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Abstract. This paper studies the hardness of decision Module Learning
with Errors (MLWE) under linear leakage, which has been used as a
foundation to derive more efficient lattice-based zero-knowledge proofs
in a recent paradigm of Lyubashevsky, Nguyen, and Seiler (PKC 21).
Unlike in the plain LWE setting, it was unknown whether this problem
remains provably hard in the module/ring setting.
This work shows a reduction from the search MLWE to decision MLWE with
linear leakage. Thus, the main problem remains hard asymptotically as
long as the non-leakage version of MLWE is hard. Additionally, we also
refine the paradigm of Lyubashevsky, Nguyen, and Seiler (PKC 21) by
showing a more fine-grained tradeoff between efficiency and leakage. This
can lead to further optimizations of lattice proofs under the paradigm.

1 Introduction

Ring/Module Learning with Errors (RLWE/MLWE) is an important foundation
in the category of lattice-based cryptography, which is a plausible direction for
post-quantum cryptography. RLWE/MLWE facilities more efficient constructions
of public-key encryption, e.g., several candidates in the NIST PQC call, and as
well as advanced crypto systems including identity-based encryption [1,27,44,45]
and fully homomorphic encryption [16], in comparison to those based on the plain
LWE [2, 3, 14]. Due to the efficiency advantage, this problem has drawn a lot of
attentions since its proposal [28,36,37,43].

Zero-knowledge proof (ZKP) is a key technical tool in many applications
with strong privacy requirements. Towards quantum-safe solutions, researchers
have put a lot of efforts in the direction of lattice-based ZKP [7,10,12,19,20,23,
31, 34, 35, 38]. Despite feasibility results (though not practical) in the standard
common reference string (CRS) model [42], many new highly efficient solutions
are constructed in the random oracle model in recent years, using the technique of
Fiat-Shamir with aborts [31]. In recent years, tremendous progress has been made
to optimize the concrete efficiency, e.g., improving the proof sizes for showing
knowledge of an s with small coefficients satisfying As = t, from 384 KB [12] to



47 KB [23]. Additionally, research in this line have deep impacts on the design of
efficient lattice-based signatures [19,20,33] and as well other privacy-preserving
protocols [24,25,29].

Recently, Lyubashevsky, Nguyen, and Seiler [35] identified a new paradigm
that can improve the proof size by roughly 30% over the prior best constriction-
s [23, 34], by using leakage to trade efficiency. More specifically, they derive a
novel modified rejection sampling strategy, called subset rejection sampling, that
leaks one bit of the randomness of a one-time commitment, which is used in the
commit-and-prove paradigm. This key technique to the efficiency improvements,
is allowing smaller proofs. For security, as long as the one-time commitment is
leakage resilient against this class of leakage, then the overall scheme is secure.

Now, the question turns to whether we can prove the one-time commitment
is leakage resilient to one bit. To do this, the work [35] showed that this task can
be reduced to a leakage version of the decisional MLWE problem against linear
functions,5 i.e., as long as the decisional MLWE problem is leakage resilient for
linear functions (over the coefficients of the secret and the error), then so is the
one-time commitment against the same class, implying security against the bit
leakage applied to any linear function.

Despite the fact that there are reduction results showing positive results in
the plain-LWE settings [4,35,40], it was identified as an important open question
in [35] whether the same results carry to the ring setting. On the other hand, the
work [35] speculated that one-bit leakage will not hurt security, at least under
the currently best known attacks. However, it is not clear whether the leakage
version of RLWE/MLWE is inherently hard or we just have not found an attack
yet by exploiting the ring structure with the leakage. This motivates us the main
task of the work:

(Main Task) Determine whether the leakage version of decisional RLWE/MLWE
against linear functions (as required in [35]) is inherently hard (as RLWE/MLWE).

The new rejection sampling paradigm [35] provides a promising opportunity for
achieving more practical lattice proofs, with numerous identified applications.
Therefore, it is crucial to thoroughly investigate the underlying hardness foun-
dations, to ensure that using leakage to trade efficiency does not hurt security in
a provable manner. This would enhance the confidence in the practical adoption
of this emerging paradigm. Our main task is the key to achieve this.

1.1 Our Results

This work provides an affirmative answer to the main task. Particularly, our
main result is to prove the following informal theorem.

Theorem 1.1 (Main Result, Informally Stated) Under the hardness of search
RLWE (for appropriate parameters), the decisional RLWE under leakage of linear
functions (required as [35]) is hard.

5 In fact, the work [35] only needs a slightly weaker version known as extended
(R)LWE.
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In summary, our result provides stronger theoretical justification, increasing con-
fidence in the foundation of the design paradigm [35]. This result has practical
implications, as it can be applied to enhance the efficiency of Zero-Knowledge
Proofs (ZKP) and other lattice-based cryptographic systems. Additionally, our
reduction can be generalized to the module setting, i.e., MLWE, offereing more
flexibility in terms of design choices.

An important aspect of our contribution is that our reduction works in the
full-splitting setting, where qR completely splits into linear factors. Before this
paper, as far as we know, there is limited knowledge regarding MLWE/RLWE
with leakage in the full-splitting setting, as compared to the low-splitting set-
ting [30]. Given that the full-splitting structure plays a crucial role in various
efficient lattice proofs, including some recent works of [7, 23, 32] for establishing
more general relations and improving efficiency, our advances in this setting are
significant.6 We present further details in the technical overview (Section 1.2)
and Section 4.

Our second contribution is to refine the subset rejection sampling strategy
of [35], showing a more fine-grained tradeoff between efficiency and leakage.
Particularly, as listed in Table 1, if we allow log2 6 bits of leakage, the rejection
sampling parameter σ can be slightly improved from 175.67 to 171.42, which
slightly reduces the proof size from 4.14 KB to 4.12 KB. This can be further
stretched – using log q bits of leakage to improve the parameters by a factor
of 52% (83.138 versus 175.67), which reduces the proof size by a factor of 10%
(3.74 KB versus 4.14 KB). Here, q is the underlying modulus. By Theorem 1.1,
the problem remains hard in these leakage settings, at least asymptotically. An
interesting open problem is to determine concrete security of `-bit leakage and
the efficiency tradeoff, finding the optimal parameters for the best efficiency. We
present more details later in the technical overview and Section 4.3.

rep. σ Size of z: kd log2(12 · σ) `

Rej0 ≈ 6 2241.41 5.518KB 0

Rej1 ≈ 6 175.67 4.14 KB 1

Rej2 ≈ 6 171.42 4.12 KB log2 6

Rej3 ≈ 6 83.138 3.74 KB ≈ 32

Table 1. Rough comparison of efficiency under different rejection sampling
algorithms for the opening protocol in Table 4. Here rep. denotes prover’s
expected repetition times, ` the number of leakage, σ the derivation of the
discrete Gaussian, which will influences the proof size of z. The concrete
parameters are listed using the following example setting: the dimension k
of z is 3, the ring dimension d is 1024, the modulus q is roughly 232.

6 In the very recent work [32], while the full-splitting structure is not required to
prove the `2 norm, it is still necessary to prove the `∞ norm or the knowledge of the
component-wise product of two vectors.

3



1.2 Technical Overview

In this section, we present an overview of our techniques. First we describe the
computational problem of the main focus – decisional Module Learning with Er-
rors (MLWE) with linear leakage, and then the hardness results and applications.

Problem Statement. Let Rq denote some (polynomial) residual ring of degree
d and modulus q, e.g.,Rq = Zq[X]\(Xd+1), and later onR refers the underlying
ring and q is the modulus. We notice that the MLWE problem can be stated as the
following: given a ring matrix/vector A ∈ Rm×nq and a ring vector b = A · s+ e
where s ∈ Rnq is some secret ring vector and e ∈ Rmq is some small error ring
vector, the search problem asks to find the secret s and the decision version asks
to distinguish b from a uniformly random vector. The module setting captures
both the RLWE and plain LWE as special cases – if the module rank is one, i.e.,
n = 1, then the problem is RLWE. On the other hand, if the underlying ring has
degree d = 1, then this is the plain LWE. All these variants have been extensively
studied [41] and we have strong confidence in their hardness.

To study the leakage version of the MLWE, we first define the leakage function
of our interests, which is the class required in [35]. Let La,a′(s, e) be defined as
〈φ(a), φ(s)〉+ 〈φ(a′), φ(e)〉 ∈ Zq, where φ is the coefficient embedding function,
i.e., it maps a ring element into a vector of Zdq that represents the coefficient

vector with respect to the power basis (1, X,X2, . . . , Xd−1), and maps ring vec-
tors Rnq to Zndq , analogously. In this work, we consider the class that contains
all such functions regarding the inner product of the coefficient embeddings over
both the secret s and the error e.7 Again, we would emphasize that leakage over
both the secret and error is a critical requirement in the paradigm of [35].

Given the above context, MLWE with linear leakage can be defined in a
simple way – the adversary/solver is given La,a′(s, e) in addition to the regular
MLWE samples. The task of the problem then becomes to find the secret s
or distinguish b from the uniform vector, given the leakage. We notice that
this problem is very related to another notion called extended MLWE [13] with
the following difference: the extended MLWE choses a,a′ from a small discrete
Gaussian distribution, yet our leakage version of MLWE allows the adversary to
specify a,a′ in the beginning of the experiment. Thus, our leakage version of
MLWE is stronger than the extended MLWE.

For the application need, we consider the case where the secret s is sampled
according to the discrete Gaussian distribution, the same as the error e.

Some Prior Results. We first review previous works and then discuss their lim-
itations, particularly the obstacles they face in analyzing the foundation of [35].

– In the context of plain LWE, it was demonstrated that the extended LWE is
provably as hard as LWE [4, 40]. However, as highlighted in [35], this result

7 In fact, our leakage class in the main body is slightly more general, i.e., the leakage
function can include slight multiplicative shifts. Nevertheless, this simplified version
is sufficient to demonstrate our core ideas in the introduction.

4



does not extend to the ring/module setting due to either a loss of exponential
reduction or a dimension mismatch during the reduction transformation.

– The work [13] studied a version of extended MLWE, yet their results do not
cover the case where the leakage is over both the secret and error, as required
by the framework of [35]. It is unlikely that their approach can be generalized
to the setting considered in this work.

