
©IACR 2023. This is the full version of an article that will be published in the proceedings of CRYPTO 2023.

Lattice-based Authenticated Key Exchange
with Tight Security∗

Jiaxin Pan 1 Benedikt Wagner 2,3 Runzhi Zeng 1

June 6, 2023

1 Department of Mathematical Sciences,
NTNU – Norwegian University of Science and Technology, Trondheim, Norway

jiaxin.pan@ntnu.no, runzhi.zeng@ntnu.no
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

benedikt.wagner@cispa.de
3 Saarland University, Saarbrücken, Germany

Abstract
We construct the first tightly secure authenticated key exchange (AKE) protocol from lattices.

Known tight constructions are all based on Diffie-Hellman-like assumptions. Thus, our protocol is
the first construction with tight security from a post-quantum assumption.

Our AKE protocol is constructed tightly from a new security notion for key encapsulation
mechanisms (KEMs), called one-way security against checkable chosen-ciphertext attacks (OW-
ChCCA). We show how an OW-ChCCA secure KEM can be tightly constructed based on the
Learning With Errors assumption, leading to the desired AKE protocol. To show the usefulness of
OW-ChCCA security beyond AKE, we use it to construct the first tightly bilateral selective-opening
(BiSO) secure PKE. BiSO security is a stronger selective-opening notion proposed by Lai et al.
(ASIACRYPT 2021).

Keywords: Authenticated key exchange, lattices, tight security, selective-opening security,
random oracle.

1 Introduction
Authenticated key exchange (AKE) protocols enable two parties to securely exchange a session key and
establish a secure channel. As a crucial building block for secure communication, its security needs to be
carefully proven. Compared to many other cryptographic primitives, security proofs of AKE protocols are
often very complicated, mostly because an active adversary against an AKE protocol has very strong yet
realistic capabilities. For instance, it can control the communication in public networks and arbitrarily
modify messages transferred there. Furthermore, it can corrupt parties’ secret keys, reveal session keys or
even internal states, while adaptively attacking other “fresh” sessions in a meaningful manner. These
capabilities are formally captured by security models, such as the Bellare-Rogaway [BR94] and the
(extended) Canetti-Krawczyk [CK01, LLM07] models.
Tightness. The strong and complex security requirements do not only make it difficult to prove AKE
security, but also introduce a large security loss. The security loss quantitatively measures the gap
between the concrete security of a cryptographic protocol and the hardness of the underlying assumption.
More precisely, in the security proof, we show that the underlying assumption P implies the security of
a cryptographic protocol Π, and establish a relation εΠ ≤ ` · εP between the advantage of attacking Π
and breaking P , where ` is called the security loss. We call a proof tight, when ` is a small constant

∗The work of Pan and Zeng is supported by the Research Council of Norway under Project No. 324235. Parts of the
work were done while the second author was visiting NTNU. The visit was supported by the same project.

https://orcid.org/0000-0002-7459-6850
https://orcid.org/0000-0002-4620-7264
https://orcid.org/0000-0002-8606-3007
mailto:jiaxin.pan@ntnu.no, runzhi.zeng@ntnu.no, benedikt.wagner@cispa.de
mailto:jiaxin.pan@ntnu.no, runzhi.zeng@ntnu.no, benedikt.wagner@cispa.de
mailto:jiaxin.pan@ntnu.no, runzhi.zeng@ntnu.no, benedikt.wagner@cispa.de
mailto:jiaxin.pan@ntnu.no, runzhi.zeng@ntnu.no, benedikt.wagner@cispa.de
mailto:jiaxin.pan@ntnu.no, runzhi.zeng@ntnu.no, benedikt.wagner@cispa.de
mailto:jiaxin.pan@ntnu.no, runzhi.zeng@ntnu.no, benedikt.wagner@cispa.de

independent of parameters unknown at deployment time such as numbers of parties, protocol sessions,
signatures, etc.. We do not distinguish full tightness (i.e., ` being a small constant) and almost tightness
(i.e., ` being linearly dependent on the security parameter). Instead, we are precise with the concrete
security loss.

Unfortunately, most of existing AKE protocol are non-tight and, in particular, come with a security
loss significantly larger than for other primitives. More precisely, such a protocol often loses a quadratic
factor in the number of all sessions established in the protocol’s lifetime, while a non-tight signature
scheme may only lose a linear factor in the number of all issued signatures. Considering today’s massive
amount of TLS connections, this quadratic security loss is too large to be compensated in practice, since
increasing parameters may lead to an intolerable performance overhead. Even if increasing security
parameters is an option, it is impossible to correctly guess parameters such as the number of all protocol
sessions, since they are unknown at the time of deployment. If our estimation is too small, the provided
security guarantee is not backed by the security proof. If our estimation is too large, we end up with an
unnecessarily inefficient implementation.

As a result, tightly secure AKE protocols have become an active area recently. Results include
feasibility [BHJ+15, LLGW20, HJK+21], practical constructions [GJ18, JKRS21], and concrete analysis
of deployed protocols [DJ21, DG21, PQR21]. All these works require techniques based on variants of the
Diffie-Hellman assumption. Currently, there is no tightly secure AKE protocol based on a post-quantum
assumption.
Our Goal. Our goal is to construct a lattice-based AKE protocol with tight security. We consider a
multi-challenge setting defined by the “Single-Bit-Guess” (SBG) security model, where an adversary is
given multiple challenge session keys and all the challenge keys are either real or random depending on a
single bit. Another multi-challenge notion is the “Multi-Bit-Guess” (MBG) model where the distribution
of each session key is decided by a different random bit. As pointed out by Jager et al. [JKRS21], the
SBG model is more meaningful than the MBG model, and it can be composed tightly with symmetric
primitives to yield a secure channel, while this is not known for the MBG model.
Limitations of Existing Approaches. We survey existing approaches in tightly secure AKE in the
SBG model and their limitations in achieving our goal:
Strong DH-based Approaches. Diemert and Jager [DJ21] and, independently, Davis and Günther

[DG21] gave tight security proofs of the three-message TLS 1.3 handshake AKE protocol with
explicit authentication. The two-message protocol of Pan et al. [PQR21] also falls into this category.
All their protocols are (or are similar to) signed Diffie-Hellman protocol and their tight security
proofs are all based on the Strong Diffie-Hellman (StDH) assumption [ABR01] and the multi-user
security of digital signatures. First of all, we do not have a StDH-like assumption in the lattice
setting. This seems inherent, since the gap between decisional and computational variants of an
assumption does not exist for lattices. For instance, the decisional Learning With Errors (LWE)
assumption [Reg05] is equivalent to its computational version. Secondly, the signature scheme of
Pan and Wagner [PW22] is the only known lattice-based scheme with tight multi-user security.
Although its signature size is compact and independent of the message length, it is still not efficient,
due to the use of OR-proof techniques. The inefficiency of signature schemes can make the resulting
AKE protocols impractical.

HPS-based Approaches. Jager et al. [JKRS21] proposed a very efficient tightly secure AKE protocol
in the SBG model. Moreover, its security model supports internal state reveals from the adversary.
Their construction follows the generic “KEM-to-AKE” transformation [HKSU20] with a multi-
receiver non-committing key encapsulation mechanism (KEM), and this KEM is only known to be
constructed tightly based on the number-theoretic hash proof systems (HPS). A follow-up work of
Han et al. [HJK+21] also relies on number-theoretic HPS and a multi-user secure signature scheme.
Both works require tight random self-reducibility of the subset membership problem in the HPS.
Existing lattice-based HPS [KV09, ZY17, BBDQ18] do not have suitable properties to tightly

implement frameworks in [JKRS21, HJK+21]. For instance, frameworks in [JKRS21, HJK+21]
require tight random self-reducibility, but constructions in [KV09, ZY17] do not have this property,
since their language instances are associated with some labels and cannot be easily re-randomized.
Another undesirable property is the approximate correctness of the lattice-based HPS. Similar to
the password-based AKE [KV09, ZY17, BBDQ18], it is highly non-trivial whether approximate
HPS can be fit in the AKE frameworks as in [JKRS21, HJK+21]. Finally, existing lattice-based

2

HPS are very inefficient. For instance, the construction in [BBDQ18] has only one-bit hash values,
and extending it to many-bit, which is necessary for security, requires expanding the public key per
portion to the number of hash bits. The resulting AKE protocol is very inefficient. For Han et al.’s
protocol, the efficiency is even worse, due to the inefficiency of Pan-Wagner’s signature scheme.

1.1 Our Contributions
We construct the first tightly secure lattice-based AKE protocol in the random oracle model (ROM). Its
security is based on the decisional Learning With Errors (LWE) assumption with security loss that is
independent of parameters such as the number of users or protocol sessions. Our protocol is a two-pass
implicit AKE, and it does not require any signature. We use the multi-challenge AKE security model as in
[JKRS21], namely, it considers the SBG security and allows an adversary to adaptively corrupt long-term
secret keys, reveal session keys and internal states, and make multiple Test queries whose outputs are
the non-comprised session keys or random keys. This model captures key compromise impersonation and
reflection attacks, and weak forward secrecy, which is the strongest forward secrecy a two-pass implicit
AKE protocol can have [Kra05].
Tight AKE from One-Way Checkable CCA Security. Our approach is modular, summarized in
Figure 2. To enable tight security from lattices, we introduce a new security notion for KEMs, called one-
way checkable security against chosen-ciphertext attacks (OW-ChCCA) in the multi-user, multi-challenge
setting. This new notion is sufficient to construct a tightly secure AKE protocol, and can be constructed
efficiently and tightly from the LWE assumption. In a nutshell, it is a multi-user, multi-challenge
enhancement of one-way security against plaintext-checkable attacks (OW-PCA) [OP01]. More precisely,
in our OW-ChCCA security, adversaries are given multiple challenge ciphertexts and multiple users’
public keys. Adversaries can check whether a pair of encapsulated key and ciphertext is valid wrt some
user via a Check oracle, and are allowed to corrupt some of the user secret keys. Different to OW-PCA,
an adversary can additionally decapsulate any ciphertexts, including the challenge ciphertexts. This
decapsulation is stronger than the decapsulation of the standard CCA notion where only non-challenge
ciphertexts can be decapsulated. To highlight this capability, we model decapsulating challenge ciphertexts
as an additional oracle Reveal in our definition. Our OW-ChCCA security guarantees that it is still
hard for such an adversary to decapsulate the remaining ciphertexts on its own.

We propose two different approaches to construct tightly secure AKE protocols from an OW-ChCCA
KEM in the ROM. Our first approach (cf. Section 4.1) is a generic construction of AKE protocols directly
from an OW-ChCCA secure KEM. Our second approach (cf. Section 5.1) is to firstly show that our
OW-ChCCA security tightly implies a non-committing KEM (NCKEM) as defined in [JKRS21]. Then
via the generic transformation in [JKRS21], this yields a tight AKE protocol. This is less direct than our
first approach, and each user needs to do some additional hashing, compared to the first approach, due to
the “OW-ChCCA-to-NCKEM” transformation. Figure 1 gives an overview of these two approaches.

Our motivation of OW-ChCCA is to “outsource” all necessary properties for tight AKE into a notion
for KEMs. We think that this is easier than directly constructing a tightly secure AKE. Conceptually,
AKE is quite a complex primitive, as it is interactive and adversaries can inject new messages adaptively.
If we directly construct a tightly secure AKE from lattices, it would be very difficult to start, since there
are many corner cases we need to handle because of the complex adversary strategy (which is reflected by
the freshness definition). Our OW-ChCCA notion simplifies this complex task. Moreover, we think that
OW-ChCCA is more natural and easier to understand than NCKEM as in [JKRS21]. For instance, the
NCKEM is defined wrt. a random oracle per user.
OW-ChCCA from LWE, Tightly. Our second step is constructing an efficient OW-ChCCA secure
KEM tightly from the LWE assumption in the ROM. The technical challenge is to design a scheme such
that its security reduction can tightly embed the LWE problem challenge, while being able to respond
all oracle queries defined by OW-ChCCA, in particular, the secret key corruption (Corr) and challenge
ciphertext decapsulation (Reveal). Our construction has a novel use of the Naor-Yung (NY) double
encryption [NY90] and the lossy LWE approach as in [LSSS17, KYY18] to resolve this. Different to the
NY encryption, we do not require non-interactive zero-knowledge proofs by using random oracles and
carefully programming them. Our concrete scheme and proof are rather technical. We refer to Section 3.2
for more discussion. Additionally, our idea can be implemented using the Matrix Decisional Diffie-Hellman
(MDDH) assumption [EHK+13], which is a generalization of the (standard) DDH assumption, and we

3

Party Pi : (pki, ski) Party Pj : (pkj , skj)

(p̃k, s̃k)← KG0(1λ)
(ctj , Kj)← Encaps1(pkj) (p̃k, ctj)

(c̃t, K̃)← Encaps0(p̃k)
Kj := Decaps1(skj , ctj)
(cti, Ki)← Encaps1(pki)(c̃t, cti)

K̃ := Decaps0(s̃k, c̃t) ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
Ki := Decaps1(ski, cti) SK := H(ctxt, K′

i, K′
j , K̃′)

ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
SK := H(ctxt, K′

i, K′
j , K̃′)

K′
i := Ki, K′

i := H′(pki, cti, Ki)
K′
j := Kj , K′

j := H′(pkj , ctj , Kj)

K̃′ := K̃, K̃′ := H′(p̃k, c̃t, K̃)

Figure 1: Our two approaches of constructing tightly secure AKE protocols between two par-
ties from OW-ChCCA secure KEMs, KEM1 = (Setup1,KG1,Encaps1,Decaps1) and KEM0 =
(Setup0,KG0,Encaps0,Decaps0). Our two approaches only differ on how the final session keys are derived.
We mark the difference in our second approach with gray. H and H′ are two independent hash functions.

construct a OW-ChCCA KEM from MDDH1.
Efficiency of Our Lattice-based AKE. Asymptotically, our ciphertext is at most twice as long as
that of plain Regev’s KEM [Reg05]. This carries to our AKE protocol. We argue that such a price
is worthy of paying, since it provides stronger theoretically sound security guarantees. A common
construction for AKE from lattices is using the generic construction based on a passively secure KEM as
in [HKSU20]. Due to the guessing proof strategy, it has a security loss O((N +S)S ·T) in the multi-Test
setting2, where N , S, and T are the numbers of users, total sessions, and Test sessions, respectively. We
assume S ≈ T , since an adversary can ask Test queries for some constant fraction of the total sessions.
With real-world scenarios, (N,S) can easily reach (216, 216) (which is the “small-to-medium” scale as in
[GJ18, CCG+19]). This means the resulting non-tight AKE (implementing with 128-bit secure Regev’s
KEM) has 80-bit security supported by the non-tight proof, while ours still has 120-bit security. In the
truly large scale with (N,S) = (232, 232), the non-tight protocol has 32-bit security, while ours still has
120-bit security. 80-bit or 32-bit security is not a secure margin against today’s computers.
Beyond AKE: Tight Bilateral Selective-Opening Security. We show that our KEM security
notion is useful beyond AKE protocols. One of the examples is simulation-based bilateral selective-
opening (SIM-BiSO-CCA) security [LYHW21] for public-key encryption (PKE) schemes. Combining
our OW-ChCCA KEM with a one-time pad and a message authentication code, we construct the first
tightly SIM-BiSO-CCA secure PKE that can be instantiated based on the LWE or MDDH assumption.
Informally, selective-opening (SO) security captures the fact that adversaries can learn some randomness
used in the encryption algorithm, and bilateral SO security additionally allows user secret key corruptions
and is stronger than SO security. SIM-BiSO-CCA formalizes this in a simulation-based manner. This
security notion is motivated by some real-world scenarios, where it is expensive to erase cryptographic
secrets and adversaries can learn senders’ encryption randomness and receivers’ secret keys. Currently,
the only known SIM-BiSO-CCA PKE is a non-tight scheme in the ROM [LYHW21].
(Tight) Relations to Other KEM Notions. We first observe that by a guessing strategy one can
show the standard IND-CCA security non-tightly implies OW-ChCCA with a loss of O(N · C), where N
and C are numbers of users and ciphertexts, respectively. We also show that, by hashing its encapsulated
key, a OW-ChCCA secure KEM is tightly indistinguishable against enhanced chosen-ciphertext attacks
(IND-ECCA) in the ROM. IND-ECCA is a notion proposed by Han et al. [HLG21] to rule out constructing

1We believe that the MDDH-based construction in [JKRS21] can also satisfy our notion. As it does not satisfy the
deterministic ciphertext derivation property that we need for SIM-BiSO-CCA security, we decided not to present it.

2This security loss can be derived as in [HKSU20, Theorem 3] by ignoring the quantum RO and the additive negligible
terms. The single-to-multi-challenge reduction introduces the multiplicative term T .

4

SIM-BiSO-CCA PKE NCKEM

LWE OW-ChCCA AKE

MDDH IND-ECCA

[JKRS21]

Sec. 3.2

Sec. 5.2

Sec. 4.1

Appendix F

Sec. 5.1

Sec. 3.3

Figure 2: Overview of our contributions. All implications are tight, and they are all new and proposed
in this paper except for NCKEM → AKE. We highlight those key implications for a tightly secure
lattice-based AKE with double arrows, “⇒”.

tightly secure AKE from many well-known KEMs in the standard model. Our work bypasses their
impossibility result using random oracles. Although an IND-ECCA KEM contains necessary requirements
of a secure AKE protocol, there is no formal proof showing that an IND-ECCA KEM tightly implies an
AKE. Since IND-ECCA implies the standard IND-CCA security, our OW-ChCCA tightly implies the
standard IND-CCA security in the ROM. Combining with our previous discussion, this shows that our
OW-ChCCA notion is the core for tight security of different KEM notions, PKE, and AKE. Figure 2
summarizes all our contributions and implications in this paper.
Open Problems. We initiate the first step in constructing efficient lattice-based tightly secure AKE
protocols. There are several interesting directions to explore. One of them is to construct a OW-ChCCA
secure KEM with shorter ciphertexts from lattices, which will lead to more efficient tightly secure AKE.
Although we consider an AKE from post-quantum assumptions in this paper, we are interested in “lifting”
our results to the quantum random oracle model. Finally, we are interested in constructing tightly secure
lattice-based AKE in the non-programmable random oracle model or even the standard model.
More Post-Quantum AKE. We note that the isogeny-based protocol of de Kock et al. in [dKGV21]
is not tight based on a variant of the Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)
assumption [CLM+18] and loses a factor in the number of users. Such a non-tight factor is optimal and
unavoidable.

2 Preliminaries
A (probabilistic) algorithm A is PPT, if its running time (denoted by T(A)) can be bounded by a
polynomial in its input length. A function f : N→ R with input λ is negligible in λ if f ∈ λ−ω(1). The
term negl denotes a negligible function. A function of the form 1− negl(λ) is said to be overwhelming.
Let A be an algorithm. We write y ← A(x) to indicate that y is set to the output of A in input x with
freshly sampled random coins. We write y := A(x; τ) to make these coins τ explicit. We write y ∈ A(x)
to state that y is a potential output (i.e. there are random coins) of A in input x. For distribution D, we
write x← D if x is sampled according to D. We write x $← S if x is sampled uniformly from a finite set
S. We use the notation [L] := {1, . . . , L} for the first L natural numbers. We use both verbal descriptions
and pseudocode to describe games. For that, we make the convention that all variables are initialized to 0,
⊥ or ∅, depending on the data type. Also, when we say that the game aborts, this means that the entire
game terminates. This is different from the case where an algorithm or oracle outputs ⊥, in which the
game continues. If G is a game, the notation G⇒ b indicates that G outputs b. For all security notions
in the multi-user setting, we implicitly assume that the number of users N is polynomially bounded in λ.
Key Encapsulation Mechanisms. We recall the syntax of key encapsulation mechanisms, and give a
definition of ciphertext entropy. As introducing a new security notion is part of our contribution, we do
not define security here.

Definition 2.1 (Key Encapsulation Mechanism). A key encapsulation mechanism is a tuple of algorithms
KEM = (Setup,Gen,Encap,Decap) where Setup,Gen,Encap are PPT and Decap is deterministic:

• Setup(1λ)→ par takes as input the security parameter 1λ, and outputs global system parameters
par. We assume that par implicitly define ciphertext space C = Cpar, key space K = Kpar, and public
key space P = Ppar.

5

• Gen(par)→ (pk, sk) takes as input parameters par, and outputs a public key pk ∈ P and a secret
key sk.

• Encap(pk)→ (ct,K) takes as input a public key pk ∈ P , and outputs a ciphertext ct ∈ C, and a key
K ∈ K.

• Decap(sk, ct) → K is deterministic, takes as input a secret key sk and a ciphertext ct ∈ C, and
outputs a key K ∈ K ∪ {⊥}.

We say that KEM is ρ-correct, if for every par ∈ Setup(1λ), the following probability is at least ρ:

Pr [K = K ′ | (pk, sk)← Gen(par), (ct,K)← Encap(pk),K ′ ← Decap(sk, ct)] .

For some constructions, we may require that the scheme has high public key or ciphertext entropy.
We give formal definitions of these natural notions in Appendix A.
Background on Lattices. Let Λ be an m-dimensional lattice, i.e. a discrete additive subgroup
of Rm. For s > 0, we define DΛ,s to be the distribution proportional to ρs(x) := exp(−π‖x‖2/s2)
restricted to Λ. The distribution DΛ,s is called the discrete Gaussian distribution with parameter s over
Λ. Further, we make the convention that elements in Zq are represented by their representative from
{−(q− 1)/2, . . . , (q− 1)/2} (if q is odd) or {−q/2 + 1, . . . , q/2} (if q is even). We use some standard facts
about discrete Gaussians, see [MR04, GPV07].

Lemma 2.2 Let n,m ∈ N. Let q be a prime at least polynomial in n and m ≥ 2n log q. Consider any
ω(
√

logm) function and s ≥ ω(
√

logm). Then for all but a negligible (in n) fraction of all A ∈ Zn×mq

the following distribution is statistically close to uniform over Znq : {Ae | e← DZm,s}.

Lemma 2.3 Consider any ω(
√

logm) function and s ≥ ω(
√

logm). Then we have

Pr
[
‖x‖ > s

√
m | x← Dm

Z,s
]
≤ 2−m+1.

We also use the following lemma about the lossiness of a certain matrix distribution, following
[AKPW13, KYY18]. It lower bounds the so called “smooth average min-entropy” H̃ ·∞ (·|·) [KYY18].

Lemma 2.4 Let n, k,m, q, η be positive integers, β, α′ > 0 such that α′ ≥ βηnmq. Let χ be a distribution
such that Pr [|x| ≥ βq | x← χ] ≤ negl(λ). Let s be uniformly distributed over [−η, η]n, and e be distributed
according to Dm

Z,α′ . Let A := ĀC + F for

Ā $← Zn×kq , C $← Zk×mq , F← χn×m.

Then, for any ε ≥ 2−λ, we have

H̃ε
∞
(
s
∣∣Ats + e

)
≥ H∞ (s)− (k + 2λ) log q − negl(λ).

We make use of the generalized leftover hash lemma, taken from [KYY18].

Lemma 2.5 Let H := {hk : X → Y}k be a universal family of hash functions, where keys k are distributed
according to a distribution K. Let U denote a random variable distributed uniformly over Y. Let X be
random variable with values in X and I be any random variable. Let ε ≥ 0. Then, the statistical distance
between (K,hK(X), I) and (K,U, I) is at most

2ε+ 1
2

√
2−H̃ε∞(X|I) · |Y|.

Our construction relies on the well-known LWE assumption [Reg05, Pei09, BLP+13].

