or MPC-in-the-head.

Example 4 (Parallel Repetition). Finally, we consider an example where our
generic technique does not work. To this end, let Πt be the t-fold parallel
composition of a k-out-of-N special-sound interactive proof Π with challenge
set C, i.e., Πt has challenge set Ct. Then, as discussed in the introduction, Πt

is
(
(k − 1)t + 1

)
-out-of-N t special-sound, i.e., its threshold special-soundness

parameter (k − 1)t + 1 grows exponentially in t (if k > 2).
The parallel repetitionΠt is also Γ -out-of-Ct special-sound, where Γ contains

all subsets of challenge vectors c ∈ Ct such that there is one position 1 ≤ i ≤ t
where the challenge vectors feature at least k different values. Then, κΓ = (k −
1)t/N t. However, tΓ = (k−1)t+1, i.e., tΓ equals the threshold special-soundness
parameter and grows exponentially in t. Hence, in this particular example, the
correct access structure does not yield an efficient extractor. Fortunately, here
we can apply the parallel repetition result of [2].

6 Knowledge Extraction for Multi-Round Interactive
Proofs

Let us now move to the analysis of multi-round interactive proofs (P,V). To this
end, we first generalize the notion of Γ -out-of-C special-soundness to multi-round
interactive proofs. A 2µ+1-round interactive proof is said to be (Γ1, . . . , Γµ)-out-
of-(C1, . . . , Cµ) if there exists an efficient algorithm that can extract a witness
from appropriate trees of transcripts. Before we formally define trees of tran-
scripts, we first define the related trees of challenges.

Definition 10 (Tree of Challenges). Let (Γi, Ci) be monotone structures
for 1 ≤ i ≤ µ. A set containing a single challenge vector (c1, . . . , cµ) ∈
C1 × · · · × Cµ is also referred to as a (1, . . . , 1)-tree of challenges. Further, for
1 ≤ t ≤ µ, a (1, . . . , 1, Γt, . . . , Γµ)-tree Tt of challenges is the union of several
(1, . . . , 1, Γt+1, . . . , Γµ)-trees, such that

– The first t− 1 coordinates of all c ∈ Tt ⊆ C1 × · · · × Cµ are equal;
– The t-th coordinates of the tree elements form an element in Γt, i.e.,

{c ∈ Ct : ∃(c1, . . . , ct−1, c, ct+1, . . . , cµ) ∈ Tt} ∈ Γt .

Moreover, we define the following monotone structure:

ΓTree(Γ1, . . . , Γµ) := {S ⊆ C1 × · · · × Cµ : S contains a (Γ1, . . . , Γµ)-tree} .
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Trivially, the verifier’s messages in a transcript of a 2µ+ 1-round interactive
proof with challenge sets C1, . . . , Cµ form a (1, . . . , 1)-tree of challenges. Hence,
by adding the prover’s messages we obtain a (1, . . . , 1)-tree of transcripts, and
thus, in the obvious way, we obtain the notion of a tree of transcripts. The
only additional requirement is that the prover’s messages collide, i.e., they are
uniquely determined by the challenges received before sending the message. In
particular, the first message of every transcript is the same. Note that if the
transcripts are generated by a deterministic prover, this property is guaranteed
to hold.

Definition 11 (Tree of Transcripts). Let (Γi, Ci) be monotone structures for
1 ≤ i ≤ µ. Let (P,V) be a 2µ + 1-round public-coin interactive proof with chal-
lenge sets C1, . . . , Cµ. A (Γ1, . . . , Γµ)-tree of transcripts is a set of protocol tran-
scripts, such that

– The corresponding set of challenge vectors, obtained by ignoring the prover’s
messages, is a (Γ1, . . . , Γµ)-tree of challenges;

– The prover’s messages collide, i.e., if two transcripts (a0, c1, a1, . . . , cµ, aµ)
and (a′0, c′1, a′1, . . . , c′µ, a′µ) are both in the tree, and ci = c′i for all i ≤ j, then
also ai = a′i for all i ≤ j.

Prior works (e.g., [10, 11, 1]) considered (k1, . . . , kµ)-trees, where ki ∈ N
for all i. These are special cases of the above defined trees. More precisely, if
Γi = {S ⊆ Ci : |S| ≥ ki}, a (k1, . . . , kµ)-tree is the same as a (Γ1, . . . , Γt)-tree.

We are now ready to define a generalized multi-round special-soundness no-
tion.

Definition 12 ((Γ1, . . . , Γµ)-out-of-(C1, . . . , Cµ) Special-Soundness). Let
(Γi, Ci) be monotone structures for 1 ≤ i ≤ µ. A 2µ+ 1-round public-coin inter-
active proof (P,V) for relation R, with challenge sets C1, . . . , Cµ, is (Γ1, . . . , Γµ)-
out-of-(C1, . . . , Cµ) special-sound if there exists a polynomial time algorithm that,
on input a statement x and a (Γ1, . . . , Γµ)-tree of accepting transcripts, outputs
a witness w ∈ R(x). We also say that (P,V) is (Γ1, . . . , Γµ)-special-sound.

Our goal is now to prove that, for appropriate monotone structures,
(Γ1, . . . , Γµ)-out-of-(C1, . . . , Cµ) special-soundness (tightly) implies knowledge
soundness. As before, again borrowing the notation from [2], we present our
results in a more abstract language. To this end, let A : C1 × · · · × Cµ → {0, 1}∗
be a probabilistic algorithm and

V : C1 × · · · × Cµ × {0, 1}∗ → {0, 1}

a verification function. The success probability of A is denoted as

ε(A) := Pr
(
V
(
C,A(C)

)
= 1
)
,

where C is distributed uniformly at random over C1 × · · · × Cµ. The obvious
instantiation of A is again a deterministic prover P∗ attacking a (Γ1, . . . , Γµ)-
out-of-(C1, . . . , Cµ) special-sound interactive proof.
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Let us now write Γ = (Γ1, Γ2, . . . , Γµ) and C = C1 × · · · × Cµ. Then the
punctured success probability, defined in Section 4, has the following natural
generalization for multi-round interactive proofs:

δVΓ (A) := min
S/∈ΓTree(Γ)

Pr
(
V (C,A(C)) = 1

∣∣C /∈ S
)
. (4)

Remark 5. The value δVΓ (A) matches the value δVΓ (A) of Section 4, but with an
adjusted monotone structure

(Γ, C) =
(
ΓTree(Γ), C1 × · · · × Cµ

)
,

for δVΓ (A). Therefore, in principle, one could immediately apply the results
from Section 4. However, this would lead to a suboptimal result and typically
an inefficient extractor. More precisely, the value tΓTree(Γ) grows linearly in the
product of the sizes of the challenge sets C1, . . . , Cµ−1. Therefore, in the follow-
ing, we do a more elaborate analysis that exploits the additional tree structure
of ΓTree(Γ).

