
The Query-Complexity of Preprocessing Attacks

Ashrujit Ghoshal and Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, Washington, USA

ashrujit@cs.washington.edu,tessaro@cs.washington.edu

Abstract. A large number of works prove lower bounds on space-time trade-offs in preprocessing
attacks, i.e., trade-offs between the size of the advice and the time needed to break a scheme given such
advice. We contend that the question of how much time is needed to produce this advice is equally
important, and often highly non-trivial. However, this question has received significantly less attention.
In this paper, we present lower bounds on the complexity of preprocessing attacks that depend on
both offline and online time. As in the case of space-time trade-offs, we focus in particular on settings
with ideal primitives, where both the offline and online time-complexities are approximated by the
number of queries to the given primitive. We give generic results that highlight the benefits of salting
to generically increase the offline costs of preprocessing attacks. The majority of our paper presents
several results focusing on salted hash functions. In particular, we provide a fairly involved analysis of
the pre-image- and collision-resistance security of the (two-block) Merkle-Damg̊ard construction in our
model.

1 Introduction

Preprocessing attacks leverage a suitably pre-computed advice string that only depends on some underlying
primitive (e.g., a hash function, a block cipher, or an elliptic curve) to break a scheme using fewer resources
than the best attack without such advice. For example, Hellman’s [Hel80] seminal work shows that, for
a given permutation π : rN s Ñ rN s, one can compute a suitable S-bit advice that allows inverting the
permutation on any point in time T � N{S.

A number of works, starting from [Unr07,DTT10,DGK17,CDGS18,CDG18], prove lower bounds that
establish inherent trade-offs between the size of the advice and the online time needed to break the scheme
(often referred to as “space-time trade-offs”). A question that has received less attention, however, concerns
the study of trade-offs between the offline time needed to compute the advice and the online time. To the
best of our knowledge, the only such result, due to Corrigan-Gibbs and Kogan [CK18], focuses on the discrete
logarithm problem in the generic-group model.

Initiating a more comprehensive and grounded study of such offline-online time trade-offs is the main
goal of this paper. As in prior works on space-time trade-offs, we focus on proving lower bounds relying
on ideal primitives, thus approximating time with query-complexity. In addition to providing a generic
overview of how salting makes preprocessing attacks expensive, we revisit under a new lens the recent
works [CDGS18,ACDW20,AGL22,GK22] on preprocessing attacks against salted hash functions and the
Merkle-Damg̊ard construction.

Why does time-complexity matter? One main reason to study preprocessing attacks is to model non-
uniform security. In this case, it is indeed irrelevant how long it takes to compute a good advice string
since its mere existence suffices for an attack, although such an attack may well never be explicitly found.
This perspective has emerged from the debate around the use of non-uniformity in security [KM12,BL13],
although often the issue can be bypassed entirely via cleverer uniform reductions, as in e.g. [GPR14]. The
importance of non-uniform attacks in practice has also been a source of debate [Rog06].

Here, we are concerned with a more practical and less formal perspective where preprocessing is used in
practical, explicit attacks for one of two reasons:

1. An attack needs to run very quickly in the online stage (e.g., must succeed before a time-out occurs
in an Internet protocol) but can afford to run much slower in an offline stage. For instance, Adrian et

https://orcid.org/0000-0003-2436-0230
https://orcid.org/0000-0002-3751-8546

al. [ABD�15] use offline computation to break 512-bit finite-field discrete logs in less than a minute of
online time, hence compromising legacy versions of the Diffie-Hellman handshake.

2. The advice is computed once and for all and is re-used to attack multiple instances. This is the scenario
of Rainbow Tables [Oec03], which leverage Hellman-type trade-offs to speed up attacks against unsalted
password hashes.

In both cases, it is imperative that the offline time remains within a feasible range.

When is preprocessing worth it? Different preprocessing attacks exhibit very different offline-online
time trade-offs. The main goal is to ensure that, thanks to preprocessing, the online complexity of an attack
is better than the best preprocessing-free attack. For example, in Rainbow Tables, for a password dictionary
of size N , the preprocessing takes time T1 � N to produce advice of size S, for which the online complexity
is then T2 � N{S. The online complexity bests the optimal online-only attacks, which is ΩpNq; moreover,
the preprocessing time is optimal since the sum of the offline and online time cannot beat the complexity of
the best online only attack.

A more interesting example is finding collisions in the salted Merkle-Damg̊ard (MD) construction, as
studied in a line of recent works [ACDW20,AGL22,GK22]. Given a (random) compression function h :
rN s � rM s Ñ rN s, the offline phase of the optimal attack for two-block collisions finds S collisions of the
form hpai,miq � hpai,m1

iq for m � m1 and salts a1, . . . , aS , for which offline time T1 � S � ?N is necessary.
Then, the online phase, given the salt a, uses time T2 � N{S to find m such that hpa,mq � ai for some
i, which yields a collision m}mi, m}m1

i. This attack achieves the trade-off T1 � T2 � N3{2, and the online
time beats the näıve Birthday attack whenever T1 � ΩpNq. It is not clear, however, whether the trade-off is
optimal, and this is indeed one of the questions we are addressing below.

Our contributions. This paper initiates an in-depth investigation of the time-complexity of preprocessing
attacks, and we focus primarily on salted constructions using hash functions, which is where the most
interesting technical questions emerge. In particular:

– Generic salting. We propose a generic technique to analyze the common practice of salting to mitigate
the effects of preprocessing attacks. We consider a model where every call to the underlying primitive
is salted. Qualitatively, our result implies that in most settings, to beat the best online-only attack, one
needs to invest an offline effort proportional to compromising the primitive on every salt.

– Concrete bounds for random oracles. Our generic technique can be combined with a recent work
by Jaeger and Tessaro [JT20] to provide concrete quantitative upper bounds on the advantage of an
offline-online adversary. These bounds are not always optimal, and we prove more refined bounds. We
exemplify this situation by studying the pre-image-resistance and collision-resistance of a salted random
oracle.

– Merkle Damg̊ard construction. The technical bulk of this paper studies the salted Merkle-Damg̊ard
(MD) construction with a random ideal compression function. Here, salting achieves a more limited effect
and still allows for non-trivial trade-offs between the offline and online complexity of an attack. We deliver
quantitative upper bounds on the advantage of breaking pre-image-resistance and collision-resistance of
the two-block salted MD for offline-online adversaries.

Salting defeats preprocessing. We start with a result that generically justifies the practice of salting
cryptographic primitives to defeat preprocessing attacks. Such results were proved for space-time-complexity
in [CDGS18], but we give an analogue result for offline-online query-complexity.

Concretely, we assume that we have a scheme Πg that relies on a random function g : rM s Ñ rN s,
and that the advantage in breaking Πg, as a function of the number of queries to g, is a well understood
quantity. (In particular, here we assume that the security depends only on the number of queries to g.) Now,
we replace gp�q with a salted hash function hpa, �q, where h : rSs � rM s Ñ rN s. We aim to quantify security
for an attacker A which, during an offline phase, is allowed to issue T1 queries to hp�, �q. Then, after learning
the random salt aÐ$ rSs, A attacks Πhpa,�q. In this online stage, A can issue T2 queries to hp�, �q.

We show that if (roughly) T� queries to g are needed to break Πg in the worst case with very high
probability, then for the attacker A to succeed with high probability as well, T1 ¥ S � T�{2 or T2 ¥ T�{2

2

must hold. In other words, the only way to beat the best online-only attack is to invest an amount of
preprocessing equivalent to that of breaking the scheme for every choice of the salt. At the core of this proof
is a simple argument that shows how to build an adversary B against Πg, achieving the same advantage as
A, with expected query-complexity T1{S � T2.

Quantitative bounds for salted random oracles. The above generic result holds for adversaries
achieving high advantage. Overall, we would like to go one step further to obtain quantitative precise upper
bounds on the advantage of A as a function of T1 and T2 and to characterize the whole advantage curve.
As our first result, we combine the above reduction to an adversary with expected query-complexity with
the work by Jaeger and Tessaro [JT20]. This allows us to show that any adversary attempting to break
pre-image-resistance of a random oracle with a s-bit salt and n-bit outputs succeeds with probability at
most

T1
S �N � T2

N
,

where N � 2n, S � 2s and, once again, T1 and T2 are the offline- and online-query-complexity. This bound
ends up being nearly exact in that there are offline- and online-only attacks achieving each of the two terms.

Unfortunately, the same approach via [JT20] yields only suboptimal bounds for other properties, such as
the collision resistance of a salted random oracle. Here, we give a direct proof that shows a bound of order

T1

S � ?N � T 2
2

N
.

This proof is of independent interest, and uses a compression argument to bound the number of salts for
which a collision is found in the preprocessing stage. And indeed, the first term is matched by an attack that
finds collisions for ΩprT1{

?
N sq salts, issuing

?
N queries for each of these salts.

Trade-offs for Merkle-Damg̊ard. Our first set of results aims to show that salting prevents offline-
online trade-offs–the best attack is either fully offline or fully online. However, we show that this is not
true if we cannot afford to salt each call to a primitive. We focus in particular on the salted Merkle-
Damg̊ard (MD) construction [Mer90,Dam90], which has also been central to a recent wave of works in
the context of space-time trade-offs [ACDW20,AGL22,GK22]. Here, we are given a compression function
h : t0, 1un � t0, 1u` Ñ t0, 1un and a message M that consists of B blocks M1, . . . ,MB P t0, 1u`. To hash M ,
one sets the initial value y0 to equal the salt a and computes the final hash yB by iterating

yi Ð hpyi�1,Miq .

Here, we focus on the case of messages of length at most two, which, as in the case of space-time trade-
offs [ACDW20], already captures many of the challenges. (In fact, we believe that going beyond requires
significantly new techniques than those we explore in this paper.) For pre-image-resistance, we prove a
bound (which we show to be tight) of the form (when ignoring constant factors and lower-order terms)

T2
N
� T1T2

N2
� T 2

1

N3
.

The most interesting term is the middle one: it is leading, e.g., for T1 � N6{5 and T2 � N4{5, and suggests an
inherent trade-off between offline and online query-complexities. Indeed, this advantage is (roughly) matched
by an actual attack that first evaluates hpai,Mq on N distinct M ’s for T1{N different salts a1, . . . , aT1{N .
Then, upon learning the value y to invert on, as well as the salt a, the online adversary spends its T2
queries looking for M P t0, 1un such that hpa,Mq � ai for some i P rT1{N s, succeeding with probability
ΩpT1T2{Nq. Then, given it succeeds, the attacker knows N evaluations of hpai, �q and is thus likely able to
find M 1 P t0, 1un such that hpai,M 1q � y. Hence, pM,M 1q is a pre-image of y.

Collision-resistance of MD. Our most involved result is the analysis of the collision-resistance of the
two-block MD construction, which in particular relies on a number of sophisticated compression arguments

3

and results in a bound that we know to be only partially tight. Ignoring lower order terms and constant
factors, we show a bound of order

T 2
2

N
� T1T2
N3{2

� T1
N5{4

� T 2
1

N7{3
.

Here, we show matching attacks for all terms except the last one. This (potential) lack of tightness of the last
term is due to our combinatorial analysis of a special type of offline-only attack. Namely, an offline attacker
could repeatedly attempt to find a special type of collision called a diamond for a (potential) salt a, namely,
four (distinct) queries hpa, x1q � y1, hpa, x2q � y2, hpy1, x11q � z1, hpy2, x12q � z2 such that z1 � z2. If the
attacker finds a diamond for k salts, then in the online phase it wins with probability k{N (with no further
query). Therefore, this boils down to proving a tail inequality on the number of salts for which a diamond is
found with T1 queries. This is challenging since in the regime T1 " N the combinatorics of random functions
are not very well understood. The challenge stems from the fact that the “outer” queries hpy1, x11q � z1 and
hpy2, x12q � z2 in one diamond could, individually, be part of diamonds for different salts. Our proof uses
compression arguments to provide a suitable tail bound, but we leave it as an open problem to improve our
analysis (or show it is tight).

Combining space and time. In conclusion, we observe that our approach is entirely dual to that of space-
time trade-offs. The latter completely ignores the issue of time to produce advice, whereas we completely
ignore the issue of advice size. The obvious question is whether both can be combined, and we currently lack
good techniques to combine space and query-complexity.

Relationship with Multi-Instance Security. We note that a remark in [CK18] observed that a lower
bound against multiple-discrete-log algorithms also yields lower bounds on the preprocessing time for discrete-
log algorithms with preprocessing (observation attributed to Dan Bernstein). We can extend this approach
to relate the advantage of an offline-online adversary with the advantage of an adversary playing a multi-
instance game. However, we find that this does not give tight bounds for the advantage of offline-online
adversaries that succeed with small (sub-constant) probability. In the full version, we illustrate this via an
example.

2 Preliminaries

Let N � t0, 1, 2, . . .u denote the set of all natural numbers and N¡0 � Nzt0u. For N P N¡0, let rN s �
t1, 2, . . . , Nu. For a set X, let |X| be its size and X� denote one or more elements of X. For a set S and
r P N¡0 such that r ¤ |S|, we denote using

�
S
r

�
the set of subsets of S with r elements. We denote FcspD,Rq

the set of all functions mapping elements in D to the elements of R. Security notions are defined via games;
for an example see Fig. 2. The probability that a game G outputs true is denoted using Pr rGs.

We let xÐ$ D denote sampling x according to the distribution D. If D is a set, we overload notation and
let xÐ$ D denote uniformly sampling from the elements of D. For a bit-string s we use |s| to denote the
number of bits in s. For a random variable X, we use E rXs to denote its expectation.