Definition 2.6 (LWE Assumption). Let n = n(λ) ∈ N, m = m(n) ∈ N, q = q(n) be prime number and
χ = χ(n) be a distribution over Z. We say that the LWEn,m,q,χ assumption holds, if for every PPT
algorithm B the following advantage is negligible in λ:

AdvLWEn,m,q,χ
B (λ) := |Pr

[
B(A,b) = 1 | A $← Zn×mq ,b $← Zmq

]
−Pr

[
B(A,Ats + e) = 1 | A $← Zn×mq , s $← Znq , e← χm

]
|.

6

3 One-Way Checkable CCA Security
We first propose a new security notion for key encapsulation mechanisms (KEM), One-Way Checkable
Security against Chosen-Ciphertext Attacks (OW-ChCCA). Then we realize this notion with lattices in a
tight way.

3.1 Definition of OW-ChCCA Security
Before we formalize our notion for KEMs, we give some intuitions behind it. At a very high level,
our OW-ChCCA security can be seen as an extension of OW-PCA security [OP01]. Our goal here is to
formalize the “minimal” requirements on KEM for constructing tightly secure AKE. We first observe
that an indistinguishability notion, such as IND-CPA, is not necessary for AKE, and the weaker, one-way
notion (namely, decapsulating the challenge ciphertexts) is sufficient. This is because the AKE session
keys are often derived from the corresponding KEM key using a hash function which is modeled as a
random oracle (RO). By searching the RO-history, it can be shown that a one-way notion tightly implies
the corresponding IND one.

To tightly use a one-way notion in our security reduction without guessing, we still need to identify
the correct key-ciphertext pairs. Thus, we provide an oracle to check if a key-ciphertext pair is valid,
which essentially results in the OW-PCA notion for KEMs. However, OW-PCA is not sufficient to get
authenticated key exchange tightly. At a high level, an AKE adversary can adaptively attack multiple
sessions and forces the reduction to guess which are the challenge sessions (aka. Test sessions). This will
lead to a large security loss. We therefore add additional adversary capabilities (i.e. oracles) to KEM’s
OW-PCA security to resolve this:

• The adversary can get multiple challenge ciphertexts.
• The adversary has access to a decapsulation oracle, which is used for non-challenge ciphertexts.
• The adversary can adaptively decapsulate some challenge ciphertexts. This allows the AKE security

reduction to answer session key reveals for sessions that possibly contain challenge KEM ciphertexts.
An AKE adversary can force this happen.

• The adversary can adaptively corrupt users’ their secret key. This corresponds to long-term secret
key corruptions in the AKE protocol.

We formalize the OW-ChCCA security for KEMs as follows:

Definition 3.1 (OW-ChCCA Security). Let KEM = (Setup,Gen,Encap,Decap) be a key encapsulation
mechanism and consider the game OW-ChCCA defined in Figure 3. We say that KEM is OW-ChCCA
secure, if for all PPT adversaries A, the following advantage is negligible:

AdvOW-ChCCA
A,KEM (λ) := Pr

[
OW-ChCCAAKEM(λ)⇒ 1

]
.

For our construction of SIM-BiSO-CCA secure encryption in Section 5.2, we require that KEM has
deterministic ciphertext derivation:

Definition 3.2 (Deterministic Ciphertext Derivation). Let KEM = (Setup,Gen,Encap,Decap) be a key
encapsulation mechanism with key space K. We say that KEM has deterministic ciphertext derivation, if
there is a deterministic algorithm Êncap, such that for all par ∈ Setup(1λ) and all (pk, sk) ∈ Gen(par), the
following two distributions are equivalent

{(ct,K) | K $← K, ct := Êncap(pk,K)} and {(ct,K)← Encap(pk)}.

3.2 Construction from Lattices
We construct KEMLWE that is tightly OW-ChCCA secure under the LWE assumption. Our scheme is
described in Figure 4. It uses algorithms SampleD and Round:

• SampleD(m,α′; ρ)→ e: Sample Gaussian e← Dm
Z,α′ using random coins ρ ∈ {0, 1}λ.

• Round(t) → h: Do componentwise rounding of t ∈ Zλq to get h ∈ {0, 1}λ, i.e. for all i ∈ [λ], we
have hi = 0 if ti is closer to 0 than to bq/2e, and hi = 1 otherwise.

7

Game OW-ChCCAAKEM(λ)
01 par← Setup(1λ)
02 for i ∈ [N] : (pki, ski)← Gen(par)
03 O1 := (Enc,Dec,Reveal)
04 O2 := (Corr,Check)
05 (i∗, ct∗,K∗)← AO1,O2(par, (pki)i∈[N])
06 if (i∗, ct∗,K∗) /∈ LEnc : return 0
07 if i∗ ∈ LCorr : return 0
08 if (i∗, ct∗) ∈ LReveal : return 0
09 return 1

Oracle Corr(i)
10 LCorr := LCorr ∪ {i}
11 return ski
Oracle Dec(i, ct′)
12 if ∃K ′ s.t. (i, ct′,K ′) ∈ LEnc : return ⊥
13 return K ′ := Decap(ski, ct′)

Oracle Reveal(i, ct)
14 if ∃K s.t. (i, ct,K) ∈ LEnc :
15 LReveal := LReveal ∪ {(i, ct)}
16 return K
17 return ⊥

Oracle Enc(i)
18 (ct,K)← Encap(pki)
19 LEnc := LEnc ∪ {(i, ct,K)}
20 return ct

Oracle Check(i, ct,K)
21 if Decap(ski, ct) = K :
22 return 1
23 return 0

Figure 3: The game OW-ChCCA for a key encapsulation mechanism KEM := (Setup,Gen,Encap,Decap).

Our scheme is parameterized by matrix dimensions n,m, k ∈ N, a modulus q ∈ N, and (Gaussian) widths
α, α′, γ, η > 0. The scheme also makes use of random oracles H : {0, 1}∗ → {0, 1}λ and G : {0, 1}∗ →
[−η, η]n × {0, 1}λ × {0, 1}λ × {0, 1}λ. For our analysis, the parameters have to satisfy the following
conditions.

• For Lemma 2.2: q prime, m ≥ 2n log q, α ≥ ω(
√

logm)
• For Lemma 2.3: α, α′ ≥ ω(

√
logm)

• For Lemmata 2.4 and 2.5: n log(2η + 1)− (k + 3λ) log q ≥ λ log q + Ω(n) and α′ ≥ βηnmq; we use
βq = n in Lemma 2.4.

• For correctness: 4α′αm < q.
For example, given λ, we could conservatively use the following parameter setting.

n := 70λ n6 < q ≤ n7, η :=
√
n, γ :=

√
n,

k := λ, m := 2n log q, α :=
√
n, α′ := n2.5m.

Correctness follows from standard calculations, and we postpone it to Appendix B. Further, it can easily
be seen that KEMLWE has deterministic ciphertext derivation.

Before going into the security analysis, we give an overview of the rationale behind our construction,
omitting LWE specific details. First, recall that in the security proof, we need to simulate a corruption
oracle, returning secret keys ski for user i. To do this without using non-tight guessing arguments, we
have to know a secret key for each user. As we still need to embed our LWE challenge in the challenge
ciphertexts, we should not be able to decrypt them. We can solve this first dilemma by splitting the
ciphertext into two parts ct = (ct0, ct1), and having two potential secret keys sk0 and sk1, where ctb
allows to recover the encapsulation key K using secret key skb. Then, for each user i, we hold ski,bi for a
random bit bi. Now, the strategy is to use LWE to modify ct1−bi . Let us call such modified ciphertext
parts inconsistent. Finally, we argue that the adversary does not learn bi for uncorrupted users, and then
we switch roles of bi and 1− bi to apply the same argument. This overall strategy can be implemented, if
we only have to provide a corruption oracle. However, once we need to simulate a decapsulation oracle,
the situation becomes a bit more tricky. Namely, we have to guarantee that decapsulation (simulated
using ski,bi) does not reveal information about bi. We solve this challenge by deterministically deriving
the ciphertext parts ct0, ct1 from the encapsulated key K. Ciphertext parts could have roughly the form
ctb = K ⊕ Fb(K) for some deterministic Fb. During decapsulation, we recompute ct0, ct1 from K, and
only accept K if this recomputation is consistent. A careful analysis shows that this hides all information
about bi. We can also implement a check oracle now using the deterministic functions F0, F1. On the
other hand, applying changes to ct1−bi = K ⊕ F1−bi(K) may lead to circular security problems. At a
high level, we solve this issue by implementing the functions Fb using a random oracle.

8

Alg Setup(1λ)
01 return par := A $← Zn×mq

Alg Gen(par)
02 b $← {0, 1}, Zb ← Dm×λ

Z,α
03 Ub := AZb, U1−b

$← Zn×λq

04 pk := (U0,U1), sk := (Zb, b)
05 return (pk, sk)

Alg Encap(pk)
06 R $← {0, 1}λ, (s, ρ,h0,h1) := G(R)
07 e := SampleD(m,α′; ρ)
08 x := Ats + e
09 ĥ0 := Ut

0s + h0bq/2e ∈ Zλq
10 ĥ1 := Ut

1s + h1bq/2e ∈ Zλq
11 K̂0 := H(x, ĥ0,h0), C0 := K̂0 ⊕R
12 K̂1 := H(x, ĥ1,h1), C1 := K̂1 ⊕R
13 ct := (C0, C1,x, ĥ0, ĥ1)
14 return (ct,K := R)

Alg Decap(sk, ct)
15 let ct = (C0, C1,x, ĥ0, ĥ1)
16 let sk = (Zb, b)
17 h′b := Round(ĥb − Ztbx) ∈ {0, 1}λ

18 K̂b := H(x, ĥb,h′b)
19 R := Cb ⊕ K̂b

20 (s, ρ,h0,h1) := G(R)
21 e := SampleD(m,α′; ρ)
22 ĥ′1−b := Ut

1−bs + h1−bbq/2e
23 K̂1−b := H(x, ĥ′1−b,h1−b)
24 if x 6= Ats + e : return ⊥
25 if K̂1−b ⊕R 6= C1−b : return ⊥
26 if h′b 6= hb : return ⊥
27 if ĥ′1−b 6= ĥ1−b : return ⊥
28 return K := R

Figure 4: The key encapsulation mechanism KEMLWE = (Setup,Gen,Encap,Decap), where H : {0, 1}∗ →
{0, 1}λ and G : {0, 1}∗ → [−η, η]n × {0, 1}λ × {0, 1}λ × {0, 1}λ are random oracles. To save space, one
could set A := H∗(0) for a random oracle H∗ : {0, 1}∗ → Zn×mq .

The next challenge that we have to solve arises from the reveal oracle, which allows to decapsulate
challenge ciphertexts. We see that our above strategy is not compatible with this oracle, as we make
ciphertexts partially inconsistent, and the adversary can notice this once we reveal the encapsulated
key. Again, guessing which ciphertexts will be revealed is not an option without loosing tightness. This
means that we have to be able to make inconsistent ciphertext parts consistent again, once a query to the
reveal or corruption oracle occurs. We carefully implement this by another use of a random oracle. For
simplicity, say we replace Fb(·) by H(Fb(·)), i.e. we have ct1−bi = K ⊕ H(F1−bi(K)). Then, to make the
ciphertext inconsistent, we set ct1−bi = K⊕ ĥ for some random ĥ. To make the ciphertext consistent later
on, we program H(Fb(K)) := ĥ. It remains to argue that the adversary can not detect the inconsistency
by querying H(Fb(K)) before it queries the reveal or corruption oracle. To rule out this bad event, we
want to switch Fb(K) to a random element using the LWE assumption. As we have no chance to make
such ciphertext consistent again, bounding this bad event requires to define a separate game, which stops
once a query to the reveal or corruption oracle occurs. Implemented naively, this leads to a non-tight
reduction, applying LWE once per challenge ciphertext. However, it turns out that we can first switch
the LWE parameters to lossy mode, as done in [KYY18], and then analyze all of these separate games
in a purely statistical way. There is a complex interplay between all of these challenges and potential
solutions, and the formal proof requires heavy use of delayed analysis.

Theorem 3.3 Let H : {0, 1}∗ → {0, 1}λ and G : {0, 1}∗ → [−η, η]n×{0, 1}λ×{0, 1}λ×{0, 1}λ be random
oracles. If the LWEk,m,q,DZ,γ assumption holds, then the scheme KEMLWE is OW-ChCCA secure.

Concretely, for any PPT algorithm A there is a PPT algorithm B with T(A) ≈ T(B) and

AdvOW-ChCCA
A,KEMLWE

(λ) ≤ 6n · Adv
LWEk,m,q,DZ,γ
B (λ) + negl(λ).

Proof. Let A be a PPT algorithm and KEM := KEMLWE. We show the claim using a sequence of games
Gi for i ∈ {0, . . . , 6}. To simplify notation, we define

Advi := Pr [Gi ⇒ 1], for i ∈ {0, . . . , 6}.

Let us first give an informal overview of the proof strategy. We define G0 := OW-ChCCAAKEM(λ) and
introduce changes to game G0 until we end up at game G3. For this one, we argue that the probability

9

Game G0-G6
01 par := A $← Zn×mq �G0-G1,G4-G6

02 Ā $← Zn×kq , C $← Zk×mq , F← Dn×m
Z,γ , par := A := ĀC + F �G2-G3

03 for i ∈ [N] :
04 bi

$← {0, 1}, Zi,bi ← Dm×λ
Z,α , Ui,bi := AZi,bi

05 Zi,1−bi ← Dm×λ
Z,α , Ui,1−bi := AZi,1−bi �G5-G6

06 Ui,1−bi
$← Zn×λq �G0-G4

07 let Zi,bi = [z1 | · · · | zλ] �G6
08 if ∃j ∈ [λ] s.t. ‖zj‖ > α

√
m : abort �G6

09 let Zi,1−bi = [z1 | · · · | zλ] �G6
10 if ∃j ∈ [λ] s.t. ‖zj‖ > α

√
m : abort �G6

11 pki := (Ui,0,Ui,1), ski := (Zi,bi , bi)
12 (i∗, ct∗,K∗)← AEnc,Dec,Reveal,Corr,Check,H,G(par, (pki)i∈[N])
13 if (i∗, ct∗,K∗) /∈ LEnc ∨ i∗ ∈ LCorr ∨ (i∗, ct∗) ∈ LReveal : return 0
14 return 1

Oracle Enc(i)
15 R $← {0, 1}λ
16 if g[R] 6= ⊥ : badR := 1, abort �G1-G6
17 (s, ρ,h0,h1) := G(R), e← SampleD(m,α′; ρ)
18 x := Ats + e, ĥ0 := Ut

i,0s + h0bq/2e, ĥ1 := Ut
i,1s + h1bq/2e

19 qry0 := (x, ĥ0,h0), qry1 := (x, ĥ1,h1)
20 if h[qrybi] 6= ⊥ : badK1 := 1, abort �G3-G6
21 if h[qry1−bi] 6= ⊥ : badK0 := 1, abort �G3-G6

22 K̂0 := H(x, ĥ0,h0), K̂1 := H(x, ĥ1,h1)
23 C0 := K̂0 ⊕R, C1 := K̂1 ⊕R
24 ct := (C0, C1,x, ĥ0, ĥ1)
25 LR := LR ∪ {(R, i, ct)} �G1-G6
26 LK,0 := LK,0 ∪ {(qry1−bi , i, ct)} �G3-G6
27 LK,1 := LK,1 ∪ {(qrybi , i, ct)} �G3-G6
28 LEnc := LEnc ∪ {(i, ct,K := R)}
29 return ct

Figure 5: The games G0-G6 in the proof of Theorem 3.3. Oracles Dec and Check are as in the
real games. The remaining oracles are given in Figure 6. Highlighted lines are only executed in the
corresponding games.

that G3 outputs 1 is negligible. Games Gi for i ≥ 4 are only needed in Lemmata 3.5 and 3.6, which are
used to bound the difference between G0 and G3 using a delayed analysis technique. We will now give
the details of the proof. The games are formally presented in Figures 5 and 6.
Game G0: We define G0 as the real OW-ChCCA game. That is, we set G0 := OW-ChCCAAKEM(λ). To
fix some notation, we recall how this game works. First, the game samples par := A $← Zn×mq . Then, for
each i ∈ [N], it computes public keys and secret keys (pki, ski) as follows: It samples a bit bi $← {0, 1}, it
samples a matrix Zi,bi as in the scheme, and sets Ui,bi := AZi,bi . Then, it samples Ui,1−bi uniformly at
random as in the scheme. The public key is pki := (Ui,0,Ui,1), and the secret key is ski := (Zi,bi , bi).
Then, adversary A gets all public keys and par as input. Further, it gets access to oracles Enc,Dec,
Reveal,Corr,Check, as well as random oracles H,G. The game simulates random oracles H,G in a
lazy manner, using maps h and g that map the inputs of H,G to the outputs of H,G, respectively. We
denote the number of queries to H,G, and Enc by QH, QG, and QE, respectively. In the end, A outputs
(i∗, ct∗,K∗). The game outputs 1, if ct∗ has been output by Enc(i∗), where it was computed together
with K∗, the adversary A never queried Corr(i∗), and never queried Reveal(i∗, ct∗). By definition, we
have

Adv0 = Pr
[
OW-ChCCAAKEM(λ)⇒ 1

]
.

Game G1: In game G1, we introduce a bad event badR, and abort the game if badR occurs. To define the

10

Oracle Reveal(i, ct)
01 if ∃K s.t. (i, ct′,K) ∈ LEnc :
02 LReveal := LReveal ∪ {(i, ct)}
03 LR := LR \ {(R, i′, ct′) ∈ LR | (i′, ct′) = (i, ct)} �G1-G6
04 LK,0 := LK,0 \ {(qry, i′, ct) ∈ LK,0 | (i′, ct′) = (i, ct)} �G3-G6
05 LK,1 := LK,1 \ {(qry, i′, ct) ∈ LK,1 | (i′, ct′) = (i, ct)} �G3-G6
06 return K
07 return ⊥

Oracle Corr(i)
08 LCorr := LCorr ∪ {i}
09 LR := LR \ {(R, i′, ct) ∈ LR | i′ = i} �G1-G6
10 LK,0 := LK,0 \ {(qry, i′, ct) ∈ LK,0 | i′ = i} �G3-G6
11 LK,1 := LK,1 \ {(qry, i′, ct) ∈ LK,1 | i′ = i} �G3-G6
12 return ski
Oracle H(x′, ĥ,h)
13 qry := (x′, ĥ,h) �G3-G6
14 if ∃i, ct s.t. (qry, i, ct) ∈ LK,0 : badK0 := 1, abort �G3-G6
15 if ∃i, ct s.t. (qry, i, ct) ∈ LK,1 : badK1 := 1, abort �G3-G6

16 if h[x′, ĥ,h] = ⊥ : h[x′, ĥ,h] $← {0, 1}λ
17 if ∃(x′′, ĥ′,h′) 6= qry s.t. h[x′′, ĥ′,h′] = h[x′, ĥ,h] : abort �G6
18 return h[x′, ĥ,h]

Oracle G(R′)
19 if ∃i, ct s.t. (R′, i, ct) ∈ LR : badR := 1, abort �G1-G6
20 if g[R′] = ⊥ :
21 (s, ρ,h0,h1) $← Znq ×

(
{0, 1}λ

)3

22 if ‖SampleD(m,α′; ρ)‖ > α′
√
m : abort �G6

23 g[R′] := (s, ρ,h0,h1)
24 return g[R′]

Figure 6: The oracles in the proof of Theorem 3.3. The rest of the games is given in Figure 5. Highlighted
lines are only executed in the corresponding games.

event, consider a query of the form Enc(i). Recall that in such a query, the game samples R $← {0, 1}λ
and derives values s, e,h0,h1 from it using random oracle G. These are then used to define a ciphertext
ct. We say that the bad event badR occurs, if one of the following holds:

• At this point, A already queried G(R), or
• at some later point, before any query of the form Corr(i) or Reveal(i, ct) for these i, ct, A queries

G(R). Note that this also includes indirect queries made by oracles Dec,Check.
In the code, we model this using a list LR that contains the tuples (i, ct, R). The tuples are added in the
query Enc(i) and removed in queries Corr(i) or Reveal(i, ct). In each random oracle query G(R), we
check if such a tuple is currently in the list and set badR := 1 in this case.

As the ciphertext ct still contains information about R (namely, in C0, C1), we do not bound the
probability of badR, but instead delay its analysis. We have

|Adv0 − Adv1| ≤ Pr [badR in G1].

Game G2: In game G2, we change how the matrix A is generated. Recall that before, it is generated
as A $← Zn×mq . In game G2, we instead generate it as A := ĀC + F for Ā $← Zn×kq , C $← Zk×mq , and
F← Dn×m

Z,γ . It is easy to see that we can bound the difference between G1 and G2, by n applications
(one for each row of A) of LWEk,m,q,DZ,γ , or equivalently, an n-fold LWE assumption. The corresponding
reduction B gets A,C as input, and uses par := A. Then, it simulates G1, and outputs whatever the

11

game outputs. It follows that

|Adv1 − Adv2| ≤ n · Adv
LWEk,m,q,DZ,γ
B (λ).

We can also give a similar reduction, that only outputs 1 if and only if event badR occurs, which can be
checked efficiently. This implies that

|Pr [badR in G1]− Pr [badR in G2]| ≤ n · Adv
LWEk,m,q,DZ,γ
B (λ).

Game G3: In game G3, we introduce another bad event badK := badK0∨ badK1, and let the game abort
if it occurs. This event is very similar to event badR. Namely, we consider a query of the form Enc(i).
Recall that in this query, values x, ĥ0,h0 and ĥ1,h1 are defined. Then, the oracle sets K̂0 := H(x, ĥ0,h0)
and K̂1 := H(x, ĥ1,h1). Later, a ciphertext ct is returned to A. We say that the event badK0 occurs, if
one of the following holds:

• At this point, A already queried H(x, ĥ1−bi ,h1−bi), or
• at some later point, before any query of the form Corr(i) or Reveal(i, ct) for these i, ct, A queries

H(x, ĥ1−bi ,h1−bi).
Similarly, we say that the event badK1 occurs, if one of the following holds:

• At this point, A already queried H(x, ĥbi ,hbi), or
• at some later point, before any query of the form Corr(i) or Reveal(i, ct) for these i, ct, A queries

H(x, ĥbi ,hbi).
As for event badR, this also includes indirect queries made by oracles Dec,Check. Similar to event badR,
we formally model these two events via lists LK,0 and LK,1, where LK,0 is associated to event badK0 and
LK,1 is associated to event badK1. Also, note that although we defined the events with respect to bit bi,
their symmetry ensures that there is no additional information about bi given to A. Clearly, we have

|Pr [badR in G2]− Pr [badR in G3]| ≤ Pr [badK in G3]

and

|Adv2 − Adv3| ≤ Pr [badK in G3]
≤ Pr [badK0 in G3] + Pr [badK1 in G3].

We upper bound these probabilities in Lemma 3.5 and Lemma 3.6. Also, we upper bound the probability
of badR in G3 in Lemma 3.4.

Further, we claim that the probability that G3 outputs 1 is negligible. To see this, consider the final
output (i∗, ct∗,K∗) of A. If the game outputs 1, then ct∗ has been output by Enc(i∗), and K∗ = R,
where R has been sampled in the query Enc(i∗) that returned ct∗. Further, if the game outputs 1, then
the events badR and badK did not occur. The game can only output if A never queried Corr(i∗), and
never queried Reveal(i∗, ct∗), and therefore we know that A never queried G(R) and never queried
H(x, ĥbi ,hbi) or H(x, ĥ1−bi ,h1−bi), where the values x, ĥ0, ĥ1,h0,h1 have been defined in the query
Enc(i∗) that returned ct∗. This means that the ciphertext ct∗ information-theoretically hides the value
R, and R is distributed uniformly at random from A’s point of view. Thus, the probability that K∗ = R
is at most 2−λ, and we get

Adv3 ≤
QE
2λ .