Oftentimes, the verification function V is clear from context, in which case
we simply write δΓ(A) instead of δVΓ (A). The minimum in Equation 4 is over all
subset S ⊆ C1×· · ·×Cµ that do not contain a Γ-tree. Hence, again we puncture
the success probability by removing some set S from which we cannot extract.
Since we take the minimum over all such subsets S, δVΓ (A) > 0 implies the exis-
tence of a Γ-tree of challenges T such that A succeeds with positive probability
on all challenges in T . Further, if δVΓ (A) = 0, this extractability property cannot
be guaranteed. Hence, at least in principle, extraction is possible if δΓ(A) > 0.
However, it is far less obvious that extraction can also be done efficiently. The
following lemma shows that, for appropriate monotone structures (Γi, Ci), an effi-
cient extraction algorithm indeed exists. This is a generalization of [2, Lemma 4].
Using the notation we introduced here, their proof almost immediately carries
over to this more generic setting. For completeness, we present the proof below.

Lemma 6 (Multi-Round Extraction Algorithm). Let Γ = (Γ1, . . . , Γµ)
and C = C1 × · · · × Cµ be such that (Γi, Ci) are nonempty monotone structures
for all i. Further, let T :=

∏µ
i=1 tΓi and V : C × {0, 1}∗ → {0, 1}. Then, there

exists an algorithm EA so that, given oracle access to any (probabilistic) algo-
rithm A : C → {0, 1}∗, EA requires an expected number of at most 2µ · T queries
to A and, with probability at least δΓ (A)/T , outputs pairs (ci, yi) ∈ C × {0, 1}∗
such that {ci}i is a Γ-tree with V (ci, yi) = 1 for all i.

Proof. The proof goes by induction on µ. For the base case µ = 1, the lemma
directly follows from Lemma 5. So let us assume the lemma holds for µ′ := µ−1.
Further, let C′ := C2 × · · · × Cµ, Γ′ := (Γ2, . . . , Γµ) and T ′ :=

∏µ
i=2 tΓi .

Then, for any c ∈ C1, let Ac be the algorithm that takes as input a vector
c′ = (c2, . . . , cµ) ∈ C′ and runs A(c, c′). The function Vc is defined accordingly,
i.e.,

Vc : C′ × {0, 1}∗ → {0, 1}, (c′, y) 7→ V (c, c′, y) .
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By the induction hypothesis there exists an algorithm EAcµ−1 that outputs a
set Y = {(c′i, yi)}i ⊆ C′ × {0, 1}∗ with

Vc(c′i, yi) = V (c, c′i, yi) = 1 ∀i and {c′i}i ∈ ΓTree(Γ2, . . . , Γµ) .

Moreover, EAcµ−1 requires an expected number of at most 2µ−1 · T ′ queries to Ac
(and thus to A) and succeeds with probability at least δVcΓ ′ (Ac)/T ′. We define
W : C1 × {0, 1}∗ → {0, 1}, by setting W (c,Y) = 1 if and only if Y is a set
satisfying the above properties.

Now let BA : C1 → {0, 1}∗ be the algorithm that, with oracle access to A,
takes as input an element c ∈ C1 and runs EAcµ−1. By Lemma 5, there exists an
expected polynomial time algorithm EBA1 , with oracle access to BA, that aims to
output pairs (cj ,Yj) ∈ C1 × {0, 1}∗ with W (cj ,Yj) = 1 for all j and {cj}j ∈ Γ1.

Rearranging the output {(cj ,Yj)}j ∈ C1 × {0, 1}∗ of a successful EBA1 -
invocation is easily seen to give a set of pairs (ci, yi) ∈ C × {0, 1}∗ such that
{ci}i is a Γ -tree with V (ci, yi) = 1 for all i. For this reason, the extractor EA
simply runs EBA1 . Note that, by the associativity of the composition of oracle
algorithms, EA = EBA1 = (EB1 )A is indeed an algorithm with oracle access to A.

Let us now analyze the success probability and the expected number of A-
queries of the algorithm EBA1 and therefore of EA.

Success Probability. Let us write ti := tΓi for all i. Again by Lemma 5, it
follows that EBA1 succeeds with probability at least

δWΓ1
(BA)
t1

= min
S1 /∈Γ1

Pr
(
W (C1,BA(C1)) = 1 | C1 /∈ S1

)
t1

= min
S1 /∈Γ1

Pr
(
W (C1,BA(C1)) = 1 ∧ C1 /∈ S1

)
t1 · Pr(C1 /∈ S1)

= min
S1 /∈Γ1

∑
c/∈S1

Pr(C1 = c) · Pr
(
W (c,BA(c)) = 1

)
t1 · Pr(C1 /∈ S1)

= min
S1 /∈Γ1

∑
c/∈S1

Pr(C1 = c) · Pr
(
W (c, EAcµ−1) = 1

)
t1 · Pr(C1 /∈ S1)

≥ min
S1 /∈Γ1

∑
c/∈S1

Pr(C1 = c) · δVcΓ′ (Ac)
t1 · T ′ · Pr(C1 /∈ S1)

= min
S1 /∈Γ1

∑
c/∈S1

Pr(C1 = c) · δVcΓ′ (Ac)
T · Pr(C1 /∈ S1) , (5)

where C1 is distributed uniformly at random over C1. Now note that

δVcΓ′ (Ac) = min
S′ /∈ΓTree(Γ′)

Pr
(
Λ : C1 = c ∧ (C2, . . . , Cµ) /∈ S′

)
,

where Λ denotes the event V (C,A(C)) = 1 and C = (C1, . . . , Cµ) is distributed
uniformly at random over C1 × · · · × Cµ.

