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Abstract. This paper studies the hardness of decision Module Learning
with Errors (MLWE) under linear leakage, which has been used as a
foundation to derive more efficient lattice-based zero-knowledge proofs
in a recent paradigm of Lyubashevsky, Nguyen, and Seiler (PKC 21).
Unlike in the plain LWE setting, it was unknown whether this problem
remains provably hard in the module/ring setting.

This work shows a reduction from the standard search MLWE to deci-
sion MLWE with linear leakage. Thus, the main problem remains hard
asymptotically as long as the non-leakage version of MLWE is hard. Addi-
tionally, we also refine the paradigm of Lyubashevsky, Nguyen, and Seiler
(PKC 21) by showing a more fine-grained tradeoff between efficiency and
leakage. This can lead to further optimizations of lattice proofs under the
paradigm.

1 Introduction

Ring/Module Learning with Errors (RLWE/MLWE) is an important foundation
in the category of lattice-based cryptography, which is a plausible direction for
post-quantum cryptography. RLWE/MLWE facilities more efficient constructions
of public-key encryption, e.g., several candidates in the NIST PQC call, as well
as advanced crypto systems including identity-based encryption [1,27,45,46] and
fully homomorphic encryption [16], in comparison to those based on the plain
LWE [2,3,14]. Due to the efficiency advantage, this problem has drawn a lot of
attentions since its proposal [29,37,38,44].

Zero-knowledge proof (ZKP) is a key technical tool in many applications
with strong privacy requirements. Towards quantum-safe solutions, researchers
have put a lot of efforts in the direction of lattice-based ZKP [7,9,11,19, 20,23,
32,35, 36, 39]. Despite feasibility results (though not practical) in the standard
common reference string (CRS) model [43], many new highly efficient solutions
are constructed in the random oracle model in recent years, using the technique of
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Fiat-Shamir with aborts [32]. In recent years, tremendous progress has been made
to optimize the concrete efficiency, e.g., improving the proof sizes for showing
knowledge of an s with small coefficients satisfying As = ¢, from 384 KB [11] to
47 KB [23]. Additionally, research in this line has deep impacts on the design of
efficient lattice-based signatures [19,20,34] and as well other privacy-preserving
protocols [24,25,30].

Recently, Lyubashevsky, Nguyen, and Seiler [36] identified a new paradigm
that can improve the proof size by roughly 30% over the prior best construc-
tions [23,35], by using leakage to trade efficiency. More specifically, they derive a
novel modified rejection sampling strategy, called subset rejection sampling, that
leaks one bit of the randomness of a one-time commitment, which is used in the
commit-and-prove paradigm. This key technique to the efficiency improvements,
is allowing smaller proofs. For security, as long as the one-time commitment is
leakage resilient against this class of leakage, then the overall scheme is secure.

Now, the question turns to whether we can prove that the one-time com-
mitment is leakage resilient to one bit. To do this, the work [36] showed that
this task can be reduced to a leakage version of the decisional MLWE problem
against linear functions,’ i.e., as long as the decisional MLWE problem is leakage
resilient for linear functions (over the coefficients of the secret and the error),
then so is the one-time commitment against the same class, implying security
against the bit leakage applied to any linear function.

Despite the fact that there are reduction results showing positive results in
the plain-LWE settings [4,36,41], it was identified as an important open question
in [36] whether the same results carry to the ring setting. On the other hand, the
work [36] speculated that one-bit leakage will not hurt security, at least under
the currently best known attacks. However, it is not clear whether the leakage
version of RLWE/MLWE is inherently hard or we just have not found an attack
yet by exploiting the ring structure with the leakage. This motivates the main
research goal of the work:

(Main Research Goal) Determine whether the leakage version of de-
cisional RLWE/MLWE against linear functions (as required in [36]) is
inherently hard (as RLWE/MLWE).

The new rejection sampling paradigm [36] provides a promising opportunity for
achieving more practical lattice proofs, with numerous identified applications.
Therefore, it is crucial to thoroughly investigate the underlying hardness foun-
dations, to ensure that using leakage to trade efficiency does not hurt security in
a provable manner. This would enhance the confidence in the practical adoption
of this emerging paradigm. Our main goal is the key to achieve this.

1.1 Our Results

This work provides an affirmative answer to the main task. Particularly, our
main result is to prove the following informal theorem.

51In fact, the work [36] only needs a slightly weaker version known as extended
(R)LWE.



Theorem 1.1 (Main Result, Informally Stated) Under the hardness of search
RLWE (for appropriate parameters), the decisional RLWE under leakage of linear
functions (required as [36]) is hard.

In summary, our result provides stronger theoretical justification, increasing con-
fidence in the foundation of the design paradigm [36]. This result has practical
implications, as it can be applied to enhance the efficiency of Zero-Knowledge
Proofs (ZKP) and other lattice-based cryptographic systems. Additionally, our
reduction can be generalized to the module setting, i.e., MLWE, offereing more
flexibility in terms of design choices.

An important aspect of our contribution is that our reduction works in the
full-splitting setting, where ¢R completely splits into linear factors. Before this
paper, as far as we know, there is limited knowledge regarding MLWE/RLWE
with leakage in the full-splitting setting, as compared to the low-splitting set-
ting [31]. Given that the full-splitting structure plays a crucial role in various
efficient lattice proofs, including some recent works of [7,23,33] for establishing
more general relations and improving efficiency, our advances in this setting are
significant.5 We present further details in the technical overview (Section 1.2)
and Section 4.

Our second contribution is to refine the subset rejection sampling strategy
of [36], showing a more fine-grained tradeoff between efficiency and leakage, in
the case of full-splitting underlying ring. Particularly, as listed in Table 1, if we
allow log, 6 bits of leakage, the rejection sampling parameter o can be slightly
improved from 175.67 to 171.42, which slightly reduces the proof size from 16.56
KB to 16.48 KB. This can be further stretched — using logq bits of leakage
to improve the parameters by a factor of 52% (83.138 versus 175.67), which
reduces the proof size by a factor of 10% (14.96 KB versus 16.56 KB). Here,
q is the underlying modulus. By Theorem 1.1, the problem remains hard in
these leakage settings, at least asymptotically. An interesting open problem is to
determine concrete security of ¢-bit leakage and the efficiency tradeoff, finding
the optimal parameters for the best efficiency. We present more details later in
the technical overview and Section 4.3.

1.2 Technical Overview

In this section, we present an overview of our techniques. First we describe the
computational problem of the main focus — decisional Module Learning with Er-
rors (MLWE) with linear leakage, and then the hardness results and applications.

Problem Statement. Let R, denote some (polynomial) residual ring of degree
d and modulus g, e.g., Ry, = Z4[X]/(X9+1), and later on R refers the underlying
ring and ¢ is the modulus. We notice that the MLWE problem can be stated as the
following: given a ring matrix/vector A € Ry"*" and a ring vector b= A -s+e

5 In the very recent work [33], while the full-splitting structure is not required to
prove the £2 norm, it is still necessary to prove the £o, norm or the knowledge of the
component-wise product of two vectors.



rep. « Size of z;: kndlog,(12 - «) [
Rej, ~ 6 2241.41 22.042KB 0
Rej; ~ 6 175.67 16.56 KB 1
Rej,|  ~6 171.42 16.48 KB log, 6
Rej, ~ 6 83.138 14.96 KB ~ 32

Table 1. Rough comparison of efficiency under different rejection sampling
algorithms for the opening protocol with full-splitting underlying ring in
Table 2. Here rep. denotes prover’s expected repetition times, [ the number
of leakage bits, « the derivation of the discrete Gaussian, which will influences
the proof size of z;. The concrete parameters are listed using the following
example setting: the dimension 7 of z; is 3, the ring dimension d is 1024, the
modulus ¢ is roughly 232, and the boosting parameter k is 4.

where s € Ry is some secret ring vector and e € Ry is some small error ring
vector, the search problem asks to find the secret s and the decision version asks
to distinguish b from a uniformly random vector. The module setting captures
both the RLWE and plain LWE as special cases — if the module rank is one, i.e.,
n = 1, then the problem is RLWE. On the other hand, if the underlying ring has
degree d = 1, then this is the plain LWE. All these variants have been extensively
studied [29,37,42] and we have strong confidence in their hardness.