In summary, we can upper bound Adv0 by

Pr [badR in G1] + n · Adv
LWEk,m,q,DZ,γ
B (λ) + Pr [badK in G3] + QE

2λ

≤ Pr [badR in G3] + 2n · Adv
LWEk,m,q,DZ,γ
B (λ) + 2 · Pr [badK1 in G3] + negl(λ)

≤ 2n · Adv
LWEk,m,q,DZ,γ
B (λ) + 2 · Pr [badK1 in G3] + negl(λ)

≤ 2n · Adv
LWEk,m,q,DZ,γ
B (λ) + 2

(
2n · Adv

LWEk,m,q,DZ,γ
B (λ) + negl(λ)

)
+ negl(λ)

≤ 6n · Adv
LWEk,m,q,DZ,γ
B (λ) + negl(λ).

12

Lemma 3.4 With assumptions from the proof of Theorem 3.3, we have

Pr [badR in G3] ≤ 2QEQG
2λ ≤ negl(λ).

The proof of the lemma is postponed to Appendix B.

Lemma 3.5 With assumptions from the proof of Theorem 3.3, we have

Pr [badK0 in G3] ≤ negl(λ).

Proof. First, we write the event badK0 as

badK0 =
∨

j∈[QE]

badK0j ,

where QE is the number of A’s queries to Enc and badK0j denotes the event that badK0j occurs for the
entry (qry, i, ct) that is inserted into list LK,0 in the jth query to oracle Enc. We bound the probability
of each badK0j separately, and conclude with a union bound.

To this end, fix j ∈ [QE]. We define a new game G′j , which is defined to be as game G3, but with the
following change: Consider the jth query to oracle Enc. Assume that in this query an entry (qry, i, ct) is
inserted into list LK,0. Game G′j immediately outputs 1 as soon as badK0j occurs, i.e. if either H(qry) is
already defined before the query, or H(qry) is queried before queries Corr(i) or Reveal(i, ct). Also, if
badK0j can no longer occur (i.e. A queries Corr(i) or Reveal(i, ct)), the game immediately outputs 0.
Note that until game G′j outputs something, the view of A is identical to its view in G3. This implies
that

Pr [badK0j in G3] = Pr
[
G′j ⇒ 1

]
.

Next, we change G′j into G′′j . In this game, consider the jth query to oracle Enc again. Recall that
in this oracle query, a vector ĥ1−bi is defined via

ĥ1−bi := Ut
i,1−bis + h1−bibq/2e.

In this game, we instead sample ĥ1−bi
$← Zλq . We argue that the games are statistically close by using the

generalized leftover hash lemma (Lemma 2.5), where the hash function is given by s 7→ Ut
i,1−bis. Note

that Ui,1−bi is sampled uniformly at random in G′j , and therefore this constitutes a universal family of
hash functions. To use the generalized leftover hash lemma, we first need to lower bound the entropy of s.
To this end, we make use of Lemma 2.4.

Observe that in the jth query to oracle Enc, the only information (apart from Ut
i,1−bis) that A gets

is x and ĥbi . Let ε = 2−λ. Then, we can use Lemma 2.4 (note that A has the correct form ĀC + F) to
get

H̃ε
∞

(
s
∣∣∣x, ĥbi) ≥ H̃ε

∞ (s|x)− λ log q

= H̃ε
∞
(
s
∣∣Ats + e

)
− λ log q ≥ H∞ (s)− (k + 3λ) log q − negl(λ)

= n log(2η + 1)− (k + 3λ) log q − negl(λ) ≥ λ log q + Ω(n).

For the last inequality, we used our assumption about the parameters. Now, we can use Lemma 2.5 with
ε = 2−λ and Y := Zλq , and get that the statistical distance is at most

2ε+ 1
2

√
2−H̃ε∞(s|x,ĥbi) · |Y| ≤ 2−λ+1 + 1

2
√

2−λ log q−Ω(n)+λ log q ≤ negl(λ).

Thus, we have ∣∣Pr
[
G′j ⇒ 1

]
− Pr

[
G′′j ⇒ 1

]∣∣ ≤ negl(λ).

13

Remark. The subtlety in the above argument is that oracles Dec and Check depend on the secret
key. As the secret key is statistically independent of the value s, the argument goes through even if the
adversary had the secret key. However, this only holds under the assumption that event badR does not
occur, as otherwise decrypting and reencrypting (and therefore querying G(R)) would reveal s.

Finally, we bound the probability that G′′j outputs 1. Recall that in the jth query to oracle Enc,
the value h1−bi is part of the output of G(R). As we assume that badR does not occur, this means that
during the query, this is a fresh value sampled uniformly at random. Also, our previous change removed
all information about h1−bi from the response of oracle Enc. Thus, this value is uniformly random from
A’s view for the entire game. As it is part of the random oracle query qry that triggers event badK0j and
lets the game output 1, we can use a union bound over all random oracle queries and get

Pr
[
G′′j ⇒ 1

]
≤ QH

2λ ≤ negl(λ).

Lemma 3.6 With assumptions from the proof of Theorem 3.3, there is a PPT algorithm B with
T(B) ≈ T(A) and

Pr [badK1 in G3] ≤ 2n · Adv
LWEk,m,q,DZ,γ
B (λ) + negl(λ).

Proof. To bound the probability, we introduce games G4,G5 and G6. We argue that the probability
of badK1 does not change significantly from G3 to G6. In game G6, we use Lemma 3.7 to argue that
the view of A is independent of the bit bi as long as the events badK0 and badK1 can occur. This will
imply that the probabilities of badK0 and badK1 are the same in G6. Therefore, we can just bound the
probability of badK0 in G6. This can easily be done by going back to game G3 and using Lemma 3.5.
We will now proceed in more detail.
Game G4: Game G4 is as G3, but we change how par := A is sampled. Concretely, we revert the change
from G1 to G2 and sample A $← Zn×mq . As from G1 to G2, it follows that

|Pr [badK1 in G3,]− Pr [badK1 in G4]| ≤ n · Adv
LWEk,m,q,DZ,γ
B (λ),

|Pr [badK0 in G3]− Pr [badK0 in G4]| ≤ n · Adv
LWEk,m,q,DZ,γ
B (λ).

Game G5: Game G5 is as G4, but we change how the matrices Ui,1−bi are defined for all i ∈ [N]. Recall
that before, these are sampled uniformly at random from Zn×λq . In G5, we first sample Zi,1−bi ← Dm×λ

Z,α
and then set Ui,1−bi := AZi,1−bi . By Lemma 2.2, the distributions of these matrices are statistically
close to uniform. Thus we get

|Pr [badK1 in G4]− Pr [badK1 in G5]| ≤ negl(λ),
|Pr [badK0 in G4]− Pr [badK0 in G5]| ≤ negl(λ).

Game G6: Game G6 is as G5, but we add additional bad events, that let the game abort. Namely, the
game aborts as soon as one of the following occurs:

• For some i ∈ [N], one of the columns z of Zi,0 or Zi,1 satisfies ‖z‖ > α
√
m.

• For some random oracle query G(R) that returns (s, ρ,h0,h1), it holds that ‖SampleD(m,α′; ρ)‖ >
α′
√
m.

• There is a collision in random oracle H.
By Lemma 2.3, the first two events occur only with negligible probability. As hash values for H are
sampled uniformly at random from {0, 1}λ, the third event also occurs only with negligible probability.
It follows that

|Pr [badK1 in G5]− Pr [badK1 in G6]| ≤ negl(λ),
|Pr [badK0 in G5]− Pr [badK0 in G6]| ≤ negl(λ).

Finally, we claim that
Pr [badK1 in G6] = Pr [badK0 in G6].

14

Note that once we showed this, the statement follows.
It remains to show the claim. First, fix a point in the execution of the game, and let I ⊆ [N] denote

the set of indices i ∈ [N], for which A did not yet query Corr(i) at this point. Note that the events
badK0 and K1 can only occur for indices in I. We claim that the view of A at this point does not depend
on the bits bi for i ∈ I. This is because the public keys itself do not reveal bi (because both Ui,0 and
Ui,1 have the same distribution), the queries to Enc and Reveal do not reveal bi, and, by Lemma 3.7,
queries to Dec and Check do not reveal bi. Second, note that the events badK0, badK1 are exactly
the same, except for the lists LK,0 and LK,1 that appear in their definition. Also, the lists only differ
depending on the bit bi. As A has no information about bi, and the events badK0 and badK1 occur with
equal probability.

Lemma 3.7 Let 4αα′m < q. Let Z0,Z1 ∈ Zm×λq such that ‖zb,i‖ ≤ α
√
m for all i ∈ [λ], b ∈ {0, 1},

where zb,i denotes column i of Zb. Let par := A ∈ Zn×mq and U0 := AZ0, U1 := AZ1. Assume
that for all outputs (s, ρ,h0,h1) of G and e ← SampleD(m,α′; ρ) it holds that ‖e‖ ≤ α′

√
m. Further,

assume that for each x 6= x′ ∈ {0, 1}∗ we have H(x) 6= H(x′). Then, for each ct = (C0, C1,x, ĥ0, ĥ1) ∈
{0, 1}λ × {0, 1}λ × Zmq × Zλq × Zλq it holds that Decap((Z0, 0), ct) = Decap((Z1, 1), ct).

The proof of the lemma is postponed to Appendix B.

3.3 Construction from Matrix Decisional Diffie-Hellman
We construct an OW-ChCCA secure key encapsulation mechanism based on the (matrix) decisional
Diffie-Hellman assumption [EHK+13], which has deterministic ciphertext derivation. The construction
mimics our lattice-based construction. We postpone the formal description and details to Appendix C.

4 AKE from OW-ChCCA Secure KEMs
A two-message AKE protocol AKE := (Setup′,KG′, Init,DerR,DerI) consists of five algorithms. The setup
algorithm Setup′, on input security parameter 1λ, outputs global AKE system parameters par′. KG′ takes
the system parameters par′ as input and outputs a long-term key pair (pk′, sk′) for one party.

Let Pi and Pj as two parties and (pk′i, sk
′
i) and (pk′j , sk

′
j) be the long-term key pair of Pi and Pj ,

respectively. Figure 7 shows how Pi, (as initiator) establish a shared key with Pj (as responder). To
initialize the session with Pj , Pi runs the initialization algorithm Init, which takes sk′i, pk′j as inputs and
outputs a protocol message Mi and session state st, and then Pi sends Mi to Pj . On receiving Mi, Pj runs
the responder’s derivation algorithm DerR, which takes sk′j , pk′i, and the received message Mi as input,
to generate a responded message Mj and a session key SKj . Pj sends Mj to Pi. Finally, on receiving
Mj , Pi runs the initiator’s derivation algorithm DerI which inputs sk′i, pk′j , the received message Mj , and
the session state st generated before, to generate a session key sk′i. In two-message AKE protocols, the
responder does not need to save session state since it can compute the session key right after receiving
the initiator’s message.

Party Pi : (pk′
i, sk′

i) Party Pj : (pk′
j , sk′

j)

(Mi, st)← Init(sk′
i, pk′

j) Mi

(Mj , SKj)← DerR(sk′
j , pk′

i, Mi)Mj

SKi ← DerI(sk′
i, pk′

j , Mj , st)

st

Figure 7: Illustration for a two-pass AKE protocol execution between party Pi and Pj .

We define the correctness of AKE protocols, stating that an honestly execution between two parties
Pi and Pj as in Figure 7 will produce the same session key SKi = SKj .

Definition 4.1 (AKE Correctness). Let AKE := (Setup′,KG′, Init,DerR,DerI) be a AKE protocol.
We say AKE is ρ-correct, if for any AKE system parameter par′ ← Setup′(1λ), any (pk′i, sk

′
i) ←

15

Alg Setup′(1λ)
01 par← Setup1(1λ)
02 p̃ar← Setup0(1λ)
03 return par′ := (p̃ar, par)

Alg KG′((p̃ar, par))
04 (pk, sk)← KG1(par)
05 k $← {0, 1}κ
06 (pk′, sk′) := (pk, (sk, k)))
07 return (pk′, sk′)

Alg DerR((skj , kj), pk′i, (p̃k, ctj))
08 Kj := Decaps1(sk′j , ctj)
09 if Kj = ⊥: return ⊥
10 (c̃t, K̃)← Encaps0(p̃k)
11 (cti,Ki)← Encaps1(pki)
12 ctxt := (pk′i, pk′j , p̃k, cti, ctj , c̃t)
13 SK := H(ctxt,Ki,Kj , K̃)
14 return ((c̃t, cti),SK)

Alg Init((ski, ki), pk′j , (p̃ar, par))
15 (ctj ,Kj)← Encaps1(pk′j)
16 (p̃k, s̃k)← KG0(p̃ar)
17 st′ := (p̃k, s̃k, ctj ,Kj)
18 IV $← {0, 1}κ
19 st := (IV,G(ki, IV)⊕ st′)
20 return ((p̃k, ctj), st)

Alg DerI((ski, ki), pk′j , (c̃t, cti), st)

21 let (IV, ϕ) := st
22 st′ := G(IV, ki)⊕ ϕ
23 let (p̃k, s̃k, ctj ,Kj) := st′
24 Ki := Decaps1(sk′i, cti)
25 K̃ := Decaps0(s̃k, c̃t)
26 if Ki = ⊥ ∨ K̃ = ⊥: return ⊥
27 ctxt := (pk′i, pk′j , p̃k, cti, ctj , c̃t)
28 SK := H(ctxt,Ki,Kj , K̃)
29 return SK

Figure 8: Our direct AKE protocol AKE. Lines with purple are used to achieve security against internal
states reveal by encrypting state st′. The only difference in our indirect AKE protocol AKEin is that session
keys in Lines 13 and 28 are computed as SK := H(ctxt,H′(pki, cti,Ki),H′(pkj , ctj ,Kj),H′(p̃k, c̃t, K̃)) where
H′ is a different hash function.

KG′(par′), (pk′j , sk
′
j)← KG′(par′), the following probability is at least ρ.

Pr

 SKj = SKi

∣∣∣∣∣∣
(Mi, st)← Init(sk′i, pk′j)

(Mj ,SKj)← DerR(sk′j , pk′i,Mi)
SKi ← DerI(sk′i, pk′j ,Mj , st)

AKE Security Model. Following [JKRS21], we define a game-based AKE security model using pseu-
docode. We use the weak forward secrecy model wFS-St in [JKRS21] which captures some attacks against
AKE such as key-compromise-impersonation (KCI) and maximal-exposure (MEX) and considers weak
forward security. Details of wFS-St model are shown in Appendix D.

4.1 Our AKE Protocol
Let KEM1 = (Setup1,KG1,Encaps1,Decaps1) and KEM0 = (Setup0,KG0,Encaps0,Decaps0) be two KEM
schemes. We construct our direct two-message AKE protocol AKE = (Setup′,KG′, Init,DerR,DerI) as
shown in Figure 8, where H : {0, 1}∗ → SK is a hash function which is used to derive the session key,
and G : {0, 1}κ × {0, 1}κ → {0, 1}d is a hash function which outputs a one-time key to encrypt state. We
assume that any unencrypted state, st′ = (p̃k, s̃k, ctj ,Kj) as in Figure 8 can be encoded as a d-bit string.

In Section 5.1 we show that an OW-ChCCA secure KEM gives us a tight non-committing KEM. By
the work of Jager et al.[JKRS21], this will give us a tightly secure AKE indirectly. This is our second
approach in constructing tightly secure AKE, and it is indirect. The only difference between our direct
protocol AKE and our indirect one AKEin is the session key derivation as described in the caption of
Figure 8.
Correctness. The correctness of our AKE protocol is dependent on KEM1 or KEM0. Suppose that
KEM1 is (1− δ1)-correct and KEM0 is (1− δ0)-correct (cf. Definition 2.1). In our protocol (Figure 8), each
session includes two KEM1 ciphertexts and one KEM0 ciphertext. By the union bound, the probability
that for honest matching sessions sID and sID′, they do not produce the same key is at most 2δ1 + δ0, so
we have the following lemma.

16

Lemma 4.2 If KEM1 is (1− δ1)-correct and KEM0 is (1− δ0)-correct, then the AKE protocol AKE in
Figure 8 is (1− 2δ1 − δ0)-correct.

Security. Theorem 4.3 shows that if KEM1 and KEM0 are OW-ChCCA, and G and H are modeled as
random oracles, then AKE is tightly wFS-St secure. We postpone the proof of Theorem 4.3 to Appendix E.

Theorem 4.3 Let H : {0, 1}∗ → SK and G : {0, 1}κ × {0, 1}κ → {0, 1}d be random oracles. If KEM1 is
(1− δ1)-correct for δ1 = negl(λ) and OW-ChCCA secure with γ1 = ω(log(λ)) bits ciphertext entropy and
µ1 = ω(log(λ)) bits public key entropy, and KEM0 is (1− δ0)-correct for δ0 = negl(λ) and OW-ChCCA
secure with γ0 = ω(log(λ)) bits ciphertext entropy and µ0 = ω(log(λ)) bits public key entropy, then the
AKE protocol AKE in Figure 8 is wFS-St secure.

For any PPT adversary A against wFS-St security of AKE, there are PPT algorithm B1 and B0 with
T(A) ≈ T(B1) and T(A) ≈ T(B0) and

AdvwFS-St
A,AKE(λ) ≤ 2AdvOW-ChCCA

B1,KEM1
(λ) + 2AdvOW-ChCCA

B0,KEM0
(λ)

+ 2δ1 + 2δ0 + (N + 1) · S ·QG
2κ−1 + 2(Q2

H + S2)
|SK|

+ 2S · (QH + S) ·
(

1
2γ1

+ 1
2γ0

+ 1
2µ0

)
+ Q2

G +N2 + S2

2d−1 ,

where QG and QH are the numbers of queries to G and H, respectively. N and S are numbers of parties
and sessions in the wFS-St security game, respectively.

5 Further Applications of OW-ChCCA Security
We propose further applications of OW-ChCCA security. Namely, from an OW-ChCCA secure key
encapsulation mechanism, we can tightly construct the following schemes:

• A non-committing key encapsulation mechanism, which implies a tightly secure AKE by [JKRS21].
The resulting AKE protocol, AKEin, is described as in Figure 8;

• A public-key encryption scheme with simulation-based bi-selective opening security;
• A key encapsulation mechanism with enhanced CCA security [HLG21]. Since it is not the main

result of our paper, we postpone this application to Appendix F.

5.1 Non-Committing Key Encapsulation Mechanism

Definition. We recall the definition of non-committing key encapsulation mechanisms (KEM) [JKRS21].

Definition 5.1 (N -Receiver Non-Committing KEM). Let KEM = (Setup,Gen,Encap,Decap) be a key
encapsulation mechanism which is relative to a simulator Sim = (SimGen,SimEncaps,SimHash). We define
games NCreal and NCsim as in Figure 9. The simulator Sim is only used in NCsim. We say KEM is NC-CCA
secure, if for all PPT adversaries A, A’s advantage is negligible:

AdvNC-CCA
KEM,Sim,A(λ) :=

∣∣∣Pr
[
NCAreal(λ)⇒ 1

]
− Pr

[
NCAsim(λ)⇒ 1

]∣∣∣
Construction. In Figure 10, we transform a OW-ChCCA secure KEM0 = (Setup0,Gen0,Encaps0,
Decaps0) into a NC-CCA secure KEM scheme KEM = (Setup,Gen,Encaps,Decaps) using a random
oracle H : {0, 1}∗ → {0, 1}κ, where κ = ω(log(λ)) is the key length of KEM. Following the definition in
[JKRS21], Encaps and Decaps are associated with H. Namely, different users have access to different
random oracles.

Theorem 5.2 Let N be the number of users and let Hi for i ∈ [N] be random oracles. If KEM0 is
OW-ChCCA secure, (1− δ0)-correct for δ0 = negl(λ), and has γ0 = ω(log(λ)) bits of ciphertext entropy,
then KEM is NC-CCA secure.

Concretely, for any PPT algorithm A, there is a PPT algorithm B such that T(A) ≈ T(B) and

AdvNC-CCA
KEM,Sim,A(λ) ≤ 2 · AdvOW-ChCCA

B,KEM0
(λ) + 3δ0 + Q2

H +Q2
E

2κ−1 + NQE(QH + 2QD)
2γ0

,

17

Game NCAreal(λ) and NCAsim(λ)
01 par← Setup(1λ)
02 for i ∈ [N] :
03 (pki, ski)← Gen(par)
04 (pki, ski)← SimGen(par)
05 openedi := 0
06 Di := ∅, Ci := ∅, CKi := ∅,Hi := ∅
07 b← AO(par, (pki)i∈[N])
08 return b

Oracle Hi(M) // i ∈ [N]
09 if ∃h s.t. (M,h) ∈ Hi: return h
10 h $← {0, 1}κ
11 if opened[i]:
12 h← SimHash(pki, ski, CKi,Di,Hi,M)
13 else h← SimHash(pki, ski, Ci,Di,Hi,M)
14 Hi := Hi ∪ {(M,h)}
15 return h

Oracle Open(i ∈ [N])
16 opened[i] := 1
17 return ski
Oracle Encaps(i ∈ [N])
18 (ct,K)← EncapHi(pki)
19 ct← SimEncaps(pki, ski)
20 K $← K
21 CKi := CKi ∪ {(ct,K)}
22 Ci := Ci ∪ {ct}
23 return (ct,K)

Oracle Decaps(i ∈ [N], ct)
24 if ct ∈ Ci: return ⊥
25 K := DecapHi(ski, ct)
26 Di := Di ∪ {ct}
27 return K

Figure 9: NCAreal(λ) and NCAsim(λ) for an adversary A and KEM = (Setup,Gen,Encap,Decap) with simula-
tion processes (SimGen,SimEncaps,SimHash). Algorithms Encap and Decap have oracle access to H, but
not SimEncaps. A has access to O := {H1, ...,HN ,Encaps,Decaps,Open}. Highlighted lines are only
executed in NCAsim(λ).

Alg EncapsH(pk)
01 (ct, ψ)← Encaps0(pk)
02 return (ct,K := H(ct, ψ))

Alg DecapsH(sk, ct)
03 ψ′ := Decaps0(sk, ct)
04 if ψ′ = ⊥: K ′ := ⊥
05 else K ′ := H(ct, ψ′)
06 return K ′

Alg SimEncaps(pk, sk)
07 (ct, ψ)← Encaps0(pk)
08 return ct

Alg SimHash(pk, sk, Ei,Di,Hi,M = (ct, ψ))
09 if ∃K s.t. (ct,K) ∈ Ei ∧ Decaps0(sk, ct) = ψ :
10 h := K
11 else : h $← {0, 1}κ
12 return h

Figure 10: Key encapsulation mechanism KEM = (Setup,Gen,Encaps,Decaps) based on a KEM scheme
KEM0 = (Setup0,Gen0,Encaps0,Decaps0) and random oracle H, where Setup = Setup0 and Gen = Gen0.
Sim = (SimGen,SimEncaps,SimHash) is a simulator of KEM, where SimGen = Gen. Ei is either Ci or CKi.
Hi is a list that records the RO queries to Hi.

where QD, QE, and QH are the numbers of A’s queries to Decaps,Encaps, and {Hi}i∈[N], respectively,
and B also queries Enc QE times.