– A recent and concurrent work [22] examined a scenario where the leakage
is applied to the error but not the secret. Moreover, their leakage function
takes the form e ·Z +e′, where Z is a low-norm ring matrix specified by the
adversary and e′ is an independent Gaussian error hidden to the adversary.
As their analysis relies on the inclusion of e′, their results are not expected
to be applicable to our setting and are therefore insufficient for analyzing
the framework of [35].
We note that our results and those of [22] are incomparable in several aspects.
Firstly, their leakage functions are linear over the ring, i.e., R∗ → R, where
ours operate over modulo q of the coefficients, i.e., Z∗q → Zq. Secondly, their
leakage functions involve an independent e′ whereas ours do not. Lastly,
their leakage function description, i.e., Z, requires the low-norm property,
whereas ours do not need this constraint. Currently, it is unknown whether
one implication can be inferred from the other or vice versa, so we consider
them as incomparable results.

– Another approach to analyze leakage is by employing the lossy-matrix tech-
nique [5, 15, 30], yet the current developments have several limitations. For
instance, the work [5] is only applicable to the plain LWE setting due to the
absence of the leftover hash lemma in the ring setting at that time. The
work [15] is limited to the search version, and it was unclear how to extend
their techniques to the decision version. The work [30] derived a ring-leftover
hash lemma (LHL), and generalized the analysis of [5] to the module set-
ting, i.e., MLWE. Nonetheless, there are subtleties where their analytical
techniques [30] cannot be applied, as elaborated below.
Particularly, let n be the module rank, d be the ring dimension, and qR
splits into c factors for 1 ≤ c ≤ d. Their result (particularly the ring LHL)
requires that n ≈ O(c) in order to guarantee the required entropy lower
bound. Thus, in the low-splitting setting (e.g., c = 2), the techniques [30]
can be used to analyze for n = O(1), e.g., n = 2. However, for the high-
splitting (e.g., c = d), then their technique requires n ≥ O(d). To choose
more competitive parameters in many practical works, n is set to be O(1)
(even 1 for the RLWE), e.g., [23]. Thus, the technique of [30] is not sufficient
to analyze these practical parameter choices in the full/high splitting setting.

To summarize, we observe that the setting involving low module rank and
high-splitting is not well understood compared to other settings. As many effi-
cient lattice proofs rely on specific algebraic advantages in this setting, e.g., [7,
23], and [32] for more general relationships, there is a strong motivation to ad-
dress the challenges and develop new analytical techniques for the foundation
and applications.
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Our New Analysis. To achieve this, we prove a new reduction from search
MLWE (without leakage) to decisional MLWE with linear leakage, meaning that
the linear leakage does not decrease the hardness up to a polynomial factor. Our
proof structure is similar to that of [30, 36], consisting of five steps as Figure 1.
Below we briefly elaborate on the intermediate problems and the technical ad-
vances over the prior work, i.e., why prior analyses do not go through directly
and how our new techniques solve the challenges.

Our reduction works in the case where qR splits completely into d ideals with
linear degree, i.e., qR = q1 . . . qd. Next we describe the notations in the diagram –
S and D to denote search and decision version. LS denotes leakage of linear secret,
and (A)/(W) denotes average-case/worst-case over the secret distribution. The
qi-MLWE problem asks the solver to find s mod qi. The decisional MLWE-LSi

is to distinguish b + h where h is either from Ai or Ai−1 defined as follow. Ai

is uniformly random mod qjR for all j ≤ i, and 0 mod all the other ideals, i.e.,
qjR’s for j > i.

Fig. 1. Our reduction route

Now we briefly discuss each step in the figure. As Steps (1), (3), and (5)
follow essentially the same idea from the prior work [30, 36], we do not repeat
the ideas. So next we focus on Steps (2) and (4).

For Step (2), we would like to prove the following – if we can find s mod qi
for some i, then we can find s (given leakage). To achieve this, we first try
to apply the automorphism argument of [30, 36] – finding σ(s) mod qi implies
finding s mod qj for another j. By going through all the automorphisms, we
would recover s modulo every ideal, and thus by the Chinese Remainder The-
orem recover s. This idea faces a subtlety in the presence of leakage – the re-
duction needs to simulate Lσ(a),σ(a′)(σ(s), σ(e)) faithfully in order to call the
underlying solver that finds σ(s) mod qi. For general leakage functions, this
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task is unclear. Fortunately for the linear leakage in our case, we can prove
〈φ(a), φ(s)〉+ 〈φ(a′), φ(e)〉 = 〈φ(σ(a)), φ(σ(s))〉+ 〈φ(σ(a′)), φ(σ(e))〉 under the
coefficient embedding in the cyclotomic rings of two’s powers. This implies that
the linear leakage is invariant under automorphism, and thus our reduction can
faithfully simulate the leakage and complete the process as in the prior work.

For Step (4), we would like to prove a worst-case to average-case reduction –
if we can solve the problem for random secrets s, then we can solve the problem
for all secrets s. Again we start with the idea of re-randomization used in [30,36]
in the case without leakage. That is, given (A, b) with respect to an arbitrary
secret s (in the support of some distribution), we can first sample s′, e′ and sets
(A, b+ A · s′ + e′), and then use this sample (with respect to the shifted secret
s + s′ and error e + e′) to call the underlying distinguisher. In the presence of
leakage however, the reduction now needs to simulate La,a′(s + s′, e + e′) =
La,a′(s, e) + La,a′(s

′, e′), as the leakage is linear. The reduction knows a,a′

and s′, e′ and thus can compute this information faithfully. It is crucial that the
leakage function is linear, as otherwise it is unclear how to simulate La,a′(s +
s′, e+ e′) in the general case.

We would like to point out another subtle issue in Step (4) where the worst-
case s is from the support of small secrets. Given any fixed s in this case,
s+s′ might distribute differently than a discrete Gaussian centering at 0 (as the
distribution Dγ in the average-case). Nevertheless, we can prove that the Renyi
divergence between these two distributions is polynomially bounded. Thus, for
any set, the probabilities under these two measures are also polynomially related.
Under a more delicate analysis, we are able to complete the reduction analysis.

Our Second Contribution. Under the hardness of MLWE with linear leakage,
our second contribution shows how to further improve the generalized rejec-
tion sampling paradigm of [35], deriving a more fine-grained tradeoff between
efficiency and leakage. We elaborate on the high level ideas below.

Briefly speaking, the rejection sampling-style lattice proofs have the follow-
ing structure: z = y + cs, where c is some small ring element, s is some small
secret, y is some Gaussian mask, and z is the proof message sent to the veri-
fier. To achieve zero-knowledge, y must wipe out the information of s. If y is
super-polynomially larger than cs, then this is the well-known smudging noise
technique [40]. However, this would require a very large proof z. To reduce the
size, Lyubashevsky [31] introduced the rejection sampling technique where z
might be set to ⊥ with a certain probability. In this way, the dependency on s
can be removed with a much smaller y. To further improve the size, [35] iden-
tified a new way – by imposing an additional condition on 〈φ(z), cφ(s)〉 ≥ 0 (or
rejecting the case when the inner product is negative), one can further reduce
the size of y. This comes at the price of leaking one bit, i.e., the sign bit. If
MLWE under linear leakage is hard, then leaking this bit would not hurt security
of the protocol.

To further improve the size of y, we observe that we can use a stronger
condition 〈φ(z), cφ(s)〉 ≥ T for some parameter T > 0. Intuitively, a larger T
can result in smaller proof, yet at the cost of more leakage. If we completely leak
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〈φ(z), cφ(s)〉, the size of y can be minimized. However, if the whole Zq element
is leaked, then the concrete hardness might be affected by the attack of [18].
Even though [18] does not solve the MLWE asymptotically, leaking log q-bits
(i.e., one element in Zq) might decrease the concrete security by a noticeable
amount, whereas leaking one or two bits might not (as the framework of [18]
does not apply). Therefore, stretching the leakage too much might be worse
in practice. We leave it as an interesting open problem to determine the best
tradeoff between leakage and concrete security.

2 Preliminaries

Notations. In this paper, Z and R denote the sets of integers and real numbers.
We use λ to denote the security parameter, which is the implicit input for all
algorithms presented in this paper. A function f(λ) > 0 is negligible and denoted
by negl(λ) if for any c > 0 and sufficiently large λ, f(λ) < 1/λc. A probability is
called to be overwhelming if it is 1−negl(λ). A column vector is denoted by a bold
lower case letter (e.g., x). A matrix is denoted by a bold upper case letter (e.g.,
A). For a vector x, its Euclidean norm (also known as the `2 norm) is defined to
be ‖x‖ = (

∑
i x

2
i )

1/2. For a matrix A, its ith column vector is denoted by ai and
its transposition is denoted by A>. And the norm of an element in Rq will be
the norm of its unique representative with coefficients in [−(q− 1)/2, (q− 1)/2].
For positive β ∈ R, we use Sβ to denote the set of all polynomials of infinity
norm less than β, i.e., Sβ = {a ∈ R | ‖a‖∞ ≤ β}.

For positive integers n, q, let [n] denote the set {1, ..., n} and Zq denote the

ring of integers modulo q. For a distribution or a set X, we write x
$←− X to

denote the operation of sampling an uniformly random x according to X. We
denote as Supp(X) the support of a distribution X. For two distributions X,Y ,

we let SD(X,Y ) denote their statistical distance. We write X
s
≈ Y to mean that

they are statistically close, and X
c
≈ Y to say that they are computationally

indistinguishable.

2.1 Cyclotomic Rings

Throughout this paper, we use R to denote a polynomial ring of the form
Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial. For an inte-
ger q ∈ Z, we also consider the quotient ring Rq = R/qR. We recall that for d
being a power of 2, the 2d-th cyclotomic polynomial is given as Φ2d(x) = xd+ 1.
Then the ring of integers of the 2d-th cyclotomic field R = Z[x]/(xd + 1). Thus,
we can use the coefficients of an integer polynomial modulo (xn+1) to represent
a ring element.

Embedding. In this work, we view elements of R as Zd through certain em-
beddings. For example, for R = Z[x]/(xd + 1) with d a power of 2, we view
any a = a0 + a1x + · · · + ad−1x

d−1 ∈ R for ai ∈ Z as the coefficient vec-
tor (a0, · · · , ad−1); and for R = Z[x]/Φm(X) with m a prime, we view any
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b = b0 + b1ζ + · · · + bm−1ζ
m−1 ∈ R for bi ∈ Z as (b0, · · · , bd−1), where ζ is the

m-th root of unity.

