
Towards Topology-Hiding Computation from Oblivious Transfer

Marshall Ball∗ Alexander Bienstock† Lisa Kohl‡ Pierre Meyer§

June 6, 2023

Abstract

Topology-Hiding Computation (THC) enables parties to securely compute a function on an
incomplete network without revealing the network topology. It is known that secure computation
on a complete network can be based on oblivious transfer (OT), even if a majority of the
participating parties are corrupt. In contrast, THC in the dishonest majority setting is only
known from assumptions that imply (additively) homomorphic encryption, such as Quadratic
Residuosity, Decisional Diffie-Hellman, or Learning With Errors.

In this work we move towards closing the gap between MPC and THC by presenting a
protocol for THC on general graphs secure against all-but-one semi-honest corruptions from
constant-round constant-overhead secure two-party computation. Our protocol is therefore the
first to achieve THC on arbitrary networks without relying on assumptions with rich algebraic
structure. As a technical tool, we introduce the notion of locally simulatable MPC, which we
believe to be of independent interest.

1 Introduction
A secure multi-party computation (MPC) protocol enables a set of mutually distrusting parties with
private inputs to jointly perform a computation over their inputs such that no adversarial coalition
can learn anything beyond the output of the computation. Results in the 1980s showed that, under
widely-believed assumptions, any function that can be feasibly computed can be computed securely
[Yao82, GMW87, BGW88, CCD88].

However, these early protocols and most of the subsequent work (as well as their corresponding
security definitions), assume that the communication graph is a complete network: any two parties
can communication directly. In many situations communication networks are incomplete and,
additionally, the structure of the communication network itself may be sensitive information which
the participants desire to keep private (e.g. network topology may reveal information about users’
locations, or relationships between users).

Topology hiding computation. Moran et al. [MOR15] noticed that there situations where
the communication network should additionally be kept private: secure computation over a social

∗New York University, USA. E-mail: marshall.ball@cs.nyu.edu.
†New York University, USA. E-mail: abienstock@cs.nyu.edu.
‡CWI, Cryptology Group, Amsterdam, The Netherlands. E-mail: lisa.kohl@cwi.nl.
§FACT Center, Reichman University, Israel and IRIF, Université Paris Cité, CNRS, France. E-mail:

pierre.meyer@irif.fr.

network about the social network, securely computing a function individual location data, low
locality MPC [BBC+19]. Motivated as such, Moran et al. [MOR15] then formalized the notion
of topology-hiding computation (THC), where parties can securely compute a function without
revealing anything about the communication network (graph), beyond the immediate neighbors
they are communicating with and what can be derived from the output of the function computed
(which might be either topology independent, such as a message broadcast, or topology dependent,
such as a routing table). In general, we say that a protocol is topology-hiding with respect to a
class of graphs, if nothing is revealed beyond membership in that parties only see their immediate
neighborhood and wish to jointly compute a function without revealing anything about the graph
topology beyond what can be derived from the output (which might be topology independent, e.g.,
a message broadcast, or topology dependent, e.g., a routing table).

It turns out that even simply broadcasting a message to all parties in topology-hiding manner
(with no privacy guarantees on the information sent) is challenging, even in the semi-honest setting
where adversarial parties are assumed to follow the protocol execution.1 But exactly how difficult
it is to construct THC protocols remains poorly understood. In this vein, a line of work has sought
to investigate the following question:

Is semi-honest MPC equivalent to semi-honest THC?
Are additional assumptions required to make a secure computation topology-hiding?

The feasibility of semi-honest MPC (for arbitrary functions) obeys a dichotomy based on the
number of corruptions and following this we can collect the work on semi-honest THC into two
categories.

• Honest majority (< n/2 corruptions): In this regime, we know that semi-honest MPC (on
fully connected networks) can be achieved information-theoretically [BGW88, CCD88, RB89].
For THC (on arbitrary, connected communciation graphs) it has been shown that key agree-
ment is necessary with even just one corruption [BBC+20]. On the other hand, information-
theoretic THC with a single corruption is possible if (and only if) one is promised that the
communication graph is two-connected [BBC+20] (albeit at high cost).
For single corruption, key agreement is not just necessary but sufficient to achieve THC (on
arbitrary connected graphs). [BBC+20] For a constant number of corruptions, THC is possible
(on arbitrary connected graphs) assuming constant round MPC with constant computational
overhead. [MOR15, BBMM18]

• Dishonest majority (≥ n/2 corruptions): In the dishonest majority setting, no separation
between MPC and THC is known. On the other hand, constructions of dishonest majority
THC from general MPC (with a dishonest majority) are only known for very restricted graph
classes [MOR15, BBMM18]: graphs of constant diameter.
Assuming constant round MPC with constant computational overhead,2 THC is possible for
graphs of constant degree and logarithmic diameter [MOR15, BBMM18].3

1In contrast, this is trivial to achieve (in the semi-honest setting) if hiding network topology is not a concern:
simply forward the message through the network.

2MPC with constant computational overhead means that a circuit of size s(n) can be securely evaluated in time
O(s(n)) + poly(λ), where the latter term is a fixed polynomial of the security parameter.

3[HMTZ16] gave an early construction of a more efficient protocol for such graphs from the decisional Diffie-
Hellman assumption.

2

THC for arbitrary (connected) graphs is only known from structured hardness assumptions
(such as quadratic residuosity (QR), decisional Diffie-Hellman (DDH) and Learning with
Errors (LWE)) [AM17, ALM17, LZM+18], or idealized obfuscation [BBMM18].

So while there is a clear separation between MPC and THC (with respect to general graphs) in
the honest majority setting, no such separation is known in the dishonest majority setting. While
OT is necessary and sufficient for MPC, it is unclear if it suffices to construct THC.4 The motivation
of this work is, thus, the following question:

Are THC and MPC equivalent in the dishonest majority setting?

1.1 Our Result

In this work, we make a step towards answering this question in the affirmative, by proving the
following theorem:

(Informal) Main Theorem 1 (Topology-Hiding Computation on All Graphs). If there exists
a two-party MPC protocol with constant rounds and constant computational overhead, then there
exists a protocol securely realizing topology-hiding computation on every network topology in the
presence of a semi-honest adversary corrupting any number of parties.

The main feature of this construction is that it is the first construction of semi-honest topology-
hiding computation tolerating any number of corruptions on all graphs from unstructured as-
sumptions. As mentioned above, prior to this work it was only known how to construct THC
against a semi-honest majority from constant round, constant computational overhead MPC for
graphs with at most logarithmic diameter [MOR15, BBMM18], or from structured hardness as-
sumptions [AM17, ALM17, LZM+18]. For the case of topology-hiding for general graphs, it was
only known how to construct THC from constant round, constant computational MPC if the ad-
versary was restricted to a constant number of corruptions [MOR15, BBMM18].

As an aside, our protocol is secure in the “pseudonymous neighbors” model (i.e. “knowledge-till-
radius-zero” KT0 [AGPV88]), where parties only know pseudonomyms of their neighbors (in this
model, two colluding parties cannot determine if they share an honest neighbor). In contrast, Moran
et al.’s protocol [MOR15] is only secure in the KT1 model (“knowledge-till-radius-one” [AGPV88])
where parties know globally consistent names for their neighbors (in this model, colluding parties
can identify exactly which neighbors they have in common).

On instantiating constant-round constant-overhead secure computation. By [IKOS08],
constant-round and constant-overhead two-party secure computation is implied by any constant-
round OT protocol (which can be based, e.g., on the learning parity with noise (LPN) assumption
[DDN14, YZ16, DGH+20], or on the computational Diffie-Hellman (CDH) assumption [BM90,
DGH+20]) together with a constant-locality PRG with polynomial stretch (which can be based on
a variant of an assumption by Goldreich [Gol00, MST03, OW14]).

4On the other hand, it is known that oblivious transfer is necessary to simply communicate in a topology-hiding
manner in the presence of a dishonest majority. In particular, OT is implied by topology-hiding broadcast with
a dishonest majority for graphs with just 4 nodes [BBMM18]. Again, because the broadcast functionality does
not hide its inputs it is trivial to realize without hiding the topology. [BBC+20] showed that OT is necessary for
topology-hiding anonymous broadcast on even simpler graphs.

3

In contrast, all previous previous constructions of THC for all graphs rely on structured
hardness assumptions such as key-homomorphic encryption (“privately-key commutative and re-
randomizable encryption, PKCR” [AM17, ALM17, LZM+18]), which does not seem to be implied
by LPN/CDH and constant-locality PRGs (in fact, such a result would be rather surprising). We
would like to point out though that the main focus of this work is not to build THC from different
concrete assumptions, but to move away from structured assumptions, which are not necessary for
secure computation without topology hiding, and—as we show in this work—are also not necessary
for achieving topology-hiding computation on general graphs.

1.2 Organization of the paper

We provide an overview of our techniques and construction in Section 2. In Section 3, we intro-
duce some preliminaries, including the definitions of THC in both the KT0 and KT1 models (the
differences boils down to whether two corrupt parties know whether they share a common, honest,
neighbor or not), as well as the constant-round, constant-overhead 2PC definition that we require.
Then, in Section 4, we introduce our notion of locally simulatable MPC, and prove that protocols
satisfying it are also execution-oblivious. Next, we introduce our protocol on directed paths and
prove its local-simulatability in Section 5. Finally, we provide our full THB protocol on all graphs
and show that it is indeed topology-hiding in Section 6.

2 Technical Overview
We first present a high-level overview of our techniques in Section 2.1, then present a more technical
description of our core protocol in Section 2.2.

First, note that the difficulty in constructing protocols for THC can be reduced to the ability
to perform topology-hiding broadcast (THB) of a single-bit message. Indeed, once parties can
broadcast messages to the network in a topology-hiding way, one can use generic techniques that
allow to establish secure computation given any OT protocol (leaking only the total number of
nodes in the network). In the following overview, we therefore restrict ourselves to explaining how
to achieve THB. With this simplification, we can capture our main result in the following theorem:

Main Theorem (Informal) (Topology-Hiding Computation on All Graphs). If there exists a two-
party MPC protocol with constant rounds and constant computational overhead, then there exists a
topology-hiding protocol securely realizing broadcast on the class of all graphs in the presence of a
semi-honest adversary corrupting any number of parties.

For simplicty, we do not explicitly address the subtleties of the neighborhood models (KT0,
where neighbors are pseudonymized, or KT1, where neighbor are identified “in the clear”) in this
exposition, but the following high-level overview applies to both models.

2.1 A High-Level Overview

Our contribution is three-fold. First, we observe that many topology-hiding computation protocols
implicitly follow the following informal paradigm: the parties run in parallel many instances of some
(non topology-hiding on its own) subroutine, each one computing the desired function. Topology-
hiding properties of the overall protocol emerge from the fact that the parties participate in each
instance obliviously, meaning that each party is able to perform their role in each subroutine

4

without being able to identify which execution is which (even while colluding with other parties).
Of particular interest is the protocol of Akavia et al. [ALM17, ALM20], which can be abstracted
out as having the parties locally setup a mesh of correlated random walks along the topology,
then perform some special-purpose MPC subprotocol along each path. In [ALM17, ALM20], these
subroutines are instantiated by heavily leaning on assumptions with a rich algebraic structure. The
first step in removing the need for these assumptions is to identify the properties we need from
these MPC subroutines (or at least some sufficient properties we can instantiate from a form of
oblivious transfer).

We then put forward the notion of local simulation as a sufficient security property to impose
on these subroutines in order to allow for oblivious participant evaluation. A secure computation
protocol over an incomplete network is locally simulatable if the view of each connected component
in the adversary’s subgraph can be generated independently. As an example, in the network
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 (where parties 2 , 3 , 6 , and 7 are corrupt), the views of parties { 2 , 3 }
and { 6 , 7 } should be simulated independently. Intuitively, this means the adversary cannot tell
if { 2 , 3 } and { 6 , 7 } are participating in the same protocol or, e.g. in two different executions
1 - 2 - 3 - 4 - A - B - C - D and E - F - G - H - 5 - 6 - 7 - 8 . Ultimately, if using correlated random walks,
that means that each party can participate in the MPC along each path without the adversary
learning which chunk of walk corresponds to which other.

Finally, we provide a protocol for locally simulatable MPC on a path, assuming (semi-honest,
static) secure two-party computation with constant rounds and constant overhead. By plugging
this into the correlated random walks (i.e. the parties are obliviously participating in a locally sim-
ulatable secure computation along each random walk), we obtain (dishonest majority, semi-honest,
static) topology-hiding computation on all graphs. Previously, topology-hiding computation
under this assumption was limited to the class of logarithmic-diameter graphs or to a constant
number of corruptions on all graphs [MOR15].

We now expand (still at a high level) on each of these three points, without assuming familiarity
with topology-hiding computation.

2.1.1 A modular approach to topology-hiding computation

Topology-hiding computation allows parties communicating through an incomplete network of
point-to-point channels, where each party initially only knows their local neighborhood (possi-
bly pseudonymized), to perform some secure computation without revealing any information about
the network (beyond what they already know, e.g. each party’s respective neighborhood).

Our starting point is the observation that many topology-hiding protocols can be described
informally in a very modular fashion, and yet their formal description (and the corresponding
security proof) are inaccessibly monolithic. We start by a gentle introduction to this concept,
with a modular presentation of the “simplest THC protocol”, realizing an information-theoretic
topology-hiding sum in the presence of a single semi-honest corruption on cycles (more precisely,
we fix a party/vertex set and consider all cycles on this set)5. Every party already knows they are on
a cycle, but the secret part of the topology is the order in which they are arranged. We then provide

5In fact, the protocol we describe can be seen as a conceptually simpler alternative to Ball et al.’s [BBC+19,
Theorem 4.1] 1-secure, semi-honest, information-theoretic topology-hiding anonymous broadcast on the class of all
cycles with a given vertex set.

5

4
2

6

3 5

1

7

Round 2·+ x7
Round 3

·+ x4

Ro
un

d
4

·+
x

2

·+
x

6

Round
5

·+ x3

Round 6

·+
x 5

Ro
un

d
7

Round
1

x
1 +

r1

(a) The “simplest MPC protocol
ever”, securely computing a sum
in the presence of a single semi-
honest corruption. The “initia-
tor”, who can retrieve the out-
put, is 1 . The view of the
corrupt party, 3 , is a single
message, obtained in round 5,
masked by r1.

4
2

6

3 5

1

7

x7 + r7Round 1x4 + r ′
4

x4 + r4

Round 1

x2 + r
′
2

x
2

+
r 2

Ro
un

d
1

x
6

+
r

′ 6

x
6 +
r6

x
3 +
r ′3

Round
1

x3 + r3

x5 + r′
5

Round 1

x 5
+
r 5x 1

+
r

′ 1
Ro

un
d

1

x
1 +

r1

Round
1

x
7 +

r ′7

·+ x7
Round 2 . . . 7·+ x4

·+ x4

Round 2 . . .
7

·+ x2

·+
x

2
Ro

un
d

2 .
. .

7
·+

x
6

·+
x

6
·+
x

3

Round
2
. . . 7

·+ x3

·+ x5
Round 2 . . . 7

·+
x 5·+

x 1

Ro
un

d
2 .
. .