To study the leakage version of the MLWE, we first define the leakage function
of our interests, which is the class required in [36]. Let Lq o/ (s, €) be defined as
(¢(a), P(s)) + (¢(a’), p(e)) € Zy, where ¢ is the coefficient embedding function,
i.e., it maps a ring element into a vector of Zg that represents the coefficient
vector with respect to the power basis (1, X, X2,..., X971), and maps ring vec-
tors Ry to ng, analogously. In this work, we consider the class that contains
all such functions regarding the inner product of the coefficient embeddings over
both the secret s and the error e.” Again, we would emphasize that leakage over
both the secret and error is a critical requirement in the paradigm of [36].

Given the above context, MLWE with linear leakage can be defined in a
simple way — the adversary/solver is given Lg o/ (S, €) in addition to the regular
MLWE samples. The task of the problem then becomes to find the secret s or
distinguish b from the uniform vector, given the leakage. We notice that this
problem is very related to another notion called extended MLWE [12] with the
following difference: the extended MLWE chooses a,a’ from a small discrete
Gaussian distribution, yet our leakage version of MLWE allows the adversary to
specify a,a’ in the beginning of the experiment. Thus, our leakage version of
MLWE is stronger than the extended MLWE.

For the application need, we consider the case where the secret s is sampled
according to the discrete Gaussian distribution, the same as the error e.

Some Prior Results. We first review previous works and then discuss their lim-
itations, particularly the obstacles they face in analyzing the foundation of [36].

" In fact, our leakage class in the main body is slightly more general, i.e., the leakage
function can include slight multiplicative shifts. Nevertheless, this simplified version
is sufficient to demonstrate our core ideas in the introduction.



— In the context of plain LWE, it was demonstrated that the extended LWE is
provably as hard as LWE [4,41]. However, as highlighted in [36], this technique
does not extend to the ring/module setting due to either a loss of exponential
reduction or a dimension mismatch during the reduction transformation.

— The work [12] (and the later journal version [13]) studied a version of ex-
tended MLWE. Their leakage function takes the form (z, e), where the inner
product is defined according to the ring vectors. It should be noted that
there exists a gap between the reduction in [13] and the application of ZKP
in [36], as the latter requires the leakage is over both the secret and error,
and the inner product is defined according to the vectors over Z, (under the
coefficient embeddings). Besides, their reduction limits to the MLWE (i.e.
module rank k > 2), and is unable to capture the case of RLWE.

— Two recent and concurrent works [22,28] considered the case of MLWE with
leakages. Among them, [22] examined a scenario where the leakage is applied
to the error but not the secret, and [28] examined the scenario where the
leakage is applied to both the secrete and error. However, these two works
both have several limitations. Specifically, the leakage function in [22] takes
the form e - Z + €', where Z is a low-norm ring matrix specified by the
adversary and e’ is an independent Gaussian error hidden to the adversary.
As their analysis relies on the inclusion of €', their results are not expected
to be applicable to our setting and are therefore insufficient for analyzing the

framework of [36]. [28] specified the leakage function with the form c- (Z) +y,

where y is a gaussian vector hidden to adversary. The analysis of [28] is also
unable to be directly applied for the framework of [36], as the latter requires

to analyze the leakage function with the form <¢ (Z) 7(zﬁ(z)>, which can

not be simulated by the function in [28].
We note that it is unknown whether our results can be inferred from those
of [22,28] or vice versa, so we consider them as incomparable results.

— Another approach to analyze leakage is by employing the lossy-matrix tech-
nique [5,15,31], yet the current developments have several limitations. For
instance, the work [5] is only applicable to the plain LWE setting due to the
absence of the leftover hash lemma in the ring setting at that time. The
work [15] is limited to the search version, and it was unclear how to extend
their techniques to the decision version. The work [31] derived a ring-leftover
hash lemma (LHL), and generalized the analysis of [5] to the module set-
ting, i.e., MLWE. Nonetheless, there are subtleties where their analytical
techniques [31] cannot be applied, as elaborated below.

Particularly, let n be the module rank, d be the ring dimension, and ¢R
splits into ¢ factors for 1 < ¢ < d. Their result (particularly the ring LHL)
requires that n = w(c) in order to guarantee the required entropy lower
bound. Thus, in the low-splitting setting (e.g., ¢ = 2), the techniques [31]
can be used to analyze for n = O(1), e.g., n = 2. However, for the high-
splitting (e.g., ¢ = d), then their technique requires n > d. To choose more
competitive parameters in many practical works, n is set to be O(1) (even



1 for the RLWE), e.g., [23]. Thus, the technique of [31] is not sufficient to
analyze these practical parameter choices in the full/high splitting setting.

— Besides the reductions of several versions of MLWEwith leakages, the work
[18] also considers the concrete security estimation of (M)LWE with side
information. We note that the reduction and concrete security estimation are
two different perspectives for studying the hardness of (M)LWE with leakages.
Combining the two ways provides us more comprehensive understanding
about the hardness of this problem.

To summarize, we observe that the setting involving low module rank and
high-splitting is not well understood compared to other settings. As many effi-
cient lattice proofs rely on specific algebraic advantages in this setting, e.g., [7,
23], and [33] for more general relationships, there is a strong motivation to ad-
dress the challenges and develop new analytical techniques for the foundation
and applications.

Our New Analysis. To achieve this, we prove a new reduction from search
MLWE (without leakage) to decisional MLWE with linear leakage, meaning that
the linear leakage does not decrease the hardness up to a polynomial factor. Our
proof structure is similar to that of [29,31,37], consisting of six steps as Figure 1.
Below we briefly elaborate on the intermediate problems and the technical ad-
vances over the prior work, i.e., why prior analyses do not go through directly
and how our new techniques solve the challenges.

[ S MLWE, gy Thm 3.6
Step (1)

[ S-MLWELE . ,q,% ]
Step (2) l Lemma 3.9

(W)-g;-MLWELE + . k.. ]
Step (3) l Lemma 3.12

(W)_D_MLWELE;In,n,k,q'X ]
Step (4) 1 Lemma 3.14

(A)-D-MLWELEL, ;. .
Step (5) 1 Lemma 3.15

K[ D-MLWELEnnicqy |
v Step (6)
{ D-MLWE-LS,. 1 0.« Lemma 3.16

Fig. 1. Our reduction route

Thm 3.7

Our reduction works in the case where ¢R splits completely into d ideals with
linear degree, i.e., ¢R = (1 ...qq. Next we describe the notations in the diagram



— S and D to denote search and decision version. LE denotes leakage of linear
error and LS denotes leakage of linear secret (and error), and (A)/(W) denotes
average-case/worst-case over the secret distribution. The q,-MLWE problem asks
the solver to find s mod g;. The decisional MLWELE' is to distinguish b + h
where h is either from A? or A*~! defined as follow. A’ is uniformly random
mod q;R for all j <7, and 0 mod all the other ideals, i.e., q;R’s for j > i.

In our reduction route, we introduce an intermediate problem denoted as
MLWELE, for which the leakage function is only applied to the error. We first
establish the one-way hardness of MLWELE on the hardness of search MLWE.
The idea of this step is directly from a random guess of leakage, resulting 1/¢
reduction loss. Then we further show a search-to-decision reduction of MLWELE,
which follows the framework from [31,37], but makes several important changes.
Finally, we show a reduction from the intermediate problem MLWELE to our
target MLWE-LS problem.

Now we briefly discuss each step in the figure. As Steps (1), (3), (4) and (5)
follow essentially the same idea from the prior work [31,37], we do not repeat
the ideas. So next we focus on Steps (2) and (6).

For Step (2), we would like to prove the following — if we can find s mod gq; for
some 4, then we can find s (given leakage of error). To achieve this, we first try to
apply the automorphism argument of [31,37] — finding o(s) mod g; implies find-
ing s mod q; for another j. By going through all the automorphisms, we would
recover s modulo every ideal, and thus by the Chinese Remainder Theorem re-
cover s. This idea faces a subtlety in the presence of leakage — the reduction needs
to simulate L, (q)(o(e)) faithfully in order to call the underlying solver that finds
o(s) mod q,. For general leakage functions, this task is unclear. Fortunately for
the linear leakage in our case, we can prove (¢(a),¢(e)) = (¢p(c(a)), p(o(e)))
under the coefficient embedding in the cyclotomic rings of two’s powers. This
implies that the linear leakage is invariant under automorphism, and thus our
reduction can faithfully simulate the leakage and complete the process as in the
prior work.