Merkle-Damg̊ard. We recall the Merkle-Damg̊ard hashing mechanism. For n, ` P N¡0, let h : t0, 1un �
pt0, 1u`q� Ñ t0, 1un be a compression function. We recursively define Merkle-Damg̊ard (MD) hashing MDh :
t0, 1un � pt0, 1u`q� Ñ t0, 1un as

MDhpa,Mq � hpa,Mq
for a P t0, 1un,M P t0, 1u` and

MDhpa, pM1,M2, . . . ,MBqq � hpMDhpa, pM1,M2, . . . ,MB�1qq,MBq

for a P t0, 1un and M1, . . . ,MB P t0, 1u`. We refer to a as the salt.

The compression lemma. The compression lemma states that it is impossible to compress a random
element in set X to a string shorter than log |X | bits long, even relative to a random string.

4

Proposition 1 (E.g., [DTT10]). Let Encode be a randomized map from X to Y and let Decode be a
randomized map from Y to X such that

Pr
xÐ$ X

rDecodepEncodepxqq � xs ¥ ε.

Then, log |Y| ¥ log |X | � logp1{εq.
Markov’s inequality. We use Markov’s inequality multiple times in this paper. We state it here for the
sake of completeness.

Proposition 2. Let X be a non-negative random variable and a ¡ 0. Then

Pr rX ¥ as ¤ E rXs
a

.

3 Offline-Online Trade-offs and the Role of Salting

We present some basic facts about offline-online trade-offs and discuss the role of salting. To do this, we
define a notational framework that captures the generality of our statements.

3.1 A general framework for offline-online attacks

Games. We formalize security guarantees in cryptography using games, which we also use for security proofs.
A game G describes an environment an adversary A can interact with, and the combination of G and A
results in a random experiment GpAq (we refer to this as A “playing” the game Gq which produces a Boolean
output. We also denote this output as GpAq.
Games with ideal primitives. We are interested in a special class of games that depend on an ideal
primitive, such as a random oracle, random permutation, ideal cipher, etc. We model this via a distribution
I on a set of functions. For example, a random oracle with (finite) domain D and range R would be modeled
by the uniform distribution on FcspD,Rq.1 Similarly, an ideal cipher with key space K and domain X can
be modeled as a uniformly chosen function e from the set FcspK � X � t�1, 1u,Xq such that epk, �, 1q is a
permutation on X for all k P K, and epk, �,�1q is its inverse. We can also model a variant of the generic-group
model (GGM) [Sho97] by looking at the uniform distribution of functions f P FcspZp�X�X,X�Xq, where
|X| � p, and

πpx, l1, l2q � pφpxq, φpφ�1pl1q � φ�1pl2qqq ,
where φ : Zp Ñ X is a bijective function.

Games with primitives. An oracle game Gπ is one where both the adversary A and the game procedures
are given access to an oracle π, from an understood set of possible functions π, which we refer to as compatible
with the game G. We denote by GπpAπq both the experiment where A plays the game, and is given access to
the same π as the game as well as the random variable denoting the output. We say that an (oracle) game
G is compatible with an ideal primitive I, if the range of I is a subset of the compatible oracles for G. We
write specifically

AdvG
IpAq � Pr rGπpAπqs (1)

where πÐ$ I. One could define a more general notion that permits other advantage formats (e.g., to model
distinguishing notions). This is straightforward, and outside the scope of this paper.

1 As usual, one must be more precise when formally defining a random oracle with D � t0, 1u�, but we remain
intentionally informal on this front; all of our examples can be assumed to work on a finite domain.

5

Game pre-GπpA � pA1,A2qq

st Ð Aπ
1

Return GπpAπ
2 pstqq

Game s-pre-GπpA � pA1,A2qq

st Ð Aπ
1

aÐ$ t0, 1us

Return GπapAπ
2 pst, aqq

Fig. 1: Offline-Online security games for an original game G. Left: the unsalted case. Right: the salted case.
Here, π is meant to be sampled from a salted ideal primitive Is, and πap�q � πpa, �q, i.e., the primitive with
salt fixed to a.

Defining offline-online attacks. With the above formalism, given an oracle game G, we introduce a new
oracle game pre-G, which enhances the original game to model offline-online attacks. Both games preserve
compatibility with any oracle. In particular, an adversary A is split into two parts, the offline adversary A1

and the online adversary A2. Initially, in the offline stage, A1 is given access solely to the game oracle π. At
the end of this stage, A1 outputs a state st. Then, in the online stage, adversary A2 is initialized with state st
and run in the game G. Both A2 and G are given access to the oracle π. Crucially, the game G might give A2

additional oracles plus additional initialization values, etc., which are not available in the offline stage. (This
is formalized in Figure 1 on the left). We colloquially refer to A � pA1,A2q as an offline-online adversary.
Further, we say that A is a pT1, T2q-adversary if A1 makes at most T1 queries and A2 makes at most T2
queries. (Note that A2 could make additional game-dependent queries, which we would specify separately if
necessary.) We overload notation and define advantage in terms of pT1, T2q as follows.

AdvG
IpT1, T2q � max

pT1,T2q-adversaries A
AdvG

IpAq . (2)

Some basic facts. The following elementary fact, while straightforward, establishes some important base-
lines for when offline-online attacks are interesting. It relies on the basic observation that one can consider
A1 and A2 to be a single online adversary.

Lemma 1. Let G be a game compatible with the ideal primitive I. For any pT1, T2q-adversary A, there exists
an adversary B such that

Advpre-G
I pAq � AdvG

IpBq .
Here, B makes T1 � T2 queries to the primitive, and its time-complexity is the sum of the time-complexities
of A1 and A2. Further, for any game-dependent type of query, B makes the same number of queries as A2.

For an ideal primitive I, we let QpIq be an upper bound on the number of queries needed by an adversary,
given oracle access to πÐ$ I, to reconstruct π with probability 1. Then, the following also holds true and
formalizes the fact that one can simulate an offline-online adversary by having the offline adversary first
reconstruct π and then store it in st.

Lemma 2. Let I be a primitive that is compatible with game G. For all offline-online adversaries A, there
exists a pQpIq, 0q-adversary B such that

Advpre-G
I pAq � Advpre-G

I pBq

Note that the adversary B could be much less efficient than A; however, in many cases, we will study games
that only target information-theoretic security, and time-complexity will not matter. It also näıvely follows
that there always exists an optimal adversary that is a pQpIq, 0q-adversary.

6

Which games are interesting? Some games are more interesting than others in the context of offline-
online trade-offs, and the above two lemmas already provide some guidance.

Consider the problem of inverting a random permutation π : t0, 1un Ñ t0, 1un. It is well known that the
best adversary takes time ΩpNq queries, where N � 2n, to invert with constant probability. Then, Lemma 1
implies that any pT1, T2q-offline adversary needs T1 � T2 � ΩpNq to invert with constant probability. Thus,
to get T2 � opNq and beat the näıve inversion attack in the online phase, we need T1 � ΩpNq. Further, we
already have an pN, 0q-adversary by Lemma 2, so we cannot really expect interesting trade-offs. The question
becomes interesting only if we limit the state size between A1 and A2, which is exactly what is considered
by prior works on space-time trade-offs.

This is in contrast to the setting of the discrete logarithm problem with preprocessing [CK18]. There,
for a group of order p, by combining Lemma 1 with the well-known result by Shoup [Sho97], we get that
T1 � T2 � Ωp?pq. Lemma 2 guarantees only a pp, 0q attacker, so we can expect that T2 � op?pq while still
having T1 � oppq. And indeed, one can achieve the trade-off T1 � T2 ¥ p, as indicated in [CK18].

3.2 The power of salting

A special case of interest is that of salting, where the cryptographic primitive I permits an additional
input–called a salt–that is chosen in the online phase of an attack.

Generic salting. Let I be an ideal primitive, whose range is a subset of FcspD,Rq. We define its s-
bit salted version, denoted Is, as the ideal primitive with range Fcspt0, 1us � D,Rq; sampling a function
π : t0, 1us � D Ñ R occurs by first sampling 2s independent copies πaÐ$ I for each a P t0, 1us and then
letting

πpa, xq � πapxq ,
for all a P t0, 1us and x P D.

For any game G compatible with an ideal primitive I, we can now define an s-bit salted version of the
game, s-pre-G, that is compatible with Is. This is given on the right of Figure 1. Essentially, we now sample
a primitive πÐ$ Is to which the adversary A is given access. However, in the online phase, the games
themselves have access only to πa for a randomly sampled salt a, which is revealed to only the adversary A2.

From salted to unsalted games. The following theorem relates the advantage of an offline-online ad-
versary for the salted game with that of an adversary for the original game. We provide an interpretation
below (and use this lemma quantitatively in Section 4).

Theorem 1. Let G be a game compatible with an ideal primitive I. Let A � pA1,A2q be a pT1, T2q offline-
online adversary. Then, there exists an adversary B playing G such that

Advs-pre-G
Is

pAq � AdvG
IpBq .

The adversary B makes a number of queries, expressed as a random variable T with expectation E rT s ¤
T1{2s � T2.

Proof. Given access to π in the range of I, the adversary B samples a random salt a from t0, 1us and then
samples πa1 Ð$ I for a1 � a. It then simulates an execution of A � pA1,A2q in s-pre-G as follows: it answers
the ideal-primitive query of A for salt a using oracle queries to π, and those for salt a1 � a using the local
evaluation of πa1 . It is immediate that B perfectly simulates the execution of s-pre-G to A. Therefore, A wins
if and only if B does and the claim about advantages follows.

Observe that B queries its ideal primitive, sampled from I only when it receives an ideal object query
from A that is prefixed by the actual salt a. Since it is not given access to a when simulating A1, its queries
are independent of a, and each of them is indeed on salt a with probability 1{2s. In contrast, A2 makes
queries after learning a, and therefore, those queries are on salt a with probability upper bounded by one.
By linearity of expectation, the total number of queries T to π � πa made by B satisfies E rT s ¤ T1{|S| �T2,
as we intended to show. [\

7

Salting generically defeats preprocessing attacks. We illustrate one first main application of The-
orem 1, i.e., the fact that salting generically defeats preprocessing in a qualitative sense. Here, “qualitative”
means that we only look at the power of attacks that achieve large advantage. Subsequent sections (Sections 4
and 5) take a more quantitative angle on this, studying the whole advantage curve.

We now say that a game G compatible with I is pT�, εq-hard if AdvG
IpAq ¤ ε for all T�-query A�. We say

that game G is pT�, εq-expected-hard if the same holds for all adversaries running in expected time at most
T�. The following fact is helpful.

Lemma 3. If G is pT�, 0.4q-hard, then it is pT�{2, 0.9q-expected-hard.

Proof. By contradiction, let A run in expected time at most T�{2, and AdvG
IpAq ¡ 0.9. Then, build B that

runs A for T� queries and then aborts with some default answer if A did not finish running. Let T be the
running time of A. Then, for πÐ$ I,

Pr rGπpBπqs � Pr rGπpAπq ^ T ¤ T�s
¥ Pr rGπpAπqs � Pr rT ¡ T�s ¡ 0.9� 0.5 � 0.4 ,

where we used Markov’s inequality and the fact that E rT s ¤ T�{2. [\
Now, say that s-pre-G is pT1, T2, εq-hard if for all pT1, T2q-adversaries A, we have that Advs-pre-G

I pAq ¤ ε.
Then, Lemma 3 and Theorem 1 yield the following corollary.

Corollary 1. If G is pT�, 0.4q-hard, then s-pre-G is pT1, T2, 0.9q-hard for any T1, T2 such that T1{2s � T2 ¤
T�{2.

This means that if a pT1, T2q-adversary is to achieve advantage larger than 0.9 in s-pre-G, then T1 ¥ 2sT�{4
or T2 ¥ T�{4. In other words, in order to win s-pre-G with an advantage larger than 0.9, an attacker needs
to either use online time which is (almost) as large as that of the best online attack achieving advantage 0.4
or run 2s times that amount of time in the offline stage.

Moving on. We can easily revisit the remainder of this paper using what we saw in this section. First of all,
our conclusion about salting applies only to large advantage adversaries since otherwise we cannot prove an
analogue of Lemma 3. Section 4 examines tight exact bounds on the advantage of pT1, T2q-adversaries that
hold for each choice of T1 and T2. Second, this conclusion applies only to the case where G salts every call
to the primitive. In Section 5, we characterize the pre-image- and the collision-resistance of the salted MD
construction against offline-online attacks and show that salting, while still useful, has a more limited effect.

4 Offline-Online Security of Salted Random oracles

In this section, we study the security of salted monolithic random oracles against offline-online adversaries.
Specifically, we consider the security properties of pre-image-resistance and collision-resistance. Our analysis
begins by applying Theorem 1 in conjunction with [JT20, Theorem 1] to derive advantage upper bounds for
offline-online adversaries against these properties. This approach already yields a tight bound for pre-image-
resistance, but not for collision-resistance. We then use a non-generic technique to prove a tight bound for
the latter.

4.1 Pre-image-resistance of a salted random oracle

Oracle game PRh in Fig. 2 formalizes the preimage-resistance of oracle h, which has co-domain t0, 1un. In
the game the adversary is given as input y, which is randomly sampled from t0, 1un. It has oracle access to
h and wins if it manages to output x such that hpxq � y.

We aim to upper bound the advantage of offline-online adversaries A against pre-image-resistance of
salted random oracles. Let Hs,`,n be the uniform distribution over Fcspt0, 1us�t0, 1u`, t0, 1unq. The quantity

of interest is Advs-pre-PR
Hs,`,n

pT1, T2q. Using Theorem 1 and [JT20, Theorem 1], we get the following corollary.