7

·+
x

1

Round
2
. . . 7

·+
x

7

(b) The “simplest THC protocol ever”, securely computing a sum
in the presence of a single semi-honest corruption. In each
round, the corrupt party 3 ’s view is comprised of two mes-
sages, masked by fresh one-time pads: r6 and r′

5, then r2 and
r′

1, then r4 and r′
7, then r7 and r′

4, then r1 and r′
2, and finally

r5 and r′
6.

Figure 1: The topology-hiding protocol of Figure 1b can be seen as running to 2n parallel instances
of the (non topology-hiding protocol) of Figure 1a.

a modular description of Akavia et al.’s [ALM17, ALM20] protocol, realizing (computational, semi-
honest, dishonest majority) topology-hiding computation on the class of all graphs. The latter
introduces the notion of correlated random walks, which form the basis for essentially all topology-
hiding computation protocols on all graphs, tolerating any number of corruptions [ALM17, ALM20,
LZM+18, Li22] (and now, also ours).

An introductory example to modular THC. Assume n parties are arranged in a cycle,
each party only having access to a secure point-to-point channel with its neighbors in the cycle.
Consider the following protocol (illustrated in Figure 1a), which is arguably the simplest (non
topology-hiding) MPC protocol for securely computing a sum in the presence of a single semi-
honest corruption. In the first round, an agreed upon party, which we will refer to as the initiator,
samples a random value and uses it as a one-time pad to mask its input, then sends the resulting
ciphertext to one of its neighbors (chosen arbitrarily). In each subsequent round, if a party received
a message from one of its neighbors, it sums this message with its own input and passes on the result

6

to its other neighbor. After n rounds, the initiator receives the sum of all inputs masked by the
one-time pad they themselves sampled, and they can therefore recover the desired output. Keeping
in mind the parties are semi-honest and non-colluding, correctness and security are straightforward
to verify (in essence, a single message is being passed around the cycle, containing the partial sum
of previously visited parties’ inputs and masked by the initiators’ one-time pad). This only allows
the initiator to get the output, however this can be addressed by running this “single-initiator”
protocol n times sequentially with a fresh initiator for each instance.

As described, the protocol is not topology-hiding as, by noting in which round they receive
a message, every party can learn their distance to the initiator, which leaks information about
the graph. This can be addressed by considering the following augmented protocol (illustrated in
Figure 1b):

• In the first round, each party samples two random masks, uses them as one-time pads for
their input, and sends one of the resulting ciphertexts to each of its neighbors;

• In each subsequent round, every party receives two messages, one from each neighbor. Each
party can add their input to these two messages, before forwarding them along the cycle (the
message received from one neighbor is sent to the other neighbor, after the input is added).

• After n rounds, each party can receive the sum of all inputs by removing the appropriate
mask from either of the messages received in the last round.

The above protocol could be described as running 2n parallel instances of the “single-initiator”
protocol. Each party’s instructions in the augmented protocol can be seen as participating in
each of these protocols: in two of them with the role of initiator, in another two with the role of
the party one hop away from the initiator, and so on for each of the n possible roles. Crucially,
both for correctness and security, each party is able to participate in each subroutine obliviously,
meaning that they are able to fulfill their role without being able to distinguish these executions
and thus, most importantly, recognize which one corresponds to which initiator.

Takeway for our protocol: Skipping ahead, our main protocol will follow this abstract
template: the parties will be participating in a slew of subroutines, where each party knows exactly
their role in the process, but non-neighboring colluding parties cannot determine if they both
participate in any given subroutine or not.

Correlated random walks [ALM17, ALM20]. In retrospect, the above protocol remains rel-
atively simple to analyze, even without breaking it down into these subroutines. We now turn our
attention to Akavia et al.’s [ALM17, ALM20] construction, for which taking a modular approach is
significantly more interesting. In order to isolate Akavia et al.’s [ALM17, ALM20] key contribution
of correlated random walks, we propose the following abstraction. Say there are n parties in some
incomplete communication network wishing to securely compute an OR of their inputs. As a start-
ing model, assume one party possesses an idealized hardware “black box”. This box is unclonable
and has the following properties: any party may enter an input into the box, and after T inputs
have been registered, the box returns their OR, where T is some parameter to be defined. The first
party can place their input in the box, then pass on the latter to a randomly chosen neighbor. In
subsequent rounds, the party who just received the box adds its input then passes the box to a
randomly chosen neighbor. From a global point of view, the box is performing a random walk and

7

therefore, by known results on the cover time of a simple random walk in a connected graph, after
T = λ · n3 steps the box will have, with all but negligible probability, visited every party at least
once each. This means that the last party will receive the correct OR from the box, and because
we assumed the box was unclonable, the protocol securely computes OR6. This allows a randomly
chosen7 party to learn the output, and we could for instance sequentially repeat the process until
every party obtains the OR. This protocol is not topology-hiding however, since colluding parties
could learn an upper bound on their distance in the graph by counting the number of steps between
when they handled the box8.

Akavia et al.’s [ALM17, ALM20] elegant solution is to have each party initially send a box to
each of their neighbors. In every subsequent round, each party takes all the boxes it just received
(one per neighbor), plugs in their input, then shuffles all boxes and sends one to each neighbor.
After T rounds, each party opens any of the boxes it holds to recover the result. Observe that each
box, taken individually, performs a random walk through the graph. While the walks of each box
are not independent, but correlated, [ALM20, Lemma 3.14] establishes that setting T = Θ(λ · n3)
guarantees that with all but negligible probability all boxes will have individually covered the graph.

For completeness, we mention that in reality, Akavia et al. [ALM17, ALM20] do not rely
on this idealized hardware to perform the secure OR on the fly, but use linearly homomorphic
Privately Key-Commutative and Rerandomizable encryption (lhPKCR) [AM17], which can be
instantiated from DDH [AM17], LWE [LZM+18], or QR [Li22]. In a nutshell, the parties pass
around ciphertexts containing the homomorphically computed partial OR of the inputs of all
visited nodes. In order to not have these ciphertexts be opened prematurely (c.f. the unclonability
assumption on the black boxes), the secret key is re-randomized (and therefore secret-shared)
along the walk: whenever a party receives a ciphertext they also “add a layer of randomization”
to the key, which is possible for PKCR encryption. After Θ(λ · n3) steps, when the random walk
of every message is guaranteed to have visited every node with all but negligible probability, the
parties return the ciphertexts to their source, along the reverse walks, and peeling off layers of
encryption as they go.

Takeway for our protocol: Abstracting out, Akavia et al.’s [ALM17, ALM20] protocol can
be seen as first having each party sample T permutations on their neighborhood (as illustrated in
Figure 2, this globally define a mesh of random walks, where each party knows only their position),
and then having the parties run a special-purpose MPC along each walk. These instances of MPC
along each path are indistinguishable to the parties by using structural properties of lhPKCR
encryption.

2.1.2 Information-local simulation.

Correlated random walks can be used to reduce the task of topology-hiding computation on all
graphs to that of designing an MPC the parties can run along each walk without being to tell

6If the box was clonable, a party could make a local copy then learn the partial OR of the inputs of all parties
who previously handled the box by simply plugging 0s until they receive an output.

7The stationary distribution is not uniform, but nevertheless each party has non-negligible probability of being
the last party.

8While this is beyond the scope of this exposition, we could quantify the leakage in terms of the electric conduc-
tance of the graph. What this means additionally is that the protocol is even insecure against a single corruption as
a party can learn information from just counting the number of rounds between two consecutive visits of the box.

8

u1

2

3

4

5

π
(i)
u : 1 7→ 3

2 7→ 1
3 7→ 5
4 7→ 4
5 7→ 2

(a) Visual representation of the ith permutation on
u ’s neighborhood (π(i)

u), defining u ’s neighbor-
hood in five distinct walks.

u1

2

4

3

5

y

x

π
(i−1)
3 (x) = u

π
(i)
u (3) = 5

π
(i+1)
5 (u) = y

(b) The family (π(j)
v)v∈V,j∈[T] defines a fam-

ily of correlateda random walks. Each
party knows their position in the walk
(e.g. party u knows they are the ith

party in the highlighted walk, but they
have no way of identifying if this walk
is the same as another one in which u
also knows its position).

aThe walks are correlated in the sense that
no two walks borrow the same edge at the same
time.

Figure 2: Local and global views of correlated random walks, obtained by having each party sam-
pled uniformly at random T permutations on their neighborhood.

when they are participating in the same execution (i.e. in the same walk) or not. To instantiate
the latter, we put forward the notion of locally simulatable computation.

Introducing locally simulatable computation. Locally simulatable computation is an MPC
over an incomplete network G where the view of disconnected corrupt parties can be simulated
independently. More formally consider the connected components Z1,Z2, . . . of the subgraph G[Z]
induced by the set of corrupted parties Z. The views of the parties in each component Zi should
be simulated given only their inputs, outputs, and local views of the graph, independently of the
views of the parties in Z \ Zi. Note that this requirement is orthogonal to the notion of being
topology-hiding9:

• THC is not necessarily locally simulatable: Without loss of generality, a topology-hiding
computation protocol can be made to be not locally simulatable, by first broadcasting a long

9However our final protocol will turn out to be both topology-hiding and locally simulatable.

9

random string (in a topology-hidding manner). The views of disconnected adversaries cannot
be simulated independently, as they expect to receive the same string (which is not passed as
input to the simulators, since it is neither an input nor an output).

• Locally simulatable MPC is not necessarily topology-hiding: In locally simulatable MPC, each
party is assumed to know their position in the graph (or in other words, the graph class is
a singleton). There is no guarantee the parties can correctly run a locally simulatable MPC
protocol if they are in an unknown graph setting (and having the parties learn information
about the graph to be able to run the protocol would not be topology-hiding).

From local simulation to execution-obliviousness. Because the views of two adversarial
components Z1 and Z2 are generated independently, the adversary corrupting the parties cannot
tell if Z1 and Z2 are in fact participating in the same protocol or in different protocols (provided
of course they have the same inputs, outputs, and neighborhoods in all these instances).

We are now ready to sketch our topology-hiding broadcast on all graphs, assuming the existence
of locally simulatable computation on paths of length T = λ · n3 (which we will instantiate next).
Each party Pu samples T random permutations on their neighborhood (recall this defines 2|E| =∑
v∈V degv paths, each one visiting each node at least once w.h.p.), from which they derive 2T ·degu

different “path neighborhoods” with the corresponding positions (more precisely, 2 degu of these
neighborhoods are as the ith node on the path, for each i ∈ [T]). Each party fulfills in parallel their
2T · degu roles in the 2T · |E| parallel executions of locally simulatable OR (the broadcaster always
uses the broadcast bit as input and the other parties use 0, in all their roles), one along each path.
Their output in each of the protocols is then the broadcast bit.

2.1.3 Locally simulatable MPC on a path from OT

By what precedes, topology-hiding broadcast on the class of all graphs can be reduced to a locally
simulatable OR on a path. At a high-level, our OR protocol on the path proceeds by recursively
emulating a two-party computation (2PC) of an OR. Each party in this top-level 2PC is itself
emulated by a 2PC whose two parties are further emulated by a lower-level 2PC, and so on, until
we get to 2PCs between two real parties on the path. For a 2PC at any given recursion level,
each virtual party is recursively emulated by half of the real parties on the current subset of the
path being considered. That is, at the highest level, the first (resp. second) half of the real parties
emulates the first (resp. second) virtual party. Then, every (1/4)-th of the real parties emulate a
separate virtual parties at recursion depth 1, and so on, until we reach 2PCs between every pair
of neighboring real parties. in a nutshell, local simulatability stems from the fact that each party
only sees 2PC messages that come from its direct neighbors. For a more detailed overview of this
protocol, we refer the reader to the next subsection.

2.2 Technical Overview of the Core Protocol: Locally Simulatable MPC on a
Path

We now focus on presenting our main technical contribution of building locally simulatable OR on
a path. We first describe our construction (see Figure 3) and then explain the primary ways in
which the protocol enables proper topology-hiding emulation and local simulatability.

10

Building locally-simulatable OR on a path. The core step in building our full THB protocol
is building a locally-simulatable OR protocol on a directed path of length ` = 2l, for some l ≥ 1
(each such path will be a random walk, so we can specify its length to be a power of 2). In this
setting, each party knows their position on the path (for i ∈ [0, ` − 1]), and we refer to the party
at position i as P̃i. Given each party P̃i’s input bit bi, the protocol outputs

∨`−1
i=0 bi to every party.

When used in the full THB protocol, if P̃i is the broadcaster, then bi = b, the broadcast bit;
otherwise, bi = 0.

In order to compute the OR of their input bits bi, the parties emulate recursive (constant-
overhead) 2PC computations. At a high-level, the first and second `/2 real parties will emulate
the first and second virtual parties, P0,0 and P0,1, respectively, of a 2PC computation. The virtual
parties input (b0||b1|| . . . ||b`/2−1) and (b`/2||b`/2+1|| . . . ||b`−1), respectively, and the 2PC computation
outputs to both virtual parties

∨`−1
i=0 bi. Now, in each round of this 2PC, virtual party P0,0 is

emulated recursively via another 2PC between virtual parties P1,0 and P1,1, which are in turn
emulated by, respectively, the first and second `/4 real parties recursively (and similarly for virtual
party P0,1). Virtual party P0,0 is emulated by virtual parties P1,0 and P1,1 as follows: P1,0 and P1,1
combine their inputs (b0||b1|| . . . ||b`/4−1) and (b`/4||b`/4+1|| . . . ||b`/2−1) (via the 2PC) so that P0,0’s
input is emulated by x0,0 = (b0||b1|| . . . ||b`/2−1). Similarly, P1,0 and P1,1 each take as input random
strings r̃′1,0 and r̃′1,1 and combine them (via the 2PC) so that P0,0’s random tape is emulated by
r̃0,0 = r̃′1,0⊕ r̃′1,1. Finally, the 2PC between P1,0 and P1,1 outputs P0,0’s next message in its 2PC with
P0,1 to P1,1, who then passes it to the first virtual party P1,2 that participates in the 2PC emulating
P0,1. Note that only virtual parties P1,1 and P1,2 see and pass to each other the messages for the
higher-level 2PC; as we will see later, this is crucial to local-simulatability, and topology-hiding in
general.

We keep recursively splitting the computation of virtual parties in 2PC’s in the recursion, until
we reach level l − 1 of the recursion, in which two real parties, which are sibling leaves in the
recursion tree, compute (many) 2PC’s. Again, briefly, the 2PC’s that each pair of sibling leaves
computes is the emulation of the next message function of the virtual party at the parent in the
recursion tree. This virtual party in turn is computing a 2PC with its sibling that emulates the
next message function of the virtual party at their parent in the recursion tree. We continue up
the tree like this, until we reach the original OR between the two largest virtual parties.

For clarity, we depict an example computation with ` = 8 in Figure 3. We shall first focus on
real parties P̃0 and P̃1. Each party has their respective input bits which we denote as b0 and b1.
The parties also sample several random strings for (i) the emulation of virtual party P0,0 and (ii)
for the emulation of each 2PC in which virtual party P1,0 participates (one for each of the R2PC
rounds of the root 2PC).