We remark that this invariance of linear leakage under automorphism is non-
trivial. Particularly, it requires that the bases corresponding to the coefficient
embeddings are invariant (up to some re-ordering and sign) under automor-
phisms. This requirement however, does not always hold, and even for some
rings such a basis does not exist. Currently, we only know that the Normal Inte-
gral Basis (NIB) mentioned in [31] and the power basis of cyclotomic rings with
2’s powers considered in this paper meet this requirement.

For Step (6), our target is to show a reduction from MLWE with linear leakage
of error to MLWE with linear leakage of both secret and error — if we can transfor-
m an instance of MLWELE to a valid instance of MLWE-LS or a random sample to
another random sample, then we can distinguish the instance of MLWELE from
random sample by invoking the distinguisher of MLWE-LS. Our idea is some-
how similar to the hardness reduction of HNF-MLWE in prior works [6,29], but
needs very subtle analysis due to the introduced hints and leakage. Briefly, let
(a,b,z,(c1, - ,ck), (0(2), P(cre, - -+, cre)) be the instance of MLWELE, where z



and (cq,- -+ ,c) are the hints of leakage. The goal is to simulate an instance of
MLWE-LS with the form: (a’,b, 2/, (c},--- ,¢cL), (@(2'), o(ci(s,€),- -+ ,ci(s,€))).
We can use the similar approach of the hardness reduction of HNF-MLWE to
transform b to b’ = (a’, €) + e, where € is the error vector corresponding to the
invoked instances, and e is the error of the initial instance. Thus the leakage in
MLWE-LS can be simulated by the linear combination of the leakages of error
obtained during calling the MLWELE oracle.

We would like to point out a subtle issue involved in this transformation
where the hints 2/, (¢}, -+ ,¢},) should be consistent with the leakage. As de-
scribed above, our reduction is similar to the approach of the hardness reduction
of HNF-MLWE, and thus requires to sample n + 1 instances of MLWELE. There-
fore, we need to determine the hint vectors (z’,c, - ,¢,) of MLWE-LS from
n + 1 tuples of hints of MLWELE. We tackle this barrier by a precise design of
hints 2z’ and (¢}, - - - , ¢,), which makes use of the linearity of our leakage function
and the ability of the adversary of MLWELE. The details can be referred to the
proof of Lemma 3.16 in the full version of our paper.

Our Second Contribution. Under the hardness of MLWE with linear leakage,
our second contribution shows how to further improve the generalized rejec-
tion sampling paradigm of [36], deriving a more fine-grained tradeoff between
efficiency and leakage. We elaborate on the high level ideas below.

Briefly speaking, the rejection sampling-style lattice proofs have the follow-
ing structure: z = y + c¢s, where c is some small ring element, s is some small
secret, y is some Gaussian mask, and z is the proof message sent to the veri-
fier. To achieve zero-knowledge, y must wipe out the information of s. If y is
super-polynomially larger than cs, then this is the well-known smudging noise
technique [41]. However, this would require a very large proof z. To reduce the
size, Lyubashevsky [32] introduced the rejection sampling technique where z
might be set to L with a certain probability. In this way, the dependency on s
can be removed with a much smaller y. To further improve the size, [36] iden-
tified a new way — by imposing an additional condition on (¢(z), co(s)) > 0 (or
rejecting the case when the inner product is negative), one can further reduce
the size of y. This comes at the price of leaking one bit, i.e., the sign bit. If
MLWE under linear leakage is hard, then leaking this bit would not hurt security
of the protocol.

To further improve the size of y, we observe that we can use a stronger
condition (¢(z),co(s)) > T for some parameter T > 0. Intuitively, a larger T
can result in smaller proof, yet at the cost of more leakage. If we completely leak
(p(2z),co(s)), the size of y can be minimized. However, if the whole Z, element
is leaked, then the concrete hardness might be affected by the attack of [18].
Even though [18] does not solve the MLWE asymptotically, leaking log ¢-bits
(i.e., one element in Z,) might decrease the concrete security by a noticeable
amount, whereas leaking one or two bits might not (as the framework of [18]
does not apply). Therefore, stretching the leakage too much might be worse
in practice. We leave it as an interesting open problem to determine the best
tradeoff between leakage and concrete security.



A recent work [28] developed new ideas to improve the proof of knowl-
edge protocols in [36]. Specifically, their approach can remove the computa-
tional overhead from repetition (abort) in the framework of [36]. We clarify
that same as [36], our framework also requires more computational overhead
compared with [28]. However, our framework can achieve better communication
overhead than [28]. Concretely, the output size of our improved algorithm is s-
maller than [28]. As a fair comparison, we calculate the parameters under the
same benchmark defined in [28]. By accurate calculation, we can achieve output
size that is approximately 3.6x smaller than their output size. More details of
comparison can be referred to the end part of Section 4.3.

2 Preliminaries

Notations. In this paper, Z and R denote the sets of integers and real numbers.
We use A to denote the security parameter, which is the implicit input for all
algorithms presented in this paper. A function f(A) > 0 is negligible and denoted
by negl()) if for any ¢ > 0 and sufficiently large A, f(A) < 1/A¢. A probability is
called to be overwhelming if it is 1—negl(A). A column vector is denoted by a bold
lower case letter (e.g., ). A matrix is denoted by a bold upper case letter (e.g.,
A). For a vector «, its Euclidean norm (also known as the ¢5 norm) is defined to
be |lz|| = (3, #?)!/2. For a matrix A, its ith column vector is denoted by a; and
its transposition is denoted by AT. And the norm of an element in R, will be
the norm of its unique representative with coefficients in [—(¢ —1)/2, (¢ — 1)/2].
For positive B € R, we use Sg to denote the set of all polynomials of infinity
norm less than 3, i.e., Ss ={a € R | |jal]jco < B}

For positive integers n, ¢, let [n] denote the set {1,...,n} and Z, denote the

ring of integers modulo ¢. For a distribution or a set X, we write = & X to
denote the operation of sampling an uniformly random z according to X. We
denote as Supp(X) the support of a distribution X. For two distributions X, Y,

we let SD(X,Y") denote their statistical distance. We write X XY to mean that

they are statistically close, and X ~Y to say that they are computationally
indistinguishable.

2.1 Cyclotomic Rings

Throughout this paper, we use R to denote a polynomial ring of the form
Z[X]/(®,, (X)), where &,,(X) is the m!" cyclotomic polynomial. For an inte-
ger q € Z, we also consider the quotient ring R, = R/¢R. We recall that for d
being a power of 2, the 2d-th cyclotomic polynomial is given as ®o4(z) = 2%+ 1.
Then the ring of integers of the 2d-th cyclotomic field R = Z[z]/(z? + 1). Thus,
we can use the coefficients of an integer polynomial modulo (2™ + 1) to represent
a ring element.



Embedding and Rotation. In this work, we view elements of R as Z? through
certain embeddings. For example, for R = Z[z]/(z?+ 1) with d a power of 2, we
view any @ = ag + a1z + - - - + ag_12%71 € R for a; € Z as the coefficient vector
(ag,--+ ,aq—1), and denote ¢(a) = (ag, -+ ,aq4-1); and for R = Z[z]/P(X)
with m a prime, we view any b= by + b1+ -4+ bp_1(" P € R for b; €Z as
(bo, -+ ,bg—1), where ¢ is the m-th root of unity. Similarly, we denote Rot(a) as
rotation matrix of a, i.e.,

#(a mod gR)"
: dqR)"
Rot(a) — o(a wm.o gR)

#(a- 2% ! mod ¢R)T

It’s easy to verify ¢(sr) = ¢(s) - Rot(r) = ¢(rs) = #(r) - Rot(s) for any s,r € R,,.

Ideal Factorization. An ideal I C R is an additive subgroup that is closed
under multiplication by R. For an integer prime ¢ € Z, ¢'R is an ideal of R, and
the factorization of ¢R is as ¢R = II;q, where g, are distinct prime ideals, each
of norm q% with ¢ the number of distinct ideals.

The number field Q[X]/(®,,(X)) has ¢(m) automorphisms oy, which are
defined by o1 (¢) = ¢* for k € Z7,. Particularly, for Q[X]/(X? + 1), o} are
defined by 03 (X) = X*. The following lemma says that the automorphisms oy,
“act transitively” on the prime ideals g, i.e., each g; is sent to each q; by some
automorphism oy.

Lemma 2.1 ( [37], Lemma 2.16) For any i,j € Z;,, we have 0;(q;) = q;/;-

Next we recall the Chinese Remainder Theorem (CRT) for R.