Proof. Let A be an adversary against KEM in the NCKEM
real (λ) game, where N is the number of users. Each

user i ∈ [N] is associated with public key pki. We prove Theorem 5.2 with games as defined in Figure 11
and Figure 12.
Game G0: This game is the same as NCKEM

real (λ), except that we exclude the collision among the outputs
of Hi for all i ∈ [N], and assume that challenge ciphertexts generated in Encaps are never been issued to
Decaps before (i.e., if Encaps(i) outputs a ciphertext ct, then ct /∈ Di). If such a collision happens at
any time, then we abort the game. We do not explicitly define such events in the code for readability. By
a union bound and the ciphertext entropy of KEM0, we have∣∣∣Pr

[
NCKEM,A

real (λ)⇒ 1
]
− Pr

[
GA0 ⇒ 1

]∣∣∣ ≤ Q2
H +Q2

E
2κ + NQEQD

2γ0
.

Game G1: We modify the generation of challenge keys and simulation of {Hi}i∈[N]. In Encaps(i), we
generate the key K by independent uniform sampling from the key space {0, 1}κ (Line 20), and record

18

Game G0-G3
01 par← Setup0(1λ)
02 for i ∈ [N] :
03 (pki, ski)← Gen0(par)
04 opened[i] := 0
05 Di := ∅, Ci := ∅
06 Hi := ∅, CKi := ∅
07 CKow

i := ∅ �G1-G2
08 b← AO(par, (pki)i∈[N])
09 return b

Oracle Open(i ∈ [N])
10 openedi := 1
11 return ski
Oracle Decaps(i ∈ [N], ct)
12 if ct ∈ Ci: return ⊥
13 Di := Di ∪ {ct}
14 ψ′ := Decaps0(ski, ct)
15 if ψ′ = ⊥: K ′ := ⊥
16 else : K ′ := H(ct, ψ′)
17 return K ′

Oracle Encaps(i ∈ [N])
18 (ct, ψ)← Encaps0(pki)
19 K := Hi(ct, ψ) �G0
20 K $← {0, 1}κ �G1-G3
21 CKow

i := CKow
i ∪ {(ct, ψ,K)} �G1

22 CKi := CKi ∪ {(ct,K)}
23 Ci := Ci ∪ {ct}
24 return (ct,K)

Oracle Hi(ct, ψ) // i ∈ [N]
25 if ∃K s.t. (ct, ψ,K) ∈ Hi : return K
26 K $← {0, 1}κ
27 if ∃K ′ s.t. (ct, ψ,K ′) ∈ CKow

i : �G1
28 K := K ′ �G1
29 if ct ∈ Ci ∧ ¬opened[i] �G2
30 ∧Decaps0(ski, ct) = ψ : �G2
31 abort �G2
32 if opened[i] : �G2-G3
33 if ∃K ′ s.t. (ct,K ′) ∈ CKi �G2-G3
34 ∧Decaps0(ski, ct) = ψ : �G2-G3
35 K := K ′ �G2-G3
36 Hi := Hi ∪ {(ct, ψ,K)}
37 return K

Figure 11: The games G0-G3 in the proof of Theorem 5.2. Lines with highlighted comments are only
executed in the corresponding games.

(ct, ψ,K) in a list CKow
i (Line 21). When the adversary queries Hi on (ct, ψ), if (ct, ψ) is generated in

Encaps(i), then we return K where (ct, ψ,K) ∈ CKow
i (Lines 27 to 28).

This modification does not change the view of A unless Encaps(i) generates some (ct, ψ) that A
queried Hi on (ct, ψ). By the ciphertext entropy of KEM0, we have∣∣∣Pr

[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣∣ ≤ NQEQH
2γ0

.

Game G2: We introduce an abort rule in Hi and modify the simulation of Hi for each i ∈ [N]:
• If A queries Hi on (ct, ψ), where ct is a challenge ciphertext wrt pki, ψ is the KEM0 key of ct, and

user i is not opened (opened[i] = 0), then the game aborts (Lines 29 to 31). Let badow be the event
that A issued such queries to Hi for some i ∈ [N].

• When A queries Hi on (ct, ψ), if user i is opened (opened[i] = 1) and ψ is the KEM0 key of ct, then
we return K where (ct,K) is recorded in CKi (Lines 32 to 35).

We claim that if badow does not happen, then the view of A in G1 is the same as in G2. Suppose that
badow does not happen in G1. For any unopened user i, A never queries the hash input (ct, ψ) of the
challenge keys of user i, which means that Hi(ct, ψ) will never be defined and the code in Lines 27 to 28
will never be executed (until user i is opened). That is, the code in Lines 27 to 28 is executed only if user i
is opened. By definition of CKow

i , (ct, ψ,K ′) ∈ CKow is equivalent to (ct,K ′) ∈ CKi ∧Decaps0(ski, ct) = ψ.
So, the code in Lines 32 to 35 is a rephrasing of Lines 27 to 28. Lemma 5.3 bounds the difference between
G1 with G2. For readability, we postpone the proof of Lemma 5.3 and continue the proof of Theorem 5.2.

Lemma 5.3 With the notation and assumptions from the proof of Theorem 5.2, there is a PPT algorithm
B with T(B) ≈ T(A) and∣∣∣Pr

[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣∣ ≤ Pr [badow] ≤ AdvOW-ChCCA
B,KEM0

(λ) + δ0,

where B is a PPT algorithm with T(B) ≈ T(A).

19

Game G4
01 par← Setup0(1λ)
02 for i ∈ [N] :
03 (pki, ski)← SimGen(par)
04 opened[i] := 0
05 Di := ∅, Ci := ∅
06 Hi := ∅, CKi := ∅
07 return b← AO(par, (pki)i∈[N])

Oracle Hi(ct, ψ) // i ∈ [N]
08 if ∃K s.t. (ct, ψ,K) ∈ Hi : return K
09 K $← {0, 1}κ
10 if opened[i] :
11 K := SimHash(pk, sk, CKi,Di,Hi,M)
12 else : K := SimHash(pk, sk, Ci,Di,Hi,M)
13 Hi := Hi ∪ {(ct, ψ,K)}
14 return K

Oracle Encaps(i ∈ [N])
15 ct← SimEncaps(pki, ski)
16 K $← {0, 1}κ
17 CKi := CKi ∪ {(ct,K)}
18 Ci := Ci ∪ {ct}
19 return (ct,K)

Oracle Open(i ∈ [N])
20 openedi := 1
21 return ski
Oracle Decaps(i ∈ [N], ct)
22 if ct ∈ Ci: return ⊥
23 Di := Di ∪ {ct}
24 ψ′ := Decaps0(ski, ct)
25 if ψ′ = ⊥: K ′ := ⊥
26 else K ′ := H(ct, ψ′)
27 return K ′

Figure 12: Game G4 in the proof of Theorem 5.2. The differences to G3 are highlighted.

Game G3: We undo the abort rules defined in G2. The difference between G2 with G3 is that if A
triggers such abort events, G3 will not abort. So, by Lemma 5.3, we have∣∣∣Pr

[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣∣ ≤ AdvOW-ChCCA
B,KEM0

(λ) + δ0,

Game G4: We rewrite the code of G3 in Figure 12 to follow the syntax of the game NCAsim(λ) (Figure 9).
Specifically, in G4, key pairs {(pki, ski)}i∈[N] are generated by SimGen (which is the same as Gen),
challenge ciphertexts are generated by SimEncaps (Figure 10), and we use SimHash to handle queries to
random oracles {Hi}i∈[N] (Figure 10).

One can check that G4 is equivalent to G3, and is the same as the game NCAsim(λ). Note that at
the start of the proof we assume that there is no collision among the outputs of Hi for all i ∈ [N] and
challenge ciphertexts generated in Encaps(i) are never been issued to Decaps(i) before for all i. We
have ∣∣∣Pr

[
GA4 ⇒ 1

]
− Pr

[
NCAsim(λ)⇒ 1

]∣∣∣ ≤ Q2
H +Q2

E
2κ + NQEQD

2γ0
.

By combining all the probability bounds, we obtain the statement.

of Lemma 5.3. To bound Pr [badow], we construct an adversary B that simulates G2 (Figure 11) for A
and against OW-ChCCA security of KEM0. By Definition 3.1 and Figure 3, B is given parameters par, N
public keys, and oracle accesses to Enc,Dec,Corr,Check. Reduction B is given in Figure 13.

In Figure 13, the simulations of Decaps and Open are straightforward. In Encaps(i), B generates
challenge ciphertext by querying Enc(i). Since B does not know the KEM0 keys of challenge ciphertexts
generated via Enc(i) and ski before A opens party i’s secret key, to simulate G2, B uses the Check
oracle to determine whether Decaps0(ski, ct) = ψ or not.

If badow happens, which means that A queries Hi on (ct, ψ) where ψ is the KEM0 key of a challenge
ciphertext ct wrt pki and party i is unopened, then by the simulation of Hi in Figure 13, B can detect
such query and get the KEM0 key of the challenge ciphertext ct. Therefore, if badow happens, B finally
outputs ψ∗ such that ψ∗ is the one-way solution of some challenge ciphertext ct wrt pki and B never issue
Corr(i). By Definition 3.1 and Figure 3, B wins the OW-ChCCAKEM(λ) game. Note that we also need
to count in the correctness bound of KEM0, since KEM0 is imperfect, (ct, ψ) ← Encaps0(pki) does not
always imply ψ = Decaps0(ski, ct). By the argument of G2 in the proof of Theorem 5.2, we have∣∣∣Pr

[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣∣ ≤ Pr [badow] ≤ AdvOW-ChCCA
B,KEM0

(λ) + ε0.

20

BEnc,Dec,Corr,Check(par, (pki)i∈[N])
01 ψ∗ := ⊥
02 for i ∈ [N] :
03 opened[i] := 0
04 Di := ∅, Ci := ∅
05 Hi := ∅, CKi := ∅
06 b← AO(par, (pki)i∈[N])
07 return ψ∗

Oracle Open(i ∈ [N])
08 openedi := 1
09 return ski :=Corr(i)

Oracle Decaps(i ∈ [N], ct)
10 if ct ∈ Ci: return ⊥
11 Di := Di ∪ {ct}
12 ψ′ := Dec(i, ct)
13 if ψ′ = ⊥: K ′ := ⊥
14 else : K ′ := H(ct, ψ′)
15 return K ′

Oracle Encaps(i ∈ [N])
16 ct← Enc(i), K $← {0, 1}κ
17 CKi := CKi ∪ {(ct,K)}
18 Ci := Ci ∪ {ct}
19 return (ct,K)

Oracle Hi(ct, ψ) // i ∈ [N]
20 if ∃K s.t. (ct, ψ,K) ∈ Hi :
21 return K
22 K $← {0, 1}κ
23 if ct ∈ Ci ∧ ¬opened[i]
24 ∧ Check(i, ct, ψ) :
25 ψ∗ := ψ �record the solution
26 abort and return ψ∗

27 if opened[i] :
28 if ∃K ′ s.t. (ct,K ′) ∈ CKi
29 ∧ Check(i, ct, ψ)
30 K := K ′

31 Hi := Hi ∪ {(ct, ψ,K)}
32 return K

Figure 13: The reduction B in the proof of Lemma 5.3. It uses the oracles (highlighted) provided by
game OW-ChCCAKEM(λ) to simulate G4.

5.2 From OW-ChCCA to SIM-BiSO-CCA
We construct a bilateral selective-opening (i.e., SIM-BiSO-CCA) secure public-key encryption tightly from
any OW-ChCCA KEM with deterministic ciphertext derivation. With KEMs in Section 3, we obtain the
first tightly SIM-BiSO-CCA secure public-key encryption scheme. SIM-BiSO-CCA security [LYHW21] is a
stronger simulation-based security notion for PKE in the multi-user setting. It models selective-opening
attacks on both sender and receiver sides. Concreteley, in this notion, the adversary can learn some
senders’ plaintexts and the randomness used for encryption and corrupt some receivers’ secret keys.
SIM-BiSO-CCA security guarantees that such an adversary should not learn more than these. The formal
definitions of PKE and SIM-BiSO-CCA security are given in Appendix G.

Let KEM = (Setup,Gen,Encap,Decap) be a KEM. We construct PKE = (Setup,Gen,Enc,Dec) in
Figure 14 using random oracles H : {0, 1}∗ → {0, 1}λ×{0, 1}λ and G : {0, 1}∗ → {0, 1}λ. We show that if
KEM is OW-ChCCA secure and has deterministic ciphertext derivation, then PKE is tightly SIM-BiSO-CCA
secure. The formal statement and proof are postponed to Appendix G.

Alg Enc(pk,m)
01 (ct0,K)← Encap(pk)
02 (k(e), k(m)) := H(ct0,K)
03 ct1 := k(e) ⊕m, ct2 := G(k(m), ct1)
04 return ct := (ct0, ct1, ct2)

Alg Dec(sk, ct = (ct0, ct1, ct2))
05 K := Decap(sk, ct0)
06 (k(e), k(m)) := H(ct0,K)
07 if G(k(m), ct1) 6= ct2 : return ⊥
08 return m := ct1 ⊕ k(e)

Figure 14: PKE = (Setup,Gen,Enc,Dec) from KEM = (Setup,Gen,Encap,Decap). H : {0, 1}∗ → {0, 1}λ ×
{0, 1}λ and G : {0, 1}∗ → {0, 1}λ are random oracles. Setup and key generation algorithms in PKE are
the same as those in KEM.

References
[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions

and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS,
pages 143–158. Springer, Heidelberg, April 2001. (Cited on page 2.)

21

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding,
revisited - new reduction, properties and applications. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 57–74. Springer, Heidelberg,
August 2013. (Cited on page 6.)

[BBDQ18] Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach. Hash proof systems over
lattices revisited. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume
10770 of LNCS, pages 644–674. Springer, Heidelberg, March 2018. (Cited on page 2, 3.)

[BHJ+15] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. Tightly-secure
authenticated key exchange. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part I, volume 9014 of LNCS, pages 629–658. Springer, Heidelberg, March 2015. (Cited on
page 2.)

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 575–584. ACM Press, June 2013. (Cited on page 6.)

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Heidelberg,
August 1994. (Cited on page 1.)

[CCG+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, Håkon Jacobsen, and Tibor Jager.
Highly efficient key exchange protocols with optimal tightness. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 767–797.
Springer, Heidelberg, August 2019. (Cited on page 4.)

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 453–474. Springer, Heidelberg, May 2001. (Cited on page 1.)

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An
efficient post-quantum commutative group action. In Thomas Peyrin and Steven Galbraith,
editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 395–427. Springer,
Heidelberg, December 2018. (Cited on page 5.)

[DG21] Hannah Davis and Felix Günther. Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. In Kazue Sako and Nils Ole Tippenhauer, editors, ACNS 21, Part II, volume
12727 of LNCS, pages 448–479. Springer, Heidelberg, June 2021. (Cited on page 2.)

[DJ21] Denis Diemert and Tibor Jager. On the tight security of TLS 1.3: Theoretically sound
cryptographic parameters for real-world deployments. Journal of Cryptology, 34(3):30, July
2021. (Cited on page 2.)

[dKGV21] Bor de Kock, Kristian Gjøsteen, and Mattia Veroni. Practical isogeny-based key-exchange
with optimal tightness. In Orr Dunkelman, Michael J. Jacobson, Jr., and Colin O’Flynn,
editors, Selected Areas in Cryptography, pages 451–479, Cham, 2021. Springer International
Publishing. (Cited on page 5.)

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August
2013. (Cited on page 3, 15, 27.)

[GHKW16] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly CCA-secure encryption
without pairings. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 1–27. Springer, Heidelberg, May 2016. (Cited on page 27.)

[GJ18] Kristian Gjøsteen and Tibor Jager. Practical and tightly-secure digital signatures and authen-
ticated key exchange. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 95–125. Springer, Heidelberg, August 2018. (Cited on
page 2, 4.)

22

[GPV07] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. Cryptology ePrint Archive, Report 2007/432, 2007.
https://eprint.iacr.org/2007/432. (Cited on page 6.)

[HJK+21] Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin Pan, Doreen Riepel, and Sven Schäge.
Authenticated key exchange and signatures with tight security in the standard model. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages
670–700, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 2.)

[HKSU20] Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic authenticated
key exchange in the quantum random oracle model. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages
389–422. Springer, Heidelberg, May 2020. (Cited on page 2, 4.)

[HLG21] Shuai Han, Shengli Liu, and Dawu Gu. Key encapsulation mechanism with tight enhanced
security in the multi-user setting: Impossibility result and optimal tightness. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume 13091 of LNCS,
pages 483–513. Springer, Heidelberg, December 2021. (Cited on page 4, 17, 42.)

[JKRS21] Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. Tightly-secure authenticated
key exchange, revisited. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 117–146. Springer, Heidelberg, October
2021. (Cited on page 2, 3, 4, 5, 16, 17, 30, 41.)

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 546–566. Springer, Heidelberg,
August 2005. (Cited on page 3.)

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based
authenticated key exchange from lattices. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 636–652. Springer, Heidelberg, December 2009. (Cited on
page 2.)

[KYY18] Shuichi Katsumata, Shota Yamada, and Takashi Yamakawa. Tighter security proofs for GPV-
IBE in the quantum random oracle model. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 253–282. Springer, Heidelberg,
December 2018. (Cited on page 3, 6, 9.)

[LLGW20] Xiangyu Liu, Shengli Liu, Dawu Gu, and Jian Weng. Two-pass authenticated key exchange
with explicit authentication and tight security. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 785–814. Springer, Heidelberg,
December 2020. (Cited on page 2.)

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec 2007, volume
4784 of LNCS, pages 1–16. Springer, Heidelberg, November 2007. (Cited on page 1.)

[LSSS17] Benoît Libert, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. All-but-many lossy trapdoor
functions and selective opening chosen-ciphertext security from LWE. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 332–364.
Springer, Heidelberg, August 2017. (Cited on page 3.)

[LYHW21] Junzuo Lai, Rupeng Yang, Zhengan Huang, and Jian Weng. Simulation-based bi-selective
opening security for public key encryption. In Mehdi Tibouchi and Huaxiong Wang, editors,
ASIACRYPT 2021, Part II, volume 13091 of LNCS, pages 456–482. Springer, Heidelberg,
December 2021. (Cited on page 4, 21.)

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press, October 2004. (Cited
on page 6.)

23

https://eprint.iacr.org/2007/432

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990. (Cited on
page 3.)

[OP01] Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS,
pages 159–175. Springer, Heidelberg, April 2001. (Cited on page 3, 7.)

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: ex-
tended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM
Press, May / June 2009. (Cited on page 6.)

[PQR21] Jiaxin Pan, Chen Qian, and Magnus Ringerud. Signed diffie-hellman key exchange with
tight security. In Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of LNCS, pages
201–226. Springer, Heidelberg, May 2021. (Cited on page 2.)

[PW22] Jiaxin Pan and Benedikt Wagner. Lattice-based signatures with tight adaptive corruptions
and more. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022,
Part II, volume 13178 of LNCS, pages 347–378. Springer, 2022. (Cited on page 2.)

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005. (Cited on page 2, 4, 6.)

[ZY17] Jiang Zhang and Yu Yu. Two-round PAKE from approximate SPH and instantiations from
lattices. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume
10626 of LNCS, pages 37–67. Springer, Heidelberg, December 2017. (Cited on page 2.)

24

Appendix

A Omitted Definitions
Definition A.1 (Ciphertext Entropy). Let KEM = (Setup,Gen,Encap,Decap) be a key encapsulation
mechanism and h ∈ N. We say that KEM has h bits of ciphertext entropy if the following holds for all
par ∈ Setup(1λ), all (pk, sk) ∈ Gen(par), and all ct0 ∈ C:

Pr [ct = ct0 | (ct,K)← Encap(pk)] ≤ 2−h.

Definition A.2 (Public Key Entropy). Let KEM = (Setup,Gen,Encap,Decap) be a key encapsulation
mechanism and h ∈ N. We say that KEM has h bits of public key entropy if the following holds for all
par ∈ Setup(1λ), all (pk, sk) ∈ Gen(par), and all pk0 ∈ P:

Pr [pk = pk0 | (pk, sk)← Gen(par)] ≤ 2−h.

B Omitted Proofs from Section 3.2
Lemma B.1 Let 4α′αm < q. Then KEMLWE is ρ-correct, for ρ ≥ 1− negl(λ).

Proof. Let par = A $← Zn×mq . Let pk = (U0,U1) and sk = (Zb, b) be output of Gen(par). Note that it
is sufficient to show that h′b = hb, where these values are as in the definition of algorithms Encap and
Decap, respectively. The rest follows easily by inspection. We have

h′b = Round(ĥb − Ztbx) = Round(Ut
bs + h0bq/2e − Ztbx)

= Round(ZtbAts + hbbq/2e − Ztb(Ats + e)) = Round(hbbq/2e − Ztbe).

This is equal to hb, if each entry zi ∈ Zq, i ∈ [λ], of Ztbe satisfies |zi| < q/4. Denote column i of Zb by
zb,i ∈ Zmq for i ∈ [λ]. Then, with overwhelming probabilility, we have ‖zb,i‖ ≤ α

√
m for all i ∈ [λ] and

‖e‖ ≤ α′
√
m. We can conclude with

|zi| = |ztb,ie| ≤ ‖zb,i‖‖e‖ ≤ αα′m ≤ q/4.

of Lemma 3.4. Fix a query of the form Enc(i). In this query, the value R is sampled uniformly at random
from {0, 1}λ. Thus, the probability that G(R) is already defined before the query is at most QG · 2−λ.
Next, we bound the probability that A queries G(R) after this query, but before the corresponding queries
of the form Corr(i) or Reveal(i, ct), where ct is the ciphertext returned by the query of interest. We
call this event badR′. Note that in G3, as soon as event badK occurs, the game aborts. Therefore, badR′
can only occur, if the adversary did neither query H(x, ĥ0,h0) nor H(x, ĥ1,h1) before it queries G(R).
Note that in this case, these hash values K̂0 := H(x, ĥ0,h0) and K̂1 := H(x, ĥ1,h1) are uniform from
A’s point of view, which means that the values C0 = K̂0 ⊕R and C1 = K̂1 ⊕R reveal nothing about R.
Thus, in each query that could trigger badR′, the value R is still uniform for A, which means that we can
upper bound the probability of badR′ by QG · 2−λ. The claim follows.

of Lemma 3.7. We first introduce some notation and terminology. Namely, we refer to the execution
Decap((Z0, 0), ct) as the left execution, and to the execution Decap((Z1, 1), ct) as the right execution.
Accordingly, when we want to refer to variables used in the left or right execution, we denote them
with superscripts l and r, respectively. For example, el refers to the variable e that is computed in the
left execution, and K̂r

1 refers to the variable K̂1 computed in the right execution. As the ciphertext
ct = (C0, C1,x, ĥ0, ĥ1) is the same in both executions, we omit the superscripts here.

To prove the claim, we will consider the following cases:

a) Both the left and the right execution output ⊥.

b) The left execution outputs Rl 6= ⊥, and the right execution outputs ⊥.

25

c) The left execution outputs Rl 6= ⊥, and the right execution outputs Rr 6= ⊥, and we have Rl = Rr.

d) The left execution outputs Rl 6= ⊥, and the right execution outputs Rr 6= ⊥, and we have Rl 6= Rr.

By symmetry, this covers all the cases. Also, for the first and third case we are done. Thus, our goal is to
derive a contradiction for cases b) and d).

To do that, we first show the following claims:

1. If the left execution outputs Rl 6= ⊥, and K̂l
1 6= K̂r

1 , then h′r1 6= hl1.

2. If the left execution outputs Rl 6= ⊥, and Rl 6= Rr, then h′r1 6= hl1.

3. If the left execution outputs Rl 6= ⊥, and h′r1 6= hl1, then we arrive at a contradiction.

Proof of Claim 1. We have K̂l
1 6= K̂r

1 . By the definition of K̂1, this implies H(x, ĥ′l1 ,hl1) 6= H(x, ĥ1,h′r1).
As the left execution does not return ⊥, we know that ĥ1 = ĥ′l1 , and therefore it follows that hl1 6= h′r1 .