Now, for each round of each 2PC execution that virtual party P1,0 participates in (i.e., R2
2PC in

total), P2,0 and P2,1 execute their own 2PC to emulate P1,0 in this round. They do so by emulating
(via their 2PC execution) P1,0’s input bits as (b0||b1), P1,0’s input randomness (for emulation of
the root 2PC) as r̃′1,0 = R̃2,0[0]⊕ R̃2,1[0], and P1,0’s random tape as r̃1,0 = R̃2,0[1]⊕ R̃2,1[1] (where
R̃2,0[1], R̃2,1[1] are freshly sampled for each execution in which P1,0 participates). P2,1 then receives
P1,0’s next message as output of this 2PC, and forwards it to P2,2 (who together with P2,3 will
emulate P1,1’s next message). Note that P2,1 will also input to the 2PC P1,1’s previous messages in
its 2PC with P1,0, which P2,1 receives from P2,2.

The 2PC’s which virtual party P1,0 executes with P1,1 correspond to emulations of the next
message function of virtual party P0,0 in the highest level 2PC, which simply computes the OR

11

0 1 2 3 4 5 6 7

2PC2PC0
0,ρ(x2,0, x2,1; r̃2,0, r̃2,1) 2PC2PC0

1,ρ 2PC2PC1
0,ρ 2PC2PC1

1,ρ

2PC0 :=
2PC2PCε0,ρ(x1,0, x1,1; r̃1,0, r̃1,1)

2PC1 :=
2PC2PCε1,ρ(x1,2, x1,3; r̃1,2, r̃1,3)

2PCε :=
2PCFOR((x0,0, x0,1); (r̃0,0, r̃0,1))

x2,0 = (b0, R̃2,0),
r̃2,0

x2,1 = (b1, R̃2,1),
r̃2,1

x1,0 = (b0||b1, R̃2,0[0]⊕ R̃2,1[0]),
r̃1,0 = R̃2,0[1]⊕ R̃2,1[1]

x1,1 = (b2||b3, R̃2,2[0]⊕ R̃2,3[0]),
r̃1,1 = R̃2,2[1]⊕ R̃2,3[1]

x0,0 = b0||b1||b2||b3,
r̃0,0 =

⊕3
i=0 R̃2,i[0]

x0,1 = b4||b5||b6||b7,
r̃0,1 =

⊕7
i=4 R̃2,i[0]

Figure 3: Depiction of the directed path protocol Πdir-path for a path of length ` = 8. Each interior
node represents a 2PC which gets its inputs and randomness from its two children. This
2PC computes the next message for virtual party P0 (resp. P1) in the 2PC at the node’s
parent by combining the inputs of its two children into the input and randomness of P0
(resp. P1). This next message is passed from this node to its sibling in the protocol
via the two neighboring real parties at the rightmost (resp. leftmost) and leftmost (resp.
rightmost) leaves of the corresponding subtrees (indicated by horizontal lines of matching
thickness).

of P0,0’s and P0,1’s input bits. P1,0 and P1,1 emulate (via these 2PC executions) P0,0’s input bits
as (b0||b1||b2||b3), and P0,0’s random tape as r̃0,0 = r̃′1,0 ⊕ r̃′1,1. Again, recall that, recursively,
P1,0 (resp. P1,1) was emulated by P2,0 and P2,1 (resp. P2,2 and P2,3) so that its input bits were
(b0||b1) (resp. (b2||b3)) and r̃′1,0 = R̃2,0[0] ⊕ R̃2,1[0] (resp. r̃′1,1 = R̃2,2[0] ⊕ R̃2,3[0]). So, when P1,1
computes its output, it will be the next message of P0,0 in its 2PC computation with P1,0 of the OR
functionality, with input x0,0 = b0||b1||b2||b3 and random tape r̃0,0 =

⊕3
i=0 R̃2,i[0]. This output will

then be recursively passed down (via another 2PC) to P2,3, who will then pass it to virtual party
P0,1 via real party P2,4. P0,1’s messages in the 2PC with P0,0 will be similarly recursively emulated
so that when P0,0 and P0,1 finally compute their outputs in the highest-level OR 2PC execution,
they will be recursively passed down to each P1,i, and then again to each P2,i so that finally, all
parties P̃i receive

∨7
i=0 bi.

Finally, note that the recursion depth is just l = log2(`). Moreover, when the 2PC is im-
plemented with a constant round 2PC with constant computational overhead, we can see that
the round complexity grows multiplicatively in the recursion depth, i.e. O(1)l = poly(`), and
moreover the total computational complexity (and hence communication complexity) is just
O(· · ·O(O(1) + poly(λ)) + poly(λ) · · ·) + poly(λ) = poly(`, λ).

Enablers for Proper Topology-Hiding Emulation and Local Simulatability. There are a
few main ways in which this protocol enables proper topology-hiding emulation and local simulata-

12

bility. First, 2PC messages at any depth of the recursion are only output and passed between real
parties that are neighbors on the path. This is important since if this were not true, and (random-
looking, and thus unique w.h.p.) messages were passed between real parties several edges away
from each other, then as noted previously, these parties would know that they participate in the
same execution, and thus local simulation would not be possible. This is the reason why our path
protocol uses recursive 2PC’s, as opposed to, e.g., 3PC’s, as doing so would require real parties to
pass messages to other real parties that are not their neighbors, thus revealing infromation about
the topology (recall that we work in the KT0 model, so parties should not know if they have a
neighbor in common).

Second, virtual parties’ random tapes are collectively emulated by each real party of which they
consist. So, even if the party at the “edge” of a virtual party that sees the 2PC messages sent by the
virtual party they are helping to emulate is corrupted, if at least one of the other real parties in the
virtual party is uncorrupted, then this 2PC message reveals nothing about the uncorrupted parties’
inputs. This is because the uncorrupted parties mix in their own fresh randomness to compute
the random tape of the virtual party so that the 2PC messages are generated with randomness
that looks fresh and independent to the adversary. So, by the security of the 2PC, these messages
reveal nothing about the virtual party’s input (and thus nothing about the uncorrupted real parties’
inputs).

Finally, since we compute an OR amongst all parties, we can simulate virtual parties’ views
with only partial information. Simulation using generic 2PC seems challenging at a first glance,
since in the 2PC in which a corrupted real party is helping to emulate a virtual party, it may
receive 2PC messages from the other virtual party in the higher-level 2PC. This happens even if
some of the other real parties of which the emulated virtual party consists are not corrupted. We
are thus faced with using generic 2PC simulators only with partial information on the input (and
output) of the corresponding virtual party. However, since we compute the OR functionality, and
based on the output OR’d bit b and the fact that every real party mixes in their own independent
randomness for the emulation of virtual parties, our local simulators can actually fill in the gaps
of the uncorrupted parties. That is, if b = 0, then our simulator can simply fill in the uncorrupted
parties’ inputs as 0 and sample fresh randomness for them, which will be a perfect simulation.
Even if b = 1, because of the 2PC security of computing ORs, our simulator can simply simulate
as if all of the uncorrupted parties’ inputs were 1. Although this will not be true for the THB
protocol itself, it can be true for computing recursive ORs, and thus we leverage this along with
2PC security for our proof.

Generalizing to “Efficiently Invertible from Local Information” functionalities. We
just noted that the fact that our path protocol computes an OR is crucial to local simulatability.
The important part, however, was that from a subset of parties’ input bits and the output bit,
one can efficiently compute all other parties’ inputs (0’s if the output is 0; 1’s if the output is
1). We can further generalize this strategy to all functionalities F such that given a subset of
parties’ inputs and outputs, there exists an “inverse” algorithm that computes possible inputs of
the other parties that are consistent with the original parties’ outputs. We call such functionalities
efficiently invertible from local information. Other examples of such functionalities include private
set intersection, private set union, and more. However, we do note that there are some efficiently
computable functionalities that nonetheless are not efficiently invertible from local information; for
example, leakage resilient one-way functions. Unfortunately, we cannot extend the strategy to such

13

functionalities.
Now recall that we use secure OR to eventually build our THB protocol, which in turn can

be generically composed with any secure MPC protocol to get full-fledged THC (see Section 6).
However, we note that if the eventual THC computes a functionality that is efficiently invertible
from local information, our path protocol can just directly (and thus more efficiently) be used to
compute the THC, without going through the THB + MPC composition.

2.3 A Note on the Differences with [MOR15]

There are three main differences between our core recursive protocol and the recursive protocol
of [MOR15]. First, our recursion is much more efficient—with every additional depth of recursion,
we double the number of parties, while [MOR15] only adds two more parties (on paths). In more
detail, the base protocol of [MOR15] starts off with each node v computing several MPCs with
its local neighborhood, NG[v] = {v} ∪ {u : u has an edge with v}. This protocol is only secure
if every node v’s neighborhood has at least one uncorrupted party. Then, to increase security,
they repeatedly construct new protocols based on the previous constructed protocol, where each
node v’s role in the previous protocol is instead recursively computed using MPCs amongst its
neighborhood; each message that is sent to v from some neighbor u (resp. from v to u) in the
previous protocol is output to v (resp. u) via an MPC computed by u’s (resp. v’s) neighborhood,
encrypted under a key that is secret shared amongst v’s (resp. u’s) neighborhood. So, the (k+1)-st
protocol recursively computes a given node v’s role in the base protocol using v’s k-neighborhood
N k
G[v], where N k

G[v] =
⋃
u∈N k−1

G [v]NG[u]. Security is achieved if every node v’s (k+1)-neighborhood
has at least one uncorrupted party. This inefficient style of recursion is indeed why [MOR15] can
only perform THC on graphs of constant degree and logarithmic diameter, even using constant
round MPC with constant computational overhead: Each additional level of recursion increases
the overhead of the protocol by a factor of deg(v). However, in our path protocol, each new
level of recursion introduces a new virtual 2PC, which doubles the number of parties involved in
the protocol. So, with logarithmically many recursion levels, we can cover the whole path, while
retaining efficiency roughly proportional to clog(`), where ` is the length of the path and c is some
constant representing the overhead of the 2PC protocol.

The second difference comes from the fact that our novel use of more efficient recursion intro-
duces the simulation challenge discussed earlier: We must use generic 2PC simulators with only
partial knowledge of inputs (and outputs). This comes from the fact that 2PC messages amongst
virtual parties are passed between real parties in the protocol. However, such message passing does
not occur in the protocol of [MOR15] and indeed its simuation is as follows: If a node v’s neighbor-
hood is not fully corrupted, then simulate v’s view based on its output messages being encryptions
of 0 (this is valid, since the adversary will not know the corresponding secret key). Otherwise,
simulate v’s view using the simulator from some lower-level protocol: Let k be the largest integer
such that N k

G[v] is corrupted. Now note that the highest-level protocol just has this k-neighborhood
of v compute v’s role in some lower-level protocol and then gives v the corresponding output in
the last round. Thus, the higher-level protocol’s simulator can recover the corresponding entire
input and output of v in that lower-level protocol, and therefore simulate v’s view properly based
on the lower-level simulator. Therefore, the simulation of [MOR15] does not need to handle the
same technical challenges as ours.

The final difference is that the protocol of [MOR15] only works in the KT1 model, since MPCs
between neighborhoods are computed, so messages are passed between parties two edges away from

14

each other. However, our protocol works in the KT0 model, since messages are only passed direcly
between neighbors.

3 Preliminaries
Notations. For m < n ∈ N let [n] = {1, . . . , n} and [m,n] = {m,m+ 1, . . . , n}. In our protocols
we sometimes denote by B an upper bound on the number of participating parties. The security
parameter is denoted by λ. We will use 0-indexing for many of our definitions and protocols. We
also make use of dictionaries in our protocols. For a dictionary D, D[: x] results in a new dictionary
D′ consisting of elements 0 through x of D; i.e., for i ∈ [0, x], D′[i] = D[i], but for i > x,D′[i] = ⊥.
Finally, we let

∣∣∣∣n
j=i xj = xi||xi+1|| . . . ||xn

Graph notations and properties. A graph G = (V,E) is a set V of vertices and a set E of
edges, each of which is an unordered pair {v, w} of distinct vertices. A graph is directed if its edges
are instead ordered pairs (v, w) of distinct vertices. The (open) neighbourhood of a vertex v in an
undirected graph G, denoted NG(v), is the set of vertices sharing an edge with v in G. The closed
neighbourhood of v in G is in turn defined by NG[v] ..= NG(v) ∪ {v}.

3.1 Topology-Hiding Computation (THC)
There are two notions of topology-hiding computation in the literature: game-based and simulation-
based [MOR15]. Since we introduce a feasibility result, we use a stronger simulation-based defini-
tion.

UC framework. The simulation-based definition is defined in the UC framework of [Can00]. We
will consider computationally bounded, static, and semi-honest adversaries and environments.

Neighbourhood Models. In this work, we unify the neighbourhood models of past THC def-
initions in the literature (for an illustration we refer to Fig. 4). To simplify the notation, we will
consider that Pv in some protocol is associated with node v in the underlying graph. Typically,
THC functionalities are realized in the FGgraph-hybrid model, where FGgraph is some functionality that
allows parties to communicate with their neighbors in the graph. Many works have used the model
of [MOR15], wherein FGgraph informs every party Pv of their local neighbourhood by indeed sending
NG(v) directly to them, and FGgraph thereafter facilitates communication from Pv to some other
node u, only if u is indeed a neighbor of v. However, [ALM17] instead has FGgraph first sample a
random injective function f : E → [n2], labeling each edge with a random (unique) element from
[n2]. Next, FGgraph informs every party Pv of their local neighbourhood by instead sending them the
set of edge labels Lv := {f((u, v)) : (u, v) ∈ E}. FGgraph thereafter facilitates communication from
Pv along some edge with label l, only if l corresponds to some edge (v, u) ∈ E according to f .

We refer to these two notions according to the terminology of [AGPV88], who define the
Knowledge Till Radius σ Model (KTσ). These two worlds are illustrated in Figure 4. KT1 is
called the ‘Common Neighbours’ model, and refers to the [MOR15] world. Indeed, in this world,
parties are given the identities of their neighbours, so that two colluding parties that each have
an edge to a common party know that this is in fact the case. KT0 is called the ‘Pseudonymous

15

Neighbours’ model, and refers to the [ALM17] world. In this world, parties are only given the
random (unique) identities of the edges corresponding to their neighbourhood, as described above,
but not the actual identities of the parties with which they share these edges. So, if two colluding
parties each have an edge to a common party, their respective edges will have different labelings
and thus will not tell them if they indeed share this common neighbour.

1
2

4

6

8 Local View
of

1

3

7

Local View
of

3

KT0: Common Neighbours Model

(a) In the ‘Common Neighbours’ model, collud-
ing parties (1 , 3) know from their local
views if they have common neighbours (2).

1

?

?

?

?

3

?

?

KT1: Pseudonymous Neighbours Model

(b) In the ‘Pseudonymous Neighbours’ model,
colluding parties (1 , 3) do not know from
their local views if they have common neigh-
bours (?).

Figure 4: Differing views of parties in KT0 and KT1.

3.1.1 Simulation-Based THC.

Now we are ready to introduce our simulation-baesd topology-hiding computation definition. The
real-world protocol is defined in a model where all communication is transmitted via the function-
ality FG,KTσ

graph (described in Figure 5). The functionality is parameterised by a family of graphs G,
representing all possible network topologies (aka communication graphs) that the protocol sup-
ports. It is also parameterised by the neighbourhood model KTσ, for σ ∈ {0, 1}. We implicitly
assume that every node in a graph is associated with a specific party identifier, pid.