Lemma 2.2 (Chinese Remainder Theorem) Let q; be pairwise coprime (q;+
q; = R for any i # j) ideals in R = Z[X]/(®Pm (X)), then natural ring homo-

morphism is an isomorphism: R/(Hl qi)R - @, (R/4:R).

2.2 Discrete Gaussian Distribution

For a ring R of degree d, we can define the discrete Gaussian distribution over
it in the following way.

Definition 2.3 For any positive integer £, the discrete Gaussian distribution
over RY centered around v € RY with standard deviation o > 0 is given by

o~ llz—v]?/20°

S verr ¢ PP

When v = 0, we just write D for simplicity.

D5 (2) =

We also need to use the following facts about the discrete Gaussian distribu-
tion.

10



Lemma 2.4 (Generalize of [8]) For any positive integer £ and any real o > 0,
a sample sampled from Df;'d defined as above has norm at most o/ {d except with
probability at most 2264,

Lemma 2.5 (Lemma 4.3 in [32]) For any vector v € R™ and any o,r > 0,

2

Pr[[(z,v)| > 1 : 2 <& D™] < 2¢” 2%

2.3 MLWE

Now we introduce the hard problems discussed in this paper, which are denoted
as S-MLWE and D-MLWE, and we consider the “non-dual” version problems.

Definition 2.6 (S-MLWE [29]) The search MLWE problem with parameters
n,m,q, and an error distribution x such that Supp(x) € R denoted as S-MLWE,, ,5, 4

is defined as follows. For s & R™, use Aq s to denote the distribution of (a, (a, s)+

e) € Ry x Ry, where a & Ry and e & X- The goal is to find secret s from m
samples.

Definition 2.7 (S-MLWE in HNF [29]) The search MLWE problem with pa-
rameters m,m,q, and an error distribution x such that Supp(x) € R denoted

as S-MLWE,, ,,, 4.y s defined as follows. For s & X", use Ay s to denote the

distribution of (a, (a, s) +e€) € Ry X Ry, where a & Ry and e & x- The goal is
to find secret s from m samples.

Definition 2.8 (D-MLWE in HNF [29]) The decision MLWE problem with pa-
rameters n,m,q, and an error distribution x such that Supp(x) € R denoted as

D-MLWE,, 1.,4,x 15 defined as follows. For s & X", use Aq s to denote the dis-

tribution of (a, (a, s) +e) € Ry X Ry, where a & Ry and e & x- The goal is to
distinguish m samples from either Ay s or U(Ry,Ry).

We notice that the latter two types MLWE problems defined above are the
so-called “Hermite Normal Form” version, which can be easily reduced to the
standard MLWE via the approach in [6]. For standard MLWE, it is known to
be at least as hard as certain standard lattice problems over ideal lattice in the
worst case [29]. It should be pointed out that RLWE is the special case of n = 1.

3 Hardness: MLWE with Linear Leakage

In this section, we present our main result for the MLWE under linear leakage.
First we describe a table of parameters used in this section. Then we define the
class of linear leakage in the ring/module setting, and Module Learning with
Errors, i.e., MLWE in the leakage setting of this class. Finally we present the
reduction result.
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Parameters Description
MLWE rank
number of MLWE samples
modulus of MLWE
ring dimension
number of prime ideal factors of ¢R
number of computing inner product times

sl |33

Table 2. Notation of parameters in this section

Definition 3.1 Let l,q,d,k > 0 be integers, R = Z[X]|/(X? +1). For z =
(zi)iew € R’;l,c =(c1,...,c) € R’;, we define the function L, ¢ : Rfl — Z
as Ly c(x) = Zle(qb(zi),qﬁ(cim», where ¢ is a “coefficient embedding” map
from Rfl to Zf]”, i.e., embeds each ring element in R, as a vector in Zg.

Here we can think of « as the secret, and the linear leakage is regarding the inner
product of the coefficients as specified above. Additionally, the parameter [ is the
dimension of the secret key that can be set as m or n, or m + n, the parameter
k is a dynamic parameter that is related to the latter applications (boosting
soundness of ZKP protocol in Section 4), the leakage can also multiplicatively
shift the secret to ¢(c;x) specified by the parameters ¢;’s.

Next we define the search and decision versions of MLWE, with linear leakage.
We note that, the hard problems we focus on in this work are with the “Hermite
Normal Form”. Particularly, the leakage function is defined over both secret and
noise. Besides, in our hard problems, the leakage hints (z and c¢) can be specified
by the solver (adversary). The adversary in our definition is less restricted than
prior “Extended LWE” assumptions for which the hints need to be designated
by the challenger, and thus makes our hardness result stronger.

Definition 3.2 (MLWE with Linear Secret Leakage, HNF, Search) Let
m,n,q,k,d > 0 be integers, R = Z[X]/(X% + 1), x be error distribution over
R. We define the search problem S-MLWE-LS,,, p, k¢~ by the experiment between
the adversary A and the challenger C as:

— A specifies k pairs {(2i,¢:) Yiequ,... i}, where z; € R;’H‘", ¢i € Ry, and sends
{(zi,¢i) bieqr, o k) to C.
— C first samples x <+ x"*T™, A & Ry™™, and computes b = [A|L,]-x € R

Then, for z = (2i)iem), ¢ = (c1,- - ,ck) !, C computes y = Ly (). Finally,
C returns (A, b,y) to A.
— A finally attempts to find s.

The search problem S-MLWE-LS,, ,, k4. s hard, if it holds: for any z = (z{ ,...,z] )" €
R’;(n+m), (c1,--,cp)' € R’(j and every PPT adversary A that

PrlA(A,b, 2, (c1, -+ ,ck),y) = 8] < negl(}).
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Definition 3.3 (MLWE with Linear Secret Leakage, HNF, Decision) Let
m,n,q, k,d > 0 be integers, R = Z[X]|/(X?+1), x be error distribution over R.
We define the decision problem D-MLWE-LS,,, ,, 1.4~ by the experiment between
adversary A and challenger C as:

— A specifies k pairs {(2i, ci)}ieq1,.. 1}, where z; € R, ¢; € Ry, and sends
{(zi,¢i) bieqr, k) to C.

— C first samples © + x"T™, A & Ry™™, and computes b = [A|L,]-x € Ry,

and also samples u & Ry Then, for z = (2i)icp), ¢ = (c1,- - e’ C
computes y = L, o(x). Finally, C samples a random bit b € {0,1}, and
sends (A, b,y) to Aifb=1, or sends (A,u,y) to A if b=0.

— A finally outputs a bit b’ as the guess of b.

The advantage of A in the game is defined as Advﬂﬂ!‘,\{f’}l‘ix = [Pr[b/ =b] — 1.
The decision problem D-MLWE-LS,, 1, i,q,x @5 hard, if it holds: for any z €

R’;("*’”), (c1,--,cp)' € R’; and every PPT adversary A that

D-MLWE-LS
AV A g kdi < negl(A).

In addition, we present two intermediate hard problems, denoted as S-MLWELE
and D-MLWELE, which will be used in the hardness reduction of D-MLWE-LS,, ,, k ¢

Definition 3.4 (MLWE with Linear Error Leakage, Search) Letm,n,q,k,d >
0 be integers, R = Z[X]/(X+1), x be error distribution over R. We define the
search problem S-MLWE-LS,,, , k.q.x by the experiment between adversary A and
challenger C as:

— A specifies k pairs {(zi,¢i)}iequ,... ky, where z; € Ry, ¢; € Ry, and sends
{(zi,ci)}ie{l,‘.,,k} to C.

— C first samples s & R™ e+ x", A & Ry*™, and computesb = A-s+e €
Ry Then, for z = (zi)ick), ¢ = (c1, i)', C computes y = Ly o(e).
Finally, C returns (A, b,y) to A.

— A finally attempts to find s.

The search problem S-MLWELE,, 1, k.q.x s hard, if it holds: for any z = (2] ,..., 2] )" €
Rfjm, (c1,--,cp)' € R’; and every PPT adversary A that

PrlA(A,As+e,z,(c1, - ,ck),y) = 8] < negl(A).

Definition 3.5 (MLWE with Linear Error Leakage, Decision) Letm,n,q,k,d >
0 be integers, R = Z[X]/(X% + 1), x be error distribution over R. We define

the decision problem D-MLWELE,, 5, 1 4 by the experiment between adversary

A and challenger C as:

— A specifies k pairs {(zq,¢i)}ieq1,... k), where z; € R, ¢; € Ry, and sends
{(zi,¢i) bieqr, o k) to C.

