
Lattice-Based Polynomial Commitments:
Towards Asymptotic and Concrete Efficiency

Giacomo Fenzi
giacomo.fenzi@epfl.ch

EPFL

Ngoc Khanh Nguyen
khanh.nguyen@epfl.ch

EPFL

Abstract. Polynomial commitments schemes are a powerful tool that enables one party to commit to
a polynomial p of degree d, and prove that the committed function evaluates to a certain value z at
a specified point u, i.e. p(u) = z, without revealing any additional information about the polynomial.
Recently, polynomial commitments have been extensively used as a cryptographic building block to
transform polynomial interactive oracle proofs (PIOPs) into efficient succinct arguments.

In this paper, we propose a lattice-based polynomial commitment that achieves succinct proof size
and verification time in the degree d of the polynomial. Extractability of our scheme holds in the
random oracle model under a natural ring version of the BASIS assumption introduced by Wee and
Wu (EUROCRYPT 2023). Unlike recent constructions of polynomial commitments by Albrecht et al.
(CRYPTO 2022), and by Wee and Wu, we do not require any expensive preprocessing steps, which
makes our scheme particularly attractive as an ingredient of a PIOP compiler for succinct arguments.
We further instantiate our polynomial commitment, together with the Marlin PIOP (Eurocrypt 2020),
to obtain a publicly-verifiable trusted-setup succinct argument for Rank-1 Constraint System (R1CS).
Performance-wise, we achieve 26MB proof size for 220 constraints, which is 10X smaller than currently
the only publicly-verifiable lattice-based SNARK proposed by Albrecht et al.

1 Introduction

Due to the significant progress in building quantum computers by various industry leaders, e.g. IBM
and Google, there has been a tremendous amount of interest in post-quantum cryptography. This is
highly evidenced by the NIST PQC Competition for standardising quantum-safe key encapsulation
mechanisms and signatures, where the vast majority of the selected algorithms are based on
algebraic lattices. Indeed, not only do the lattice-based constructions offer relatively small key
and signature sizes [BDK+18; DKL+18; FHK+20], but they are also renowned for their very fast
implementation [LS19; Sei18]. Consequently, lattices seem to be a natural candidate to build more
complex quantum-safe primitives, such as non-interactive zero-knowledge proofs (NIZKs).

The last several years have seen enormous progress in constructing practically efficient NIZKs
for lattice relations [ALS20; ENS20; LNP22] which can produce proofs of size a few dozen kilobytes.
This has led to rather compact and practical constructions of privacy-preserving primitives, such as
ring signatures [LN22], blind signatures [AKSY22] and anonymous credentials [JRLS22; BLNS23].
Unfortunately, the aforementioned protocols suffer the following limitations – both the proof size and
verification time are linear in the length of the witness. Hence, for proving more complex statements,
efficient NIZKs with succinct proof size and verification complexity are desired, i.e. zero-knowledge
succinct non-interactive arguments of knowledge (zk-SNARKs).

Polynomial commitment schemes [KZG10] have been getting more and more spotlight in the
SNARKs community. The main reason is that, in combination with Polynomial Interactive Oracle
Proofs (PIOPs) [BFS20; CHM+20], this cryptographic primitive can be used to obtain succinct
arguments with concrete efficiency (see e.g. [Set20; BCHO22; GLS+21]). In a polynomial commitment

scheme, one can commit to any polynomial f :=
∑d

i=0 fiX
i of bounded degree d over a ring R, and

then later prove that f evaluated at some public point u ∈ R is equal to a public image z ∈ R, i.e.

f(u) = z . (1)

In the context of PIOPs, we require both the proof π and the verification time to be succinct (i.e.
polylogarithmic in the degree d), even if the evaluation point is chosen adaptively by a verifier.
Further, to obtain a SNARK, we need π to be a proof of knowledge; thus we call such a polynomial
commitment extractable.

Recently, various lattice-based polynomial commitments [ACL+22; WW23; CP22; PPS21;
BCFL22] were introduced1, mainly as a direct application of functional commitments [LRY16] over
standard cyclotomic rings R := Zq[X]/(XN + 1) where N is a power-of-two. Indeed, (1) can be seen
as a degree-one multivariate polynomial

[
1 u u2 · · · ud

]

f0
f1
...
fd

 = z . (2)

Unfortunately, the aforementioned constructions suffer several limitations when applied in the
context of PIOPs. Firstly, succinct verification requires a preprocessing step, meaning that the
evaluation point u must be known when public parameters are generated and cannot be chosen
adaptively. Further, only [ACL+22; BCFL22] offer extractable polynomial commitments which
unfortunately suffer from the following limitations: (i) they rely on a knowledge assumption, making
it awkward to set concrete parameters to match a required security parameter, (ii) message space
can only consist of short vectors, and (iii) they only support linear functions with short coefficients.
This makes proving relations as in (2) cumbersome for large degrees d. Even though one of the
issues was circumvented by a promising recent work from Wee and Wu [WW23], which allows
committing to vectors of arbitrarily large coefficients, their soundness analysis is left for future work.
Therefore, constructing extractable polynomial commitments with succinct verification from lattices
still remains an open problem.

1.1 Our Contributions

In this work we propose a lattice-based PIOP-friendly polynomial commitment scheme. Concretely,
our construction supports committing to arbitrary polynomials f ∈ R[X] of bounded degree d over
R, and proving evaluations for any point u ∈ R with no preprocessing necessary. Extractability
holds in the random oracle model via the Fiat-Shamir transformation [FS86] under a variant of the
BASIS assumption defined recently by Wee and Wu [WW23], which we call PowerBASIS.

At the core of our construction lie two split-and-fold interactive protocols for proving polynomial
evaluations. The first one, which brings resemblance to lattice Bulletproofs [BLNS20; ACK21; AL21],
enjoys proof size and verification complexity polylogarithmic in the degree d. Unfortunately, due
to certain restrictions on the challenge space, which are inherited from the aforementioned works,
the protocol achieves only 1/poly(λ) knowledge soundness error. Even though soundness can be

1 We excluded generic constructions which simply commit to a polynomial and use a general-purpose SNARK to
prove correctness of the evaluation.

2

scheme
commit
time

prover
time

verifier
time

crs size
commitment

size
asymptotic
proof size

commitment
size

concrete
proof size

Construction 1
(Section 5.2)

O(d2) O(d) O(log d) O(d2) O(1) O(log d) 255 KB 349MB

Construction 2
(Section 5.3)

O(d2) O(d) dO(1/ log log d) O(d2) O(1) dO(1/ log log d) 930 KB 6MB

Table 1: Efficiency overview of our polynomial commitment scheme. In this setting, we commit to
polynomials of degree at most d over the ring R := Zq[X]/(XN + 1). We count the runtime (resp.
sizes) in the number of ring operations (resp. elements), which take time (resp. size) polylog(d) each.
For clarity, we ignore the terms related to the security parameter λ. When computing concrete
proof sizes, we set λ = 128 and d = 220.

amplified via parallel repetition [AF22] for the interactive protocol, this is not necessarily the case in
the non-interactive setting when applying the Fiat-Shamir transformation, as discussed in [AFK22].
To this end, we propose the second protocol, which achieves negligible soundness error in one-shot
at the cost of quasi -polylogarithmic dO(1/ log log d) proof size and verification runtime. Furthermore,
the non-interactive version of the scheme can be proven secure in the random oracle using the
framework by Attema et al. [AFK22]. Last but not least, we show how to upgrade the evaluation
proof to achieve zero-knowledge using the standard Fiat-Shamir-with-aborts paradigm [Lyu09;
Lyu12; BTT22]. We summarise the efficiency of both schemes in Table 1.

As a direct application, we combine our polynomial commitment scheme, which includes batch
evaluation proofs, with the Marlin Polynomial IOP [CHM+20] to obtain a trusted-setup (zero-
knowledge) succinct non-interactive arguments of knowledge for Rank-1 Constraint System (R1CS).
Practically, for ≈ 220 constraints our construction achieves proofs of size 26MB, which is around 10X
smaller than the only concretely instantiated lattice-based proof system with succinct verification
by Albrecht et al. [ACL+22]. Moreover, we obtain a square-root improvement over [ACL+22] in
terms of the prover runtime. In comparison with other lattice-based arguments which admit linear
verification time, our scheme produces comparable proofs to the recent “square-root” protocol by
Nguyen and Seiler [NS22] for bigger R1CS instances, such as 230 constraints, but still more than
two orders of magnitude larger than the current state-of-the-art by Beullens and Seiler [BS22]. We
refer to Table 2 for full comparison and Section 6 for more details on sizes.

1.2 Technical Overview

We provide a brief overview of our techniques. Let λ be a security parameter, q be an odd prime, and
N be a power-of-two. Define the polynomial rings R := Z[X]/(XN + 1) and Rq := Zq[X]/(XN + 1).
Let R×q be the set of invertible elements in Rq. For a base δ ≥ 2 and n ≥ 1, we define the gadget

matrix as Gn :=
[
1 δ · · · δq̃

]
⊗ In ∈ Rn×nq̃

q where q̃ := ⌊logδ q⌋ + 1. For simplicity, we omit the
subscript n and write G := Gn when it is clear from the context. Further, for a fixed matrix
T ∈ Rn×k

q and matrix A ∈ Rn×m
q , we denote by S← A−1σ (T) sampling S ∈ Rm×k

q from the discrete
Gaussian distribution with Gaussian parameter σ > 0 conditioned on AS = T over Rq.

1.2.1 BASIS Commitment Scheme

Until lately, lattice-based commitment schemes were split into two disjoint classes: Hashed-Message
Commitments [Ajt96] and Unbounded-Message Commitments [BDL+18]. The former one has the

3

scheme assumptions TP NI
time

prover verifier

size

crs proof

concrete
proof size

[BBC+18] (M-)SIS, RO ✓ ✓ O(ℓ) O(ℓ) O(1) O(
√
ℓ) -

[BLNS20] (M-)SIS, RO ✓ ✓ O(ℓ) O(ℓ) O(1) O(ℓε) -
Lattice Bulletproofs

[BLNS20; AL21; ACK21]
M-SIS ✓ ✗ O(ℓ) O(ℓ) O(1) O(log ℓ) -

[BF22] (M)-SIS, RO ✓ ✓ O(ℓ) O(ℓ) O(1) O(log ℓ) -

[NS22] M-SIS, RO ✓ ✓ O(ℓ) O(ℓ) O(1) O(
√
ℓ) 6MB

Labrador [BS22] M-SIS, RO ✓ ✓ O(ℓ) O(ℓ) O(1) O(log log ℓ) 49KB

[ACL+22]
Knowledge
k-M-SIS

✗ ✓ O(ℓ4 log ℓ) O(log ℓ) O(ℓ2) O(log ℓ) 261MB

This Work PowerBASIS, RO ✗ ✓ O(ℓ2) ℓO(1/ log log ℓ) O(ℓ2) ℓO(1/ log log ℓ) 26MB

Table 2: Comparison of lattice-based publicly verifiable proof systems for NP relations of size ℓ
with sublinear communication complexity. We count the runtime (resp. sizes) in the number of
ring operations (resp. elements), which take time (resp. size) polylog(d) each, and we ignore the
terms related polynomially in the security parameter λ. We exclude the preprocessing step from
the verifier runtime. Here 0 < ε < 1 is a constant. The “TP” column specifies whether the scheme
has transparent setup, and “NI” means whether the protocol can be made non-interactive with
negligible soundness error. The concrete proof sizes correspond to proving R1CS with ℓ = 220 as
reported in the respective works.

property that the sizes of commitments are almost independent of the sizes of the committed values,
and thus the commitments are compressing. This comes at the cost of the restricted message space
being only vectors of small norm. On the other hand, the main characteristic of the latter class is
the unbounded message space, but the commitment size is linear in the size of the message.

Recently, Wee and Wu [WW23] proposed the first lattice-based commitment scheme which is
compressing, and simultaneously supports arbitrarily large messages over Rq. The downside of the
construction is a requirement on having a trusted setup, which was not necessary in prior works, as
well as the quadratic committing time in the message length. In the following, we describe the main
intuition behind the construction by Wee and Wu. To this end, we recall the BASIS assumption2,
which lies at the core of the binding property of the commitment.

BASIS assumption. As in the (Module-)SIS problem [LS15], the adversary’s final goal is to find a non-
zero vector s of small norm such that As = 0 for a uniformly random matrix A← Rn×m

q . However,
in the BASIS setting the adversary is given more information. Namely, let (B, aux)← Samp(A) be
an efficient algorithm, which given matrix A as input, outputs another matrix B ∈ Rn′×m′

q along
with some auxiliary information aux. Then, in addition to the challenge matrix A, the adversary is
given a tuple (B, aux,T), where T is a trapdoor3 for B. In particular, T can be used to efficiently
emulate sampling from B−1σ (t) for any image t ∈ Rn′

q under certain conditions on the parameter
σ > 0.

Note that hardness of the BASIS assumption heavily depends on the Samp algorithm. For
instance, if Samp(A) is an identity function and simply outputs B := A, then using the trapdoor T

2 BASIS stands for Basis-Augmented Shortest Integer Solution.
3 In [WW23], the trapdoor T is generated by sampling T← B−1

σ (G). Since the matrix T ∈ Rm′×n′q̃
q is short and

BT = G, it can be used in Micciancio-Peikert trapdoor sampling [MP12] to efficiently generate preimages under B.

4

we can find a short non-zero solution to A by sampling s← B−1σ (0). In this paper, we consider the
following three instantiations of the Samp algorithm:

■ StructBASIS: The sampling algorithm Samp(A) first generates a row a⊺ ← Rℓ
q and sets

A⋆ :=

[
a⊺

A

]
∈ R(n+1)×ℓ

q . (3)

Next, it samples square matrices W1, . . . ,Wℓ ∈ R
(n+1)×(n+1)
q and outputs

Bℓ :=

W1A
⋆ −Gn+1

. . .
...

WℓA
⋆ −Gn+1

 and aux := (W1, . . . ,Wℓ) .

■ PowerBASIS: Samp(A) generates a row a⊺ ← Rℓ
q and sets A⋆ as in (3). Then, it samples a single

square matrix W← R(n+1)×(n+1)
q and outputs

Bℓ :=

W
0A⋆ −Gn+1

. . .
...

Wℓ−1A⋆ −Gn+1

 and aux := W . (4)

■ PRISIS4: Samp(A) samples a row a⊺ ← Rℓ
q and sets A⋆ as in (3). Then, it samples a uniformly

random polynomial w ← Rq and outputs

Bℓ :=

w
0A⋆ −Gn+1

. . .
...

wℓ−1A⋆ −Gn+1

 and aux := w .

Observe that the only difference between these variants is how the square matrices W1, . . . ,Wℓ

are generated. For StructBASIS they are picked independently and uniformly at random, while
for PowerBASIS (resp. PRISIS) each matrix Wi is defined as Wi := Wi−1 for i ∈ [ℓ], where

W← R(n+1)×(n+1)
q (resp. W := w · In+1 for w ← Rq). Not to mention the fact that the functional

commitment from [WW23] can be built on top of all three BASIS instantiations 5.
In this work, we analyse hardness of the three newly introduced assumptions for ℓ = 2. Concretely,

we prove that

StructBASIS
Lemma 3.5←−−−−−→ PowerBASIS and PRISIS

Lemma 3.6−−−−−−−→ MSIS+ NTRU .

Unfortunately, the techniques do not translate well for larger values of ℓ, as we argue in Section 3.2.
Therefore, hardness of the BASIS assumption for ℓ > 2 is left as an open problem.

4 The name stands for Power-Ring-BASIS.
5 A reader familiar with the work of [WW23] can notice a difference between StructBASIS and the original BASISstruct

from [WW23, Assumption 3.3]. Namely, the latter one directly sets the matrix A⋆ := A without appending
an additional row a⊺ at the top (as in BASISrand [WW23, Assumption 3.3]). Note that it is possible to build a
commitment scheme based on such a variant, as described in [WW23, Section 4], but this would increase the
commitment, as well the opening sizes, by a factor of nq̃. Hence, for efficiency we consider the modified version of
BASISstruct as presented here.

5

Commitment construction. We describe a commitment scheme based on the PowerBASIS assumption.
Trivial modifications can be made in order to make the scheme secure under the StructBASIS or
PRISIS assumptions.

Consider a message space of arbitrary vectors in Rd+1
q of length d + 1. The setup algorithm

generates a (pseudo-)random matrix A ∈ Rn×m
q , along with a uniformly random invertible matrix

W ∈ Rn×n
q . Further, it computes a trapdoor T for the matrix

B :=

W
0A −G

. . .
...

WdA −G

 . (5)

Then, the common reference string is crs := (A,W,T).
In order to commit to a vector f = (f0, f1, . . . , fd) ∈ Rd+1

q , one uses the trapdoor T to sample

short s0, . . . , sd ∈ Rm
q and t̂ ∈ Rnq̃

q as follows:
s0
...
sd
t̂

← B−1σ

−f0W0e1
−f1W1e1

...
−fdWde1

where e1 := (1, 0, . . . , 0)⊺ ∈ Rn
q . The commitment becomes t := Gt̂, and the opening consists of

(si)i∈[0,d]. The opening algorithm, given the common reference string crs, commitment t ∈ Rn
q and

openings (si)i∈[0,d] as input, checks whether for all i = 0, 1, . . . , d:

Asi + fie1 = W−it and ∥si∥ ≤ β

for some norm parameter β > 0.

Security properties. In this paper, we consider the notion of relaxed binding [ALS20]. Namely, we say
that a relaxed opening for a commitment t consists of (i) a vector of openings s = (s0, . . . , sd), (ii) a
message f = (f0, . . . , fd) ∈ Rd+1

q , and (iii) a vector of relaxation factors c := (c0, . . . , cd) ∈ Rd+1
q ,

which together satisfy:

Asi + fie1 = W−it, ∥ci · si∥ ≤ β, ∥ci∥1 ≤ κ and ci ∈ R×q

for i = 0, 1, . . . , d and some κ ≥ 1. In particular, vectors si do not need to be short.
Now, we show that the commitment scheme is binding w.r.t. relaxed openings under the

PowerBASIS assumption. Indeed, let B be the following adversary for the PowerBASIS security game,
which is given as input a tuple (A,B,W,T) from the challenger, where B is defined as in (4) for
ℓ = d + 1, and A⋆ is constructed as in (3). First, B aborts if W is not invertible6. Otherwise, B
passes crs := (A⋆,W,T) to the adversary A against the relaxed binding game. Suppose A comes
up with two relaxed openings (s, f , c) and (s′, f ′, c′) for the same commitment t and f ̸= f ′. Thus,
for some index i we have fi ̸= f ′i . Then, by definition of relaxed openings we have

A⋆(si − s′i) + (fi − f ′i)e1 = 0 .

6 Unlike in PowerBASIS, the commitment construction requires that matrix W is invertible. However, by carefully
choosing parameters q and N , one can argue that the probability of W← Rn×n

q not being invertible is negligible
(c.f. [BTT22, Appendix C.3] and [EZS+19, Appendix C]).

6

Since fi− f ′i ≠ 0, we must have s̄i := si− s′i ̸= 0. Hence by definition of A⋆, s̄i is a non-zero solution
for the matrix A, but not necessarily a short one. To conclude the proof, note that cic

′
is̄i is still a

non-zero vector, due to the invertibility property of ci, c
′
i, and at the same time:

∥cic′is̄i∥ ≤ ∥c′i(cisi)∥+ ∥ci(c′is′i)∥ ≤ 2κβ . (6)

Thus, cic
′
is̄i is a valid solution for the PowerBASIS problem.

Finally, the statistical hiding property is directly inherited from the original construction of the
BASIS commitment by Wee and Wu [WW23].

1.2.2 Framework for Proving Polynomial Evaluations

We use the construction above to build our polynomial commitment scheme. Namely, given a
polynomial f ∈ Rq[X] of degree at most d over Rq, we commit to f by committing to its coefficient
vector f = (f0, f1, . . . , fd) ∈ Rd+1

q , as described in Section 1.2.1, to obtain a commitment t ∈ Rn
q

along with a short opening (s0, s1, . . . , sd), where each si ∈ Rm
q .

An essential property of polynomial commitments is being able to prove that the committed
polynomial was evaluated correctly, i.e. f(u) = z for public u and z in Rq. In the setting of our
commitment scheme, we are interested in the following ternary relation7:

Rd,β :=

{
((A,W,T), (t, u, z), (f, (si)0≤i≤d))

∣∣∣∣∀0 ≤ i ≤ d,Asi + fie1 = W−it ∧ ∥si∥ ≤ β
∧f(u) = z

}
. (7)

The key ingredient for proving such relations efficiently will be the compressed Σ-protocol in Figure 1,
which we will use recursively.

We take inspiration from a common split-and-fold technique used by prior works, e.g. FRI
[BBHR19] and DARK [BFS20]. Concretely, take k ∈ N and suppose d+ 1 = kh for some h ∈ N. Let
us write the polynomial f(X) =

∑d
i=0 fiX

i as

f(X) =
k∑

t=1

ft(X
k)Xt−1, where ft(X) :=

d+1
k
−1∑

i=0

fki+t−1X
i for t = 1, 2, . . . , k .

Then, we want to prove that f(u) =
∑k

t=1 ft(u
k)ut−1 = z. To this end, we let the prover send these

partial evaluations zt := ft(u
k) for t ∈ [k], and the verifier manually checks whether

k∑
t=1

ztu
t−1 = z . (8)

Further, the verifier returns a challenge α := (α1, . . . , αk) from a challenge space C ⊆ Rk
q . We denote

w := maxα∈C ∥α∥1. Later we will discuss concrete instantiations for C.
Now, consider the folded polynomial g(X) =

∑k
t=1 αtft(X) which is of degree at most d′ :=

(d+1)/k− 1 = kh−1− 1. The crucial observation here is that using the structure of the PowerBASIS
commitment8 from Section 1.2.1 we get for every i = 0, 1, . . . , d′:

(Wk)−i

(
k∑

t=1

αtW
−(t−1)

)
t =

k∑
t=1

αtW
−(ki+t−1)t

7 We use the standard notation that the first entry corresponds to the common reference string, the second one is the
statement, and the last one is the witness. Also, T is not going to be used by the prover, nor by the verifier.

8 We note that a similar result could be obtained using PRISIS.

7

Σ-Protocol for Rd,β

Prover P(crs, (t, u, z), (f, (si)0≤i≤d)) Verifier V(crs, (t, u, z))

f(X) =
k∑

t=1

ft(X
k)Xt−1

zt = ft(u
k) for t = 1, . . . k z1, . . . , zk-

α1, . . . , αk� (α1, . . . , αk)← C ⊆ Rk
q

g(X) =
k∑

t=1

αtft(X)

zi =

k∑
t=1

αtski+t−1 for i = 0, . . . , d′
g, (zi)i∈[0,d′]-

Check:

k∑
t=1

ztu
t−1 = z

k∑
t=1

αtzt = g(uk)

For i = 0, 1, . . . , d′ :

Azi + gie1 = (Wk)−i

(
k∑

i=1

αiW
−(i−1)

)
t

∥zi∥ ≤ w β

Fig. 1: Compressed Σ-protocol for the relation Rd,β from (7). Here, crs = (A,W,T) is the common
reference string for our polynomial commitment scheme and d+1 = kh. We denote d′ := (d+1)/k−1
to be degree of the polynomial g, and w := maxα∈C ∥α∥1.

= A

(
k∑

t=1

αiski+t−1

)
+

(
k∑

t=1

αifki+t−1

)
e1

= Azi + gie1

where zi :=
∑k

t=1 αtski+t−1 satisfies ∥zi∥ ≤ β′ := w β. In other words, (
∑k

t=1 αtW
−(t−1))t, which

can be computed by the verifier in time O(k), is a commitment to the polynomial g with the opening
(zj)j∈[0,d′] w.r.t. the new common reference string crs′ := (A,Wk,T). Further, by definition of g:

g(uk) =

k∑
t=1

αtft(u
k) =

k∑
t=1

αtzt .

Thus, we can conclude that:(
(A,Wk,T),

(
k∑

t=1

αtW
−(t−1)t, uk,

k∑
t=1

αtzt

)
,
(
g, (zi)i∈[0,d′]

))
∈ Rd′,w β . (9)

8

In our Σ-protocol, the prover directly outputs
(
g, (zi)j∈[0,d′]

)
to the verifier, who checks Equations (8)

and (9). To achieve succinct proofs and verification, we let the prover recursively run the Σ-protocol
on the new instance tuple (9) until the degree of the folded polynomial is zero9. Overall, the
protocol has 2h + 1 rounds and the last prover message is a pair of the form (g, z) ∈ Rq × Rm

q ,

where ∥z∥ ≤ β′ := wh β. Performance-wise (excluding the poly(λ) factors), the prover sends O(hk)
elements in Rq, while the verifier makes in total O(hk) operations in Rq.