8

Game PRhpBq
xÐ$ t0, 1u�

y Ð hpxq
x1 Ð Bhpyq
If hpx1q � y:

Return true
Return false

Game CRhpAq
pM,M 1q Ð Ah

If M �M 1 and hpMq � hpM 1q
Return true

Return false

Fig. 2: Left: Oracle Game PRh for preimage-resistance of oracle h. Right: Oracle Game CRh for collision-
resistance of oracle h.

Corollary 2. Let T1, T2, n, s, ` P N¡0. Then

Advs-pre-PR
Hs,`,n

pT1, T2q ¤ 5

�
T1

2s�n
� T2

2n

.

Proof. We fix the adversary pT1, T2q-adversary A that maximizes Advs-pre-PR
Hs,`,n

pT1, T2q. From Theorem 1 we

have that there exists an adversary B that makes at most T queries to its h oracle, where E rT s ¤ T1{2s�T2
and

Advs-pre-PR
Hs,`,n

pAq � AdvPR
Hs,`,n

pBq .

Using Theorem 1 in [JT20], we can show that AdvPR
Hs,`,n

pBq ¤ 5ErT s
2n , which completes the proof.

Tightness. We remark that this bound is tight up to constant factors. To see the tightness of the term
T2{2n, consider the online-only adversary that simply makes k distinct queries with the salt a. It fails only
if all the queries have answer different from y, which happens with probability p1� 1{2nqT2 ¤ e�T2{2

n

. Since
e�x ¤ 1 � x{2 for x ¤ 1.5, for T2 ¤ 2n, e�T2{2

n ¤ 1 � T2{2n�1. This means the adversary succeeds with
probability at least T2{2n�1, meaning the second term in the bound is tight up to constant factors.

To see why the first term is tight, consider the adversary A1 which makes 2n queries on different inputs
for k � T1{2n different salts (where T1 is a multiple of 2n). In the online phase, it simply checks whether it
had made a query with salt a, that had output y; if so it returns the query input.

Let the set of k salts A1 had made queries on be S. For each salt in S, the probability that A1 had not
made query with that salt that had answer y is at most p1 � 1{2nq2n ¤ 1{e. So, for each salt in S with
probability at least p1 � 1{eq, A1 had made a query that had answer y. Now A wins if the a sampled is in
S, and A1 has made a query with salt a that had answer y; this probability is at least p1� 1{eqk{2s since a
is sampled at random. Since k � T1{2n, it follows that the second term in the bound is tight as well.

4.2 Collision-resistance of a salted random oracle

Oracle game CRh in Fig. 2 formalizes the collision-resistance of oracle h. In the game the adversary has
oracle access to h and wins if it manages to output M,M 1 such that M �M 1 and hpMq � hpM 1q.

We aim to upper bound the advantage of offline-online adversaries A against collision-resistance of salted
random oracles. Let Hs,`,n be the uniform distribution over Fcspt0, 1us � t0, 1u`, t0, 1unq. We seek to tightly

upper bound Advs-pre-CR
Hs,`,n

pT1, T2q. Using Theorem 1 and [JT20, Theorem 1] we get the following corollary.

Corollary 3. Let T1, T2, n, s, ` P N¡0. Then

Advs-pre-CR
Hs,`,n

pT1, T2q ¤ 5
?

2

�
T1

2s�n{2
� T2

2n{2

.

9

Proof. We fix the adversary pT1, T2q-adversary A that maximizes Advs-pre-CR
Hs,`,n

pT1, T2q. From Theorem 1 we

have that there exists an adversary B such that it makes at most T queries to its h oracle, where E rT s ¤
T1{2s � T2, and

Advs-pre-PR
Hs,`,n

pAq ¤ AdvPR
Hs,`,n

pBq .

Using [JT20, Theorem 1], we can show that AdvCR
Hs,`,n

pBq ¤ 5

b
2ErT s2

2n , which concludes the proof.

Tight bound. The bound in corollary 3 is suboptimal. In Theorem 2, we obtain a better bound for
Advs-pre-CR

Hs,`,n
pT1, T2q.

Theorem 2. Let n, s, `, T1, T2 P N¡0. Let Hs,`,n be the uniform distribution on Fcspt0, 1us�t0, 1u`, t0, 1unq.
Then, we have that

Advs-pre-CR
Hs,`,n

pT1, T2q ¤
�
T2

2

�
2n

� T2T1
2s�n

� eT1
2s�n{2

� n

2s�1
� 1

2n
.

Tightness. We argue that this bound is tight up to constant factors. Initially, observe that for T2 ¥ 2n{2, the
right side becomes greater than one, and the bound always holds. For T2 ¤ 2n{2, we have that T1T2

2n�s ¤ eT1

2s�n{2 .

Therefore, the term T1T2

2n�s is never the dominant term in the bound, and it suffices to show attacks that

achieve advantage of the order
pT2

2 q
2n and eT1

2s�n{2 to show that this bound is tight. A birthday style attack with

T2 queries achieves advantage of the order
pT2

2 q
2n . Finally, we prove the following theorem to show that term

eT1

2s�n{2 is tight up to constant factors.

Theorem 3. Let T1, s, n, ` P N¡0 such that n is a multiple of 2 and T1 is a multiple of 2n{2�1. Let Hs,`,n

be the uniform distribution over Fcspt0, 1us � t0, 1u`, t0, 1unq. Then there exists a pT1, 0q-adversary A such
that

Advs-pre-CR
Hs,`,n

pAq ¥ p1� 1{eqT1
2s�n{2�1

.

We defer the formal proof of this theorem to Appendix A.3.We next prove Theorem 2.

Proof. Let A � pA1,A2q be the pT1, T2q-offline-online adversary that maximizes Advs-pre-CR
Hs,`,n

pT1, T2q. We can
treat A as deterministic by fixing its randomness that maximizes its advantage.

We seek to upper bound the probability that the adversary A finds a one-block collision for the randomly
chosen salt a that it gets as input in its online phase. We can assume without loss of generality that if A
outputs a collision, it must have made the relevant queries either in the offline or the online phase. This is
without loss of generality because if A does not make one of these queries, we can construct a pT1, T2 � 2q-
offline-online adversary A1 that does whatever A does, and at the end of its online phase, makes the two
relevant queries if not made earlier after A outputs M,M 1. The term T2 would then be replaced by T2 � 2
in our bounds; for ease of readability, we omit this.

Also, without loss of generality we can assume that no query across the offline and online phases is
repeated because the adversary can simply remember the query answer since we do not restrict its memory
or the amount of advice it can pass on from offline to the online phase.

We define the following three events.

1. onecollon: A2 makes two queries hpa,Mq � z, hpa,M 1q � z for some M �M 1

2. onecolloffon: A1 makes a query hpa,Mq � z, and A2 makes a query whose answer is z
3. onecolloff : A1 makes two queries hpa,Mq � z, hpa,M 1q � z for some M �M 1

Observe that if none of onecollon, onecolloffon, onecolloff happen, A cannot find a collision. We have that

Pr
�
s-pre-CRhHs,`,n

pAq
�
¤ Pr ronecollons � Pr ronecolloffons � Pr ronecollons . (3)

We upper bound the probability of these three events one by one.

10

Upper bounding Pr ronecollons. This event happens only if A2 makes two queries that collide. The prob-
ability of any two queries of A2 colliding is 1{2n. Using a union bound over all pairs of queries of A2, we
have

Pr ronecollons ¤
�
T2

2

�
2n

. (4)

Upper bounding Pr ronecolloffons. Observe that onecolloffon happens only if there is an online query that has
the same answer as one of the offline queries that had input salt a. There are a total of T1 offline queries,
and a is random. Therefore, the expected number of offline queries with salt a is T1{2s. We have that

Pr ronecolloffons ¤
T1̧

k�0

Pr rThere are k offline queries with salt as kT2
2n

� E rNumber of offline queries with salt as T2
2n

� T1T2
2s�n

. (5)

Upper bounding Pr ronecolloffs. The main challenge of this proof is proving an upper bound on Pr ronecolloffs.
We do it as follows: we define an event off-oneblk-k since there are k different salts for which a one-block
collision has been found in the offline phase. We have that for any k,

Pr ronecolloffs ¤ Pr
�
onecolloff

�� off-oneblk-k
�� Pr roff-oneblk-ks . (6)

Since onecolloff happens if for the salt a that is chosen uniformly at random from t0, 1us, A1 had queried
hpa,Mq, hpa,M 1q that have the same answer, we have that Pr

�
onecolloff

�� off-oneblk-k
� ¤ k{2s. We upper

bound Pr roff-oneblk-ks using a compression argument.
The encoding procedure encodes the random oracle h as follows.

1. It runs Ah
1 and initializes a list L to the empty list and a set S to the empty set.

2. For every query hpa,Mq made by A1, it does the following:
(a) Let z � hpa,Mq. If there was exactly one earlier query by A1 of the form pa,M 1q for some M 1 �M

that had answer z, and |S| 2k, it adds the index of the query hpa,M 1q and the current query to S.
(b) Otherwise, it adds hpa,Mq to L.

3. It appends the evaluation of h on the points not queried by A1 to L in the lexicographical order of the
inputs.

4. If |S| 2k it outputs H; otherwise, it outputs L,S.

The decoding procedure works as follows.

1. If the encoding is H, it aborts.
2. It runs Ah

1 .
3. For every query hpa,Mq made by A1, it does the following:

(a) If the index of the query is in S, and there is an earlier query hpa,M 1q for some M 1 by A1 such that
its index is in S, answer this query with hpa,M 1q.

(b) Otherwise, it removes the element in front of L and answers with that.
4. It populates h on the points not queried by A1 in the lexicographical order by the remaining entries of L

Correctness of decoding: For adversary A1 that causes the event off-oneblk-k to happen, the encoding algo-
rithm will never return H because by the definition of off-oneblk-k there will be at least k different salts ai
for which A1 queries hpai,Miq � zi, hpai,M 1

iq � zi; meaning the size of S will be 2k. For such an adversary
A it is easy to verify the decoding algorithm will always produce the correct output because for the answers
of h that were not added to L, the decoding algorithm recovers them using the set of indices S. Therefore,
we have that

Pr r Decoding is correct s ¥ Pr roff-oneblk-ks .

11

The size of the output space of the encoding algorithm is upper bounded by
�
T1

2k

� � p2nq2s�`�k. The size of

the input space is p2nq2s�`

. From the compression lemma (Proposition 1), we have that

Pr roff-oneblk-ks ¤ Pr r Decoding is correct s ¤
�
T1

2k

�
2kn

.

We k � max
�
eT1

2n{2
, n{2�. If max

�
eT1

2n{2
, n{2� � eT1

2n{2
, then k ¥ n{2. Therefore,�

T1

2k

�
2nk

¤
�

eT1
2n{2p2kq

2k

¤
�

1

2

n
.

If max
�
eT1

2n{2
, n{2� � n{2, then k ¥ eT1

2n{2
. Therefore,�
T1

2k

�
2nk

¤
�

eT1
2n{2p2kq

2k

¤
�

1

2

n
.

Therefore, for k � max
�
eT1

2n{2
, n{2�, Pr roff-oneblk-ks ¤ 1{2n. Therefore, from (6) we have

Pr ronecolloffs ¤ eT1
2s�n{2

� n

2s�1
� 1

2n
. (7)

Plugging (4), (5) and (7) into (3) gives us that

Advs-pre-CR
Hs,`,n

pAq ¤
�
T2

2

�
2n

� T1T2
2n�s

� eT1
2s�n{2

� n

2s�1
� 1

2n
.

[\

5 Offline-Online Security of Two-Block Merkle-Damg̊ard

In previous sections, we focused on proving security guarantees against offline-online attacks on constructions
where every query to the ideal primitive is salted. Here, we will see an example of a construction (Merkle
Damg̊ard) where only the first query to the underlying primitive (random oracle) is salted. Specifically, we
will study the pre-image-resistance and collision-resistance for two-block Merkle-Damg̊ard.

The main takeaway from this section is that for primitives that are not salted for every call, we can have
parameter regimes where a term of the form T1T2 dominates the bound, meaning that in these regimes there
are trade-offs between the number of offline and online queries for the advantage to be close to one. This
contrasts with what we saw earlier in Section 3.2. There we demonstrated that for constructions that salt
every query to the ideal primitive, an adversary must have either online time close to the online time of the
best online-only attack that attains an advantage close to one, or offline time close to the best offline-only
attack that attains an advantage close to one to achieve an advantage close to one.

5.1 Pre-image-resistance of two-block Merkle-Damg̊ard

In this section we study the offline-online attacks against the pre-image-resistance of the two-block Merkle-
Damgaard (MD) construction. Pre-image-resistance of two-block Merkle-Damg̊ard is formalized in the game
2-PR-MDh

n in Figure 3. A salt a and a value y are sampled uniformly at random from t0, 1un and given as
input to A. A can make queries to h and wins if it outputs a message M that is one or two blocks long
whose MD evaluation with a is y.

Let Hn,`,n be the uniform distribution over Fcspt0, 1un�t0, 1u`, t0, 1unq. We are interested in proving an

upper bound on Advpre-2-PR-MD
Hn,`,n

pT1, T2q. We prove the following theorem.

Theorem 4. Let T1, T2, n, ` P N¡0. Let Hn,`,n be the uniform distribution over Fcspt0, 1un�t0, 1u`, t0, 1unq.
Then

Advpre-2-PR-MD
Hn,`,n

pT1, T2q ¤ 2T2 � 1

2n
� T1T2 � nT1 � T1

22n
� 4eT 2

1

23n
.