13



— C first samples s & R™, e+ x™, A & Ry <", and computesb = A-s+e €
Ry, and also samples u & Ry Then, for z = (2i)icix), ¢ = (1, e,
C computes y = L, o(x). Finally, C samples a random bit b € {0,1}, and
sends (A, b,y) to Aif b=1, or sends (A,u,y) to A if b=0.
— A finally outputs a bit b’ as the guess of b.
The advantage of A in the game is defined as Advﬁﬂ!‘ﬁi‘fd“ = [Pr[b/ =b] — 1.
The decision problem D-MIWELE,, ,, 1 ¢~ @ hard, if it holds: for any z €
’R’;m, (c1,--,cp)' € R’q“ and every PPT adversary A that

Advy VLS < negl(M).

Now we will give our concrete reductions. To start, we first show a reduction
from S-MLWE,,, ,.q.x to S-MLWELE,,, », 1.4, Generally, a search problem with
log ¢ bits of leakage can only decrease security by a factor of ¢q. Therefore, if
q = poly(X), then the leakage version can be reduced from the non-leakage
version of the problem.

Theorem 3.6 Let m,n,k,d,q > 0 be integers, and q is a polynomial of the
security parameter A, R = Z|X]/(X?+1), x be error distribution over R. There
exists a PPT reduction from S-MLWE,, ,, 4 to S-MLWELE,,, 5, 1 ¢, such that if
e is the advantage of S-MLWELE,,, ,, 1. 4, Solver, then &' = %5 is the advantage
of S-MLWE,,, n, 4,5 solver.

The theorem can be proved by a simple idea to randomly guess the value of the
inner product. We put the proof in full version of this paper.

The hardness result of D-MLWELE as an important intermediate reduction
of our main result can be summarized as the following Theorem.

Theorem 3.7 Let m,n,k,d > 0 be integers, R = Z[X]|/(X? + 1), q be the
prime modulus such that ¢R splits as gR = q1 -+ - qe, where £ = d/c for a con-
stant ¢ € Z and q > (2, x be an error distribution that is invariant under all
the automorphisms of K = Q[X|\(X? + 1). There exists a reduction from S-
MLWELE s+ n.k,q,x t0 D-MLWELE,, y, k,q,x, Such that if € is the advantage of D-
MLWE-LS,; n k,q,x SOlver, thene' > 1—% is the advantage of S-MLWELE 7+ 1 k,q,x
solver, and m* = lq°mn - [1/%].

Proof. We first summarize the reduction route as follows, and then explain the
concrete steps later:
(1) (2)

S-MLWELE 5+ 1 k.q.xy —> (W)-qi-MLWELE 1+ 5 .9 — (W)—D-MLWELEfn’n,k!q,X
(3 4

% (A)-D-MLWELE}, ,, ;. —> D-MLWELE,;, 1, . q.-
To start, we define the first intermediate assumption (W)-q;-MLWELE, .+ 1, k.q.x
as follows.
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Definition 3.8 ((W)-q;-MLWELE,,,« 1, k.q,5) Let m*,n,k,d > 0 be integers,
R = Z[X]/(X9+1), q be the modulus such that qR splits as qR = qy - - - q¢, where
¢ =d/c for a constant ¢ € Z, x be error distribution over R. For any q;,i € [¢],
the worst-case search problem q;-MLWELE,,« ,, 1.4, 15 defined as: given access to
(A,As +e,z,(c1, - ,cr), (9(2), d(cie,- - ,cre))) for some arbitrary s € Ry,

where A & ’R,;"*X",e — X", z¢€ 'R’;'m* and (c1,--+ ,c) € 'Rg as defined in
Definition 3.2, find s mod ;.

Then, we have the following reduction.

Lemma 3.9 (S-MLWELE 3+ 1 k,q,5 t0 (W)-q;-MLWELE, ..« 1, k.q,x) Letm*,n,k,
d > 0 be integers, R = Z[X]/(X?+1), q be the modulus such that ¢R splits com-
pletely as qR = q1 - - - q¢, where £ = d/c for a constant ¢ € Z, x be error distribu-

tion over R and invariant under all the automorphisms of K = Q[X]\(X?+1).
Then for every i € {1,--- £}, there exists a deterministic poly-time reduction
from S-MLWELE 5+ 1 k.q.x t0 (W)-0;-MLWELE + 11 k.q,x, Such that if 1 —¢ is the
advantage of (W)-q;-MLWELE .« 1, 1q.x solver, then 1 — le is the advantage of
S-MIWELE s+ p k,q,x SOlver, where e < %, and m* = Im*.

The reduction can be proved by a similar approach to that of Lemma 4.16
in [29] combining with a subtle simulation of inner product leakage under au-
tomorphisms. Due to the space limit, we put the proof in full version of this
paper.

In order to describe the second intermediate assumption, the following defi-
nition is needed.

Definition 3.10 (Hybrid MLWELE distribution) Fori e {1,--- ¢}, a dis-

tribution x over Ry and s & R™, we define the distribution Aﬁn*7k7s,X over

’R;”* X"X’R;"* XR’;"‘* XREXZq as: sample (A, b, z, (c1,- - ,cx), (#(2), d(cre, -, cre)))
as Definition 3.8 and output (A,b + h,z,(c1, -+ ,ck), {(d(2), p(cre,- - ,cre)))

where h € R;"* are uniformly random mod q;R for all j < i, and O over mod

all the other ideals, i.e., q;R’s for j > i.

We note that AY is the original distribution as Definition 3.8, A’

m*,k,s,x m*,k,s,x
is the distribution as the random case defined in Definition 3.3, and the other
Aﬁn*’ ks S are intermediate hybrids, which will be used via a hybrid argument
later.

Now, the second intermediate assumption is as follows.
Definition 3.11 ((W)—D-MLWELEfn’n’k’q,X) The worst-case D—I\/ILWELEfn’n’k’q’X
problem is defined as follows: given access to an oracle sampling from A
for arbitrary s € Supp(x™) and j € {i — 1,3}, find j.

%
m,k,8,x

The following lemma states a reduction from (W)-q;-MLWELE .+ p, kg, tO
(W)-D-MLWELE!

m,n,k,q,x"
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Lemma 3.12 ((W)-q;~-MLWELE, .+ , & 4. to (W)-D-MLWELE? ) For

m,n,k,q,x
any i € {1,---,£}, and ideal q; with N(q;) = ¢/ = ¢° where ¢ > 1 is
a constant integer, there exists a probabilistic polynomial time reduction from

qi-MLWELE, .« kg tO (W)-D-MLWELEﬁnm’k)q)X, such that if € is the advan-
tage of (W)—D—MLWELEfn’n,,w’)< solver, then ¢’ > 1 — ¢ is the advantage of

4i-MLWELE, ,+ 1 kg, Solver, where m* = ¢mn - [%].

The proof of this lemma is similar to that of Lemma 5.9 in [37]. Due to the space
limit, we put it in full version of this paper.
The third intermediate assumption in the reduction route is as follows.

Definition 3.13 (Average-case Decision LWE relative to q;) Foriec {1,---,(}
and a distribution x over error Ry, we say that an algorithm solves the D-MLWELE;, .

problem if with a non-negligible probability over the choice of a random s +

U(Ry), it has a non-negligible difference in acceptance probability on inputs from
i—1
:n,k,s,x

g

versus inputs from Ap, . o .

We have the worst-case to average-case reduction as follows.

Lemma 3.14 (Worst-case to Average-case) There erists a randomized poly-
time reduction from worst-case (W)-D-MLWELE,, ., ;. . to average-case D-MLWELE,, , . .,

such that if € is the advantage of D-M LWELEfn’n’k’q’X distinguisher, then € is the

advantage of (W)-D-MLWELE" distinguisher.

m,n,k,q,x

The reduction performs a re-randomization of the secret, which is a standard
approach to prove a worst-case to average-case reduction. We omit here, and
provide the rigorous proof in the full version.

The following lemma states the step (4) of the reduction route.

Lemma 3.15 (D-MLWELE:'n,n k.qx V0 D-MLWELE,, 12 k,q,x) For any ora-
cle solving the D-MLWELE,, ,, x4,y problem with advantage ¢, there exists an
i € {1,---,£} and an efficient algorithm that solves D-MLWELE,, ., . with

advantage € /0 using this oracle.