We now focus on knowledge soundness. As common in the lattice setting, we aim to extract a
witness with respect to the relaxed relation:

R̃d,β,κ :=

((A,W,T), (t, u, z), (f, (si)0≤i≤d, (ci)0≤i≤d))

∣∣∣∣∣
∀0 ≤ i ≤ d,Asi + fie1 = W−it
∧∥ci · si∥ ≤ β ∧ ∥ci∥1 ≤ κ
∧ci ∈ R×q ∧ f(u) = z

 .

In other words, the witness is now a relaxed opening for the commitment t. Note that the relation
is still meaningful as long as the commitment scheme is binding w.r.t. relaxed openings.

The knowledge extraction strategy for R̃β,κ will strongly depend on the instantiation of the
challenge space C. In this work, we consider two variants described below.

Construction 1: Monomial protocol. As the name suggests, we will make use of certain invertibility
properties of the set of signed monomials in Rq, following the approach from lattice Bulletproofs
[BLNS20; ACK21; AL21]. Namely, we set (k, h) = (2, log(d+ 1)) and define the challenge space

C :=
{
(1, Xi) : i ∈ Z

}
⊆ Rk

q .

By construction, w = 2 and |C| = 2N . Now, we show that for the challenge space C above, the
Σ-protocol in Figure 1 is special-sound w.r.t. the relaxed relation R̃. The methodology can then be
extended to show that our recursive protocol is (2, . . . , 2)-special sound. Thus, the general parallel
repetition results [AF22], as well as security of the Fiat-Shamir transformation in the random oracle
model [AFK22] would directly apply here.

To this end, suppose we are given two transcripts

trj := ((z1, z2), (1, αj), (gj , (zj,i)i∈[0,d′])) for j = 0, 1

with the same first message (z1, z2) and two distinct challenges (1, α0) ̸= (1, α1) in C such that{(
(A,W2,T),

(
(In + αjW

−1)t, u2, z1 + αjz2
)
,
(
gj , (zj,i)i∈[0,d′]

))
∈ Rd′,β′

z1 + uz2 = z

where β′ := w β = 2β. Observing that α0 − α1 ∈ R×q , we define for i = 0, 1, . . . , d′ := (d− 1)/2

f̄2i+1 :=
g0,i − g1,i
α0 − α1

, f̄2i :=
α1g0,i − α0g1,i

α1 − α0
(10)

and similarly

s̄2i+1 :=
z0,i − z1,i
α0 − α1

, s̄2i :=
α1z0,i − α0z1,i

α1 − α0
.

9 For concrete efficiency, it might be more beneficial to apply the protocol recursively until the degree of the folded
polynomial is sufficiently small, instead of going down to zero.

9

Denote 2 := (2, . . . , 2) ∈ Rd+1
q . We claim that(

(A,W,T), (t, u, z) ,
(
f̄ , (s̄i)i∈[0,d],2

))
∈ R̃d,2Nβ′,2 .

Let us start with proving correctness of the relaxed opening. By careful inspection:

As̄2i+1 + f̄2i+1e1 =
1

α0 − α1
((Az0,i + g0,ie1)− (Az1,i + g1,ie1))

=
W−2i

α0 − α1

(
(In + α0W

−1)t− (In + α1W
−1)t

)
= W−(2i+1)t

and similarly As̄2i + f̄2ie1 = W−2it. As for shortness, we use the result from [BCK+14] which says
that ∥ 2

α0−α1
∥∞ = 1 for any distinct α0, α1 ∈ {Xi : i ∈ Z}. Thus, for any i ∈ [0, d′] we have

∥2 · s̄2i+1∥ ≤
∥∥∥∥ 2

α0 − α1
· (z0,i − z1,i)

∥∥∥∥ ≤ ∥∥∥∥ 2

α0 − α1

∥∥∥∥
1

· ∥z0,i − z1,i∥ ≤ 2Nβ′

and similarly

∥2 · s̄2i∥ ≤
∥∥∥∥ 2

α1 − α0
· (α1z0,i − α0z1,i)

∥∥∥∥ ≤ ∥∥∥∥ 2

α1 − α0

∥∥∥∥
1

· ∥α1z0,i − α0z1,i∥ ≤ 2Nβ′.

Finally, we need to prove that the extracted polynomial f̄ satisfies f̄(u) = z. From the verification
equations we know that g0(u

2) = z1 + α0z2 and g1(u
2) = z1 + α1z2. Hence,

f̄(u) =
d′∑
i=0

f̄2iu
2i +

d′∑
i=0

f̄2i+1u
2i+1

=
d′∑
i=0

α1g0,i − α0g1,i
α1 − α0

· u2i +
d′∑
i=0

g0,i − g1,i
α0 − α1

· u2i+1

=
α1g0(u

2)− α0g1(u
2)

α1 − α0
+

g0(u
2)− g1(u

2)

α0 − α1
· u

= z1 + uz2

= z

which concludes the proof of the claim.
An almost identical strategy can be applied to our recursive protocol when given a general

(2, . . . , 2)-tree of transcripts [ACK21]. In this case, we can extract a relaxed opening (f̄ , (s̄i)i∈[0,d],2
h)

to the commitment t which satisfies(
(A,W,T), (t, u, z) ,

(
f̄ , (s̄i)i∈[0,d],2

h
))
∈ R̃d,(2N)hβ′,2h

where β′ := 2hβ and 2h := (2h, . . . , 2h). In terms of performance, the communication complexity
and the verifier runtime (in terms of operations in Rq) are O(log d).

Using the knowledge soundness result from [ACK21], we deduce that the soundness error for our
protocol is h/|C| = h/(2N). Since N = poly(λ), we only manage to obtain an inverse-polynomial
soundness error. Even though this can be further reduced via parallel repetition in the interactive
case [AF22], such amplification does not combine with the Fiat-Shamir transformation [AFK22].
Our second construction circumvents this issue by achieving negligible soundness error in one-shot.

10

α0 = (α0, α1, α2, α3)

α1 = (α⋆
0, α1, α2, α3) α2 = (α0, α

⋆
1, α2, α3) α3 = (α0, α1, α

⋆
2, α3) α4 = (α0, α1, α2, α

⋆
3)

Fig. 2: Visualisation of the notion of coordinate-wise special soundness (CWSS) for k = 4 coordinates.
Here, α⋆

i ̸= αi for all i ∈ [4].

Construction 2: Large sampling set protocol. In this scenario, we define the challenge space as

C := {(α1, . . . , αk) : ∀i ∈ [k], ∥αi∥∞ ≤ βC}

for some suitable parameter βC ≥ 1. Hence, by construction w ≤ kβCN .

One could naively adapt the strategy from Construction 1 to prove knowledge soundness of the
Σ-protocol as follows. To begin with, we aim to extract k accepting transcripts with k pairwise
distinct challenges αj ∈ C for j = 1, . . . , k. Further, we compute the extracted polynomial f by
inverting the k × k matrix C, where the j-th row corresponds to the challenge αj in the j-th
transcript. Unfortunately, this approach contains a few critical issues. Firstly, it is unclear whether
the matrix C is invertible. But even if it is, the resulting polynomial f may contain large coefficients,
or in the context of relaxed openings, there might be no sufficiently short element v ∈ Rq such that
v · fi is short for all coefficients fi.

We propose an alternative approach which relies on a notion, called coordinate-wise special
soundness10 (CWSS). As in special soundness, it says that given k + 1 valid transcripts trj =
(aj ,αj , zj) for j = 0, 1, . . . , d, such that α0, . . . ,αk ∈ C satisfy a certain relation, then one can
extract the witness. The relation is defined as follows: for every j ∈ [k], vectors α0 = (α0,1, . . . , α0,k)
and αj = (αj,1, . . . , αj,k) differ exactly in the j-th coordinate, i.e. ∀i ∈ [k]\{j}, αj,i = α0,i and
αj,j ≠ α0,j (see Figure 2 for visualisation). We prove that for Σ-protocols, CWSS implies knowledge
soundness. Furthermore, the argument can be easily generalised using techniques from [ACK21] to
the multi-round setting, and the methodology from [AFK22] to argue knowledge soundness of the
Fiat-Shamir transformation.

In the following, we show that our Σ-protocol satisfies CWSS. Suppose we are given k + 1 valid
transcripts

trj :=
(
(z1, . . . , zk),αj = (αj,1, . . . , αj,k), (gj , (zj,i)i∈[0,d′])

)
for j = 0, 1, . . . , k .

Let us fix j ∈ [k] and consider the transcripts tr0 and trj . From the verification equations we have
for i = 0, . . . , d′:

Az0,i + g0,ie1 = W−ki

(
k∑

t=1

α0,tW
−(t−1)

)
t

Azj,i + gj,ie1 = W−ki

(
k∑

t=1

αj,tW
−(t−1)

)
t.

10 As far as we are aware, this strategy was first introduced by Baum et al. [BBC+18] in the context of amortised
lattice-based zero-knowledge proofs.

11

Since α0 and αj are the same in all coordinates apart from the j-th one, by subtracting the two
equations we obtain

A(z0,i − zj,i) + (g0,i − gj,i)e1 = (α0,j − αj,j)W
−(ki+j−1)t .

Now, by choosing parameters q,N, βC appropriately, and using the result by Lyubashevsky and
Seiler that short elements in Rq are invertible [LS18], we deduce that α0,j −αj,j ∈ R×q and thus can
define the extracted openings

s̄ki+j−1 :=
z0,i − zj,i
α0,j − αj,j

and f̄ki+j−1 :=
g0,i − gj,i
α0,j − αj,j

and the partial vector of relaxation factors cj := (α0,j − αj,j , . . . , α0,j − αj,j) ∈ Rd′+1
q . Then, by

construction we have As̄ki+j−1 + f̄ki+j−1e1 = W−(ki+j−1)t, and further

∥(α0,j − αj,j) · s̄ki+j−1∥ ≤ 2w β and ∥α0,j − αj,j∥ ≤ 2βCN .

From the other verification checks we similarly conclude that
∑d′

i=0 f̄ki+j−1u
ki = zj .

Eventually, by running the argument above for j = 1, 2, . . . , k, we reconstruct a polynomial
f ∈ R≤dq [X], along with (si)i∈[0,d], and the vector c := (c1, . . . , ck) of relaxation factors so that(

(A,W,T), (t, u, z) ,
(
f̄ , (s̄i)i∈[0,d], c

))
∈ R̃d,2w β,2βCN .

In terms of security, we show that the knowledge soundness error of our Σ-protocol is bounded by
k/(2βC + 1)N , where (2βC + 1)N is the number of all possible choices for a single coordinate in C.
Consequently, by picking k, βC ≥ 1 and N = poly(λ) appropriately, we achieve negligible soundness
error in one-shot.

This strategy can be further applied in our recursive protocol. That is, analogously as for special-
soundness, we first generalise the notion of coordinate-wise special soundness in the multi-round
setting, and then prove that our protocol satisfies CWSS as above. By following the methodology
from [ACK21], we obtain the knowledge soundness error equal to hk/(2βC+1)N , while the knowledge
extractor runs the prover expected (k + 1)h times, and outputs a relaxed opening (f̄ , (s̄i)i∈[0,d], c)
such that (

(A,W,T), (t, u, z) ,
(
f̄ , (s̄i)i∈[0,d], c

))
∈ R̃d,γ,ξ

where γ := (2h(2βCN)2
h−h−1wh) ·β and ξ := 2βC(2βCN)2

h−2N . We highlight that the norm blow-up
is much larger here than in the monomial case due to certain technical differences11. As a result,
we cannot pick k = 2 and h = O(log d) since then one would require log q = O(d) for relaxed
binding to hold (c.f. Equation (6)); thus making the proof size and verifier time polynomial in d.

Instead, we instantiate the protocol by choosing k = O(d
1

log log d) and h = O(log log d). In this case,
log q = O(log2 d) and the proof size and verifier complexity, in terms of operations over Rq, become

O(d
1

log log d log log d) = dO(1/ log log d).

11 Roughly speaking, in Construction 1 we managed to keep the norm growth smaller due to the fact that the
relaxation factors 2h are independent of the extracted transcripts, which is not the case for the relaxation factors c
in Construction 2. We refer to Section 5.3 for more details.

12

1.2.3 Polynomial Commitments over Finite Fields

Until now, we were focusing on polynomial commitments over the ring Rq := Zq[X]/(XN + 1).
Here, we sketch how to obtain a polynomial commitment over a finite field, which is required by
Polynomial IOPs [BFS20; CHM+20] to compile into succinct arguments. The key ingredient, which
allows us to do that is the ability to commit to arbitrarily large elements in Rq.

Let l ≥ 1 be a divisor of N . It is a well-known fact [LS18] that if q ≡ 2N/l + 1 (mod 4N/l + 1),
then there exists a ring isomorphism φ from FN/l to Rq, where F is a finite field of size ql. Thus, we
define a map φF : F→ Rq as x 7→ φ(x, 0, . . . , 0), and denote the image of φF as Sq. We will make
use of the fact that Sq is an ideal of Rq.

Suppose we want to commit to a polynomial F ∈ F≤d[X] and prove that F (x) = y for x, y ∈ F.
Using the homomorphic property of φF, it is easy to see that this is equivalent to proving f(u) = z
over Rq, where f [X] :=

∑d
i=0 φF(Fi)X

i ∈ Sq[X], u = φF(x) ∈ Sq and z = φF(y) ∈ Sq. Therefore, we
commit to the polynomial f ∈ Rq[X] and prove evaluation of u at the point z as before.

What we need to take care of is proving that all coefficients of f indeed lie in Sq. This allows
us to extract the polynomial F̄ ∈ F[X] by taking the inverse of φF coefficient-wise. Looking at our
underlying Σ protocol in Figure 1, the additional proof comes without any change on the prover’s
side, while the verifier also checks whether g ∈ Sq[X], which is the case since Sq is an ideal. To see
why this modification is sufficient, consider the extraction strategy in Equation (10). Since now
g0,i, g1,i ∈ Sq, we again use the fact that Sq is an ideal and conclude that f̄2i+1 = (g0,i−g1,i)/(α0−α1)
also lies in Sq. Identical reasoning follows for both Construction 1 and 2.

1.3 Related Works

The first lattice-based interactive proof with sublinear communication complexity for arithmetic
ℓ-gate circuit satisfiability was formally proposed by Baum et al. [BBC+18], where the authors
achieve O(

√
ℓ) size proofs. The construction was later generalised by Bootle et al. [BLNS20] who

define so-called “levelled commitments” and give O(ℓ1/k) size proofs for proving knowledge of a
commitment opening with k = O(1) levels. The main drawback of the scheme is that the modulus
for the proof system increases exponentially in k and thus considering more than 2-3 levels seems
impractical. Recently, Nguyen and Seiler [NS22] combined the square-root approach from [BBC+18]
with the CRT-packing technique from [ENS20] to obtain a practically efficient square-root NIZK,
with 6MB proofs for circuits of size ℓ = 220.

Bootle et al. [BLNS20] also proposed the first lattice adaptation of the Bulletproofs protocol
[BCC+16; BBB+18] over polynomial rings Rq = Zq[X]/(XN + 1) which offers polylog(ℓ) proof
sizes. This approach was later improved independently by Attema et al. [ACK21] and Albrecht and
Lai [AL21] in terms of tighter soundness analysis, and also generalised to a more abstract setting
by Bootle et al. [BCS21]. While the split-and-fold strategy from Bulletproofs is very attractive in
the discrete logarithm setting and keeps asymptotic efficiency in the lattice scenario, it does not
mix well with the shortness condition required in lattice-based cryptography. Consequently, this
leads to a concrete blow-up of the parameters as well as the proof size. Roughly speaking, for the
knowledge soundness argument it must be possible to invert the folding in the extraction such that
the extracted solution vector is still short. To this end, one needs a challenge space of the underlying
compressed Σ-protocol to have a property that (a scaled) inverse of a difference of any two distinct
challenges is still short - such sets are called subtractive. Hence, Bootle et al. [BLNS20] picked
the challenge space to consist of monomial challenges C := {Xi : i ∈ Z} ⊆ Rq, which is indeed
subtractive as shown in [BCK+14]. Since the Σ-protocol is 3-special-sound, norm of the extracted

13

solution vector grows by a factor of O(N3) for every level of folding. Then, the parameters must
be chosen such that Module-SIS is hard with respect to the norm of the extracted solution vector,
resulting in the need for a huge modulus q. Note that a similar issue occurs in our Construction
1 (c.f. Section 5.2). However, since our underlying compressed Σ-protocol is only 2-special-sound,
norm of the extracted vector grows by only a factor of O(N) for each folding level (but at the price
of having a trusted setup).

In addition to the norm growth of the extracted witness, the restriction on the challenges has a
negative impact on the soundness error. Indeed, since the challenge space C in [BLNS20] has size
2N , the soundness error becomes only 1/poly(λ). Furthermore, it was proven by Albrecht and Lai
[AL21] that all subtractive set over Rq have size O(N). This becomes problematic especially in the
non-interactive setting due to the result by Attema et al. [AFK22], who showed that the Fiat-Shamir
transformation of a parallel repetition of special-sound protocols does not necessarily decrease the
soundness error. A promising solution to circumvent this limitation was recently proposed by Bünz
and Fisch [BF22], who suggested a new knowledge extraction strategy, i.e. the notion of almost
special soundness, which does not require subtractive sets. Instead, the challenges are picked from
the exponential-sized set of integers [0, 2λ−1). Unfortunately, the former issue with the norm growth
for each folding level is still present in [BF22].

Recently, Beullens and Seiler [BS22] showed that by combining a split-and-fold approach with
algebraic techniques introduced in linear-sized lattice-based NIZKs [LNP22], it is possible to achieve
negligible soundness error whilst controlling the norm growth. This is evidenced with impressive
50KB proofs for circuits of size ℓ = 220.

Major downside of all the aforementioned works is a linear verification time, which can be
the main efficiency bottleneck when proving satisfiability of large circuits. Until now, the only
lattice-based publicly verifiable succinct argument of knowledge with efficient verification (excluding
the preprocessing step) was proposed by Albrecht et al. [ACL+22]. The construction is obtained as
a direct application of functional commitments [LRY16] and soundness holds under a knowledge
assumption. However, similar to our scheme, a trusted setup is required, and more importantly, the
prover algorithm runs in time O(ℓ4 log ℓ) which makes it unappealing to implement in practice.

Prior to [ACL+22], all lattice-based zk-SNARKs were in the designated-verifier setting [GMNO18;
ISW21; SSEK22]. The constructions use the Linear-PCP compiler [BCI+13] to transform into
succinct arguments. Notably, the most recent work by Steinfeld et al. [SSEK22] achieves proofs of
size 6KB for ℓ = 220 constraints at the cost of very large crs (in the order of tens of gigabytes).

Naturally, there is a line of research focusing on the security of lattice-based zero-knowledge
proofs against quantum adversaries [DFM20; Kat21; LMS22]. Particularly, Lai et al. [LMS22] show
that any multi-round protocol, which satisfies special soundness and collapsing, is knowledge sound
in the post-quantum setting. As a special case, they demonstrate that the lattice Bulletproofs
protocol [BLNS20] is knowledge sound against quantum provers. Since our constructions not only
satisfy (coordinate-wise) special soundness but also follow the split-and-fold strategy from [BLNS20],
we believe that the general result from [LMS22] can be adapted to our setting.

1.4 Paper Organisation

We start by covering relevant preliminaries in Section 2. This includes the necessary background on
lattices, interactive proofs, as well as knowledge extraction strategies and the notion of coordinate-
wise special soundness. Section 3 focuses on the general BASIS assumption and its three concrete
instantiations: StructBASIS,PowerBASIS and PRISIS. Next, we construct a commitment scheme

14

based on the PowerBASIS assumption in Section 4. Further, Section 5 shows how to efficiently prove
polynomial evaluations, including batching (Section 5.4) and making the protocol zero-knowledge
(Section 5.5). In combination with Section 4, this yields a polynomial commitment scheme. Finally,
in Section 6 we instantiate our polynomial commitment and propose concrete parameters and sizes.

Acknowledgements. We thank Martin Albrecht and Sasha Lapiha for discussion on the PowerBASIS
assumption. Ngoc Khanh Nguyen is supported by the Protocol Labs RFP-013: Cryptonet network
grant.

2 Preliminaries

Notation. We denote the security parameter by λ, which is implicitly given to all algorithms unless
specified otherwise. Further, we write negl(λ) (resp. poly(λ)) to denote an unspecified negligible
function (resp. polynomial) in λ. In this work, we implicitly assume that the vast majority of the
key parameters, e.g. the ring dimension, and the dimensions of matrices and vectors, are poly(λ).
However, the modulus used in this work may be super-polynomial in λ.

For a, b ∈ N with a < b, write [a, b] := {a, a+ 1, . . . , b}, [a] := [1, a]. For q ∈ N write Zq for the
integers modulo q. We denote vectors with lowercase boldface (i.e. u,v) and matrices with uppercase
boldface (i.e. A,B). For a vector x we write xi or x[i] for its i-th entry.

Norms. We define the ℓp norm on Cn as ∥x∥p = (
∑

i |xi|p)
1/p for p < ∞ and ∥x∥∞ := maxi |xi|.

Unless otherwise specified, we use ∥·∥ for the ℓ2 norm. We let the norm of a matrix be defined as
the norm taken over the concatenation of columns of the matrix.

Linear algebra. We let ei be the vector with 1 in its i-th entry, 0 everywhere else. For B ∈ Rn×m

we let s1(B) = sup{∥Bv∥ : v ∈ Rm ∧ ∥v∥ = 1} be the spectral norm of B. We also denote by B̃
the Gram-Schmidt orthonormalization of B. The Gram-Schmidt norm of B is defined as

∥B̃∥ := max
i∈[m]

∥b̃i∥

where b̃i is the i-th column of B̃.

For a ring R, we define GL(n,R) to be the group of n× n invertible matrices over R.

2.1 Lattices

A subset Λ ⊆ Rm is a lattice if the following conditions hold:

– 0 ∈ Λ, and for x,y ∈ Λ, x+ y ∈ Λ.
– For every x ∈ Λ, there exists ϵ > 0 such that {y ∈ Rm : ∥x− y∥ < ϵ} ∪ Λ = {x}.
We say B ∈ Rm×k is a basis for Λ if its columns are linearly independent and Λ = L(B) := {Bz :
z ∈ Zk}. If k = m then we say that Λ is full-rank. The span (as a vector space) of the basis of a
lattice is the span of a lattice denoted as Span(Λ). We also let Λ∗ be the dual lattice defined as
Λ∗ = {w ∈ Span(Λ) : ⟨Λ,w⟩ ⊆ Z}. If Λ ⊆ Zm, we call it an integral lattice. For I an ideal of Rm,
we let I · Λ = {i · x : i ∈ I,x ∈ Λ}, which is also a lattice. For a lattice Λ we denote

λ1(Λ) := min
0̸=x∈Λ

∥x∥ and λ∞1 (Λ) := min
0̸=x∈Λ

∥x∥∞ .

15

For t ∈ Span(Λ), we also define the shifted lattice t+ Λ := {t+ x : x ∈ Λ}. We also consider q-ary
lattices, namely those with qZ ⊆ Λ. For an arbitrary A ∈ Zn×m

q we define the full rank q-ary lattice

Λ⊥(A) = {z ∈ Zm : Az = 0 (mod q)}
Λ(A) = {z ∈ Zm : ∃s ∈ Zn

q ,Az = s (mod q)}

For any u ∈ Zn
q such that there exists x with Ax = u, we define Λ⊥u (A) := {z ∈ Zm : Az = u

(mod q)} = Λ⊥(A) + x.

2.2 Power-of-Two Cyclotomic Rings

Let N be a power-of-two and K = Q[X]/(XN + 1) be the 2N -th cyclotomic field. Denote R =
Z[X]/(XN + 1) to be the ring of integers of K. For an odd prime q, we write Rq := R/(q). We
denote R×q to be the set of invertible elements in Rq.

We recall the following inequality, which allows to bound norms on products in the ring R.
Lemma 2.1. Let u, v ∈ R. Then ∥uv∥ ≤ ∥u∥1 · ∥v∥.

Proof. Let u := u0 + u1X + . . .+ uN−1X
N−1 ∈ R. Then, by the triangle inequality we get

∥uv∥ ≤
N−1∑
i=0

∥uiv ·Xi∥ =
N−1∑
i=0

∥uiv∥ =
N−1∑
i=0

|ui| · ∥v∥ = ∥u∥1 · ∥v∥ .

Coefficient embedding. For x ∈ K, we can consider the additive group isomorphism

vec : K → QN

a0 + a1X + · · ·+ aN−1X
N−1 7→ (a0, . . . , aN−1)

⊤

and we refer this as the coefficient embedding of K. Note that, for f, g ∈ K, ⟨f, g⟩ = ⟨vec(f), vec(g)⟩
and thus ∥vec(f)∥ = ∥f∥. Furthermore, vec restricts to an isomorphism between Rq

∼= ZN
q and

R ∼= ZN . We also extend this to a mapping Km → QmN by applying it component-wise. For f ∈ K,
we let

rot(f) := (vec(f), vec(X · f), . . . , vec(XN−1 · f)) ∈ QN×N ,

noting that rot(f)vec(g) := vec(fg) and rot(f)rot(g) = rot(fg). We extend this to matricesB ∈ Km×n

by writing

rot(B) :=

 rot(b1,1) . . . rot(b1,n)
...