Initially, before the protocol begins, FG,KTσ
graph receives the network communication graph G from a

special graph party Pgraph and makes sure that G ∈ G. Then, if σ = 0, it samples a random injective
function f : E → [n2], labeling each edge with an element from [n2], and gives each party Pv with
v ∈ V the edge labels according to its local neighbor-set. Next, during the protocol’s execution,
whenever party Pv wishes to send a message m along edge l, it sends (l,m) to the functionality;
the functionality first checks if there is (v, w) ∈ E such that f(v, w) = l, and if so delivers (l,m)
to Pw. Otherwise, if σ = 1, it simply provides to each party Pv with v ∈ V its local neighbor-set.
Next, during the protocol’s execution, whenever party Pv wishes to send a message m to party Pw,
it sends (v, w,m) to the functionality; the functionality verifies that the edge (v, w) is indeed in the
graph, and if so delivers (v, w,m) to Pw.

Note that if all the graphs in G have exactly n nodes, then the exact number of participants
is known to all and need not be kept hidden. In this case, defining the ideal functionality and
constructing protocols becomes a simpler task. However, if there exist graphs in G that contain

16

a different number of nodes, then the model must support functionalities and protocols that only
know an upper bound on the number of participants. In the latter case, the actual number of
participating parties must be kept hidden.

Given a class of graphs G with an upper bound n on the number of parties, we define a protocol
π with respect to G as a set of n ppt interactive Turing machines (ITMs) (P1, . . . ,Pn) (the parties),
where any subset of them may be activated with (potentially empty) inputs. Only the parties that
have been activated participate in the protocol, send messages to one another (via FG,KTσ

graph), and
produce output.

Functionality FG,KTσ
graph

The functionality FG,KTσ
graph is parametrized by a graph class G and neighbourhood model KTσ;

let n be the maximum number of nodes in any graph in G. FG,KTσ
graph interacts with a special

graph party Pgraph and (a subset of the) parties P1, . . . ,Pn (to be defined by the graph received
from Pgraph) as follows.

Initialization Phase:

Input: FG,KTσ
graph waits to receive the graph G = (V,E) from Pgraph. If G /∈ G, abort. If

σ = 0, FG,KTσ
graph samples a random injective function f : E → [n2], labeling each edge

with an element from [n2].
Output: Upon receiving an initialization message from Pv, FG,KTσ

graph verifies that v ∈ V ,
and if so sends the following to Pv:{

NG(v) if σ = 1 (“in KT1”)
Lv := {f((u, v)) : (u, v) ∈ E} if σ = 0 (“in KT0”)

Communication Phase:

Input:
• If σ = 1: FG,KT1

graph receives from a party Pv a destination/data pair (w,m) where
w ∈ NG(v) and m is the message Pv wants to send to Pw. (If v, w /∈ V , or if w
is not a neighboring vertex of v, FG,KT0

graph ignores this input.)
• If σ = 0: FG,KT0

graph receives from a party Pv a destination/data pair (l,m) where
f(v, w) = l ∈ Lv indicates to FG,KT0

graph the neighbour w, and m is the message
Pv wants to send to Pw. (If v /∈ V or @(v, w) ∈ E : f(v, w) = l, FG,KT1

graph ignores
this input.)

Output:
• If σ = 1: FG,KT1

graph gives output (v,m) to Pw indicating that Pv sent the message
m to Pw.

• If σ = 0: FG,KT0
graph gives output (l,m) to Pw, where f(v, w) = l, indicating that

the neighbor on edge l sent the message m to Pw.

17

Figure 5: The communication graph functionality (unified definition for KT0 and KT1).

An ideal-model computation of a functionality F is augmented to provide the corrupted parties
with the information that is leaked about the graph; namely, every corrupted (dummy) party
should learn its local neighbourhood information (in KT0 or KT1, respectively). Note that the
functionality F can be completely agnostic about the actual graph that is used, and even about
the family G. To augment F in a generic way, we define the wrapper-functionality WG,KTσ

graph-info(F),
that runs internally a copy of the functionality F. The wrapper WG,KTσ

graph-info(·) acts as a shell that is
responsible to provide the relevant leakage to the corrupted parties; the original functionality F is
the core that is responsible for the actual ideal computation.

More specifically, the wrapper receives the graph G = (V,E) from the graph party Pgraph, makes
sure that G ∈ G, and sends a special initialization message containing G to F. (If the functionality
F does not depend on the communication graph, it can ignore this message.) The wrapper then
proceeds to process messages as follows: Upon receiving an initialization message from a party Pv
responds with its local neighbourhood information (just like FG,KTσ

graph). All other input messages
from a party Pv are forwarded to F and every message from F to a party Pv is delivered to its
recipient.

Wrapper Functionality WG,KTσ
graph-info(F)

The wrapper functionality WG,KTσ
graph-info(F) is parametrized by a graph class G and neigh-

bourhood model KTσ; let n be the maximum number of nodes in any graph in G.
WG,KTσ

graph-info(F) internally runs a copy of F and interacts with a special graph party Pgraph and
(a subset of the) parties P1, . . . ,Pn (to be defined by the graph received from Pgraph) as follows.

Initialization Phase:

Input: WG,KTσ
graph-info(F) waits to receive the graph G = (V,E) from Pgraph. If G /∈ G, abort.

If σ = 0, WG,KTσ
graph-info(F) samples a random injective function f : E → [n2], labeling

each edge with an element from [n2].
Outputs: Upon receiving an initialization message from Pv, WG,KTσ

graph-info(F) verifies that
v ∈ V , and if so sends the following to Pv:{

NG(v) if σ = 1 (“in KT1”)
Lv := {f((u, v)) : (u, v) ∈ E} if σ = 0 (“in KT0”)

Communication Phase:

Input: WG,KTσ
graph-info(F) forwards every message it receives to F.

Output: Whenever F sends a message, WG,KTσ
graph-info(F) forwards the message to its in-

tended recipient.

18

Figure 6: The graph-information wrapper functionality (unified definition for KT0 and KT1).

Note that formally, the set of all possible parties V ∗ is fixed in advance. To represent a graph
G′ = (V ′, E′) where V ′ ⊆ V ∗ is a subset of the parties, we use the graph G = (V ∗, E′), where all
vertices v ∈ V ∗ \ V ′ have degree 0.

Definition 3.1 (Topology-hiding computation). We say that a protocol π securely realizes a func-
tionality F in a topology-hiding manner with respect to G tolerating a semi-honest adversary corrupt-
ing t parties if π securely realizes WG,KT0

graph-info(F) in the FG,KT0
graph -hybrid model tolerating a semi-honest

adversary corrupting t parties.

Broadcast. In this work we will focus on topology-hiding computation of the broadcast function-
ality (see Figure 7), where a designated and publicly known party, named the broadcaster, starts
with an input value m. Our broadcast functionality guarantees that every party that is connected
to the broadcaster in the communication graph receives the message m as output. In this paper,
we assume the communication graphs are always connected. However, the broadcaster may not be
participating, in which case it is represented as a degree-0 node in the communication graph (and
all the participating nodes are in a separate connected component.)

Parties that are not connected to the broadcaster receive a message that is supplied by the
adversary (we can consider stronger versions of broadcast, but this simplifies the proofs).

We denote the broadcast functionality where the broadcaster is Pi by Fbc(Pi).

Functionality Fbc(Pi)

The broadcast functionality Fbc(Pi) is parametrized by the broadcaster Pi and proceeds as
follows.

Initialization: The functionality receives the communication graph G from the wrapper
Wgraph-info.

Input: Record the input message m ∈ {0, 1} sent by the broadcaster Pi.

Output: Send the output m to every party that is in the same connected component as Pi
in G. For every other party in G, the output delivered to that party is supplied by the
adversary.

Figure 7: The broadcast functionality

Definition 3.2 (t-THB). Let G be a family of graphs and let t be an integer. A protocol π is a
t-THB protocol with respect to G if π(Pv) securely realizes Fbc(Pv) in a topology-hiding manner with
respect to G, for every Pv, tolerating a semi-honest adversary corrupting t parties.

19

3.2 Constant-Overhead Two-Party Computation for Semi-Honest Adversaries

Definition 3.3 (Stateless Two-Party Computation Syntax). A R2PC-round Stateless Two-Party
Computation (2PC) protocol 2PCF(x0, x1; r0, r1) := (2PCF0,i, 2PCF1,i)i∈[0,R2PC−1] for given functional-
ity F is described by two parties, P0 and P1, with respective inputs x0, x1 and respective randomness
r0, r1 that use PPT algorithms 2PCF0,i(x0, {m1,j}j<i; r0) (resp. 2PCF1,i(x1, {m0,j}j≤i; r1)) to compute
P0’s (resp. P1’s) i-th round message of the protocol, m0,i (resp. m1,i), taking as input P0’s 2PC
input x0 and the j-th round messages of P1 for j < i, and using P0’s 2PC randomness r0 (resp.
P1’s 2PC input x1 and the j-th round messages of P0 for j ≤ i, and using P1’s 2PC random-
ness r1). Algorithm 2PCF0,R2PC−1(x0, {m1,j}j<R2PC−1; r0) (resp. 2PCF1,R2PC−1(x1, {m0,j}j≤R2PC−1; r1))
additionally gives output y0 (resp. only gives output y1).

We will additionally use the notation 2PCFi,<ρ(x0, x1; r0, r1) to represent the first ρ messages
that party i receives from party 1− i on inputs x0, x1 and randomness r0, r1, respectively.

Constant-overhead constant-round 2PC. For this work, we need to use a 2PC with constant
overhead and constant round complexity. More precisely, we require that 2PC satisfies the following
properties: First, for any given functionality F and the corresponding circuit CF that computes it,
2PC has computational (and thus also communication) overhead O(|CF |) + poly(λ), where |CF | is
the size of the circuit, i.e., the number of gates it has. Second, we require the number of rounds
R2PC to be constant.

3.2.1 Semi-Honest Security

We follow the standard real/ideal world paradigm [Gol04]. Consider two parties P0,P1, with
inputs x0, x1 and randomness r0, r1, respectively, who execute protocol 2PCF to evaluate given
functionality F on their joint inputs, using their joint randomness. The security of protocol 2PCF
is defined by comparing the real-world execution of the protocol with an ideal-world evaluation of
F by a trusted party (ideal functionality). Informally, it is required that for every adversary A that
chooses to statically corrupt either P0 or P1 at the beginning of the real execution of the protocol,
there exists an adversary Sim, also referred to as the simulator, which can achieve the same effect
in the ideal-world. For simplicity, we will refer to an adversary that chooses to corrupt Pi as Ai,
and similarly Simi for the corresponding simulator, but the definition holds for all adversaries A0
and A1. We now formally describe the security definition.

Real Execution. In the real execution, 2PCF is executed in the presence of an ad-
versary Ai. The view of the first (resp. second) party during an execution of
2PCF(x0, x1; r0, r1) denoted VIEW2PCF

0 (x0, x1) (resp. VIEW2PCF
1 (x0, x1)) is (x0, r0, {m1,i}i∈[0,R2PC−1])

(resp. (x1, r1, {m0,i}i∈[0,R2PC−1])). The output of the first (resp. second) party after
an execution of 2PCF(x0, x1; r0, r1) denoted OUTPUT2PCF

0 (x0, x1) (resp. OUTPUT2PCF
1 (x0, x1))

is implicit in the party’s own view of the execution and OUTPUT2PCF (x0, x1) =
(OUTPUT2PCF

0 (x0, x1),OUTPUT2PCF
1 (x0, x1)). The execution of 2PCF in the presence of Ai

on input (x0, x1) and auxiliary input z, denoted REAL2PCF ,Ai(z)(x0, x1), is defined as
(OUTPUT2PCF (x0, x1),Ai(View2PCF

i (x0, x1), z)).

20

Ideal Execution. In the ideal execution, the two parties and an ideal world adversary Simi

interact with a trusted party (ideal functionality). The ideal execution proceeds as follows: Both
parties send their respective inputs x0, x1 to the trusted party, who computes F(x0, x1) and sends
the respective outputs F0(x0, x1),F1(x0, x1) to the parties. The execution of F in the presence of
Simi in the ideal model on input (x0, x1) and auxiliary input z, denoted IDEALF,Simi(z)(x0, x1), is
defined as (F(x0, x1),Simi(xi,Fi(x0, x1), z)).

Definition 3.4 (Static, Semi-Honest Two-Party Computation Security). Protocol 2PCF securely
computes F in the static, semi-honest model if for every PPT adversary Ai, there exists a PPT
simulator Simi such that:

{REAL2PCF ,Ai(z)(x0, x1)}x0,x1,z∈{0,1}∗ ≈c {IDEALF,Simi(z)(x0, x1)}x0,x1,z∈{0,1}∗

3.3 Efficiently Invertible from Local Information Functionalities

We now define a special property for functionalities needed to prove local simulatability of our path
protocol. We first define input consistency:

Definition 3.5 (Input Consistency). Given some subset J ⊆ [0, n − 1] and corresponding in-
puts and outputs {(xj , yj)}j∈J ⊆ {(x0, y0), . . . , (xn−1, yn−1)} of a functionality F, a set of inputs
{x′j}j∈[0,n−1]\J is input-consistent with {(xj , yj)}j∈J if F on input {xj}j∈J and {x′j}j∈[0,n−1]\J out-
puts y′0, . . . , y′n−1 such that {yj}j∈J = {y′j}j∈J .

Definition 3.6 (Efficiently Invertible from Local Information Functionalities). A functional-
ity (y0, . . . , yn−1) = F(x0, . . . , xn−1) is efficiently invertible from local information if given
some subset J ⊆ [0, n − 1] and corresponding inputs and outputs of F, {(xj , yj)}j∈J ⊆
{(x0, y0), . . . , (xn−1, yn−1)}, there exists a PPT algorithm {(x′j)}[0,n−1]\J = F−1({(xj , yj)}j∈J) such
that {(x′j)}[0,n−1]\J are input-consistent with {(xj , yj)}j∈J for F.

It can easily be seen that the OR functionality FOR(b0, . . . , bn−1) =
∨n−1
j=0 bj (where all parties

receive this same output) is efficiently invertible from local information. If the output is 0, one
immediately knows all unknown inputs must be 0; if the output is 1, one can imagine that all
unknown inputs are 1, as this still results in the same output, 1.

Now, we prove a simple lemma showing that input consistency is symmetric:

Lemma 3.7. Given some subset J ⊆ [0, n − 1] and corresponding inputs and outputs of some
functionality F, {(xj , yj)}j∈J ⊆ {(x0, y0), . . . , (xn−1, yn−1)}, and input-consistent {(x′j)}[0,n−1]\J ,
if F on input {xj}j∈J and {x′j}j∈[0,n−1]\J outputs y′0, . . . , y′n−1, then {xj}j∈J is input-consistent
with {(x′j , y′j)}j∈[0,n−1]\J .

Proof. This is immediate based on the fact that F on input {xj}j∈J and {x′j}j∈[0,n−1]\J outputs
y′0, . . . , y

′
n−1.