21



Hence,∑
c/∈S1

Pr(C1 = c)δVcΓ′ (Ac)
Pr(C1 /∈ S1) = min

S′ /∈ΓTree(Γ′)

Pr
(
C1 /∈ S1 ∧ Λ : (C2, . . . , Cµ) /∈ S′

)
Pr(C1 /∈ S1)

= min
S′ /∈ΓTree(Γ′)

Pr
(
Λ : C1 /∈ S1 ∧ (C2, . . . , Cµ) /∈ S′

)
= min
S′ /∈ΓTree(Γ′)

Pr
(
Λ : C /∈ S

)
,

where
S := {(c1, c′) ∈ C1 × C′ : c1 ∈ S1 ∨ c′ ∈ S′} ⊆ C .

Since S1 /∈ Γ1 and S′ /∈ ΓTree(Γ′), it follows that S /∈ ΓTree(Γ). Hence,∑
c/∈S1

Pr(C1 = c)δVcΓ′ (Ac)
Pr(C1 /∈ S1) ≥ min

S/∈ΓTree(Γ)
Pr
(
Λ : C /∈ S

)
= δVΓ (A) .

Plugging this equality into Equation 5 shows that

δWΓ1
(BA)
t1

≥ δVΓ (A)
T

,

which shows that EBA1 (and thus EA) has the desired success probability.
Expected Number of A-Queries. By Lemma 5, it follows that EBA1 re-

quires an expected number of at most 2t1 − 1 < 2t1 queries to BA. By the
induction hypothesis it follows that BA(c) requires an expected number of at
most 2µ−1 · T ′ queries to A for every c ∈ C1. Hence, EA = EBA1 requires an
expected number of at most 2µ · T queries to A, which completes the proof of
the lemma.

By basic probability theory, for any S ⊆ C1 × · · · × Cµ, it follows that

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
=

Pr
(
V (C,A(C)) = 1 ∧ C /∈ S

)
Pr
(
C /∈ S

)
≥

Pr
(
V (C,A(C)) = 1)− Pr

(
C ∈ S

)
Pr
(
C /∈ S

)
=
εΓ (A)− Pr

(
C ∈ S

)
1− Pr

(
C ∈ S

)
= εΓ (A)− |S| / |C|

1− |S| / |C| .

Hence,

δΓ (A) ≥ min
S/∈ΓTree(Γ)

εΓ (A)− |S| / |C|
1− |S| / |C|

= εΓ(A)− κΓ

1− κΓ
,
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where

κΓ = max
S/∈ΓTree(Γ)

|S|
|C|

= 1−
µ∏
i=1

(
1− max

Si /∈Γi

|Si|
|Ci|

)
= 1−

µ∏
i=1

(1− κΓi) .

These observations complete the proof of the following theorem.

Theorem 2. Let (P,V) be a (Γ1, . . . , Γµ)-out-of-(C1, . . . , Cµ) special-sound in-
teractive proof such that TΓ =

∏µ
i=1 tΓi is polynomial in the size |x| of the public

input statement x of (P,V) and sampling from UΓi(Si) takes polynomial time
(in |x|) for all 1 ≤ i ≤ µ and Si ⊂ Ci with |Si| < tΓi . Then (P,V) is knowledge
sound with knowledge error

κΓ = 1−
µ∏
i=1

(
1− max

Si /∈Γi

|Si|
|Ci|

)
.

7 Parallel Repetition

Sometimes the knowledge error of an interactive proof is too large. A natural
approach for reducing the knowledge error is parallel repetition. In the t-fold
parallel repetition (Pt,Vt) of an interactive proof (P,V) both the prover and
the verifier run t instances of (P,V) in parallel. Further, Vt accepts if and only if
all t invocations of (P,V) are accepted by V. Ideally parallel repetition reduces
the knowledge error at an exponential rate, i.e., from κ down to κt. However,
there exist protocols for which parallel repetition does not reduce the knowledge
error at all [4].

Recently, it was shown that, for (k1, . . . , kµ)-special-sound interactive proofs
with ki ∈ N for all i, t-fold parallel repetition decreases the knowledge error at an
optimal rate from κ down to κt [2]. Here, we show that this result immediately
generalizes to (Γ1, . . . , Γµ)-out-of-(C1, . . . , Cµ) special-sound interactive proofs.

The first observation of [2] is that any algorithm A attacking the t-fold par-
allel repetition (Pt,Vt) of a (2µ+ 1)-round interactive proof (P,V) naturally in-
duces t algorithmsA1, . . . ,At, all attacking a single invocation of (P,V). Namely,
for 1 ≤ j ≤ t, the probabilistic algorithm Aj : C1 × · · · × Cµ → {0, 1}∗ is defined
as follows. It samples c[j′] ∈ C = C1 × · · · × Cµ (for j′ 6= j) uniformly at random
and outputs Aj(c) = A(c[1], . . . , c[j − 1], c, c[j + 1], . . . , c[t]) together with the
sampled challenge vectors c[j′]. The verification function V used to verify the
output of A can also be used to verify the output of Aj . In particular, it is easily
seen that Aj and A have the same success probability, i.e.,

εV (Aj) = εV (A) ∀j .

However, the same does not need to hold for the punctured success probabili-
ties δV (Aj).

Given a knowledge extractor E for (P,V) another knowledge extractor Et for
(Pt,Vt) can be defined as follows. When given oracle access to an algorithm A

23



attacking (Pt,Vt), the extractor EAt simply runs t-extractors EA1 , . . . , EAt in
parallel. The extractor EAt succeeds if at least one of the extractors EAj succeeds.
In [2, Lemma 5], it was shown that for (k1, . . . , kµ)-special-sound interactive
proofs this happens with large enough probability, implying knowledge soundness
of the t-fold parallel repetition.