. . .
...

rot(bm,1) . . . rot(bm,n)

 ∈ QmN×nN .

Module lattices. For A ∈ Rn×m
q , x ∈ Rm

q , u = Ax, define

Λ⊥(A) := {z ∈ Rm : Az = 0 mod q}
Λ⊥u (A) := {z ∈ Rm : Az = u mod q} = Λ⊥(A) + x .

Then, Λ⊥(A) = vec−1(Λ⊥(rot(A))) and Λ⊥u (A) = vec−1(Λ⊥vec(u)(rot(A))).

16

Spectral norm. Let s1(R) := sup{∥Rv∥ : v ∈ Kw ∧ ∥v∥ = 1} be the spectral norm of R ∈ Rm×w.
Clearly, s1(rot(R)) = s1(R), where the spectral norm of the left-hand side is over R. Here, we recall
a simple bound.

Lemma 2.2. Let R ∈ Rm×t
q . Then s1(R) ≤

√
N · ∥R∥.

Proof. Let r1, . . . , rm be the rows of R. Note that by the Cauchy-Schwarz inequality, for any u with
∥u∥ = 1 we have that

∥⟨ri,u⟩∥2 ≤

∑
j∈[t]

∥ri,jsj∥

2

≤ N

∑
j∈[t]

∥ri,j∥ · ∥sj∥

2

≤ N∥ri∥2 · ∥u∥2 ≤ N∥ri∥2 .

Thus, ∥Ru∥2 ≤ N∥R∥2 which concludes the proof.

Subtractive sets for monomials. We recall the following widely-used result from [BCK+14], which
says that the (scaled) inverse of two distinct monomials in R has coefficients in {−1, 0, 1}.

Lemma 2.3. Let C := {Xi : i ∈ Z} ⊆ R. Then, for any two distinct x, y ∈ C, we have ∥ 2
x−y∥∞ = 1.

Short elements are invertible. For κ > 0, we define Sκ := {x ∈ Rq : ∥x∥∞ ≤ κ} to be the set of
ring elements in Rq with infinity norm at most κ. We recall the following invertibility result by
Lyubashevsky and Seiler [LS18].

Lemma 2.4. Let 1 ≤ l < N be a power-of-two and suppose q ≡ 2N/l+1 (mod 4N/l). Then, every
non-zero element in Sκ is invertible over Rq as long as κ <

√
l/N · ql/N .

2.3 Discrete Gaussian Distributions

Let σ > 0 be a parameter and Λ be a m-dimensional lattice. We then define the discrete Gaussian
distribution Dσ,c,Λ over a lattice coset c+ Λ as follows.

ρσ,c(z) := exp

(
−π∥z− c∥2

σ2

)
and Dσ,c,Λ(z) :=

ρσ,c(z)∑
x∈Λ ρσ,c(x)

.

When c = 0 or Λ = Zm, we will omit it from the notation. We naturally extend this notion for
lattices over the ring of integers R, and for matrices by sampling column-wise.

Smoothing parameter. The smoothing parameter ηϵ(Λ) of a lattice is the smallest s > 0 such that
ρ1/s(Λ

∗) ≤ 1 + ϵ. Below we recall the standard upper-bounds on the smoothing parameter [MR07;
GPV08].

Lemma 2.5. Let Λ ⊆ Rm be a lattice, and let ϵ > 0. Then,

ηϵ(Λ) ≤
1

λ∞1 (Λ∗)
·
√

ln(2m(1 + 1/ϵ))

π

and in fact, for every basis B of Λ,

ηϵ(Λ) ≤ ˜∥B∥ ·
√

ln(2m(1 + 1/ϵ))

π
.

17

We also recall the bound from [GPV08, Lemma 5.3] and [WW23, Lemma 2.5] for the block-diagonal
matrices. Here, we consider the ring setting which can be easily adapted from the aforementioned
results.

Lemma 2.6. Let ℓ, δ > 1 and suppose q is prime and m ≥ 2n logδ q. Then, there exists a negligible
function ε such that for all A2, . . . ,Aℓ ∈ Rn×m

q :

Pr
[
ηε(Λ

⊥(diag(A1,A2, . . . ,Aℓ)) ≤ δ · log(ℓmN) : A1 ← Rn×m
q

]
≥ 1− qnN .

Further, we recall the regularity lemma from [LPR13].

Lemma 2.7 (Regularity Lemma). Let N = poly(λ) and k, n be positive integers such that
poly(λ) ≥ m ≥ n + ω(log λ). Take s > 2N · qn/m+2/(Nm). Then, the following distributions are
statistically close: {

(A,Ax)

∣∣∣∣A← Rn×m
q

x← DmN
s

}
and

{
(A,u)

∣∣∣∣A← Rn×m
q

u← Rn
q

}
.

This is slightly modified from the original result in [LPR13, Corollary 7.5] and [BTT22, Lemma 4.2]
in a sense that A might not be full-rank. However, the case m ≥ n+ ω(log λ) makes sure the event
happens with negligible probability [EZS+19, Appendix C].

Tail bounds. When sampling over a sufficiently wide discrete Gaussian distribution, a small portion
of the probability mass will be in the tail of the distribution, and thus with overwhelming probability
the sampled lattice elements will have short norm. The following lemma from [MR07] formalises
this intuition.

Lemma 2.8. For any 0 < ϵ < 1, lattice Λ ⊆ Rm, center c ∈ Span(Λ) and σ > ηϵ(Λ),

Pr
[
∥z∥ ≥ σ ·

√
m : z← Dσ,Λ,c

]
≤ 1 + ϵ

1− ϵ
2−m .

We also recall the tail bounds for the regular discrete Gaussian distribution over integers [Lyu12].

Lemma 2.9. Let z← Dm
s . Then Pr

[
∥z∥ > t · s

√
m
2π

]
<

(
te

1−t2

2

)m

.

By setting t =
√
2π, the right-hand side can be upper-bounded by 2−2m.

Preimage sampling for module lattices. Let A ∈ Rn×m
q be a matrix over Rq and take any u ∈ Rn

q .

We write s ← A−1σ (u) to denote sampling s ← DmN
σ conditioned on As = u. Assuming there is

some x ∈ Rm
q which satisfies Ax = u, this is the same as sampling s← Dσ,x,Λ⊥(A).

We will need the following lemma from [WW23, Lemma 2.7] for proving hiding property of the
commitment scheme.

Lemma 2.10. Let n,m, q > 0. Take any matrices A ∈ Rn×m
q ,B ∈ Rn×ℓ

q where ℓ = poly(n, log q).
Suppose the columns of A generate Rq and let C := [A | B]. Then, for every target vector t ∈ Rn

q

and any σ ≥ ηϵ(Λ
⊥(A)) for some ϵ = negl(λ), the following distributions are statistically close:

{
v
∣∣v← C−1σ (t)

}
and

{[
v1

v2

]∣∣∣∣v2 ← DℓN
σ ,v1 ← A−1σ (t−Bv2)

}
.

18

RejSamp:

1: v← h
2: z← Dm

σ,v,Λ

3: return (v, z) with prob. min
(
Dm

σ (z)
M ·Dm

σ,v(z)
, 1
)

SimRS:

1: v← h
2: z← Dm

σ,Λ

3: return (v, z) with prob. 1
M

Fig. 3: Rejection sampling [BTT22].

Rejection sampling. A crucial component in proving the zero-knowledge property of lattice-based
(non-interactive) arguments is a rejection sampling procedure [Lyu12]. We recall the generalised
version introduced recently by Boschini et al. [BTT22] for discrete Gaussian over arbitrary lattices
(here we omit the case for ellipsoidal Gaussians).

Lemma 2.11 (Rejection Sampling [BTT22]). Take any α, T > 0 and ε ≤ 1/2. Let Λ ⊆ Rm

be a lattice over R and σ ≥ max(αT, ηε(Λ)) be a parameter. Let h : Rm → [0, 1] be a probability
distribution which always returns a vector v such that ∥v∥ ≤ T . Further, define M := exp(π

α2 + 1)
and ϵ := 21+ε

1−ε exp(−α
2 · π−1

π2). Then, the statistical distance between distributions RejSamp and

SimRS defined in Figure 3 is at most ϵ
2M + 2ε

M . Moreover, the probability that RejSamp outputs

something is at least 1−ϵ
M

(
1− 4ε

(1+ε)2

)
.

2.4 Hardness Assumptions

We recall the standard lattice-based computational assumptions: Module-SIS [LS15] and NTRU
[HPS98; LTV12; SS13].

Definition 2.12 (Module-SIS). Let q = q(λ), n = n(λ), m = m(λ), β = β(λ) and N = N(λ).
We say that the MSISn,m,N,q,β assumption holds if for any PPT adversary A, the following holds:

Pr

[
As = 0 ∧ 0 < ∥x∥ ≤ β

∣∣∣∣ A← Rn×m
q

s← A(A)

]
≤ negl(λ) .

Definition 2.13 (NTRU). Let q = q(λ), N = N(λ) and χ = χ(λ) be a probability distribution
on R. We say the (decisional) NTRUq,N,χ assumption holds if the distributions{

h

∣∣∣∣ f, g ← χ
h = g · f−1 mod q

}
and {h|h← Rq}

are computationally indistinguishable, conditioned on f being invertible over Rq.

2.5 NTRU Lattices

As defined before, let N be a power of two, q a positive integer and f, g ∈ R such that f is invertible
over Rq. Let h = g/f ∈ Rq. The NTRU lattice associated to h and q is defined as

Λh,q := {(u, v) ∈ R2 : u+ vh = 0 mod q} .

19

Then, Λh,q is a 2N -dimensional full-rank lattice generated by the rows of

Ah,q :=

[
−rot(h) IN
q · IN 0

]
∈ Z2N×2N .

We recall that there is an efficient algorithm NTRU.TrapGen [DLP14], which given modulus q and
the ring dimension N , outputs h ∈ Rq and a short basis of Λh,q.

Lemma 2.14 (NTRU Trapdoor Generation). There is a PPT algorithm NTRU.TrapGen(q,N)
which outputs h ∈ Rq and a basis TNTRU of Λh,q such that ∥T̃NTRU∥ ≤ 1.17

√
q. Further, if s = Ω(

√
q)

then h is computationally indistinguishable from random by the NTRUq,N,Ds assumption.

The short basis can now be used for preimage sampling using the well-known GPV framework
[GPV08] and its concrete instantiation in [DLP14]. Namely, for any c ∈ R, one can efficiently sample
(u, v) ∈ R2 from a discrete Gaussian distribution conditioned on u+ vh = c mod q.

Lemma 2.15 (NTRU Preimage Sampling). Let s = Ω(
√
q). There is a PPT algorithm

NTRU.SamplePre, which takes (h,TNTRU) ← NTRU.TrapGen(q,N), a target vector c ∈ Rq and
standard deviation s > 0 as input, and outputs a pair (u, v) ∈ Rm+2

q such that

∆
([

h 1
]−1
s

(c),NTRU.SamplePre(h,TNTRU, c, s)
)
≤ negl(λ) .

2.6 Gadget Trapdoors

In this section, we recall the notion of gadget trapdoors as in [MP12], reformulate them for the
module setting and state the key results on efficient sampling preimages using trapdoors.

We say that a matrix G ∈ Rn×t
q is primitive if its columns generate Rn

q , i.e. if G · Rt = Rn
q .

Note that if G is primitive, then rot(G) also is w.r.t. ZnN
q (i.e. rot(G)ZtN = ZnN

q). We also recall
the notion of a gadget trapdoor.

Definition 2.16. Let A ∈ Rn×m
q ,H ∈ Rn×n

q ,G ∈ Rn×t
q with t ≥ n and H invertible over Rq. A

G-trapdoor for A with tag H is a matrix R ∈ Rm×t
q with AR = HG. The quality of a trapdoor is

s1(R).

When not specified, we set the tag H := I. In fact, all the theorems in this section can be generalised
with a tag.

In this work, we consider one particular primitive matrix that naturally represents δ-base
decomposition which we call the gadget matrix.

Definition 2.17 (Gadget Matrix). Let δ ≥ 2. We set q̃ := ⌊logδ q⌋+1, and g⊤ = [1, δ, . . . , δq̃−1] ∈
R1×q̃

q and Gn := In ⊗ g⊤ ∈ Rn×nq̃
q . When the dimension are clear from context we simply write

G. Write G−1n : Rn×t
q → Rnq̃×t

q for the inverse function that takes a matrix of entries in Rq, and

decomposes each entry w.r.t. We also write g−1 for G−11 .

[MP12, Lemma 5.3] says that having a G-trapdoor for some matrix A enables to translate any nice
basis of G’s induced lattice into one for A’s, whose shortness is proportional to the quality of the
trapdoor.

20

Lemma 2.18. Let A ∈ Rn×m
q , G ∈ Rn×t

q be the gadget matrix with decomposition base δ, and

suppose there exists a G-trapdoor R for A. Then, there is a basis SA of Λ⊥(A) which satisfies∥∥∥S̃A

∥∥∥ ≤ (s1(R) + 1)
√
δ2 + 1. In particular, if ∥R∥ ≤ β then for ϵ = negl(λ):

ηϵ(Λ
⊥(A)) ≤ βδ · ω(

√
N logmN) .

We now give crucial properties about the trapdoor generation from [MP12].

Lemma 2.19 (Trapdoor Generation). Let N,n > 0, t = nq̃ and Gn ∈ Rn×t
q be the gadget

matrix. Take m ≥ t + n + ω(log λ). Then, there is a PPT algorithm TrapGen(n,m) that with an
overwhelming probability returns two matrices (A,R) ∈ Rn×m

q ×Rm×t
q such that AR = Gn and

∥R∥ ≤ s
√
2t(m− t)N where s > 2N · q

n
m−t

+ 2
N(m−t) . Moreover, A is statistically close to a uniformly

random matrix in Rn×m
q .

Proof. Let m′ = m− t. Consider the following algorithm [MP12, Alg 1]:
1. Sample Ā← Rn×m′

q .

2. Sample a matrix R̄← Dm′N×tN
s from a discrete Gaussian distribution.

3. Return A := [Ā|Gn − ĀR̄] and R :=

[
R̄
It

]
First, AR = G as desired and ∥R∥ ≤

√
t(s2m′N + 1) ≤ s

√
2t(m− t)N with an overwhelming

probability by Lemma 2.9 for t =
√
2π. To argue pseudorandomness, we apply Lemma 2.7 and the

hybrid argument to get that ĀR̄ is statistically close to uniform over Rn×t
q , and thus so is A.

The next lemma states that given a short G-trapdoor matrix R for A, one can efficiently sample
preimages of A according to the discrete Gaussian distribution.

Lemma 2.20 (Preimage Sampling). Let N,n,m > 0 and t = nq̃. Then, there exists a PPT
algorithm SamplePre(A,R,v, σ) that takes as input a matrix A ∈ Rn×m

q , a Gn-trapdoor R ∈ Rm×t
q

for A with a tag H, a target vector v ∈ Rn
q in the column-span of A, and a Gaussian parameter

σ, and outputs a vector s ∈ Rm
q such that As = v. Further, if σ ≥ δs1(R) · ω(

√
log nN), then the

statistical distance between the following distributions is negligible:

{s← SamplePre(A,R,v, σ)} and
{
s← A−1σ (v)

}
.

We extend this algorithm for matrices, i.e. for a matrix V ∈ Rn×ℓ
q with columns v1, . . . ,vℓ, we

define SamplePre(A,R,V, σ) to be the algorithm which returns a matrix S ∈ Rm×ℓ
q , where the i-th

column is the output of SamplePre(A,R,vi, σ).

2.7 Commitment Scheme

We recall the notion of a commitment scheme, which is a crucial component of various proof systems.
As folklore in lattice-based cryptography, we introduce the slack space, which has a role in the
binding property.

Definition 2.21. Let CM = (Setup,Commit,Open) be a triple of PPT algorithms. We say that CM
is a commitment scheme overM with slack space S if it has the following syntax:
– Setup(1λ)→ crs takes a security parameter λ (specified in unary) and outputs a common reference

string crs.

21

– Commit(crs,m)→ (C, st) takes a common reference string crs a message m ∈M and outputs a
commitment C and decommitment state st.

– Open(crs, C,m, st, c) takes a common reference string crs, a commitment C, a message m ∈M,
a decommitment state st and a relaxation factor 12 c ∈ S and outputs a bit indicating whether C
is a valid commitment to m under crs.

We define the key properties of the commitment scheme: correctness, (relaxed) binding and hiding.
In the following, we denote the message space asM and the slack space as S.

Definition 2.22 (Completeness). We say that a commitment scheme CM = (Setup,Commit,Open)
satisfies completeness if there exists a global relaxation factor c∗ ∈ S such that for every m ∈M:

Pr

[
Open(crs, C,m, st, c∗) = 1

∣∣∣∣ crs← Setup(1λ)
C, st← Commit(crs,m)

]
≥ 1− negl(λ) .

Definition 2.23 (Relaxed Binding). A commitment scheme CM = (Setup,Commit,Open) satis-
fies relaxed binding if for every PPT adversary A:

Pr

[
m ̸= m′ ∧m,m′ ∈M∧

Open(crs, C,m, st, c) = Open(crs, C,m′, st′, c′) = 1

∣∣∣∣ crs← Setup(1λ)
(C, (m, st, c), (m, st′, c′))← A(crs)

]
= negl(λ) .

Definition 2.24 (Hiding). A commitment scheme CM = (Setup,Commit,Open) satisfies hiding if
for every (stateful) PPT adversary A:

Pr

b′ = b

∣∣∣∣∣∣∣∣
crs← Setup(1λ), (m0,m1)← A(crs)

b← {0, 1}
C, st← Commit(crs,mb)

b′ ← A(C)

 ≤ 1

2
+ negl(λ) .

2.8 Polynomial Commitment Scheme

We also recall the notion of polynomial commitment schemes. Polynomial commitment schemes
extend commitment with the ability to prove evaluations of the committed polynomial.

Definition 2.25. Let PC = (Setup,Commit,Open,Eval,Verify) be a tuple of algorithms. PC is a
polynomial commitment scheme over a ring R with degree bound d and slack space S if:
– (Setup,Commit,Open) is a commitment scheme over

M :=

{
(f0, f1, . . . , fd) ∈ Rd+1 :

d∑
i=0

fiX
i ∈ R[X]

}

with slack space S.
– Eval(crs, C, u, st)→ π takes a common reference string crs, a commitment C, an evaluation point

u ∈ R, auxiliary state st and outputs an evaluation proof π.
– Verify(crs, C, u, z, π)→ 0/1 takes a common reference string crs, a commitment C, an evaluation

point u ∈ R, a claimed image z ∈ R, an evaluation proof π, and outputs a bit indicating whether
π is a valid evaluation proof that the polynomial committed to in C evaluates to z at the point u.

12 We implicitly assume that if c ̸∈ S then Open automatically returns 0.

22

We also consider a setting in which Eval and Verify are replaced with an interactive two-party protocol
between a prover and a verifier, and refer to that setting as an interactive polynomial commitment
scheme.

Additionally, we require that the evaluations procedure satisfy some additional properties that we
detail next. For simplicity, we give these definitions for non-interactive polynomial commitments,
the interactive variant follows similarly.

Definition 2.26 (Evaluation Completeness). We say that a polynomial commitment scheme
PC = (Setup,Commit,Open,Eval,Verify) satisfies completeness if for every polynomial f ∈ R≤d[X]
and any evaluation point u ∈ R:

Pr

Verify(crs, C, u, f(u), π) = 0

∣∣∣∣∣∣
crs← Setup(1λ)

C, st← Commit(crs, f)
π ← Eval(crs, C, u, st)

 = negl(λ) .

Definition 2.27 (Knowledge Soundness). We say that a polynomial commitment scheme PC =
(Setup,Commit,Open,Eval,Verify) is knowledge sound with knowledge error κ if for all stateful PPT
adversaries P∗, there exists an expected PPT extractor E such that

Pr

b = 1 ∧
(
Open(crs, C, f, st, c) ̸= 1 ∨ f(u) ̸= z

)∣∣∣∣∣∣∣∣
crs← Setup(1λ)

(C, u, z, π)← P∗(crs)
b = Verify(crs, C, u, z, π)

(f, st, c)← EP∗
(crs, C, u, z, π)

 ≤ κ(λ) .

Here, the extractor E has a black-box oracle access to the (malicious) prover P∗ and can rewind it
to any point in the interaction.

2.9 Interactive Proofs

Let R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary relation. If (i,x,w) ∈ R, we say that i is an index,
x is a statement and w is a witness for x. We denote R(i,x) = {w : R(i,x,w) = 1}. In this work,
we only consider NP relations R for which a witness w can be verified in time poly(|i|, |u|) for all
(i,x,w) ∈ R.

A proof system Π = (Setup,P,V) for relation R consists of three PPT algorithms: the Setup
algorithm, prover P, and the verifier V. The latter two are interactive and stateful. We write
(tr, b)← ⟨P(i,x,w),V(i,x)⟩ for running P and V on inputs i,x,w and i,x respectively and getting
communication transcript tr and the verifier’s decision bit b. We use the convention that b = 0
means reject and b = 1 means accept the prover’s claim of knowing w such that (x,w) ∈ R. If tr
contains a ⊥ then we say that P aborts. Unless stated otherwise, we will assume that the first and
the last message are sent from a prover. Hence, the protocol between P and V has an odd number
of rounds. A Σ-protocol is a three-round protocol. Further, we say a protocol is public coin if the
verifier’s challenges are chosen uniformly at random independently of the prover’s messages.

We recall a few basic properties of interactive proof systems: completeness and knowledge
soundness.

Definition 2.28 (Completeness). A proof system Π = (Setup,P,V) for the relation R has
statistical completeness with correctness error ϵ if for all adversaries A,

Pr

b = 0 ∧ (i,x,w) ∈ R

∣∣∣∣∣∣
i← Setup(1λ)
(x,w)← A(i)

(tr, b)← ⟨P(i,x,w),V(i,x)⟩

 ≤ ϵ(λ) .

23

Definition 2.29 (Knowledge Soundness). A proof system Π = (Setup,P,V) for the relation R
is knowledge sound with knowledge error κ if there exists an expected PPT extractor E such that for
any stateful PPT adversary P∗:

Pr

b = 1 ∧ (i,x,w) ̸∈ R

∣∣∣∣∣∣∣∣
i← Setup(1λ)
(x, st)← P∗(i)

(tr, b)← ⟨P∗(i,x, st),V(i,x)⟩
w← EP∗

(i,x)

 ≤ κ(λ) .

Here, the extractor E has a black-box oracle access to the (malicious) prover P∗ and can rewind it
to any point in the interaction.

2.10 Coordinate-Wise Special-Soundness

We generalise the notion of special-soundness the following way. Let S be a set and ℓ ∈ N. Namely,
take two vectors x := (x1, . . . , xℓ),y := (y1, . . . , yℓ) ∈ Sℓ. Then, we define the following relation “≡i”
for fixed i ∈ [ℓ] as:

x ≡i y ⇐⇒ xi ̸= yi ∧ ∀j ∈ [ℓ]\{i}, xj = yj .

That is, vectors x and y have the same values in all coordinates apart from the i-th one. For ℓ = 1,
the relations boils down to checking whether two elements are distinct. Further, we can define the
set

SS(S, ℓ) :=
{
(x1, . . . ,xℓ+1) ∈ (Sℓ)ℓ+1 : ∃k ∈ [ℓ+ 1],∀i ∈ [ℓ],∃j ∈ [ℓ+ 1]\{k},xk ≡i xj

}
.

As a simple example, ((0, 0), (1, 0), (0, 1)) ∈ SS(Z2, 2) – the vector (0, 0) differs from (1, 0) (resp.
(0, 1)) exactly in the first (resp. second) coordinate. Note that for ℓ = 1, this set simply contains
pairs of distinct elements in S.

We are ready to define the notion of coordinate-wise special-soundness. We start with the case
for Σ-protocols.

Definition 2.30 (Coordinate-Wise Special-Soundness). Let Π = (Setup,P,V) be public-
coin three-round interactive proof system for relation R, and suppose the challenge space of V
is C = Sℓ. We say that Π is ℓ-coordinate-wise special-sound if there exists a polynomial time
algorithm that on input an index i, statement x and ℓ+ 1 accepting transcripts (a, ci, zi)i∈[ℓ+1], with
(c1, . . . , cℓ+1) ∈ SS(S, ℓ) and common first message a, outputs a witness w ∈ R(i,x).

Clearly, we obtain the standard special-soundness property if ℓ = 1. Next, we extend this notion to
multi-round protocols via a tree of transcripts. For simplicity, we assume that in each round the
verifier picks challenge uniformly at random from the same challenge space Sℓ, which will be the
case for most of our protocols.