12

Game 2-PR-MDhnpAq
aÐ$ t0, 1un

yÐ$ t0, 1un

M Ð Ahpa, yq
If |M | P t`, 2`u and MDhpa,Mq � y

Return true
Return false

Fig. 3: Oracle game 2-PR-MDh
n formalizing the pre-image-resistance of the two-block MD construction.

Offline-online trade-offs. Note that in the regime T1 � 2np1�εq, T2 � 2np1�εq for 0 ε 1{2, the term
T1T2{22n dominates the bound, meaning there is an offline-online query trade-off in that regime.

Tightness. We show that this bound is tight up to factors of n. Observe that the dominant terms are of
the order T2{2n, T1T2{22n, and T 2

1 {23n. We briefly describe how we show this.
The tightness of T2{2n follows easily – the online only attack simply makes T2 queries with the given salt.

The advantage of this attack is at least p1� 1{eqT2{2n for T2 ¤ 2n, as argued in the tightness discussion for
pre-image-resistance of the salted random oracle.

The following theorem proves that the term T1T2{22n is tight.

Theorem 5. Let T1, T2, n, ` P N¡0 such that T1 is a multiple of 2n, T1T2 ¤ 22n. Let Hn,`,n be the uniform
distribution over Fcspt0, 1un � t0, 1u`, t0, 1unq. Then there exists a pT1, T2q-adversary such that

Adv2-PR-MD
Hn,`,n

pAq ¥ T1T2p1� 2{eq
22n�1

.

We defer the proof of this theorem to Appendix A.2.
The following theorem proves that the term T 2

1 {23n is tight.

Theorem 6. Let T1, n, ` P N¡0 such that T1 is a multiple of 2n�1, T1 ¤ 23n{2. Let Hn,`,n be the uniform
distribution over Fcspt0, 1un � t0, 1u`, t0, 1unq. Then there exists a pT1, 0q-adversary such that

Adv2-PR-MD
Hn,`,n

pAq ¥ T 2
1 p1� 2{eq

23n�4
.

We defer the proof of this theorem to Appendix A.2.

Proof (Theorem 4). Let A be the pT1, T2q-adversary that maximizes Adv2-PR-MD
Hn,`,n

pT1, T2q. Without loss of
generality A is deterministic and does not repeat any queries. We also assume without loss of generality that
A makes all the queries needed to compute the MD evaluation of the messages it outputs.

We can formulate an alternate version of the game for pre-image-resistance of MD in game H in Fig. 4.
Note that whenever A wins 2-PR-MDh

n, it has to win H because from our assumption that A makes all the
queries needed to compute the MD evaluation of the messages it outputs, it follows that at least one of the
following happens.

– A makes a query hpa,M 1q � y – meaning it has found a one-block message M 1 whose MD evaluation
with salt a is y.

– A queries hpa,M 1q � z and hpz,M2q � y – meaning it has found a two-block message pM 1,M2q whose
MD evaluation with salt a is y.

In either of these cases the flag win is set in H, meaning A wins the game. Therefore,

Adv2-PR-MD
Hn,`,n

pAq ¤ Pr rHpAqs .

13

Game HpA � pA1,A2qq

hÐ$ Fcspt0, 1un � t0, 1u`, t0, 1unq
win Ð false
oneblkinv, twoblkinv Ð false
τ Ð rs, a, y Ð K
st Ð AH

1

aÐ$ t0, 1un

yÐ$ t0, 1un

If DM : ppa,Mq, yq P τ :
win Ð true
oneblkinv Ð true

If DM,M 1, z :
ppa,Mq, zq, ppz,M 1q, yq P τ :
win Ð true
twoblkinv Ð true

AH
2 pst, a, yq

Return win

Oracle Hpa1,M 1q

τ Ð τ Y tppa1,M 1q, hpa1,M 1qqu
If DM 1 : ppa,M 1q, yq P τ :

win Ð true
oneblkinv Ð true

If DM 1,M2, z :
ppa,M 1q, zq, ppz,M2q, yq P τ :
win Ð true
twoblkinv Ð true

Return hpa1,M 1q

Fig. 4: H using in the analysis of pre-image-resistance of two-block MD. The events introduced in this game
are marked in red.

Note that win is set to true H only if one of oneblkinv, twoblkinv is set to true. It follows that

Pr rHpAqs � Pr rA sets wins ¤ Pr roneblkinvs � Pr rtwoblkinvs .
We show that

Pr roneblkinvs ¤ T2
2n
� T1

22n
,

and

Pr rtwoblkinvs ¤ T2 � 1

2n
� T1T2 � nT1

22n
� 4eT 2

1

23n
.

Putting it all together would give us the theorem.
We next upper bound Pr roneblkinvs ,Pr rtwoblkinvs.
Towards upper bounding Pr roneblkinvs, we define the two following events:

1. oneblkinvoff : A1 makes a query with input salt a and output y
2. oneblkinvon: A2 makes a query which has output y

It is easy to see that if oneblkinv happens, then at least one of oneblkinvoff , oneblkinvon has to happen.
Therefore

Pr roneblkinvs ¤ Pr roneblkinvoffs � Pr roneblkinvons .
We first upper bound Pr roneblkinvons. Each query by A2 has answer y with probability 1{2n. Using a union
bound over all queries of A2, we have that

Pr roneblkinvons ¤ T2{2n .
We next upper bound Pr roneblkinvoffs. Consider the set of ps, yq pairs such that there is a query by A1 with
input salt s and answer y. There are at most T1 such pairs. Note that, oneblkinvoff happens only if pa, yq
which is sampled uniformly at random, is among those at most T1 pairs. Hence,

Pr roneblkinvoffs ¤ T1{22n .

14

Putting this together, we have the required bound on Pr roneblkinvs.
We next upper bound Pr rtwoblkinvs. We define the three following events.

1. twoblkinvoff : A1 makes queries hpa,Mq � z and hpz,M 1q � y for some M,M 1, z
2. twoblkinvoffon: A1 makes a query hpz,Mq � y and A2 makes a query hpa,M 1q � z for some M,M 1, z
3. twoblkinvon: A2 makes a query with answer y

It is easy to see that if twoblkinv happens then at least one of twoblkinvoff , twoblkinvoffon, twoblkinvon has to
happen. Therefore,

Pr rtwoblkinvs ¤ Pr rtwoblkinvoffs � Pr rtwoblkinvoffons � Pr rtwoblkinvons . (8)

We upper bound these probabilities one by one starting with Pr rtwoblkinvons. Observe that every query by
A2 has probability 1{2n of having answer y. Using a union bound over all queries of A2, it follows that

Pr rtwoblkinvons ¤ T2
2n

. (9)

We next upper bound Pr rtwoblkinvoffons. Observe that this event happens only if A2 makes a query that has
answer z such that A1 made a query with salt z that had answer y. Therefore, using total probability

Pr rtwoblkinvoffons ¤
T1̧

k�1

Pr rA1 made k queries with answer ys kT2
2n

� T2
2n

T1̧

k�1

E rNumber of queries of A1 with answer ys

� T2T1
22n

. (10)

The last equality follows since each query of A1 has answer y with probability 1{2n.
Finally, we upper bound Pr rtwoblkinvoffs. For this we initially take a short detour and define the event

pm� 1q-col as the event that A1 has made m� 1 distinct random oracle queries, all of which have the same
answer. We claim that

Pr
�
twoblkinvoff

�� pm� 1q-col
� ¤ mT1

22n
.

This is because if pm� 1q-col does not happen, there can be at most mT1 pairs of queries such that the
answer of the one query of the pair is the input of the other query (as otherwise there would be a m�1-multi-
collision since there are T1 queries made by A1). Now, twoblkinvoff happens only if pa, yq that is sampled
uniformly at random is such that one of these at most mT1 pairs have a as the salt for one query and y as
the answer of the other query. This happens with probability at most mT1

22n .
Finally, we upper bound Pr rpm� 1q-cols. For any subset of m � 1 queries made by A1, the probability

that they have the same answer is 1{2nm. Using a union bound over all possible m� 1 sized subsets of the
queries of A1, we have that

Pr rpm� 1q-cols ¤
�
T1

m�1

�
2nm

.

We let m � max
�
n, 4eT1

2n

�
. If n ¤ 4eT1

2n , we have that m � 4eT1

2n ¥ n. Therefore,

Pr rpm� 1q-cols ¤
�
T1

m�1

�
2mn

¤
�

eT1
pm� 1q2n

m�1

2n ¤
�

1

4

m
2n ¤

�
1

2

n
.

15

Otherwise, if n ¡ 4eT1

2n , we have that m � n ¡ 4eT1

2n . Therefore,

Pr rpm� 1q-cols ¤
�
T1

m�1

�
2nm

¤
�

eT1
pm� 1q2n

m�1

2n ¤
�

1

4

m�1

2n ¤
�

1

2

n
.

Therefore, we have that for m � max
�
n, 4eT1

2n

�
, Pr rpm� 1q-cols ¤ 1{2n. Hence

Pr rtwoblkinvoffs ¤ nT1
22n

� 4eT 2
1

23n
� 1

2n
. (11)

Plugging (9) to (11) into (8) gives us the required bound for Pr rtwoblkinvs and concludes the proof. [\

5.2 Collision-resistance of two-block Merkle-Damg̊ard

In this section, we study the collision-resistance of two-block Merkle-Damg̊ard (MD) against offline-online
adversaries. Collision-resistance of two-block MD is formalized by the oracle game 2-CR-MDh

n in Fig. 5. In
this game a salt a is picked at random from t0, 1un that is given to the adversary A. The adversary A has
oracle access to h, and wins if it can output two messages M,M 1 that are distinct; both at most 2 blocks
long, and satisfy MDhpa,Mq � MDhpa,M 1q.

The game pre-2-CR-MDh
n captures the collision-resistance of 2-block MD against offline-online adversaries.

We prove the following upper bound on Advpre-2-CR-MD,n
Hn,`,n

.

Theorem 7. Let T1, T2, s, `, n P N¡0. Let Hn,`,n be the uniform distribution on Fcspt0, 1un�t0, 1u`, t0, 1unq.

Advpre-2-CR-MD
Hs,`,n

pAq ¤ 2T 2
2 � nT2{2� 3n2{2� 99n{2� 33

2n

�
�
T1T2
23n{2

pn2 � 5n� 83q

�
�

T1
25n{4

p53n� 14n1{2 � 56n1{3 � 342q � 468

�
T 2
1

27n{3

.

Offline-online trade-offs. Note that, in the regime of parameters T1 � 2np1�εq, T2 � 2np1{2�εq for
0 ε 1{6, the term T1T2{23n{2 dominates the bound, i.e., there is a trade-off between the number of
offline and online queries in that regime.

Tightness of the bound. We show that the first three terms in the above bound are tight by giving
matching attacks. We could not find an attack matching the last term in the bound and leave improving it
or showing it tight to be future research.

We briefly describe how we show the other terms to be tight. The first term is dominated by T 2
2 {2n – we

can show that this is tight up to constant factors using the birthday attack, which achieves advantage of the
order T 2

2 {2n.
In the second term, ignoring constants and powers of n, the dominant factor is T1T2

23n{2
. We prove this

theorem to show that it is tight.

Theorem 8. Let T1, T2, n, ` P N¡0 such that n is a multiple of 2, T1 is a multiple of 2n{2�1, and T1T2 ¤ 23n{2.
Let Hn,`,n be the uniform distribution over Fcspt0, 1un�t0, 1u`, t0, 1unq. There exists a pT1, T2q adversary A
such that

Advpre-2-CR-MD
Hn,`,n

pAq ¥ p1� 2{eqT1T2
23n{2�3

.

The proof of this theorem is in Appendix A.1.
In the third term, ignoring constants and powers of n, the dominant factor is T1

25n{4
. We give an attack

that achieves advantage of the order
T 2
1

25n{2
. While

T 2
1

25n{2
¤ T1

25n{4
for T1 ¤ 25n{4, observe that both of them

become one at T1 � 25n{4. Formally, we prove the following theorem.

16

Game 2-CR-MDhnpAq
aÐ$ t0, 1un

pM,M 1q Ð Ahpaq
If |M |, |M 1| P t`, 2`u and M �M 1 and MDhpa,Mq � MDhpa,M 1q

Return true
Return false

Fig. 5: Oracle game 2-CR-MDh
n formalizing collision-resistance of two-block MD.

(a) Self-loop. (b) Self-loop on stem.

(c) Bulb. (d) Bulb on stem.

(e) Triangle. (f) Diamond.

Fig. 6: The structure of the six different types of two-block MD collisions in the query graph. The nodes
in the query graph are labelled with values in t0, 1un, and there is an edge pa, a1q labelled with M if the
adversary made a query hpa,Mq � a1. We omit the node and edge labels for simplicity.

Theorem 9. Let T1, T2, n, ` P N¡0 such that n is a multiple of 2, and T1 is a multiple of 2n{2�1. Let Hn,`,n

be the uniform distribution over Fcspt0, 1un � t0, 1u`, t0, 1unq. There exists a pT1, T2q adversary A such that

Advpre-2-CR-MD
Hn,`,n

pAq ¥ p1� 2{eqT 2
1

25n{2�6
.

The proof of this theorem is in Appendix A.1.
We now proceed to prove Theorem 7.

Proof. The proof of this theorem fixes the pT1, T2q-offline-online adversary A � pA1,A2q that maximizes

Advpre-2-CR-MD
Hn,`,n

pT1, T2q. We can treat A as deterministic by fixing its randomness that maximizes its advantage.
Without loss of generality we can assume that A does not repeat any query across the offline and online
phases because we have no restrictions on the memory of the adversary.