4 Locally Simulatable MPC
In this section we introduce the notion of locally simulatable MPC on disconnected graphs.

Towards the definition of locally simulatable MPC, we first recall the standard definition of a
functionality to model a function f : X 0 × · · · × X `−1 → Y0 × · · · × Y`−1 in Figure 8.

21

Functionality Ff

The functionality Ff is parameterised by the function f to be computed.

Input: The functionality awaits input xi ∈ Xi from party Pi (for i ∈ {0, . . . , `− 1}).

Computation: The functionality computes (y0, . . . , y`−1) := f(x0, . . . , x`−1).

Output: The functionality outputs yi to party Pi (for i ∈ {0, . . . , `− 1}).

Figure 8: Functionality Ff for computing f : X 0 × · · · × X `−1 → Y0 × · · · × Y`−1.

We define local simulatability relative to a communication network G = (V,E), where V =
{0, . . . , `− 1}, and where two parties Pi and Pj can communicate if and only if they are connected
by an edge (i, j) ∈ E. In the following we always assume the graph to be connected.

We model the notion of local simulatability, by requiring a simulator to be dividable in simulators
S1, . . . , Sµ (one for each connected component of the adversary), where simulator Si has to simulate
the view of the i-th component solely based on the inputs and outputs of the parties in this
component.

Real Execution. Let Π be a protocol executed by parties P0, . . . , P`−1 on G, i.e., a protocol
where each party can only send and receive messages from their neighbors in G. Then, the view
ViewΠ

i (x0, . . . , x`−1) of party Pi consists of its input xi, its internal randomness ri and all messages
received by party Pj with (i, j) ∈ E. Let A be an adversary corrupting a subset I ⊂ {0, . . . , `− 1}
of the players. Then, the view of A in the real execution of Π is of the form

REALΠ
A,I(x0, . . . , x`−1) =

(
Π(x0, . . . , x`−1),

{
ViewΠ

i (x0, . . . , x`−1)
}
i∈I

)
,

where Π(x0, . . . , x`−1) denotes the outputs of parties P0, . . . , P`−1 after the execution of Π on input
(x0, . . . , x`−1) with randomness (r0, . . . , r`−1).

Ideal Execution. Again, let A be an adversary corrupting a subset I ⊂ V of the nodes and let
I1, . . . , Iµ be a partitioning of I into pairwise disconnected components, i.e. such that

• I =
⋃µ
j=1 Ij

• Ii, Ij are disconnected for any i 6= j, i.e., for each u ∈ Ii and v ∈ Ij it holds (u, v) /∈ E.

Let Sim = (Sim1, . . . ,Simµ) be a tuple of algorithms10, such that for each j ∈ {1, . . . , µ} the
following holds:

• Simj is a PPT algorithm,

• Simj obtains an input/ output pair (xi, yi) for all i ∈ Ij ,
10Note that the distinction into µ different simulators instead of µ copies of the same simulator is solely for the

sake of clarity.

22

• Simj outputs a simulated view of parties {Pi}i∈Ij .

Then, we define the simulated view of Sim in the ideal execution of Ff as

IDEALfSim,I(x0, . . . , x`−1) =
(
f(x0, . . . , x`−1),

{
Simj((xi, yi)i∈Ij)

}
j∈µ

)
.

Definition 4.1 (Local Simulation). Let Π be a protocol on G. We say that Π emulates Ff relative
to G with local simulatability in the static, semi-honest model against t corruptions if for every
PPT adversary A corrupting a set I ⊂ {0, . . . , `−1} with |I| ≤ t and for every partitioning of I into
pairwise disconnected components I1, . . . , Iµ, there exists a PPT simulator Sim = (Sim1, . . . ,Simµ),
such that for all x0, . . . , x`−1 ∈ {0, 1}? it holds{

REALΠ
A,I(x0, . . . , x`−1)

}
≈c
{

IDEALfSim,I(x0, . . . , x`−1)
}

4.1 Locally Simulatable Protocols are Execution-Oblivious

In this section we show that the notion of locally simulatability indeed guarantees execution-
obliviousness (unless the execution can be derived from the output), as we will require to con-
struct THC. We first formalize what we mean by execution obliviousness. In the following we
restrict to protocols implementing deterministic functionalities with perfect correctness, i.e. for
which Π(x0, . . . , x`−1) is well-defined without specifying the random coins. (Note that the require-
ments on inputs and randomness in the following definition are necessary for preventing a trivial
distinguisher.)

Definition 4.2 (Execution obliviousness.). Let G = (V,E) be a graph with V = {0, . . . , `− 1} and
let Π be an `-party protocol on G. We say Π is execution oblivious on G tolerating t corruptions, if
for all sets I ⊆ {0, . . . , `− 1} with |I| ≤ t and for any partitioning of I into pairwise disconnected
components I1, . . . , Iµ the following holds:

For all inputs (x0, . . . , x`−1), (x(1)
0 , . . . , x

(1)
`−1), . . . , (x(µ)

0 , . . . , x
(µ)
`−1) ∈ X0 × · · · × X`−1 with

• x
(j)
i = xi for all i ∈ Ij , j ∈ [µ], and

• Π(x0, . . . , x`−1) = Π(x(1)
0 , . . . , x

(1)
`−1) = · · · = Π(x(µ)

0 , . . . , x
(µ)
`−1),

it holds: (
Π(x0, . . . , x`−1),

{
ViewΠ

i (x0, . . . , x`−1; r1, . . . , r`−1)
}
i∈I

)

≈c

Π(x0, . . . , x`−1),
µ⋃
j=1

{
ViewΠ

i (x(j)
0 , . . . , x

(j)
`−1; r(j)

0 , . . . , r
(j)
`−1)

}
i∈Ij

 ,
where the randomness is taken over the random coins r1, . . . , r`−1, {r

(j)
1 , . . . , r

(j)
`−1}j∈[µ].

Lemma 4.3 (Locally Simulatable Protocols are Execution Oblivious). Let G = (V,E) be a graph
with V = {0, . . . , `− 1}, let Ff be a deterministic `-party functionality and let Π be an `-party
protocol on G. If Π emulates Ff relative to G with local simulatability in the static, semi-honest
model against t corruptions, then Π is execution oblivious on G tolerating t corruptions.

23

Proof. Let I ⊆ {0, . . . , ` − 1} with |I| ≤ t and let I1, . . . , Iµ be a partitioning of I into pairwise
disconnected components. Let (x0, . . . , x`−1), (x(1)

0 , . . . , x
(1)
`−1), . . . , (x(µ)

0 , . . . , x
(µ)
`−1) ∈ X0×· · ·×X`−1

be arbitrary distributions with

• x
(j)
i = xi for all i ∈ Ij , j ∈ [µ], and

• Π(x0, . . . , x`−1) = Π(x(1)
0 , . . . , x

(1)
`−1) = · · · = Π(x(µ)

0 , . . . , x
(µ)
`−1),

Recall that we have to show:(
Π(x0, . . . , x`−1),

{
ViewΠ

i (x0, . . . , x`−1; r0, . . . , r`−1)
}
i∈I

)

≈c

Π(x0, . . . , x`−1),
µ⋃
j=1

{
ViewΠ

i (x(j)
0 , . . . , x

(j)
`−1; r(j)

0 , . . . , r
(j)
`−1)

}
i∈Ij

 ,
where the randomness is taken over the random coins r1, . . . , r`−1, {r

(j)
1 , . . . , r

(j)
`−1}j∈[µ].

We proceed the proof this via a series of hybrid games.

Game 0: The distribution is generated as(
Π(x0, . . . , x`−1),

{
ViewΠ

i (x0, . . . , x`−1; r1, . . . , r`−1)
}
i∈I

)
.

This corresponds to the original distribution on the left-hand side.

Game 1: The distribution is generated asf(x0, . . . , x`−1),
µ⋃
j=1

{
Simj((xi, yi)i∈Ij)

} ,
where Sim1, . . . ,Simµ are the simulators due to the local simulatability of Π. By the require-
ment of local simulatability, the distributions of Game 0 and Game 1 are indistinguishable.

Game 2.k: For k = 0, . . . , µ the distribution in Game 2.k is generated asf(x0, . . . , x`−1),
k⋃
j=1

{
ViewΠ

i (x(j)
0 , . . . , x

(j)
`−1; r(j)

0 , . . . , r
(j)
`−1)

}
i∈Ij
∪

µ⋃
j=k+1

{
Simj((xi, yi)i∈Ij)

} .
To show this step we have to prove indistinguishability of the transition Game 2.(k−1) 2.k:

First, note that we can replace f(x0, . . . , x`−1) by f(x(k)
0 , . . . , x

(k)
`−1) and by Π(x(k)

0 , . . . , x
(k)
`−1)

by our assumption of the input. Further, let

ViewΠ,≤k :=
k⋃
j=1

{
ViewΠ

i (x(j)
0 , . . . , x

(j)
`−1; r(j)

0 , . . . , r
(j)
`−1)

}
i∈Ij

and let
Sim≥k :=

µ⋃
j=k+2

{
Simj((xi, yi)i∈Ij)

}
.

24

we thus have to show that the distribution(
f(x(k)

0 , . . . , x
(k)
`−1),ViewΠ,≤k ∪{Simk((xi, yi)i∈Ik)} ∪ Sim≥k

)
is indistinguishable from the distribution(

Π(x(k)
0 , . . . , x

(k)
`−1),ViewΠ,≤k ∪

{
ViewΠ

i (x(k)
0 , . . . , x

(k)
`−1; r(k)

0 , . . . , r
(k)
`−1)

}
i∈Ik
∪ Sim≥k

)
.

Since x(k)
i = xi for all i ∈ Ik, this follows from the local simulatability of Π.

Game 3: The distribution is generated asΠ(x0, . . . , x`−1),
µ⋃
j=1

{
ViewΠ

i (x(j)
0 , . . . , x

(j)
`−1; r(j)

0 , . . . , r
(j)
`−1)

}
i∈Ij

 .
Note that we get this simulation by replacing f(x0, . . . , x`−1) back with Π(x0, . . . , x`−1) in
Game 2.µ. This concludes the proof.

5 Locally Simulatable Protocol for Directed Paths
In this section, we formally present and prove the locally simulatability of the protocol for com-
puting on a directed path some functionality F that is efficiently invertible from local information
(Definition 3.6). An example of such a functionality is FOR, which we will use to impelement THB
in the next section. We refer the reader back to Section 2.2 for a detailed overview of the protocol.

5.1 The Path Protocol

The directed path protocol Πdir-path is formally presented in Figure 10. As described in Section 2.2,
the protocol works over a directed path Path` = 0 → 1 · · · → `-1 of length ` = 2l, for some l > 0.
Each party knows its position j on the path and we refer to each such party as P̃j . The protocol
recursively computes the given functionality F. Recall that F must be efficiently invertible from
local information, such as FOR, which on input bits bj from each party P̃j , outputs

∨`−1
j=0 bj to every

party. When computation of FOR used in our higher-level THB protocol of the next section, the
input of party P̃j∗ corresponding to the broadcaster will be bj∗ = b, the broadcast bit, and for all
j 6= j∗, the input of party P̃j will be bj = 0.

As depicted in Figure 9 (reproduced from Section 2.2), Πdir-path proceeds by recursively emulat-
ing a (constant-round, constant-overhead) 2PC that computes ((y0|| . . . ||y`/2−1), (y`/2|| . . . ||y`−1)) =
F ′((x0|| . . . ||x`/2−1), (x`/2|| . . . ||x`−1)) = F(x0, . . . , x`−1) for two virtual parties, and then recur-
sively sending the outputs yj to the Parties Pj at the bottom of the recursion tree. Party P0,0 (and
similarly for party P0,1) of the highest-level 2PC is recursively emulated by parties P̃0, . . . P̃`/2−1
on the path by first computing each message that P0,0 sends in this 2PC via another lower-level
2PC between virtual parties P1,0 and P1,1. Parties P1,0 and P1,1 combine their inputs and random
strings via this 2PC to emulate P0,0’s input and random tape. P1,1 then receives P0,0’s next message
and sends it to P1,2 (the first party emulating P0,1). Continuing in the recursion, both P1,0 and

25

0 1 2 3 4 5 6 7

2PC2PC0
0,ρ(x′0, x′1; r̃0, r̃1) 2PC2PC0

1,ρ 2PC2PC1
0,ρ 2PC2PC1

1,ρ

2PC0 :=
2PC2PCε0,ρ(x′0, x′1; r̃0, r̃1)

2PC1 :=
2PC2PCε1,ρ(x0, x1; r̃0, r̃1)

2PCε :=
2PCF ′((x′0, x′1); (r̃0, r̃1))

x′0 = (x0, R̃0),
r̃0

x′1 = (x1, R̃1),
r̃1

x′0 = (x0||x1, R̃0[0]⊕ R̃1[0]),
r̃0 = R̃0[1]⊕ R̃1[1]

x′1 = (x2||x3, R̃2[0]⊕ R̃3[0]),
r̃1 = R̃2[1]⊕ R̃3[1]

x′0 =
∣∣∣∣3
j=0 xj ,

r̃0 =
⊕3
j=0 R̃j [0]

x′1 =
∣∣∣∣7
j=4 xj ,

r̃1 =
⊕7
j=4 R̃j [0]

Figure 9: Simplified depiction of directed path protocol Πdir-path for a path of length ` = 8. Each
interior node represents a 2PC which gets its inputs and randomness from its two children.
This 2PC computes the next message for virtual party P0 (resp. P1) in the 2PC at the
node’s parent by combining the inputs of its two children into the input and randomness
of P0 (resp. P1). This next message is passed from this node to its sibling in the protocol
via the two neighboring real parties at the rightmost (resp. leftmost) and leftmost (resp.
rightmost) leaves of the corresponding subtrees (indicated by horizontal lines of matching
thickness).

P1,1 are then emulated by another 2PC in the same fashion, and so on, until we reach two actual
parties on the path.

For each call (either the invocation or recursive calls) to Πdir-path there are some parameters
known to all participants: the current topology being considered (each recursive call works over a
connected subgraph of the path); the R2PC round constant-overhead semi-honest stateless protocol
2PC that is being used for the execution; the recursion depth d; the message virtual party σ ∈
{0, 1,⊥} who outputs a message for the 2PC that is being emulated by this instance (if σ = ⊥, this
means neither party does); output flag o ∈ {0, 1}, which indicates whether or not the parties produce
an output in this execution; and the 2PC functionality F that the two virtual parties are computing.
For the original invocation call, the path considered is the whole path Path` = 0 → 1 · · · → `-1 ,
the recursion depth is d = 0, message virtual party is σ = ⊥, output flag is o = 1, and the
2PC functionality that will be recursively computed is F ′; i.e., on input x0 from P0,0 (recursively∣∣∣∣`/2−1
j=0 xj) and x1 from P0,1 (recursively

∣∣∣∣`−1
j=`/2 xj), output F

′(x0, x1) to P0,0 and P0,1.
For each call, each party also receives some local input: their position j on the corresponding

subgraph of the path; their input xj ; a dictionary of random strings R̃j that they will use for the
emulation of high-level 2PC virtual parties; a set of 2PC messages Mj that they receive from some

26

higher-level 2PC in which they are assisting the emulation of one of the virtual parties; and their
neighbors on the path, P̃j−1 and P̃j+1. For the original invocation call, each party’s position is
of course j, their input xj , random string dictionary R̃j [·] = ⊥, empty message set Mj = ∅, and
neighbors P̃j−1 and P̃j+1.