Definition 2.31 (Tree of Transcripts). Let Π = (Setup,P,V) be public-coin (2µ + 1)-round
interactive proof system for relation R, where in each round the verifier picks a uniformly random
challenge from Sℓ. A tree of transcripts is a set of K = (ℓ + 1)µ arranged in the following tree
structure. The nodes in the tree correspond to the prover’s messages and the edges correspond to the
verifier’s challenges. Each node at depth i has exactly ℓ+ 1 children corresponding to ℓ+ 1 distinct
challenges which, as a vector, lie in SS(S, ℓ). Every transcript corresponds to exactly one path from
the root to a leaf node.

We say that Π is ℓ-coordinate-wise special-sound if there is a polynomial time algorithm that
given an index i, statement x and the tree of transcripts, outputs a witness w ∈ R(i,x).

24

Forking strategies. Next, we show that coordinate-wise special-soundness implies knowledge sound-
ness. Our knowledge extraction approach can be described by the following collision game [ACK21].
Consider a binary matrix H ∈ {0, 1}R×N where N ∈ N. One interpretation is that the R rows
correspond to the prover’s randomness and the N columns correspond to the verifier’s randomness,
or alternatively, the verifier samples a challenge c← C uniformly at random where C has size N . An
entry of H equals 1 if and only if the corresponding protocol transcript is accepting. The knowledge
extractor will run the following collision game.

1. First, sample (r, i)← [R]× [N] and check if H(r, i) = 1. If not, it aborts.
2. If H(r, i) = 1, then it samples i∗ ← [N] without replacement until it obtains i∗ ̸= i such that

H(r, i∗) = 1.

The following lemma states the expected runtime and success probability of the algorithm above.

Lemma 2.32 ([ACK21]). Let H ∈ {0, 1}R×N and define ϵ to be the fraction of 1-entries in H.
Then, the expected number of H-entries queried in the collision game is at most 2 and the probability
of the collision-game is at least ϵ− 1

N .

We use this result in the context of proving knowledge soundness of coordinate-wise special-sound
protocols. We start from three-round protocols.

Lemma 2.33. Let Π = (Setup,P,V) be public-coin three-round interactive proof system for relation
R and suppose the challenge space of V is Sℓ where ℓ = poly(λ). If Π is ℓ-coordinate-wise special-
sound then it is knowledge sound with knowledge error ℓ/|S|.

Proof. Let P∗ be a deterministic, malicious prover which convinces the verifier with probability
ϵ. We can define the following ℓ binary matrices H1, . . . ,Hℓ ∈ {0, 1}R×N where R = |S|ℓ−1 and
N = |S|. For a matrix Hi, the rows are indexed by all the possible choices of

c̄i := (c1, . . . , ci−1, ci+1, . . . , cℓ) ∈ Sℓ−1 (11)

and the columns are indexed by all possible choices of ci. We define Hi(c̄i, ci) = 1 if and only if P∗
convinces the verifier for the challenge (c1, . . . , cℓ). This implies

H1(c̄1, c1) = . . . = Hℓ(c̄ℓ, cℓ) (12)

where c̄i are defined as in (11). Further, the fraction of 1-entries in each Hi is exactly ϵ and checking
one entry of any matrix Hi requires running P∗ once.

We define the knowledge extractor E as follows:

1. First, sample c0 := (c1, . . . , cℓ)← Sℓ and check if H1(c̄1, c1) = 1. If not, abort.
2. For i = 1, 2, . . . , ℓ:

(a) Sample c∗i ← [N] without replacement until obtaining c∗i ̸= ci such that Hi(c̄i, c
∗
i) = 1.

(b) If no such challenge is found, abort.
(c) Set ci := (c1, . . . , ci−1, c

∗
i , ci+1, . . . , cℓ)

3. Output the corresponding transcripts for challenges (c0, . . . , cℓ).

By construction, the output of the extractor satisfies (c0, . . . , cℓ) ∈ SS(S, ℓ), and thus one can use
the property of coordinate-wise special-soundness to conclude the proof. What we have left to do is
to analyse the expected run-time and success probability of E .

25

Using the property in Equation (12), it is easy to see that E runs ℓ copies of the collision game
for each matrix H1, . . . ,Hℓ, where the first step is the same for all copies. Hence, by Lemma 2.32
and the linearity of expectation, the expected number of queries to P∗ by E is at most ℓ+1. Further,
by the union bound, the probability that E fails in at least one of the collision games is at most
ℓ
|S| .

Following the argument by Attema et al. [ACK21], one can prove an analogous result for multi-round
protocols.

Lemma 2.34. Let Π = (Setup,P,V) be public-coin (2µ + 1)-round interactive proof system for
relation R and suppose the challenge space of V in each round is Sℓ. If Π is ℓ-coordinate-wise
special-sound and ℓµ = poly(λ), then it is knowledge sound with knowledge error µℓ/|S|.

The resulting knowledge extractor runs the malicious prover (ℓ+ 1)µ times in expectation. Hence,
in order to keep the knowledge extractor expected PPT, we need ℓµ = poly(λ).

The result can be easily extended to the case, where in each i-th round the challenges from the
verifier are picked from Sℓi for ℓi > 0. Then, the knowledge error becomes (ℓ1 + . . .+ ℓµ)/|S| and
the extractor runs the malicious prover at most

∏µ
i=1(ℓi + 1) times.

Finally, using the exact methodology as in [AFK22], one can deduce that coordinate-wise special
soundness implies (adaptive) knowledge soundness of the Fiat-Shamir transformed protocol in the
random oracle model with knowledge error (Q+1) ·µℓ/|S|, where Q is the number of random oracle
queries made by an adversary. Since all the proofs remain almost identical (with an additional use
of union bounds), we omit the concrete analysis.

3 Power-BASIS Assumption

Our construction of the polynomial commitment will rely on a new lattice-based assumption
PowerBASIS which is a special case of the BASIS assumption13 introduced by Wee and Wu [WW23].
We begin by adapting the latter assumption to the ring setting. Recall that Gn is a gadget matrix
with base δ as in Definition 2.17. We fix the modulus q and set q̃ := ⌊logδ q⌋+ 1.

Definition 3.1 (BASIS). Let q, n,m, n′,m′, ℓ,N, σ, β be lattice parameters. Let Samp be a PPT
algorithm, which given a matrix A ∈ Rn×m

q , outputs a matrix B ∈ Rn′×m′
q along with auxiliary

information aux. We say the BASISn,m,n′,m′,N,q,ℓ,σ,β assumption holds w.r.t. Samp if for any PPT
adversary A:

Pr

 As = 0
0 < ∥s∥ ≤ β

∣∣∣∣∣∣
A← Rn×m

q , (B, aux)← Samp(A)

T← B−1σ (Gn′)
s← A(A,B,T, aux)

 ≤ negl(λ) .

Intuitively, the BASIS assumption says that it is hard to find a short solution for A, even when given
a trapdoor for a matrix B related to A. The trapdoor allows the adversary to sample preimages of
B, and thus it is easy to break the assumption if B contains too much information about A, e.g.
when B = A.

Furthermore, we provide three concrete instantiations of the sampling algorithm Samp.

13 BASIS stands for Basis-Augmented Shortest Integer Solution.

26

Definition 3.2 (BASIS Instantiations). We consider three concrete instantiations of the BASIS
assumption:

– StructBASISn,m,N,q,ℓ,σ,β: The sampling algorithm Samp(A) first generates a row a⊺ ← Rℓ
q and

sets

A⋆ :=

[
a⊺

A

]
∈ R(n+1)×ℓ

q . (13)

Further, it samples Wi ← GL(n+ 1,Rq) for all i ∈ [ℓ], and outputs

Bℓ :=

W1A
⋆ −Gn+1

. . .
...

WℓA
⋆ −Gn+1

 and aux := (W1, . . . ,Wℓ) .

– PowerBASISn,m,N,q,ℓ,σ,β: Here, Samp(A) generates a row a⊺ ← Rℓ
q and sets A⋆ as in (13). Then,

it samples W← GL(n+ 1,Rq), and outputs

Bℓ :=

W
0A⋆ −Gn+1

. . .
...

Wℓ−1A⋆ −Gn+1

 and aux := W .

– PRISISn,m,N,q,ℓ,σ,β: Samp(A) samples a row a⊺ ← Rℓ
q and sets A⋆ as in (13). Then, it samples

w ← GL(1,Rq), and outputs

Bℓ :=

w
0A⋆ −Gn+1

. . .
...

wℓ−1A⋆ −Gn+1

 and aux := w .

Informally, the StructBASIS variant corresponds to the structured version of the BASIS assumption
used to build functional commitments [WW23]. PowerBASIS is the special case, where instead of
picking ℓ uniformly random invertible matrices Wi, one takes a single invertible matrix, and sets
Wi := Wi−1 for i ∈ [ℓ]. Finally, PRISIS is the instance where each Wi := wi−1In+1 for i ∈ [ℓ] and
w ∈ Rq is an invertible element.

Intuitively, StructBASIS seems to be the hardest variant to break out of the three since it carries
the least structure. Then, PowerBASIS should be an easier problem due to the very specific relation
between matrices Wi. Finally, PRISIS carries a lot of structure, since it introduces commutativity
between the matrices Wi and A⋆, i.e. wi−1A = A(wi−1 · Im), which can somehow be useful for the
adversary to break the assumption.

Remark 3.3. To simplify reductions in the paper, we explicitly require the matrices Wi to be
invertible (unlike in [WW23]). Note that this condition can be dropped by arguing that, depending
on the parameters q and N , with overwhelming probability a uniformly random matrix W is
invertible over Rq (see [EZS+19, Appendix C] and [BTT22, Appendix C.3] for the bounds).

3.1 Hardness of BASIS for Low Dimensions

We analyse the relationship between the three newly introduced instantiations for the dimension
ℓ = 2. To this end, we analyse the following technical lemma which will be used in all our results of
this section. Intuitively, it says that if one can find a short solution to a specific linear equation,
then one can also build a BASIS trapdoor.

27

Lemma 3.4. Let n,m,N > 0 and α ≥ 1. Denote t = nq̃. Then, there exists an efficient determin-
istic algorithm, that given as input a matrix A⋆ ∈ Rn×m

q , invertible W1,W2,H ∈ GL(n,Rq) and
two matrices T1,T2 ∈ Rm×t

q , which satisfy ∥(T1,T2)∥ ≤ α for i = 1, 2 and

W1AT1 −W2AT2 = HGn ,

outputs a tag H∗ ∈ GL(2n,Rq) and a G2n-trapdoor S for the matrix B defined as:

B :=

[
W1A

⋆ 0 −G
0 W2A

⋆ −G

]
with a tag H∗, where ∥S∥ ≤

√
2(α2 + t2N).

Proof. Define the following matrices:

S1,3 := G−1(W1A
⋆T1 −HGn) = G−1(W2AT2)

S2,3 := G−1(−W1A
⋆T2 −HGn) = G−1(−W1A

⋆T1).

Then, by construction we get:[
W1A

⋆ 0 −G
0 W2A

⋆ −G

]T1 −T1

T2 −T2

S1,3 S2,3

 =

[
HG 0
0 HG

]
=

[
H 0
0 H

]
·
[
G 0
0 G

]
.

By setting

S :=

T1 −T1

T2 −T2

S1,3 S2,3

 and H∗ :=

[
H 0
0 H

]
,

we observe that S is a G2n-trapdoor for B with a tag H∗ and ∥S∥2 ≤ 2α2 + 2t2N , which concludes
the proof.

Our first result says that StructBASIS and PowerBASIS are equivalent for the dimension ℓ = 2.

Lemma 3.5 (StructBASIS ⇐⇒ PowerBASIS). Let n,N, β ≥ 1 and t := (n + 1)q̃. Suppose

m ≥ t+ (n+ 1) + ω(log λ) and s > 2N · q
n+1
m−t

+ 2
N(m−t) . If σ0, σ1 satisfy the following inequalities:

σ0 ≥ δsN · ω(
√

t(m− t) logmN), σ1 ≥ δ
√
2tN(σ2

1m
′ + t)N · ω(

√
log nN),

where m′ = 2m+ t, then the following statements are true:

1. StructBASISn,m,N,q,2,σ0,β assumption holds under the PowerBASISn,m,N,q,2,σ1,β assumption.
2. PowerBASISn,m,N,q,2,σ0,β assumption holds under the StructBASISn,m,N,q,2,σ1,β assumption.

Proof. We only show the first statement since the other direction follows identically. Let A be a
PPT adversary for the StructBASISn,m,N,q,2,σ,β problem and suppose it wins with probability ϵ. We
provide a PPT algorithm B for solving PowerBASISn,m,N,q,2,σ,β which does the following. First, B is
given a tuple (A,B,T,W) where

B :=

[
A⋆ 0 −G
0 WA⋆ −G

]
and T :=

T1,1 T1,2

T2,1 T2,2

T3,1 T3,2

 .

28

First, we claim that the following probability is negligible:

ϵsmooth := Pr

[
σ0 < ηϵ(Λ

⊥(B))

∣∣∣∣A⋆ ← R(n+1)×m
q

]
.

Indeed, note that by Lemma 2.19 we obtain:

Pr

[
σ0 < ηϵ(Λ

⊥(B))

∣∣∣∣(A⋆,R)← TrapGen(n+ 1,m)

]
≥ ϵsmooth − negl(λ) .

If (A⋆,R)← TrapGen(n+ 1,m) then the following matrix R∗ is a G2n-trapdoor for B with a tag
H∗, where:

R∗ :=

R 0
0 R
0 0

 and H∗ :=

[
In+1 0
0 W

]
.

Moreover, ∥R∗∥ ≤ 2s
√

t(m− t)N with an overwhelming probability. If this is the case then by
assumption σ0 ≥ δ · ∥R∗∥ ·ω(

√
t(m− t) logmN). Then, by combining Lemma 2.18 with Lemma 2.2,

we obtain

negl(λ) = Pr

[
σ0 < ηϵ(Λ

⊥(B))

∣∣∣∣(A⋆,R)← TrapGen(n+ 1,m)

]
≥ ϵsmooth − negl(λ)

and thus σ0 ≥ ηϵ(Λ
⊥(B)) with an overwhelming probability, where B is the matrix received by B.

Thus, we can apply Lemma 2.8 to deduce that with an overwhelming probability∥∥∥∥[T1,1

T1,2

]∥∥∥∥ ≤ α := σ0
√
m′tN .

Further, by simple calculation we can deduce that

A⋆T1,1 −WA⋆T1,2 = G .

The reduction B now samples a uniformly random W1 ← GL(n+ 1,Rq) and defines W2 := W1W.
Thus

W1A
⋆T1,1 −W2A

⋆T1,2 = W1G .

By applying Lemma 3.4, B can obtain a G2(n+1)-trapdoor S for

B′ :=

[
W1A

⋆ 0 −G
0 W2A

⋆ −G

]
with the tag H∗ := I2 ⊗W1 where ∥S∥ ≤

√
2(α2 + t2N) ≤

√
2tN(σ2

1m
′ + t). Then, the algorithm

B runs T′ ← SamplePre(B′,S,G2(n+1), σ1). Finally, B sends (A,B′,T′, aux′ := (W1,W2)) to A and
returns what A outputs.

To argue correctness of the reduction, first note that aux′ and B′ are correctly generated. Further,
by assumption we have σ1 ≥ δ∥S∥ · ω(

√
N log nN) and thus by Lemma 2.20, the distribution of

SamplePre(B′,S,G2(n+1), σ1) is statistically close to B′−1σ1
(G2(n+1)). Consequently, A outputs a valid

answer to B with probability ϵ− negl(λ). Finally, a valid solution for StructBASIS implies a valid
solution for PowerBASIS, which concludes the proof.

29

The next result focuses on the PRISIS variant. It turns out that the commutative property of the
assumption allows to reduce to standard assumptions.

Lemma 3.6 (PRISIS =⇒ NTRU + MSIS). Let n > 0 and denote t = (n + 1)q̃. Take m ≥
t+ (n+ 1) + ω(log λ) and s > 2N · q

n+1
m−t

+ 2
N(m−t) . Suppose q ≡ 2N/l + 1 (mod 4N/l) is prime and

q−l is negligible. If

σ0 ≥ ω(
√
q logN) and σ1 ≥ δ ·max

(
s
√
2m(m− t), 2

√
t(σ2

0m+ t)

)
· ω(N

√
log nN),

then PRISISn,m,N,q,2,σ1,β is hard under the NTRUq,N,Dσ0
and MSISn,m,N,q,β assumptions.

Proof. Suppose there is a PPT algorithm A which wins PRISISn,m,N,q,2,σ,β with probability ϵ. We
revisit the PRISIS security game and introduce a series of game hops. The purpose of the hybrid
argument will be to plug in the NTRU trapdoor inside the auxiliary information w. We define εi to
be the probability that A wins Game i.

Game 1: This is the standard PRISIS security game. To recall, the challenger samples a ← Rm
q ,

A← Rn×m
q and sets A⋆ as in (13). Then, it generates an invertible element w ← R×q and computes

the matrix:

B :=

[
A⋆ 0 −G
0 WA⋆ −G

]
.

Then, it samples T← B−1σ (G2(n+1)) and outputs (A,B,T, w) to the adversary A. By definition,
ε1 = ϵ.

Game 2: In this game, we do not require the w to be invertible, and instead the challenger samples
w ← Rq uniformly at random. Then, we have |ε2 − ε1| ≤ N

lql
and thus ε2 ≥ ε1 − negl(λ).

Game 3: Here, the challenger obtains A⋆ by generating (A⋆,R)← TrapGen(n+ 1,m)14. By Lemma
2.19, ε3 ≥ ε2 − negl(λ).

Game 4: The challenger now makes use of the trapdoor R given by TrapGen. Namely, it can
manually construct a G2(n+1)-trapdoor R

∗ for B with a tag H∗ where

R∗ :=

R 0
0 R
0 0

 and H∗ :=

[
In+1 0
0 wIn+1

]
.

Hence, the challenge now runsT← SamplePre(B,R∗,G2(n+1), σ1) and outputs the tuple (A,B,T, w).

Note that with an overwhelming probability ∥R∗∥ ≤ s
√
2m(m− t)N . By assumption on σ0, σ1 and

Lemma 2.20, we have ε4 ≥ ε3 − negl(λ). Note that here the challenger runs efficiently.

Game 5: We substitute w ← Rq by running (w,TNTRU) ← NTRU.TrapGen(q,N). By Lemma
2.14 and the NTRU assumption, we get ε5 ≥ ε4 − negl(λ).

14 Thus, the challenge matrix A is defined as the submatrix of A⋆.

30

Game 6: We reverse Game 3 and 4. That is, the challenger samples T ← B−1σ (G2(n+1)) and
A⋆ is generated as in the real PRISIS game. As before, we argue that ε6 ≥ ε5 − negl(λ).

Suppose there is an adversary which wins Game6. We now show how to build a PRISIS trap-
door T given the Module-SIS matrix A and the NTRU trapdoor TNTRU. To this end, we will show
how to find short matrices S1,S2 such that:

AS1 − wAS2 = G .

Let gi be the i-th column of G. Assuming that A⋆ is full-rank 15 and using linear algebra, we can
find a (possibly large) vector t such that At = gi. Now, using the NTRU.SamplePre algorithm and
the NTRU trapdoor TNTRU, we can sample vectors (s1,i, s2,i) such that:

s1,i − ws2,i = t and ∥(s1,i, s2,i)∥ ≤ σ0
√
2N

with an overwhelming probability by Lemmas 2.8 and 2.15. Therefore

As1,i − wAs2,i = A(s1,i − ws2,i) = At = gi .

Thus, we obtain the matrices S1,S2 by concatenation where∥∥∥∥[S1

S2

]∥∥∥∥ ≤ α := σ0
√
2mtN .

Consequently, by Lemma 3.4, we can build a G2(n+1)-trapdoor S for B such that

∥S∥ ≤
√

2(α2 + t2N) =
√
2tN(2σ2

0m+ t) ≤ 2
√
tN(σ2

0m+ t) .

Hence, the reduction B can construct the trapdoor S as above and then randomise the trapdoor
for B by running T ← SamplePre(B,S,G2(n+1), σ1). Finally it sends the tuple to A and returns
what it output. By Lemma 2.20, B wins the Module-SIS game with probability at least ε6 − negl(λ),
which concludes the proof.

3.2 Higher Dimensions

One could hope that the techniques to analyse hardness of the BASIS assumption can be translated
to higher dimensions. This could be promising especially for the PRISIS assumption, which we
managed to reduce to standard lattice assumptions for the ℓ = 2 case. Unfortunately, the reduction
falls flat when considering higher dimensions.

We showcase this for ℓ = 3. Following the approach for the smaller dimension, the goal is to find
short matrices S1,S2,S3 such that

A⋆S1 − wA⋆S2 = Z1

A⋆S2 − wA⋆S3 = Z2
(14)

15 This occus with an overwhelming probability using the analysis from [EZS+19, Appendix C] and the fact that
m− (n+ 1) = ω(log λ).

31

for any Z1,Z2 given the NTRU trapdoor for w. If this is possible, we could set Z1 = G and Z2 = 0
which would give us:

A⋆S1 − wA⋆S2 = G

wA⋆S2 − w2A⋆S3 = 0.

Set S4 := G−1(A⋆S1 −G). Then, we have:

A⋆ 0 0 −G
0 wA⋆ 0 −G
0 0 w2A⋆ −G

S1

S2

S3

S4

 =

G0
0

 .

We proceed similarly for

(Z1,Z2) = (−G, w−1G) and (Z1,Z2) = (0,−w−1G) .

Thus, we managed to build a G3(n+1)-trapdoor for B. What is left to do is to produce short S1,S2,S3

which satisfy (14). To this end, consider the q-ary lattice

Λ =

(s1, s2, s3) :

[
1 −w 0
0 w −w2

]s1s2
s3

 = 0 mod q

 .

Suppose we can build a short basis for Λ given the NTRU trapdoor for w. Let z1,i, z2,i be the i-th
column of Z1 and Z2. Now, assuming that A⋆ is full-rank, we can find (possibly large) t1 and t2
such that A⋆tj = zj,i for j = 1, 2. Now, using the short basis for Λ, we can sample short vectors
s1,i, s2,i, s3,i such that:

s1,i − ws2,i = t1

s2,i − ws3,i = t2.

Hence,

A⋆s1,i − wA⋆s2,i = A⋆(s1,i − ws2,i) = A⋆t1 = z1,i

A⋆s2,i − wA⋆s3,i = A⋆(s2,i − ws3,i) = A⋆t2 = z2,i.

Therefore, we obtain the matrices S1,S2,S3 by concatenation.

Unfortunately, we are only aware of the following two bases of Λ:w2 w 1
q 0 0
0 q 0

 and

u2 uv v2

ū2 ūv̄ v̄2

ūu ūv v̄v

 ,

where TNTRU := ((u, v), (ū, v̄)) is the short NTRU basis. Since ∥u∥, ∥v∥ ≈ √q, the latter basis cannot
have short coefficients. We leave further analysis of this approach for future work.

32

4 Power-BASIS Commitment Scheme

In this section we define a compressing commitment scheme which stems from the vector commitment
construction of Wee and Wu [WW23]. We inherit a crucial property from the aforementioned work
that we support committing to arbitrarily large ring elements. Let ℓ := d+ 1 be the length of the
committed vectors over Rq. Thus, the message space isM := Rd+1

q . We let γ, βs be the parameters
controlling the norm of various vectors. Further, we define the slack space as the vector of short
polynomials:

S := {(c0, . . . , cd) : ∀i ∈ [0, d], ci ∈ R×q ∧ ∥ci∥1 ≤ βs} .

Informally, we say that a slack is a single element c ∈ Rq if (c, . . . , c) ∈ S. Finally, we define t = nq̃
and G := Gn ∈ Rn×t

q .
We now give intuition on the construction, and provide a formal description in Figure 4. The

setup algorithm uses the TrapGen and SamplePre algorithms defined in Section 2.6. Namely, it first
generates the two matrices (A,R) ← TrapGen(n,m) along with a uniformly random invertible

W ← GL(n,Rq). Then, AR = G, where ∥R∥ ≤ s
√
2t(m− t)N and s > 2N · q

n
m−t

+ 2
N(m−t) (c.f.

Lemma 2.7). Further, it computes Ri := RG−1(W−iG) for i = 0, 1, . . . , d. Note that

WiARi = WiARG−1(W−iG) = WiGG−1(W−iG) = G

and thus Ri is a G-trapdoor for WiA and by Lemma 2.2:

∥Ri∥ ≤ ∥R∥ ·N
√
nt ≤ sNt

√
2n(m− t)N.

Then, the algorithm computes the PowerBASIS matrix along with its trapdoor:

B :=

A −G
. . .

...
WdA −G

 , R̃ :=

R0

. . .