Ideal Factorization. An ideal I ⊂ R is an additive subgroup that is closed
under multiplication by R. For an integer prime q ∈ Z, qR is an ideal of R, and
the factorization of qR is as qR = Πiq

e
i , where qi are distinct prime ideals, each

of norm q
n
te with t the number of distinct ideals.

The number field Q[X]/(Φm(X)) has ϕ(m) automorphisms σk, which are
defined by σk(ζ) = ζk for k ∈ Z∗m. Particularly, for Q[X]/(Xd + 1), σk are
defined by σk(X) = Xk. The following lemma says that the automorphisms σk
“act transitively” on the prime ideals qi, i.e., each qi is sent to each qj by some
automorphism σk.

Lemma 2.1 ( [36], Lemma 2.16) For any i, j ∈ Z∗m, we have σj(qi) = qi/j.

Next we recall the Chinese Remainder Theorem (CRT) for R.

Lemma 2.2 (Chinese Remainder Theorem) Let qi be pairwise coprime ide-
als in R = Z[X]/(Φm(X)), then natural ring homomorphism is an isomorphism:

R/
(∏

i qi

)
R →

⊕
i(R/qiR).

2.2 Discrete Gaussian Distribution

For a ring R of degree d, we can define the discrete Gaussian distribution over
it in the following way.

Definition 2.3 For any positive integer `, the discrete Gaussian distribution
over R` centered around v ∈ R` with standard deviation σ > 0 is given by

D`·d
v,σ(z) =

e−‖z−v‖
2/2σ2∑

z′∈R` e
−‖z′‖2/2σ2 .

When v = 0, we just write D`·d
σ for simplicity.

We also need to use the following facts about the discrete Gaussian distribu-
tion.

Lemma 2.4 (Generalize of [9]) For any positive integer ` and any real σ > 0,
a sample sampled from D`·d

σ defined as above has norm at most σ
√
`d except with

probability at most 2−2`d.

Lemma 2.5 (Lemma 4.3 in [31]) For any vector v ∈ Rm and any σ, r > 0,

Pr[|〈z,v〉| > r : z
$←− Dm

σ ] ≤ 2e
− r2

2‖v‖2σ2 .
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2.3 MLWE

Now we introduce the hard problems discussed in this paper, which are denoted
as S-MLWE and D-MLWE.

Definition 2.6 (S-MLWE [28]) The search MLWE problem with parameters
n,m, q, and an error distribution χ ∈ R denoted as S-MLWEn,m,q,χ is defined

as follows. For s
$←− χn, use Aq,s to denote the distribution of (a, 〈a, s〉 + e) ∈

Rnq ×Rq, where a
$←− Rnq and e

$←− χ. The goal is to find secret s from m samples.

Definition 2.7 (D-MLWE [28]) The decision MLWE problem with parameters
n,m, q, and an error distribution χ ∈ R denoted as D-MLWEn,m,q,χ is defined

as follows. For s
$←− χn, use Aq,s to denote the distribution of (a, 〈a, s〉 + e) ∈

Rnq ×Rq, where a
$←− Rnq and e

$←− χ. The goal is to distinguish m samples from
either Aq,s or U(Rnq ,Rq).

We notice that the two types MLWE problems defined above are the so-called
“Hermite Normal Form” version, which can be easily reduced to the standard
MLWE via the approach in [6]. For standard MLWE, it is known to be at least as
hard as certain standard lattice problems over ideal lattice in the worst case [28].
It should be pointed out that RLWE is the special case of n = 1.

2.4 Rényi Divergence and Smooth Entropy

The Rényi divergence (RD) [8] defines a measure of distribution closeness. This
notion has many useful application in cryptography – for example, Bai et al. [8]
used RD as a powerful tool to analyze hardness and security of certain lattice-
based crypto systems. The definition is as follows:

Definition 2.8 (Rényi divergence) Let P,Q be two distributions s.t. Supp(P) ⊆
Supp(Q). For a ∈ (1,+∞), the Rényi divergence of order a is defined as

RDa(P‖Q) =
( ∑
x∈Supp(P)

(P(x)a/Q(x)a−1)
) 1
a−1

.

Specifically, the Rényi divergence of order +∞ is given by

RD∞(P‖Q) = max
x∈Supp(P)

(P(x)/Q(x)).

The Rényi divergence admits the following properties.

Lemma 2.9 ( [8]) For two distributions P,Q and two families of distributions
(Pi)i, (Qi)i, the Rényi divergence verifies the following properties:

– Data Processing Inequality. For any function f , RDa(Pf‖Qf ) ≤ RDa(P‖Q).
– Multiplicativity. RDa(

∏
i Pi‖

∏
iQi) =

∏
i RDa(Pi‖Qi).

– Probability preservation. For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P(E)a/(a−1)/RDa(P‖Q),

Q(E) ≥ P(E)/RD∞(P‖Q).

In this paper, we only consider the case of a = 2, and simplify RD2 to RD.
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3 Hardness: MLWE with Linear Leakage

In this section, we present our main result for the MLWE under linear leakage.
First we describe a table of parameters used in this section. Then we define the
class of linear leakage in the ring/module setting, and Module Learning with
Errors, i.e., MLWE in the leakage setting of this class. Finally we present the
reduction result.

Parameters Description

n MLWE rank

m number of MLWE samples

q modulus of MLWE

d ring dimension

k number of computing inner product times

Table 2. Notation of parameters in this section

Definition 3.1 Let n,m, q, d, k > 0 be integers, R = Z[X]/(Xd + 1). For

z = (zi)i∈[k] ∈ R
k(n+m)
q , c = (c1, . . . , ck)> ∈ Rkq , we define the function Lz,c :

Rn+mq → Zq as Lz,c(x) =
∑k
i=1〈φ(zi), φ(cix)〉, where φ is a “coefficient embed-

ding” map from Rn+mq to Zd(n+m)
q , i.e., embeds each ring element in Rq as a

vector in Zdq .

Here we can think of x as the secret, and the linear leakage is regarding the
inner product of the coefficients as specified above. Additionally, the leakage can
also multiplicatively shift the secret to φ(cix) specified by the parameters ci’s.

Next we define the search and decision versions of MLWE, with linear leakage.

Definition 3.2 (MLWE with Linear Secret Leakage, HNF, Search) Let
m,n, q, k, d > 0 be integers, R = Z[X]/(Xd + 1), χ be error distribution over
R. We define the search problem S-MLWE-LSm,n,k,q,χ by the experiment between
adversary A and challenger C as:

– A specifies k pairs {(zi, ci)}i∈{1,··· ,k}, where zi ∈ Rm+n
q , ci ∈ Rq, and sends

{(zi, ci)}i∈{1,··· ,k} to C.

– C first samples x← χn+m, A
$←− Rm×nq , and computes b = [A|Im] ·x ∈ Rmq .

Then, for z = (zi)i∈[k], c = (c1, · · · , ck)>, C computes y = Lz,c(x). Finally,
C returns (A, b, y) to A.

– A finally attempts to find s.

The search problem S-MLWE-LSm,n,k,q,χ is hard, if it holds: for any z = (z>1 , . . . ,z
>
k )> ∈

Rk(n+m)
q , (c1, · · · , ck)> ∈ Rkq and every PPT adversary A that

Pr
[
A(A,As+ e, z, (c1, · · · , ck),

k∑
i=1

yi) = s
]
≤ negl(λ).
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Definition 3.3 (MLWE with Linear Secret Leakage, HNF, Decision) Let
m,n, q, k, d > 0 be integers, R = Z[X]/(Xd + 1), χ be error distribution over R.
We define the decision problem D-MLWE-LSm,n,k,q,χ by the experiment between
adversary A and challenger C as:

– A specifies k pairs {(zi, ci)}i∈{1,··· ,k}, where zi ∈ Rnq , ci ∈ Rq, and sends
{(zi, ci)}i∈{1,··· ,k} to C.

– C first samples x← χn+m, A
$←− Rm×nq , and computes b = [A|Im] ·x ∈ Rmq ,

and also samples u
$←− Rmq . Then, for z = (zi)i∈[k], c = (c1, · · · , ck)>, C

computes y = Lz,c(x). Finally, C samples a random bit b ∈ {0, 1}, and
sends (A, b, y) to A if b = 1, or sends (A,u, y) to A if b = 0.

– A finally outputs a bit b′ as the guess of b.

The advantage of A in the game is defined as AdvD-MLWE-LS
A,m,n,q,k,d,χ = |Pr

[
b′ = b

]
− 1

2 |.
The decision problem D-MLWE-LSm,n,k,q,χ is hard, if it holds: for any z ∈

Rknq , (c1, · · · , ck)> ∈ Rkq and every PPT adversary A that

AdvD-MLWE-LS
A,m,n,q,k,d,χ ≤ negl(λ).

To start, we first show a reduction from S-MLWEm,n,q,χ to S-MLWE-LSm,n,k,q,χ.
Generally, a search problem with log q bits of leakage can only decrease securi-
ty by a factor of q. Therefore, if q = poly(λ), then the leakage version can be
reduced from the non-leakage version of the problem.

Theorem 3.4 Let m,n, k, d > 0 be integers, R = Z[X]/(Xd + 1), χ be er-
ror distribution over R. There exists a reduction from S-MLWEm,n,q,χ to S-
MLWE-LSm,n,k,q,χ.

Proof. The reduction works as follow. Given (A, b) ∈ Rm×nq × Rmq , where
b = As + e, s ← χn, e ← χm, it receives z = (z1, · · · , zk), (c1, · · · , ck) from

the solver of S-MLWE-LSm,n,k,χ, and samples r
$←− Zq. Eventually, it sends

(A, b, z, (c1, · · · , ck), r) to the solver of S-MLWE-LSm,n,k,χ, and outputs what
the solver outputs.

We now analyze the reduction. It’s clear to see the components A, b, z, (c1, · · · , ck)
are valid components of S-MLWE-LSm,n,k,χ instance. If r = 〈φ(z), φ(c1s, · · · , c1s)〉,
then the instance generated by the reduction is a valid instance for S-MLWE-LSm,n,k,χ
solver. Otherwise, it is invalid.

It remains to analyze the probabilities that r = 〈φ(z), φ(c1s, · · · , c1s)〉. As
〈φ(z), φ(c1s, · · · , c1s)〉 ∈ Zq, we have r = 〈φ(z), φ(c1s, · · · , c1s)〉 with probabil-
ity at least 1

q . The theorem then follows from a routine calculation. ut

Our main hardness result of D-MLWE-LS can be summarized as the following
Theorem.