Efficiency. Recall that we assume the round complexity of the 2PC protocol is some constant
R2PC and its overhead is c · |CF |+poly(λ) for some constant c, where CF is the circuit that computes
given functionality F. Thus, the round complexity of Πdir-path is R[`] = 2R2PC · R[`/2] + 2 =
Θ
(
` ·Rlog `

2PC

)
, which is O(`2). Furthermore, each real party on the path executes Rlog `−1

2PC 2PC’s.
The overhead of the highest-level 2PC is c · |CF ′ | + poly(λ), the overhead of the 2PC’s in the next
recursion level are then c2 · |CF ′ |+ c ·poly(λ) + poly(λ), and so on so that the overhead of the 2PC’s
executed by the real parties is O(` · (|CF ′ |+ poly(λ))). Therefore, the total overhead of Πdir-path is
O(Rlog `−1

2PC · ` · (|CF ′ |+ poly(λ))) = O(`2 · (|CF ′ |+ poly(λ))).

Protocol Πdir-path

Parameters: A topology Path` = 0 → 1 · · · → `-1 of length ` = 2l, an R2PC-round
constant-overhead semi-honest stateless protocol 2PC = (2PC0,ρ, 2PC1,ρ)ρ∈[0,R2PC−1], recursion
depth d, a message virtual party σ, output flag o, and 2PC functionality to be (recursively)
computed F. Note: we will use P̃j to denote the party at position j on the path.

The Protocol:

• Initialisation: Each party P̃j receives (j, xj , R̃j ,Mj , P̃j−1, P̃j+1) as input, either from
the original invocation, or from a recursive call. Each party P̃j samples r̃j

$← {0, 1}λ and
sets R̃j [d]← r̃j .

• Base Case (` = 2): Parties P̃0 and P̃1 directly compute the R2PC round protocol
2PCF((x0, R̃0[: d − 2], R̃0[d − 1],M0), (x1, R̃1[: d − 2], R̃1[d − 1],M1); r̃0, r̃1). If σ 6= ⊥,
then P̃σ returns the output message to its invoker. Furthermore, if o = 1, then both parties
locally return their outputs y0 and y1, respectively.

• For ρ = 0, . . . , R2PC − 2:

– For k ∈ [0, 1], rounds (2ρ+ k) · (R[`2] + 1) to (2ρ+ k + 1) · (R[`2] + 1)− 1:

Compute virtual Party Pk’s next 2PC message mk,ρ.
1. Parties P̃k·`/2, . . . , P̃k·`/2+`/2−1 recursively call Πdir-path with:

∗ Parameters: k · `/2 → k · `/2 + 1 · · · → k · `/2 + `/2-1 of length `/2 = 2l−1,
protocol 2PC, recursion depth d+ 1, message virtual party σ′ = 1− k, output
flag o = 0, 2PC functionality Fk :=
· Pk,0’s Input: xk,0, R̃k,0, r̃k,0,Mk,0 (recursively:∣∣∣∣k·`/2+`/4−1

j=k·`/2 xj ,
{⊕k·`/2+`/4−1

j=k·`/2 R̃j [d′]
}
d′∈[0,d−1]

,
⊕k·`/2+`/4−1

j=k·`/2 r̃j ,M
′
k·`/2;

where for k = 1,M ′k·`/2 = {m0,q}q<ρ, i.e., messages sent so far by P0;
for k = 0,M ′k·`/2 = Mk·`/2

)

27

· Pk,1’s Input: bk,1, R̃k,1, r̃k,1,Mk,1 (recursively:∣∣∣∣k·`/2+`/2−1
j=k·`/2+`/4 xj ,

{⊕k·`/2+`/2−1
j=k·`/2+`/4 R̃j [d

′]
}
d′∈[0,d−1]

,
⊕k·`/2+`/2−1

j=k·`/2+`/4 r̃j ,M
′
k·`/2+`/2−1;

where for k = 0,M ′k·`/2+`/2−1 = {m1,q}q<ρ, i.e., messages sent so far by P1;
for k = 1,M ′k·`/2+`/2−1 = Mk·`/2+`/2−1

)
· Pk,k’s output: ⊥
· Pk,1−k’s output: 2PCFk,ρ((xk,0||xk,1, {R̃k,0[d′]⊕ R̃k,1[d′]}d′∈[0,d−2],

R̃k,0[d− 1]⊕ R̃k,1[d− 1],Mk,0),Mk,1; r̃k,0 ⊕ r̃k,1)
∗ Inputs: P̃j holds (j mod `/2, bj , R̃j ,M ′j , P̃j−1, P̃j+1), where for P̃`/2−1+k, M ′j
is as above, otherwise, M ′j = Mj .

2. P̃`/2−1+k waits to receive mk,ρ as output of the recursive call to Πdir-path.
Send virtual Party Pk’s message mk,ρ to virtual Party P1−k.
1. P̃`/2−1+k sends mk,ρ to P̃`/2−k.

• For ρ = R2PC − 1 (the last 2PC round):

– Rounds (2R2PC − 2) · (R[`2] + 1) to (2R2PC − 2) · (R[`2] + 1) +R[`2]− 1:

Compute virtual Party P0’s last 2PC message m0,R2PC−1 and output y0.
1. As above, except if σ = 0, then instead of using message virtual party σ′ = 1

for the recursive call to Πdir−path, we use σ′ = σ. Furthermore, if o = 1, then
instead of using output flag o′ = 0, we use o′ = 1. Then, if σ = 0, P̃0 waits to
receive the output y0 from the recursive call to Πdir−path then outputs it to its
invoker themself, and sets m0,R2PC−1 = ⊥. Otherwise, P̃`/2−1 waits to receive
m0,R2PC−1 from the recursive call to Πdir−path.

– Round (2R2PC − 1) · (R[`2] + 1)− 1:
Send virtual Party P0’s last 2PC message m0,R2PC−1 to Party P1.
1. As above.

– Rounds (2R2PC − 1) · (R[`2] + 1) to (2R2PC − 1) · (R[`2] + 1) +R[`2]− 1:

Compute virtual Party P1’s 2PC output.
1. As above, except if σ = 0, then return ⊥. Otherwise, if σ = 1 or σ = ⊥, then

instead of using message virtual party σ′ = 0 for the recursive call to Πdir−path,
we use σ′ = σ. Furthermore, if o = 1, then instead of using output flag o′ = 0,
we use o′ = 1. Then, P̃`−1 waits to receive the output y1 of the recursive call
to Πdir−path (if any) and outputs it to its invoker themself.

Figure 10: Protocol Πdir-path which on input xj from each party P̃j on a directed path, computes
F(x0, . . . , x`−1) = (y0, . . . , y`−1) and outputs to party P̃j their output yj . Note: each
party knows their position on the path.

28

5.2 Local Simulatability of the Path Protocol

Additional Notation. Before showing our security proof for Πdir-path, we introduce some more
helpful notation. b·e represents rounding to the nearest integer (bx/2e = (x + 1)/2 for x ≡ 1
mod 2). GPo2(j) is the greatest power of 2 that divides j; i.e., GPo2(12) = 4, since 22 | 12 but
23 - 12. nEven(j) is the next closest even number to j; i.e., nEven(3) = nEven(4) = 4.

We index the j-th node at depth d in the recursion tree of the protocol with (d, j), where d is
counted top down (i.e., d = 0 corresponds to the root, d = l corresponds to the leaves) and j is
counted from left to right (i.e., j = 0 is the leftmost node at depth d, j = 2d − 1 is the rightmost
node at depth d). LCAL(i, j) := max{k ≥ 0 : bi/2kc = bj/2kc} is the number of levels up the
recursion tree where the respective paths of leaves i and j to the root meet.
Fd,j,k is the k-th functionality computed at node j at depth d, for k ∈ [0, Rd2PC]. parID :=

(d − 1, bj/2c, bk/R2PCc) is the identifier of the functionality at the parent of node j at depth d in
the recursion tree for which Fd,j,k is completely emulating a virtual party. Fpar

d,j,k := FparID is the
corresponding functionality, ipar := j mod 2 is the corresponding virtual party, and ρpar

d,j,k := k

mod R2PC is the round of Fpar
d,j,k which Fd,j,k emulates. ancID := (d − log(GPo2(nEven(j))) −

1, bj/(2 · GPo2(nEven(j)))c, bk/Rlog(GPo2(nEven(j)))+1
2PC c) is the identifier of the higher-level function-

ality at the ancestor of node j at depth d in the recursion tree whose 2PC execution’s messages
Fd,j,k also receives as input and for which Fd,j,k assists in the emulation of a virtual party (i.e., it
does not completely emulate the virtual party). Fanc

d,j,k := FancID is the corresponding functionality,
ianc := bj/(2 · GPo2(nEven(j)))− bj/(2 · GPo2(nEven(j))))ce is the corresponding virtual party, and
ρanc
d,j,k := bk/Rlog(GPo2(nEven(j)))

2PC c mod R2PC is the round of Fanc
d,j,k whose emulation Fd,j,k assists.

Party ifrom-par ∈ {0, 1} for Fd,j,k is the virtual party in this 2PC which receives the messages
from the emulation of 2PC

Fpar
d,j,k

ipar . ifrom-an = 1− ifrom-par ∈ {0, 1} for Fd,j,k is the virtual party in this
2PC which does not receive any messages (if j ∈ {0, 2d − 1}), or which receives messages from the
emulation of 2PC

Fanc
d,j,k

ianc .
Finally, given some recursion depth d, node j, and virtual party Pi of the 2PC function-

ality Fd,j,k, based on the subset J ⊆ [0, ` − 1] of the real parties of which Pi consists, and
their corresponding inputs and outputs of the functionality F that the whole protocol computes,
{(xj , yj)}j∈J ⊆ {(x0, y0), . . . , (x`−1, y`−1)}, let the inverted inputs of the other real parties be
{x′j}j∈[0,`−1]\J = F−1({(xj , yj)}j∈J) (recall that F is efficiently invertible from local information).
We recursively define Md,j,k,i

fake as

Md,j,k,i
fake :=

∅ j ∈ {0, 2d − 1}

2PC
Fpar

d,j,k
1−ipar,<ρ

par
d,j,k

((
x′ipar , R̃ipar , r̃ipar ,M

parID,ipar
fake

)
,(

x′1−ipar , R̃1−ipar , r̃1−ipar ,M
parID,1−ipar
fake

))
i = ifrom-par

2PC
Fanc

d,j,k
1−ianc,<ρanc

d,j,k

((
x′ianc , R̃ianc , r̃ianc ,M

ancID,ianc
fake

)
,(

x′1−ianc , R̃1−ianc , r̃1−ianc ,M
ancID,1−ianc
fake

))
i = ifrom-an,

for x′ipar , x
′
1−ipar , x

′
ianc , x

′
1−ianc based on real party inputs {xj}j∈J and real party inverted inputs

{x′j}j∈[0,`−1]\J , and randomly sampled R̃ipar , R̃ianc , R̃1−ipar , R̃1−ianc , r̃ipar , r̃ianc , r̃1−ipar , r̃1−ianc .

29

Simulation Helper Lemma. We first introduce a helpful lemma which will aid us in proving
the local simulatability of Πdir-path.

Lemma 5.1 (Simulation Helper Lemma). For every recursion depth d ∈ [0, l− 1], every 2PC node
j ∈ [0, 2d − 1] at depth d, every 2PC execution k ∈ [0, Rd2PC] at this node, and each 2PC party i ∈
{0, 1} of this 2PC, let J ⊆ [0, `−1] be the real parties of which virtual party Pi consists, {(xj , yj)}j∈J
their inputs and outputs of the functionality F that Πdir-path computes, and {x′j}j∈[0,`−1]\J be inputs
of all other real parties that are input-consistent with {(xj , yj)}j∈J . Then:

D0
d,j,k,i := VIEW2PCFd,j,k

i ((xi, R̃i, r̃i,Mi), (x1−i, R̃1−i, r̃1−i,M1−i)) ≈c

D1
d,j,k,i := VIEW2PCFd,j,k

i ((xi, R̃i, r̃i,Mi), (x′1−i, R̃1−i, r̃1−i,M
d,j,k,1−i
fake)),

for x′1−i,M
d,j,k,1−i
fake based on input-consistent {x′j}j∈[0,`−1]\J .

Proof. We will proceed by induction on the depth d of recursion.

• Base Case – d = 0: Here we want to prove that for i ∈
{0, 1}, D0

0,0,0,i := VIEW
F ′
i ((xi, R̃i,⊥,∅), (x1−i, R̃1−i,⊥,∅)) ≈c D1

0,0,0,i :=
VIEW

F ′
i ((xi, R̃i,⊥,∅), (x′1−i, R̃1−i,⊥,∅)), where R̃i[·] = R̃1−i[·] = ⊥. This sim-

ply follows by 2PC security and the fact that x′1−i is input-consistent with (xi, yi).
We have that VIEW

F ′
i ((xi, R̃i,⊥,∅), (x1−i, R̃1−i,⊥,∅)) ≈c Simi((xi, R̃i,⊥,∅), yi) ≈c

VIEW
F ′
i ((xi, R̃i,⊥,∅), (x′1−i, R̃1−i,⊥,∅)).

• Inductive Hypothesis: For all recursion depths d′ ∈ [0, d], every 2PC node j ∈ [0, 2d′ − 1]
at depth d′, every 2PC execution k ∈ [0, Rd′2PC] at this node, and each 2PC party i ∈ {0, 1} of
this 2PC, let {(xj , yj)}j∈J be the input and outputs of the real parties of the virtual party Pi
and {x′j}j∈[0,`−1]\J be inputs of all other real parties input-consistent with {(xj , yj)}. Then
D0
d′,j,k,i ≈c D1

d′,j,k,i.

• Inductive Step: Given the inductive hypothesis for depth d, we want to show that for
depth d + 1, for every 2PC node j ∈ [0, 2d+1 − 1], every 2PC execution k ∈ [0, Rd+1

2PC] at this
node, and each 2PC party i ∈ {0, 1} of this 2PC, if {(xj , yj)}j∈J are the input and outputs of
the real parties of the virtual party Pi and {x′j}j∈[0,`−1]\J are inputs of all other real parties
input-consistent with {(xj , yj)}, then D0

d+1,j,k,i ≈c D1
d+1,j,k,i.