We rewrite the collision-resistance game for two-block MD in game H in Figure 7. Note that whenever
A wins G2-PR-MD

n,` , from our assumption that A makes all the queries needed to compute the MD evaluation
of the messages it outputs, at least one of the following happens.

– A makes a query hpa,M 1q � a, meaning it has found a one-block message M 1 whose MD evaluation with
salt a is a. This is sufficient for a two-block collision because for any M2 P t0, 1u`, pM 1,M2q and M2

have the same MD evaluation with salt a.
– A makes queries hpa,M 1q � z and hpz,M2q � z; this is a two-block collision because pM 1,M2q and M 1

have the same MD evaluation with salt a.
– A makes queries hpa,M 1q � z and hpa,M2q � z for M 1 �M2; this is a two-block collision because M 1,

and M2 have the same MD evaluation with salt a.
– A makes queries hpa,M 1q � z, hpy,M2q � z and hpy,M3q � z for M2 � M3; this is a two-block

collision because pM 1,M2q and pM 1,M2q have the same MD evaluation with salt a.

17

Game HpA � pA1,A2qq

hÐ$ Fcspt0, 1un � t0, 1um, t0, 1unq
win Ð false, τ Ð rs, aÐ K
sl, sos, bulb, bos, tri, dia Ð false
st Ð AH

1

aÐ$ t0, 1un

If DM 1 : ppa,M 1q, aq P τ :
win Ð true, sl Ð true

If DM 1,M2, z :
ppa,M 1q, zq, ppz,M2q, zq P τ :
win Ð true, sos Ð true

If DM 1 �M2, z :
ppa,M 1q, zq, ppa,M2q, zq P τ :
win Ð true, bulb Ð true

If DM 1,M2 �M3, y, z :
ppa,M 1q, yq, ppy,M2q, zq P τ,
ppy,M3q, zq P τ :
win Ð true, bos Ð true

If DM 1,M2,M3, y, z :
ppa,M 1q, yq, ppy,M2q, zq P τ,
ppa,M3q, zq P τ :
win Ð true, tri Ð true

If DM 1 �M3,M2 �M4, x, y, z :
ppa,M 1q, xq, ppa,M2q, yq P τ,
ppx,M3q, zq, ppy,M4q, zq P τ :
win Ð true, dia Ð true

AH
2 pst, aq

Return win

Oracle Hpa,Mq

τ Ð τ Y tppa,Mq, hpa,Mqqu
If DM 1 : ppa,M 1q, aq P τ :

win Ð true, sl Ð true
If DM 1,M2, z :
ppa,M 1q, zq, ppz,M2q, zq P τ :
win Ð true, sos Ð true

If DM 1 �M2, z :
ppa,M 1q, zq, ppa,M2q, zq P τ :
win Ð true, bulb Ð true

If DM 1,M2 �M3, y, z :
ppa,M 1q, yq, ppy,M2q, zq P τ,
ppy,M3q, zq P τ :
win Ð true, bos Ð true

If DM 1,M2,M3, y, z :
ppa,M 1q, yq, ppy,M2q, zq P τ,
ppa,M3q, zq P τ :
win Ð true, tri Ð true

If DM 1 �M3,M2 �M4, x, y, z :
ppa,M 1q, xq, ppa,M2q, yq P τ,
ppx,M3q, zq, ppy,M4q, zq P τ :
win Ð true, dia Ð true

AH
2 pst, aq

Return hpa,Mq

Fig. 7: H using in the analysis of collision-resistance of two-block MD against offline-online adversaries. The
events introduced in this game are marked in red.

– A makes queries hpa,M 1q � y, hpy,M2q � z and hpa,M3q � z; this is a two-block collision because
pM 1,M2q and M3 have the same MD evaluation with salt a.

– A makes queries hpa,M 1q � y, hpy,M2q � z, hpa,M3q � y1, and hpy1,M3q � z for M 1 � M3 and
M2 �M4; this is a two-block collision because pM 1,M2q and pM3,M4q have the same MD evaluation
with salt a.

If any of these occur, win is set in H, meaning A wins the game. Therefore,

Advpre-2-CR-MD
Hn,`,n

pAq ¤ Pr rHpAqs .
The game H defines events sl, sos, bulb, bos, tri, dia. We name the events this way because of the following

alternative view of MD collisions via the query graph of A: the nodes of the query graph are labelled with
strings from t0, 1un, and whenever A makes a query hpa,Mq � a1, an edge pa, a1q labelled M is added to the
graph. Finding a two block collision can be viewed as finding one of the following structures in the query
graph: self-loop, self-loop on stem, bulb, bulb-on-stem, triangle, and diamond; Fig. 6 shows these structures.

It follows from inspection that in game H, win is set only if one of these event among tsl, sos, bulb, bos, tri, diau
happen. Therefore, using the union bound we have that

Pr rHpAqs � Pr rA sets wins
¤

¸
eventPtsl,sos,bulb,bos,tri,diau

Pr revents (12)

18

Our proof is divided into these following lemmas each of which upper bound the probability of these events.

Lemma 4.

Pr rsls ¤ 1

2n
� n

2n
� 2eT1

22n
� T2

2n
.

Lemma 5.

Pr rsoss ¤ T2 � 3� nT2 � n2
2n

� 2eT1T2 � 6enT1
22n

� 8e2T 2
1

23n
.

Lemma 6.

Pr rbulbs ¤
�
T2

2

�
2n

� T2T1
22n

� eT1
23n{2

� n

2n�1
� 1

2n
.

Lemma 7.

Pr rboss ¤
�
T2

2

�� nT2{2� n2{2� 4

2n
� eT1T2 � enT1

23n{2
� nT1T2 � T1T 2

2 � 2enT1
22n

� 4e2T 2
1

25n{2
� 4eT 2

1 T2
23n

.

Lemma 8.

Pr rtris ¤
�
T2

2

�� 18n� 8

2n
� 3p24eq1{2T1 � 3p8enq1{2T1

23n{2
� 9p2q1{3eT 4{3

1

25n{3

� 2nT1T2 � T1T2 � T 2
2 T1 � 12ep2q1{2T 3{2

1

22n
� 8eT 2

1 T2 � 2T1T2
23n

.

Lemma 9.

Pr rdias ¤
�
T2

2

�� 30n� 16

2n
� 4eT 2

1 T2 � 2T1T2 � 4eT 2
1 T

2
2

23n
�

nT1T2 � T 2
2 T1 � n2T1T2 � nT1T 2

2

22n
� 4eT 3

1 T2
24n

� 40penq1{3T1
24n{3

� p8eq
1{2nT1 � 10p2eq1{2nT1

23n{2

� 240e2{3T 2
1

27n{3
� 8p2q1{2e3{2T 2

1 � 40p2eq1{2T 2
1

25n{2
.

Plugging in Lemmas 4 to 9 into (12) and grouping the terms, we get that

Advpre-2-CR-MD
Hs,`,n

pAq ¤ 33� 99n{2� 2T2 � 3nT2{2� 3n2{2� 4
�
T2

2

�
2n

� p2e� 8neqT1 � p3� nqT1T 2
2 � 12ep2q1{2T 3{2

1

22n

� p2� 2e� 4n� n2qT1T2
22n

� eT1T2
23n{2

� pe� en� 3p24eq1{2 � 3p8enq1{2 � p8eq1{2n� 10p2eq1{2nqT1
23n{2

� 8e2T 2
1 � 16eT 2

1 T2 � 4T1T2 � 4eT 2
1 T

2
2

23n

� p4e
2 � 8p2q1{2e3{2 � 40p2eq1{2qT 2

1

25n{2

� 9p2q1{3eT 4{3
1

25n{3
� 4eT 3

1 T2
24n

� 40penq1{3T1
24n{3

� 240e2{3T 2
1

27n{3
. (13)

19

Note that this bound trivially holds when T2 ¡ 2n{2 because in that case T 2
2 {2n ¡ 1 and the left hand side

is a probability which is at most 1. Similarly, it trivially holds when T2T1 ¡ 23n{2 or T1 ¡ 25n{4. Therefore,
we can assume T2 ¤ 2n{2, T1 ¤ 25n{4, and T1T2 ¤ 23n{2. For T1 ¤ 25n{4, we have the following inequalities.

T
3{2
1

22n
,
T 2
1

23n
,
T 2
1

25n{2
,
T

4{3
1

25n{3
,
T 2
1 T2
23n

,
T 3
1 T2
24n

¤ T1
25n{4

For T2 ¤ 2n{2, we have the following inequalities.

T1T
2
2

22n
,
T1T

2
2

22n
¤ T1T2

23n{2

For T1T2 ¤ 23n{2 we have that T 2
1 T

2
2 {23n ¤ T1T2{23n{2. Further for any T1, T2 ¥ 0, we have the following

inequalities.

T1
22n

,
T1

23n{2
,
T1

24n{3
¤ T1

25n{4

T1T2
22n

,
T1T2
23n

¤ T1T2
23n{2

Using all of these inequalities in (13), we have that

Advpre-2-CR-MD
Hs,`,n

pAq ¤ 33� 99n{2� 2T2 � 3nT2{2� 3n2{2� 4
�
T2

2

�
2n

� pp2e� 8neq � 12ep2q1{2qT1
25n{4

� p3� nqT1T2
23n{2

� p2� 2e� 4n� n2qT1T2
23n{2

� eT1T2
23n{2

� pe� en� 3p24eq1{2 � 3p8enq1{2 � p8eq1{2n� 10p2eq1{2nqT1
25n{4

� 8e2T1
25n{4

� p16e� 4� 4eqT1T2
23n{2

� p4e
2 � 8p2q1{2e3{2 � 40p2eq1{2qT1

25n{4

� 9p2q1{3eT1
25n{4

� 4eT1T2
23n{2

� 40penq1{3T1
25n{4

� 240e2{3T 2
1

27n{3
.

Consolidating terms we get that

Advpre-2-CR-MD
Hs,`,n

pAq ¤ 2T 2
2 � nT2{2� 3n2{2� 99n{2� 33

2n

�
�
T1T2
23n{2

pn2 � 5n� 27e� 9q

�
�

T1
25n{4

pnp9e� p8eq1{2 � 10p2eq1{2q � n1{2p3p8eq1{2q

� n1{3p40e1{3q � p3e� 12ep2q1{2 � 12e2 � 8p2q1{2e3{2 � 40p2eq1{2

� 9p2q1{3e� 3p24eq1{2q � 240e2{3T 2
1

27n{3
.

20

We observe that the following inequalities hold

27e� 9 ¤ 83

9e� p8eq1{2 � 10p2eq1{2 ¤ 53

3p8eq1{2 ¤ 14

40e1{3 ¤ 56

3e� 12ep2q1{2 � 12e2 � 8p2q1{2e3{2 � 40p2eq1{2 � 9p2q1{3e� 3p24eq1{2 ¤ 342

240e2{3 ¤ 468

Using this we have that

Advpre-2-CR-MD
Hs,`,n

pAq ¤ 2T 2
2 � nT2{2� 3n2{2� 99n{2� 33

2n

�
�
T1T2
23n{2

pn2 � 5n� 83q

�
�

T1
25n{4

p53n� 14n1{2 � 56n1{3 � 342q � 468

�
T 2
1

27n{3

.

We prove Lemmas 4 to 9 in Sections 5.3 to 5.8, respectively. [\

5.3 Proof of Lemma 4

Proof (Lemma 4). We define the two following events.

1. sloff : A1 made a query hpa,Mq � a
2. slon: A2 made a query hpa,Mq � a

Notice that sl happens only if at least one of sloff or slon happens. Therefore, we have that

Pr rsls ¤ Pr rsloffs � Pr rslons . (14)

We first prove an upper bound on Pr rslons. Note that, for every query hpa,Mq made by A2, the probability
that its answer is a is 1{2n. Therefore, using a union bound over all the queries of A2, we have that

Pr rslons ¤ T2{2n .

To prove an upper bound on Pr rsloffs, we define the following event off-sl-k: A1 makes at least k different
queries such that the input salt of the query is the answer of the query. Using total probability, we have that
for any k

Pr rsloffs ¤ Pr
�
sloff

�� off-sl-k
�� Pr roff-sl-ks � k

2n
. (15)

Note that, if the adversary A1 makes at most k different queries, such that the input salt of the query is the
answer, sloff happens only if the salt a that is sampled uniformly at random is same as the salt for one of
those at most k queries. Therefore, Pr

�
sloff

�� off-sl-k
� ¤ k{2n.

We upper bound Pr roff-sl-ks as follows. Let Bj be the indicator random variable that indicates whether
the j-th query of A1 is such that its answer is same as its input salt. Since A1 does not repeat queries, all
the Bj ’s are independent, and Pr rBjs � 1{2n. From the definition of Bj ’s, it follows that

Pr roff-sl-ks � Pr

�
T1̧

j�1

Bj ¥ k

�
.

21

We rewrite the term on the right as

Pr

�
T1̧

j�1

Bj ¥ k

�
� Pr rDS � rT1s, |S| � k : @j P S,Bj � 1s .

Using a union bound over all subsets of T1 of size k, we have

Pr rDS � rT1s, |S| � k : @j P S,Bj � 1s ¤
¸

S�rT1s,|S|�k

Pr r@j P S,Bj � 1s .

Since there are
�
T1

k

�
subsets of rT1s of size k, and all the Bj ’s are independent and Pr rBj � 1s � 1{2n, we

have that

Pr rDS � rT1s, |S| � k : @j P S,Bj � 1s ¤
�
T1

k

�
2nk

.