Rd

0

 . (15)

Indeed, one can check that BR̃ = Gn(d+1) and ∥R̃∥ ≤ sNt
√
2(d+ 1)n(m− t)N . Finally, the setup

algorithm re-randomises the trapdoor R̃ by running

T← SamplePre(B, R̃,Gn(d+1), σ0) ,

and thus BT = Gn(d+1). Finally, the public parameters crs := (A,W,T) are returned.
Suppose we want to commit to a vector (f0, f1, . . . , fd) of length d+ 1. To this end, we use crs

to compute
s0
...
sd
t̂

← SamplePre

A −G

. . .
...

WdA −G

 ,

−f0W
0e1

...
−fdWde1

 ,T, σ1

 .

By definition, this means that s0, s1, . . . , sd ∈ Rm
q and t := Gt̂ satisfy:

Asi + fie1 = W−it for i = 0, 1, . . . , d . (16)

The commitment and the decommitment state are C := t and st := (si)i∈[0,d].
Finally, the opening function takes the public parameters crs, the commitment t, a message

vector f := (f0, . . . , fd), the decommitment state (si)i∈[0,d] and a relaxation factor (c0, . . . , cd) ∈ S,
and accepts if and only if (16) holds and ∥cisi∥ ≤ γ for all i = 0, 1, . . . , d.

33

PowerBASIS Commitment Scheme

Setup(1λ)

1. Sample (A,R)← TrapGen(n,m).
2. Sample W← GL(n,Rq)
3. Let Ri := RG−1(W−iG) for i ∈ [0, d].
4. Set

B :=

A −G
. . .

...
WdA −G

 , R̃ :=

R0

. . .

Rd

0

 .

5. Sample T← SamplePre(B, R̃,Gn(d+1), σ0).
6. Return crs := (A,W,T).

Commit(crs, f ∈ Rd+1
q)

1. Parse f := (f0, f1, . . . , fd)

2. Set u :=

−f0W
0e1

...
−fdWde1

3. Sample

s0
...
sd
t̂

← SamplePre(B,u,T, σ1).

4. Set t := Gt̂.
5. Return (C := t, st := (si)i∈[0,d]).

Open(crs, C, f ∈ Rd+1
q , st, c ∈ Rd+1

q)

1. Parse f := (f0, f1, . . . , fd) and c := (c0, . . . , cd).
2. Parse C := t ∈ Rn

q and st := (si)d∈[0,d].
3. Return 1 if and only if for all i ∈ [0, d],

– Asi + fie1 = W−it.
– ∥cisi∥ ≤ γ.

Fig. 4: PowerBASIS commitment scheme for arbitrary messages in the message spaceM = Rd+1
q

with the slack space S := {(c0, . . . , cd) : ∀i ∈ [0, d], ci ∈ R×q ∧ ∥ci∥∞ ≤ βs}. Here, G ∈ Rn×nq̃
q is the

gadget matrix of height n.

34

4.1 Security Analysis

In the following, we show that the PowerBASIS commitment scheme satisfies completeness, relaxed
binding and hiding.

Lemma 4.1 (Completeness). Suppose n,N, βs ≥ 1 and denote t := nq̃. Let m ≥ t+n+ω(log λ),
m′ := m(d+ 1) + nq̃, n′ := nq̃(d+ 1) and t′ := max(n′,m′). Take

σ0 ≥ δsNtω(
√
2(d+ 1)n(m− t)N log t′N) and σ1 ≥ δσ0N · ω(

√
m′n′ log t′N) .

If γ ≥ σ1
√
m′N then the PowerBASIS commitment scheme satisfies completeness.

Proof. In the discussion above, we already showed that Equation (16) is true. We will show that
∥si∥ ≤ γ for all i, and thus we can pick the global relaxation to be (1, . . . , 1) ∈ S.

First, note that the matrix R̃ ∈ Rm′×n′
q satisfies ∥R̃∥ ≤ sNt

√
2(d+ 1)n(m− t)N with high

probability by Lemma 2.9. Hence σ0 ≥ δ∥R̃∥ · ω(
√
N log t′N) for t′ = max(n′,m′) and thus we

can apply both Lemma 2.20 and Lemma 2.8 to deduce that with an overwhelming probability
∥T∥ ≤ σ0

√
m′n′N . Similarly, we have σ1 ≥ δ∥T∥ · ω(

√
N log t′N) and thus ∥si∥ ≤ σ1

√
m′N ≤ γ

with an overwhelming probability for all i = 0, 1, . . . , d, which concludes the proof.

Based on the parameters above, we would require σ0 = Õ(
√
d) and σ1 = Õ(d3/2), ignoring the

polynomial factors related to the security parameter.

Lemma 4.2 (Relaxed Binding). Let t = nq̃, m ≥ t + n + ω(log λ) and n′ = nq̃(d + 1). Take

s > 2N · q
n

m−t
+ 2

N(m−t) . If σ0 ≥ δsNtω(
√
2(d+ 1)n(m− t)N log n′N) then PowerBASIS commitment

scheme satisfies binding under the PowerBASISn−1,m,N,q,d+1,σ1,2βsγ assumption.

Proof. Let A be an adversary for the relaxed binding game which succeeds with probability ϵ. We
prove the statement using an hybrid argument. We define εi to be the probability that A wins Game i.

Game 0: This is the standard relaxed binding game. By definition ε0 = ϵ.

Game 1: Here, we swap the SamplePre algorithm with sampling truly from a discrete Gaussian
distribution. Since σ0 ≥ δsNtω(

√
2(d+ 1)n(m− t)N log n′N), we can argue as in Lemma 4.1 that

ε1 ≥ ε0 − negl(λ).

Game 2: In this game we do not run TrapGen any more, but instead the matrix A ← Rn×m
q

is selected uniformly at random. By Lemma 2.7, we deduce that ε2 ≥ ε1 − negl(λ).

We claim that ε2 = negl(λ) under the PowerBASIS assumption. First, by definition of the PowerBASIS
assumption, our goal is to extract a short non-zero solution for the matrix A∗, where

A :=

[
a⊤

A∗

]
.

Denote the tuple A outputs as:

t, (f , (v0 . . . ,vd), (c0, . . . , cd)), (f
′, (v′0 . . . ,v

′
d), (c

′
0, . . . , c

′
d)).

35

By definition, whenever A wins, it must be that openings are valid and f ̸= f ′, which implies there
is at least an index j with fj ̸= f ′j . Thus, by subtracting the verification equations, we have that

A(vj − v′j) =

f ′j − fj

0
...
0

 .

Since f ′j − fj ̸= 0, this implies that v̄ := (vj − v′j) ̸= 0. Consequently, A∗v̄ = 0. Now, v̄ might not
be short. Hence, we consider cjc

′
jv̄ instead. Clearly, this is still a non-zero solution for A∗ since

cj , c
′
j are invertible. Further,

∥cjc′jv̄∥ ≤ ∥c′j(cjv)∥+ ∥cj(c′jv′)∥ ≤ 2βsγ .

Therefore, cjc
′
jv̄ is a valid solution to PowerBASIS.

Lemma 4.3 (Hiding). Suppose n,N ≥ 1 and denote t := nq̃. Let m ≥ t + n + ω(log λ), m′ :=
m(d+ 1) + nq̃, n′ := nq̃(d+ 1) and t′ := max(n′,m′). Take

σ0 ≥ δsNtω(
√
2(d+ 1)n(m− t)N log t′N),

σ1 ≥ δ ·max
(
log((d+ 1)mN), σ0N · ω(

√
m′n′ log t′N)

)
.

Then, the PowerBASIS commitment scheme satisfies hiding.

Proof. Take an unbounded adversary A which wins the hiding game with probability ϵ. We prove
the statement via a sequence of games, where in each game we change the algorithm of Commit. Let
ϵi be the advantage of the adversary against Game i.

Game 1: This is the original hiding game where Commit is defined in Figure 4. For the pur-
pose of the proof, we assume Commit does not output st. Then, by definition ϵ1 = ϵ.

Game 2: In this game, Commit (inefficiently) samples
s0
...
sd
t̂

← B−1σ1

−f0W

0e1
...

−fdWde1

and outputs t := Gt̂. By our assumption on σ0, σ1 we can argue similarly as in Lemma 4.1 to deduce
that |ϵ2 − ϵ1| = negl(λ).

Game 3: Here we make use of the fact that B := [E | F] where

E :=

A . . .

WdA

 and F :=

−G...
−G

 .

36

Concretely, the Commit algorithm first samples t̂← DtN
σ1

, setst...
t

 := Ft̂

and then generates s1...
sd

← E−1σ1

−f0W

0e1
...

−fdWde1

−
t...
t

 .

Finally, the algorithm outputs t.

By Lemma 2.6, there is a negligible function ε such that σ1 ≥ ηε(Λ
⊥(E)). Further, by [EZS+19,

Appendix C] the matrix A is full-rank (and so is E) with probability at least

(1− 1/qm−n+1)nN ≥ 1− nN/qm−n+1 ,

which is overwhelming by assumption on q, n,m. Hence, we can apply Lemma 2.10 to conclude
|ϵ3 − ϵ2| = negl(λ).

Game 4: The Commit algorithm simply samples t̂ ← DtN
σ1

and outputs t := Gt̂. Clearly, there
is no difference between the outputs of Game 3 and 4, thus ϵ4 = ϵ3.

Finally, the output of Commit in Game 4 does not depend on the challenge messages m0,m1

from A. Hence, we get that ϵ4 = 1/2. By the hybrid argument we obtain ϵ = 1/2 + negl(λ), which
concludes the proof.

Efficiency. The main bottleneck of the Commit algorithm is the trapdoor sampling procedure, which
asymptotically takes O(d2) operations over Rq. On the other hand, the opening algorithm makes
O(d) operations in Rq.

5 Efficient Proofs of Polynomial Evaluation

In this section we illustrate how to prove evaluations of a polynomial that is committed using the
PowerBASIS commitment scheme from Figure 4. We start by presenting a general framework for
proving polynomial evaluations in Section 5.1, and then we describe two distinct instantiations in
Sections 5.2 and 5.3. For clarity, we give an overview of frequently used parameters in Table 3. We
implicitly assume that lattice dimension parameters, such as n,m,N , are poly(λ).

5.1 Framework for Proving Evaluations

The main intuition can be described as follows. We design a relation that captures statements of
the form: “the commitment t has an opening f ∈ Rd+1

q (with respect to a given crs) such that

f(u) = v, where f ∈ R≤dq [X] is now interpreted as polynomial”. The core observation is that there
exists a Σ-protocol that interactively reduces an instance of that relation to a related one, in which
the size of the committed polynomial is decreased. This new relation is with respect to a different

37

Parameter Explanation

q proof system modulus
N degree of the cyclotomic ring R := Z[X]/(XN + 1)
l power-of-two such that q ≡ 2N/l + 1 (mod 4N/l)
d degree of the committed polynomial f ∈ Rq[X]

n height of the matrix A
m width of the matrix A
δ decomposition base of the gadget matrix G
q̃ ⌊logδ q⌋+ 1
n′ nq̃(d+ 1)
m′ mq̃(d+ 1) + nq̃
t′ max(n′,m′)

k folding factor of the folding protocol
h 2h+ 1 is the number of rounds
β initial norm of the witness openings
w L1 norm of elements in the challenge space C
βC L∞ of elements in C (used in Section 5.3)
βh norm of the opening vectors sent in the last round
βs infinity norm of the extracted relaxation factors
γ extracted norm

Table 3: Overview of parameters and notation.

common reference string, that can be efficiently computed from the previous one. We then exploit
this recursion to shrink to a commitment with a constant-size opening.

We formalise this discussion by introducing the opening relation below

Rd,β :=

((A,W), (t, u, z), (f, (si)i))

∣∣∣∣ f(u) = z
∀i ∈ [0, d],Asi + fie1 = W−it

∧∥si∥ ≤ β

 . (17)

We describe the Σ-protocol, upon which our main evaluation protocol is built, in Figure 5. Roughly
speaking, the prover divides the initial polynomial f of degree at most d into k polynomials g1, . . . , gk
of degree at most d′ := (d+ 1)/k − 1 by writing

f(X) :=
∑
t∈[k]

Xt−1gt(X
k) . (18)

Then, it “commits” to the partial polynomials by providing their evaluations at the point u, say
zi := gi(u

k). Thus, by construction

z = f(u) =
∑
t∈[k]

ut−1gt(u
k) =

k∑
t=1

ztu
t−1 . (19)

Next, the verifier outputs a challenge (α1, . . . , αk)← C ⊆ Rk
q . Note that by considering the folded

polynomial g =
∑k

t=1 αtgt of degree at most d′, we obtain a new polynomial evaluation statement

38

about g:

g(uk) =
k∑

t=1

αtzt . (20)

The main strength of the PowerBASIS commitment from Figure 4 is that the commitment (resp.
openings) to g can be efficiently computed from the commitment t (resp. openings si) of f given
α1, . . . , αk in time O(k). This is the key idea for achieving succinct verification. Hence, the prover
outputs the polynomial g in the clear, along with its opening vectors. The verifier eventually checks
correctness of the openings with respect to the message g, as well as (19) and (20).

We first prove that this protocol transforms an instance of Rd,β into a smaller one of Rd′,β′ .

Lemma 5.1 (Completeness). Let Π := Σ[d, k, C, β] as in Figure 5. Then, Π is an interactive
protocol with perfect completeness for Rd,β.

Proof. Let (i,x,w) = ((A,W), (t, u, z), (f, (si)i∈[0,d])) ∈ Rd,β. Since f(u) = z, the first verification
check always succeeds by Equation (19). We are left to show that the new instance is valid. First,
g(uk) =

∑
t∈[k] αtgt(u

k) =
∑

t∈[k] αtzt. Further, recall that for i ∈ [0, d′] and t ∈ [k] we have

st,i = ski+t−1 and gt,i = fki+t−1 ,

where gt,i is the i-th coefficient of the polynomial gt. Hence, the i-th coefficient of g satisfies
gi =

∑
t∈[k] αtgt,i =

∑
t∈[k] αtfki+t−1. Therefore,

Azi + gie1 = A

∑
t∈[k]

αtst,i

+

∑
t∈[k]

αifki+t−1

 · e1
=
∑
t∈[k]

αt (Aski+t−1 + fki+t−1e1)

=
∑
t∈[k]

αt

(
W−(ki+t−1)t

)

=

∑
t∈[k]

αtW
−(ki+t−1)

 · t
= (Wk)−i

∑
t∈[k]

αtW
−(t−1)

 · t.
Finally, by Lemma 2.1 for α ∈ C, ∥zi∥ ≤

∑
t∈[k]∥αtst,i∥ ≤

∑
t∈[k]∥αt∥1 · β ≤ w β where w :=

maxα∈C∥α∥1. This shows that the new instance is in Rd′,β′ , and thus the verifier accepts.

We now apply the Σ-protocol recursively h times, reducing the final opening size to (d + 1)/kh,
while increasing the final norm for verification by a factor wh.

Construction 5.2. Let k, h be integers, and let C ⊆ Rk
q . We let Eval[d, k, h, C, β] := (P,V) be the

protocol that we describe in Figure 6.

Completeness of the protocol is easily shown by applying Lemma 5.1 h times.

39

Σ-Protocol for Rd,β

Prover Verifier∑
t∈[k]

Xt−1gt(X
k) =: f(X)

zt := gt(u
k) for t ∈ [k]

(zt)t∈[k]

α← C ⊆ Rk
q

α

g :=
∑
t∈[k]

αtgt

zi :=
∑
t∈[k]

αtst,i for i ∈ [0, d′]

g, (zi)i∈[0,d′]

β′ := w β

t′ :=

∑
t∈[k]

αtW
−(t−1)

 · t
i
′ := (A,Wk)

x
′ :=

t′, uk,
∑
t∈[k]

αtzt

w

′ := (g, (zi)i∈[0,d′])

Check:

z =
∑
t∈[k]

ut−1zt

(i′,x′,w′) ∈ Rd′,β′

Fig. 5: The Σ-protocol Σ[d, k, C, β] for relation Rd,β in Equation (17). Here, d′ := (d + 1)/k − 1,
w := maxα∈C∥α∥1 and st,i := ski+t−1 for i ∈ [0, d′] and t ∈ [k].

40

Interactive Protocol for Rd,β

P((A,W), (t, u0, z0), (f0, (s0,i)i∈[0,d]))

1. Set d0 := d.
2. For r ∈ [h]:

(a) Set dr := (dr−1 + 1)/k − 1.
(b) Write fr−1(X) :=

∑
t∈[k] X

t−1fr−1,t(X
k) for fr−1,1, . . . fr−1,k ∈ R≤drq [X].

(c) Set zr−1,t := fr−1,t(u
k
r−1) for t ∈ [k].

(d) Send (zr−1,t)t∈[k] to the verifier.
(e) Receive αr from the verifier.
(f) Compute fr :=

∑
t∈[k] αr,tfr−1,t.

(g) Compute sr,i :=
∑

t∈[k] αr,tsr−1,ki+t−1 for i ∈ [0, dr].

(h) Compute ur := ukr−1.
3. Send (fh, (sh,i)i∈[0,dh]) to the verifier.

V((A,W0), (t0, u0, z0))
1. β0 := β.
2. For r ∈ [h]:

(a) Receive (zr−1,t)t∈[k] from the prover.

(b) Check zr−1 =
∑

t∈[k] u
t−1
r−1zr−1,t.

(c) Sample αr ← C and send it to the prover.
(d) Set Wr := Wk

r−1.

(e) Set tr :=
(∑

t∈[k] αr,tW
−(t−1)
r−1

)
· tr−1.

(f) Set βr := w ·βr−1.
(g) Set ur := ukr−1.
(h) Set zr :=

∑
t∈[k] αr,tzr−1,t.

3. Receive (fh, (sh,i)i∈[0,dh]) from the prover.
4. Check:

(a) fh(uh) = zh.
(b) Ash,i + fh,ie1 = W−i

h th for i ∈ [0, dh].
(c) ∥sh,i∥ ≤ βh for i ∈ [0, dh].

Fig. 6: The protocol Eval[d, k, h, C, β] for Rd,β. As before, we denote w := maxα∈C∥α∥1.

41

Lemma 5.3 (Completeness). Let Π := Eval[d, k, h, C, β]. Then, Π is an interactive protocol with
perfect completeness for Rd,β.

Proof. Denote by (ir,xr,wr) := ((A,Wr), (tr, ur, zr), (fr, (sr,i)i∈[dr])) for r ∈ [h]. By Lemma 5.1,
(ir,xr,wr) ∈ Rdr,βr implies (ir+1,xr+1,wr+1) ∈ Rdr+1,βr+1 with probability 1. Since (i0,x0,w0) ∈
Rd,β0 , then (ih,xh,wh) ∈ Rdh,βh

, and thus the verifier final checks accept.

Remark 5.4. The protocol that we have described has folding factor k constant across every round
of interaction. In fact, we can gain more flexibility by allowing each round to use a different folding
factor. This can be beneficial, for example, to obtain a constant polynomial in the last round of the
protocol when the original degree is not a h-power.

We analyse the communication complexity of Eval[d, k, h, C, β] in the next lemma.

Lemma 5.5 (Efficiency). The total communication complexity of Eval[d, k, h, C, β] (in bits) can
be bounded by

h · (kN⌈log q⌉+ ⌈log |C|⌉) + d+ 1

kh

(
N⌈log q⌉+mN⌈log(2wh β)⌉

)
.

Further, the prover makes O(md) operations in Rq while the verifier makes O
(
(n+m)2(hk + d/kh)

)
operations in Rq.

Proof. In each round the prover sends k elements of Rq to the verifier, and the verifier sends 1
element of C. In the final round, the prover sends a polynomial with dh = (d+ 1)/kh coefficients,
and dh + 1 opening vectors, each of which has norm at most βh.

We turn to the prover complexity and first consider Step 2. Every r-th round out of [h], the
prover makes O(mkdr) = O(mdr−1) operations in Rq. Since d0 = O(d) and in general dr = O(d/kr),
the total runtime of the prover can be bounded by

O

(
h−1∑
r=0

mdr

)
= O

(
m

h−1∑
r=0

d/kr

)
= O

(
md · 1− 1/kh

1− 1/k

)
= O(md) .

We move to the verifier analysis. In Step 2, for every round r ∈ [h], the verifier makes at most
O(kn2) operations. Hence, the total cost of Step 2 is O(hkn2). The rest of the algorithm takes
O(dh(nm+ n2)) steps. Thus, the total runtime can be bounded by O

(
(n+m)2(hk + d/kh)

)
ring

operations.

Next, we provide two instantiations of the protocol in Figure 6 which will differ in the selection of
the challenge space C. This has direct impact on the knowledge extraction strategy.

5.2 Monomial Protocol

In the following, we describe a so-called monomial variant of the protocol, where the name comes
from the description of the challenge space C. Fix k := 2, and C := {1} × {Xi : i ∈ Z}. Note that by
definition w = 2, and α,α′ ∈ C with α ̸= α′ implies that α2 − α′2 ∈ R×q . In this section, we also
assume that 2 ∈ R×q (which can be enforced if gcd(2, q) = 1).

42

We aim to show that Π := Eval[d, 2, h, C, β] is 2-special sound. In fact, we will not be able to
show this exactly, as the extraction will introduce some slack. Rather we show that Π is special
sound for the relaxed opening relation that we describe next:

R̃d,c,γ :=

((A,W), (t, u, z), (f, (si)i∈[0,d])
) ∣∣∣∣∀i ∈ [0, d],Asi + fie1 = W−it ∧

∧ c ∈ R×q ∧ ∥c · si∥ ≤ γ

∧ f(u) = z

 . (21)

We will directly show that Eval is special-sound, which also implies special-soundness of the Σ-
protocol by noting that the two protocols are equivalent when h = 1. To argue soundness we will
first prove that there exists an extractor that is able to extract witnesses of the higher layer of the
transcript tree from the children.

Lemma 5.6 (Special Soundness for Σ). Let c ∈ R×q , and let i = (A,W), x = (t, u, z). There
exists an algorithm that, given two transcripts trj of the following form

trj :=
(
(z1, z2),αj := (1, αj) ∈ C,w′j := (gj , (zj,i)i)

)
for j = 0, 1

where α0 ̸= α1, outputs w := (f̄ , (s̄i)i). Furthermore, let d′, i′, x′0,x
′
1 be obtained as in Figure 5. If,

for i ∈ {0, 1}, (i′,x′i,w′i),∈ R̃d′,c,β, and z = z1 + uz2, then (i,x,w) ∈ R̃d,2c,γ where γ := 2Nβ.

Proof. Consider the following algorithm:

E(tr0, tr1):
1. Set s̄2i :=

α1z0,i−αz1,i
α1−α0

, s̄2i+1 :=
z0,i−z1,i
α0−α1

for i ∈ [0, (d− 1)/2].

2. Set f̄1 :=
α1g0−α0g1

α1−α0
, f̄2 :=

g0−g1
α0−α1

.

3. Set f̄ := f1(X
2) + Xf̄2(X

2).
4. Return f̄ , (s̄i)i∈[0,d].

Let now (f̄ , (s̄i)i)← E(tr). Note that

As̄2i + f̄2ie1 = W−2it

As̄2i+1 + f̄2i+1e1 = W−(2i+1)t .

Now, we have that:

f̄(u) = f̄1(u
2) + uf̄2(u

2)

=
α1g0(u

2)− α0g1(u
2)

α1 − α0
+ u

g0(u
2)− g1(u

2)

α0 − α1

= z1 + uz2

= z .

Finally, we set c∗ := 2c. First, note that c∗ ∈ R×q since 2 ∈ R×q . Now, for i ∈ [0, d′], we have:

∥c∗ · s̄2i∥ =
∥∥∥∥ 2

α1 − α0
· c · (α1z0,i − α0z1,i)

∥∥∥∥
≤
∥∥∥∥ 2

α1 − α0

∥∥∥∥
∞
∥c(α1z0,i − α0z1,i)∥1

43

= ∥c(α1z0,i − α0z1,i)∥1
≤
√
N(∥α1cz0,i∥+ ∥α0cz1,i∥)

≤ N(∥α1∥ · ∥cz0,i∥+ ∥α0∥ · ∥cz1,i∥)
≤ 2Nβ = γ

where the second equality follows by Lemma 2.3 and the last inequality by ∥α∥ = 1 for (1, α) ∈ C.
Similarly, ∥c∗ · s̄2i+1∥ ≤ γ.

Using this extractor, we show that Π is (2, . . . , 2)-special sound. The new extractor will start from
the leaves of the tree of transcripts, applying the extractor described in Lemma 5.6 to obtain
witnesses 16 for the upper layer.

Lemma 5.7 (Special Soundness for Eval). Let C := {1} × {Xi : i ∈ Z} and let Π :=
Eval[d, 2, h, C, β] be as in Construction 5.2. Set γ := (2N)h · βh. Then Π is a special sound proof
system for R̃d,2h,γ.

Proof. Let tr be a tree of transcripts, which we index as follows.