The lemma can be proved by a simple hybrid argument. We put the proof in
full version of this paper.
The proof of Theorem 3.7 follows from Lemmas 3.9, 3.12, 3.14 and 3.15. O

Finally, we show a reduction from D-MLWELE,,, », kg, to D-MLWE-LS,,, 1, kg,
as follows.

Lemma 3.16 (D-MLWELE,,, (nd)2n,k,q,x t0 D-MLWE-LS,,, 1, r.q,x) There ex-

ists a probabilistic poly-time reduction from D-MLWELE,,,(,4)2 n k,q,x 10 D-MLWE-LS;, 1 k. q,x 5
such that if € is the advantage of D-MLWE-LS,, ,, k.q,x distinguisher, then € is

the advantage of D-MLWELE,,,(na)2 n k,q,x distinguisher.

The main idea of this reduction is similar to the reduction from MLWE to the
HNF-MLWE in the work [29]. Due to space limit, we put the proof in full version
of this paper.
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Combine Theorem 3.7 ,Theorem 3.6 and Lemma 3.16, the hardness of D-
MLWE-LS can be reduced to the hardness of the fundamental problem S-MLWE
by the following Corollary.

Corollary 3.17 Let m,n,k,d > 0 be integers, R = Z[X]/(X? + 1), q be the
modulus such that gR splits as gR = q1 - - - q¢, where { = d/c for a constant ¢ € Z,
x be an error distributions over R that is invariant under all the automorphisms
of K = Q[X]/(X? +1). There exists a reduction from S-MLWE,« , 4\ to D-
MLWE-LS,, n.k,q,x» Such that if € is the advantage of D-MLWE-LS,;, ,, 1 4 Solver,
then ¢’ > % (1 = §) is the advantage of S-MLWE,, , 4 solver, and m* =
Lg*mn3d® - [1/%].

Remark 3.18 In our reduction, we consider the ring Z[X]/(X?% + 1) which is
frequently used in many applications. It should be noted that we can generalize
the ring to the more general cyclotomic setting by representing a ring element
as integer linear combinations of a certain Z-basis of the ring. Then, the map ¢
and the automorphism are defined according to the Z-basis.

4 Application: More Efficient Opening Proof for
One-Time BDLOP Commitment

In this section, we present an important application of MLWE with linear leak-
age, leading to more efficient opening proofs for one-time BDLOP commitments
under the paradigm [36]. Our particular contribution is to derive a more fine-
grained tradeoff between efficiency and leakage of the paradigm [36], which can
potentially lead to even more efficient proofs.

The section is organized as follow. We first recall the classical opening proof
for BDLOP commitment in [9], together with two rejection sampling algorithm-
s [32,36] in Section 4.1. Then in Section 4.2, we further generalize the subset
rejection sampling algorithm proposed by [36] in two ways: (1) we use a smaller
subset S, for the accepting condition; (2) we extends the constant value M to
a real-valued function M of (v, z), whose output can vary based on the input.
These two ideas can improve efficiency of the opening proof for the setting of
one-time BDLOP commitment. Finally, in Section 4.3, we compare in detail the
efficiency differences of the opening protocol under four different rejection sam-
pling algorithms in Tables 3 and 4. Below we first present the parameters used
in this section in Table 3.

4.1 Classical Opening Proof of BDLOP Commitment and Rejection
Sampling Algorithms

Let us first recall the standard opening proof for BDLOP commitment scheme
in [9]. Particularly, for a BDLOP commitment scheme with public parameters

A, e R As € ’RZX”, a message vector m € Rfl is committed as comm :=

131 o Ay 0 $ an . .
[ t2:| = [ A2] r 4+ [m}’ where r < S 5 Without loss of generality, we assume
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Parameters Description
R Cyclotomic Ring R = Z[X]/(X? + 1) used in this section
d ring dimension of R
Sg Set of all elements in R with o norm at most 3
q modulus of BDLOP commitment
n,l,n dimension parameters of BDLOP commitment
C Challenge set of the opening ZKP system for BDLOP commitment
K C={ceR:|dh =5 lcllo =1}
m dimension parameters of rejection sampling
k the parameter with respect to boosting soundness
M function from (V,Z™) to R
a derivation of discrete Gaussian distribution for rejection sampling
S, The subset of Z™ used for subset rejection sampling
M,c constant parameters for subset rejection sampling
rep prover’s expected repetition times for one non-abort
y4 the number of irreducible ideal modulo ¢, i.e., gR =q1---qe¢
[ the bit-length of randomness leakage during the opening proof

Table 3. Notation of parameters in this section

that ¢R splits as ¢qR = q1---q¢, where £ = d/c for a constant ¢ € Z, and
q — 1 = 2¢(mod4?). Clearly, if £ = d, we say the ring R is full-splitting.

According to [7,9], in order to prove knowledge of an opening to comm, one
just needs to give an approximate proof for the first equation t; = A - 7 in the
form of a three-round Schnorr-type X-protocol. Particularly in the first step,
the prover first chooses a random vector y, and then sends w = Ajy to the
verifier. Then, the verifier sends a short polynomial ¢ € C C R as a challenge.
Finally, the prover replies with the vector z = y+cr. To achieve zero-knowledge,
intuitively the masking vector y is used to hide the private randomness r of the
commitment comm. Trivially one can set y to be super-polynomially larger than
cr as some smudging noise, yet this would incur a large overhead in the proof
size. To improve efficiency, [32] introduced the technique of rejection sampling
that outputs L instead of z with an appropriate probability, effectively wiping
out the dependency of cr in z.

Furthermore, in some settings such as proving the infinity norm of a vector as
in [7,23,36], we need to set the underlying ring R to be full-splitting. In this case,
the above mentioned initial X-protocol can only provide 1/¢ soundness, which
is far away from negligible. In order to boost soundness, the work [7] applys
Galois automorphisms. At a high level, given r, 1, to as before, the prover P first
generates yy,--- ,y; < Dy. Then it outputs (w,--- ,w;), where w; = Ay - y,.
After receiving a challenge ¢ < C from the verifier, P computes

zi=y, +o"Hc)-rfori=1,---k

where 0 := 04,7, € Aut(Rg) is the automorphism of order kd/¢ and k is a
divisor of d. After this, the prover applies rejection sampling Rej(z, v, o) where
z=2z|-|z; and v = d%c) - || -+ ||o¥ 7 (c) - . If it does not abort, then P
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outputs z. Finally, the verifier checks that z is small and

Az, =w; + O'i_l(c> -t

fori=1,--- ,fc. As argued by [7], this protocol has soundness around ¢=*.

More formally, the protocol is described in Figure 2, and the used rejection
sampling algorithm is described as Rej, in Table 3.

Prover P Verifier V
Inputs:

A, € R A A

Ay € RN B>a-\d7
m € Ry, v < S}

t1 = A1 -r tl, t2

to=As-r+m

Fori=1,... k:
y, « D4
w; = A1y,
Wi
cde
c
Forizl,...,ff:
zi=y,+o" ) r
Rej; ((24), (6" 1(c) -7),0) = 1, abort z;

Fori=1,...,k, check:
|z < B .
Az =w; +0171(C) -t

Fig. 2. Opening proof of BDLOP commitment through using our generalized rejection
sampling, where j =0,...,3.

Particularly, if we sample y, from the discrete Gaussian distribution with
derivation a, i.e., y; - D!, then the vector z; = y,+0'~!(c)r follows the shifted
discrete Gaussian distribution D} , centered at v = o%(c) - 7| -- - [|o* " (c) - 7.
According to [32], we can “transform” the distribution Dy , into the distribution
D7, by outputting z = 21 - ||z} with probability ﬁ%a (or otherwise 1),
where M is some positive integer so that this ratio is always smaller than 1.
To further determine the concrete value for M, we need to compute an upper

bound of DI;Z as
Dy —2(z,v) + ||| 24a[v|| + |[v]]?
by, P ( 202 =GP 202 NS

where the above inequality is obtained through using a standard one-dimensional
tail bound for the inner product of a discrete Gaussian with arbitrary vector.
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Rejo(z,v, @) Rej, (z,v, @)
01 u < [0,1) 01 If (z,v) <0
02 If u > - ~exp(_2(z’+;”””2) 02 return 1
03  return 1 03 u < [0,1)
2

04 Else 04 If u > 2 - exp(—2Z2HvITy
05 return 0 05 return 1

06 Else

07 return 0

Fig. 3. Rejection Sampling. Here, implicitly, the outcome 1 implies abort, and 0 implies
non-abort.