Therefore

Pr roff-sl-ks ¤
�
T1

k

�
2nk

¤
�
eT1
k2n

k
.

Plugging this in (15),we have that for any k,

Pr rsloffs ¤
�
eT1
k2n

k
� k

2n
.

We let k � max
�
n, 2eT1

2n

�
. If n ¤ 2eT1

2n , we have that k � 2eT1

2n ¥ n. Therefore,

�
T1

k

�
2nk

¤
�
eT1
k2n

k
¤
�

1

2

k
¤ 1

2n
.

Otherwise if n ¡ 2eT1

2n , we have that k � n ¡ 2eT1

2n . Therefore,

�
T1

k

�
2nk

¤
�
eT1
k2n

k
¤
�

1

2

k
� 1

2n
.

Hence,

Pr rsloffs ¤ 1

2n
� n

2n
� 2eT1

22n
.

Plugging this back into (14) gives us

Pr rsls ¤ 1

2n
� n

2n
� 2eT1

22n
� T2

2n
.

[\

5.4 Proof of Lemma 5

Proof (Lemma 5). We first define the three following events.

1. sosoff : A1 made queries hpa,M 1q � z and hpz,M2q � z
2. sosoffon: A1 made a query hpy,M2q � y and A2 made a query hpa,M 1q � y
3. soson: A2 made a query hpz,M 1q � z, i.e., a query whose answer is the same as its input salt

22

From inspection one can verify that sos happens only if at least one of sosoff , soson, sosoffon happen. It follows
that

Pr rsoss ¤ Pr rsosoffs � Pr rsosons � Pr rsosoffons . (16)

We first upper bound Pr rsosons. Note that for every query hpa,Mq made by A2, the probability that its
answer is a is 1{2n. Therefore, using a union bound over all the queries of A2, we have that

Pr rsosons ¤ T2{2n . (17)

We next upper bound Pr rsosoffons. Recall that the event off-sl-k defined in the proof of Lemma 4: A1 makes
at least k different queries such that the input salt of the query is the answer. We have that

Pr rsosoffons ¤ Pr
�
sosoffon

�� off-sl-k
�� Pr roff-sl-ks .

In this case, sosoffon happens only if A2 makes a query whose answer is the input salt of one of at most k
such queries. Therefore, we have that for any k,

Pr rsosoffons ¤ Pr roff-sl-ks � kT2
2n

.

As seen in the proof of Lemma 4, setting k � max
�
n, 2eT1

2n

�
makes Pr roff-sl-ks ¤ 1{2n. Therefore, by setting

this value of k, we have that

Pr rsosoffons ¤ nT2
2n

� 2eT1T2
22n

� 1

2n
. (18)

We finally upper bound Pr rsosoffs. For this we recall pm� 1q-col as the event that we defined in the proof of
Theorem 4. We say that pm� 1q-col happens if the A1 has made m� 1 distinct random oracle queries that
all have the same answer. Using total probability, we have that for any k,m

Pr rsosoffs ¤ Pr
�
sosoff

�� off-sl-k ^ pm� 1q-col
�� Pr roff-sl-k _ pm� 1q-cols

¤ Pr
�
sosoff

�� off-sl-k ^ pm� 1q-col
�� Pr roff-sl-ks � Pr rpm� 1q-cols . (19)

We claim that

Pr
�
sosoff

�� off-sl-k ^ pm� 1q-col
� ¤ mk

2n
.

This is because if off-sl-k and pm� 1q-col do not happen, there can be at most k �m salts a that satisfy that
A1 makes a query hpa,M 1q � z and hpz,M2q � z. The probability that the salt a that is sampled uniformly
at random is among one of those at most k �m salts is at most mk

2n .

From our calculations in the proof of Theorem 4, we have that for m � max
�
n, 4eT1

2n

�
, Pr rpm� 1q-cols ¤

1{2n. We also know that for k � max
�
n, 2eT1

2n

�
, Pr roff-sl-ks ¤ 1{2n. We set m, k to these values and obtain

from (19) that

Pr rsosoffs ¤ 2

2n
� n2

2n
� 6enT1

22n
� 8e2T 2

1

23n
. (20)

This is because for m � max
�
n, 4eT1

2n

�
, k � max

�
n, 2eT1

2n

�
,

k �m ¤ n2 � 6enT1{2n � 8e2T 2
1 {22n .

Plugging (17), (18) and (20) into (16), we get that

Pr rsoss ¤ T2 � 3� nT2 � n2
2n

� 2eT1T2 � 6enT1
22n

� 8e2T 2
1

23n
.

[\

23

5.5 Proof of Lemma 6

Proof. We define the three following events.

1. bulboff : A1 made queries hpa,Mq � y, hpa,M 1q � y for some M �M 1 and y
2. bulboffon: A1 made queries hpa,Mq � y, and A2 made a query with answer y for some M,y
3. bulbon: A2 made queries hpa,Mq � y, hpa,M 1q � y for some M �M 1 and y

Observe that bulb happens only if at least one of bulboff , bulboffon, bulbon happen. Therefore

Pr rbulbs ¤ Pr rbulboffs � Pr rbulboffons � Pr rbulbons . (21)

The rest of the proof consists of upper bounding these probabilities one by one. We begin with Pr rbulbons.
Observe that bulbon happens only if A2 makes two queries that have the same answer. The probability of
any two queries of A having the same answer is 1{2n. Using a union bound over all pairs of queries of A2,
we have that

Pr rbulbons ¤
�
T2

2

�
2n

. (22)

We next upper bound Pr rbulboffons. Let Qa be the random variable denoting the number of queries A1 makes
with salt a. Using total probability

Pr rbulboffons �
T1̧

i�1

Pr rQa � ksPr
�
bulboffon

��Qa � k
�

�
T1̧

i�1

Pr rQa � ks � kT2
2n

� T2
2n
� E rQas � T1T2

22n
. (23)

The second equality above follows because if A1 makes k queries with salt a, the probability that bulboffon

happens is at most kT2{2n using a union bound over all queries of A2. The final equality uses the fact that
E rQas � T1{2n, because A1 makes T1 queries and a is sampled uniformly at random.

Finally, we upper bound Pr rbulboffs. We define an event off-bulbs-k as follows: there is a set of at least k
distinct salts a1, . . . , ak such that for each ai, A1 has made a pair of queries hpai,Miq � z and hpai,M 1

iq � z
for Mi �M 1

i .
We have that for any k,

Pr rbulboffs ¤ Pr
�
bulboff

�� off-bulbs-k
�� Pr roff-bulbs-ks . (24)

Since bulboff happens if for the salt a that is chosen uniformly at random from t0, 1un, A1 had queried
hpa,Mq, hpa,M 1q that have the same answer, we have that Pr

�
bulboff

�� off-bulbs-k
� ¤ k{2n. We upper

bound Pr roff-bulbs-ks using a compression argument.
Note that the event off-bulbs-k is similar to the event off-oneblk-k we defined in the proof of Theorem 4, the

only difference being the salt length was s there and is n here. However, Pr roff-oneblk-ks did not depend on s,
hence we can prove the same bound for Pr roff-bulbs-ks. We showed in that proof that for k � max

�
eT1

2n{2
, n{2�,

Pr roff-oneblk-ks ¤ 1{2n.
Hence from (24) we have

Pr rbulboffs ¤ eT1
23n{2

� n

2n�1
� 1

2n
. (25)

Plugging (22), (23) and (25) into (21) gives us that

Pr rbulbs ¤
�
T2

2

�
2n

� T2T1
22n

� eT1
23n{2

� n

2n�1
� 1

2n
.

[\

24

5.6 Proof of Lemma 7

Proof. We define the five following events.

1. bosoff : A1 makes queries hpa,M 1q � y, hpy,M2q � z, hpy,M3q � z for some M 1,M2 �M3 and y
2. bosoffon,1: A1 makes queries hpa,M 1q � y, hpy,M2q � z and A2 makes a query with answer z for some z.
3. bosoffon,2: A1 makes a query hpy,M 1q � z, and A2 makes a query with answer z and another with answer
y, for some y, z,M 1.

4. bosoffon,3: A1 makes queries hpy,M 1q � z, and hpy,M2q � z and A2 makes query with answer z for some
M 1 �M2, y, z.

5. boson: A2 makes queries two queries that have the same answer.

Observe that bulb happens only if at least one of bosoff , bosoffon,1, bosoffon,2, bosoffon,3, boson happens. To see
why this is true, observe that for bos to happen A has to make queries q1 � hpa,M 1q � y, q2 � hpy,M2q � z,
q3 � hpy,M3q � z for M2 �M3, and some y, z. We show that all the possibilities are covered.

– If q2, q3 are both online, then boson happens.
– If one of q2, q3 is online, the other offline and

 if q1 is offline then bosoffon,1 happens
 if q1 is online, then bosoffon,1 happens

– If both q2, q3 are offline and
 q1 is online, then bosoffon,3 happens
 q1 is offline, then bosoff happens

Therefore,

Pr rboss ¤ Pr rbosoffs � Pr rbosoffon,1s � Pr rbosoffon,2s � Pr rbosoffon,3s � Pr rbosons . (26)

We upper bound these probabilities one-by-one. First off, we upper bound Pr rbosons. For every pair of queries
made by A2, the probability that they have the same answer is 1{2n. From a union bound over all pairs of
queries by A1 it follows that

Pr rbosons ¤
�
T2

2

�
2n

. (27)

Next, we upper bound Pr rbosoffon,2s. Fix a query q � hpy,Mq � z made by A1 and a pair of queries q1, q2

by A2. The probability that the answer of q1 is y and that of q2 is z, is 1{22n. Taking a union bound over all
possible q, q1, q2 we have that

Pr rbosoffon,2s ¤ T 2
2 T1
22n

. (28)

Next, we upper bound Pr rbosoffon,3s. Recall the event off-bulbs-k defined in the proof of Lemma 6: there is
a set of at least k distinct salts a1, . . . , ak such that for each ai, A1 has made a pair of queries hpai,Miq � z
and hpai,M 1

iq � z. For a salt ai, we refer to the adversary querying hpai,Miq � z and hpai,M 1
iq � z for

some Mi �M 1
i as a bulb query for the salt. In other words off-bulbs-k is the event that the adversary makes

bulb queries for at least k salts.
We have that

Pr rbosoffon,3s ¤ Pr
�
bosoffon,3

�� off-bulbs-k
�� Pr roff-bulbs-ks .

If A1 makes bulb queries for at most k salts, bosoffon,3 happens only if A1 makes a query whose answer is
among these at most k salts. Hence, Pr

�
bosoffon,3

�� off-bulbs-k
� ¤ kT1{2n. We know from the analysis in

Lemma 6, that for k � max
�
eT1{2n{2, n{2

�
, Pr roff-bulbs-ks ¤ 1{2n. Therefore, it follows that

Pr rbosoffon,3s ¤ 1

2n
� T2

2n
�
�
n

2
� eT1

2n{2

� nT2{2� 1

2n
� eT1T2

23n{2
. (29)

25

a

Fig. 8: Illustrating successor queries of a salt in the query graph. The queries marked in red to a salt a are
successor queries for a.

Next, we upper bound Pr rbosoffon,1s. We define the notion of a query being A1 being a successor query
for a particular salt a. We say that a query q � hpy,Mq � z made by A1 is a successor query for a salt a if

– y � a, z � a, y � z
– there is a query q1 � hpa,Mq � y made by A1 for some M

In Fig. 8, we illustrate how successor queries to a salt look like in the query graph of A.
Let Qa denote the number of successor queries for a salt a. Note that bosoffon,1 happens only if A2 makes

a query whose answer is same as the answer of one of the successor queries made of a. We have that

Pr rbosoffon,1s �
T1̧

k�1

Pr rQa � ks � kT1
2n

� E rQas T1
2n

.

We prove an upper bound on Qa. Recall the event m� 1-col: pm� 1q-col happens if the A1 has made m� 1
distinct h all of which have the same answer. We have using total expectation

E rQas ¤ E
�
Qa

�� pm� 1q-col
�� E

�
Qa

�� pm� 1q-col
�

Pr rpm� 1q-cols . (30)

We claim that E
�
Qa

�� pm� 1q-col
� ¤ mT1{2n. This is because we have that E

�°
aPt0,1un Qa

�� m� 1-col
�
¤

mT1- since if there is no pm�1q-multicollision, a query can be a successor query to at most m different salts.
Since a is sampled uniformly at random from t0, 1un, the claim follows.

We have from earlier analysis in Theorem 4 that for m � max
�
n, 4eT1

2n

�
Pr rpm� 1q-cols ¤ 1{2n .

Moreover E
�
Qa

�� pm� 1q-col
� ¤ T1 since a salt cannot have more than T1 successor queries. Therefore,

plugging this into (30)

E rQas ¤ 4eT 2
1

22n
� nT1

2n
� T1

22n
.

So, we have

Pr rbosoffon,1s � E rQas T2
2n
¤ 4eT 2

1 T2
23n

� nT1T2
22n

� T1T2
23n

. (31)

Finally, we upper bound Pr rbosoffs. We have that for any k,m

Pr rbosoffs ¤ Pr
�
bosoff

�� pm� 1q-col^ � off-bulbs-k
�� Pr rpm� 1q-cols � Pr roff-bulbs-ks .

We claim that Pr
�
bosoff

�� pm� 1q-col^ � off-bulbs-k
� ¤ k � m{2n, because if there are no m � 1-multi-

collisions and the adversary finds bulbs for at most k salts, there are at most k � m salts such that these
when sampled cause bosoff . Since a is sampled uniformly at random, it follows that this probability is at
most k �m{2n.