– α(r,j) for (r, j) ∈ [h]× [2r] is the j-th challenge in the r-th layer of the transcript.

– (z(r,j),1, z(r,j),2) for (r, j) ∈ [0, h− 1]× [2r] is the j-th response in the r-th layer of the transcript.

– (f̄(h,j), (s̄(h,j),i)i) for j ∈ [2h] is the final message sent by the prover.

We introduce the following notation as in the verifier algorithm:

– d0 := d, dr := dr−1/2 for r ∈ [h]

– W0 := W, Wr := W2
r−1 for r ∈ [h].

– t(0,1) := t, t(r,2j−1) := (1 + α(r,2j−1)W
−1
r−1)t(r−1,j), t(r,2j) := (1 + α(r,2j)W

−1
r−1)t(r−1,j) for (r, j) ∈

[h]× [2r].

– β0 := β, βr := 2N · βr−1 for r ∈ [h].

– u0 := u, ur := u2r−1 for r ∈ [h].

– z(r,2j−1) := z(r−1,j),1+α(r,2j−1)z(r−1,j),2, z(r,2j) := z(r−1,j),1+α(r,2j)z(r−1,j),2 for (r, j) ∈ [h]×[2r−1].

Denote with E(1) the extractor of Lemma 5.6.

E(tr):
1. Set d0 := d, dr := dr−1/2 for r ∈ [h].
2. For r := h, . . . , 1:

(a) Set, for j ∈ [2r−1],

tr(r−1,j) :=

(
(z(r−1,j),1, z(r−1,j),2),

α(r,2j−1), (f̄(r,2j−1), (s̄(r,2j−1),i)i)

α(r,2j), (f̄(r,2j), (s̄(r,2j),i)i)

)
.

(b) Compute f̄(r−1,j), (s̄(r−1,j),i)i∈[0,dr−1] ← E(1)(tr(r−1,j)) for j ∈ [2r−1]
3. Return f̄(0,1), (s̄(0,1),i)i∈[d].

16 We also implicitly collect the corresponding relaxation factors, which are the same across the same layer.

44

We prove that this extractor yields a valid witness by induction on r. First note that, by the verifier
checks, for (r, j) ∈ [h]× [2r]

z(r−1,j) = z(r−1,j),1 + ur−1z(r−1,j),2 .

Write i(r,j) := (A,Wr), x(r,j) := (t(r,j), u(r,j), z(r,j)), w(r,j) := (f̄(r,j), (s̄(r,j),i)i) for (r, j) ∈ [h]× [2r].

For r = h, since the transcripts are accepting, (i(h,j),x(h,j),w(h,j)) ∈ Rdh,βh
= R̃dh,1,βh

for j ∈ [2h].

Thus, by Lemma 5.6, (i(h−1,j),x(h−1,j),w(h−1,j)) ∈ R̃dh−1,2,2Nβh
.

We can continue with the induction, and this yields that for the extracted witness w(0,1) :=
(f̄(0,1), (s̄(0,1),i)i∈[d]) we have that:

(i(0,1),x(0,1),w(0,1)) ∈ R̃d,2h,(2N)hβh
.

Setting γ := (2N)hβh, and noting that 2h ∈ R×q , this concludes our proof.

We can use Eval to construct a polynomial commitment scheme. We detail the construction in
Theorem 5.8 and summarise the parameters and efficiency features in Table 4.

Parameters Instantiation

m ≥ n(1 + q̃) + ω(log λ)

δ q1/O(1)

s > 2Nq
n

m−nq̃
+ 2

N(m−nq̃)

σ0 ≥ δsNnq̃ · ω(
√
2(d+ 1)n(m− nq̃)N log t′N)

σ1 ≥ δσ0N · ω(
√
m′n′ log t′N)

β ≥ σ1
√
m′N

k 2
C {1} × {Xi : i ∈ Z}
w 2
βh wh ·β
γ (2N)h · βh
βs 2h

Soundness
(

h
2N

)ℓ
Commitment size nN log q

Communication complexity ℓ ·
(
h(2N log q + logN + 1) + d+1

2h
(N log q +mN log βh)

)
Prover time O(ℓ ·md)
Verifier time O(ℓ · (n+m)2 · (2h+ d/2h))

Table 4: Parameters for the interactive polynomial commitment scheme obtained from Figure 4 and
running the ℓ-parallel repetition of Eval[d, 2, h, C, β] for proofs of evaluation. We compute the prover
and verifier runtime in terms of operations in Rq.

Theorem 5.8. Let PC = (Setup,Commit,Open,Pt,Vt) where Setup,Commit,Open are as in Fig-
ure 4 and Pt,Vt are the t-parallel repetitions of the prover and verifier of Eval. Then PC is an
interactive polynomial commitment scheme with the efficiency properties and parameters shown in

45

Table 4. In particular, when h = O(log d) and t > λ
logN+1−log h we obtain an interactive polynomial

commitment scheme with negligible knowledge soundness error, polylogarithmic communication
complexity, and polylogarithmic verifier time.

Proof. Completeness and relaxed binding follow from Lemmas 4.1 and 4.2. Perfect evaluation
completeness follows from Lemma 5.1. For evaluation knowledge soundness, we apply [AF22,
Theorem 4] to Lemma 5.7. Communication complexity follows from Lemma 5.5. Additionally, claims
about the prover and verifier runtime hold by Lemma 5.5 and the fact that both log q and N are
polynomial in λ.

5.3 Large Sampling Set

We present a second instantiation which allows us to obtain negligible knowledge soundness error
without parallel repetition, using coordinate-wise special soundness (c.f. Section 2.10) and a large
challenge space. We let t, k ∈ N. Fix also βC > 0. Recall that Sκ := {α ∈ Rq : ∥α∥∞ ≤ κ}. We define
the challenge space and the slack space as

C := Sk
βC

and St :=

∏
i∈[t]

αi − α′i : αi, α
′
i ∈ SβC , αi ̸= α′i

 .

Note that |C| = (2βC +1)kN and w ≤ βCkN . We also let βs,t := maxc∈St ∥c∥∞. Note that, for c ∈ St,

∥c∥∞ ≤

∥∥∥∥∥∏
i

(αi − α′i)

∥∥∥∥∥
∞

≤
∥∥α1 − α′1

∥∥
∞ ·
∏
i ̸=1

∥∥αi − α′i
∥∥
1
≤ 2βC · (2βCN)t−1 ,

and thus ∥c∥1 ≤ (2βCN)t.
We show a simple invertibility result that will be useful in the proof of soundness.

Lemma 5.9. Let 1 ≤ l < N be a power of two, and suppose that q ≡ 2N/l + 1 (mod 4N/l). If
2βC <

√
l/Nql/N , then for any t ≥ 1, St ⊆ R×q .

Proof. Let α ̸= α′ ∈ SβC . Then, α−α′ ̸= 0, and ∥α− α′∥∞ ≤ 2βC . Thus, by Lemma 2.4, α−α′ ∈ R×q .
Elements of St are products of elements of that form, and since the product of invertible elements is
itself invertible, the result follows.

We will assume thereafter that we are in the regime in which Lemma 2.4 holds (as in Table 3).
We again aim to show that Eval[d, k, h, C, β] is knowledge sound. As before, we define an opening

relation, which will differ from Equation (21) in that the relaxation factors will not be the same
across openings, but rather will be included as part of the witness. This will reflect the fact that the
extracted opening will have different slack derived from the challenges.

R̃d,β,t :=

((A,W), (t, u, z), (f, (si)i, (ci)i))

∣∣∣∣∣∣
∀i ∈ [0, d],Asi + fie1 = W−it ∧

∧ci ∈ St ∧ ∥ci · si∥ ≤ β
∧ f(u) = z

 . (22)

As before, to argue that the protocol is knowledge sound, we will first show an extractor to be used to
move between layers of the transcript tree. In this case however, we will argue using coordinate-wise
special-soundness instead of special soundness.

46

Lemma 5.10 (Coordinate-Wise Special Soundness for Σ). Let c ∈ R×q , and let i = (A,W),
x = (t, u, z). There exists an algorithm that, given k+1 transcripts (trj)j∈[0,k] of the following form:

trj :=

 (z1, . . . , zk)
αj

(gj , (sj,i)i∈[0,d′])

 with (αj)j ∈ SS(SβC
, k) ,

and slack (cj,i)j,i outputs w := (f̄ , (s̄i)i, (c̄i)i). Furthermore, let i′, (x′j)j∈[k] be obtained as in Figure 5
(where x

′
j is obtained from the j-th leaf of the transcript) and w

′
j := (gj , (sj,i)i, (cj,i)i). If, for

i ∈ [0, k], (i′,x′i,w
′
i),∈ R̃d′,β,t, and z =

∑
t∈[k] u

t−1zt, then (i,x,w) ∈ R̃d,γ,2t+1 where γ := 2β if
t = 0 and γ := 2Nβs,tβ otherwise.

Proof. Assume, without loss of generality, that the transcripts are arranged so that, for j ∈ [k],
α0 ≡j αj . We thus can write α0 = (α1, . . . , αk) and αj := (α1, . . . , α

′
j , . . . αk) with αj ̸= α′j .

Consider the extractor

E(tr = (tr0, . . . , trk), (c̃j,i)j,i):

1. For j ∈ [k]:
(a) Set f̄j :=

g0−gj
αj−α′

j
.

(b) For i ∈ [0, d′]:
i. Set s̄ki+j−1 :=

z0,i−zj,i
αj−α′

j
.

ii. Set c̄ki+j−1 := (αj − α′j)c0,icj,i.

2. Set f̄ :=
∑

j∈[k] X
j−1f̄j(X

k).

3. Return (f̄ , (s̄i)i∈[0,d]), (c̄i)i∈[0,d].

Since the transcript is accepting, for j ∈ [0, k], i ∈ [0, d′] we have that

Azj,i + gj,ie1 = (Wk)−i

∑
t∈[k]

αj,tW
t−1

 t .

Subtracting the equation for j = 0 from the equation for j ∈ [k] yields that, for i ∈ [0, d′]:

A

(
z0,i − zj,i
αj − α′j

)
+

(
g0,i − gj,i
αj − α′j

)
e1 = W−(ki+j−1)t .

To show that the extracted f̄ evaluates to z at u, note that:

f̄(u) =
∑
j∈[k]

uj−1f̄j(u
k)

=
∑
j∈[k]

uj−1
g0(u

k)− gj(u
k)

αj − α′j

=
∑
j∈[k]

uj−1
∑

t∈[k](α0,t − αj,t)zt

αj − α′j

=
∑
j∈[k]

uj−1zj = z .

47

Where in the third equality we have used that the verifier check accepts, and for the fourth∑
t∈[k](α0,t − αj,t)zt = (αj − α′j)zj . We argue that the extracted s̄i are (relaxed) short.

∥c̄ki+j−1 · s̄ki+j−1∥ =

∥∥∥∥∥(αj − α′j)c0,icj,i
z0,i − zj,i
αj − α′j

∥∥∥∥∥
= ∥c0,icj,i(z0,i − zj,i)∥
≤ ∥cj,ic0,iz0,i∥+ ∥c0,icj,izj,i)∥

≤
√
Nβs,t(∥c0,iz0,i∥1 + ∥cj,izj,i∥1)

≤ 2Nβs,tβ = γ .

If t = 0, then the slacks must have been 1, and thus ∥c̄ki+j−1s̄ki+j−1∥ ≤ ∥z0,i − zj,i∥ ≤ 2β as desired.
Finally, what is left to show is that the new slack is in the prescribed slack space. This is easy to
show as the previous two slacks are a product of t differences of challenges, that we then multiply
with a new difference, leading to a product of 2t+1 differences of challenges. Lemma 5.9 guarantees
that this new slack is invertible as long as βC is small enough.

We then use this extractor recursively to show that Eval is coordinate-wise special sound.

Lemma 5.11 (Coordinate-Wise Special Soundness for Eval). Let k, h ∈ N, βC > 0. Let
Π := Eval[d, k, h, C, β] be as in Construction 5.2. Then, Π is a k-coordinate-wise special-sound proof
system for the relation R̃d,γ,t where

γ := 2h · (2βCN)2
h−h−1 · βh

t := 2h − 1 .

Proof. We index the transcript as in Lemma 5.7. Denote by E(1) the extractor of Lemma 5.10.
Consider the new extractor
E(tr):
1. Set c̄(h,j) = 1 for j ∈ [(k + 1)h].
2. For r := h, . . . , 1:

(a) Set for j ∈ [(k + 1)r−1]:

tr(r−1,j) :=

(z(r−1,j),t)t∈[k]

(α(r,(j−1)(k+1)+1), (f̄(r,(j−1)(k+1)+1), (s̄(r,(j−1)(k+1)+1),i)i))
...

(α(r,j(k+1)), (f̄(r,j(k+1)), (s̄(r,j(k+1)),i)i))

 .

(b) Compute (f̄(r−1,j), (s̄(r−1,j),i)i, (c̄(r−1,j),i)i)← E(1)(tr(r−1,j), (c̄(r,(j−1)(k+1)+t),i)t,i).
3. Return f̄(0,1), (s̄(0,1),t), (c̄(0,1),t)t.

We argue that the extractor yields a valid witness inductively. We again note that for (r, j) ∈
[h]× [(k + 1)r], since the transcripts are accepting,

z(r−1,j) =
∑
t∈[k]

uk−1r−1z(r−1,j),t .

Write i(r,j) := (A,Wr), x(r,j) := (t(r,j), ur, (z(r,j),i)i) and w(r,j) := (f̄(r,j), (s̄(r,j),i)i, (c̄(r,j),i)i). Since
the leaves are accepting (and the relaxed relation is equivalent to the exact one when the relaxation

48

factors are one), (i(h,j),x(h,j),w(h,j)) ∈ R̃dh,βh,0. Thus, Lemma 5.10 (in the case t = 0) implies that

(i(h−1,j),x(h−1,j),w(h−1,j)) ∈ R̃dh−1,2βh,1. Now, we define the recurrence relations:

tr :=

{
1 if r = 1

2tr−1 + 1 otherwise
and γr :=

{
2β if r = 1

2Nβs,tr−1γr−1 otherwise
.

Lemma 5.10 implies exactly that, if (i(r,j),x(r,j),w(r,j)) ∈ R̃dr−i,γr,tr , then the extracted witness

(i(r+1,j),x(r+1,j),w(r+1,j)) ∈ R̃dk−r−1,γr+1,tr+1 . Unfolding the recurrence relations, we note that
tr = 2r − 1 and

γr = 2rN r−1

(
r−1∏
i=1

βs,ti

)
βh

≤ 2rN r−1

(
r−1∏
i=1

2βC(2βCN)2
i−2

)
βh

= 2rN r−1(2βC)
r−1(2βCN)

∑r−1
i=1 2i−2 · βh

= 2jN r−1(2βC)
r−1(2βCN)2

r−2r · βh
= 2r(2βCN)2

r−r−1 · βh

Taking this to its natural conclusion:

(i(0,1),x(0,1),w(0,1)) ∈ R̃d,γh,th ,

and setting γ := γh, t := th implies the result.

Again, we can use Eval to construct a polynomial commitment scheme.

Theorem 5.12. Let PC = (Setup,Commit,Open,Eval,Verify) where Setup,Commit,Open are as in
Figure 4 and Eval,Verify are obtained by applying the Fiat-Shamir transform to Eval[d, k, h, C, β]
when kh = poly(d). Then, PC is an polynomial commitment scheme with the efficiency properties
and parameters shown in Table 4.

Proof. Completeness and relaxed binding follow from Lemmas 4.1 and 4.2. Perfect evaluation com-
pleteness follows from Lemma 5.1. Communication complexity and runtimes follow from Lemma 5.5.
Knowledge soundness follows from Lemma 2.34 and Lemma 5.11, noting that when kh = poly(d)
and thus the extractor runs in expected polynomial time.

At this point, one might be tempted to instantiate the scheme in Theorem 5.12 with h = O(log d)
and k = O(1) to obtain a protocol with logarithmic communication complexity as in Theorem 5.8
and small soundness error. This unfortunately does not succeed, as the extracted norm in this case
grows exp(d) and thus log q ≥ poly(d). The resulting protocol will communicate logarithmically
many elements of Rq, but the overall communication complexity will thus be polynomial in d. Thus,
h must be at most O(log log d). In fact, let 0 < ϵ < 1 be a constant and set h = 1/ϵ = O(1), k = dϵ.
It is easy to see from Table 5 that then the communication complexity will be O(d1/ϵ) elements
of Rq and we can set log q = polylog(d) to obtain overall sublinear communication complexity.

49

Parameters Instantiation

m ≥ n(1 + q̃) + ω(log λ)

δ q1/O(1)

s > 2Nq
n

m−nq̃
+ 2

N(m−nq̃)

σ0 ≥ δsNnq̃ · ω(
√
2(d+ 1)n(m− nq̃)N log t′N)

σ1 ≥ δσ0N · ω(
√
m′n′ log t′N)

β ≥ σ1
√
m′N

C Sk
βC

βC < 1
2

√
l/Nql/N

w kNβC
βh wh ·β
γ 2h · (2βCN)2

h−h−1 · βh
βs (2βCN)2

h−1

Soundness (Q+1)·hk
(2βC+1)N

Commitment size nN log q

Proof size h(kN log q) + d+1
kh

(N log q +mN log βh)

Prover time O(md)
Verifier time O((n+m)2 · (hk + d/kh))

Table 5: Parameters for the polynomial commitment scheme obtained from Figure 4 and the Fiat-
Shamir transform of Eval[d, k, h, C, β] for proofs of evaluation. We let Q be an upper bound on the
number of queries an adversary can make to the random oracle.

50

Accordingly, the verifier time will also be sublinear. In fact, we can further improve on this. Set now
h ≈ log log d, and k ≈ d1/ log log d. It can be easily verified that in this case we obtain

log q = O

(
log2 d

log log d

)
,

and in terms of communication complexity: O((log log d) · d1/ log log d) elements of Rq or polylog(d) ·
d1/ log log d bits (similarly for the verifier complexity). As such, we can conclude that Theorem 5.12
gives rise to a quasi-polylogarithmic non-interactive polynomial commitment scheme from lattice
assumptions.

5.4 Batching Evaluations

5.4.1 Multiple Evaluations at a Single Point

We show a simple approach to amortise the cost of proving evaluations of multiple evaluations at
a single point. More concretely, we have a list of (committed) polynomials f1, . . . , fr and want to
show that fi(u) = zi. First we define the corresponding relation, namely:

Rr
d,β :=

{
(A,W), ((tj)j , u, (zj)j), ((fj)j , (sj,i)j,i)

∣∣∣∣ ∀j ∈ [r],
((A,W), (tj , u, zj), (fj , (sj,i)i)) ∈ Rd,β

}
.

The intuition of the protocol that we design is to take a random linear combinations of the
polynomials f1, . . . , fr, and prove that its evaluation at u is equal to the linear combination of the
claimed evaluations. The protocol that we describe in Figure 7 takes this idea and combines it with
one round of Figure 5, which is useful for better concrete efficiency.

Lemma 5.13 (Completeness). Let Π := multiEval[d, r, k, C, β] be the protocol in Figure 7. Then,
Π is a Σ-protocol with perfect completeness for Rr

d,β.

Proof. It is easy to see that g(uk) =
∑

ι,t αι,tgι,t(u
k) =

∑
αι,tzι,t. Also, for i ∈ [0, d′],

Azi + gie1 =
∑

ι,t∈[r]×[k]

αι,t (Asι,t,i + gι,t,ie1)

=
∑

ι,t∈[r]×[k]

αι,t (Asι,ki+t−1 + gι,ki+t−1e1)

=
∑

ι,t∈[r]×[k]

αι,tW
−(ki+t−1)tι.

Finally, ∥zi∥ =
∥∥∥∑ι,t αι,tsι,t,i

∥∥∥ ≤ w β = β′ as desired.

As before, we define a relaxed opening relation (we use the definition of R̃ from Equation (22)):

R̃r
d,β,t :=

 (A,W),

((tι)ι, u, (zι)ι),
((fι)ι, (sι,i)ι,i, (cι,i)ι,i)

∣∣∣∣∣∣ ∀ι ∈ [r],

((A,W), (tι, u, zj), (fι, (sι,i)i), (cι,i)i)) ∈ R̃d,β,t

 .

We now prove coordinate-wise special soundness for the set C := Srk
βC
⊆ Rrk

q , where each element
has rk coordinates. Then, it is easy to show (e.g. using the composition results as in [BS22, Section
3]) that composing multiEval with Eval yields a knowledge sound protocol for this relaxed relation.

51

Proving Multiple Evaluations at a Single Point

Prover Verifier∑
t∈[k]

Xt−1gι,t(X
k) =: fι(X) for ι ∈ [r]

zι,t := gι,t(u
k) for (ι, t) ∈ [r]× [k]

(zι,t)(ι,t)∈[r]×[k]

α = (α1, . . . ,αr)← C := Srk
βC

α

g :=
∑

(ι,t)∈[r]×[k]

αι,tgι,t

zi :=
∑

(ι,t)∈[r]×[k]

αι,tsι,t,i for i ∈ [0, d′]

g, (zi)i∈[0,d′]

β′ := w β

t′ :=

 ∑
(ι,t)∈[r]×[k]

αι,tW
−(t−1) · tι

i
′ := (A,Wk)

x
′ :=

t′, uk,
∑

(ι,t)∈[r]×[k]

αι,tzι,t

w

′ := (g, (zi)i∈[0,d′])

Check:

zι =
∑
t∈[k]

ut−1zι,t for ι ∈ [r]

(i′,x′,w′) ∈ Rd′,β′

Fig. 7: The protocol multiEval[d, r, k, C, β] for proving evaluations of r polynomials at a single point.
In the above w := maxα∈C∥α∥1. As before, we define d′ := (d+ 1)/k − 1 and sι,t,i := sι,ki+t−1 for
ι ∈ [r].

52

Lemma 5.14 (Coordinate-Wise Special Soundness). Let Π := multiEval[d, r, k, C, β] be the
protocol in Figure 7. Let i := (A,W), x := ((tι)ι, u, (zι)ι). There exists an algorithm that, given
rk + 1 transcripts (trj)j∈[0,rk] of the following form:

trj :=

 (zι,t)ι,t
αj

(gj , (zj,i)i∈[0,d])

 with (αj)j ∈ SS(SβC , rk) ,

and relaxation factors (cj,i)j,i, outputs w := ((f̄ι)ι, (s̄ι,i)ι,i, (c̄ι,i)ι,i). Now, set i
′ := (A,Wk), xj :=

(
∑

ι,t αj,ι,ttι, u
k,
∑

ι,t αj,ι,tzι,t), wj := (gj , (zj,i)i, (cj,i)i). If for j ∈ [0, r], (i′,xj ,wj) ∈ R̃d,β,t, and

zι =
∑

t∈[k] u
t−1zι,t for ι ∈ [r], then (i,x,w) ∈ R̃r

d,γ,t′ where γ := 2Nβs,tβ, t
′ := 2t+ 1.

Proof. Again, assume without loss of generality that α0 ≡j αj for j ∈ [rk]. Now, reindex α1 . . . ,αrk

into a r × k matrix α1,1, . . . ,αr,k. We write α0 = (α∗1,1, . . . , α
∗
r,k) and thus assume that αv,w =

(α∗1,1, . . . , α
′
v,w, . . . , α

∗
r,k) with α′v,w ̸= α∗v,w. We also reindex (gj)j , (zj,i) accordingly so that gv,w

corresponds the αv,w challenge (note that we skip the 0-th challenge α0).
With these conventions, we let the extractor be the following.
E(tr):
1. For ι ∈ [r], t ∈ [k]:

(a) Let f̄ι,t :=
g0−gι,t
α∗
ι,t−α′

ι,t
.

(b) Let s̄ι,ki+t−1 :=
z0,i−zι,t,i
α∗
ι,t−α′

ι,t
for i ∈ [0, d′].

(c) Let c̄l,ki+t−1 := (α∗ι,t − α′ι,t)c0,icι,t,i for i ∈ [0, d′].
2. Set f̄ι :=

∑
t∈[k] X

t−1fι,t for ι ∈ [r].

3. Return (f̄ι)ι, ((s̄ι,i)i)ι, ((c̄ι,i)i)ι.
First note that by assumption, g0(u

k) =
∑

ι,t α
∗
ι,tzι,t and gv,w(u

k) = α′v,wzv,w +
∑

(ι,t)̸=(v,w) α
∗
ι,tzι,t.

Thus, f̄v,w(u
k) =

g0−gv,w
α∗
v,w−α′

v,w
(uk) = zv,w. Thus, for ι ∈ [r]:

f̄ι(u) =
∑
t∈[k]

ut−1f̄ι,t(u
k) =

∑
t∈[k]

ut−1
g0 − gι,t
αι,t − α′ι,t

(uk) =
∑
t∈[k]

ut−1zι,t = zι .