Clearly, if we want to set M = exp(1l), then we need to set a = 12||v||. In this
case, the size of z is about kndlog(12a) = kndlog(144||v||), which depends on
the value of . This is essentially the intuition of [32].

In a recent work, Lyubashevsky et al. [36] observed that a much tighter upper
bound for the ratio D! /D7 = would imply a much smaller «, further lowering

v,
the size of z. Particularly, if we assume that (z,v) > 0, then we have
Dj —2(z,v) + [[v]? [v]?
DY, ~ P (za sexp | gur ) = M )
In this case, if we want to set M = exp(l) in the following rejection sam-
pling procedure again, we can set o = ||v||/v/2, which results in a decrease of

around a factor of 17. This will clearly reduce the size of z to kndlog(12a) =
kndlog(8.487||v||). More formally, Lyubashevsky et al. [36] call such more effi-
cient rejection sampling as subset rejection sampling, which is described as Rej;
in Table 3. Clearly, Rej; can improve the size of the proof protocol in Table 2.

Additional costs of [36]. It is not for free however for the improvement [36].
All the above analyses have a precondition — (z,v) > 0. For randomly chosen
y, r, this precondition happens with a probability ~ 1/2. This means that if we
want to leverage the above subset rejection sampling, the prover will first abort
the protocol with a probability &~ 1/2 to ensure (z,v) > 0, and then conduct the
regular rejection sampling. So, for the same constant value M, even the output
size of z is reduced, the running time of the prover inherently becomes almost 2
times longer than that of [9].

Of course, one can easily balance the prover’s running time and the size of
his output z. Particularly, we can set the upper bound of probability ratio to be
M /2, which will derive that the finally expected abort time is about M. But,

this will result in a slightly larger o/, i.e., o' = o,/ 1111111\4]\/52'

Besides and more importantly, there is a security concern. After the prover
outputting z successfully, it imposes the precondition (z,v) > 0, which leaks al-
most one bit information of r to the adversary. In this case, we need to consider
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whether this would affect the security of the opening proof of the BDLOP com-
mitment, and even the whole privacy-preserving protocols.

To analyze this, Lyubashevsky et al. [36] identified a new variant of extended
MLWE, and prove security of the protocol based on the variant of extended
MLWE. As noticed in the introduction, this extended MLWE can be captured
by MLWE with linear leakage analyzed in Section 3 of this work, using a formal
reduction argument. This strengthens the foundation of the paradigm, as the
leakage variant is no easier than the standard MLWE asymptotically. Thus, we
would be more confident in the practical parameters of [36] obtained by crypt-
analysis arguments.

4.2 More Efficient One-Time Opening Proof through Using
Generalized Subset Rejection Sampling Algorithms

Now we define our new generalized subset rejection sampling algorithms Rej, and
Rej; as in Table 4. Then we show that the algorithms themselves can be simulat-
ed, and the opening protocol with Rej, or Rej; satisfies correctness, knowledge
soundness and simulatability. This means we can replace Rej, or Rej; for the
protocol in Table 2 in a black-box way, by using our generalized algorithms.

RejQ(z,v,a) Rej3(z,v,a)
01 If (z,v) < c¢-aljv] 01 If {z,v) ¢ [0, (@® * In M) /3]
02 return 1 02 return 1
03 u < [0,1) 03 u < [0,1)
—2(z,v v||? —2(z,v v||?
04 If u > exp(—2=2HPIDY 04 Tf o > exP<31<v;>) - exp(=2ztlvl?)
05 return 1 05 return 1
06 Else 06 Else
07 return 0 07 return 0

Fig. 4. Generalized Rejection Sampling.

Simulation of Generalized Subset Rejection Sampling

To argue that the algorithms Rej, and Rej; themselves can be simulated success-
fully, we first define a more general version of subset rejection sampling algorithm
A, i.e., Rej, and Rej; can be viewed as two special cases of A. Then we show
that A can be simulated successfully by another algorithm F in Theorem 4.1.
Furthermore, by setting parameters appropriately, we can obtain two Theorems
4.3 and 4.4, which correspond to Rej, and Rej;, respectively.

Theorem 4.1 (Generalized Subset Rejection Sampling) Let V be an ar-
bitrary set, and h : V — R and f : Z™ — R be probability distributions. Define
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a family of set S, czm forv € V. Suppose g, : Z™ — R is a family of prob-
ability distributions indexed by all v € V and there exist two constants M > 1,
1>~2>0, and a function M : V x Z™ — R, which satisfy:

VoeV,zeS,: M(,z)-gu(2) > f(2)
VUEV,zES’v:ISM(U,z)SM
VoeV: Zf(z)Z’y.
z€S,y
then the output distribution of the following algorithm A:

v % h
24 Gy
if z ¢ S, then abort

4. output (z,v) with probability m

is identical to the distribution of the following algorithm F:

o o~

Lvdh

2. 28 f

3. if = ¢ S, then abort

4. output (z,v) with probability 1/ M(v, z).

Moreover, the probability of A and F outputting something is at least /M.

Proof. Given v € V, if z € S,, the probability of A outputting z € Z™ is
gv(2) - M(Ufz(;)gv(z) = J\/{((j)z)' Otherwise, the probability that A outputs z ¢ S,
is 0. As a result, it holds

Pr[A outputs something] = Z h(v) Z /\/{((;,)z) > %
veV zE€S,
Notice also that the probability of F outputting something is > (0,2)EV xSy }j\(: () 1’; (ZZ)) >

47 - Besides, it holds

AaF) =5 X 1AW - F2)

(v,2)EV XS,
= Q;h( ) zgg:u ’gv( ) M, 2)-go(2)  M(v,2)
N ONNIC)
=3 uezvh( ) ng M(v,2)  M(v,2)

=0.
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Remark 4.2 We note that compared with the original rejection sampling of
Lemma 3.2 in [36], this generalized version just extends the constant value M
to a real-valued function M(v, z), whose output may vary based on (v, z).

Next, we consider the special case where v € V. C Z™, f := D', g, := D',
constant M = 1 and the constant function M(v, z) = 1. Thus, we have the
following theorem for the rejection sampling algorithm Rej,.

Theorem 4.3 Let V be an arbitrary subset of Z™, and h : V' — R be probability
distribution. Let M = 1. Given any v € V and any constant ¢, define Sy . =
{z: (z,v) > c-o||v||}. Then it holds that the output distribution of As:

v % h
z DZfa
ifz ¢ S’v,c then abort
’Vn(z)

output (z,v) with probability DD;: Ok

T o o~

is identical to the distribution of the following algorithm Fs:

1. v ﬁ h

2.z & pm

3. if z ¢ Sy, then abort

4. output (z,v) with probability 1.

Moreover, the probability of As and Fa outputting something is at least o, where
« is the probability of a randomly chosen vector from Dy, belonging to Sy,

Next, we consider the special case where v € V. C Z™, f := DI}, g, =
Dy, and M(v, z) = exp (3(;’72”) Thus, we have the following theorem for the

rejection sampling algorithm Rejs.

Theorem 4.4 Let M be a constant and V' be an arbitrary subset of Z™, and
h :'V — R be probability distribution. Given any v € V, define S, = {z :
(z,v) > c-a||v||}. Then there exists a function M(v, z) = exp (3%72”) with 1 <
M(v,z) < M and M(v, z)- Dy (2) > D' (z), such that the output distribution
Of .A3 8

1. v % h
2. z& b,
3. ifz¢ S’,,yc then abort

) . pm —8(z, 2
4. output (z,v) with probability CXp(3<:;> S%I)DL’fQ(Z) = exp (%)

1s identical to the distribution of the following algorithm Fj:

& For such function M(v,z) = exp (3(;;;)), the condition M(wv, z) € [1, M] implies
(z,v) € [0, (a®-In M)/3].
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v % h
Z D;”
if z ¢ Sy, then abort

output (z,v) with probability m

B Lo do =

Moreover, the probability of Az and F3 outputting something is at least 57, where

7 18 the probability of a randomly chosen vector from Dy, belonging to S’mc.

Security of Opening Proof Protocol with Rej, and Rejg

Here, we need to prove that the opening proof protocol with Rej, or Rej; satisfies
correctness, knowledge soundness and simulatability, whose formal definitions
are deferred to the full version of this paper. Similar to [36], we first represent
the opening proof of BDLOP commitment as the commit-and-prove functionality
CP = (Gen, Com, Prove, Verify), and then show that C'P satisfies simulatabili-
ty, since the properties of correctness and knowledge soundness can be proven
almost identically as in [7].