Theorem 3.5 Let m,n, k, d > 0 be integers, R = Z[X]/(Xd + 1), q be the
modulus such that qR splits as qR = q1 · · · q`, where ` = d/c for a constant c ∈ Z,
χ1, χ2 be error distributions over R such that RD((s+χn2 )‖(χ1+χ2)n) ≤ poly(λ)
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for any s ∈ Supp(χn1 ), and RD(χm+n
2 ‖(χ1 + χ2)n+m) ≤ poly(λ), and χ1 be

invariant under all the automorphisms of K = Q[X]\(Xd + 1). There exists a
reduction from S-MLWE-LSm,n,k,q,χ1 to D-MLWE-LSm,n,k,q,χ1+χ2 .

Proof. We first summarize the reduction route as follows, and then explain the
concrete steps later:

S-MLWE-LSm,n,k,q,χ1

(1)−−→ (W )-qi-MLWE-LSm,n,k,q,χ1

(2)−−→ (W )-D-MLWE-LSim,n,k,q,χ1

(3)−−→ (A)-D-MLWE-LSim,n,k,q,χ1+χ2

(4)−−→ D-MLWE-LSm,n,k,q,χ1+χ2
.

To start, we define the first intermediate assumption (W)-qi-MLWE-LSm,n,k,q,χ
as follows.

Definition 3.6 ((W)-qi-MLWE-LSm,n,k,q,χ) Let m,n, k, d > 0 be integers,
R = Z[X]/(Xd + 1), q be the modulus such that qR splits as qR = q1 · · · q`,
where ` = d/c for a constant c ∈ Z, χ be error distribution over R. For any
qi, i ∈ [`], we say that the worst-case search problem qi-MLWE-LSm,n,k,q,χ is

hard, if it holds for any s ∈ Supp(χn), z ∈ Rk·(n+m)
q , (c1, · · · , ck) ∈ Rkq and

every PPT adversary A that∣∣∣Pr[A(1λ,A,As + e,z, (c1, · · · , ck), 〈φ(z), φ(c1x, · · · , ckx)〉) = s mod qi
]∣∣∣ ≤ negl(λ),

where A
$←− Rm×nq , e← χm and x = (s, e)> ∈ χn+m.

Then, we have the following reduction.

Lemma 3.7 (S-MLWE-LSm,n,k,q,χ1 to (W)-qi-MLWE-LSm,n,k,q,χ1) Let m,n, k,
d > 0 be integers, R = Z[X]/(Xd+1), q be the modulus such that qR splits com-
pletely as qR = q1 · · · q`, where ` = d/c for a constant c ∈ Z, χ1 be error distribu-
tion over R and invariant under all the automorphisms of K = Q[X]\(Xd + 1).
Then for every i ∈ {1, · · · , `}, there exists a deterministic poly-time reduction
from S-MLWE-LSm,n,k,q,χ1

to (W)-qi-MLWE-LSm,n,k,q,χ1
.

Proof. To prove this theorem, we will work on an arbitrary i ∈ {1, · · · , `}. And
the same argument can be extended to any other i’s. So, throughout the rest of
the proof, we will view i as an arbitrary fixed index.

For τ ∈ {1, · · · , `}, let στ be an automorphism that maps qτ to qi. We know
that all these automorphisms exist as K = Q[X]\(Xd + 1) is a Galois extension.
Then the reduction proceeds as follow.

– For each τ ∈ {1, · · · , `}, the reduction runs through the following steps.
• For given sample (A, b, z, (c1, · · · , ck), 〈φ(z), φ(c1x, · · · , ckx)〉), transfor-

m it to (στ (A), στ (b), στ (z), στ (c1, · · · , ck), 〈φ(z), φ(c1x, · · · , ckx)〉).
• Send the transformed sample to the qi-MLWE-LSm,n,k,χ1

oracle.
• Upon receiving the answer η ∈ (R/qiR)n, store σ−1τ (η) ∈ (R/qkR)n.

– Next, the reduction combines all {σ−1τ (η)}τ∈{1,··· ,`} by the Chinese Remain-
der Theorem. Then it outputs the combined value s′ ∈ Rq.
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We now show that for each τ ∈ [`], σ−1τ (η) = s mod qτR. To show this, we
prove that the distribution of the transformed samples is correctly distributed as
the qi-MLWE-LSm,n,k,χ1 oracle requires. Particularly, for (A, b, z, (c1, · · · , ck),
〈φ(z), φ(c1x, · · · , ckx)〉), στ (A) is uniformly random in στ (Rm×nq ) = Rm×nq as
στ is an automorphism. Next we have στ (b) = στ (A · s+ e) = στ (A) · στ (s) +
στ (e). It remains to show 〈φ(z), φ(c1x, · · · , ckx)〉 = 〈φ(στ (z)), φ(στ (c1x, · · · , ckx))〉.
If this holds, then (στ (A), στ (b), στ (z), στ (c1, · · · , ck), 〈φ(z), φ(c1x, · · · , ckx)〉)
would be the correct distribution that the qi-MLWE-LSm,n,k,χ1

oracle expects,
and then the oracle would return η = στ (s) mod qiR (with a non-negligible
probability). Thus, we have σ−1τ (η) = s mod qkR. Now we focus on proving
〈φ(z), φ(c1x, · · · , ckx)〉 = 〈φ(στ (z)), φ(στ (c1x, · · · , ckx))〉.

We write 〈φ(z), φ(c1x, · · · , ckx)〉 =
∑n
i=1

∑k
j=1〈φ(zi,j), φ(cjxi)〉, 〈φ(στ (z)),

φ(στ (c1x, · · · , ckx))〉 =
∑n
i=1

∑k
j=1〈φ(στ (zi,j)), φ(στ (cjxi))〉. If we can show

that 〈φ(zi,j), φ(cjxi)〉 = 〈φ(στ (zi,j)), φ(στ (cjxi))〉 for any i, j, then the argu-
ment we need to prove follows. Without loss of generality, we just consider the
case i = j = 1, and other cases are similar. We write z1,1 = a0 + a1X + · · · +
ad−1X

d−1 and c1x1 = b0 + b1X + · · · + bd−1X
d−1. Then 〈φ(z1,1), φ(c1x1)〉 =

〈(a0, · · · , ad−1), (b0, · · · , bd−1)〉. On the other hand, στ (X) = Xτ ′ , where τ ′ ∈
Z∗2d is an index corresponding to τ . Thus, στ (z1,1) = a0+a1X

τ ′+· · ·+ad−1X(d−1)τ ′

mod (Xd+1) = a′0+a′1X+· · ·+a′d−1Xd−1. Therefore, (|a0|, · · · , |ad−1|) is equiva-
lent to (|a′0|, · · · , |a′d−1|) up to a permutation. Similarly, let στ (c1x1) = b′0+b′1X+

· · ·+b′d−1X
d−1, then (|b0|, · · · , |bd−1|) is equivalent to (|b′0|, · · · , |b′d−1|) up to the

same permutation. Furthermore, for i, j ∈ {0, · · · , d−1} if ai = Sign(i, j)a′j where

Sign(i, j) = 1 or −1, then bi = Sign(i, j)b′j . As a result,
∑d−1
i=0 aibi =

∑d−1
i=0 a

′
ib
′
i,

and thus 〈φ(z1,1), φ(c1x1)〉 = 〈φ(στ (z1,1)), φ(στ (c1x1))〉.
Finally, by the Chinese Reminder Theorem, s mod qR can be reconstructed

from {s mod qτR}`τ=1. This completes the proof. ut
In order to describe the second intermediate assumption, the following defi-

nition is needed.

Definition 3.8 (Hybrid MLWE-LS distribution) For i ∈ {1, · · · , `}, a dis-
tribution χ over Rq and s← χn, we define the distribution Aim,k,s,χ over Rm×nq ×
Rmq ×R

k(n+1)
q × Zq as: sample (A, b, z, (c1, · · · , ck), 〈φ(z), φ(c1x, · · · , ckx)〉) as

Definition 3.6 and output (A, b+h, z, (c1, · · · , ck), 〈φ(z), φ(c1x, · · · , ckx)〉) where
h ∈ Rmq are uniformly random mod qjR for all j ≤ i, and 0 over mod all the
other ideals, i.e., qjR’s for j > i.

We note that A0
m,k,s,χ is the original distribution as Definition 3.6, A`m,k,s,χ

is the distribution as the random case defined in Definition 3.3, and the other
Aim,k,s,χ’s are intermediate hybrids, which will be used via a hybrid argument
later.

Now, the second intermediate assumption is as follows.

Definition 3.9 ((W)-D-MLWE-LSim,n,k,q,χ) The worst-case D-MLWE-LSim,n,k,q,χ
problem is defined as follows: given access to an oracle sampling from Aim,k,s,χ
for arbitrary s ∈ Supp(χn) and j ∈ {i− 1, i}, determine j.
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The following lemma states a reduction from (W)-qi-MLWE-LSm,n,k,q,χ1
to

(W)-D-MLWE-LSim,n,k,q,χ1
.

Lemma 3.10 ((W)-qi-MLWE-LSm,n,k,q,χ1 to (W)-D-MLWE-LSim,n,k,q,χ1
)

For any i ∈ {1, · · · , `}, and ideal qi with N(qi) = qd/` = qc where c ≥ 1 is
a constant integer, there exists a probabilistic polynomial time reduction from
qi-MLWE-LSm,n,k,q,χ1 to (W)-D-MLWE-LSim,n,k,q,χ1

.

Proof. At a high level, the reduction recovers s mod qiR by finding s1 mod qiR,
· · · , sn mod qiR, sequentially. For each st mod qiR with t ∈ [n], the reduction
tries each of its possible values, and uses the (W)-D-MLWE-LSim,n,k,q,χ1

oracle
to determine which trial is correct.

Without loss of generality, we consider the case of s1 mod qiR, and other
cases are similar. For each trial, the reduction transforms sample from Aim,k,s,χ1

so that the resulting sample is distributed according to Ai−1m,k,s,χ1
if the trial

equal to the value of s1 mod qiR∨, or otherwise, Aim,k,s,χ1
. Then the (W)-

D-MLWE-LSim,n,k,q,χ1
oracle can be used to distinguish the two cases, and thus

the reduction can determine whether this trial is correct. Since there are N(qi) =
qc = poly(n) possible values, the reduction’s running time is upper bounded by
a polynomial.