For given j, k, let’s assume i = ifrom-par. We know from the inductive hypothesis that

2PC
Fpar

d,j,k
ipar,ρ

par
d,j,k

((xipar , R̃ipar , r̃ipar ,Mipar),Mifrom-par) ≈c 2PC
Fpar

d,j,k
ipar,ρ

par
d,j,k

((x′ipar , R̃ipar , r̃ipar ,M
parID,ipar
fake),Mifrom-par),

since all of x′ipar and x′1−ipar are input-consistent with {(xj , yj)} (and symmetrically by
Lemma 3.7) and so these two messages correspond to the same part of indistinguishable
distributions D0

parID,1−ipar
and D1

parID,1−ipar
, respectively. The inductive step thus follows by

2PC security and the above argument:

VIEW2PCFd,j,k,i
ifrom-par ((xifrom-par , R̃ifrom-par , r̃ifrom-par ,Mifrom-par), (x1−ifrom-par , R̃1−ifrom-par , r̃1−ifrom-par ,M1−ifrom-par)) ≈c

30

Simifrom-par((xifrom-par , R̃ifrom-par , r̃ifrom-par ,Mifrom-par), 2PC
Fpar

d,j,k
ipar,ρ

par
d,j,k

((xipar , R̃ipar , r̃ipar ,Mipar),Mifrom-par)) ≈c

Simifrom-par((xifrom-par , R̃ifrom-par , r̃ifrom-par ,Mifrom-par), 2PC
Fpar

d,j,k
ipar,ρ

par
d,j,k

((x′ipar , R̃ipar , r̃ipar ,M
parID,ipar
fake),Mifrom-par)) ≈c

VIEW2PCFd,j,k,i
ifrom-par ((xifrom-par , R̃ifrom-par , r̃ifrom-par ,Mifrom-par), (x

′
1−ifrom-par , R̃1−ifrom-par , r̃1−ifrom-par ,M

d,j,k,1−ifrom-par
fake)).

The analysis follows similarly for ifrom-an.

Local Simulatability of Πdir-path. Using Lemma 5.1 and simulator Simdir-path of Figure 11, we
prove in Theorem 5.2 that Πdir-path is locally simulatable on the path.

Simulator Simdir-path

Parameters: A path topology Path` = 0 → 1 · · · → `-1 of length ` = 2l, an R2PC-round
semi-honest protocol 2PC = (2PC0,i, 2PC1,i)i∈[0,R2PC−1], a block of corrupted parties [i, j] such
that 0 ≤ i ≤ j ≤ `− 1, and their input, output pairs (xi, yi), . . . , (xj , yj).

Simulator: First compute {x′j}j∈[0,`−1]\[i,j] = F−1({(xm, ym)}m∈[i,j]).

• Interior Corrupted Parties: For every i < k < j, proceed as in the real world.

• Corrupted Endpoint Parties Cases:

1. LCAL(i, j) = l; i.e., the least-common ancestor of leaves i and j in the recursion tree
is the root.
– Simulation for i: If i mod 2 = 1, then for every functionality Fl−1,bi/2c,k

that i computes with its neighbor i − 1, simulate i’s view using
Sim((xi, R̃i, r̃i,Mi),OUTPUT2PCFl−1,bi/2c,k

1 ((xi, R̃i, r̃i,Mi), (x′1−i, R̃1−i, r̃1−i,

M
l−1,bi/2c,k,1−i
fake))), for freshly sampled randomness R̃1−i, r̃1−i. Oth-

erwise, if i = ifrom-par, then for every functionality Fpar
l−1,bi/2c,k that

ipar computes with its neighbor 1 − ipar, simulate ipar’s view using

Sim((xipar , R̃ipar , r̃ipar ,Mipar),OUTPUT2PC
Fpar

l−1,bi/2c,k
ipar ((xipar , R̃ipar , r̃ipar ,Mipar), (x′1−ipar , R̃1−ipar ,

r̃1−ipar ,M
parID,1−ipar
fake))), for freshly sampled randomness R̃1−ipar , r̃1−ipar , and simi-

larly for if i = ifrom-an. Note that since LCAL(i, j) = l, we can recover all of ipar’s
(resp. ianc’s) input, as well as its output.

– Simulation for j: Analogous to above.
2. LCAL(i, j) < l; i.e., the least-common ancestor of leaves i and j in the recursion tree is

not the root. Assume w.l.o.g. that i = arg maxm∈{i,j+1} GPo2(m) (Simdir-path proceeds
similarly for the other case). If j ≥ i+ GPo2(i)− 1 then proceed as above. Otherwise:
– Simulation for i: If i = ifrom-an, then for every functionality Fanc

l−1,bi/2c,k
that ianc computes with its neighbor 1 − ianc, simulate ianc’s view using
Sim((x′ianc , R̃ianc , r̃ianc ,M

ancID,ianc
fake),OUTPUT2PC

Fanc
l−1,bi/2c,k

ianc (x′ianc , R̃ianc , r̃ianc ,M
ancID,ianc
fake),

31

(x′1−ianc , R̃1−ianc , r̃1−ianc ,M
ancID,1−ianc
fake))), for freshly sampled randomness

R̃ianc , R̃1−ianc , r̃ianc , r̃1−ianc . Simulate similarly for i = ifrom-par.
– Simulation for j: If j mod 2 = 0, then for every functional-

ity Fl−1,bj/2c,k that j computes with its neighbor j + 1, simulate
j’s view using Sim((xj , R̃j , r̃j ,Mj),OUTPUT2PCFl−1,bj/2c,k

0 ((xj , R̃j , r̃j ,Mj),
(x′1−j , R̃1−j , r̃1−j ,M

l−1,bj/2c,k,1−j
fake))), for freshly sampled randomness R̃1−j , r̃1−j .

Otherwise, if j = jfrom-par, then for every functionality Fpar
l−1,bj/2c,k

that jpar computes with its neighbor 1 − jpar, simulate jpar’s view us-

ing Sim((xjpar , R̃jpar , r̃jpar ,Mjpar),OUTPUT2PC
Fpar

l−1,bj/2c,k
jpar ((xjpar , R̃jpar , r̃jpar ,Mjpar),

(x′1−jpar , R̃1−jpar , r̃1−jpar ,M
parID,1−jpar
fake))), for freshly sampled randomness

R̃1−jpar , r̃1−jpar . Simulate similarly for if j = jfrom-an.

Figure 11: Simulator Simdir-path for directed paths protocol Πdir-path.

Theorem 5.2 (Local Simulatability of Πdir-path). For any functionality F that is efficiently invert-
ible from local information, Πdir-path emulates F relative to Path` with local simulatability in the
static, semi-honest model against ` corruptions.

Proof. For each block of corrupted parties Ik = [ik, jk] such that 0 ≤ ik ≤ jk ≤ ` − 1, we set
Simk = Simdir-path of Figure 11. To show that the real and simulated views are indistinguishable,
we one-by-one, according to an order described below, replace the view of some endpoint of some
block of corrupted parties Ik = [ik, jk] with the view that is generated by Simdir-path for them.
The endpoints are ordered by the depth of the 2PC functionality for which Simdir-path invokes
the corresponding 2PC simulator for them, with lower depths first. Formally, this corresponds to
l−GPo2(ik) and l−GPo2(jk + 1) for each such ik and jk (where larger values correspond to lower
depths that come first in the order). I.e., we work our way up from the bottom to the top of the
recursion tree. For example, those ik and jk such that ik mod 2 = 1 and jk mod 2 = 0 come first,
as then the 2PC simulator invoked for them is for depth l − 1 functionalities. Local simulatability
is easily achieved by following this order, since for a corrupted party participating in a lower-level
2PC, any messages input or output to the other party in the 2PC, which are part of the view of a
corrupted virtual party in a higher-level 2PC, should look independent of their view. Thus when the
lower level corrupted party’s real view is replaced by a simulated view, the adversary as a whole,
even with the higher-level corrupted virtual party’s still real view, does not notice any change. For
each endpoint in this order, we proceed by the cases identified in Figure 11:

1. ik is in some Ik = [ik, jk] such that LCAL(ik, jk) = l. In this case, let HYB0 be i’s current view
and HYB0,1 be the world in which we replace 1 − i’s (or 1 − ipar’s, or 1 − ianc’s) input with
x′1−i, and their input message set with M l−1.,bi/2c,k,1−i

fake (even though this may not be true in
the real world). HYB0 ≈c HYB0,1 then directly follows from Lemma 5.1. Now let HYB1 be the
world in which we replace i’s (or ipar’s, or ianc’s) view with the Simulation for i as detailed
in Figure 11. Then HYB0,1 ≈c HYB1 simply follows by a standard hybrid argument reducing
to the security of protocol 2PC, for each 2PC execution that ik participates in. A similar
argument follows for jk.

32

2. ik (resp. jk) is in some Ik = [ik, jk] such that LCAL(ik, jk) < l. Assume w.l.o.g. that
ik = arg maxm∈{ik,jk+1} GPo2(m) (the proof proceeds similarly for the other case). If jk ≥
ik + GPo2(ik)− 1 then proceed as above. Otherwise, we proceed as follows:
If we are currently doing a hybrid argument for some j = jk’s view, then let hybrid HYB0 be
j’s current view and HYB0,1 be the world in which we replace 1−j’s (or 1−jpar’s, or 1−janc’s)
input with x′1−j , and their input message set with M

l−1,bj/2c,k,1−j
fake (even though this may

not be true in the real-world). HYB0 ≈c HYB0,1 then directly follows from Lemma 5.1. Now
let HYB1 be the world in which we replace j’s (or jpar’s, or janc’s) view with the Simulation
for j as detailed in Figure 11. Then again, we easily see that HYB0,1 ≈c HYB1 via standard
reductions to 2PC security.

Otherwise, if we are currently doing a hybrid argument for some i = ik’s view, first
note that the corresponding jk’s view will have already been replaced as above, because of
the ordering of our hybrids. Now, assume that i = ifrom-an (the other case follows similarly)
and let HYB0 be i’s current view. HYB0,1 replaces ianc’s view with a generated view (with
freshly sampled randomness) in which ianc and 1− ianc have inputs x′ianc , x

′
1−ianc , respectively,

and input messages MancID,ianc
fake ,MancID,1−ianc

fake , respectively (even though this may not be true
in the real-world). First note again that jk’s correpsonding view will have already been
replaced as above, so that in HYB0 we already have a simulation consistent with ianc’s input
being x′ianc and input message set being MancID,ianc

fake . Now, it directly follows from Lemma 5.1
that replacing 1− ianc’s input and message set similarly is computationally indistinguishable.
Therefore, HYB0 ≈c HYB0,1. Now, in hybrid HYB1, we finally replace ianc’s view with the
Simulation for ianc as detailed in Figure 11. Again, it can easily be seen that HYB0,1 ≈c HYB1
via standard reductions to 2PC security, and since the uncorrupted parties in ianc and 1− ianc
use independently sampled randomness.

6 Extension to All Graphs
In this section we show how to use our protocol for local simulation on paths to achieve topology-
hiding computation on all graphs, building on the techniques of [ALM17].

6.1 From Local Simulation on Paths to Topology-Hiding Computation on All
Graphs

Let B be an upper bound of the size of the number of parties in the graph. Recall that by [ALM17],
if we set ` ≥ 8κ · B3, then a correlated random walk, as described in the introduction and more
formally in Protocol Πall-graphs (Fig. Πall-graphs) below, covers the graph except with probability 2−κ.
Since our protocol for computing OR on a path with local simulatability requires the underlying
path to be a power of 2, we set ` = 2b8κ·B3c. In the following we first present the functionality FOR
(Fig. 12) (recall that this is equivalent to broadcast), and then our protocol Πall-graphs (Fig. 13)
implementing FOR on all graphs.

We outline our protocol in Figure 13. We restrict in our description to the neighborhood model
KT1, but it is straightforward to generalize to KT0, since one can replace a permutation on the real
neighbourhood simply by a permutation of the pseudonymised neighbourhood.

33

Functionality FOR

Initialisation: The functionality receives the communication graph G from the wrapper
Wgraph-info.

Input: Record the input bit xi of each Pi.

Output: For each connected component X ⊆ V in G, compute bX ←
∨

Pi∈X xi (the boolean
OR of the inputs of all parties in the component), and send the output X to every party
in X.

Figure 12: The OR functionality

Protocol Πall-graphs

Public Parameters: B is an upper bound on the number of parties in the graph, and κ is a
correctness parameter. The common length of the random walks is set to ` := 2dlog(8κ·B3)e.
Requires: Πdir-path = (Init, nextdir-path, RetrieveOutput) is an Rdir-path-round locally sim-
ulatable protocol for securely computing (x0, . . . , x`−1) 7→

∨`−1
i=0 xi on the directed path

0 → 1 · · · → `− 1 , of length `.

• Init: On input a position i ∈ {0, . . . , ` − 1} on the path, the security parameter 1λ, and
an input xi, Init outputs the initial state st(0)

i of the party in position i .

• nextdir-path: On input a position i ∈ [`], a round number r, the message m(r−1)
i,− sent from

i-1 to i in round r − 1 (or ⊥ if i = 0 or r = 1), the message m(r−1)
i,+ sent from i+1 to

i in round r− 1 (or ⊥ if i = `− 1 or r = 1), and party i ’s state st(r−1)
i at round r− 1,

nextdir-path outputs messages m(r)
i−1,+ (or ⊥ if i = 0), m(r)

i+1,− (or ⊥ if i = ` − 1) and i ’s
updated state at round st(r)

i .

• RetrieveOutput: On input ` ’s final state st(Rdir-path)
` , RetrieveOutput produces its output.

Hybrid Model: The protocol is defined in the FGgraph-hybrid model.

The Parties: Each party Pu is uniquely identified by some u in [B].
The Protocol:

• Initialisation: Upon receiving the input mu from the environment, each party Pu ini-
tialises FGgraph to receive its (open) neighbourhood N (u).

1. Setup correlated random walks locally.
Sample πu,1, . . . , πu,`−2

$← SB, independent uniformly random permutations on
[N (u)].

2. Prepare executions of Πdir-path.

34

For each i ∈ {0, . . . , `− 1}:
– For each v ∈ N (u), initialise st(0)

i,u,v
$← Init(i, 1`, xu).

• Round r = 1, . . . , Rdir-path:

1. (If r > 1 only) Incoming Communication Phase.
– Wait to receive a message mv from each v ∈ N (u), and parse it as
{(i,−,m(r−1)

i,u,v,−)}i∈[1,`−1], {(i,+,m
(r−1)
i,u,v,+)}i∈[0,`−2].

2. Run the rth round of the executions of Πdir-path.
For each v ∈ N (u):
– Compute messages 0 1 :

(⊥,m(r)
1,u,πu,1(v),−, st

(r)
0,u,v)← nextdir-path(1, r,⊥,m(r−1)

0,u,v,+, st
(r−1)
0,u,v)

– For each i = 1 . . . `− 2, compute messages i i− 1 and i i + 1 :
(m(r)

i−1,u,v,+,m
(r)
i+1,u,πu,i(v),−, st

(r)
i,u,v)← nextdir-path(i, r,m(r−1)

i,u,v,−,m
(r−1)
i,u,πu,i(v),+, st

(r−1)
i,u,v)

– Compute messages `− 1 `− 2 :
(m(r)

`−2,u,v,−,⊥, st
(r)
`−1,u,v)← nextdir-path(`− 1, r,m(r−1)

`−1,u,v,−,⊥, st
(r−1)
`−1,u,v)

3. Outgoing Communication Phase.
– For each v ∈ N (u), send {(i,−,m(r)

i,u,v,−)}i∈[1,`−1], {(i,+,m
(r)
i,u,v,+)}i∈[0,`−2] to v.

• Output Phase:

– For v ∈ N (u) compute bu,v
$← RetrieveOutput(st(Rdir-path)

`,u,v).
– Output MajorityVote((bu,v)v∈[B]). // Note that in a semi-honest execution with over-

whelming probability all bu,v will be equal to the broadcasted bit.

Figure 13: Topology-Hiding OR protocol Πall-graphs on the class of all connected graphs with at
most B nodes.