Now, also by assumption:

Az0,i + g0,ie1 = W−i

∑
(ι,t)

α∗ι,ttι

Azv,w,i + gv,w,ie1 = W−i

α′v,wtv +
∑

(ι,t) ̸=(v,w)

α∗ι,ttι

⇓

A

(
z0,i − zv,w,i

α∗v,w − α′v,w

)
+

(
g0,i − gv,w,i

α∗v,w − α′v,w

)
· e1 = W−(ki+w−1)tv

⇓
As̄v,ki+w−1 + f̄v,ki+w−1e1 = W−(ki+w−1)tv .

Finally, note that ∥c̄ι,is̄ι,i∥ ≤ 2Nβs,tβ by exactly the same reasoning as in Lemma 5.10.

53

5.4.2 Multiple Evaluations at Distinct Points

Next, we consider the dual problem, namely amortising proving many statements of the form
fι(uι) = zι for ι ∈ [r] where u1, . . . , ur can be potentially distinct. Looking at Lemma 5.5, a large
part of the communication complexity is represented by the last round, where the prover has to send
openings s0, . . . , sdh . We amortise this by taking a random linear combination of these openings. As
before, for concrete efficiency reasons, we integrate this within a round of compression.

The relation that we consider is the following:

Rr
d,β :=

 (A,W),

(tι, uι, zι)ι
(fι, sι,i)ι,i

∣∣∣∣∣∣ ∀ι ∈ [r]
((A,W), (tι, uι, zι), (fι, sι,i)ι,i) ∈ Rd,β

 .

The protocol is then described in Figure 8. Now, we show evalMulti has perfect completeness..

Proving Multiple Evaluations at Distinct Points

Prover Verifier∑
t∈[k]

Xt−1hι,t(X
k) := fι(X) for l ∈ [r]

zι,t := hι,t(u
k
ι)

(zι,t)ι,t

α← C := Srk
βC

α

gι :=
∑
t∈[k]

αι,thι,t for ι ∈ [r]

zi :=
∑

ι,t∈[r]×[k]

αι,tsι,t,i for i ∈ [d′]

(gι)ι, (zi)i

Check:

zι =
∑
t∈[k]

ut−1
ι zι,t for ι ∈ [r]

gι(u
k
ι) =

∑
t∈[k]

αι,tzι,t for ι ∈ [r]

Azi +

∑
ι∈[r]

gι,i

 e1 = W−ki

(∑
ι,t

αι,ttι

)
∥zi∥ ≤ w β for i ∈ [0, d′]

Fig. 8: The protocol evalMulti[d, r, k, C, β] for proving evaluations of multiple polynomials at multiple
points. In the above w := maxα∈C∥α∥1 and d′ := (d+ 1)/k − 1.

54

Lemma 5.15 (Completeness). Let Π := evalMulti[d, r, k, C, β]. Then Π is a Σ-protocol with
perfect completeness for Rr

d,β.

Proof. For the first verifier check,

zι = fι(uι) =
∑
t∈[k]

ut−1ι hι,t(u
k
ι) =

∑
t∈[k]

ut−1ι zι,t .

Next, we check that gι evaluates to the correct value.

gι(u
k
ι) =

∑
t∈[k]

αι,thι,t(u
k
ι) =

∑
t∈[k]

αι,tzι,t .

Checking validity of the openings is similarly straightforward:

Azi +

(∑
ι

gι,i

)
e1 = A

(∑
ι,t

αι,tsι,t,i

)
+

(∑
ι,t

αι,thι,t,i

)
e1

=
∑
ι,t

αι,t (Asι,t,i + hι,t,ie1)

=
∑
ι,t

αι,t (Asι,ki+t−1 + fι,ki+t−1e1)

=
∑
ι,t

αι,t

(
W−(ki+t−1)tι

)
= (Wk)−i ·

(∑
ι,t

αι,tW
−(t−1)tι

)
.

Finally, ∥zi∥ =
∥∥∥∑ι,t αι,tsι,t,i

∥∥∥ ≤ w β.

For knowledge soundness, we again define a relaxed opening relation, namely:

R̃r
d,β :=

 (A,W),

(tι, uι, zι)ι
(fι, sι,i, cι,i)ι,i

∣∣∣∣∣∣ ∀ι ∈ [r]

((A,W), (tι, uι, zι), (fι, sι,i, cι,i)ι,i) ∈ R̃d,β,1

 .

Lemma 5.16 (Coordinate-Wise Special Soundness). Let Π := multiEval[d, r, k, C, β] be the
protocol in Figure 7. Then, Π is a rk-coordinate-wise knowledge sound proof system for R̃r

d,2β.

Proof. For j ∈ [0, rk], consider transcripts of the following form:

trj :=

 (zι,t)ι,t
αj

((gj,ι)ι, (zj,i)i)

 with (αj)j ∈ SS(SβC , rk) ,

and again assume, without loss of generality, that the transcripts are arranged so that, for j ∈ [r],
α0 ≡j αj . Reindex and arrange the challenges as in Section 5.4.1.

Consider the following extractor:

55

E(tr0, . . . , trrk):
1. For ι ∈ [r], t ∈ [k]:

(a) Set f̄ι,t :=
g0−gι,t
α∗
ι,t−α′

ι,t
.

(b) Set s̄ι,ki+t−1 :=
z0,i−zι,t,i
α∗
ι,t−α′

ι,t
for i ∈ [0, d′].

(c) Set c̄ι,ki+t−1 := α∗ι,t − α′ι,t for i ∈ [0, d′].
2. Set f̄ι :=

∑
t∈[k] X

t−1f̄ι,t for ι ∈ [r].

3. Return (f̄ι)ι, (s̄ι,i)ι,i, (c̄ι,i)ι,i.

Since the transcripts are accepting, we have that zι =
∑

t∈[k] u
t−1
ι zι,t for ι ∈ [r]. Also, g0,ι(u

k
ι) =∑

t∈[k] α
∗
ι,tzι,t and gv,w,ι(u

k
ι) = α′v,wzv,w +

∑
t̸=w α∗ι,tzι,t. Thus,

g0,ι−gv,w
α∗
v,w−α′

v,w
(ukι) = zv,w. Now,

f̄ι(uι) =
∑
t∈[k]

ut−1ι f̄ι,t(u
k
ι) =

∑
t∈[k]

ut−1ι

g0 − gι,t
α∗ι,t − α′ι,t

(ukι) =
∑
t∈[k]

ut−1ι zι,t = zι .

We also have that

Az0,i +

(∑
ι

g0,ι,i

)
e1 = W−ki

(∑
ι,t

α∗ι,tW
−(t−1)tι

)

Azv,w,i +

(∑
ι

gv,w,ι,i

)
e1 = W−ki

α′v,wW
−(w−1)tv +

∑
ι,t̸=(v,w)

α∗ι,tW
−(t−1)tι

⇓

A

(
z0,i − zv,w,i

α∗v,w − α′v,w

)
+ f̄v,w,ie1 = W−ki

(
W−(w−1)tv

)
⇓

As̄v,ki+w−1 + f̄v,ki+w−1e1 = W−(ki+w−1)tv .

Finally, ∥c̄ι,ki+t−1s̄ι,ki+t−1∥ ≤ ∥z0,i∥+ ∥zι,t,i∥ ≤ 2β as desired.

We can combine these two newly presented protocols with Eval to obtain a protocol for multiple
evaluations. Let u1, . . . , ur ∈ Rq, and suppose we want to show that fι,m(uι) = zι,m for ι ∈ [r],m ∈
[rι] for committed polynomials (fι,m)ι,m. Write ws := maxα←Ss

βC
∥α∥1. The combined protocol runs

(in parallel) multiEval[d, rι, k, S
rι·k
βC

, β] with input (fι,m)m∈[ri] for ι ∈ [r]. This outputs r claims, which

we handle by running Eval[d/k, k, Sk
βC
,wrιk ·β] r-times into parallel. Finally, we run a single instance

of multiEval[d/kh+1, r, k, Srk
βC
, (maxιwrιk) ·wh

k β]. The final complexity of this protocol is summarised
in Table 6.

5.5 Honest-Verifier Zero-Knowledge

We provide a linear-sized Σ-protocol for the relation Rd,β (c.f. Equation (17)) which satisfies honest-
verifier zero-knowledge. Combined with the recursive methodology described above, we can achieve
zero-knowledge succinct proofs of polynomial evaluation. The strategy can identically be applied
when proving knowledge of multiple polynomials at the same query point, which brings resemblance
to [BBC+18].

56

Parameters Instantiation

m ≥ n(1 + q̃) + ω(log λ)

δ q1/O(1)

s > 2Nq
n

m−nq̃
+ 2

N(m−nq̃)

σ0 ≥ δsNnq̃ · ω(
√
2(d+ 1)n(m− nq̃)N log t′N)

σ1 ≥ δσ0N · ω(
√
m′n′ log t′N)

β ≥ σ1
√
m′N

βC < 1
2

√
l/Nql/N

ws sNβC
βh (maxιwrιk) w

h
k wrk ·β

γ 2h+2 · (2βCN)2
h+2−h−3 · βh

βs (2βCN)2
h+2−1

Soundness (Q+ 1) ·
(
(maxι rι+h+r)k

(2βC+1)N

)
Commitment size nN log q ·

∑
ι rι

Proof size (
∑

ι rιkN log q) + r(h+ 1) · (kN log q) + d+1
kh+2 (rN log q +mN log βh)

Table 6: Parameters and complexity of the multi-evaluation protocol.

Recall that we want to prove knowledge of the polynomial f ∈ Rq[X] of degree at most d, and
the openings (si)i∈[0,d] such that f(u) = z and Asi + fie1 = W−it and ∥si∥ ≤ β for i = 0, 1, . . . , d.
In addition to the public matrices (A ∈ Rn×m

q ,W ∈ Rn×n
q), this time the index i contains a short

basis T such that BT = Gn(d+1) where
17

B :=

A −G
. . .

...
WdA −G

 and ∥T∥ ≤ βT . (23)

This is the case when generating the PowerBASIS commitment in Section 4 since the public
parameters are indeed of the form crs := (A,W,T).

We present the protocol in Figure 10. The strategy follows the Fiat-Shamir with Aborts paradigm
[Lyu09] using the generalised rejection sampling from [BTT22]. That is, the prover starts by sampling
uniformly random g := (g0, . . . , gd)← Rd+1

q , which corresponds to coefficients of a uniformly random
polynomial g ∈ Rq[X] of degree at most d. Then, the prover runs the PowerBASIS commitment
algorithm for g (c.f. Figure 4). Namely, it samples

y0
...
yd

t̂y

← SamplePre(B,u,T, σ), where u :=

−g0W
0e1

...
−gdWde1

 ,

and sets ty := Gt̂y. The first message sent by the prover is (ty, v) where v :=
∑d

i=0 giu
i is the

evaluation of g at the point u. Then, the verifier picks a challenge α from the challenge space
C := SβC of short polynomials of infinity norm at most βC .

17 See Lemma 4.1 on how to obtain the bound on ∥T∥. For presentation, we assume the bound βT is known.

57

Next, given a challenge α← C from the verifier, the prover computes

zi := yi + αsi and hi := gi + αfi for i = 0, 1, . . . , d ,

and outputs (zi,hi) after performing the rejection sampling procedure. Note that the distribution
of zi can be written alternatively as:

z0
...
zd
t̂z

 =

y0
...
yd

t̂y

+ α

s0
...
sd
t̂

 where

y0
...
yd

t̂y

← SamplePre

A −G

. . .
...

WdA −G

 ,

−g0W
0e1

...
−gdWde1

 ,T, σ

(24)

and t̂ = G−1(t). Hence, this vector comes from a shifted discrete Gaussian distribution (over a
coset of Λ⊥(B)), where the norm of the shifted vector can be bounded by:∥∥∥∥∥∥∥∥∥α

s0
...
sd
t̂

∥∥∥∥∥∥∥∥∥ ≤ βCN ·

√
(d+ 1)β2 + nq̃N . (25)

This interpretation will be useful when analysing the rejection sampling algorithm.
Finally, the verifier checks whether

Azi + hie1 = W−i(ty + αt) for i = 0, 1, . . . , d

∥zi∥ ≤ βz for i = 0, 1, . . . , d

d∑
i=0

hiu
i = v + αz.

In the following, we give a brief reasoning about completeness, special-soundness and honest-verifier
zero-knowledge.

Completeness. By careful inspection, we can deduce from the third verification check:

d∑
i=0

hiu
i =

d∑
i=0

giu
i + α

d∑
i=0

fiu
i = v + αz ,

and from the second verification check:

Azi + hie1 = Ayi + gie1 + α(Asi + fie1) = W−ity + αW−it = W−i(ty + αt).

What we have left to show is shortness of zi. Take the standard deviation

σ ≥ max
(
O(
√
λ) · βCN ·

√
(d+ 1)β2 + nq̃N, βT · ω(

√
N log tN)

)
(26)

where t = max(n,m). By Lemma 2.20, we can swap the SamplePre algorithm with truly sampling
from a discrete Gaussian. Further, since σ is larger than the shifted vector in (25) by a factor of

58

HVZK Σ-Protocol for Rd,β

Prover Verifier

s := (s0, . . . , sd, t̂) where t̂ := G−1(t)

g := (g0, . . . , gd)←Rd+1
q

v := g0 + g1u+ . . .+ gdu
d

y0

...
yd

t̂y

← SamplePre

A −G

. . .
...

WdA −G

,
−g0W

0e1

...

−gdWde1

 ,T, σ

ty := Gt̂y ty, v

α← C := SβC

α

t̂z := t̂y + αt̂

for i = 0, 1, . . . , d :

zi := yi + αsi

hi := gi + αfi

z := (z1, . . . , zd, t̂z)

ρ← [0, 1)

if ρ > min

(
Dm′N

σ (z)

M · Dm′N
σ,αs (z)

, 1

)
:

z := ⊥

(zi, hi)i∈[0,d]

Check:∑
i∈[0,d]

hiu
i−1 = v + αz

∀i,Azi + hie1 = W−i(ty + αt)

∀i, ∥zi∥ ≤ βz

Fig. 9: The honest-verifier zero-knowledge Σ-protocol for Rd,β. Here, m
′ := (d + 1)m + nq̃ is the

width of the matrix B in (23).

59

O(
√
λ), using rejection sampling (c.f. Lemma 2.11) we enforce the distribution of (z0, . . . , zd, t̂z)

from (24) to be from a discrete Gaussian on Λ⊥u (B) where

u :=

−(g0 + αf0)W
0e1

...
−(gd + αfd)W

de1

 .

Thus, by Lemma 2.20, we can set βz := σ
√
(d+ 1)N . The correctness error becomes ≈ 1/M .

Special-soundness. Given two valid transcripts (ty, v, α, (zi, hi)), (ty, v, α
′, (z′i, h

′
i)) with distinct

challenges α, α′ ∈ C, we can define

s̄i :=
zi − z′i
α− α′

and f̄i :=
hi − h′i
α− α′

for i = 0, 1, . . . , d .

Note that ∥α − α′∥∞ ≤ 2βC. If βC is chosen according to Lemma 2.4 then we deduce that the
difference is invertible over Rq. Further, by construction

f̄(u) =
d∑

i=0

f̄iu
i =

1

α− α′

d∑
i=0

(hi − h′i)u
i =

αz − α′z

α− α′
= z .

Furthermore, for i = 0, 1, . . . , d we have ∥(α− α′)si∥ ≤ 2βz and

As̄i + f̄ie1 =
1

α− α′
(
Azi + hie1 − (Az′i + h′ie1)

)
=

1

α− α′
(
αW−it− α′W−it

)
= W−it .

Thus, (s̄0, . . . , s̄d) along with the message (f̄0, . . . , f̄d) is a relaxed opening for the PowerBASIS
commitment t with the relaxation factor α− α′. Hence, we can extract the witness for the relaxed
relation R̃d,2βz ,1 in (22).

Honest-verifier zero-knowledge. We show how to simulate the transcripts when the verifier behaves
honestly. To this end, we prove the following lemma which is almost analogous to [BTT22, Lemma
B.8].

Lemma 5.17 (Honest-Verifier Zero-Knowledge). Let σ be chosen as in (26) where t =
max(n,m). Then, the output distributions of T and S in Figure 10 are statistically indistinguishable.

Proof. We prove the statement via a standard hybrid argument.

– Hyb0 is identical to T as in Figure 10.

– Hyb1 is identical to Hyb0, but now we define t̂z := t̂y + αt̂, where t̂ := G−1(t), and compute
ty := Gt̂z − αt. By construction, the output distribution of Hyb1 is identical to Hyb0 and
z0
...
zd
t̂z

 =

y0
...
yd

t̂y

+ α

s0
...
sd
t̂

 where

y0
...
yd

t̂y

← SamplePre

A −G

. . .
...

WdA −G

 ,

−g0W
0e1

...
−gdWde1

 ,T, σ

 .

60

T ((A,W,T), (s0, . . . , sd), (f0, . . . , fd), t, u, z)

1: s := (s0, . . . , sd, t̂ := G−1(t))
2: g := (g0, . . . , gd)← Rd+1

q

3: v := g(u)

4:

y0
...
yd

t̂y

← SamplePre

A −G

. . .
...

WdA −G

 ,

−g0W
0e1

...
−gdWde1

 ,T, σ

5: ty := Gt̂y
6: α← C
7: for i = 0, 1, . . . , d :
8: zi := yi + αsi
9: hi := gi + αfi

10: z := (z0, . . . , zd, t̂y + αt̂)
11: ρ← [0, 1)

12: if ρ > min

(
Dm′N

σ (z)

M ·Dm′N
σ,αs (z)

, 1

)
:

13: z := ⊥
14: return (ty, v, α, (hi, zi)i∈[0,d])

S((A,W,T), t, u, z)

1: h := (h0, . . . , hd)← Rd+1
q

2:

z0
...
zd
t̂z

← SamplePre

A −G

. . .
...

WdA −G

 ,

−h0W
0e1

...
−hdWde1

 ,T, σ

3: α← C
4: ty := Gt̂z − αt
5: v := h(u)− αz
6: ρ← [0, 1)
7: if ρ > 1/M :
8: z := ⊥
9: return (ty, v, α, (hi, zi)i∈[0,d])

Fig. 10: Simulating the transcripts from the Σ-protocol described in Figure 10.

– Hyb2 is identical to Hyb1, but now we compute
z0
...
zd
t̂z

 =

y0
...
yd

t̂y

+ α

s0
...
sd
t̂

 where

y0
...
yd

t̂y

←
A −G

. . .
...

WdA −G

−1

σ

−g0W

0e1
...

−gdWde1

 .

By Lemma 2.20, Hyb1 and Hyb2 are statistically close.
– Hyb3 is identical to Hyb2, but here we directly sample

z0
...
zd
t̂z

←
A −G

. . .
...

WdA −G

−1

σ

−(g0 + αf0)W

0e1
...

−(gd + αfd)W
de1

and with probability 1/M we output z := ⊥. By the generalised rejection sampling (c.f.
Lemma 2.11), Hyb3 and Hyb2 are statistically close.

61

– Hyb4 is identical to Hyb3, except now we efficiently sample:
z0
...
zd
t̂z

← SamplePre

A −G

. . .
...

WdA −G

 ,

−(g0 + αf0)W
0e1

...
−(gd + αfd)W

de1

 ,T, σ

 .

As before, by Lemma 2.20 we deduce that Hyb4 and Hyb3 are statistically close.
– Hyb5 is identical to Hyb4, except now we define hi := gi − αfi for i = 0, 1, . . . , d. Thus,

z0
...
zd
t̂z

← SamplePre

A −G

. . .
...

WdA −G

 ,

−h0W
0e1

...
−hdWde1

 ,T, σ

 .

Furthermore, we set v := h(v) − αz. Clearly, the output distributions of Hyb5 and Hyb4 are
identical.

– Hyb6 is identical to Hyb5, but now we sample each hi ← Rq uniformly at random. Since in Hyb5
each gi was sampled uniformly at random from Rq, we conclude that the output distributions of
Hyb6 and Hyb5 are identical.

Finally, the output distribution of Hyb6 is identical to the one by S which ends the proof.

Remark 5.18. Similarly as in Section 5.4, we can combine the HVZK protocol with one round of
folding to minimise the total round complexity, and thus the extracted norm growth. This yields an
almost identical protocol as in [BBC+18].

5.6 Polynomial Commitments over Finite Fields

So far we showed how to commit and prove evaluations of polynomials over the cyclotomic ring Rq.
We now present how to build polynomial commitments over finite fields of specific form. This will
be useful when combining with Polynomial IOPs to obtain succinct arguments of knowledge.

Suppose q is a prime which satisfies q ≡ 2N/l + 1 (mod 4N/l) for some positive divisor l of N .
Then by [LS18, Corollary 1.2], the polynomial XN + 1 factors as:

XN + 1 ≡
N/l∏
i=1

(X l − ri) (mod q)

for distinct ri ∈ Z∗q where all X l − ri are irreducible in the ring Zq[X]. Further, by the Chinese

Remainder Theorem, there exists a ring isomorphism φ : FN/l → Rq where F is a finite field of size
ql. Consider the restricted function:

φF : F→ Rq

x 7→ ϕ(x, 0, . . . , 0).

By construction, the image of φF can be described as

Sq := Im(φF) = {ϕ(x, 0, . . . , 0) : x ∈ F} .

The following simple lemma states that Sq is an ideal of Rq.

62

Lemma 5.19. The set Sq ⊆ Rq defined above is an ideal.

Proof. The fact that Sq is an additive subgroup of Rq follows directly from the additively homomor-
phic properties of φ. Now let a ∈ Sq, i.e. φ(x, 0, . . . , 0) = a for some x ∈ F. Further, take arbitrary
γ ∈ Rq and let (γ1, . . . , γN/l) := φ−1(γ). Then, by the multiplicative homomorphism of φ we get

γ · a = φ(γ1, . . . , γN/l) · φ(x, 0, . . . , 0) = φ(γ1x, 0, . . . , 0) = φF(γ1x) ∈ Sq ,

which concludes the proof.

Suppose we want to commit to a polynomial F :=
∑d

i=0 FiX
i ∈ F[X] of degree at most d, and prove

evaluation F (x) = y for x, y ∈ F. By the homomorphic property of φF, this is equivalent to proving
f(u) = z over Rq where

f [X] =
∑d

i=0 φF(Fi)X
i ∈ Sq[X]

u = φF(x) ∈ Sq
z = φF(y) ∈ Sq

.

Hence, we can commit to the polynomial f ∈ Rq[X] and prove evaluation of u at the point z as
before. What is new is that we additionally need to prove that coefficients of f indeed lie in Sq.
Therefore, we are interested in a stronger relation:((A,W), (t, u, z), (f, (si)i))

∣∣∣∣ f(u) = z ∧ f ∈ Sq[X]
∀i ∈ [0, d],Asi + fie1 = W−it

∧∥si∥ ≤ β

 . (27)

We show how to modify the protocol in Figure 6 to accommodate for this change. Actually, the
interaction between the prover and the verifier stays the same but the verifier additionally performs
a check whether the final polynomial fh ∈ Rq[X] sent by the prover has coefficients in Sq.

Completeness follows by induction. We start with the initial polynomial f0 := f ∈ Sq[X]. Then
for each r ∈ [h], the prover computes the polynomial fr ∈ Rq[X] as a linear combination of “partial
terms” of fr−1:

fr :=
∑
t∈[k]

αr,tfr−1,t .

If fr−1 ∈ Sq[X], then by Lemma 5.19 we deduce that fr ∈ Sq[X].
To argue (coordinate-wise) special soundness, consider the extractor in the proof of Lemma 5.6.

The coefficients of the extracted polynomial f are computed as

f2i :=
α1g0,i − α0g1,i

α1 − α0
, f2i+1 :=

g0,i − g1,i
α0 − α1

for i ∈ [0, d/2] .

If polynomials g0 and g1 have coefficients in Sq, then again by Lemma 5.19 we can deduce that
f ∈ Sq[X]. Identical argument holds when analysing Lemma 5.10.

Finally, to support honest-verifier zero-knowledge in Figure 9, we let the prover pick uniformly
random elements gi from Sq instead of Rq in order to fully mask the coefficients fi. Thus, by
construction and Lemma 5.19, hi = gi +αfi ∈ Sq for all i = 0, . . . , d. Hence, the verifier additionally
performs the check whether coefficients hi lie in Sq.

63

6 Concrete Instantiation and Applications to Marlin

Hardness of PowerBASIS. In parameter selection, we make a heuristic assumption that PowerBASIS
is exactly as hard as MSIS. Hence, one should treat our computed sizes only as intuition on how
practical the polynomial commitment is.