Below we just describe the transformation, and note that the other steps of
the reduction are trivial (ref. [36]). Given a sample (A, b, z, (c1, · · · , ck), 〈φ(z),
φ(c1x, · · · , ckx)〉) and a trial value g ∈ Rq, the reduction computes a sample

(A′, b′, z′, (c′1, · · · , c′k), 〈φ(z′), φ(c′1x
′, · · · , c′kx′)〉)

=(A + Y, b+ h+ gy, z, (c1, · · · , ck), 〈φ(z), φ(c1x, · · · , ckx)〉),

where Y =

 y1 0 · · · 0
...

...
. . .

...
ym 0 · · · 0

 ∈ Rm×nq , y = (y1, · · · , ym)> are sampled according to

the distributions that are uniformly random mod qiR and 0 mod all the other
qjR’s. h ∈ Rmq is uniformly random mod qjR for all j < i, and is 0 mod qjR’s
for j ≥ i.

It is clear that A′ is uniformly random over Rm×nq , because A is uniformly

random over Rm×nq . On the other hand, b′ can be written as

b′ = b+ h+ gy

= As+ e+ h+ gy

= A′s+ e+ h+ (g − s1)y.

If s1 ≡ g mod qiR, then by the Chinese Remainder Theorem (Lemma 2.2), (s1−
g)y = 0 mod qR. In this case, (A′, b′, z′, (c′1, · · · , c′k), 〈φ(z′), φ(c′1x

′, · · · , c′kx′)〉)
is distributed according to Ai−1m,k,s,χ1

. Otherwise if s1 6= g mod qiR, we claim that
(s1−g)y mod qiR is uniformly random mod qiR and is 0 mod all the other ideals
qjR’s for j 6= i: as R/qi is a field, (s1− g)y mod qiR is uniformly random for a
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random y mod qiR, and any (s1− g) 6= 0 mod qiR. Therefore, (g− s1)y+h is
uniformly random mod qjR for all j ≤ i, and is 0 mod all the remaining qjR’s.
Thus, the distribution of (A′, b′, z′, (c′1, · · · , c′k), 〈φ(z′), φ(c′1x

′, · · · , c′kx′)〉) fol-
lows Aim,k,s,χ1

in this case, completing the proof. ut

The third intermediate assumption in the reduction route is as follows.

Definition 3.11 (Average-case Decision LWE relative to qi) For i ∈ {1, · · · , `}
and a distribution χ over error Rq, we say that an algorithm solves the D-MLWE-LSim,n,k,q,χ
problem if with a non-negligible probability over the choice of s ← χn, it has a
non-negligible difference in acceptance probability on inputs from Ai−1m,k,s,χ versus

inputs from Aim,k,s,χ.

We have the worst-case to average-case reduction as follows.

Lemma 3.12 (Worst-case to Average-case) Let χ1, χ2 be distributions over
Rq and χ3 = χ1 + χ2. For every i ∈ {1, · · · , `}, if RD(s + χn2‖χn3 ) ≤ poly(λ)
for any s ∈ Supp(χn1 ), and RD(χm+n

2 ‖χn+m3 ) ≤ poly(λ), then there exists a
randomized poly-time reduction from worst-case (W)-D-MLWE-LSim,n,k,q,χ1

to

average-case D-MLWE-LSim,n,k,q,χ3
.

Proof. Given sample (A, b, z, (c1, · · · , ck), 〈φ(z), φ(c1x, · · · , ckx)〉) ← Aim,k,s,χ1

for arbitrary s ∈ Supp(χn1 ), the reduction transforms it into

(A, b+As′+e′+h, z, (c1, · · · , ck), 〈φ(z), φ(c1x, · · · , ckx)〉+〈φ(z), φ(c1x
′, · · · , ckx′)〉),

where s′ ← χn2 , e
′ ← χm2 ,x

′ = (s′, e′)> and h ∈ Rmq is uniformly random mod
qjR for all j ≤ ν (where ν ≤ i), and 0 over mod all the other ideals. It is easy to
see that for all s ∈ Rnq and i ∈ {1, · · · , `}, this transformation maps Aim,k,s,χ1

to A
max{ν,i}
m,k,s+χn2 ,χ3

.

Formally, the reduction is executed by repeating the following steps a poly-
nomial number of times: Choose a s′ from χn2 along with e′ chosen from χm2 ,
and then estimate the acceptance probability of the oracle on the following two
input distributions: the first is obtained from our input by applying the above
transformation with parameters s′, e′, and i−1; the second is obtained similarly
using parameters s′, e′, and i. If in any of these polynomial number of attempts
a non-negligible difference is observed between the two acceptance probabilities,
output “i− 1”; otherwise output “i”.

If the input distribution is Aim,k,s,χ1
, then in each of the attempts, the t-

wo distributions on which we estimate the oracle’s acceptance probability are
exactly the same, and we output “i” with overwhelming probability. If the in-
put distribution is Ai−1m,k,s,χ1

, we estimate the oracle’s acceptance probability on

Ai−1m,k,s+χn2 ,χ3
and Aim,k,s+χn2 ,χ3

.

Let Bi−1(s′, e′) and Bi(s′, e′) be the two distributions on the pair which
our reduction uses as input to the oracle. The average of Bi−1(s′, e′) over s′, e′

chosen independently from χn2 and χm2 , is Ai−1m,k,s+χn2 ,χ3
and similarly with Bi

and Ai.
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Let S be the set of all pairs (s, e) for which the oracle has a non-negligible
difference in acceptance probability on Bi−1(s′, e′) and Bi(s′, e′). By assumption
and a Markov argument, the measure of S under χn2 × χm2 is non-negligible. By
assumption, the measure of S under χn×m3 is also non-negligible. This finishes
the proof. ut

The following lemma states the final step of the reduction route.

Lemma 3.13 (D-MLWE-LSim,n,k,q,χ3
to D-MLWE-LSm,n,k,q,χ3) For any o-

racle solving the D-MLWE-LSm,n,k,q,χ3 problem with advantage ε, there exists an
i ∈ {1, · · · , `} and an efficient algorithm that solves D-MLWE-LSim,n,k,q,χ3

with
advantage ε/` using this oracle.

Proof (Sketch). This lemma can be proved by a simple hybrid argument. As the
hybrid argument is standard, we just sketch the main idea: suppose there exists
an algorithm that solves D-MLWE-LSm,n,k,q,χ3

with advantage ε, i.e., it distin-
guishes the two distributions defined as Definition 3.3. Then the algorithm must
be able to distinguish some neighboring hybrids, i.e., Aim,k,s,χ3

and Ai−1m,k,s,χ3
,

with advantage ε/`, as there are ` intermediate hybrids. ut

The proof of Theorem 3.5 follows from Lemmas 3.7, 3.10, 3.12, and 3.13. ut

Combine Theorem 3.5 and Theorem 3.4, the hardness of D-MLWE-LS can
be reduced to the hardness of the fundamental problem S-MLWEm,n,q,χ1

by the
following Corollary.

Corollary 3.14 Let m,n, k, d > 0 be integers, R = Z[X]/(Xd + 1), q be the
modulus such that qR splits as qR = q1 · · · q`, where ` = d/c for a constant c ∈ Z,
χ1, χ2 be error distributions over R such that RD(s+ χn2‖(χ1 + χ2)n) ≤ poly(λ)
for any s ∈ Supp(χn1 ), and RD(χm+n

2 ‖(χ1 + χ2)n+m) ≤ poly(λ), and χ1 be
invariant under all the automorphisms of K = Q[X]\(Xd + 1). There exists a
reduction from S-MLWEm,n,q,χ1 to D-MLWE-LSm,n,k,q,χ1+χ2 .

Remark 3.15 In our reduction, we consider the ring Z[X]/(Xd + 1) which is
frequently used in many applications. It should be noted that we can generalize
the ring to the more general cyclotomic setting by representing a ring element
as integer linear combinations of a certain Z-basis of the ring. Then, the map φ
and the automorphism are defined according to the Z-basis.

Now, we consider the concrete instantiations of the error distributions χ1

and χ2. The distributions can be set as discrete Gaussian distributions. And we
have the following lemmas to bound the RD of the related distributions.

Lemma 3.16 Let Dβ ,Dγ be two continuous Gaussian distributions on R with

standard deviation β and γ. Then for any α ∈ R, RD(α+Dβ‖Dγ) = γ
β · e

2πα2

2γ2−β2 .
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Proof. By the definition of RD, we have

RD(α+Dβ‖Dγ) =

∫ +∞

−∞

(β−1e−π((x−α)/β)
2

)2

γ−1e−π(x/γ)2
dx

=
γ

β2

∫ +∞

−∞
e−2π((x−α)/β)

2

· eπ(x/γ)
2

dx

=
γ

β2
· e

2πα2

2γ2−β2

∫ +∞

−∞
e
− π
β2

(x− 2αγ2

2γ2−β2
)2
dx

=
γ

β2
· β · e

2πα2

2γ2−β2

=
γ

β
· e

2πα2

2γ2−β2 .

Here we use the substitution u = x− 2αγ2

2γ2−β2 and the identity
∫ +∞
−∞ e−πcu

2

du =

c−1/2 for all c > 0. ut

Notice that we require the error distribution of RLWE with linear leakage to
be discrete in our later application. Thus, we need further bound the RD for
discrete case as follow.

Lemma 3.17 Let Dβ , Dγ be two discrete Gaussian distributions over Z with

parameters β and γ. Then for any α ∈ R, RD(α+Dβ‖Dγ) ≤ γ
β · e

2πα2

2γ2−β2 .

Proof. It immediately follows from Lemma 3.16 and the Data Processing In-
equality in Lemma 2.9 by applying the discretization procedure to the distri-
butions α+Dβ and Dγ . ut

Lemma 3.18 (Generalize Claim 5.15 in [36] to Discrete Gaussian) Let
α ∈ R+ and β ∈ R+ be such that | γβ − 1| < logn

n , where γ2 = α2 + β2. Then

RD((Dβ)n‖(Dγ)n) = poly(n).

Corollary 3.19 Let m,n, k, d > 0 be integers, R = Z[X]/(Xd + 1), q be the
modulus such that qR splits as qR = q1 · · · q`, where ` = d/c for a constant
c ∈ Z. There exists a reduction from S-MLWEm,n,q,Ddα to D-MLWE-LSm,n,k,q,Ddγ ,

where Dd
α and Dd

γ are the discrete gaussian distributions over R with parameters

α and γ =
√
n+ n(m+n)d2

log((m+n)d) · α.