Theorem 6.1 (Topology-hiding OR on all graphs). Let κ ∈ N the statistical security parameter.
Let B be an upper bound on the number of parties, and let ` := 2blog(8κ·B3)c. If Πdir-path = (Init,
nextdir-path,RetrieveOutput) is an Rdir-path-round locally simulatable protocol for securely computing
(x0, . . . , x`−1) 7→

∨`−1
i=0 xi on the directed path 0 → 2 · · · → `− 1 of length ` with security against

` − 1 corruptions, then Πall-graphs (Fig. 13) securely realises FOR (Fig. 12) in a topology-hiding
manner against a static semi-honest adversary corruption up to all but one party.

Proof. We first show that (except with probability negligible in κ) the parties indeed obtain the
correct broadcast bit. Next, we show present a simulator to show that our protocol is indeed
topology hiding.

• Correctness: At a high level, correctness of Πdir-paths follows from correctness of Πdir-paths
and the fact that having the parties sample random permutations on their neighbourhoods

35

(simulated to completion) defines a set of non-interfering random walks which each cover the
graph individually with all but negligible probability [ALM20, Lemma 3.14].
The full argument requires some care, since all the executions of Πdir-paths are run in parallel.
Basically, all we have to show is that the messages are correctly routed by the parties, even
though they only have their local views of the walks.
In order to be convinced of this, consider the following interpretation of the instructions. If
a party u sends at round r a message of the form (i− 1,+,m) to one of its neigbhours v, it
should be taken to mean “m is the round-r message from u to v in the unique execution of
Πdir-path along the path where u is in position i , v is in position i-1 and πu,i(v) is in position
i + 1 . Similarly, if u sends at round r a message of the form (i+ 1,−,m) to πu,i(v), it should
be taken to mean “m is the round-r message from u to πu,i(v) in the same unique execution.
With these indications, correctness follows from a careful inspection.

• Security: We prove the theorem in a series of hybrids. We emphasise that this high-level
overview does not hide any technical difficulties, and as such this sequence of hybrids show-
cases how the notion of local simulation allows for simple and modular security proofs in the
context of topology-hiding computation.
Before starting with the simulation, observe the following:

– Let G = (V,E) be the actual underlying graph. Then, the number of paths that are
generated is equal to L := 2 · |E|, since edge node u starts one path for each v ∈ N (u).

– Except with probability negligible in κ, each path covers the whole graph, we can thus
assume that there is at least one honest party present in each path.

The intuition behind our proof is quite simple: If the adversary corrupts a number of sub-
sequent parties on one path, then there is nothing to hide from the adversary regarding the
topology of this path. On the other hand, if there are at least one honest parties on a path
between two corrupted parties, then we can use the local simulatability of the connected com-
ponents left and right of the corrupted parties to show that an adversary cannot distinguish
whether the two parties are, say, party i−1 and i+1 respective to the same path or respective
to two different paths11.
Initially, we assume that the simulator has the information to perfectly generate the real view
of the parties. We will show in a series of hybrids how to obtain a simulator that generates a
view that is indistinguishable from the initial view, only given the inputs and outputs of the
corrupted parties.
Considered the paths to be labeled by 1 to L2 (e.g., ordered by the identity of the first two
nodes of the path). Further, let I ⊂ V be the parties corrupted by the adversaries For
j = 1, . . . , L2, let (x0,j , . . . , x`−1,j) be the inputs to Πdir-path in the j-th execution (as induced
by the permutations πu,1, . . . , πu,`−2 for u ∈ V). Further, let Ij ⊂ {0, . . . , ` − 1} denote the
parties in the j-th execution that correspond to nodes I ∈ V . (Recall that |Ij | < ` for all j,
except with probability negligible in κ.)

11The fact that one honest party between two corrupted parties is sufficient to hide whether the two corrupted
parties execute the protocol respective to the same path or two different paths is crucial for the proof carrying over
to KT0.

36

1. Hybrid 1: S knows the entire graph and every party’s input, and simulates the real
world exactly, by sampling permutations πu,1, . . . , πu,`−2 for each u ∈ V and outputs(

Πall-graphs ({xi}i∈V) , {πu,i}u∈I,i∈[`−2],

L2⋃
j=1

{
ViewΠdir-path

i (x0,j , . . . , x`−1,j ; r0,j , . . . , r`−1,j)
}
i∈Ij

)
.

(Note that since we assume to be in the semi-honest setting and each party chooses fresh
randomness for each execution, this indeed perfectly simulates the real view.)

2. Hybrid ι, for ι = 0 . . . L2: Let bOR the output of the functionality FOR. Let Ij,1, . . . , Ij,µj
be a partitioning of Ij into pairwise disconnected components such that each Ij,k is
connected (i.e., a partitioning into maximally connected components). Further, for each
k ∈ [µj] let x(k)

0,j , . . . , x
(k)
`−1,j be chosen such that:

– x
(k)
0,j = x0,j for all j ∈ Ij,k

– x
(k)
0,j is chosen independently from x0,j for all j /∈ Ij,k, conditioned on

∨`−1
i=0 x

(k)
i,j = bOR.

We define the ι-th hybrid as follows:(
Πall-graphs ({xi}i∈V) , {πu,i}u∈I,i∈[`−2],

ι⋃
j=1

µk⋃
k=1

{
ViewΠdir-path

i (x(k)
0,j , . . . , x

(k)
`−1,j ; r

(k)
0,j , . . . , r

(k)
`−1,j)

}
i∈Ij,k

L2⋃
j=ι+1

{
ViewΠdir-path

i (x0,j , . . . , x`−1,j ; r0,j , . . . , r`−1,j)
}
i∈Ij

)
.

The indistinguishability from Hybrid ι to ι + 1 follows directly by Lemma Lemma 4.3
(since all executions use independent randomness, and the lemma holds for arbitrary
inputs).

3. Hybrid L2: Note that in hybrid L2 the view of the adversary is simulated as(
Πall-graphs ({xi}i∈V) , {πu,i}u∈I,i∈[`−2],

L2⋃
j=1

µk⋃
k=1

{
ViewΠdir-path

i (x(k)
0,j , . . . , x

(k)
`−1,j ; r

(k)
0,j , . . . , r

(k)
`−1,j)

}
i∈Ij,k

)
,

for which the following holds:
– The distribution is independent of the inputs of the honest parties, since the honest

parties x0,j are replaced by simulated inputs x(k)
0,j in the j-th hybrid (which only

requires the knowledge of the input of the corrupted parties together with the output
bOR).

– The distribution is independent of the graph topology outside the view of the adver-
sary, since the view is generated for each tuple (j, k) with fresh randomness. Further,
since Ij,k is by construction connected, the adversary knows the topology withing
Ij,k.

37

By the above considerations, given a semi-honest adversary A, there exists a simulator S that
generates the view of Hybrid L2 (which is indistinguishable to the real distribution) solely
given access to Fgraph-info(FOT). This concludes the proof.

As an immediate corollary of the proof of Theorem 6.1, we obtain a black-box compiler for locally
simulatable protocol for FOR from directed paths to any topology. This is simply due to the
observation that the simulator described above is local. Note though that for the task of obtaining
locally-simulatable OT, one can replace the correlated random walks by a fixed covering walk12,
since for that purpose the topology does not need to be hidden.

Corollary 6.2 (Locally simulatable OR on any graph). Let G be a graph. Assuming the existence
of a secure 2-party computation protocol with constant rounds and constant overhead, there exists
a locally simulatable protocol for securely computing the FOR functionality in the presence of a
semi-honest adversary corrupting any number of parties.

Going from THB to general THC can be achieved via standard techniques, which we briefly recall
in the following. On a high level, given topology hiding broadcast the parties can first decide on
an enumeration 1, . . . , |V | of the parties (this can be achieved, e.g., by each party broadcasting a
string in a sufficiently large interval and sorting the parties based on the lexicographic order of
the strings). Given this enumeration, the parties can set up point to point channels using any
key exchange protocol (which, in particular, is implied by oblivious transfer). Finally, given these
topology-hiding point-to-point channels, the parties can execute any MPC protocol to achieve
general topology-hiding secure computation. We therefore obtain the following corollary.

Corollary 6.3 (THC on all graphs). Assuming the existence of a secure 2-party computation pro-
tocol with constant rounds and constant overhead, there exists a protocol for securely computing any
efficiently computable functionality against a semi-honest adversary corrupting all-but-one parties,
where only the total number of parties in the graph is leaked (assuming a known apriori bound on
the number of parties).

Acknowledgments. We thank Elette Boyle, Ran Cohen, and Tal Moran for helpful discussions.
L. Kohl is funded by NWO Gravitation project QSC. Pierre Meyer was supported by ERC Project
HSS (852952).

Bibliography
[AGPV88] Baruch Awerbuch, Oded Goldreich, David Peleg, and Ronen Vainish. A tradeoff be-

tween information and communication in broadcast protocols. In John H. Reif, editor,
VLSI Algorithms and Architectures, pages 369–379, New York, NY, 1988. Springer New
York.

[ALM17] Adi Akavia, Rio LaVigne, and Tal Moran. Topology-hiding computation on all
graphs. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –

12A walk in a graph is an alternating sequence of adjacent vertices and edges; both vertices and edges may be
repeated. A covering walk contains each vertex at least once.

38

CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages
447–467, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Ger-
many.

[ALM20] Adi Akavia, Rio LaVigne, and Tal Moran. Topology-hiding computation on all graphs.
Journal of Cryptology, 33(1):176–227, January 2020.

[AM17] Adi Akavia and Tal Moran. Topology-hiding computation beyond logarithmic diame-
ter. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, Part III, volume 10212 of Lecture Notes in Computer Science,
pages 609–637, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

[BBC+19] Marshall Ball, Elette Boyle, Ran Cohen, Tal Malkin, and Tal Moran. Is information-
theoretic topology-hiding computation possible? In Dennis Hofheinz and Alon Rosen,
editors, TCC 2019: 17th Theory of Cryptography Conference, Part I, volume 11891 of
Lecture Notes in Computer Science, pages 502–530, Nuremberg, Germany, December 1–
5, 2019. Springer, Heidelberg, Germany.

[BBC+20] Marshall Ball, Elette Boyle, Ran Cohen, Lisa Kohl, Tal Malkin, Pierre Meyer, and Tal
Moran. Topology-hiding communication from minimal assumptions. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography Conference,
Part II, volume 12551 of Lecture Notes in Computer Science, pages 473–501, Durham,
NC, USA, November 16–19, 2020. Springer, Heidelberg, Germany.

[BBMM18] Marshall Ball, Elette Boyle, Tal Malkin, and Tal Moran. Exploring the boundaries
of topology-hiding computation. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes
in Computer Science, pages 294–325, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th
Annual ACM Symposium on Theory of Computing, pages 1–10, Chicago, IL, USA,
May 2–4, 1988. ACM Press.

[BM90] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture
Notes in Computer Science, pages 547–557, Santa Barbara, CA, USA, August 20–24,
1990. Springer, Heidelberg, Germany.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, January 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally se-
cure protocols (extended abstract). In 20th Annual ACM Symposium on Theory of
Computing, pages 11–19, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[DDN14] Bernardo David, Rafael Dowsley, and Anderson C. A. Nascimento. Universally com-
posable oblivious transfer based on a variant of LPN. In Dimitris Gritzalis, Aggelos

39

Kiayias, and Ioannis G. Askoxylakis, editors, CANS 14: 13th International Confer-
ence on Cryptology and Network Security, volume 8813 of Lecture Notes in Computer
Science, pages 143–158, Heraklion, Crete, Greece, October 22–24, 2014. Springer, Hei-
delberg, Germany.

[DGH+20] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel Wichs.
Two-round oblivious transfer from CDH or LPN. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology – EUROCRYPT 2020, Part II, volume 12106 of Lec-
ture Notes in Computer Science, pages 768–797, Zagreb, Croatia, May 10–14, 2020.
Springer, Heidelberg, Germany.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City,
NY, USA, May 25–27, 1987. ACM Press.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Cryptology
ePrint Archive, Report 2000/063, 2000. https://eprint.iacr.org/2000/063.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

[HMTZ16] Martin Hirt, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Network-hiding commu-
nication and applications to multi-party protocols. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture
Notes in Computer Science, pages 335–365, Santa Barbara, CA, USA, August 14–18,
2016. Springer, Heidelberg, Germany.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In Richard E. Ladner and Cynthia Dwork, editors,
40th Annual ACM Symposium on Theory of Computing, pages 433–442, Victoria, BC,
Canada, May 17–20, 2008. ACM Press.

[Li22] Shuaishuai Li. Towards practical topology-hiding computation. In Shweta Agrawal
and Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT 2022, Part I, vol-
ume 13791 of Lecture Notes in Computer Science, pages 588–617, Taipei, Taiwan,
December 5–9, 2022. Springer, Heidelberg, Germany.

[LZM+18] Rio LaVigne, Chen-Da Liu Zhang, Ueli Maurer, Tal Moran, Marta Mularczyk, and
Daniel Tschudi. Topology-hiding computation beyond semi-honest adversaries. In
Amos Beimel and Stefan Dziembowski, editors, TCC 2018: 16th Theory of Cryptog-
raphy Conference, Part II, volume 11240 of Lecture Notes in Computer Science, pages
3–35, Panaji, India, November 11–14, 2018. Springer, Heidelberg, Germany.

[MOR15] Tal Moran, Ilan Orlov, and Silas Richelson. Topology-hiding computation. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptography
Conference, Part I, volume 9014 of Lecture Notes in Computer Science, pages 159–
181, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

40

https://eprint.iacr.org/2000/063

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0. In
44th Annual Symposium on Foundations of Computer Science, pages 136–145, Cam-
bridge, MA, USA, October 11–14, 2003. IEEE Computer Society Press.

[OW14] Ryan ODonnell and David Witmer. Goldreich’s prg: evidence for near-optimal poly-
nomial stretch. In 2014 IEEE 29th Conference on Computational Complexity (CCC),
pages 1–12. IEEE, 2014.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In 21st Annual ACM Symposium on Theory of
Computing, pages 73–85, Seattle, WA, USA, May 15–17, 1989. ACM Press.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 160–164, Chicago,
Illinois, November 3–5, 1982. IEEE Computer Society Press.

[YZ16] Yu Yu and Jiang Zhang. Cryptography with auxiliary input and trapdoor from
constant-noise LPN. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer
Science, pages 214–243, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Hei-
delberg, Germany.

41

	Introduction
	Our Result
	Organization of the paper

	Technical Overview
	A High-Level Overview
	A modular approach to topology-hiding computation
	Information-local simulation.
	Locally simulatable MPC on a path from OT

	Technical Overview of the Core Protocol: Locally Simulatable MPC on a Path
	A Note on the Differences with TCC:MorOrlRic15

	Preliminaries
	Topology-Hiding Computation (THC)
	Simulation-Based THC.

	Constant-Overhead Two-Party Computation for Semi-Honest Adversaries
	Semi-Honest Security

	Efficiently Invertible from Local Information Functionalities

	Locally Simulatable MPC
	Locally Simulatable Protocols are Execution-Oblivious

	Locally Simulatable Protocol for Directed Paths
	The Path Protocol
	Local Simulatability of the Path Protocol

	Extension to All Graphs
	From Local Simulation on Paths to Topology-Hiding Computation on All Graphs

	Bibliography