The following lemma is a generalization of [2, Lemma 5], showing that also
for (Γ1, . . . , Γµ)-out-of-(C1, . . . , Cµ) special-sound interactive proofs at least one
of the extractors EAj succeeds with large enough probability.

Lemma 7. Let Γ = (Γ1, . . . , Γµ) and C = C1 × · · · × Cµ be such that (Γi, Ci)
are nonempty monotone structures for all 1 ≤ i ≤ µ. Further, let A be
a (probabilistic) algorithm that takes as input a row (c[1], . . . , c[t]) ∈ Ct of
columns c[j] = (c1[j], . . . , cµ[j]) ∈ C and outputs a string y ∈ {0, 1}∗, and let
V : Ct × {0, 1}∗ → {0, 1} be a verification algorithm.

Then
t∑

j=1
δΓ(Aj) ≥ εΓ(A)− κtΓ ,

where

κΓ = 1−
µ∏
i=1

(
1− max

Si /∈Γi

|Si|
|Ci|

)
.

Proof. Let C = (C[1], . . . , C[t]) denote the random variable distributed uni-
formly over Ct, i.e., C[j] is distributed uniformly over C = C1 × · · · × Cµ for all
1 ≤ j ≤ t. Further, let Λ denote the event V (C,A(C)) = 1 and, for 1 ≤ j ≤ t,
let S[j] /∈ ΓTree(Γ) be such that it minimizes

δVΓ (Aj) := min
S/∈ΓTree(Γ)

Pr
(
V (C,A(C)) = 1

∣∣C /∈ S
)
. (6)

Since S[j] /∈ ΓTree(Γ), it follows that

|S[j]| ≤ |C| −
µ∏
i=1

(
|Ci| − max

Si /∈Γi
|Si|
)
.

Hence,
Pr
(
C[j] ∈ S[j]

)
≤ κΓ .

Therefore, using elementary probability theory,
t∑

j=1
δVΓ (Aj) =

t∑
j=1

Pr
(
Λ | C[j] /∈ S[j]

)
≥

t∑
j=1

Pr
(
Λ ∧ C[j] /∈ S[j]

)
≥ Pr

(
Λ ∧ ∃ j : C[j] /∈ S[j]

)
≥ Pr

(
Λ
)
− Pr

(
C[j] ∈ S[j] ∀i

)
= εV (A)−

t∏
j=1

Pr
(
C[j] ∈ S[j]

)
≥ εV (A)− κtΓ ,

which completes the proof.
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Remark 6. For the special case of threshold structures Γi := {S ⊆ Ci : |S| ≥ ki},
i.e., when considering (k1, . . . , kµ)-special-sound interactive proofs, Lemma 5
of [2] actually shows the slightly stronger upper-bound

t∑
j=1

δΓ(Aj) ≥
εΓ(A)− κtΓ

1− κΓ
.

In our generalization, we cannot guarantee that the sets S[j] minimizing Equa-
tion 6 are of maximum cardinality. For this reason, we derive a slightly smaller
lower-bound, which is still sufficient for deriving a tight bound on the knowledge
error of parallel repetitions.

Hence, at least one of the extractors EAj invoked by EAt succeeds with prob-
ability at least

1
t

t∑
j=1

δΓ(Aj)
TΓ

≥ εV (A)− κtΓ
tTΓ

,

where TΓ =
∏µ
i=1 tΓi . In [2, Equation 3], it is shown how to refine this bound to

1
t

t∑
j=1

δΓ(Aj)
TΓ

≥ εV (A)− κtΓ
2TΓ

.

Both bounds imply the following parallel repetition theorem.

Theorem 3 (Parallel Repetition). Let (P,V) be a (Γ1, . . . , Γµ)-out-of-
(C1, . . . , Cµ) special-sound interactive proof such that TΓ =

∏µ
i=1 tΓi is polynomial

in the size |x| of the public input statement x of (P,V) and sampling from UΓi(Si)
takes polynomial time (in |x|) for all 1 ≤ i ≤ µ and Si ⊂ Ci with |Si| < tΓi . Then
the t-fold parallel repetition (Pt,Vt) of (P,V) is knowledge sound with knowledge
error κtΓ, where

κΓ = 1−
µ∏
i=1

(
1− max

Si /∈Γi

|Si|
|Ci|

)
,

is the knowledge error of (P,V) and Γ = (Γ1, . . . , Γµ).

8 Analysis of the FRI-protocol

In this section we show how to use our generalized notion of special-soundness to
prove essentially tight knowledge soundness of the Fast Reed-Solomon Interactive
Oracle Proof of Proximity due to Ben-Sasson et al. [5], assuming it has been
compiled into an interactive proof the natural way (i.e., the oracles are replaced
by compact commitments to the vectors with a local opening functionality).
We first provide the necessary background on the protocol before providing our
analysis. We remark that we use ideas that were implicit in prior works; our
main aim in this section is to demonstrate the power of our generalized special-
soundness notion and the accompanying knowledge extractor.
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8.1 Preliminaries on Reed-Solomon Codes
Let F be a finite field of cardinality q and S ⊆ F. Given a polynomial f(X) ∈ F[X]
we let f(S) = (f(s))s∈S denote the vector of evaluations of f over the domain S
(given in some arbitrary, but fixed, order).

For any 0 ≤ ρ ≤ 1, the Reed-Solomon code RS[F, S, ρ] ⊆ F|S| consists of
all evaluations over the domain S of polynomials F (X) ∈ F[X] of degree less
than ρ|S|. In notation,

RS[F, S, ρ] := {F (S) : F (X) ∈ F[X] ∧ deg(F ) < ρ|S|} .

We set ρ = 2−r for an integer r < log2(|S|), which implies ρ|S| ∈ N and that
the dimension of RS[F, S, ρ] is precisely ρ|S|.