Proof. By corollary 3.14, it is sufficient to show RD(s + Dn·d√
γ2−α2

‖Dn·d
γ ) ≤

poly(λ) for any s ∈ Supp(Dn·d
α ), and RD(D

(m+n)·d√
γ2−α2

‖D(m+n)·d
γ ) ≤ poly(λ), and

Dα invariant under all the automorphisms of K = Q[X]\(Xd+ 1). The last part
is straightforward. It remains to show the first two parts.

For the second part, it is easy to show

∣∣∣∣ γ√
γ2−α2

− 1

∣∣∣∣ ≤ log((m+n)d)
(m+n)d2 < log((m+n)d)

(m+n)d .

Then by Lemma 3.18, the second part follows. For the first part, by Lemma 2.4,
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we have that Pr[‖s‖ ≤ α
√
nd] ≥ 1 − 2−2nd. Then By a similar calculation as

Lemma 3.17 and a union bound, with probability at least 1− 2−2nd, we have

RD(s+Dn·d√
γ2−α2

‖Dn·d
γ ) ≤ RD

(
(α
√
nd+D√

γ2−α2)nd‖Dnd
γ

)
≤

(
γ√

γ2 − α2

)nd
· e

2πn2α2d2

2γ2−β2

≤
(

1 +
log((m+ n)d)

(m+ n)d2

)nd
2

· e2π log((m+n)d)

= poly(n) = poly(λ).

This means that with probability at least 1 − 2−2nd, the first part holds. We
define the event that the first part holds as Good, then Pr[Good] ≥ 1− 2−2nd.

By corollary 3.14, if D-MLWE-LSm,n,k,q,Dn·dγ can be solved with non-negligible

advantage ε, then S-MLWEm,n,q,Dn·dα can be solved with probability poly(ε) con-
ditioned on event Good happens. Now we analyse the solving probability of S-
MLWEm,n,q,Dn·dα conditioned on that D-MLWE-LSm,n,k,q,Dn·dγ can be solved with
advantage ε. For for simplicity, we denote the solver of S-MLWEm,n,q,Dn·dα as S.
Then the probability S succeeds is as follows.

Pr[S succeeds] = Pr[S succeeds|Good] · Pr[Good] + Pr[S succeeds|BAD] · Pr[BAD]

≥ Pr[S succeeds|Good] · Pr[Good]

≥ Pr[S succeeds|Good] · (1− 2−2nd)

≥ Pr[S succeeds|Good]− 2−2nd

= poly(ε)− negl(λ),

which is also non-negligible. This completes the proof. ut

4 Application: More Efficient Opening Proof for
One-Time BDLOP Commitment

In this section, we present an important application of MLWE with linear leak-
age, leading to more efficient opening proofs for one-time BDLOP commitments
under the paradigm [35]. Our particular contribution is to derive a more fine-
grained tradeoff between efficiency and leakage of the paradigm [35], which can
potentially lead to even more efficient proofs.

The section is organized as follow. We first recall the classical opening proof
for BDLOP commitment in [10], together with two rejection sampling algorithm-
s [31, 35] in Section 4.1. Then in Section 4.2, we further generalize the subset
rejection sampling algorithm proposed by [35] in two ways: (1) we use a smaller
subset Sv for the accepting condition; (2) we extends the constant value M to
a real-valued function M of (v, z), whose output can vary based on the input.
These two ideas can improve efficiency of the opening proof for the setting of
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one-time BDLOP commitment. Finally, in Section 4.3, we compare in detail the
efficiency differences of the opening protocol under four different rejection sam-
pling algorithms in Tables 5 and 6. Below we first present the parameters used
in this section in Table 3.

Parameters Description

R Cyclotomic Ring used in this section

d ring dimension of R
Sβ Set of all elements in R with `∞ norm at most β

q modulus of BDLOP commitment

n, l, k dimension parameters of BDLOP commitment

C Challenge set of the opening ZKP system for BDLOP commitment
κ C = {c ∈ R : ‖c‖1 = κ, ‖c‖∞ = 1}
m dimension parameters of rejection sampling

M function from (V,Zm) to R
σ derivation of discrete Gaussian distribution for rejection sampling

Ŝv The subset of Zm used for subset rejection sampling

M, c constant parameters for subset rejection sampling

rep. prover’s expected repetition times for one non-abort

` the bit-length of randomness leakage during the opening proof

Table 3. Notation of parameters in this section

4.1 Classical Opening Proof of BDLOP Commitment and Rejection
Sampling Algorithms

Let us first recall the standard opening proof for BDLOP commitment scheme
in [10]. Particularly, for a BDLOP commitment scheme with public parameters
A1 ∈ Rn×kq ,A2 ∈ Rl×kq , a message vector m ∈ Rlq is committed as comm :=[
t1
t2

]
=

[
A1

A2

]
r +

[
0
m

]
, where r

$←− Skβ .

According to [10], in order to prove knowledge of an opening to comm, one
just needs to give an approximate proof for the first equation t1 = A1 · r in the
form of a three-round Schnorr-type Σ-protocol. Particularly in the first step,
the prover first chooses a random vector y, and then sends w = A1y to the
verifier. Then, the verifier sends a short polynomial c ∈ C ⊂ R as a challenge.
Finally, the prover replies with the vector z = y+cr. To achieve zero-knowledge,
intuitively the masking vector y is used to hide the private randomness r of the
commitment comm. Trivially one can set y to be super-polynomially larger than
cr as some smudging noise, yet this would incur a large overhead in the proof
size. To improve efficiency, [31] introduced the technique of rejection sampling
that outputs ⊥ instead of z with an appropriate probability, effectively wiping
out the dependency of cr in z. More formally, the protocol is described in Table
4, and the used rejection sampling algorithm is described as Rej0 in Table 5.
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Prover P Verifier V
Inputs:

A1 ∈ Rn×kq A1,A2

A2 ∈ R`×kq B ≥ σ ·
√
d · k

m ∈ R`q, r ← Skβ
t1 = A1 · r t1, t2
t2 = A2 · r + m

y ← Dkσ
w = A1 · y

w−−−−−−−−−−−−−→
c

$←− C
c←−−−−−−−−−−−−−

z = y + c · r
Reji(z, c · r, σ) = 1, abort z−−−−−−−−−−−−−→

Check:
‖z‖ ≤ B
A1 · z = w + c · t1

Table 4. Opening proof of BDLOP commitment through using our generalized rejection
sampling.

Rej0(z,v, σ) Rej1(z,v, σ)

01 u
$←− [0, 1) 01 If 〈z,v〉 < 0

02 If u > 1
M
· exp(−2〈z,v〉+‖v‖2

2σ2 ) 02 return 1

03 return 1 03 u
$←− [0, 1)

04 Else 04 If u > 1
M
· exp(−2〈z,v〉+‖v‖2

2σ2 )
05 return 0 05 return 1

06 Else
07 return 0

Table 5. Rejection Sampling. Here, implicitly, the outcome 1 implies abort, and 0
implies non-abort.

Particularly, if we sample y from the discrete Gaussian distribution with
derivation σ, i.e., y ← Dk

σ, then the vector z = y + cr follows the shifted
discrete Gaussian distribution Dk

v,σ centered at v = cr. According to [31], we

can “transform” the distribution Dk
v,σ into the distribution Dk

σ, by outputting z

with probability
Dkσ

M ·Dkv,σ
(or otherwise ⊥), where M is some positive integer so

that this ratio is always smaller than 1. To further determine the concrete value

for M , we need to compute an upper bound of
Dkσ
Dkv,σ

as

Dm
σ

Dm
v,σ

= exp

(
−2〈z,v〉+ ‖v‖2

2σ2

)
≤ exp

(
24σ‖v‖+ ‖v‖2

2σ2

)
= M, (1)

where the above inequality is obtained through using a standard one-dimensional
tail bound for the inner product of a discrete Gaussian with arbitrary vector.
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Clearly, if we want to set M = exp(1), then we need to set σ ≈ 12‖v‖. In this
case, the size of z is about kd log(12σ) = kd log(144‖v‖), which depends on the
value of σ. This is essentially the intuition of [31].

In a recent work, Lyubashevsky et al. [35] observed that a much tighter upper
bound for the ratio Dk

σ/D
k
v,σ would imply a much smaller σ, further lowering

the size of z. Particularly, if we assume that 〈z,v〉 ≥ 0, then we have

Dk
σ

Dk
v,σ

= exp

(
−2〈z,v〉+ ‖v‖2

2σ2

)
≤ exp

(
‖v‖2

2σ2

)
= M. (2)

In this case, if we want to set M = exp(1) in the following rejection sampling pro-
cedure again, we can set σ = ‖v‖/

√
2, which results in a decrease of around a fac-

tor of 17. This will clearly reduce the size of z to kd log(12σ) = kd log(8.487‖v‖).
More formally, Lyubashevsky et al. [35] call such more efficient rejection sam-
pling as subset rejection sampling, which is described as Rej1 in Table 5. Clearly,
Rej1 can improve the size of the proof protocol in Table 4.

Additional costs of [35]. It is not for free however for the improvement [35].
All the above analyses have a precondition – 〈z,v〉 ≥ 0. For randomly chosen
y, r, this precondition happens with a probability ≈ 1/2. This means that if we
want to leverage the above subset rejection sampling, the prover will first abort
the protocol with a probability ≈ 1/2 to ensure 〈z,v〉 ≥ 0, and then conduct the
regular rejection sampling. So, for the same constant value M , even the output
size of z is reduced, the running time of the prover inherently becomes almost 2
times longer than that of [10].

Of course, one can easily balance the prover’s running time and the size of
his output z. Particularly, we can set the upper bound of probability ratio to be
M/2, which will derive that the finally expected abort time is about M . But,

this will result in a slightly larger σ′, i.e., σ′ = σ
√

lnM
lnM/2 .

Besides and more importantly, there is a security concern. After the prover
outputting z successfully, it imposes the precondition 〈z,v〉 ≥ 0, which leaks al-
most one bit information of r to the adversary. In this case, we need to consider
whether this would affect the security of the opening proof of the BDLOP com-
mitment, and even the whole privacy-preserving protocols.