Proof of Claim 2. We have Rl 6= Rr. Plugging in the definition of Rr, we get Rl 6= C1 ⊕ K̂r
1 . As the left

execution does not return ⊥, we get C1 ⊕ K̂l
1 6= C1 ⊕ K̂r

1 , which implies K̂l
1 6= K̂r

1 . Then we can use
Claim 1.

Proof of Claim 3. As the left execution does not return ⊥, we know that ĥ1 = ĥ′l1 and x = Atsl + el
holds. This implies that

h′r1 = Round(ĥ1 − Zt1x) = Round(ĥ′l1 − Zt1x) = Round(Ut
1sl + hl1bq/2e − Zt1x)

= Round(hl1bq/2e − Zt1el) = hl1,

where the last equality follows from our assumptions about the norm of Z1 and el. Clearly, this is a
contradiction.

Contradiction for Case b). Consider the case where the left execution outputs Rl 6= ⊥, and the right
execution outputs ⊥. We consider four sub-cases, according to the different options that let the right
execution output ⊥.

1. Sub-Case of Case b): x 6= Atsr + er. As the left execution does not output ⊥, we know that
x = Atsl + el. Therefore, it must hold that Rl 6= Rr. Using Claim 2 and then Claim 3 we get a
contradiction.

2. Sub-Case of Case b): K̂r
0 ⊕Rr 6= C0. In this case, we first use the definition of R to get

K̂r
0 ⊕ C1 ⊕ K̂r

1 6= K̂l
0 ⊕Rl.

As the left execution does not abort, we can derive

K̂r
0 ⊕ C1 ⊕ K̂r

1 6= K̂l
0 ⊕ C1 ⊕ K̂l

1 =⇒ K̂r
0 ⊕ K̂r

1 6= K̂l
0 ⊕ K̂l

1.

Without loss of generality, assume that K̂r
1 6= K̂l

1. Then, we use Claim 1 and Claim 3 to get a
contradiction.

3. Sub-Case of Case b): h′r1 6= hr1. In this case, first assume that hr1 = hl1. Then we have h′r1 6= hl1 and
we can apply Claim 3 to get a contradiction. So assume that hr1 6= hl1. This implies that Rl 6= Rr,
and we can apply Claim 2 and then Claim 3 to get a contradiction.

4. Sub-Case of Case b): ĥ′r0 6= ĥ0 and K̂r
0 = Rr ⊕ C0. As we assume no collision for H, this implies

that we have K̂l
0 6= K̂r

0 . Using the definition of Rl and the assumption made about K̂r
0 we get

Rl ⊕ C0 6= Rr ⊕ C0, which implies Rl 6= Rr. We can now use Claim 2 and Claim 3 to get a
contradiction.

Contradiction for Case d). If both executions do not output ⊥, but they output different Rl 6= Rr, then
we can apply Claim 2 and then Claim 3 to obtain a contradiction.

26

Alg Setup(1λ)
01 (G, g, p)← GGen(1λ)
02 [A] $← G(k+1)×(k+1)

03 return par := (G, g, p, [A])

Alg Gen(par)
04 b $← {0, 1}, zb $← Zk+1

p

05 [ub] := [Azb], [u1−b] $← Gk+1

06 pk := ([u0], [u1]), sk := (zb, b)
07 return (pk, sk)

Alg Encap(pk)
08 R $← {0, 1}λ, (s, h0, h1) := G(R)
09 [x] := [Ats] ∈ Gk+1

10 ĥ0 := [stu0]⊕ h0 ∈ {0, 1}log p

11 ĥ1 := [stu1]⊕ h1 ∈ {0, 1}log p

12 K̂0 := H([x], ĥ0, h0), C0 := K̂0 ⊕R
13 K̂1 := H([x], ĥ1, h1), C1 := K̂1 ⊕R
14 ct := (C0, C1, [x], ĥ0, ĥ1)
15 return (ct,K := R)

Alg Decap(sk, ct)
16 let ct = (C0, C1, [x], ĥ0, ĥ1)
17 let sk = (zb, b)
18 h′b := ĥb ⊕ [ztbx] ∈ {0, 1}log p

19 K̂b := H([x], ĥb, h′b)
20 R := Cb ⊕ K̂b

21 (s, h0, h1) := G(R)
22 ĥ′1−b := [stu1−b]⊕ h1

23 K̂1−b := H([x], ĥ′1−b, h1−b)
24 ifx 6= [Ats] : return ⊥
25 if K̂1−b ⊕R 6= C1−b : return ⊥
26 if h′b 6= hb : return ⊥
27 if ĥ′1−b 6= ĥ1−b : return ⊥
28 return K := R

Figure 15: The key encapsulation mechanism KEMMDDH = (Setup,Gen,Encap,Decap), where H : {0, 1}∗ →
{0, 1}λ and G : {0, 1}∗ → Zk+1

p × {0, 1}log p × {0, 1}log p are random oracles.

C Postponed Construction fromMatrix Decisional Diffie-Hellman
In this section, we give a construction of an OW-ChCCA secure key encapsulation mechanism based on the
(matrix) decisional Diffie-Hellman assumption [EHK+13]. We first recall the assumption and necessary
notation. Let GGen be a group generation algorithm, that outputs (G, g, p) on input 1λ, where G is the
description of a cyclic group of prime order p ≥ 2λ with generator g ∈ G. To represent a group element
ga for a ∈ Zp, we use the implicit notation [a] following [EHK+13]. This naturally extends to matrices
and vectors. Let n, k, ` ∈ N,A ∈ Zn×kp , and B ∈ Zk×`p . Then, one can compute [AB] ∈ Gn×` efficiently,
given either A and [B], or [A] and B. Next, we recall the k-MDDH assumption, which corresponds to
the standard DDH assumption for k = 1.

Definition C.1 (MDDH Assumption). Let k ∈ N. We say that the k-MDDH assumption holds relative
to GGen, if for every PPT algorithm B the following advantage is negligible in λ:

Advk-MDDH
B (λ) :=

∣∣∣∣∣Pr
[
B(G, g, p, [A], [b]) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
A $← Z(k+1)×k

p ,b $← Zk+1
p

]

− Pr
[
B(G, g, p, [A], [b]) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),x $← Zkp,
A $← Z(k+1)×k

p ,b := Ax

]∣∣∣∣∣.
The assumption remains tightly equivalent if we increase the number of rows of A, see [GHKW16].

Fix an integer k ≥ 2. Our key encapsulation mechanism KEMMDDH is formally given in Figure 15.
It makes use of random oracles H : {0, 1}∗ → {0, 1}λ and G : {0, 1}∗ → Zk+1

p × {0, 1}log p × {0, 1}log p.
Perfect correctness and deterministic ciphertext derivation of the scheme follows easily by inspection.

Theorem C.2 Let H : {0, 1}∗ → {0, 1}λ and G : {0, 1}∗ → Zk+1
p ×{0, 1}log p×{0, 1}log p be random oracles.

If the (k−1)-MDDH assumption holds relative to GGen, then the scheme KEMMDDH is OW-ChCCA secure.
Concretely, for any PPT algorithm A there is a PPT algorithm B with T(A) ≈ T(B) and

AdvOW-ChCCA
A,KEMMDDH

(λ) ≤ 12 · Adv(k−1)-MDDH
B (λ) + negl(λ).

27

Proof. The proof is very similar to the proof of Theorem 3.3, and we only sketch the differences. The
attentive reader may have noticed that the algebraic structure of LWE is only needed in the following
steps.

• Change from game G1 to G2, and the similar change from G3 to G4.

• Change from game G′j to G′′j in the proof of Lemma 3.5.

• Change from game G4 to G5 in the proof of Lemma 3.6.

• Change from game G5 to G6 in the proof of Lemma 3.6, and usage of Lemma 3.7.

Therefore, we only discuss how to make these steps work in the MDDH setting.
Game G1 to Game G2, Game G3 to Game G4: Recall that in this step in the proof of Theorem 3.3,
the distribution of the matrix A in the public parameters is changed. Here, we do a similar change.
Namely, in G1 and G4, [A] is generated uniformly as in the scheme, i.e. [A] $← G(k+1)×(k+1). In G2 and
G3, matrix A is sampled as

B $← Z(k+1)×(k−1)
p , C $← Z(k−1)×2

p , [A] := [B|BC] .

Indistinguishability follows tightly from two applications (one for each column of C) of the (k− 1)-MDDH
assumption.
Game G′j to Game G′′j : Recall that in this step in the proof of Lemma 3.5, the ciphertext component
ĥ1−bi in the jth query to oracle Enc is changed. While it has the form ĥ1−bi := Ut

i,1−bis + h1−bibq/2e
in G′j , it is switched to uniform ĥ1−bi

$← Zλq in G′′j . Indistinguishability is argued using the generalized
leftover hash lemma. Let us explain how to mimic this change. To this end, consider the jth query to
oracle Enc, which is of the form Enc(i) and outputs a ciphertext ct = (C0, C1, [x], ĥ0, ĥ1), where

[x] := [Ats], ĥ1−bi := [stui,1−bi]⊕ h1−bi , ĥbi := [stui,bi]⊕ hbi ,

for (s, h0, h1) := G(R). We consider the component ĥ1−bi . Namely, we change its distribution in G′′j to
uniform, i.e. ĥ1−bi

$← {0, 1}log p. To argue indistinguishability, we use a statistical argument, exploiting
the structure of matrix [A]. Recall that in this step of the proof, the matrix has the structure A := [B|BC]
for B ∈ Z(k+1)×(k−1)

p and C ∈ Z(k−1)×2
p . Therefore, we know that there is a 2-dimensional kernel on the

left, i.e. there is a matrix A⊥ ∈ Z(k+1)×2
p such that AtA⊥ = 0. Decomposing s into s = a + A⊥b for

a ∈ Zk+1
p and b ∈ Z2

p, we see that

x = Ats = Ata + AtA⊥b = Ata

reveals no information about b. Therefore, s has at least 2 log p bits of entropy given x. As ĥbi ∈ {0, 1}
log p,

it can reveal at most log p bits about s. Thus, s has at least 2 log p− log p = log p bits of entropy given x
and ĥbi . Therefore, we can apply the generalized leftover hash lemma (Lemma 2.5) as in the proof of
Lemma 3.5, using s 7→ stui,1−bi as a universal family of hash functions.
Game G4 to Game G5: Recall that in this step in the proof of Lemma 3.6, the distribution of the
matrices Ui,1−bi is changed from uniform to Ui,1−bi = AZi,1−bi . Intuitively, due to this change, the game
now knows a secret key Zi,1−bi for both the bi-side and the 1− bi-side, thereby removing information
about bit bi. We mimic this change in the MDDH setting as follows. Recall that in game G4, for each
i ∈ [N], the vector [ui,1−bi] ∈ Gk+1 is sampled as in the scheme, i.e. uniformly at random. Now, in
game G5, [ui,1−bi] is sampled by first sampling zi,1−b $← Zk+1

p , and then setting [ui,1−bi] := [Azi,1−bi].
Note that in G4 and G5, matrix A is uniform over Z(k+1)×(k+1)

p , and therefore, with overwhelming
probability it has full rank. Assuming A has full rank, the vector Azi,1−bi is uniform over Zk+1

p . This
shows (statistical) indistinguishability of G4 and G5.
Game G5 to Game G6: The step from G5 to G6 in the proof of Lemma 3.6 is only necessary because
Lemma 3.7 is applied in G6. An analogous lemma in the MDDH setting does not rely on any norm
constraints and is proven similar to Lemma 3.7. Therefore, ruling out collisions of random oracle H is
enough in the MDDH setting. This can be done exactly as in the proof of Lemma 3.6.

28

D Security Model for AKE
We consider N parties P1, . . . , PN in the security game wFS-Stb shown in Figure 16, where each party
Pi(i ∈ [N]) has a unique long-term key pair (pk′i, sk

′
i). Each party may have multiple sessions at the same

time, and each session between two parties has a unique session identification number sID and has the
following variables defined relative to sID:

• Init[sID] ∈ [N] denotes the initiator of the session.
• Resp[sID] ∈ [N] denotes the responder of the session.
• Type[sID] ∈ {“In”, “Re”} denotes the session is owned by the initiator or by the responder.
• Used[sID] denotes whether the session sID was used if Type[sID] = “In”.
• I[sID] denotes the messages that was computed by the initiator.
• R[sID] denotes the messages that was computed by the responder.
• St[sID] denotes the state information that is stored by the initiator.
• SK[sID] denotes the session key of the session.

Game wFS-Stb
01 cnt := 0,S := ∅
02 par′ ← Setup(1λ)
03 for i ∈ [N] : (pk′i, sk

′
i)← KG′(par′)

04 O1 := (SessionI,DerI,SessionR)
05 O2 := (Cor,RevK,RevSt,Test)
06 b′ ← AO1,O2(par′,

(
pk′i
)
i∈[N])

07 for sID∗ ∈ S
08 if Fresh(sID∗) = 0 ∨ Valid(sID∗) = 0:
09 return 0
10 return b′

Oracle Test(sID)
11 if sID ∈ S ∨ SK[sID] = ⊥ : return ⊥
12 S := S ∪ {sID}
13 SK0 := SK[sID], SK1

$← SK
14 return SKb
Oracle RevK(sID)
15 revSK[sID] := 1
16 return SK[sID]

Oracle RevSt(sID)
17 if Type[sID] 6= “In”: return ⊥
18 revST[sID] := 1
19 return St[sID]

Oracle SessionI((i, j) ∈ [N]2)
20 cnt := cnt + 1, sID := cnt
21 (Init[sID], Resp[sID]) := (i, j)
22 Type[sID] := “In”
23 (Mi, st) := Init(ski, pkj , par′)
24 (I[sID], St[sID]) := (Mi, st)
25 return (sID,Mi)

Oracle DerI(sID,M)
26 if Used[sID] = 1 ∨ St[sID] = ⊥
27 ∨SK[sID] 6= ⊥ : return ⊥
28 Used[sID] := 1, st := St[sID]
29 (i, j) := (Init[sID], Resp[sID])
30 SK := DerI(sk′i, pk′j ,M, st)
31 (R[sID], SK[sID]) := (M,SK)
32 return 1

Oracle SessionR((i, j) ∈ [N]2,M)
33 cnt := cnt + 1, sID := cnt
34 (Init[sID], Resp[sID]) := (i, j)
35 Type[sID] := “Re”
36 (Mj ,SK) := DerR(sk′j , pk′i,M)
37 (I[sID], R[sID]) := (M,Mj)
38 SK[sID] := SK
39 return (sID,Mj)

Oracle Cor(i)
40 Cor[i] := 1
41 return sk′i

Figure 16: The game wFS-Stb for an AKE protocol AKE = (Setup′,KG′, Init,DerR,DerI). This paper only
considers two-message AKE protocols and in such protocols, the responder does not need to store session
state to compute the session key. Therefore, in this model, RevSt(sID) returns ⊥ if sID is not an initiator
session.

To capture the adversary’s ability to control the channel, in the security game as described in Figure 16,
adversary A is given access to oracles SessionI,SessionR, and DerI. SessionI creates a session owned
by the initiator, and SessionR creates a session owned by the responder, which are different sessions. More
precisely, A queries SessionI(i, j) to activate a session between Pi (as initiator) with Pj (as responder)
and gets (sID,Mi), where sID is the identification number of this session and Mi is Pi’s initiator protocol
message (generated from Init). The query SessionR(i, j,M) captures the process that A sends M to Pj ,
activates a session between Pi (as initiator) with Pj (as responder), and gets the identification number

29

sID and the responded protocol message Mj of this session. To complete a session sID owned by an
initiator, A queries DerI(sID,M), which capturs the process that A sends the responded message M to
the initiator of the session. Moreover, DerI and SessionR may output ⊥ to indicate that the session
does not generate a session key.

In wFS-Stb, A can forward messages between sessions honestly, or modify messages to launch some
attack. Let sID and sID′ be two sessions. We define two relationships between two sessions.

Definition D.1 ((Partially) Matching Session). We say sessions sID and sID′ match if the same parties
are involved (i.e., (Init[sID], Resp[sID]) = (Init[sID′], Resp[sID′])), the messages sent and received are
the same ((I[sID], R[sID]) = (I[sID′], R[sID′])), and they are of different types Type[sID] 6= Type[sID′].

We say sID is partially matching to sID′ if Type[sID] = “In”, Type[sID′] = “Re”, and the initial messages
are the same (I[sID] = I[sID′]).

Sessions sID and sID′ match means that A honestly delivers the protocol message between sID with
sID′ without any modification. If Type[sID] = “In”, sID partially matches sID′ means that A honestly
sends the protocol message generated from sID to sID′.

Furthermore, A has access to oracles Cor,RevK, and RevSt to reveal secret information. By
querying Cor(i), A can get the long-term secret key of party Pi. A can also obtain the state information
or the session key of session sID by querying RevSt(sID) or RevK(sID), respectively. We use the following
variables to keep track of which queries the adversary made and which secret information is revealed. If a
variable is 1, then it means the corresponding secret information is revealed.

• Cor[i] denotes whether the long-term secret key of party Pi was revealed.

• revSK[sID] denotes whether the session key of session sID was revealed.

• revST[sID] denotes whether the state information of session sID was revealed.

Finally, A is given access to oracle Test which will return either the session key of the given session
or a uniformly random key independent of the given session. A is allowed to queries Test multiple times.
A session sID that has been queried to Test is called as a test session. All test sessions are stored in a
set S. A’s task in this model is to distinguish the keys output by Test are either the actual session keys
of test sessions or independent random keys. To avoid trivial attack, we define two properties, freshness
and validity, that all test sessions have to satisfy:

Definition D.2 (Freshness and Validity). Let sID∗ be a session. sID∗ is fresh if the session key of sID∗
was not revealed, and if sID∗ has a matching session, we also require that the matching session was not a
test session and its session key was not revealed. The process to determine freshness is given in Figure 17.

Furthermore, a test session is valid if it is fresh and A performed any attack which is defined in this
AKE model. We capture all valid attacks in Table 1, and the process to determine validity is given in
Figure 17.

In Table 1, all attacks are defined using the boolean variables that indicates which queries the adversary
made. This table is obtained by considering all possible attacks and excluding all trivial or redundant
attacks. For a full attack table, please refer to [JKRS21]. Informally, the attacks defined in Table 1
capture weak forward secrecy (wFS), state reveal attack, and key compromise impersonation (KCI)
combined with state reveal attack. Moreover, if the AKE protocol does not use appropriate randomness,
i.e., A is able to create more than one (partially) matching session to a test session, then it is insecure in
this model.

In this model, we require that every test session is fresh and valid. The adversary wins if it distinguishes
the session keys from uniformly random keys which it obtains through queries to the Test oracle.

Definition D.3 (Key Indistinguishability of AKE). Let AKE := (Setup′,KG′, Init,DerR,DerI) be an AKE
protocol and consider the games wFS-Stb for b ∈ {0, 1} defined in Figure 16. We say AKE is wFS-St
secure, if for all PPT adversaries A, the following advantage is negligible:

AdvwFS-St
A,AKE(λ) :=

∣∣∣Pr
[
wFS-StA0 (λ)⇒ 1

]
− Pr

[
wFS-StA1 (λ)⇒ 1

]∣∣∣

30

Alg Fresh(sID∗)
01 (i∗, j∗) := (Init[sID∗], Resp[sID∗])
02 M(sID∗) := {sID| (Init[sID], Resp[sID]) = (i∗, j∗)

∧ (I[sID], R[sID]) = (I[sID∗], R[sID∗])
∧ Type[sID] 6= Type[sID∗]} �Matching session(s) of sID∗

03 if revSK[sID∗] ∨ (∃sID ∈M[sID∗] : revSK[sID] = 1): return 0
�A trivially learned the test session’s key

04 if ∃sID ∈M(sID∗) s.t. sID ∈ S: return 0 �A also tested a matching session
05 return 1

Alg Valid(sID∗)

06 (i∗, j∗) := (Init[sID∗], Resp[sID∗])
07 M(sID∗) := {sID| (Init[sID], Resp[sID]) = (i∗, j∗)

∧ (I[sID], R[sID]) = (I[sID∗], R[sID∗])
∧ Type[sID] 6= Type[sID∗]} �Matching session(s) of sID∗

08 P(sID∗) := {sID| I[sID] = I[sID∗]
∧ Type[sID] 6= Type[sID∗]
∧ Type[sID] = “In”} �Partially matching session(s) of sID∗

09 if the attack type of sID∗ ∈ Table 1: return 1
10 else return 0

Figure 17: Algorithms to check the validity and freshness of tested sessions.

E Security Proofs for Our AKE Protocol in Figure 8
In this section, we show the tight security of our (direct) AKE protocol (from Figure 8). More precisely,
we show Theorem 4.3.

Theorem 4.3. Let A be an adversary against AKE in the wFS-Stb game, where N is the number of parties.
Let S be the number of sessions in the game and T be the number of Test queries issued by A. Without
loss of generality, we assume that every integer i ∈ [N] is associated with the public key pk′i(= pki) of
party i. The game sequences of the proof are given in Figure 18 and Figure 19. Our goal is to bound

AdvwFS-St
A,AKE(λ) =

∣∣∣Pr
[
wFS-StA0,AKE ⇒ 1

]
− Pr

[
wFS-StA1,AKE ⇒ 1

]∣∣∣
Game G0,b: This game is the same as wFS-StAKE,b, except that we exclude collisions of long-term key
pairs (pki, ski), ciphertexts cti from KEM1, ephemeral key pairs (p̃k, s̃k) and ciphertexts c̃t from KEM0,
and the output of H and G. If such a collision happens at any time, then we abort the game. For
readability, we do not explicitly define such events in the game.

We supposed that KEM1 (resp., KEM0) has γ1 (resp., γ0) bits ciphertext entropy and µ1 (resp., µ0)
bits public key entropy, so by union bound and birthday bound, excluding such collision events will add
N2 · 1

2µ1 + S2 · (1
2γ1 + 1

2γ0 + 1
2µ0) + (Q2

H + S2)/|SK|+ (Q2
G +N2 + S2)/2d to the bound of Theorem 4.3.