More formally, with random oracle H : {0,1}* — C, the commit-and-prove
functionality CP = (Gen, Com, Prove, Verify) with respect to the language Ry, is
described as follows, where Ry, is defined as (params,z, m) € Ry, < m € R, for
certain statement z.

— Gen(11): Given a security parameter ), the algorithm generates a commit-
ment public parameter params, which specifies ’Rfl as message space, S C R"
as randomness space, and R"*! as the commitment space. Besides, it also
generates Ay € Ry™", Ay € RZX". Without loss of generality, for the under-
lying ring R = Z[X]/(X?% + 1) and modulus ¢, we assume that ¢R splits as
qR = q1 - - qg, where ¢ = d/c for a constant ¢ € Z, and ¢ — 1 = 2{(mod4/).
Clearly, if ¢ = d, we say the ring R is full-splitting.

Besides, the algorithm further chooses k as the pulic boosting parameter,’
such that k|d and ¢~/ is negligible in ), and set ¢ := Toasir1 € Aut(Rq)
is the automorphism of order kd/¢.

— Com(params, z, m;r): Given params, m € Rfl, and randomness r € S}, the

tg A2 m

— Prove(params, z, comm, m, r): Given params, comm € RZH, and randomness
r € ST, the algorithm first samples y, + D7 and computes ¢ = H({A;-y,})
for i € [k]. Then, it computes z; = y, 4+ 0"~ (c)-r and gets b + Rej; ((24), (c-
r),a) for j =2 or 3. If b = 0, it outputs © = (¢, z) with z := (z;). Otherwise
abort.

— Verify(params, x,comm, 7): given params, comm, 7, the algorithm parse comm
ast; € R",ty € R!, and parse 7 as (¢, z) with z := (2;). I ||z;|| < a-V/d -7
and ¢ = H({A; - z; — 07 1(c)t1}), accept. Otherwise, reject.

algorithm generates a commitment comm := {tl} = [AI} T+ {0 }

9 Of course, the number of k will affect the proof size of opening proof. Thus, we try
to set it as small as possible.
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Furthermore, we have the following theorem.

Theorem 4.5 In the random oracle model, if D-MLWE-LS
tion holds, then the C P with Rejy or Rejs is simulatable.

- assump-
n+l,m,k,q,x D

We prove this theorem by a standard hybrid argument. Due to the limitation of
space, we defer the proof to full version of this paper.

Further Decreasing Standard Deviation. It should be noted that the boost-
ing procedure in Figure 2 enlarges the norm of the vector z by a factor of IAc,
compared with the original proof with non-splitting underlying ring R in [9]. To
deal with this issue, the work [35] proposed a simple modification of the protocol.
As a result, one can decrease the standard deviation possibly by a factor of k.
Due to the limitation of space, we defer the details to full version of this paper.

4.3 Comparison of Efficiency

Intuitively, by using Rej, or Rej;, we can get much better upper bounds for
DDn‘i than Equations (1) and (2), allowing us to derive much smaller values
for . Particularly, for Rej, and the corresponding Theorem 4.3, if we use the

condition that (z,v) > ¢- «||v||, then we have
Di(2) —2(z,v) + [|v||? —2¢ - afjv] + [v|?
o = ’ < =1. 3
D3 .o (2) eXp ( 202 = CXP 202 (3)
Here, we set —2c¢- a|v|| + ||v]|? = (=2c-a+]|v|)) - ||v] = 0. Thus, we just need
to set a = ”2Lc” Besides, we notice that the event of Rej,’s abort only depends on

whether the random vector z is in the subset gv’c, for any fixed v and ¢. Clearly,

by careful balancing the parameter ¢, we can get a much smaller «, for the same

expected repetition times. The detailed example data are listed in Table 4.
Then, for Rej; and the related Theorem 4.4, if we assume that M(v,z) =

exp (2%22) ) then we have
«

—2(z,v)+|v]?
pye) o (FERE) s el
M(v,z) - D3 o(2) exp (3(:;)) 202 -

Here, we set —8¢ - a||v|| + ||v]|?> = (=8¢ a + ||v||) - |v|| = 0. Thus, we just need
%. Besides, we notice that the probability of Rej;’s abort depends
on S’v,c and function M(v, z), i.e., the probability of Rej;’s non-abort is Pr[z €

1

depends on the choice of ¢. Notice also that, the condition M(v,z) € [1, M]
implies (z,v) € [0,(a? - InM)/3]. Thus, through setting different M, we can
compute the prover’s expected repetition numbers for one time non-abort, and
the detailed data are listed in Table 4.

According to the above principles, we can determine the concrete proof sizes
under various sets of parameters. The detailed numbers are presented in Tables
1 and 4.

to set a =

, for z & D™, Clearly, for any fixed v, o, z & D, Pr[z € S,.]
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M ¢ rep. @ Size of z [
Rei 3 ~3 11 - ||| kndlog,(12 - 11 - ||v]])
ejo - “ 0
6 ~ 6 6.74 - ||v|| kndlog,(12-6.74 - ||v||)
3 ~3 | 111 kndlog(12 - 1.11 - ||v]|)
Rej; 4 0 ~ 0.85 - ||| kndlog,(12-0.85 - ||v]|) 1
6 ~6 | 0.675-||v|| | kndlog,(12-0.675 - |v]|)
0.438 | ~3 1.142 - ||v]| kndlog,(12-1.155 - ||v]]) | log,3
Rej, 1 0.672 | ~4 | 0.744-|v| | kndlogy(12-0.744 - ||v])) 2
097 | =6 0.515 - ||v|| kndlog,(12-0.515 - ||v]]) | log, 6
1149 | ~8 | 0435-|v| | kndlog,(12-0.435 - |lv||) 3
1.8 05 |~58| 0.25|v kndlog,(12-0.25 - |[v]])
Rejs 2 0.5 |~6.48 0.25-|v| kndlog,(12-0.25 - ||v||) | log,q
2.5 05 |[~81| 0.25-|v kndlog,(12-0.25 - ||v]|)

Table 4. Comparison with the usage of different rejection sampling algorithms for the
protocol in Tables 2 and 4, where M and ¢ denote the parameters for each of four
algorithms, rep. denotes prover’s expected repetition times for one non-abort, 1 denotes
the dimension of z, d denotes the ring dimension of the underlying ring R, k denotes
the parameter for boosting the soundness. And [ denotes the number of leakage bits on
random during the security proof. Moreover, v = (¢°(c)r|| ... |c* ™ (¢)r), where 7 is the
randomness vector for BDLOP commitment, and c¢ is the challenge from the verifier in
the opening proof protocol.

Comparison with [28]. As mentioned in the introduction, a concurrent work
[28] also improves the state-of-the-art proof of knowledge protocols for BDLOP
commitment schemes. Particularly, they remove the additional computational
overheads produced by the rejections in the framework of [36], and provide a
comparison of the output size under their framework with that under [36]’s
framework. We clarify that as a framework similar to [36], our framework al-
so needs more computational overheads than [28]. For the output size, we can
provide a fair comparison between our framework and theirs by utilize the bench-
mark introduced in Section 5.1 of [28].

Concretely, same to [28], we measure the hardness of MSIS and MLWE in
terms of the root Hermite factor §, targeting for & ~ 1.0043 which gives 128-
bit security. In this case, the parameters can be set as: ¢ =~ 232, d = 128,k =
32,0 = 1. As claimed in [28], one should set n = 6,7 = 10 to achieve the
128-bit security in the framework of [36], and they can set n = 5,7 = 9 to
achieve the same security level. On the other hand, their output size is bounded

by (ka1 + a2)\/(n+n+£)d/7, where a3 > 2\/%,0@ > 22k -

v/ w, and ¢ is a security parameter that should be set at most 27128
to be consistent with the 128-bit security. Under these parameters, the output

size of [28] is approximately 35490 ({2-norm of the output vector z, following
from the presentation of [28]). In our case, we set n = 6,7 = 10, albeit our
improvement of [36]’s framework. Meanwhile, the output size in our framework
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is bounded by 7 - , where 7 = 0.25 in Rej;. Therefore, output size of

K(n+L+n)d
™
our framework is approximately 9824.
To sum up, the output size in our framework is smaller than that in [28]
(approximate 3.6x). Consequently, our framework and [28]’s framework provide

a trade-off between computational overhead and communication overhead.
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