In the literature, hardness of the MSIS problems is often analysed identically as the plain SIS
since, so far, the best known attacks do not make use of the algebraic structure of the polynomial ring
[ADPS16]. We follow the methodology from Dilithium [DKL+18, Appendix C]. That is,MSISn,m,N,q,β

for matrix A is equivalent to finding a non-trivial vector of norm smaller than β in the lattice
Λ := Λ⊥(A). In order to find short non-trivial vectors in Λ, we apply the Block-Korkine-Zolotarev
algorithm (BKZ) [SE94; CN11]. As a subroutine, BKZ uses an algorithm for the shortest vector
problem (SVP) in lattices of dimension b, where b is called the block size. If we apply the best known
algorithm for solving SVP with no memory constraints by Becker et al. [BDGL16], the time required
by BKZ to run on the mN -dimensional lattice Λ with block size b is given by 8mN · 20.292b+16.4 (one
also considers a more conservative variant with runtime 20.292b). The algorithm outputs a vector of

norm δmN
rhf det(Λ)

1
mN where δrhf is the root Hermite factor and it is given by

δrhf =

(
b(πb)1/b

2πe

) 1
2(b−1)

. (28)

For our usual parameter selection, the probability that a random matrix A ∈ Rn×m
q is of full rank

is overwhelming (see [EZS+19, Appendix C]) and thus det(Λ) = qnN . Next, Micciancio and Regev
[MR09] show that

δmN
rhf det(Λ)

1
mN = δmN

rhf q
nN
mN ≥ 22

√
nN log q log δ

and the equality holds when mN =
√

nN log q/ log δ. Hence, given a bound β < q we compute

δrhf from the equation β = 22
√
nN log q log δ. Next, we calculate the minimum block size b from

Equation (28), and thus we get the total time for BKZ to solve MSISn,m,N,q,β. Hereafter, we will
refer to the “aggressive strategy” to set PowerBASIS as the one using the estimate from Becker et
al. [BDGL16], and to the the “conservative strategy” as the one using 20.292b.

Parameters. Using a combination of randomised and exhaustive search, we found parameters for
the schemes in Theorem 5.8 and Theorem 5.12. In Table 7 we detail the parameters obtained for the
scheme presented in Theorem 5.12 and in Table 8 for that in Theorem 5.8. Since we aim to support
prime order fields, by the reasoning in Section 5.6 we require that q ≡ 2N + 1 (mod 4N). We also
require, for soundness, that the preconditions of Lemma 5.9 holds, when l = 1. Since our moduli are
quite large, this can be easily verified. We stress that these parameters are presented to give the
reader an indication of the concrete efficiency of the scheme. The commitments have sizes on the
order of hundreds of kilobytes, while evaluation proofs are on the order of a few megabytes, and
so are larger than desirable in most applications. We also emphasise that the assumption that the
hardness of PowerBASIS is as hard as MSIS is an heuristic, and thus, until this heuristic is backed or
disproved by sufficient cryptanalysis, the sizes should be considered as an optimistic lower bound.

Applications to Polynomial IOPs. Marlin [CHM+20] is a widely deployed preprocessing zkSNARK.
As many modern constructions, Marlin is constructed by combining two ingredients:
– a polynomial interactive oracle proof (PIOP) (therein a algebraic holographic proof);

64

k h d λ Q n m N δ log q 2γβs β s βC βh |t| |π|
1024 2 220 80 64 188 5271 32 13 234 225 155 29 4 183 172 KB 5.5 MB
1024 3 230 80 64 325 7807 32 24 376 376 221 51 4 263 477 KB 12.2 MB

1024 2 220 128 64 255 5745 32 18 256 252 173 37 5 204 255 KB 6.5 MB
1024 3 230 128 64 376 9031 32 26 404 404 229 54 5 275 593 KB 14.2 MB

Table 7: Parameters and concrete sizes for the polynomial commitment described in Theorem 5.12.
δ, norms and standard deviation given in log form.

h d λ n m N δ log q 2γβs β s βh t |t| |cc|
20 220 80 48 1159 256 33 512 477 236 68 276 18 768 KB 187.0 MB
30 230 80 36 871 512 48 758 711 320 100 380 16 1.7 MB 368.0 MB

20 220 128 58 1399 256 33 513 478 237 69 277 28 930 KB 349.3 MB
30 230 128 41 991 512 46 719 701 310 94 370 26 1.8 MB 651.7 MB

Table 8: Parameters and concrete sizes for the interactive polynomial commitment in Theorem 5.8.
δ, norms and standard deviation given in log form.

– and a polynomial commitment scheme.

An interactive oracle proof (IOP) is a generalisation of both probabilistically checkable proofs and
interactive proofs. Informally, they are interactive protocols between a prover and a verifier, in which
the prover sends oracle messages, which the verifier is allowed to not read in their entirety. A PIOP
is simply an IOP where the prover messages are guaranteed to be (low degree) polynomials. IOPs
and PIOPs are information theoretic object, and as such inherit a number of efficiency limitations
(for example, IOP proof length are required to be at least linear in the size of the instance), but can
be compiled using cryptography (see [BCS16]) to obtain arguments that are both asymptotically
and concretely efficient. Informally, to compile a PIOP into an interactive argument, the prover
can commit to each polynomial oracle using a polynomial commitment scheme, and then prove to
the verifier that the evaluations (at points chosen by the verifier) are as claimed. Then, to obtain a
NARK, we can apply the Fiat-Shamir transformation to this interactive protocol. We can thus aim
to use our polynomial commitment scheme in Theorem 5.12 as an ingredient of Marlin to obtain a
zkSNARK for R1CS. Let d denote the size of the R1CS instance that we aim to prove. As detailed in
[CHM+20, Section 9], Marlin after compilation has commitments to 19 total polynomials of degree
at most 6d. The prover has then to produce 19 evaluations proofs for these polynomials, at three
distinct points. We can thus apply the techniques in Section 5.4 to batch evaluations together and
amortise the cost of the last round. In Table 9 we compute parameters for Marlin instantiated using
our polynomial commitment scheme and the PIOP therein described. Again, these sizes are meant
to give a rough estimate of the concrete efficiency of the scheme, and the same caveats apply as

k h d λ Q n m N δ log q 2γβs β s βC βh |t| |π|
[64, 256, 384] 1 220 80 64 322 7735 32 24 372 372 205 50 4 259 8.2 MB 12.0 MB
[16, 512, 512, 1536] 2 230 80 64 518 14770 32 32 600 599 262 67 4 336 21.3 MB 37.2 MB

[64, 256, 384] 1 220 128 64 399 9583 32 26 402 401 213 53 5 272 11.0 MB 14.7 MB
[16, 512, 512, 1536] 2 230 128 64 598 16153 32 38 667 666 284 77 5 363 27.4 MB 42.7 MB

Table 9: Parameters and concrete sizes for Marlin when instantiated with the commitment described
in Theorem 5.12 with amortisation as in Table 6. δ, norms and standard deviation given in log form.
Folding factor varies across rounds as mentioned in Remark 5.4

65

with the polynomial commitment scheme. We also note that Marlin operates over fields with a large
multiplicative (or additive) subgroup with smooth order, which imposes an additional requirement
on the size of q. Since our moduli are again quite large, this additional requirement is immaterial.

Falsifiable version of PowerBASIS. Note that the challenger in the PowerBASIS game from Section 3
is not efficient since it needs to sample a random trapdoor T according to a discrete Gaussian
distribution. In order to make the assumption falsifiable, one could let the challenger sample
efficiently using the SamplePre algorithm, e.g. as in the Setup algorithm of Figure 4, and only ensure
that the sampled matrix A from (A,R)← TrapGen(n,m) is computationally indistinguishable from
random. Thus, we would rely on the Module-LWE [LS15] as opposed to the regularity lemma (c.f.
Lemma 2.7), which results in picking moderately smaller values for m. However, we do not apply
this heuristic in our parameter selection.

References

[ACK21] T. Attema, R. Cramer, and L. Kohl. “A Compressed $\varSigma $-Protocol Theory for Lattices”. In:
CRYPTO (2). Vol. 12826. Lecture Notes in Computer Science. Springer, 2021, pp. 549–579.

[ACL+22] M. R. Albrecht, V. Cini, R. W. F. Lai, G. Malavolta, and S. A. K. Thyagarajan. “Lattice-Based SNARKs:
Publicly Verifiable, Preprocessing, and Recursively Composable - (Extended Abstract)”. In: CRYPTO
(2). Vol. 13508. Lecture Notes in Computer Science. Springer, 2022, pp. 102–132.

[ADPS16] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. “Post-quantum Key Exchange - A New Hope”.
In: USENIX Security Symposium. USENIX Association, 2016, pp. 327–343.

[AF22] T. Attema and S. Fehr. “Parallel Repetition of (k1, . . . , kµ)-Special-Sound Multi-Round Interactive
Proofs”. In: CRYPTO (1). Vol. 13507. Lecture Notes in Computer Science. Springer, 2022, pp. 415–443.

[AFK22] T. Attema, S. Fehr, and M. Klooß. Fiat-Shamir Transformation of Multi-round Interactive Proofs. 2022.
[Ajt96] M. Ajtai. “Generating hard instances of lattice problems”. In: Proceedings of the 28th Annual ACM

Symposium on the Theory of Computing. STOC ’96. 1996, pp. 99–108.
[AKSY22] S. Agrawal, E. Kirshanova, D. Stehlé, and A. Yadav. “Practical, Round-Optimal Lattice-Based Blind

Signatures”. In: CCS. ACM, 2022, pp. 39–53.
[AL21] M. R. Albrecht and R. W. F. Lai. “Subtractive Sets over Cyclotomic Rings - Limits of Schnorr-Like

Arguments over Lattices”. In: CRYPTO (2). Vol. 12826. Lecture Notes in Computer Science. Springer,
2021, pp. 519–548.

[ALS20] T. Attema, V. Lyubashevsky, and G. Seiler. “Practical Product Proofs for Lattice Commitments”. In:
CRYPTO (2). Vol. 12171. Lecture Notes in Computer Science. Springer, 2020, pp. 470–499.

[BBB+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs: Short Proofs for
Confidential Transactions and More”. In: IEEE Symposium on Security and Privacy. 2018, pp. 315–334.

[BBC+18] C. Baum, J. Bootle, A. Cerulli, R. del Pino, J. Groth, and V. Lyubashevsky. “Sub-linear Lattice-Based
Zero-Knowledge Arguments for Arithmetic Circuits”. In: CRYPTO. 2018, pp. 669–699.

[BBHR19] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. “Scalable Zero Knowledge with No Trusted
Setup”. In: Proceedings of the 39th Annual International Cryptology Conference. CRYPTO ’19. 2019,
pp. 733–764.

[BCC+16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-Knowledge Arguments for
Arithmetic Circuits in the Discrete Log Setting”. In: EUROCRYPT. 2016, pp. 327–357.

[BCFL22] D. Balbás, D. Catalano, D. Fiore, and R. W. F. Lai. Functional Commitments for Circuits from Falsifiable
Assumptions. Cryptology ePrint Archive, Paper 2022/1365. https://eprint.iacr.org/2022/1365.
2022. url: https://eprint.iacr.org/2022/1365.

[BCHO22] J. Bootle, A. Chiesa, Y. Hu, and M. Orrù. “Gemini: Elastic SNARKs for Diverse Environments”. In:
Proceedings of the 41st Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’22. 2022, pp. 427–457.

[BCI+13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. “Succinct Non-Interactive Arguments
via Linear Interactive Proofs”. In: Proceedings of the 10th Theory of Cryptography Conference. TCC ’13.
2013, pp. 315–333.

66

https://eprint.iacr.org/2022/1365
https://eprint.iacr.org/2022/1365

[BCK+14] F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven. “Better Zero-Knowledge
Proofs for Lattice Encryption and Their Application to Group Signatures”. In: ASIACRYPT. 2014,
pp. 551–572.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”. In: Proceedings of the 14th
Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BCS21] J. Bootle, A. Chiesa, and K. Sotiraki. “Sumcheck Arguments and Their Applications”. In: CRYPTO (1).
Vol. 12825. Lecture Notes in Computer Science. Springer, 2021, pp. 742–773.

[BDGL16] A. Becker, L. Ducas, N. Gama, and T. Laarhoven. “New directions in nearest neighbor searching with
applications to lattice sieving”. In: SODA. SIAM, 2016, pp. 10–24.

[BDK+18] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and
D. Stehlé. “CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based KEM”. In: 2018 IEEE European
Symposium on Security and Privacy, EuroS&P. 2018, pp. 353–367.

[BDL+18] C. Baum, I. Damg̊ard, V. Lyubashevsky, S. Oechsner, and C. Peikert. “More Efficient Commitments
from Structured Lattice Assumptions”. In: SCN. 2018, pp. 368–385.

[BF22] B. Bünz and B. Fisch. Multilinear Schwartz-Zippel mod N with Applications to Succinct Arguments.
Cryptology ePrint Archive, Paper 2022/458. https://eprint.iacr.org/2022/458. 2022. url: https:
//eprint.iacr.org/2022/458.

[BFS20] B. Bünz, B. Fisch, and A. Szepieniec. “Transparent SNARKs from DARK Compilers”. In: EUROCRYPT
(1). Vol. 12105. Lecture Notes in Computer Science. Springer, 2020, pp. 677–706.

[BLNS20] J. Bootle, V. Lyubashevsky, N. K. Nguyen, and G. Seiler. “A Non-PCP Approach to Succinct Quantum-
Safe Zero-Knowledge”. In: CRYPTO (2). Vol. 12171. Lecture Notes in Computer Science. Springer, 2020,
pp. 441–469.

[BLNS23] J. Bootle, V. Lyubashevsky, N. K. Nguyen, and A. Sorniotti. A Framework for Practical Anonymous
Credentials from Lattices. To appear at CRYPTO 2023. https://eprint.iacr.org/2023/560. 2023.
url: https://eprint.iacr.org/2023/560.

[BS22] W. Beullens and G. Seiler. “LaBRADOR: Compact Proofs for R1CS from Module-SIS”. In: (2022).
https://eprint.iacr.org/2022/1341. url: https://eprint.iacr.org/2022/1341.

[BTT22] C. Boschini, A. Takahashi, and M. Tibouchi. “MuSig-L: Lattice-Based Multi-signature with Single-
Round Online Phase”. In: CRYPTO (2). Vol. 13508. Lecture Notes in Computer Science. Springer, 2022,
pp. 276–305.

[CHM+20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. “Marlin: Preprocessing zkSNARKs
with Universal and Updatable SRS”. In: Proceedings of the 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 738–768.

[CN11] Y. Chen and P. Q. Nguyen. “BKZ 2.0: Better Lattice Security Estimates”. In: ASIACRYPT. Vol. 7073.
Lecture Notes in Computer Science. Springer, 2011, pp. 1–20.

[CP22] L. de Castro and C. Peikert. “Functional Commitments for All Functions, with Transparent Setup”. In:
IACR Cryptol. ePrint Arch. (2022), p. 1368.

[DFM20] J. Don, S. Fehr, and C. Majenz. “The Measure-and-Reprogram Technique 2.0: Multi-round Fiat-Shamir
and More”. In: CRYPTO (3). Vol. 12172. Lecture Notes in Computer Science. Springer, 2020, pp. 602–
631.

[DKL+18] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé. “CRYSTALS-
Dilithium: A Lattice-Based Digital Signature Scheme”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018.1 (2018), pp. 238–268.

[DLP14] L. Ducas, V. Lyubashevsky, and T. Prest. “Efficient Identity-Based Encryption over NTRU Lattices”.
In: ASIACRYPT. 2014, pp. 22–41.

[ENS20] M. F. Esgin, N. K. Nguyen, and G. Seiler. “Practical Exact Proofs from Lattices: New Techniques to
Exploit Fully-Splitting Rings”. In: ASIACRYPT (2). 2020, pp. 259–288.

[EZS+19] M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu. “MatRiCT: Efficient, Scalable and
Post-Quantum Blockchain Confidential Transactions Protocol”. In: CCS. ACM, 2019, pp. 567–584.

[FHK+20] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Prest, T. Pornin, T. Ricosset, G. Seiler,
W. Whyte, and Z. Zhang. Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU. Tech. rep.
https:/https://falcon-sign.info/falcon.pdf. 2020.

[FS86] A. Fiat and A. Shamir. “How to Prove Yourself: Practical Solutions to Identification and Signature
Problems”. In: CRYPTO. 1986, pp. 186–194.

[GLS+21] A. Golovnev, J. Lee, S. T. V. Setty, J. Thaler, and R. S. Wahby. “Brakedown: Linear-time and
post-quantum SNARKs for R1CS”. In: IACR Cryptol. ePrint Arch. (2021), p. 1043.

67

https://eprint.iacr.org/2022/458
https://eprint.iacr.org/2022/458
https://eprint.iacr.org/2022/458
https://eprint.iacr.org/2023/560
https://eprint.iacr.org/2023/560
https://eprint.iacr.org/2022/1341
https://eprint.iacr.org/2022/1341

[GMNO18] R. Gennaro, M. Minelli, A. Nitulescu, and M. Orrù. “Lattice-Based zk-SNARKs from Square Span
Programs”. In: Proceedings of the 25th ACM Conference on Computer and Communications Security.
CCS ’18. 2018, pp. 556–573.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. “Trapdoors for hard lattices and new cryptographic
constructions”. In: STOC. 2008, pp. 197–206.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. “NTRU: A Ring-Based Public Key Cryptosystem”. In:
ANTS. Vol. 1423. Lecture Notes in Computer Science. Springer, 1998, pp. 267–288.

[ISW21] Y. Ishai, H. Su, and D. J. Wu. “Shorter and Faster Post-Quantum Designated-Verifier zkSNARKs from
Lattices”. In: CCS. ACM, 2021, pp. 212–234.

[JRLS22] C. Jeudy, A. Roux-Langlois, and O. Sanders. Lattice Signature with Efficient Protocols, Application to
Anonymous Credentials. Cryptology ePrint Archive, Paper 2022/509. https://eprint.iacr.org/2022/
509. 2022. url: https://eprint.iacr.org/2022/509.

[Kat21] S. Katsumata. “A New Simple Technique to Bootstrap Various Lattice Zero-Knowledge Proofs to QROM
Secure NIZKs”. In: CRYPTO (2). Vol. 12826. Lecture Notes in Computer Science. Springer, 2021,
pp. 580–610.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. “Constant-Size Commitments to Polynomials and Their
Applications”. In: ASIACRYPT. Vol. 6477. Lecture Notes in Computer Science. Springer, 2010, pp. 177–
194.

[LMS22] R. W. F. Lai, G. Malavolta, and N. Spooner. “Quantum Rewinding for Many-Round Protocols”. In:
TCC (1). Vol. 13747. Lecture Notes in Computer Science. Springer, 2022, pp. 80–109.

[LN22] V. Lyubashevsky and N. K. Nguyen. “BLOOM: Bimodal Lattice One-out-of-Many Proofs and Ap-
plications”. In: ASIACRYPT (4). Vol. 13794. Lecture Notes in Computer Science. Springer, 2022,
pp. 95–125.

[LNP22] V. Lyubashevsky, N. K. Nguyen, and M. Plançon. “Lattice-Based Zero-Knowledge Proofs and Applica-
tions: Shorter, Simpler, and More General”. In: CRYPTO (2). Vol. 13508. Lecture Notes in Computer
Science. Springer, 2022, pp. 71–101.

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. “A Toolkit for Ring-LWE Cryptography”. In: EUROCRYPT.
2013, pp. 35–54.

[LRY16] B. Libert, S. C. Ramanna, and M. Yung. “Functional Commitment Schemes: From Polynomial Commit-
ments to Pairing-Based Accumulators from Simple Assumptions”. In: ICALP. Vol. 55. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016, 30:1–30:14.

[LS15] A. Langlois and D. Stehlé. “Worst-case to average-case reductions for module lattices”. In: Des. Codes
Cryptogr. 75.3 (2015), pp. 565–599.

[LS18] V. Lyubashevsky and G. Seiler. “Short, Invertible Elements in Partially Splitting Cyclotomic Rings
and Applications to Lattice-Based Zero-Knowledge Proofs”. In: EUROCRYPT (1). Springer, 2018,
pp. 204–224.

[LS19] V. Lyubashevsky and G. Seiler. “NTTRU: Truly Fast NTRU Using NTT”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2019.3 (2019), pp. 180–201.

[LTV12] A. López-Alt, E. Tromer, and V. Vaikuntanathan. “On-the-fly multiparty computation on the cloud via
multikey fully homomorphic encryption”. In: STOC. 2012, pp. 1219–1234.

[Lyu09] V. Lyubashevsky. “Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures”.
In: ASIACRYPT. 2009, pp. 598–616.

[Lyu12] V. Lyubashevsky. “Lattice Signatures Without Trapdoors”. In: EUROCRYPT. 2012, pp. 738–755.
[MP12] D. Micciancio and C. Peikert. “Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller”. In: EURO-

CRYPT. 2012, pp. 700–718.
[MR07] D. Micciancio and O. Regev. “Worst-Case to Average-Case Reductions Based on Gaussian Measures”.

In: SIAM Journal on Computing 37 (1 2007), pp. 267–302.
[MR09] D. Micciancio and O. Regev. “Lattice-based Cryptography”. In: Post-Quantum Cryptography. Ed.

by D. J. Bernstein, J. Buchmann, and E. Dahmen. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 147–191. isbn: 978-3-540-88702-7. doi: 10.1007/978- 3- 540- 88702- 7_5. url: https:
//doi.org/10.1007/978-3-540-88702-7_5.

[NS22] N. K. Nguyen and G. Seiler. “Practical Sublinear Proofs for R1CS from Lattices”. In: CRYPTO (2).
Vol. 13508. Lecture Notes in Computer Science. Springer, 2022, pp. 133–162.

[PPS21] C. Peikert, Z. Pepin, and C. Sharp. “Vector and Functional Commitments from Lattices”. In: TCC (3).
Vol. 13044. Lecture Notes in Computer Science. Springer, 2021, pp. 480–511.

68

https://eprint.iacr.org/2022/509
https://eprint.iacr.org/2022/509
https://eprint.iacr.org/2022/509
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5

[SE94] C.-P. Schnorr and M. Euchner. “Lattice basis reduction: Improved practical algorithms and solving
subset sum problems”. In: Math. Program. 66 (1994), pp. 181–199.

[Sei18] G. Seiler. “Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography”. In: IACR
Cryptology ePrint Archive 2018 (2018). http://eprint.iacr.org/2018/039, p. 39.

[Set20] S. Setty. “Spartan: Efficient and general-purpose zkSNARKs without trusted setup”. In: Proceedings
of the 40th Annual International Cryptology Conference. CRYPTO ’20. Referencing Cryptology ePrint
Archive, Report 2019/550, revision from 2020.02.28. 2020, pp. 704–737.

[SS13] D. Stehlé and R. Steinfeld. “Making NTRUEncrypt and NTRUSign as Secure as Standard Worst-Case
Problems over Ideal Lattices”. In: IACR Cryptol. ePrint Arch. (2013), p. 4.

[SSEK22] R. Steinfeld, A. Sakzad, M. F. Esgin, and V. Kuchta. Private Re-Randomization for Module LWE
and Applications to Quasi-Optimal ZK-SNARKs. Cryptology ePrint Archive, Paper 2022/1690. https:
//eprint.iacr.org/2022/1690. 2022. url: https://eprint.iacr.org/2022/1690.

[WW23] H. Wee and D. J. Wu. “Succinct Vector, Polynomial, and Functional Commitments from Lattices”. In:
EUROCRYPT (3). Vol. 14006. Lecture Notes in Computer Science. Full version: https://eprint.iacr.
org/2022/1515. Springer, 2023, pp. 385–416.

69

https://eprint.iacr.org/2022/1690
https://eprint.iacr.org/2022/1690
https://eprint.iacr.org/2022/1690
https://eprint.iacr.org/2022/1515
https://eprint.iacr.org/2022/1515

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.2.1 BASIS Commitment Scheme
	1.2.2 Framework for Proving Polynomial Evaluations
	1.2.3 Polynomial Commitments over Finite Fields

	1.3 Related Works
	1.4 Paper Organisation

	2 Preliminaries
	2.1 Lattices
	2.2 Power-of-Two Cyclotomic Rings
	2.3 Discrete Gaussian Distributions
	2.4 Hardness Assumptions
	2.5 NTRU Lattices
	2.6 Gadget Trapdoors
	2.7 Commitment Scheme
	2.8 Polynomial Commitment Scheme
	2.9 Interactive Proofs
	2.10 Coordinate-Wise Special-Soundness

	3 Power-BASIS Assumption
	3.1 Hardness of BASIS for Low Dimensions
	3.2 Higher Dimensions

	4 Power-BASIS Commitment Scheme
	4.1 Security Analysis

	5 Efficient Proofs of Polynomial Evaluation
	5.1 Framework for Proving Evaluations
	5.2 Monomial Protocol
	5.3 Large Sampling Set
	5.4 Batching Evaluations
	5.4.1 Multiple Evaluations at a Single Point
	5.4.2 Multiple Evaluations at Distinct Points

	5.5 Honest-Verifier Zero-Knowledge
	5.6 Polynomial Commitments over Finite Fields

	6 Concrete Instantiation and Applications to Marlin
	References