So, we have ∣∣∣Pr
[
wFS-StAb,AKE ⇒ 1

]
− Pr

[
GA0,b ⇒ 1

]∣∣∣
≤ N2

2µ1
+ S2 · (1

2γ1
+ 1

2γ0
+ 1

2µ0
) + Q2

H + S2

|SK|
+ Q2

G +N2 + S2

2d

Note that excluding such collisions means that for any sID∗ ∈ S, sID∗ does not fall into the attack
case (0) in Table 1, since different executions of SessionI will output different protocol messages (i.e.,
different ctxt), so it is impossible for a session to have more than one partial matching sessions.
Game G1,b: We modify the simulation of generating session state and session key. In this game, we
generate session keys and session states by uniformly sampling (instead of using H and G), and then
patch H and G if A queries the corresponding hash inputs of session keys and session states. Concretely,

31

Game G0,b-G4,b
01 cnt := 0,S := ∅
02 badst := 0 �G2,b-G4,b
03 bad1 := 0 �G3,b-G4,b
04 bad0 := 0 �G4,b
05 par′ := (p̃ar, par)← Setup′(1λ)
06 for i ∈ [N] :
07 (pki, (ski, ki))← KG′(par′)
08 Ci := ∅ �G3,b-G4,b
09 b′ ← AH,G,O1,O2(par′, (pki)i∈[N])
10 for sID∗ ∈ S
11 if Fresh(sID∗) = 0
12 ∨ Valid(sID∗) = 0 :
13 return 0
14 return b′

Oracle SessionI((i, j) ∈ [N]2)
15 cnt := cnt + 1, sID := cnt
16 (Init[sID], Resp[sID]) := (i, j)
17 Type[sID] := “In”
18 (ctj ,Kj)← Encaps1(pkj)
19 if ¬Cor[j]: �G3,b-G4,b
20 Cj := Cj ∪ {ctj} �G3,b-G4,b

21 (p̃k, s̃k)← KG0(p̃ar)
22 IV $← {0, 1}κ
23 K̃ := K̃ ∪ {(p̃k, s̃k)} �G1,b-G4,b

24 Cor′[p̃k] := 0 �G4,b

25 st′ := (p̃k, s̃k, ctj ,Kj)
26 st := (IV,G(IV, ki)⊕ st′) �G0,b
27 ϕ $← {0, 1}d �G1,b-G4,b
28 st := (IV, ϕ) �G1,b-G4,b
29 St′i[IV] := (ϕ, st′) �G1,b-G4,b

30 Mi := (p̃k, ctj)
31 (I[sID], St[sID]) := (Mi, st)
32 return (sID,Mi)

Oracle SessionR((i, j) ∈ [N]2,M)
33 cnt := cnt + 1, sID := cnt
34 (Init[sID], Resp[sID]) := (i, j)
35 Type[sID] := “Re”
36 let (p̃k, ctj) := M
37 Kj := Decaps1(sk′j , ctj)
38 if Kj = ⊥ : return ⊥
39 (c̃t, K̃)← Encaps0(p̃k)
40 (cti,Ki)← Encaps1(pki)
41 if (p̃k, ·) /∈ K̃: �G1,b-G4,b

42 L̃ := L̃ ∪ {(c̃t, K̃)} �G1,b-G4,b
43 if ¬Cor[i]: Ci := Ci ∪ {cti} �G3,b-G4,b

44 if ∃s̃k s.t. (p̃k, s̃k) ∈ K̃ �G4,b

45 C̃ := C̃ ∪ {(p̃k, c̃t)} �G4,b

46 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
47 SK := H(ctxt,Ki,Kj , K̃) �G0,b
48 SK′[ctxt] := SK $← SK �G1,b-G4,b
49 SK[sID] := SK, Mj := (c̃t, cti)
50 (I[sID], R[sID]) := (M,Mj)
51 return (sID,Mj)

Oracle DerI(sID,M)
52 if Used[sID] = 1 ∨ St[sID] = ⊥
53 ∨SK[sID] 6= ⊥: return ⊥
54 Used[sID] := 1
55 (i, j) := (Init[sID], Resp[sID])
56 let (IV, ϕ) := St[sID]
57 st′ := ϕ⊕ G(IV, ki) �G0,b
58 (ϕ, st′) := St′i[IV] �G1,b-G4,b

59 let (c̃t, ct) := M, (p̃k, s̃k, ctj ,Kj) := st′
60 Ki := Decaps1(ski, ct)
61 K̃ := Decaps0(s̃k, c̃t)
62 if Ki = ⊥ ∨ K̃ = ⊥: return ⊥
63 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
64 SK := H(ctxt,Ki,Kj , K̃) �G0,b
65 if SK′[ctxt] 6= ⊥: �G1,b-G4,b
66 SK := SK′[ctxt] �G1,b-G4,b
67 else SK′[ctxt] := SK $← SK �G1,b-G4,b
68 (R[sID], SK[sID]) := (M,SK)
69 return 1

Figure 18: The games G0,b-G4,b(b ∈ {0, 1}) in the proof of Theorem 4.3. Besides H and G, A also has
access to oracles O1 := (SessionI,DerI,SessionR) and O2 := (Cor,RevK,RevSt,Test). Oracles G,
H, and RevSt are shown in Figure 19. Oracles Cor, RevK, and Test are the same as in Figure 16.
Highlighted lines are only executed in the corresponding games.

32

A gets (Initiator, Responder), attack type Co
r[
i∗

]

Co
r[
j∗

]

Ty
pe

[sI
D
∗]

re
vS

T[
sID
∗]

∃s
ID
∈
M

(s
ID
∗)
:

re
vS

T[
sID

]

|M
(s

ID
∗)
|

∃s
ID
∈
P

(s
ID
∗)
:

re
vS

T[
sID

]

|P
(s

ID
∗)
|

(0) multiple (partially) matching sessions - - - - - - - > 1
(1) (long-term, long-term), wFS - - - F F 1 - -
(2) (state, long-term), state attack F - - - - 1 - -
(3) (long-term, long-term), wFS - - “Re” F n/a 0 F 1
(4) (state, long-term), state attack F - “Re” F n/a 0 - 1
(5) (state, state), state attack F F “In” - n/a 0 n/a 0
(6) (long-term, state), KCI + state attack - F “In” F n/a 0 n/a 0
(7) (state, long-term), KCI + state attack F - “Re” F n/a 0 n/a 0

Table 1: List of valid attack types against two-message AKE protocols in the wFS-Stb game (in Figure 16).
An attack is regarded as an AND conjunction of variables with specified values as shown in the each line,
where F means “false”, “-” means that the variable can take arbitrary value (can be viewed as “true”),
and “n/a” means that there is no (partially) matching session exists. The sets M(sID∗) and P(sID∗) are
defined in Valid procedure in Figure 17. Here “0” and “1” are numbers instead of boolean values.

• In SessionI(i, j), to generate St[sID], we sample ϕ at uniformly random (instead of computing
G(IV, ki)⊕ st′) and set (IV, ϕ) as the state of sID (Lines 27 to 29). We also use an internal list St′i
to record (IV, ϕ, st′) (Line 29), which will be used to patch random oracle G later. Moreover, after
generating (p̃k, s̃k), we record it in list K̃ (Line 23) which are indexed by one-time vectors IV (since
a session sID has at most one IV corresponding). In DerI, we use lists {St′i}i∈[N] to recover session
state values (Line 58).

• If A queries G(k, IV), k is the second tuple of party i’s secret key (i.e., k = ki), and IV corresponds a
session of party i, then we use the information of St′i to patch G(ki, IV) such that G(ki, IV)⊕st′ = ϕ
(Lines 03 to 05) to make the simulation consistent.

• In SessionR and DerI, we sample the session key uniformly at random without using H, and use
an internal list SK′ to record the transcript of the session and its corresponding session key (Line 48
and Line 65). SK′ will be used to patch H to make the simulation consistent. We also use an internal
list L̃ to record (c̃t, K̃) if c̃t is not generated in SessionI (that is, (p̃k, ·) /∈ K̃, Lines 41 to 42), since
we do not have the corresponding secret key of p̃k if c̃t is not generated in SessionI. In DerI, if
session sID has a matching session, then these two sessions is set to be having the same session
key (Lines 65 to 66). Otherwise, we sample a uniformly random key as sID’s session key (Line 67).
In our protocol, if a session sID has computed a session key, then its context value ctxt can also
uniquely indicates this session, and so we can use SK′[ctxt] to store the session key of sID.

• To make the simulation consistent, in H, if A’s RO query (ctxt,K1,K2, K̃) corresponds to a session
(i.e., SK′[ctxt] 6= ⊥) and K1,K2, and K̃ are the three secret KEM keys in this session, then we return
the session key of this session (i.e., SK′[ctxt]) as the RO response (Lines 21 to 24).

A cannot detect these modification unless it queries G(k, IV) before IV are generated, or it queries
H(ctxt,K1,K2, K̃) before ctxt is generated. Since such IV and ctxt are honestly generated in SessionI
and SessionR, respectively, by a union bound and public key entropy and ciphertext entropy of KEM1
and KEM0, we have∣∣∣Pr

[
GA0,b ⇒ 1

]
− Pr

[
GA1,b ⇒ 1

]∣∣∣ ≤ QHS · (
1

2µ0
+ 1

2γ0
+ 1

2γ1
) + QGS

2κ .

Game G2,b: If A queried G on (ki, IV) where party i is uncorrupted or the session sID corresponding to
IV is unrevealed, then we raise flag badst and abort the game (Lines 14 to 17). If badst is not raised, A’s
view in G1,b is the same as its view in G2,b. Since ki and IV are generated by independent uniformly
sampling, if party i is uncorrupted (resp., sID is unrevealed), then ki (resp., IV) is uniform random in

33

Oracle G(k, IV)
01 if ∃y s.t. (k, IV, y) ∈ LG: return y
02 y $← {0, 1}d
03 if ∃i s.t. k = ki

∧St′i[IV] 6= ⊥: �G1,b-G4,b
04 (ϕ, st′) := St′i[IV] �G1,b-G4,b
05 y := ϕ⊕ st′ �G1,b-G4,b

06 (p̃k, s̃k, ctj ,Kj) := st′ �G3,b-G4,b
07 Cj := Cj\{ctj} �G3,b-G4,b

08 Cor′[p̃k] := 1 �G4,b
09 LG := LG ∪ {(k, IV, y)}
10 return y

Oracle RevSt(sID)
11 if Type[sID] 6= “In”: return ⊥
12 i := Init[sID]
13 (IV, ϕ) := St[sID]
14 if ∃y s.t. (ki, IV, y) ∈ LG
15 if ¬Cor[i]

∨¬revST[sID] �G2,b-G4,b
16 badst := 1 �G2,b-G4,b
17 abort �G2,b-G4,b
18 revST[sID] := 1
19 return St[sID]

Oracle H(ctxt,K1,K2, K̃)
20 if ∃SK s.t. (ctxt,K1,K2, K̃,SK) ∈ LH return SK
21 let (pki, pkj , p̃k, ct1, ct2, c̃t) := ctxt �G1,b-G4,b
22 if SK′[ctxt] 6= ⊥ ∧ Decaps1(ski, ct1) = K1 ∧ Decaps1(skj , ct2) = K2 �G1,b-G4,b

23 if (∃s̃k s.t. (p̃k, s̃k) ∈ K̃ ∧ Decaps0(s̃k, c̃t) = K̃) ∨ (c̃t, K̃) ∈ L̃ �G1,b-G4,b
24 SK := SK′[ctxt] �G1,b-G4,b
25 if

(
¬Cor[i] ∧ ct1 ∈ Ci ∧ K1 = Decap1(sk′i, ct1)

)
∨
(
¬Cor[j] ∧ ct2 ∈ Cj ∧ K2 = Decap1(sk′j , ct2)

)
�G3,b-G4,b

26 bad1 := 1, abort �G3,b-G4,b

27 if ∃s̃k s.t.(p̃k, s̃k) ∈ K̃ ∧ (p̃k, c̃t) ∈ C̃ ∧ Decaps0(s̃k, c̃t) = K̃ ∧ ¬Cor[p̃k]: �G4,b
28 bad0 := 1, abort �G4,b
29 SK $← SK
30 LH := LH ∪ {(ctxt,K1,K2, K̃,SK)}
31 return SK

Figure 19: Oracles G, H, and RevSt of games G0,b-G4,b(b ∈ {0, 1}) in Figure 18.

A’s view. So, we have ∣∣∣Pr
[
GA1,b ⇒ 1

]
− Pr

[
GA2,b ⇒ 1

]∣∣∣ ≤ NSQG
2κ .

Game G3,b: This game is the same as G2,b, except that we maintain lists {Ci}i∈[N] (Line 08) to record
ciphertexts generated in SessionI or SessionR, and use a flag bad1 (Line 03) to determine whether the
adversary queried H on KEM keys of ciphertexts in Ci and party i(∈ [N]) is uncorrupted. If bad1 is set
as 1, then the game aborts (Lines 25 to 26). Concretely, the game simulator maintains lists Ci and flag
bad1 as follows:

• In SessionI, after generating ctj , we record ctj in Cj (Lines 19 to 20). Similarly, in SessionR, cti
is recored in Ci (Line 43).

• If A queries H(pki, pkj , p̃k, ct1, ct2, c̃t,K1,K2, K̃), where ct1 (resp., ct2) belongs to Ci (resp., Cj) and
K1 (resp., K2) is the KEM key of ct1 (resp., ct2), and party i (resp., party j) is uncorrupted, then
bad1 is set as 1 and the game aborts.

• If A queries G(ki, IV), where this query corresponds to some session state which contains ctj , then
we delete ctj from Cj (Lines 06 to 07). By the abort event badst defined in G2,b, A issues this query
only if party i is corrupted and the session state of the session corresponds to IV is revealed.

Intuitively, for some i ∈ [N], if ct ∈ Ci (which means the key of ct respect to pki is unrevealed) and party
i is uncorrupted, then finding K = Decaps1(ski, ct) means winning the game OW-ChCCAKEM1 (defined in
Figure 3). For readability, we formalize it as Lemma E.1 and postpone its proof in Appendix E.1.

Lemma E.1 With the notation and assumptions from the proof of Theorem 4.3, there is a PPT algorithm
B1 with T(B1) ≈ T(A) and∣∣∣Pr

[
GA2,b ⇒ 1

]
− Pr

[
GA3,b ⇒ 1

]∣∣∣ ≤ AdvOW-ChCCA
B1,KEM1

(λ) + δ1.

34

Game G4,b: We use list C̃ to record KEM0 ciphertext c̃t in SessionR if c̃t is generated using some p̃k
that (p̃k, ·) ∈ K̃ (i.e., ∃s̃k such that (p̃k, s̃k) ∈ K̃), see Lines 44 to 45. We also use list Cor′ to determine if
A revealed some KEM0 key pair (p̃k, s̃k) generated in SessionI (Line 08). Moreover, we use a flag bad0
(Line 04) to determine whether the adversary queried H on KEM keys of ciphertexts of unrevealed KEM0
public keys. If bad0 is set as 1, then the game aborts (see Lines 27 to 28). Concretely, the game maintains
lists Cor′, C̃, and flag bad0 as follows:

• In SessionI, after generating (p̃k, s̃k), the simulator sets Cor′[p̃k] as 0 to indicate that (p̃k, s̃k) is
not revealed yet (Line 24).

• If A queries G on (ki, IV) and (p̃k, s̃k) is the key pair of St′i[IV] (Line 06), then Cor′[p̃k] is set as
1 to indicate that (p̃k, s̃k) is revealed to A (Line 08). By the abort event badst defined in G2,b, A
issues this query only if party i is corrupted and the session state of the session corresponds to IV
is revealed.

• In SessionR, after generating c̃t using p̃k, if p̃k is generated by SessionI (∃s̃k s.t. (p̃k, s̃k) ∈ K̃),
then (p̃k, c̃t) will be recorded in C̃ (Lines 44 to 45).

• If A queries H(pki, pkj , p̃k, ct1, ct2, c̃t,K1,K2, K̃), where (p̃k, c̃t) belongs to C̃, K̃ is the KEM key of
c̃t wrt p̃k, and the secret key of p̃k is not revealed (i.e., Cor′[p̃k] = 0), then bad0 is set as 1, and the
game aborts.

Intuitively, if (p̃k, s̃k) ∈ K̃, (p̃k, c̃t) ∈ C̃, and Cor′[p̃k] = 0, then finding K̃ = Decaps0(s̃k, ct) means
winning the game OW-ChCCAKEM0 (defined in Figure 3). Actually, we have the following lemma, which
will be proven in Appendix E.2.

Lemma E.2 With the notation and assumptions from the proof of Theorem 4.3, there is a PPT algorithm
B0 with T(B0) ≈ T(A) and∣∣∣Pr

[
GA3,b ⇒ 1

]
− Pr

[
GA4,b ⇒ 1

]∣∣∣ ≤ AdvOW-ChCCA
B0,KEM0

(λ) + δ0.

Here we bound |Pr[GA4,0 ⇒ 1] − Pr[GA4,1 ⇒ 1]|. The adversary distinguishes these two games if it
queries the hash input of SK[sID∗], where sID∗ can be arbitrary valid and fresh test session. Let sID∗
be an arbitrary session belongs to S. By the validity definition (Figure 17), sID∗ must fall into the
attacking types listed in Table 1. Let (pki, pkj , p̃k, ct1, ct2, c̃t,K1,K2, K̃) be the hash input of SK[sID∗],
where K1 = Decaps1(ski, ct1), K2 = Decaps1(skj , ct2), and K̃ = Decaps0(s̃k, c̃t). We consider all attack
types listed in Table 1:

• Attack (1), (3). If sID∗ is type (1), by definition, A never reveals the state of sID∗ and thus the
state encryption vector of this session (denoted as IV ∗) is not revealed. Since sID∗ has a matching
session, there exists s̃k such that (p̃k, s̃k) ∈ K̃ and (p̃k, c̃t) ∈ C̃. By the abort event badst (Line 02),
A cannot query G on (ki∗ , IV ∗), and the code in Line 08 will never be executed, i.e., Cor′[p̃k] is
always 0. Therefore, by the abort event bad0 (Lines 27 to 28), A cannot query K̃. Similarly, the
above argument still applies when sID∗ is type (3), A cannot query K̃ in these cases.

• Attack (2), (4). In these cases, party i∗ is uncorrupted, and by definition (sID∗ has (partially)
matching session), we have ct1 ∈ Ci∗ . By the abort event bad1 (Lines 25 to 26), A cannot query K1
in this case.

• Attack (5). In this case, by definition, both parties i∗ and j∗ are uncorrupted and ct2 ∈ Cj∗ . Since
i∗ is uncorrupted, the abort event bad0 assures that A cannot query G(ki, IV) to trigger the codes
in Lines 06 to 07, and thus ct2 will never be deleted from Cj∗ . By the abort event bad1 (Lines 25
to 26), A cannot query K2 in this case.

• Attack (6). In this case, by definition, party j∗ is uncorrupted and ct2 ∈ Cj∗ , and the state of
sID∗ is not revealed. This means that A cannot query G(ki, IV) to trigger the codes in Lines 06
to 07 by the abort event bad0, and thus ct2 will never be deleted from Cj∗ . By the abort event bad1
(Lines 25 to 26), A cannot query K2 in this case.

• Attack (7). In this case, by definition, party i∗ is uncorrupted and ct1 ∈ Ci∗ . By the abort event
bad1 (Lines 25 to 26), A cannot query K1 in this case.

Therefore, for any fresh and valid sID∗ ∈ S, the adversary cannot query the hash input of SK[sID∗].
Since H is a random oracle, the adversary cannot distinguish SK[sID∗] from a random key, and thus in

35

Test oracle, SK0 has the same distribution as SK1. We have

Pr
[
GA4,0 ⇒ 1

]
= Pr

[
GA4,1 ⇒ 1

]
By combining all probabilistic difference and Lemmata E.1 and E.2, we have

AdvwFS-St
A,AKE(λ) =

∣∣∣Pr
[
wFS-StA0,AKE ⇒ 1

]
− Pr

[
wFS-StA1,AKE ⇒ 1

]∣∣∣
≤ 2AdvOW-ChCCA

B1,KEM1
(λ) + 2AdvOW-ChCCA

B0,KEM0
(λ)

+ 2δ1 + 2δ0 + N2

2µ1−1 + (N + 1)SQG
2κ−1 + 2(Q2

H + S2)
|SK|

+ 2S · (QH + S) · (1
2γ1

+ 1
2γ0

+ 1
2µ0

) + Q2
G +N2 + S2

2d−1 ,

as stated in Theorem 4.3.

E.1 Proof of Lemma E.1
Lemma E.1. Let Pr [bad1] be the probability that flag bad1 is set as 1. By the argument in the proof of
Theorem 4.3, we have ∣∣∣Pr

[
GA2,b ⇒ 1

]
− Pr

[
GA3,b ⇒ 1

]∣∣∣ ≤ Pr [bad1]

We construct an adversary B1 that simulates G3,b for A to break OW-ChCCA security of KEM1 in
protocol AKE. If A triggers bad1, then B1 breaks KEM1. The construction of B1 is shown in Figures 20
and 21.

By the definition of OW-ChCCA security game (Figure 3), B1 has access to Enc1,Dec1,Corr1, and
Check1. B1 uses (i∗, ct∗) to record one-way solution of the OW-ChCCA game. For each party i ∈ [N],
B1 sets pki (from its input) as the public key of party i, and generates party i’s state encryption key
ki. Since now B1 does not have secret key of pki, it uses oracles Dec1,Corr1, and Check1 to simulate
G3,b. Specifically,

• In SessionI (resp., SessionR), B1 generates ctj (resp., cti) by querying Enc1(j) (resp., Enc1(i)).
Since B1 does not have the KEM1 key Kj of ctj , B1 leaves it unknown until A queries G on (ki, IV).
When A queries G(ki, IV), B1 queries Reveal1(j, ctj) and gets Kj (Lines 05 to 06).

• In SessionR, if ctj /∈ Cj (i.e., the received ctj is not generated in SessionI), then B1 uses Dec1
to decrypt the received KEM1 ciphertext ctj to determine if ctj is valid. If ctj is valid, then B1
leaves the KEM key of ctj as unknown, and uses Check0 to determine if A’s queries to H include
ctj ’s KEM key. If ctj ∈ Cj , then ctj is a OW-ChCCA challenge ciphertext wrt pki. In this case, the
simulator leaves the KEM key of ctj as unknown and uses Check0 to search A’s queries to H and
recover the KEM1 key from them to break the OW-ChCCA security of KEM1. In DerI, we use the
similar strategy described above to deal with the received KEM1 ciphertext cti.

• In H, B1 uses Check1 to determine if Decaps1(ski, ct) = K. If A triggers bad1 event, then B1 outputs
the corresponding identity, challenge ciphertext, and the KEM key, and aborts the simulation (see
Lines 24 to 27).

• If A queries G(ki, IV), where this query corresponds to some session state which contains ctj , then
B1 deletes ctj from Cj (Lines 06 to 07), queries Reveal1(j, ctj) to get Kj so that it can simulate G
in a consistent way.

• When A corrupts party i, B1 queries Corr1(i) and returns the responded secret key.
Let (i∗, ct∗,K) be B1’s final output. If A triggers bad1 event, then by definition, we have Cor[i∗] = 0,

ct∗ ∈ Ci∗ , and K is the KEM1 key of ct∗ wrt pki∗ . Cor[i∗] = 0 means that party i∗ is uncorrupted, and B1
never queries Corr1(i∗). ct∗ ∈ Ci∗ means that ct∗ is a challenge ciphertext wrt pki∗ and B1 never queries
Reveal1(i∗, ct∗). Therefore, (i∗, ct∗,K) is a valid solution of game OW-ChCCAKEM1(λ) (Figure 3). We
also need to count the error term δ1 into the final bound since KEM1 is (1− δ1)-correct. That is, we have∣∣∣Pr

[
GA2,b ⇒ 1

]
− Pr

[
GA3,b ⇒ 1

]∣∣∣ ≤ Pr [bad1] ≤ AdvOW-ChCCA
B1,KEM1

(λ) + δ1,

as stated in Lemma E.1.