In the sequel we will assume S is a multiplicative subgroup of F∗ of order a
power of 2, with the understanding that our analysis should generalize readily
to other “smooth” evaluation domains for FRI protocols. Letting N = |S|, we
therefore have S = 〈ω〉 = {1, ω, ω2, . . . , ωN−2} where ω is a primitive N -th root
of unity. Note then that S2 = 〈ω2〉 = {1, ω2, ω4, . . . , ωN−1} is a multiplicative
subgroup of F∗ of order N/2. More generally, for any j = 1, 2, . . . , log2(N),
S2j = 〈ω2j 〉 is multiplicative subgroup of F∗ of order N/2j .

Given two polynomials f(X), g(X) ∈ F[X] we let dS(f, g) := |{s ∈ S :
f(s) 6= g(s)}| denote the number of points s ∈ S on which f and g differ. Equiv-
alently, it denotes the (unnormalized) Hamming distance between the vectors
f(S) and g(S).

Given a polynomial f ∈ F[X], we let

δS(f) := minF {dS(f, F ) : F ∈ F[X],deg(F ) < ρ|S|}
|S|

.

In other words, δS(f) denotes the relative Hamming distance of f(S) to a closest
codeword in RS[F, S, ρ].

8.2 FRI-Protocol
Let Of be an oracle implementing some function f : S → F, which of course
uniquely corresponds to a polynomial of degree less than N = |S|. We are
interested in the situation where a prover claims that f(X) is in fact a polynomial
of degree < ρN , i.e., that f(S) ∈ RS[F, S, ρ]. In order to verify this, the verifier
may make queries to Of , but it is easy to see that in order to catch a lying
prover the verifier must query each s ∈ S (or at least Ω(|S|) such points in order
to catch the prover with good probability).

Thus, for soundness, we will be satisfied with rejecting oracles implementing
functions that are far from low degree, i.e., such that δS(f) ≥ δ.8 However,
here as well we cannot hope to catch cheating verifiers without making Ω(N)
queries.9
8 If the oracle is implementing a function f for which δS(f) is small, the verifier can
typically apply self-correction techniques to the oracle in order to be able to proceed
as if f were indeed of low degree.

9 Assuming δ, ρ = Ω(1), as is standard.
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It turns out to be possible to make significantly less (i.e., just logarithmically
many) oracle queries if we allow the verifier to interact with the prover.

The resulting protocols are referred to as interactive oracle proofs of proximity
(IOPPs). In order to demonstrate the utility of our general special soundness
notion, we will show how to analyze a Fast Reed-Solomon Interactive Oracle
Proof of Proximity (FRI-protocol) [5].

In order to implement the oracle Of cryptographically, one makes use of a
compact commitment scheme, typically via a Merkle tree [7].10 In the following
we denote the commitment to the vector F (S) = (F (s))s∈S with public parame-
ters pp by P ← Compp(F (S)) and the local opening information for s ∈ S as γs.
For example, in the case of a Merkle tree the public parameters pp would be a
description of the hash function used, while γs would give hash values for the co-
path of the leaf corresponding to s. We also assume access to a procedure Locpp
which takes as input a commitment P , a domain element s, a value ys ∈ F and
the opening information γs and outputs 1 iff γs indeed certifies that P opens to
ys on the element s.

We can therefore view the (cryptographically compiled version of the) FRI-
protocol as an interactive proof for the pair of relations (R0,Rδ ∪Rcoll), where
for a parameter β ∈ [0, 1) we define

Rβ :=
{

(P, pp;F,A, (γs)s∈A) : deg(F ) < ρN ∧ |A| ≥ (1− β)N
∧ ∀s ∈ A, Locpp(P, s, F (s), γs) = 1

}
,

while

Rcoll :=
{

(pp; s, y, y′, γ, γ′) : y 6= y′ ∧ Locpp(P, s, y, γ) = 1
∧ Locpp(P, s, y′, γ′) = 1

}
.

This means that completeness holds with respect to relation R0 and sound-
ness holds with respect to Rδ ∪Rcoll, where the latter refers to the “or-relation”
which accepts a witness for one or the other instance. On the one hand, this says
that a prover that committed to a low-degree polynomial will indeed convince
the verifier of this fact. On the other hand, if a prover succeeds in convincing the
verifier then we can either extract a commitment to many coordinates that agree
with a low-degree polynomial, or we can extract two distinct local openings from
the same commitment (invalidating the binding property of the commitment).11

Folding. An important ingredient in the FRI-protocol is a folding operation. For
our specific choice of S, it is defined as follows: for f(X) ∈ F[X] and c ∈ F, we
define

Fold
(
f(X), c

)
= g(X) ∈ F[X]

10 More generally, any commitment scheme with local openings would suffice, although
the communication costs do of course scale with the size of the commitments.

11 Observe that this is a concrete instantiation of the idea alluded to in Remark 1: we
can either extract a witness to the desired relation, or a solution to a computationally
hard problem.
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such that
g(X2) = f(X) + f(−X)

2 + c
f(X)− f(−X)

2X .

Intuitively, this folding operation considers the even-power monomials of f(X)
and the odd-power monomials separately, obtains from these terms two poly-
nomials of degree deg(f)/2, and takes a random linear combination of these
polynomials. Importantly, the polynomial g(X) can then naturally be viewed as
having degree roughly deg(f)/2 (i.e., the degree is halved) and its domain is nat-
urally viewed as S2 = 〈ω2〉, which has order N/2. That is, the folded polynomial
has its degree and domain halved.

A one round version of the FRI-protocol thus proceeds as follows. First, the
prover commits to F (S), where it promises that F (S) ∈ RS[F, S, ρ]. The verifier
picks a random challenge c ∈ F, sends it to the prover, and the prover responds
with the folding of F around c. The verifier first checks that deg(G) < ρN/2.
If yes, the verifier then chooses t points s1, . . . , st ∈ S such that the sets {±si}
are pairwise disjoint, and asks for the evaluations of F on all these points. It
then checks that these evaluations are consistent with G, i.e., that G(s2

i ) =
f(si)+f(−si)

2 + c f(si)−f(−si)
2si for all 1 ≤ i ≤ t, and of course that these are indeed

the values the prover committed to initially. This is summarized in Figure 1.