26

We let k � max
�
eT1

2n{2
, n{2�, m � max

�
n, 4eT1

2n

�
, we have that

k �m ¤ n2{2� eT1n

2n{2
� 2eT1n

2n
� 4e2T 2

1

23n{2
; .

This implies

Pr rbosoffs ¤ 1

2n
� 1

2n
� 1

2n
�
�
n2{2� eT1n

2n{2
� 2eT1n

2n
� 4e2T 2

1

23n{2

� n2{2� 2

2n
� enT1

23n{2
� 2enT1

22n
� 4e2T 2

1

25n{2
. (32)

Plugging (27) to (29), (31) and (32) into (26) we get

Pr rboss ¤
�
T2

2

�� nT2{2� n2{2� 4

2n
� eT1T2 � enT1

23n{2
� nT1T2 � T1T 2

2 � 2enT1
22n

� 4e2T 2
1

25n{2
� 4eT 2

1 T2
23n

.

[\

5.7 Proof of Lemma 8

Proof (Lemma 8). We define the six following events.

1. trioff : A1 makes queries hpa,M 1q � y, hpy,M2q � z, hpa,M3q � z for some M 1,M2,M3 and y � a
2. trioffon,1: A1 makes queries hpa,M 1q � y, hpy,M2q � z and A2 makes a query with answer z for some z.
3. trioffon,2: A1 makes a query hpy,M 1q � z, and A2 makes a query with answer z and another with answer
y, for some y, z,M 1.

4. trioffon,3: A1 makes queries hpa,M 1q � z, and A2 makes query with answer z for some M 1, z.
5. trioffon,4: A1 makes queries hpa,M 1q � z, hpy,M2q � z and A2 makes a query with answer y for some
y, z,M 1,M2

6. trion: A2 makes queries two queries that have the same answer.

Observe that tri happens only if at least one of trioff , trioffon,1, trioffon,2, trioffon,3, trioffon,4, trion happens. To see
why this is true, observe that for tri to happen A has to make queries q1 � hpa,M 1q � y, q2 � hpy,M2q � z,
q3 � hpa,M3q � z for M 1,M2,M3, y, z. We show that all the possibilities are covered.

– If q2, q3 are both online, then trion happens.
– If q2 is online, q3 is offline then trioffon,3 happens
– If q3 is online, q2 is offline and

 q1 is online, then trioffon,2 happens
 q1 is offline, then trioffon,1 happens

– If both q2, q3 are offline and

 q1 is online, then trioffon,4 happens
 q1 is offline, then trioff happens

Therefore

Pr rtris ¤Pr rtrioffs � Pr rtrioffon,1s � Pr rtrioffon,2s � Pr rtrioffon,3s
� Pr rtrioffon,4s � Pr rtrions . (33)

We upper bound these probabilities one-by-one.

27

a

Fig. 9: Illustrating meeting queries of a salt in the query graph. The queries marked in red to a salt a are
meeting queries for a.

We start with upper bounding Pr rtrions. Observe that trion is the same event as boson in the proof of
Lemma 7. Therefore, from (27), it follows that

Pr rtrions ¤
�
T2

2

�
2n

. (34)

Next we upper bound Pr rtrioffon,1s. Observe that trioffon,1 is the same event as bosoffon,1 in the proof of
Lemma 7. Therefore, from (31), it follows that

Pr rtrioffon,1s ¤ 4eT 2
1 T2

23n
� nT1T2

22n
� T1T2

23n
. (35)

Next we upper bound Pr rtrioffon,2s. Observe that trioffon,2 is the same event as bosoffon,2 in the proof of
Lemma 7. Therefore, from (28), it follows that

Pr rtrioffon,2s ¤ T 2
2 T1
22n

. (36)

Next we upper bound Pr rtrioffon,3s. Observe that trioffon,3 is the same event as bulboffon in the proof of
Lemma 6. Therefore, from (23), it follows that

Pr rtrioffon,3s ¤ T1T2
22n

. (37)

Next we upper bound Pr rtrioffon,4s. We define the notion of a query being A1 being a meeting query for a
particular salt a. We say that a query q � hpy,Mq � z (y � a) made by A1 is a meeting query for a salt a if:

– y � a, y � z, a � z
– there is a query q1 � hpa,Mq � z made by A1

In Fig. 9, we illustrate how meeting queries to a salt look like in the query graph of A.
Let Qa denote the number of meeting queries for a salt a. Note that trioffon,4 happens only if A2 makes

a query whose answer is same as the answer of one of the meeting queries made of a. We have that

Pr rtrioffon,4s �
T1̧

k�1

Pr rQa � ks � kT1
2n

� E rQas T1
2n

.

We prove an upper bound on E rQas. Recall the event m� 1-col: pm� 1q-col happens if the A1 has made
m� 1 distinct h all of which have the same answer. We have using total expectation

E rQas ¤ E
�
Qa

�� pm� 1q-col
�� E

�
Qa

�� pm� 1q-col
�

Pr rpm� 1q-cols . (38)

We claim that E
�
Qa

�� pm� 1q-col
� ¤ mT1{2n. This is because we have that E

�°
aPt0,1un Qa

�� m� 1-col
�
¤

mT1 – since if there is no pm�1q-multicollision, a query can be a meeting query to at most m different salts.
Since a is sampled uniformly at random from t0, 1un, the claim follows.

28

We have from earlier analysis in Theorem 4 that for m � max
�
n, 4eT1

2n

�
Pr rpm� 1q-cols ¤ 1{2n .

Moreover E
�
Qa

�� pm� 1q-col
� ¤ T1 since a salt cannot have more than T1 meeting queries. Therefore, plugging

this into (38)

E rQas ¤ 4eT 2
1

22n
� nT1

2n
� T1

22n
.

So, we have

Pr rtrioffon,4s � E rQas T2
2n
¤ 4eT 2

1 T2
23n

� nT1T2
22n

� T1T2
23n

. (39)

We finally upper bound Pr rtrioffs in Lemma 10.

Lemma 10.

Pr rtrioffs ¤12ep2q1{2T 3{2
1

22n
� 3p8enq1{2T1

23n{2
� 3p24eq1{2T1

23n{2
� 9p2q1{3eT 4{3

1

25n{3

� 18n

2n
� 8

2n
. (40)

Plugging (34) to (37), (39) and (40) in (33) we have that

Pr rtris ¤
�
T2

2

�
2n

� 4eT 2
1 T2

23n
� nT1T2

22n
� T1T2

23n
� T 2

2 T1
22n

� T1T2
22n

� 4eT 2
1 T2

23n
� nT1T2

22n

� T1T2
23n

� 12ep2q1{2T 3{2
1

22n
� 3p8enq1{2T1

23n{2
� 3p24eq1{2T1

23n{2
� 9p2q1{3eT 4{3

1

25n{3

� 18n

2n
� 8

2n

¤
�
T2

2

�� 18n� 8

2n
� 3p24eq1{2T1 � 3p8enq1{2T1

23n{2
� 9p2q1{3eT 4{3

1

25n{3

� 2nT1T2 � T1T2 � T 2
2 T1 � 12ep2q1{2T 3{2

1

22n
� 8eT 2

1 T2 � 2T1T2
23n

[\
We defer the proof of Lemma 10 to Section 5.9.

5.8 Proof of Lemma 9

Proof (Lemma 9). We define the six following events.

1. diaoff : A1 makes queries hpa,M 1q � y, hpy,M2q � z, hpa,M3q � y1, hpa,M4q � z for some M 1 �
M3,M2 �M4 and y � y1

2. diaoffon,1: A1 makes queries hpa,M 1q � y, hpy,M2q � z and A2 makes a query with answer z for some z.
3. diaoffon,2: A1 makes a query hpy,M 1q � z, and A2 makes a query with answer z and another with answer
y, for some y, z,M 1.

4. diaoffon,3: A1 makes queries hpa,M 1q � y, hpy,M2q � z, hpy1,M3q � z, A2 makes a query with answer
y1 for some y � y1, M 1,M2,M3

5. diaoffon,4: A1 makes queries hpy,M 1q � z, hpy1,M2q � z, A2 makes queries with answer y1, y for some
y � y1, M 1,M2

6. diaon: A2 makes queries two queries that have the same answer.

29

Observe that dia happens only if at least one of diaoff , diaoffon,1, diaoffon,2, diaoffon,3, diaoffon,4, diaon happens.
To see why this is true, observe that for dia to happen A has to make queries q1 � hpa,M 1q � y, q2 �
hpy,M2q � z, q3 � hpa,M3q � y1, q4 � hpy1,M4q � z for M 1,M2,M3,M4, y, y1, z such that y � y1,
M 1 �M3, M2 �M4. We show that all the possibilities are covered.

– If q2, q4 are both online, then diaon happens.
– If q2 is online, q4 is offline and

 q3 is online, then diaoffon,2 happens
 q3 is offline, then diaoffon,1 happens

– If q2 is offline, q4 is online and
 q1 is online, then diaoffon,2 happens
 q1 is offline, then diaoffon,1 happens

– If q2, q4 are both offline
 q1, q3 are both online, then trioffon,4 happens
 one of q1, q3 is offline, the other offline, then trioffon,3 happens
 q1, q3 are both offline, then trioff happens

Therefore,

Pr rdias ¤Pr rdiaoffs � Pr rdiaoffon,1s � Pr rdiaoffon,2s � Pr rdiaoffon,3s
� Pr rdiaoffon,4s � Pr rdiaons . (41)

We upper bound these probabilities one-by-one.
We start with upper bounding Pr rdiaons. Observe that diaon is the same event as boson in the proof of

Lemma 7. Therefore, from (27), it follows that

Pr rdiaons ¤
�
T2

2

�
2n

. (42)

Next we upper bound Pr rdiaoffon,1s. Observe that diaoffon,1 is the same event as bosoffon,1 in the proof of
Lemma 7. Therefore, from (31), it follows that

Pr rdiaoffon,1s ¤ 4eT 2
1 T2

23n
� nT1T2

22n
� T1T2

23n
. (43)

Next we upper bound Pr rdiaoffon,2s. Observe that diaoffon,2 is the same event as bosoffon,2 in the proof of
Lemma 7. Therefore, from (28), it follows that

Pr rdiaoffon,2s ¤ T 2
2 T1
22n

. (44)

Next we upper bound Pr rdiaoffon,3s. We first define the notion of a successor-hitting query for a salt. We say
that a query q � hpy,Mq � z made by A1 is a successor-hitting query for a salt a if

– z � a, y � a, y � z
– there are queries q1 � hpa,M 1q � b, q2 � hpb,M2q � z with b � a, z � b made by A1 for some M,M 1

Informally, a query q is a successor-hitting query to salt a if there query q1 � hpy1,M 1q � z such that q1 is a
successor query to a and q1 � q. In Fig. 10, we illustrate how successor-hitting queries to a salt look like in
the query graph of A.

Let Qa denote the number of successor-hitting queries for a salt a. Note that diaoffon,3 happens only if
A2 makes a query whose answer is same as the answer of one of the successor-hitting queries made of a. We
have that

Pr rdiaoffon,3s �
T1̧

k�1

Pr rQa � ks � kT1
2n

� E rQas T1
2n

.

30

a

Fig. 10: Illustrating successor-hitting queries of a salt in the query graph. The queries marked in red to a salt
a are successor-hitting queries for a.

We prove an upper bound on E rQas. Recall the event m� 1-col: pm� 1q-col happens if the A1 has made
m� 1 distinct h all of which have the same answer. We have using total expectation

E rQas ¤ E
�
Qa

�� pm� 1q-col
�� E

�
Qa

�� pm� 1q-col
�

Pr rpm� 1q-cols . (45)

We claim that E
�
Qa

�� pm� 1q-col
� ¤ m2T1{2n. This is because we have that E

�°
aPt0,1un Qa

�� m� 1-col
�
¤

m2T1 – since if there is no pm � 1q-multicollision, a query can be a sucessor-hitting query to at most m2

different salts. Since a is sampled uniformly at random from t0, 1un, the claim follows.
We have from earlier analysis in Theorem 4 that for m � max

�
n, 4eT1

2n

�
Pr rpm� 1q-cols ¤ 1{2n .

Moreover E
�
Qa

�� pm� 1q-col
� ¤ T1 since a salt cannot have more than T1 successor-hitting queries. Therefore,

plugging this into (45)

E rQas ¤ 4eT 3
1

23n
� n2T1

2n
� T1

22n
.

So, we have

Pr rdiaoffon,3s � E rQas T2
2n
¤ 4eT 3

1 T2
24n

� n2T1T2
22n

� T1T2
23n

. (46)

Next, we upper bound Pr rdiaoffon,4s. We have that

Pr rdiaoffon,4s ¤ Pr
�
diaoffon,4

�� pm� 1q-col
�� Pr rpm� 1q-cols .

We claim that Pr
�
diaoffon,4

�� pm� 1q-col
� ¤ mT1T

2
2 {22n. This is because, given there are no pm � 1q-

multicollision there can be at most mT1 pairs of queries that collide. For diaoffon,4 to happen, A2 needs to
make two queries such that the answer of the queries are the input salts of a pair of colliding offline queries.
Using a union bound over all colliding offline queries and pairs of queries by A2, the claim follows. Moreover,
we have from earlier analysis in Theorem 4 that for m � max

�
n, 4eT1

2n

�
Pr rpm� 1q-cols ¤ 1{2n .