To analyze this, Lyubashevsky et al. [35] identified a new variant of extended
MLWE, and prove security of the protocol based on the variant of extended
MLWE. As noticed in the introduction, this extended MLWE can be captured
by MLWE with linear leakage analyzed in Section 3 of this work, using a formal
reduction argument. This strengthens the foundation of the paradigm, as the
leakage variant is no easier than the standard MLWE asymptotically. Thus, we
would be more confident in the practical parameters of [35] obtained by crypt-
analysis arguments.
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4.2 More Efficient One-Time Opening Proof through Using
Generalized Subset Rejection Sampling Algorithms

Now we define our new generalized subset rejection sampling algorithms Rej2 and
Rej3 as in Table 6. Then we show that the algorithms themselves can be simulat-
ed, and the opening protocol with Rej2 or Rej3 satisfies correctness, knowledge
soundness and simulatability. This means we can replace Rej0 or Rej1 for the
protocol in Table 4 in a black-box way, by using our generalized algorithms.

Rej2(z,v, σ) Rej3(z,v, σ)

01 If 〈z,v〉 < c · σ‖v‖ 01 If 〈z,v〉 /∈ [0, (σ2 ∗ lnM)/3]
02 return 1 02 return 1

03 u
$←− [0, 1) 03 u

$←− [0, 1)

04 If u > exp(−2〈z,v〉+‖v‖2
2σ2 ) 04 If u > 1

M exp(
3〈v,z〉
σ2

)
· exp(−2〈z,v〉+‖v‖2

2σ2 )

05 return 1 05 return 1
06 Else 06 Else
07 return 0 07 return 0

Table 6. Generalized Rejection Sampling.

Simulation of Generalized Subset Rejection Sampling

To argue that the algorithms Rej2 and Rej3 themselves can be simulated success-
fully, we first define a more general version of subset rejection sampling algorithm
A, i.e., Rej2 and Rej3 can be viewed as two special cases of A. Then we show
that A can be simulated successfully by another algorithm F in Theorem 4.1.
Furthermore, by setting parameters appropriately, we can obtain two Theorems
4.3 and 4.4, which correspond to Rej2 and Rej3, respectively.

Theorem 4.1 (Generalized Subset Rejection Sampling) Let V be an ar-
bitrary set, and h : V → R and f : Zm → R be probability distributions. Define
a family of set Ŝv ⊂ Zm for v ∈ V . Suppose gv : Zm → R is a family of prob-
ability distributions indexed by all v ∈ V and there exist two constants M ≥ 1,
1 ≥ γ ≥ 0, and a function M : V × Zm → R, which satisfy:

∀ v ∈ V, z ∈ Ŝv : M(v, z) · gv(z) ≥ f(z)

∀ v ∈ V, z ∈ Ŝv : 1 ≤M(v, z) ≤M

∀ v ∈ V :
∑
z∈Ŝv

f(z) ≥ γ.

then the output distribution of the following algorithm A:

1. v
$←− h

2. z
$←− gv

3. if z /∈ Ŝv then abort
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4. output (z, v) with probability f(z)
M(v,z)·gv(z)

is identical to the distribution of the following algorithm F :

1. v
$←− h

2. z
$←− f

3. if z /∈ Ŝv then abort
4. output (z, v) with probability 1/M(v, z).

Moreover, the probability of A and F outputting something is at least γ/M .

Proof. Given v ∈ V , if z ∈ Ŝv, the probability of A outputting z ∈ Zm is

gv(z) · f(z)
M(v,z)·gv(z) = f(z)

M(v,z) . Other, the probability that A outputs z /∈ Ŝv is 0.

As a result, it holds

Pr[A outputs something] =
∑
v∈V

h(v)
∑
z∈Ŝv

f(z)

M(v, z)
≥ γ

M
.

Notice also that the probability of F outputting something is
∑

(v,z)∈V×Ŝv
h(v)f(z)
M(v,z) ≥

γ
M . Besides, it holds

∆(A,F) =
1

2

 ∑
(v,z)∈V×Ŝv

|A(v, z)−F(v, z)|


=

1

2

∑
v∈V

h(v)

∑
z∈Ŝv

∣∣∣∣gv(z) · f(z)

M(v, z) · gv(z)
− f(z)

M(v, z)

∣∣∣∣


=
1

2

∑
v∈V

h(v)

∑
z∈Ŝv

∣∣∣∣ f(z)

M(v, z)
− f(z)

M(v, z)

∣∣∣∣


= 0.

ut

Remark 4.2 We note that compared with the original rejection sampling of
Lemma 3.2 in [35], this generalized version just extends the constant value M
to a real-valued function M(v, z), whose output may vary based on (v, z).

Next, we consider the special case where v ∈ V ⊆ Zm, f := Dm
σ , gv := Dm

v,σ,
constant M = 1 and the constant function M(v, z) = 1. Thus, we have the
following theorem for the rejection sampling algorithm Rej2.

Theorem 4.3 Let V be an arbitrary subset of Zm, and h : V → R be probability
distribution. Let M = 1. Given any v ∈ V and any constant c, define Ŝv,c =
{z : 〈z,v〉 ≥ c · σ‖v‖}. Then it holds that the output distribution of A2:

1. v
$←− h
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2. z
$←− Dm

v,σ

3. if z /∈ Ŝv,c then abort

4. output (z,v) with probability
Dmσ (z)
Dmv,σ(z)

.

is identical to the distribution of the following algorithm F2:

1. v
$←− h

2. z
$←− Dm

σ

3. if z /∈ Ŝv,c then abort

4. output (z,v) with probability 1.

Moreover, the probability of A2 and F2 outputting something is at least γ, where
γ is the probability of a randomly chosen vector from Dm

v,σ belonging to Ŝv,c.

Next, we consider the special case where v ∈ V ⊆ Zm, f := Dm
σ , gv :=

Dm
v,σ, andM(v, z) = exp

(
3〈v,z〉
σ2

)
. Thus, we have the following theorem for the

rejection sampling algorithm Rej3.

Theorem 4.4 Let M be a constant and V be an arbitrary subset of Zm, and
h : V → R be probability distribution. Given any v ∈ V , define Ŝv,c = {z :

〈z,v〉 ≥ c ·σ‖v‖}. Then there exists a functionM(v, z) = exp
(

3〈v,z〉
σ2

)
with 1 ≤

M(v, z) ≤M andM(v, z) ·Dm
v,σ(z) ≥ Dm

σ (z), such that the output distribution
of A3:8

1. v
$←− h

2. z
$←− Dm

v,σ

3. if z /∈ Ŝv,c then abort

4. output (z,v) with probability
Dmσ (z)

exp( 3〈v,z〉
σ2

)·Dmv,σ(z)
= exp

(
−8〈z,v〉+‖v‖2

2σ2

)
.

is identical to the distribution of the following algorithm F3:

1. v
$←− h

2. z
$←− Dm

σ

3. if z /∈ Ŝv,c then abort

4. output (z,v) with probability 1

exp( 3〈v,z〉
σ2

)
.

Moreover, the probability of A3 and F3 outputting something is at least γ
M , where

γ is the probability of a randomly chosen vector from Dm
v,σ belonging to Ŝv,c.

8 For such function M(v,z) = exp
(

3〈v,z〉
σ2

)
, the condition M(v,z) ∈ [1,M ] implies

〈z,v〉 ∈ [0, (σ2 · lnM)/3].
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Security of Opening Proof Protocol with Rej2 and Rej3

Here, we need to prove that the opening proof protocol with Rej2 or Rej3 sat-
isfies correctness, knowledge soundness and simulatability, whose formal defi-
nitions are deferred to Appendix A.1. Similar to [35], we first represent the
opening proof of BDLOP commitment as the commit-and-prove functionality
CP = (Gen,Com,Prove,Verify), and then show that CP satisfies simulatabili-
ty, since the properties of correctness and knowledge soundness can be proven
almost identically as in [7].

More formally, with random oracle H : {0, 1}∗ → C, the commit-and-prove
functionality CP = (Gen,Com,Prove,Verify) with respect to the language RL is
described as follows, where RL is defined as (params, x,m) ∈ RL ⇔m ∈ Rq for
certain statement x.

– Gen(1λ): Given a security parameter λ, the algorithm generates a commit-
ment public parameter params, which specifiesRlq as message space, Sk1 ⊂ Rk
as randomness space, and Rn+l as the commitment space. Besides, it also
generates A1 ∈ Rn×kq ,A2 ∈ Rl×kq .

– Com(params, x,m; r): Given params, m ∈ Rlq, and randomness r ∈ Sk1 , the

algorithm generates a commitment comm :=

[
t1
t2

]
=

[
A1

A2

]
r +

[
0
m

]
.

– Prove(params, x, comm,m, r): Given params, comm ∈ Rn+lq , and randomness

r ∈ Sk1 , the algorithm first samples y ← Dk
σ and computes c = H(A1 · y).

Then, it computes z = y + c · r and gets b← Reji(z, c · r, σ) for i = 2 or 3.
If b = 0, it outputs π = (c, z). Otherwise abort.

– Verify(params, x, comm, π): given params, comm, π, the algorithm parse comm
as t1 ∈ Rn, t2 ∈ Rl, and parse π as (c, z). If ‖z‖ ≤ σ ·

√
d · k and c =

H(A1 · z − ct1), accept. Otherwise, reject.

Furthermore, we have the following theorem.

Theorem 4.5 In the random oracle model, if MLWE-LS assumption holds, then
the CP with Rej2 or Rej3 is simulatable.

Proof. We complete this proof through using hybrid argument. More formally,
we define several hybrids as follows.

Hybrid0: In this hybrid, all algorithms runs the real CP .

Hybrid1: This hybrid is identical to Hybrid0, except that the Prove algorithm is
replaced with the following Prove1:

– Prove1(params, x,m, r): the algorithm first sample y ← Dk
σ and c ← C.

Then, it computes z = y + c · r and gets b← Reji(z, c · r, σ) for i = 2 or 3.
If b = 0, it outputs π = (c, z) and program c = H(A1z − ct1).

Clearly, Hybrid0 and Hybrid1 are indistinguishable for all ppt adversaries, by
arguing similarly as for zero-knowledge property in [10, 20]. Here, we omit this
detailed proof for simplicity.
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Hybrid2: This hybrid is identical to Hybrid1, except that the Prove1 algorithm
is replaced with the following Prove2:

– Prove2(params, x,m, r): the algorithm first sample z ← Dk
σ and c ← C.

Then, it gets b ← Fi(z, c · r, σ) for i = 2 or 3, where Fi is the algorithms
defined in Theorem 4.3 or Theorem 4.4. If b = 0, it outputs π = (c, z) and
program c = H(A1z − ct1).

Clearly, Hybrid1 and Hybrid2 are identical for all adversaries, due to Theorem
4.3 or Theorem 4.4.