8.3 Analyzing the FRI-Protocol

In order to analyze the FRI-protocol, we must create an extractor that takes as
input folding challenges and then openings for various points s ∈ S that are
consistent with the folded polynomials (which are assumed to be low-degree).
From two distinct folding challenges c, c′ ∈ F, if G(X) and G′(X) are the folding
around c and c′ respectively of the function the prover committed to, then we
can create the following polynomial:

F (X) = X
G(X2)−G′(X2)

c− c′
+ cG′(X2)− c′G(X2)

c− c′
.

Note that if G and G′ have degree less than ρN/2, then indeed F would have
degree less than ρN .

The extractor may also rewind the second phase of the protocol to obtain
sets A and A′ covering at least (1− δ) fraction of S. We can then conclude that
we have consistent openings on their intersection A ∩ A′ (assuming that we do
not violate the binding property of the commitment, i.e., that we do not extract
a witness for the relation Rcoll). The intersection A∩A′ covers a (1−2δ) fraction
of S, so we have found a low-degree polynomial agreeing with the commitment
on a (1− 2δ) fraction of the points of S.

At this point, we could iterate this argument. However, iterating this argu-
ment over µ folding rounds would cause us to only prove that the prover commit-
ted to a function that agrees with a low-degree polynomial on a (1−2µδ)-fraction
of the coordinates (assuming that we did not extract a collision in the commit-
ment). This is quite unsatisfactory, as we would like to have µ logarithmic in N
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Protocol 1 FRI-protocol (one folding iteration)

Parameters: finite field F with |F| = q ∈ N, r, t ∈ N, ρ = 2−r ∈ (0, 1],
primitive 2r-root of unity ω ∈ F,
S := 〈ω〉 = {1, ω, . . . , ω2r−1} ⊆ F and S2 = 〈ω2〉,
vector commitment scheme Com : Fn → {0, 1}∗ with
local openings

Public Input: P ∈ {0, 1}∗, public parameters pp
Prover’s Private Input: F : S → F
Prover’s Claim: Compp

(
F (S)

)
= P ∧ F (S) ∈ RS[F, S, ρ]

Prover P Verifier V

c←R F
c←−−−−−−−−−−−−

G(X)← Fold(F, c) G(X)−−−−−−−−−−−−→
For 1 ≤ i ≤ t :

si ←R S \ {±s1, . . . ,±si−1}
s1,...,st←−−−−−−−−−−−−

F+
i = F (si), F−i = F (−si)

with local opening info γ+
i , γ

−
i

F+
1 ,F−1 ,...,F+

t
,F−
t−−−−−−−−−−−−→

For 1 ≤ i ≤ t :
G(s2

i )
?= F+

i
+F−

i
2 + c

F+
i
−F−

i
2si

Locpp(P, si, F+
i , γ

+
i ) ?= 1

Locpp(P,−si, F−i , γ
−
i ) ?= 1

Check that deg(G) < ρN/2

and δ ∈ (0, 1) a constant. Fortunately, by relying on ideas from prior works
(specifically, [5]) we can show that we can indeed extract a low-degree polyno-
mial agreeing with the commitment on a (1 − δ) fraction of coordinates (or, of
course, a violation to the binding property of the commitment).

In order to analyze the soundness of the FRI-protocol more effectively, we
will need the following coset-distance from f to RS[F, S, ρ]:

∆S(f) := min
F∈F[X], deg(F )<ρN

|{s ∈ S : f(s) 6= F (s) ∨ f(−s) 6= F (−s)}|
N

.

This distance notion has been used in prior works [5]. Observe that ∆S(f) ≥
δS(f). Intuitively, this measure is useful because it allows for a careful accounting
of how the Hamming metric behaves under the folding operation than the above
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naïve analysis. For this reason, our extractor will succeed assuming a bound on
∆S(f) rather than just δS(f).

The following lemma quantifies this intuition, by characterizing the set of
challenges c that could cause the Hamming metric to decrease when a function
f is folded around c. These ideas are implicit in [5, Lemma 4.4]; we restate and
prove them in a language that is convenient for us.

Lemma 8. Let f(X) ∈ F[X] be such that ∆S(f) < (1 − ρ)/2. The number of
choices for c ∈ F such that δS2

(
Fold(f, c)

)
< ∆S(f) is at most N .

In particular, if there exist pairwise distinct c0, . . . , cN ∈ F such that
δS2
(

Fold(f, c)
)
≤ δ for all i ∈ {0, 1, . . . , N}, then ∆S(f) ≤ δ.

Proof. Let F (X) ∈ F[X] be a polynomial of degree < ρN such that δS(f) =
dS(f(S), F (S))/|S|, i.e., F (S) denotes the unique closest codeword to f(S)
(where the uniqueness is due to the assumption ∆S(f) < (1 − ρ)/2). Let
c ∈ F, set g(X) := Fold(f(X), c), and let G(X) ∈ F[X] be a polynomial of
degree < ρN/2 such that G(S2) is a codeword in RS[F, S2, ρ] closest to g. Since
δS(f) ≤ ∆S(f) < (1− ρ)/2,

G = Fold(F, c) ,

i.e., in this case folding and taking the closest codeword commute. Hence,
δS2(g) = d

(
g(S2), G(S2)

)
/
∣∣S2
∣∣.

Let
A := {s ∈ S2 : g(s) 6= G(s)}

and
B := {s ∈ S : f(s) 6= F (s) ∨ f(−s) 6= F (−s)} .

Then, A ⊆ {s2 : s ∈ B ⊆ S}. Hence, using that s ∈ B if and only if −s ∈ B,
|A| ≤ |B| /2.

As δS2(g) < ∆S(f), we have |A| < |B|
2 . Hence there exists an s ∈ B with

s2 /∈ A. By the definition of A and B, it follows that:
(1) f(s) 6= F (s) or f(−s) 6= F (−s);
(2) g(s2) = G(s2).

The second equation can be rewritten as follows:
f(s) + f(−s)

2 + c
f(s)− f(−s)

2s = F (s) + F (−s)
2 + c

F (s)− F (−s)
2s

⇐⇒
s
(
f(s) + f(−s)− F (s)− F (−s)

)
= c
(
F (s)− F (−s)− f(s) + f(−s)

)
.