36

B1
OKEM1 (par, (pki)i∈[N])

01 i∗ := 0, ct∗ := ⊥ �Record the solution
02 cnt := 0,S := ∅, badst := 0, bad1 := 0
03 p̃ar← Setup0(1λ), par′ := (p̃ar, par)
04 for i ∈ [N] : ki ← {0, 1}κ, Ci := ∅
05 b′ ← AH,G,O(par′, (pki)i∈[N])
06 return (i∗, ct∗,⊥)

Oracle DerI(sID,M)
07 if Used[sID] = 1 : return ⊥
08 if St[sID] = ⊥ : return ⊥
09 if SK[sID] 6= ⊥ : return ⊥
10 Used[sID] := 1
11 (i, j) := (Init[sID], Resp[sID])
12 let (IV, ϕ) := St[sID], (ϕ, st′) := St′i[IV]
13 let (c̃t, cti) := M, (p̃k, s̃k, ctj ,Kj) := st′
14 if cti /∈ Ci :
15 Ki := Dec1(i, cti)
16 if Ki = ⊥ : return ⊥
17 K̃ := Decaps0(s̃k, c̃t)
18 if K̃ = ⊥: return ⊥
19 ctxt := (pk′i, pk′j , p̃k, cti, ctj , c̃t)
20 if SK′[ctxt] 6= ⊥ : SK := SK′[ctxt]
21 else SK′[ctxt] := SK← SK
22 (R[sID], SK[sID]) := (M,SK)
23 return 1

Oracle Cor(i)
24 Cor[i] := 1, ski := Corr1(i)
25 return (ski, ski)

Oracle SessionI((i, j) ∈ [N]2)
26 cnt := cnt + 1, sID := cnt
27 (Init[sID], Resp[sID]) := (i, j)
28 Type[sID] := “In”
29 ctj ← Enc1(j), Cj := Cj ∪ {ctj}
30 (p̃k, s̃k)← KG0(p̃ar)
31 K̃ := K̃ ∪ {(p̃k, s̃k)}
32 IV ← {0, 1}κ, ϕ← {0, 1}d
33 st′ := (p̃k, s̃k, ctj , ⊥)
34 St′i[IV] := (ϕ, st′), Mi := (p̃k, ctj)
35 (I[sID], St[sID]) := (Mi, st)
36 return (sID,Mi)

Oracle SessionR((i, j) ∈ [N]2,M)
37 cnt := cnt + 1, sID := cnt
38 (Init[sID], Resp[sID]) := (i, j)
39 Type[sID] := “Re”
40 let (p̃k, ctj) := M
41 if ctj /∈ Cj
42 Kj := Dec1(j, ctj)
43 if Kj = ⊥ : return ⊥
44 (c̃t, K̃)← Encaps0(p̃k)
45 cti ← Enc1(i)
46 if (p̃k, ·) /∈ K̃: L̃ := L̃ ∪ {(c̃t, K̃)}
47 Ci := Ci ∪ {cti},SK← SK
48 ctxt := (pk′i, pk′j , p̃k, cti, ctj , c̃t)
49 SK′[ctxt] := SK, SK[sID] := SK
50 Mj := (c̃t, cti)
51 (I[sID], R[sID]) := (M,Mj)
52 return (sID,Mj)

Figure 20: B1 has access to OKEM1 := {Enc1,Dec1,Reveal1,Corr1,Check1}. A has access to G,H,
and O := (SessionI,DerI,SessionR,RevK,Cor,Test). Oracle Test is the same as G3,b in Figure 18.
Oracles G,H,Cor, and RevSt are given in Figure 21. B1 uses the oracles (highlighted) provided by
OW-ChCCAKEM to simulate G3,b.

37

Oracle G(k, IV)
01 if ∃y s.t. (k, IV, y) ∈ LG: return y
02 y ← {0, 1}d
03 if ∃i s.t. k = ki ∧ St′i[IV] 6= ⊥
04 (ϕ, st′) := St′i[IV]
05 st′ := (p̃k, s̃k, ctj ,⊥)
06 Kj := Reveal1(j, ctj)
07 Cj := Cj\{ctj}
08 y := ϕ⊕ (p̃k, s̃k, ctj ,Kj)
09 LG := LG ∪ {(k, IV, y)}
10 return y

Oracle RevSt(sID)
11 if Type[sID] 6= “In”: return ⊥
12 i := Init[sID], (IV, ϕ) := St[sID]
13 if ∃y s.t. (ki, IV, y) ∈ LG
14 if ¬Cor[i] ∨ ¬revST[sID]
15 badst := 1
16 output (i∗, ct∗,⊥) and abort
17 revST[sID] := 1
18 return St[sID]

Oracle H(ctxt,K1,K2, K̃)
19 if ∃SK s.t. (ctxt,K1,K2, K̃,SK) ∈ LH return SK
20 let (pki, pkj , p̃k, ct1, ct2, c̃t) := ctxt
21 if SK′[ctxt] 6= ⊥ ∧ Check1(i, ct1,K1) = 1 ∧ Check1(j, ct2,K2) = 1
22 if (∃s̃k s.t. (p̃k, s̃k) ∈ K̃ ∧ Decaps0(s̃k, c̃t) = K̃) ∨ (c̃t, K̃) ∈ L̃
23 SK := SK′[ctxt]
24 if ¬Cor[i] ∧ ct1 ∈ Ci ∧ Check1(i, ct1,K1) = 1
25 bad1 := 1, i∗ := i, ct∗ := ct1, output (i∗, ct∗,K1) and abort
26 if ¬Cor[j] ∧ ct2 ∈ Cj∧ Check1(j, ct2,K2) = 1
27 bad1 := 1, i∗ := j, ct∗ := ct2, output (i∗, ct∗,K2) and abort
28 SK← SK
29 LH := LH ∪ {(ctxt,K1,K2, K̃,SK)}
30 return SK

Figure 21: Oracles G,H,Cor and RevSt in the proof of Lemma E.1. B1 uses the oracles (highlighted)
provided by the game OW-ChCCAKEM(λ) to simulate G3,b.

E.2 Proof of Lemma E.2
Lemma E.2. In this section, we bound the probability difference between G3,b with G4,b in the proof of
Lemma E.2. Let Pr [bad0] be the probability that flag bad0 is set as 1 in G4,b. By the argument in the
proof of Theorem 4.3, ∣∣∣Pr

[
GA3,b ⇒ 1

]
− Pr

[
GA4,b ⇒ 1

]∣∣∣ ≤ Pr [bad0] + δ0.

We construct an adversary B0 that simulates G4,b for A to break OW-ChCCA security of KEM0 in protocol
AKE. If A triggers bad0, then B0 breaks KEM0. The construction of B0 is shown in Figures 22 and 23.

By the definition of OW-ChCCA security game (Figure 3), B0 has access to Enc0,Dec0,Corr0, and
Check0. B0 uses (t∗, c̃t∗) to record one-way solution of the OW-ChCCA game. B0’s input includes S
(i.e., the maximal number of sessions) KEM0 public keys, and it embeds these public keys into sessions.
Specifically,

• In SessionI (with session identity sID), B0 sets p̃k := p̃k
∗
sID and records (p̃k, sID) in K̃. Since B0

does not have the private key s̃k of p̃k, it needs to record sID so that it can query Dec0 wrt p̃k,
and it also leaves s̃k unknown until A queries G on (ki, IV). When A queries G(ki, IV), B0 queries
Corr0(sID) and gets s̃k (Lines 06 to 10).

• In SessionR, if the received p̃k is not generated in SessionI, B0 generates (c̃t, K̃) using p̃k normally.
If p̃k is generated in SessionI (i.e., ∃t s.t. (p̃k, t) ∈ K̃), then B0 queries Enc0(t) to get a challenge
ciphertext c̃t and records it in C̃.

• In DerI, if the received c̃t is not generated in SessionR (i.e., (p̃k, c̃t) /∈ C̃), B0 finds t s.t. (p̃k, t) ∈ K̃
and queries Dec0(t, c̃t) to decrypt c̃t and determine if c̃t is valid (Lines 18 to 20). If c̃t is valid,
then the simulator leaves the KEM key of c̃t as unknown and uses Check0 to determine if A’s
queries to H include c̃t’s KEM key. If the received c̃t is generated in SessionR (i.e., (p̃k, c̃t) ∈ C̃),
then this c̃t is a OW-ChCCA challenge ciphertext wrt p̃k. In this case, the simulator also leaves the

38

Game B0
OKEM0 (p̃ar, (p̃k

∗
t)t∈[S])

01 t∗ := 0, c̃t∗ := ⊥, cnt := 0,S := ∅
02 badst := 0, bad1 := 0, bad0 := 0
03 par← Setup1(1λ), par′ := (p̃ar, par)
04 for i ∈ [N] :
05 (pki, (ski, ki))← KG′(par′)
06 Ci := ∅
07 b′ ← AH,G,O(par′, (pki)i∈[N])
08 return (i∗, c̃t∗,⊥)

Oracle DerI(sID, (c̃t, cti))
09 if Used[sID] = 1 : return ⊥
10 if St[sID] = ⊥ : return ⊥
11 if SK[sID] 6= ⊥ : return ⊥
12 Used[sID] := 1
13 let (i, j) := (Init[sID], Resp[sID])
14 let (IV, ϕ) := St[sID]
15 let (ϕ, (p̃k,⊥, ctj ,Kj)) := St′i[IV]
16 Ki := Decaps1(sk′i, ct)
17 if Ki = ⊥ : return ⊥
18 if (p̃k, c̃t) /∈ C̃
19 K̃ := Dec0(sID, c̃t)
20 if K̃ = ⊥: return ⊥
21 ctxt := (pk′i, pk′j , p̃k, cti, ctj , c̃t)
22 if SK′[ctxt] 6= ⊥: SK := SK′[ctxt]
23 else SK′[ctxt] := SK← SK
24 (R[sID], SK[sID]) := ((c̃t, cti),SK)
25 return 1

Oracle SessionI((i, j) ∈ [N]2)
26 cnt := cnt + 1, sID := cnt
27 (Init[sID], Resp[sID]) := (i, j)
28 Type[sID] := “In”
29 (ctj ,Kj)← Encaps1(pk′j)
30 Cj := Cj ∪ {ctj}
31 p̃k := p̃k

∗
sID, K̃ := K̃ ∪ {(p̃k, sID)}

32 Cor′[p̃k] := 0
33 IV ← {0, 1}κ, ϕ← {0, 1}d
34 st′ := (p̃k,⊥, ctj ,Kj)
35 st := (IV, ϕ), St′i[IV] := (ϕ, st′)
36 (I[sID], St[sID]) := ((p̃k, ctj), st)
37 return (sID, (p̃k, ctj))

Oracle SessionR((i, j) ∈ [N]2, (p̃k, ctj))
38 cnt := cnt + 1, sID := cnt
39 (Init[sID], Resp[sID]) := (i, j)
40 Type[sID] := “Re”
41 Kj := Decaps1(skj , ctj)
42 if Kj = ⊥ : return ⊥
43 if ∃t s.t. (p̃k, t) ∈ K̃
44 c̃t← Enc0(t), C̃ := C̃ ∪ {(p̃k, c̃t)}
45 else
46 (c̃t, K̃)← Encaps0(p̃k)
47 L̃ := L̃ ∪ {(c̃t, K̃)}
48 (cti,Ki)← Encaps1(pki), Ci := Ci ∪ {cti}
49 ctxt := (pk′i, pk′j , p̃k, cti, ctj , c̃t)
50 SK← SK
51 SK′[ctxt] := SK, SK[sID] := SK
52 (I[sID], R[sID]) := ((p̃k, ctj), (c̃t, cti))
53 return (sID, (c̃t, cti))

Figure 22: B0 has access to OKEM0 := {Enc0,Dec0,Reveal0,Corr0,Check0}. A has access to
O := (SessionI,DerI,SessionR,RevK,Cor,Test). Oracles Test and Cor are the same as G4,b in
Figure 18. Oracles G,H, and RevSt are given in Figure 23. Here highlighted lines show how the simulator
uses oracles in OKEM0 to simulate G4,b and break OW-ChCCA security of KEM0.

39

Oracle G(k, IV)
01 if ∃y s.t. (k, IV, y) ∈ LG
02 return y
03 y ← {0, 1}d
04 if ∃i s.t. k = ki ∧ St′i[IV] 6= ⊥
05 (ϕ, st′) := St′i[IV]
06 (p̃k,⊥, ctj ,Kj) := st′
07 Cj := Cj\{ctj}
08 Find t s.t. (p̃k, t) ∈ K̃
09 s̃k := Corr0(t)
10 y := ϕ⊕ (p̃k, s̃k, ctj ,Kj)
11 Cor′[p̃k] := 1
12 LG := LG ∪ {(k, IV, y)}
13 return y

Oracle RevSt(sID)
14 if Type[sID] 6= “In”: return ⊥
15 i := Init[sID]
16 (IV, ϕ) := St[sID]
17 if ∃y s.t. (ki, IV, y) ∈ LG
18 if ¬Cor[i] ∨ ¬revST[sID]
19 badst := 1
20 output (t∗, c̃t∗,⊥) and abort
21 revST[sID] := 1
22 return St[sID]

Oracle H(ctxt,K1,K2, K̃)
23 if ∃SK s.t. (ctxt,K1,K2, K̃,SK) ∈ LH return SK
24 parse (pki, pkj , p̃k, ct1, ct2, c̃t) := ctxt
25 if SK′[ctxt] 6= ⊥ ∧ Decaps1(ski, ct1) = K1 ∧ Decaps1(skj , ct2) = K2

26 if (∃t s.t. (p̃k, t) ∈ K̃ ∧ Dec0(t, c̃t) = K̃) ∨ (c̃t, K̃) ∈ L̃
27 SK := SK′[ctxt]
28 if

(
¬Cor[i] ∧ ct1 ∈ Ci ∧ K1 = Decap1(sk′i, ct1)

)
∨
(
¬Cor[j] ∧ ct2 ∈ Cj ∧ K2 = Decap1(sk′j , ct2)

)
29 bad1 := 1, output (t∗, c̃t∗,⊥) and abort
30 if ∃t s.t.(p̃k, t) ∈ K̃ ∧ (p̃k, c̃t) ∈ C̃ ∧Check0(t, c̃t, p̃k) = 1 ∧ ¬Cor′[p̃k]
31 bad0 := 1, t∗ := t, c̃t∗ := c̃t, output (t∗, c̃t∗, K̃) and abort
32 SK← SK
33 LH := LH ∪ {(ctxt,K1,K2, K̃,SK)}
34 return SK

Figure 23: Oracles G,H, and RevSt in the proof of Lemma E.2. Here highlighted lines show how the
simulator uses oracles in OKEM0 to simulate G4,b and break OW-ChCCA security of KEM0.

KEM key of c̃t as unknown and uses Check0 to search adversary A’s queries to H and recover the
key from them to break the OW-ChCCA security of KEM0.

• In H, B0 queries Check0(t, c̃t, K̃) to determine if Decaps0(s̃k, c̃t) = K̃, where s̃k is the private key of
p̃k
∗
t . If A triggers bad0 event, then B0 records and outputs the identity, challenge ciphertext, and

corresponding key, and aborts the simulation (see Lines 30 to 31).
• If other bad events (i.e., bad1 or badst) happens, B0 aborts the simulation with outputting (t∗, c̃t∗,⊥).
Let (t∗, c̃t∗, K̃) be B0’s final output. If A triggers bad0 event, then by definition, we have Cor′[p̃k

∗
t∗] = 0,

(p̃k
∗
t∗ , c̃t∗) ∈ C̃, and K̃ is the KEM0 key of c̃t∗ wrt p̃kt∗ . Cor′[p̃k

∗
t∗] = 0 means that B0 never queries

Corr0(t∗). (p̃k
∗
t∗ , c̃t∗) ∈ C̃ means that c̃t∗ is a challenge ciphertext wrt p̃kt∗ (and B0 never queries

Reveal0(i∗, ct∗)). Therefore, (t∗, c̃t∗, K̃) is a valid solution and B0 wins game OW-ChCCAKEM0(λ)
(Figure 3). We also need to count the error term δ0 into the final bound since KEM0 is (1− δ0)-correct.
That is, we have ∣∣∣Pr

[
GA3,b ⇒ 1

]
− Pr

[
GA4,b ⇒ 1

]∣∣∣ ≤ Pr [bad0] ≤ AdvOW-ChCCA
B,KEM0

(λ) + δ0,

as stated in Lemma E.2.

Remark on Lemma E.2. Our protocol requires the OW-ChCCA security of the ephemeral KEM KEM0, while
the ephemeral KEM in Jager et al.’s protocol is non-committing against chosen-plaintext attacks (NC-CPA)

40

(namely, no query to the decapsulation oracle is allowed). This is because we need a decapsulation oracle
to give a tight proof against active adversaries A who can adaptively change ephemeral ciphertext c̃t.

More precisely, imagine type (3) attacks in Table 1, namely, A corrupts the long-term keys of both
initiator i and responder j, and activates a session between i with j. A forwards the first message from i
to j honestly, but for the message from j to i A adaptively changes c̃t. We denote the modified c̃t as
c̃t′. Now the reduction B0 has already embedded a challenge public key in p̃k and a challenge ciphertext
in (non-modified) c̃t, but B0 must decrypt c̃t′, since c̃t′ can be an invalid ciphertext and initiator i (i.e.,
DerI) has to output ⊥ for invalid ciphertexts. Here B0 cannot corrupt the secret key of p̃k, otherwise
the corresponding ciphertext c̃t is not fresh, and according to the definition of OW-ChCCA it is not a
valid attack. Hence, without the decapsulation oracle B0 cannot tightly simulate the experiment.

However, for the NC-CPA security in [JKRS21], B0 can corrupt the secret key to simulate the
experiment, and the corresponding ciphertexts are still counted as valid. This indicates that the non-
committing KEM notion in [JKRS21] (even against chosen-plaintext attacks) seems to be stronger than
our OW-ChCCA security.

41

Game IND-ECCAAKEM,β(λ)
01 par← Setup(1λ)
02 for i ∈ [N] : (pki, ski)← Gen(par)
03 O1 := (Enc,Dec,Reveal)
04 O2 := (Corr,Test)
05 β′ ← AO1,O2(par, (pki)i∈[N])
06 return β′

Oracle Enc(i)
07 (ct,K)← Encap(pki)
08 LEnc := LEnc ∪ {(i, ct,K)}
09 return ct

Oracle Dec(i, ct′)
10 if ∃K ′ s.t. (i, ct′,K ′) ∈ LEnc :
11 return ⊥
12 return K ′ ← Decap(ski, ct′)

Oracle Reveal(i, ct)
13 if (i, ct) ∈ LTest : return ⊥
14 if ∃K : (i, ct′,K) ∈ LEnc :
15 LReveal := LReveal ∪ {(i, ct)}
16 return K
17 return ⊥

Oracle Corr(i)
18 if ∃ct s.t. (i, ct) ∈ LTest :
19 return ⊥
20 LCorr := LCorr ∪ {i}
21 return ski
Oracle Test(i, ct)
22 if (i, ct) ∈ LTest ∪ LReveal :
23 return ⊥
24 if i ∈ LCorr : return ⊥
25 if ∃K : (i, ct,K) ∈ LEnc :
26 LTest := LTest ∪ {(i, ct)}
27 K0 := K, K1

$← K
28 return Kβ

29 return ⊥

Figure 24: The game IND-ECCA for a key encapsulation mechanism KEM := (Setup,Gen,Encap,Decap).

F From OW-ChCCA to IND-ECCA
We show that OW-ChCCA security implies IND-ECCA security, via a simple transformation. IND-ECCA
security has been introduced by Han et al. [HLG21] to show impossibility of tightly secure AKE based on
many well-known key encapsulation mechanisms in the standard model. Similar to OW-ChCCA, IND-ECCA
is a multi-user multi-challenge notion for key encapsulation mechanisms, where the adversary can access a
corruption oracle and make decapsulation queries even for challenge ciphertexts. The important difference
is that IND-ECCA security is an indistinguishability-style security notion, and the adversary does not
have access to a check oracle Check. Our result shows that by hashing the encapsulated key, we can
transform any OW-ChCCA secure scheme into an IND-ECCA secure one.

We first define IND-ECCA security formally.

Definition F.1 (IND-ECCA Security). Let KEM = (Setup,Gen,Encap,Decap) be a key encapsulation
mechanism and consider the game IND-ECCA defined in Figure 24. We say that KEM is IND-ECCA secure,
if for all PPT adversaries A, the following advantage is negligible:

AdvIND-ECCA
A,KEM (λ) :=

∣∣∣Pr
[
IND-ECCAAKEM,0(λ)⇒ 1

]
− Pr

[
IND-ECCAAKEM,1(λ)⇒ 1

]∣∣∣ .
In Figure 25 we transform a OW-ChCCA secure KEM = (Setup,Gen,Encap,Decap) into a IND-ECCA

secure KEM′ = (Setup,Gen,Encap′,Decap′) using a random oracle H : {0, 1}∗ → {0, 1}λ.

Alg Encap′(pk)
01 (ct,K)← Encap(pk)
02 K ′ := H(ct,K)
03 return (ct,K ′)

Alg Decap′(sk, ct)
04 K ← Decap(sk, ct)
05 K ′ := H(ct,K)
06 return K ′

Figure 25: The key encapsulation mechanism KEM′ = (Setup,Gen,Encap′,Decap′) for a given key
encapsulation mechanism KEM = (Setup,Gen,Encap,Decap). Here, H : {0, 1}∗ → {0, 1}λ is a random
oracle.

42

Lemma F.2 Let H : {0, 1}∗ → {0, 1}λ be a random oracle. If KEM is OW-ChCCA secure, then KEM′ is
IND-ECCA secure.

Concretely, for any PPT algorithm A there is a PPT algorithm B with T(A) ≈ T(B) and

AdvIND-ECCA
A,KEM′ (λ) ≤ 2 · AdvOW-ChCCA

B,KEM (λ).

Proof. Let A be a PPT algorithm. We show the statement using a sequence of games Gi for i ∈ {0, . . . , 3},
and use the notation

Advi := Pr [Gi ⇒ 1], for i ∈ {0, . . . , 3}.
The games are presented formally in Figure 26.

Game G0-G3
01 par← Setup(1λ)
02 for i ∈ [N] : (pki, ski)← Gen(par)
03 O1 := (Enc′,Dec′,Reveal′)
04 O2 := (Corr′,Test′)
05 β′ ← AO1,O2(par, (pki)i∈[N])
06 return β′

Oracle Enc′(i)
07 (ct,K)← Encap(pki)
08 K ′ := H(ct,K)
09 LK := LK ∪ {(i, ct,K)} �G1-G2
10 LEnc := LEnc ∪ {(i, ct,K ′)}
11 return ct

Oracle Dec′(i, ct′)
12 if ∃K ′ s.t. (i, ct′,K ′) ∈ LEnc :
13 return ⊥
14 return K ′ ← Decap′(ski, ct′)

Oracle H(ct,K)
15 if ∃i s.t. (i, ct,K) ∈ LK : �G1-G2
16 badQ := 1, abort �G1-G2
17 if h[ct,K] = ⊥ :
18 h[ct,K] $← {0, 1}λ
19 return h[ct,K]

Oracle Test′(i, ct)
20 if (i, ct) ∈ LTest ∪ LReveal :
21 return ⊥
22 if i ∈ LCorr : return ⊥
23 if ∃K ′ s.t. (i, ct,K ′) ∈ LEnc :
24 LTest := LTest ∪ {(i, ct)}
25 K ′0 := K ′, K ′1

$← K
26 return K ′0 �G0-G1
27 return K ′1 �G2-G3
28 return ⊥

Oracle Reveal′(i, ct)
29 if (i, ct) ∈ LTest : return ⊥
30 if ∃K s.t. (i, ct′,K) ∈ LEnc :
31 LReveal := LReveal ∪ {(i, ct)}
32 LK := LK \ {(i′, ct′,K) ∈ LK | i′ = i ∧ ct′ = ct} �G1-G2
33 return K
34 return ⊥

Oracle Corr′(i)
35 if ∃ct s.t. (i, ct) ∈ LTest : return ⊥
36 LCorr := LCorr ∪ {i}
37 LK := LK \ {(i′, ct,K) ∈ LK | i′ = i} �G1-G2
38 return ski

Figure 26: The games G0-G3 in the proof of Lemma F.2. Lines with highlighted comments are only
executed in the corresponding games.