Hybrid3: This hybrid is identical to Hybrid2, except that the Com and Prove2
algorithms are replaced with the following Com1 and Prove3:

– Com1(params, x): given params, the algorithm samples t1
$←− Rnq , t2

$←− Rlq
and outputs comm∗ = (t1, t2).

– Prove3(params, x, comm∗): the algorithm first sample z ← Dk
σ, r∗

$←− Sk1 and
c← C. Then, it gets b← Reji(z, c · r∗, σ) for i = 2 or 3. If b = 0, it outputs
π = (c, z) and program c = H(A1z − ct1).

Hybrid2 and Hybrid3 are computational indistinguishability for all ppt ad-
versaries, based on the assumption of extended MLWE-LSn+l,k,1,χ, with χ = S1.
Particularly, we can establish a reduction process as follows: if given an adversary
Â who can distinguish Hybrid2 and Hybrid3 with probability ε, we can construct
another algorithm B who can solve the MLWE-LSn+l,k,1,χ problem with proba-
bility ε.

Concretely, suppose that B is given a tuple ((A1,A2), (t1,u), z, c, 〈z, c · r〉),
for z ← Dk

σ, c← C, and r ← S1. Firstly, A outputs m. Then, B sets t2 = u+m.
Finally, if 〈z, c ·r〉 ≥ cσ‖c ·r‖ (corresponding to Rej2) or 〈z, c ·r〉 ∈ [0, σ2 ∗ lnM ]
(corresponding to Rej3), then B sets and outputs π = (c, z), and sends (t1, t2, π)
to the adversary. Otherwise, it aborts. At the end, B outputs the bit sent from
the adversary Â.

It is easy to verified that if t1 = A1r and u = A2r, then the (t1, t2, π) is
followed the distribution of Hybrid2. Otherwise, if t1,u are chosen uniformly at
random and also independent from r, the (t1, t2, π) is followed the distribution
of Hybrid3. Hence, B can efficiently solve MLWE-LSn+l,k,1,χ with probability ε.
According to the assumption on the hardness of MLWE-LSn+l,k,1,χ, ε is negligible.

And in Hybrid3, all vectors are uniformly at random, so the it suffices sim-
ulatability. Overall the statement of Theorem 4.5 holds, according to hybrid
argument. ut

4.3 Comparison of Efficiency

Intuitively, by using Rej2 or Rej3, we can get much better upper bounds for
Dkσ
Dkv,σ

than Equations (1) and (2), allowing us to derive much smaller values
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for σ. Particularly, for Rej2 and the corresponding Theorem 4.3, if we use the
condition that 〈z,v〉 ≥ c · σ‖v‖, then we have

Dk
σ(z)

Dk
v,σ(z)

= exp

(
−2〈z,v〉+ ‖v‖2

2σ2

)
≤ exp

(
−2c · σ‖v‖+ ‖v‖2

2σ2

)
= 1. (3)

Here, we set −2c ·σ‖v‖+‖v‖2 = (−2c ·σ+‖v‖) · ‖v‖ = 0. Thus, we just need

to set σ = ‖v‖
2c . Besides, we notice that the event of Rej2’s abort only depends on

whether the random vector z is in the subset Ŝv,c, for any fixed v and c. Clearly,
by careful balancing the parameter c, we can get a much smaller σ, for the same
expected repetition times. The detailed example data are listed in Table 7.

Then, for Rej3 and the related Theorem 4.4, if we assume that M(v, z) =

exp
(

3〈v,z〉
σ2

)
, then we have

Dk
σ(z)

M(v,z) ·Dk
v,σ(z)

=
exp

(
−2〈z,v〉+‖v‖2

2σ2

)
exp

(
3〈v,z〉
σ2

) = exp

(
−8〈z,v〉+ ‖v‖2

2σ2

)
≤ 1. (4)

Here, we set −8c · σ‖v‖+ ‖v‖2 = (−8c · σ + ‖v‖) · ‖v‖ = 0. Thus, we just need

to set σ = ‖v‖
8c . Besides, we notice that the probability of Rej3’s abort depends

on Ŝv,c and function M(v, z), i.e., the probability of Rej3’s non-abort is Pr[z ∈
Ŝv,c] · 1

exp( 3〈v,z〉
σ2

)
, for z

$←− Dm
σ . Clearly, for any fixed v, σ, z

$←− Dm
σ , Pr[z ∈ Ŝv,c]

depends on the choice of c. Notice also that, the condition M(v, z) ∈ [1,M ]
implies 〈z,v〉 ∈ [0, (σ2 · lnM)/3]. Thus, through setting different M , we can
compute the prover’s expected repetition numbers for one time non-abort, and
the detailed data are listed in Table 7.

According to the above principles, we can determine the concrete proof sizes
under various sets of parameters. The detailed numbers are presented in Tables
1 and 7.
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M c rep. σ Size of z `

Rej0
3

-
≈ 3 11 · ‖v‖ kd log2(12 · 11 · ‖v‖)

0
6 ≈ 6 6.74 · ‖v‖ kd log2(12 · 6.74 · ‖v‖)

Rej1

3
0

≈ 3 1.11 · ‖v‖ kd log(12 · 1.11 · ‖v‖)
14 ≈ 4 0.85 · ‖v‖ kd log2(12 · 0.85 · ‖v‖)

6 ≈ 6 0.675 · ‖v‖ kd log2(12 · 0.675 · ‖v‖)

Rej2 1

0.438 ≈ 3 1.142 · ‖v‖ kd log2(12 · 1.155 · ‖v‖) log2 3
0.672 ≈ 4 0.744 · ‖v‖ kd log2(12 · 0.744 · ‖v‖) 2
0.97 ≈ 6 0.515 · ‖v‖ kd log2(12 · 0.515 · ‖v‖) log2 6
1.149 ≈ 8 0.435 · ‖v‖ kd log2(12 · 0.435 · ‖v‖) 3

Rej3

1.8 0.5 ≈ 5.8 0.25 · ‖v‖ kd log2(12 · 0.25 · ‖v‖)
log2 q2 0.5 ≈ 6.48 0.25 · ‖v‖ kd log2(12 · 0.25 · ‖v‖)

2.5 0.5 ≈ 8.1 0.25 · ‖v‖ kd log2(12 · 0.25 · ‖v‖)
Table 7. Comparison with the usage of different rejection sampling algorithms for
the protocol in Tables 4 and 6, where M and c denote the parameters for each of
four algorithms, rep. denotes prover’s expected repetition times for one non-abort, k
denotes the dimension of z, d denotes the ring dimension of the underlying ring R. And
` denotes the number of leakage bits on random during the security proof. Moreover,
v = cr, where r is the randomness vector for BDLOP commitment, and c is the
challenge from the verifier in the opening proof protocol.
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A Supplementary Preliminaries

A.1 Commit-and-Prove

Let’s recall the commit-and-prove paradigm. Let RL be a polynomial-time ver-
ifiable relation containing (ck, x, w). We call ck the commitment key, x the s-
tatement and w the witness. Then, we can define the language Lck as the set of
statements x for which there exists a witness w such that (ck, x, w) ∈ RL.

Now, the commit-and-prove functionality for a relation RL can be defined
as follows. Formally, a commit-and-prove functionality (CP) consists of four
algorithms CP = (Gen,Com,Prove,Verify), where Com,Verify should be deter-
ministic whereas Gen,Prove are probabilistic.

– Gen(1λ): Given a security parameter λ, generates a commitment key ck. The
commitment key specifies a message spaceMck a randomness space Rck and
commitment space Cck.

– Comck(m; r): Given a commitment key ck, a message m ∈ Mck and ran-
domness r ∈ Rck returns a commitment comm ∈ Cck.

– Proveck(x, ((m1, r1), · · · , (mn, rn))): Given a commitment key ck, statement
x and commitment openingsmi ∈Mck, ri ∈ Rck and (ck, x, (m1, · · · ,mn)) ∈
RL returns a proof π.

– Verifyck(x, comm1, · · · , commn, π): Given a commitment key ck, a statement
x, a proof π and commitments commi ∈ Cck, outputs 1 (accept) or 0 (reject).

This paradigm should satisfies the following properties:

Correctness . The commit-and-prove functionality CP has statistical correct-
ness with correctness error ρ : N→ [0, 1] if for all adversaries A:

Pr

[
ck ← Gen(1λ); (x,m1, r1, · · · ,mn, rn)← A(ck); ci = Comck(mi; ri);

π ← Proveck(x, ((m1, r1), · · · , (mn, rn))) : Verifyck(x, c1, · · · , cn, π) = 0

]
≤ ρ(λ),

where A outputs mi ∈Mck, ri ∈ Rck so that (ck, x, (m1, · · · ,mn)) ∈ RL.

Knowledge Soundness . The commit-and-prove functionality CP is knowl-
edge sound with knowledge error ε : N → [0, 1] if for all PPT A there exists an
expected polynomial time extractor E so that:

Pr

[
ck ← Gen(1λ); (x, c1, · · · , cn, π)← A(ck); ((m∗1, r

∗
1), · · · , (m∗n, r∗n))← E(c1, · · · , cn) :

Verifyck(x, c1, · · · , cn, π) = 1 ∧ ((ck, x, (m∗1, · · · ,m∗n)) /∈ RL ∨ ∃i,Com(m∗i ; r
∗
i ) 6= ci)

]
,

is less or equal to ε(λ), where E outputs m∗i ∈Mck and r∗i ∈ Rck.

Simulatability . The commit-and-prove functionality CP is simulatable if there
exist PPT simulators SimCom and SimProve such that for all PPT adversaries
A:

Pr

[
ck ← Gen(1λ); (x,m1, · · · ,mn)← A(ck); r1, · · · rn ← ξ; ∀i, ci = Comck(mi, ri);

π ← Proveck(x, (m1, r1), · · · , (mn, rn)) : (ck, x, (m1, · · · ,mn)) ∈ RL ∧ A(c1, · · · , cn, π) = 1

]

≈Pr

[
ck ← Gen(1λ); (x,m1, · · · ,mn)← A(ck); c1, · · · , cn ← SimComck(x);

π ← SimProveck(x, c1, · · · , cn) : (ck, x, (m1, · · · ,mn)) ∈ RL ∧ A(c1, · · · , cn, π) = 1

]
,
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where ξ is a probability distribution on Rck.
The difference between simulatability and zero-knowledge is that randomness

r1, · · · , rn is directly generated from ξ as it would in the real-world protocol
rather than chosen from adversary.
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