This is a linear equation in c. By item (1) it is nontrivial and thus has at most
one solution.

We conclude that

c ∈
{
s
F (s) + F (−s)− f(s)− f(−s)
f(s)− f(−s)− F (s) + F (−s) : s ∈ S

}
\ {∞} ,

and as this set has size at most |S| = N the claim follows.
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We now precisely define the notion of special-soundness that we will prove the
FRI-protocol with one folding iteration (i.e., the protocol from Figure 1) satisfies.
Informally, for the folding round the previous lemma tells us we need N + 1
challenges to extract, while for the second round we need enough local openings
of the commitment to reveal a (1 − δ)-fraction of the values that the prover
committed to. We now make this formal.

Let

C :=
{
{±s1,±s2, . . . ,±st} : s2

i ∈ S2 ∀i, s2
i 6= s2

j ∀i 6= j} .

Let (ΓN+1,F) be the monotone structure that contains all subsets of F of cardi-
nality at least N + 1, and let (Γ, C) be the monotone structure that contains all
subsets of C that cover at least a (1− δ)-fraction of S, i.e.,

A ∈ Γ ⊂ 2C ⇐⇒

∣∣∣∣∣ ⋃
B∈A

B

∣∣∣∣∣ ≥ (1− δ)N .

Theorem 4 (FRI-protocol (one folding iteration)). Let ρ = 2−r for some
r ∈ {0, 1, . . . ,m} and let δ ∈ (0, 1) be such that δ < 1−ρ

4 . Protocol 1 is perfectly
complete with respect to relation R0 and (ΓN+1, Γ )-out-of-(F, C) special-sound
with respect to relation Rδ ∪Rcoll.

Proof. Completeness: This is immediate from prior work (e.g., [5]). To make
our proof self-contained, we note that this follows immediately from the following
facts concerning a polynomial F (X) ∈ F[X]:

– if F has degree < ρN then Fold(F, c) has degree < ρN/2 for any c ∈ F; and
– for any s ∈ S and c ∈ F, Fold(F, c)(s2) = F (s)+F (−s)

2 + cF (s)−F (−s)
2s .

Soundness: We must extract a witness for either the relation Rδ or the relation
Rcoll given a (ΓN+1, Γ )-tree of accepting transcripts. Such a tree of transcripts
consists of the following:

– folding challenges c0, . . . , cN ∈ F,
– polynomials G0, . . . , GN ∈ F[X] of degree less than ρN2 ,
– subsets A0, . . . , AN ⊆ S, each of size at least (1 − δ)N , which are closed

under negation (i.e., s ∈ Aj ⇐⇒ −s ∈ Aj), and
– for each 0 ≤ j ≤ N , for each s ∈ Aj , opening information γsj for the

element s. Let ysj ∈ F be the element for which Locpp(P, s, ysj , γsj) = 1.

Suppose there exists j 6= j′ such that, for some s ∈ Aj ∩ Aj′, ysj 6= ysj′ . Then,
we may output the following witness for the relation Rcoll: (s, ysj , ysj′ , γsj , γ′sj).

We may now assume that the above does not occur. In other words, for each
s ∈ Ā := A0 ∪ . . . ∪ AN the set {ysj : s ∈ Aj} is in fact a singleton set; denote
its unique element by ys. We also let γs := γsj where j is the smallest element
in {0, 1, . . . , N} such that s ∈ Aj (this is just an arbitrary tie-breaking rule).
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For each j ∈ {0, 1, . . . , N}, the polynomial Gj and the elements ys for s ∈ Aj
satisfy the following relation:

Gj(s2) = ys + y−s
2 + cj

ys − y−s
2s .

Let f(X) ∈ F[X] be a polynomial consistent with the ys’s, i.e., for all s ∈ A we
have f(s) = ys. Furthermore, for reasons to be clear later, we let f be different
to the polynomial F0 defined below outside of Ā, i.e. f(s) 6= F0(s) for all s 6∈ Ā.
Then, for each j ∈ {0, 1, . . . , N} and all s2 such that {±s} ⊆ Aj , we have

Gj(s2) = Fold
(
f, cj

)
(s2) .

We conclude that Fold
(
f, cj

)
and Gj agree on at least (1− δ)N2 elements of S2.

As deg(Gj) < ρN2 it follows that

δS2
(
Fold

(
f, cj

))
≤ δ .

By Lemma 8, if we establish that ∆S(f) < 1−ρ
2 , it in fact then follows that

∆S(f) ≤ δ, which in turn implies δS(f) ≤ δ. As 2δ < 1−ρ
2 by assumption, it

suffices for us to show ∆S(f) ≤ 2δ. We focus on proving this now.
Consider the polynomial

F0(X) := X
G0(X2)−G1(X2)

c0 − c1
+ c0G1(X2)− c1G0(X2)

c0 − c1
.

Since the degrees of G0 and G1 are smaller than ρN2 , it follows that deg(F0) <
ρN . Furthermore, we note that for all s ∈ A0∩A1 we have f(s) = F0(s). Indeed,

F0(s) = s · G0(s2)−G1(s2)
c0 − c1

+ c0G1(s2)− c1G0(s2)
c0 − c1

= s

c0 − c1

[
f(s) + f(−s)

2 + c0
f(s)− f(−s)

2s

−
(
f(s) + f(−s)

2 + c1
f(s)− f(−s)

2s

)]
+ 1
c0 − c1

[
c0 ·

(
f(s)− f(−s)

2 + c1
f(s)− f(−s)

2s

)
−c1 ·

(
f(s) + f(−s)

2 + c0
f(s)− f(−s)

2s

)]
= s

c0 − c1
· (c0 − c1)f(s)− f(−s)

2s + 1
c0 − c1

· (c0 − c1)f(s) + f(−s)
2

= f(s)− f(−s)
2 + f(s) + f(−s)

2 = f(s) .