Game G0: The game G0 is defined to be G0 := IND-ECCAAKEM′,0(λ). That is, G0 is the real IND-ECCA
game with bit β = 0. Recall that in this game, parameters par and keys (pki, ski) are generated. Then, A is
run on input par, (pki)i∈[N] with access to oracles Enc′,Dec′,Reveal′,Corr′,Test′. Here, oracle Enc′

runs algorithm Encap′. This means that it first runs (ct,K)← Encap(pk), and then sets K ′ := H(ct,K).
It outputs ct to A. As β = 0, oracle Test′ returns the key K ′ that is computed in the corresponding
call to oracle Enc′. Additionally, A gets access to random oracle H. Then, algorithm A outputs a bit β′.
The game outputs β′. By definition, we have

Adv0 := Pr
[
IND-ECCAAKEM′,0(λ)⇒ 1

]
.

43

Game G1: In game G1, we add a bad event badQ, and let the game abort if this event occurs. Namely,
consider a query of the form Enc′(i), and let (ct,K) be the output of algorithm Encap as described above.
We say that badQ occurs, if A queries H(ct,K) before any query of the form Corr′(i) or Reveal′(i, ct)
for these i, ct, that does not return ⊥. In the code, we formally model this via a list LK , where we insert
tuples (i, ct,K) during queries of the form Enc′(i), and remove them in corresponding queries (that
do not output ⊥) of the form Corr′(i) or Reveal′(i, ct). It is clear that the distinguishing advantage
between G0 and G1 can be bounded by the probability of event badQ.

Reduction B gets as input par and keys (pki)i. It also gets access to oracles Enc,Dec,Reveal,
Corr,Check. Then, B runs A on input par and keys (pki)i with access to oracles Enc′,Dec′,Reveal′,
Corr′,Test′, and a random oracle H. We describe how B simulates these oracles:

• Corr′(i): B calls Corr(i) and returns the result.

• Reveal′(i, ct): B calls K ← Reveal(i, ct). If K = ⊥, it returns ⊥. Otherwise, it returns H(ct,K).

• Dec′(i, ct): B calls K ← Dec(i, ct). If K = ⊥, it returns ⊥. Otherwise, it returns H(ct,K).

• Enc′(i): B calls Enc(i) and gets a ciphertext ct. It returns ct. If there is a previous query ct′,K
to H with ct = ct′ and Check(i, ct,K) = 1, B sets badQ := 1, outputs (i, ct,K) to its experiment
and terminates.

• Test(i, ct): B outputs ⊥ if G1 would do so (note that it can keep track of the necessary lists), and
otherwise it outputs K ′ $← {0, 1}λ.

• H(ct,K): If ct is a previous output of a query Enc′(i), and the oracles Reveal′(i, ct) and Corr′(i)
were never queried without returning ⊥, and Check(i, ct,K) = 1, B sets badQ := 1, outputs
(i, ct,K) to its experiment and terminates.

If B did not yet terminate when A outputs bit b, B outputs ⊥ and terminates.
Note that the view of A is identical to its view in G1 until B terminates. Especially, B terminates

with an output other than ⊥ exactly if badQ occurs, and as long as badQ did not yet occur the values
returned by oracle Test are uniformly random in G1. If B terminates with an output other than ⊥, the
OW-ChCCA game outputs 1. Therefore, we have

|Adv1 − Adv2| ≤ AdvOW-ChCCA
B,KEM (λ).

Game G2: In game G2, we switch bit β to β = 1. That means that in queries to oracle Test′, we
return a random key K ′1 $← K instead of the key K ′0 := K ′, where K ′ = H(ct,K) was computed in the
corresponding call of the form Enc′(i). We claim that the view of A does not change from G1 to G2.
To see this, recall that Test′(i, ct) outputs ⊥, if A made a query Corr′(i) or Reveal′(i, ct) before.
Also, whenever the oracles Corr′(i) or Reveal′(i, ct) are called afterwards, they output ⊥. By the
change introduced in the previous game, this means that for the queries Test′(i, ct) that do not output
⊥, we can assume that A never queries H(ct,K) during the entire game. Therefore, keys K ′0 and K ′1 are
distributed identically. We have

Adv1 = Adv2.

Game G3: Game G3 is the same as game G2, but we do not longer abort on event badQ. That is, we
revert the change that we introduced from G0 to G1. A similar argument shows that

|Adv2 − Adv3| ≤ AdvOW-ChCCA
B,KEM (λ).

Now, notice that G3 is equivalent to game IND-ECCAAKEM′,1(λ). Therefore, we have

Adv3 = Pr
[
IND-ECCAAKEM′,1(λ)⇒ 1

]
.

The statement follows.

44

G Omitted Formal Details of Section 5.2
Definition G.1 (Public-Key Encryption Scheme). A public-key encryption scheme is a tuple of PPT
algorithms PKE = (Setup,Gen,Enc,Dec) with the following syntax:

• Setup(1λ)→ par takes as input the security parameter 1λ, and outputs global system parameters par.
We assume that par implicitly define a ciphertext space C = Cpar, and a message spaceM =Mpar.

• Gen(par)→ (pk, sk) takes as input parameters par, and outputs a public key pk and a secret key sk.

• Enc(pk,m)→ ct takes as input a public key pk and a message m ∈ M, and outputs a ciphertext
ct ∈ C.

• Dec(sk, ct)→ m is deterministic, takes as input a secret key sk and a ciphertext ct ∈ C, and outputs
a message m ∈M∪ {⊥}.

We say that PKE is ρ-correct, if for every par ∈ Setup(1λ), and every message m, the following probability
is at least ρ:

Pr [m = m′ | (pk, sk)← Gen(par), ct← Enc(pk,m),m′ ← Dec(sk, ct)] .

Definition G.2 (SIM-BiSO-CCA Security). Let PKE = (Setup,Gen,Enc,Dec) be a public-key encryption
scheme and consider the games REAL-BiSO-CCA and IDEAL-BiSO-CCA defined in Figure 27. We say that
PKE is SIM-BiSO-CCA secure, if for all PPT algorithms A, there exists a PPT algorithm S, such that for
every PPT algorithm D the following advantage is negligible:

AdvSIM-BiSO-CCA
A,S,D,PKE (λ) := |Pr

[
REAL-BiSO-CCAA,DPKE (λ)⇒ 1

]
−Pr

[
IDEAL-BiSO-CCADKEM,S(λ)⇒ 1

]
|.

Game REAL-BiSO-CCAA,DPKE (λ)
01 par← Setup(1λ)
02 for i ∈ [N] : (pki, ski)← Gen(par)
03 (M, St)← ADec (par, (pki)i∈[N]

)
04 (M1, . . . ,MN) := M ←M
05 for (i, j) ∈ [N]× [µ] :
06 ρi,j ← R, mi,j := Mi[j]
07 cti,j := Enc(pki,mi,j ; ρi,j)
08 C := (ct1,1, . . . , ctN,µ)
09 o← ADec,Corr,Open(St, C)
10 return D(M,LCorr,LOpen, o)

Oracle Corr(i)
11 LCorr := LCorr ∪ {i}
12 return ski
Oracle Open(i, j)
13 LOpen := LOpen ∪ {(i, j)}
14 return (mi,j , ρi,j)

Game IDEAL-BiSO-CCADKEM,S(λ)
15 par← Setup(1λ)
16 (M, St)← S(par)
17 (M1, . . . ,MN) := M ←M
18 for (i, j) ∈ [N]× [µ] :
19 leni,j := |Mi[j]|, mi,j := Mi[j]
20 L := (len1,1, . . . , lenN,µ)
21 o← SCorr′,Open′(St, L)
22 return D(M,LCorr,LOpen, o)

Oracle Dec(i, ct)
23 if ∃j s.t. cti,j = ct : return ⊥
24 return Dec(ski, ct)

Oracle Corr′(i)
25 LCorr := LCorr ∪ {i}
26 return (mi,j)j
Oracle Open′(i, j)
27 LOpen := LOpen ∪ {(i, j)}
28 return mi,j

Figure 27: The games REAL-BiSO-CCA and IDEAL-BiSO-CCA for a given public-key encryption scheme
PKE = (Setup,Gen,Enc,Dec) with randomness space R.

Lemma G.3 Let H : {0, 1}∗ → {0, 1}λ × {0, 1}λ and G : {0, 1}∗ → {0, 1}λ be random oracles. If KEM
is OW-ChCCA secure, has deterministic ciphertext derivation, and has h = ω(log λ) bits of ciphertext
entropy, then PKE is SIM-BiSO-CCA secure.

45

Game G0-G4
01 par← Setup(1λ)
02 for i ∈ [N] : (pki, ski)← Gen(par)
03 (M, St)← ADec,H,G (par, (pki)i∈[N]

)
, (M1, . . . ,MN) := M ←M

04 for (i, j) ∈ [N]× [µ] :
05 Ki,j

$← K, mi,j := Mi[j], cti,j,0 := Êncap(pki,Ki,j)
06 if ∃K s.t. h[cti,j,0,K] 6= ⊥ : abort �G1-G4
07 if ∃(i, j) 6= (i′, j′) ∈ [N]× [µ] s.t. cti′,j′,0 = cti,j,0 : abort �G1-G4

08 (k(e)
i,j , k

(m)
i,j) := H(cti,j,0,Ki,j), cti,j,1 := k

(e)
i,j ⊕mi,j �G0-G1

09 (cti,j,1, k(m)
i,j) $← {0, 1}λ × {0, 1}λ �G2-G4

10 cti,j,2 := G(k(m)
i,j , cti,j,1), cti,j := (cti,j,0, cti,j,1, cti,j,2)

11 C := (ct1,1, . . . , ctN,µ) , o← ADec,Corr,Open,H,G(St, C)
12 return D(M,LCorr,LOpen, o)
Oracle H(ct,K)
13 if h[ct,K] = ⊥ :
14 h[ct,K] $← {0, 1}λ × {0, 1}λ
15 if ∃(i, j) ∈ [N]× [µ] s.t. (ct,K) = (cti,j,0,Ki,j) ∧ i /∈ LCorr ∧ (i, j) /∈ LOpen :
16 badOW := 1, abort �G4
17 if ∃(i, j) ∈ [N]× [µ] s.t. (ct,K) = (cti,j,0,Ki,j) : �G2-G4

18 h[ct,K] := (cti,j,1 ⊕mi,j , k
(m)
i,j) �G2-G4

19 return h[ct,K]
Oracle Dec(i, ct)
20 if ∃j ∈ [µ] s.t. cti,j = ct : return ⊥
21 let ct = (ct0, ct1, ct2)
22 if ∃j ∈ [µ] s.t. ct0 = cti,j,0 �G3-G4

∧ h[cti,j,0,Ki,j] = ⊥ �G3-G4

∧ G(k(m)
i,j , ct1) = ct2 : �G3-G4

23 badMAC := 1, abort �G3-G4
24 K := Decap(ski, ct0)
25 (k(e), k(m)) := H(ct0,K)
26 if G(k(m), ct1) 6= ct2 : return ⊥
27 return m := ct1 ⊕ k(e)

Oracle Open(i, j)
28 LOpen := LOpen ∪ {(i, j)}
29 return (mi,j ,Ki,j)

Oracle Corr(i)
30 LCorr := LCorr ∪ {i}
31 return ski
Oracle G(w, ct)
32 if g[w, ct] = ⊥ :
33 g[w, ct] $← {0, 1}λ
34 return g[w, ct]

Figure 28: The games G0-G4 used in the proof of Lemma G.3. Lines with highlighted comments are
only executed in the corresponding games.

Concretely, for any PPT algorithm A, there is a PPT algorithms S, such that T(S) ≈ T(A), and for
every PPT algorithm D there is a PPT algorithm B with T(B) ≈ T(A) + T(D) and

AdvSIM-BiSO-CCA
A,S,D,PKE (λ) ≤ QHNµ

2h + QDecQG
2h + AdvOW-ChCCA

B,KEM (λ),

where QDec, QH, QG denotes the number of queries of A to oracles Dec,H,G, respectively.

Proof. The statement is proven via a sequence of games as formally given in Figure 28.
We start with game G0 := REAL-BiSO-CCAA,DPKE (λ), and make changes towards a game that can be

simulated. For ease of notation, we define

Advi := Pr [Gi ⇒ 1], for i ∈ {0, . . . , 4}.

Game G0: Game G0 is defined as the real attack game REAL-BiSO-CCA We recall this game to fix some
notation. First, parameters par and keys (pki, ski) for i ∈ [N] are generated. Then, A is run on input par
and (pki)i∈[N] with access to a decryption oracle Dec and random oracles H and G. Random oracles H and
G are simulated using maps h[·] and g[·] in the standard lazy manner. Adversary A outputs a distribution
M, from which messages mi,j for all (i, j) ∈ [N] × [µ] are sampled. For each such (i, j) ∈ [N] × [µ],

46

Alg BEnc′,Dec′,Reveal′,Corr′,Check′(par, (pki)i∈[N])
01 (M, St)← ADec,H,G (par, (pki)i∈[N]

)
, (M1, . . . ,MN) := M ←M

02 for (i, j) ∈ [N]× [µ] :
03 mi,j := Mi[j], cti,j,0 ← Enc′(i)
04 if ∃K s.t. h[cti,j,0,K] 6= ⊥ : abort
05 if ∃(i, j) 6= (i′, j′) ∈ [N]× [µ] s.t. cti′,j′,0 = cti,j,0 : abort
06 (cti,j,1, k(m)

i,j) $← {0, 1}λ × {0, 1}λ

07 cti,j,2 := G(k(m)
i,j , cti,j,1), cti,j := (cti,j,0, cti,j,1, cti,j,2)

08 C := (ct1,1, . . . , ctN,µ) , o← ADec,Corr,Open,H,G(St, C)
09 return D(M,LCorr,LOpen, o)
Oracle H(ct,K)
10 if h[ct,K] = ⊥ :
11 h[ct,K] $← {0, 1}λ × {0, 1}λ
12 if Check′(i, ct,K) = 1 :
13 if ∃(i, j) ∈ [N]× [µ] s.t. ct = cti,j,0 ∧ i /∈ LCorr ∧ (i, j) /∈ LOpen :
14 badOW := 1, return (i, ct,K) to OW-ChCCAKEM
15 if ∃(i, j) ∈ [N]× [µ] s.t. (ct,K) = (cti,j,0,Ki,j) :
16 h[ct,K] := (cti,j,1 ⊕mi,j , k

(m)
i,j)

17 return h[ct,K]
Oracle Dec(i, ct)
18 if ∃j ∈ [µ] s.t. cti,j = ct : return ⊥
19 let ct = (ct0, ct1, ct2)
20 if ∃j ∈ [µ] s.t. ct0 = cti,j,0 ∧ G(k(m)

i,j , ct1) = ct2 : badMAC := 1, abort
21 if ∃j ∈ [µ] s.t. ct0 = cti,j,0 : return ⊥
22 K ← Dec′(i, ct0), (k(e), k(m)) := H(ct0,K)
23 if G(k(m), ct1) 6= ct2 : return ⊥
24 return m := ct1 ⊕ k(e)

Oracle Open(i, j)
25 LOpen := LOpen ∪ {(i, j)}
26 Ki,j ← Reveal′(i, cti,j,0)
27 return (mi,j ,Ki,j)

Oracle Corr(i)
28 LCorr := LCorr ∪ {i}
29 ski ← Corr′(i)
30 for j ∈ [µ] :
31 Ki,j := Decap(ski, cti,j,0)
32 return ski

Figure 29: The reduction B in the proof of Lemma G.3, running in the game OW-ChCCAKEM. Oracle G
is provided as in game G3.

the game samples Ki,j
$← K and computes a ciphertext cti,j . In the concrete scheme at hand, cti,j

has the form cti,j := (cti,j,0, cti,j,1, cti,j,2), where cti,j,0 := Êncap(pki,Ki,j), (k(e)
i,j , k

(m)
i,j) := H(cti,j,0,Ki,j),

cti,j,1 := k
(e)
i,j ⊕mi,j , and cti,j,2 := G(k(m)

i,j , cti,j,1). Adversary A gets all ciphertexts cti,j and access to the
previous oracles, as well as a corruption oracle Corr, and an opening oracle Open. The final output o
of A, the messages M , and its queries LCorr,LOpen to oracles Corr,Open are given to D. Then, the
game outputs whatever D outputs. Note that we use the deterministic ciphertext derivation property of
KEM here. We have

Adv0 = Pr
[
REAL-BiSO-CCAA,DPKE (λ)⇒ 1

]
.

Game G1: Game G1 is as G0, but we introduce a bad event and let the game abort if this bad event
occurs. Namely, the game aborts if for some (i, j) ∈ [N]× [µ], after running cti,j,0 := Êncap(pki,Ki,j),
there is a K such that value h[cti,j,0,K] is already defined, i.e. A queried H(cti,j,0,K) before, or there is
some other tuple (i′, j′) ∈ [N]× [µ] such that cti′,j′,0 = cti,j,0. As the former condition is implied by the
latter, it is sufficient to bound the probability of the former. Clearly, we can bound the probability of
this event using the ciphertext entropy of KEM and a union bound over all such (i, j) ∈ [N]× [µ] and all

47

random oracle queries. We get
|Adv0 − Adv1| ≤

QHNµ

2h .

Game G2: Game G2 is as G1, but we change the way we compute the ciphertexts cti,j for all (i, j) ∈
[N]× [µ] and simulate random oracle H. Recall that before, we computed (k(e)

i,j , k
(m)
i,j) := H(cti,j,0,Ki,j)

and cti,j,1 := k
(e)
i,j ⊕ mi,j . From now on, we sample (cti,j,1, k(m)

i,j) $← {0, 1}λ × {0, 1}λ and continue
as before. Then, if A queries H(cti,j,0,Ki,j) afterwards, the game programs the random oracle as
h[cti,j,0,Ki,j] := (cti,j,1 ⊕mi,j , k

(m)
i,j). Due to the previous change, this does not change the view of the

adversary. We have
Adv1 = Adv2.

Game G3: In G3, we introduce another bad event and let the game abort if it occurs. Namely, we define
the bad event badMAC as follows. Consider a decryption query Dec(i, ct) for ct = (ct0, ct1, ct2), which
does not return ⊥ due to ct = cti,j for some j ∈ [µ]. Event badMAC occurs in such a query, if we have
ct0 = cti,j,0 for some j ∈ [µ] with h[cti,j,0,Ki,j] = ⊥ and G(k(m)

i,j , ct1) = ct2.
Now, we have to bound the probability of badMAC. To this end, consider a fixed decryption query, for

which ct0 = cti,j,0 for some (i, j) ∈ [N]× [µ] with h[cti,j,0,Ki,j] = ⊥. First, consider the case ct1 = cti,j,1.
Then, we know that

cti,j,2 = G(k(m)
i,j , cti,j,1) = G(k(m)

i,j , ct1) = ct2.

Thus, we have ct = cti,j , and the oracle would have returned ⊥, a contradiction. For the second case,
assume ct1 6= cti,j,1. We know that the only information that A obtained about k(m)

i,j is G(k(m)
i,j , cti,j,1).

This is because we assume h[cti,j,0,Ki,j] = ⊥. As ct1 6= cti,j,1, the hash value G(k(m)
i,j , cti,j,1) does not

reveal information about G(k(m)
i,j , ct1), and so G(k(m)

i,j , ct1) = ct2 can only occur with probability at most
QG/2λ. A union bound over all decryption queries leads to

|Adv2 − Adv3| ≤
QDecQG

2h .

Game G4: In G4, we introduce another bad event and let the game abort if it occurs. Namely, the bad
event badOW occurs, if for some (i, j) ∈ [N]× [µ], adversary A queries H(cti,j,0,Ki,j) after getting all the
ciphertexts, and before ever calling Corr(i) or Open(i, j). Clearly, we have

|Adv3 − Adv4| ≤ Pr [badOW].

We bound the probability of event badOW using a reduction B that breaks the OW-ChCCA security
of KEM, assuming badOW occurs. We formally present B in Figure 29. It gets as input parameters
par and keys (pki)i∈[N]. It also gets access to oracles Enc′,Dec′,Reveal′,Corr′,Check′ of game
OW-ChCCAKEM. Then, it runs A on input par and (pki)i∈[N], as in G3. It provides random oracles H and
G as in G3, and a decryption oracle Dec. Here, queries of the form Dec(i, ct) with ct = (ct0, ct1, ct2) are
simulated by B by first forwarding (i, ct0) to oracle Dec and getting key K in return. Then, B continues
answering this query as in G3. Once A outputsM, B samples the mi,j as in G3. It computes each cti,j,0
by calling Enc′(i). It aborts if there is some K such that h[cti,j,0,K] 6= ⊥ (cf. G1). Then, it computes
the remaining parts of cti,j as in G3. Note that due to the change in G2, the value Ki,j is not needed for
that. Next, B passes all ciphertexts cti,j to A, and provides access to oracles H,G,Dec,Corr,Open.
Random oracle G is simulated honestly as in G3, and Corr is simulated by forwarding between A and
Corr′. The other oracles are simulated as follows:

• Corr(i): B calls Corr′(i), which returns ski. Then, B computes Ki,j := Decap(ski, cti,j,0) for all
j ∈ [µ], and returns ski to A.

• Open(i, j) : B calls Reveal′(i, cti,j,0), which returns Ki,j . Then, B returns (mi,j ,Ki,j) to A.

• H(ct,K): If the hash value has to be defined, B first checks if badOW occurs. To do that, it first
checks if ct = cti,j,0 for some i, j for which A never queried Corr(i) or Open(i, j). If this is the
case, it runs oracle Check′(i, ct,K). If the oracle returns 1, B terminates by outputting (i, ct,K).
Otherwise, it simulates the random oracle as in G3.

48

• Dec(i, ct) for ct = (ct0, ct1, ct2): As in G3, B returns ⊥ if ct = cti,j for some j ∈ [µ]. Otherwise, B
first checks if ct0 = cti,j,0 for some j ∈ [µ]. If it is, it checks if G(k(m)

i,j , ct1) = ct2. If this holds, B
aborts. It is easy to see that, because B did not yet terminate, this happens exactly when event
badMAC occurs. If B did not abort, and ct0 = cti,j,0 for some j ∈ [µ], B returns ⊥. Note that in
this case, oracle Dec would also return ⊥ in G3. Otherwise, B computes K by calling Dec′(i, ct0).
This will never return ⊥, as ct0 6= cti,j,0 for all j ∈ [µ]. Then, it uses K to complete the simulation
of the query as in G3.

If B did not yet terminate when A returns its final output o, B outputs ⊥. First, we see that B perfectly
simulates G3 for A until it terminates Further, if B terminates, then it breaks the OW-ChCCA security of
KEM. Further, B terminates whenever event badOW occurs. This shows that

|Adv3 − Adv4| ≤ AdvOW-ChCCA
B,KEM (λ).

Finally, it is easy to see that G4 can be simulated by a simulator S. This is because the messages mi,j

are only needed after oracle queries of the form Corr(i) or Open(i, j). Thus, S can internally provide
G4 for A and forward its output. We have

Adv3 = Pr
[
IDEAL-BiSO-CCADKEM,S(λ)⇒ 1

]
,

finishing the proof.

49

	Introduction
	Our Contributions

	Preliminaries
	One-Way Checkable CCA Security
	Definition of OW-ChCCA Security
	Construction from Lattices
	Construction from Matrix Decisional Diffie-Hellman

	AKE from OW-ChCCA Secure KEMs
	Our AKE Protocol

	Further Applications of OW-ChCCA Security
	Non-Committing Key Encapsulation Mechanism
	From OW-ChCCA to SIM-BiSO-CCA

	Omitted Definitions
	Omitted Proofs from sec:owchccafromlattice
	Postponed Construction from Matrix Decisional Diffie-Hellman
	Security Model for AKE
	Security Proofs for Our AKE Protocol in fig:scheme:akescheme
	Proof of lemma:AKE-CCA-KEM
	Proof of lemma:AKE-CPA-KEM

	From OW-ChCCA to IND-ECCA
	Omitted Formal Details of sec:oweccatobiso