From this, we can conclude that f and F0 agree on at least (1 − 2δ)N/2 pairs
{±s}: here, we use the fact that as A0 and A1 are closed under negation, so is
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A0 ∩A1. Thus, the number of s ∈ S for which f(s) 6= F0(s) or f(−s) 6= F0(−s)
is at most 2δN . Recalling deg(F0) < ρN , we conclude ∆S(f) ≤ 2δ, as desired.

Thus, we have found that ∆S(f) ≤ δ, which in particular means δS(f) ≤ δ,
as desired. Let F (X) denote the (necessarily unique) polynomial of degree < ρN
such that dS(F (S), f(S)) ≤ δN . As dS(F0(S), f(S)) ≤ 2δN it also follows that
dS(F0(S), F (S)) ≤ 3δN < 1− ρ. As F0(S), F (S) ∈ RS[F, S, ρ] and this code has
minimum distance 1 − ρ, it must be that F0(S) = F (S), which further implies
F0(X) = F (X) (as polynomials).

We can therefore extract a polynomial of degree < ρN that agrees with
the function f(X) on a (1 − δ) fraction of coordinates: namely, the polynomial
F0(X). Furthermore, since f differs from F0 outside of Ā = A0 ∪ . . . ∪ AN (by
the choice of f), we can find a subset A ⊆ Ā of size at least (1− δ)N for which
f(s) = F0(s) for all s ∈ A. We may therefore output the following witness for
Rδ: (F0(X), A, (γs)s∈A).

We are now in position to apply the machinery developed in Section 6 to
conclude the following bound on the knowledge error.

Corollary 1 (Knowledge Error of FRI-protocol (one folding itera-
tion)). Let ρ = 2−r for some r ∈ {0, 1, . . . ,m} and let δ ∈ (0, 1) be such
that δ < 1−ρ

4 . Protocol 1 is knowledge sound with respect to relation Rδ ∪Rcoll
with knowledge error

κ := 1−
(

1− N

|F|

)(
1−

(d(1−δ)N2 e−1
t

)(N
2
t

) )

≤ 1−
(

1− N

|F|

)(
1− (1− δ)t

)
≤ N

|F|
+ (1− δ)t .

Proof. By Theorem 2, as Theorem 4 shows that Protocol 1 is (ΓN+1, Γ )-out-of-
(F, C) special-sound, it suffices to note that maxS/∈ΓN+1

|S|
|F| = N

|F| while

max
A/∈Γ

|A|
|C|

=
(d(1−δ)N2 e−1

t

)(N
2
t

) ≤ (1− δ)t .

To see the equality, note that if A /∈ Γ then
⋃
B∈AB has cardinality less than

(1−δ)N , so A (which consists of pairs {±s}) has cardinality less than (1−δ)N/2,
and thus at most d(1−δ)N2 e−1. Similarly, one can observe that C is in bijection
with subsets of S2 of size t, of which there are

(
N/2
t

)
.

8.4 Additional Folding Iterations

The above analysis can naturally be extended to handle more folding iterations.
Let F0 := F be the low degree polynomial the prover commits to in the first
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round. We have folding rounds i = 1, . . . , µ, and in round i the verifier sends
a challenge ci−1 ∈ F and the prover provides a commitment to Fi(S2i) where
Fi(X) = Fold(Fi−1, ci−1)(X). After these folding iterations, the verifier picks t
pairs of points {±s1, . . . ,±st} ⊆ S such that s2

j 6= s2
j′ for all j 6= j′ and then

checks that for all i = 1, . . . , µ and j = 1, . . . , t, we have

Fi
(
s2i
j

)
=
Fi−1

(
s2i−1

j

)
+ Fi−1

(
− s2i−1

j

)
2 + ci−1

Fi−1
(
s2i−1

j

)
− Fi−1

(
− s2i−1

j

)
2sj

.

The recursive structure of the extractor implies that after µ folding iterations
we obtain a protocol with the following generalized special-soundness guarantee.

Theorem 5 (FRI-protocol (µ folding iterations).). Let ρ = 2−r for some
r ∈ {0, 1, . . . ,m} and let δ ∈ (0, 1) be such that δ < 1−ρ

4 . Let µ ∈ N be such
that µ ≤ log2 N , and for i = 1, 2, . . . , µ let Ni := N/2i−1. The FRI-protocol
with µ folding iterations is perfectly complete with respect to relation R0 and
(ΓN1+1, ΓN2+1, . . . , ΓNµ+1, Γ )-out-of-(F,F, . . . ,F, C) special-sound with respect to
relation Rδ ∪Rcoll.

This yields the following corollary regarding the knowledge error.

Corollary 2 (Knowledge Error of FRI-protocol (µ folding iterations)).
Let ρ = 2−r for some r ∈ {0, 1, . . . ,m} and let δ ∈ (0, 1) be such that δ < 1−ρ

4 .
Let µ ∈ N be such that µ ≤ log2 N , and for i = 1, 2, . . . , µ let Ni := N/2i−1.
The FRI-protocol with µ foloding iterations is knowledge sound with respect to
relation Rδ ∪Rcoll with knowledge error

κ := 1−
(

µ∏
i=1

(
1− Ni
|F|

))
·

(
1−

(d(1−δ)N2 e−1
t

)(N
2
t

) )

≤ 1−
(

µ∏
i=1

(
1− Ni
|F|

))(
1− (1− δ)t

)
≤

µ∑
i=1

Ni
|F|

+ (1− δ)t ≤ 2N
|F|

+ (1− δ)t .

8.5 Open Directions

Our argument, which implies knowledge soundness, is only for certain ranges of
proximity parameter δ and relative rate ρ: we require δ < 1−ρ

4 . However, one can
hope for knowledge soundness for larger values of δ, perhaps even for δ as large
as 1 − ρ, the minimum distance of a Reed-Solomon code of rate ρ. A sequence
of works [9, 8, 6] has now successfully proved (normal) soudness for the FRI-
protocol for δ as large as 1−√ρ (which is a well-known as the Johnson bound
in the coding-theoretic literature). A natural direction which we leave open for
future work is to improve our analysis in order to obtain knowledge soundness
for larger values of δ.
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