Therefore, we have that

Pr rdiaoffon,4s ¤ 4eT 2
1 T

2
2

23n
� nT1T

2
2

22n
� 1

2n
. (47)

We finally upper bound Pr rdiaoffs in Lemma 11.

Lemma 11.

Pr rdiaoffs ¤30n� 15

2n
� 40penq1{3T1

24n{3
� p8eq

1{2nT1 � 10p2eq1{2nT1
23n{2

� 240e2{3T 2
1

27n{3
� 8p2q1{2e3{2T 2

1 � 40p2eq1{2T 2
1

25n{2
. (48)

31

(a) Category 1 Triangle. (b) Category 2 Triangle. (c) Category 3 Triangle.

Fig. 11: The different categories of triangles. The edge colored red is the last of the three queries made.

Plugging (42) to (44) and (46) to (48) in (41) we have that

Pr rdias ¤
�
T2

2

�
2n

� 4eT 2
1 T2

23n
� nT1T2

22n
� T1T2

23n
� T 2

2 T1
22n

� 4eT 3
1 T2

24n
� n2T1T2

22n

� T1T2
23n

� 4eT 2
1 T

2
2

23n
� nT1T

2
2

22n
� 1

2n
� 30n� 15

2n

� 40penq1{3T1
24n{3

� p8eq
1{2nT1 � 10p2eq1{2nT1

23n{2

� 240e2{3T 2
1

27n{3
� 8p2q1{2e3{2T 2

1 � 40p2eq1{2T 2
1

25n{2

�
�
T2

2

�� 30n� 16

2n
� 4eT 2

1 T2 � 2T1T2 � 4eT 2
1 T

2
2

23n

� nT1T2 � T 2
2 T1 � n2T1T2 � nT1T 2

2

22n
� 4eT 3

1 T2
24n

� 40penq1{3T1
24n{3

� p8eq
1{2nT1 � 10p2eq1{2nT1

23n{2

� 240e2{3T 2
1

27n{3
� 8p2q1{2e3{2T 2

1 � 40p2eq1{2T 2
1

25n{2
.

We defer the proof of Lemma 11 to Section 5.10.

5.9 Proof of Lemma 10

Proof (Lemma 10). We say that A1 has found a triangle for a salt a if it has made queries hpa,Mq � y,
hpy,M 1q � z, hpa,M2q � z for some M,M 1,M2, y, z. We define the event off-tri-k as A1 finding triangles
for at least k salts. For any k,

Pr rtrioffs ¤ Pr
�
trioff

�� off-tri-k
�� Pr roff-tri-ks . (49)

We claim that Pr
�
trioff

�� off-tri-k
� ¤ k{2n – this is because if A1 finds triangles for at most k different salts,

trioff happens with probability at most k{2n.
Towards upper bounding off-tri-k, we define a categorization of the triangles. For a triangle on salt a, let

the three queries forming the triangle be q1 � hpa,Mq � y, q2 � hpy,M 1q � z, q3 � hpa,M2q � z.

– We say that a triangle is of category 1, if the query q3 was the last among the three
– We say that a triangle is of category 2, if the query q1 was the last among the three
– We say that a triangle is of category 3, if the query q2 was the last among the three

We illustrate the categories of triangles in Fig. 11.
We define the event off-1-tri-k1 as A1 find triangles of category 1 for k1 different salts. We define the

event off-2-tri-k2 as A1 find triangles of category 2 for k2 different salts. We define the event off-3-tri-k3 as
A1 find triangles of category 3 for k3 different salts. We would have that for any k1, k2, k3,

Pr roff-tri-3 maxpk1, k2, k3qs ¤ Pr roff-1-tri-k1s � Pr roff-2-tri-k2s � Pr roff-3-tri-k3s . (50)

We prove the three following claims.

32

Claim. For any k1 P N¡0, such that k1 is a multiple of 2

Pr roff-1-tri-k1s ¤
�

16e2T 3
1

k2122n

k1{2
�
�

4enT 2
1

k212n

k1{2
� 1

2n
.

Claim. For any k2 P N¡0, such that k2 is a multiple of 2

Pr roff-2-tri-k2s ¤
�

16e2T 3
1

k2222n

k2{2
�
�

4enT 2
1

k222n

k2{2
� 1

2n
.

Claim. For any k3 P N¡0, such that k3 is a multiple of 6

Pr roff-3-tri-k3s ¤
�

12eT 2
1

k232n

k3{6
�
�

27e3T 4
1

k3322n

k3{3
.

We let k1 � max

��
32e2T 3

1

22n

	1{2
,
�

8enT 2
1

2n

	1{2
, 2n

. We then have that

Pr roff-1-tri-k1s ¤ 3

2n
.

Similarly, we let k2 � max

��
32e2T 3

1

22n

	1{2
,
�

8enT 2
1

2n

	1{2
, 2n

, and have that

Pr roff-2-tri-k2s ¤ 3

2n
.

We let k3 � max

��
24eT 2

1

2n

	1{2
,
�

54e3T 4
1

22n

	1{3
, 6n

, and have that

Pr roff-3-tri-k3s ¤ 2

2n
.

We have that

maxpk1, k2, k3q ¤
�

32e2T 3
1

22n

1{2

�
�

8enT 2
1

2n

1{2

�
�

24eT 2
1

2n

1{2

,

�
54e3T 4

1

22n

1{3

� 6n

� 4ep2q1{2T 3{2
1

2n
� p8enq

1{2T1
2n{2

� p24eq1{2T1
2n{2

� 3p2q1{3eT 4{3
1

22n{3
� 6n .

Let k � 3 �
�

4ep2q1{2T
3{2
1

2n � p8enq1{2T1

2n{2
� p24eq1{2T1

2n{2
� 3p2q1{3eT

4{3
1

22n{3
� 6n

. Using (50) we have that

Pr roff-tri-ks ¤ 8

2n
. (51)

Using the fact that we showed earlier that Pr
�
tri
�� off-tri-k

� ¤ k{2n, setting k as above, using (49) we have
that

Pr rtrioffs ¤ 12ep2q1{2T 3{2
1

22n
� 3p8enq1{2T1

23n{2
� 3p24eq1{2T1

23n{2
� 9p2q1{3eT 4{3

1

25n{3
� 18n

2n
� 8

2n
.

We now prove these claims one by one.

33

Upper bounding Pr roff-1-tri-k1s. First off, we upper bound Pr roff-1-tri-k1s. We have that for any m,

Pr roff-1-tri-k1s ¤ Pr roff-1-tri-k1 ^ pm� 1q-cols � Pr rm� 1-cols . (52)

We upper bound Pr roff-1-tri-k1 ^ pm� 1q-cols using a compression argument. Before giving the compres-
sion argument, we recall the notion of successor queries we introduced in the proof of Lemma 7: we say that
a query q � hpy,Mq (y � a) made by A1 is a successor query for a salt a if there is a query q1 � hpa,Mq � y
made by A1.

The encoding procedure encodes the random oracle h as follows.

1. It first runs Ah
1 , answering all its queries using h.

2. If m� 1-col happens or off-1-tri-k1 does not happen, it outputs H
3. It finds a set of salts S of size k1{2 such that for each a P S

– A1 found a category 1 triangle for a
– The salt a has no more than 2mT1{k1 successor queries

4. If no such S is found, return H
5. It marks the q2, q3 queries corresponding to the triangle for each salt in S
6. It initializes lists L1, L2 to empty lists, T to empty set
7. It starts running A1 again
8. For every query hpa,Mq made by A1 it does the following:

(a) If the query is marked as a q3 query for a salt a P S, then it adds the index of this query in T, and
it adds the lexicographical index of q2 among all successor queries for the salt a in the list L2

(b) Otherwise it adds hpa,Mq to L1.
9. It appends the evaluation of h on the points not queried by A1 to L1 in the lexicographical order of the

inputs.
10. It outputs L1, L2,T.

The decoding procedure works as follows.

1. If the encoding is H it aborts.
2. It runs Ah

1 .
3. For every query hpa,Mq made by A1 it does the following:

(a) If the index of the query is in T, it removes the element i on the front of list L2, and locates the
query q which has lexicographic order i among all the successor queries of the salt a. It answers with
the answer of q

(b) Otherwise it removes the element in front of L1 and answers with that.
4. It populates h on the points not queried by A1 in the lexicographical order by the remaining entries of

L1

Correctness of decoding: First off, we argue that for adversary A1 that causes the event off-1-tri-k1 ^
 pm� 1q-col to happen, the encoding algorithm will never return H. To argue this it suffices to show
that the encoding algorithm never returns H from line 4. Note that the encoding algorithm reaches this
line only if the event off-1-tri-k1 ^ pm� 1q-col was caused by running A1, which means there is a set of k1
salts S1 such that A1 found category one triangles for them. Now, since A1 makes at most T1 queries, and
� pm� 1q-col happens, there are at most mT1 salt-successor query pairs. Therefore, for at least k1{2 salts
(note that from our assumption k1 is a multiple of 2, so k1{2 is an integer) in S1 such that it has at most
2T1m{k1 successor queries (because otherwise there would be more than mT1 salt, successor query pairs).
Therefore, such a set S � S1 of size k1{2 always exists.

If the encoding algorithm does not return H, it is easy to see the decoding algorithm decodes correctly,
because the query answers that the encoding algorithm does not add in the list L1 can be recovered by the
decoding algorithm correctly using S, L2. Therefore, we have that

Pr r Decoding is correct s ¥ Pr roff-1-tri-k1 ^ pm� 1q-cols .

34

Observe that the encoding algorithm removes k1{2 answers of the random oracle from the encoding, and
all the removed answers are distinct because those were q3 queries for different salts. It instead adds an
unordered set T of k1{2 values in rT1s, and an ordered list of k1{2 elements where each value is at most
2mT1{k1. Using the compression lemma, we have that

Pr r Decoding is correct s ¤
p2mT1{k1qk1{2

�
T1

k1{2

�
2nk1{2

¤
�

4emT 2
1

k212n

k1{2
.

Therefore,

Pr roff-1-tri-k1 ^ pm� 1q-cols ¤
�

4emT 2
1

k212n

k1{2
.

We know from previous analyses that Pr rpm� 1q-cols ¤ 1{2n for m � max
�
n, 4eT1

2n

�
. Plugging this value of

m we have

Pr roff-1-tri-k1 ^ pm� 1q-cols ¤
�

16e2T 3
1

k2122n

k1{2
�
�

4enT 2
1

k212n

k1{2
.

Plugging this into (52), we get that

Pr roff-1-tri-k1s ¤
�

16e2T 3
1

k2122n

k1{2
�
�

4enT 2
1

k212n

k1{2
� 1

2n
. (53)

Upper bounding Pr roff-1-tri-k2s. We next upper bound Pr roff-2-tri-k2s. We have that for any m,

Pr roff-2-tri-k2s ¤ Pr roff-2-tri-k2 ^ pm� 1q-cols � Pr rm� 1-cols . (54)

We upper bound Pr roff-2-tri-k2 ^ pm� 1q-cols using a compression argument. Before giving the compres-
sion argument, we recall the notion of meeting queries we introduced in the proof earlier: we say that a query
q � hpy,Mq � z (y � a) made by A1 is a meeting query for a salt a if:

– y � a, y � z, a � z
– there is a query q1 � hpa,Mq � z made by A1

The encoding procedure encodes the random oracle h as follows.

1. It first runs Ah
1 , answering all its queries using h.

2. If m� 1-col happens or off-2-tri-k2 does not happen, it outputs H
3. It finds a set of salts S of size k2{2 such that for each a P S

– A1 found a category 2 triangle for a
– The salt a has no more than 2mT1{k2 meeting queries

4. If no such S is found, return H
5. It marks the q1, q2 queries corresponding to the triangle for each salt in S
6. It initializes lists L1, L2 to empty lists, T to empty set
7. It starts running A1 again
8. For every query hpa,Mq made by A1 it does the following:

(a) If the query is marked as a q1 query for a salt a P S, then it adds the index of this query in T, and
adds the lexicographical index of q2 among all successor queries for the salt a in the list L2

(b) Otherwise it adds hpa,Mq to L1.
9. It appends the evaluation of h on the points not queried by A1 to L1 in the lexicographical order of the

inputs.
10. It outputs L1, L2,T.

The decoding procedure works as follows.

35

1. If the encoding is H it aborts.
2. It runs Ah

1 .
3. For every query hpa,Mq made by A1 it does the following:

(a) If the index of the query is in T, it removes the element i on the front of list L2, and locates the
query q which has lexicographic order i among all the successor queries of the salt a. It answers with
the answer of q

(b) Otherwise it removes the element in front of L1 and answers with that.
4. It populates h on the points not queried by A1 in the lexicographical order by the remaining entries of

L1

Correctness of decoding: First off, we argue that for adversary A1 that causes the event off-2-tri-k2 ^
 pm� 1q-col to happen, the encoding algorithm will never return H. To argue this it suffices to show
that the encoding algorithm never returns H from line 4. Note that the encoding algorithm reaches this
line only if the event off-2-tri-k2 ^ pm� 1q-col was caused by running A1, which means there is a set of
k2 salts S1 such that A1 found category two triangles for them. Now, since A1 makes at most T1 queries,
and pm� 1q-col happens, there are at most mT1 salt-meeting query pairs. Because otherwise there exists
a query which is a meeting query to at least m � 1 different salts- which means pm� 1q-col has happened.
Therefore, for at least k2{2 salts in S1 such that it has at most 2T1m{k2 meeting queries (because otherwise
there would be more than mT1 salt, meeting query pairs). Therefore, such a set S � S1 of size k2{2 always
exists.

If the encoding algorithm does not return H, it is easy to see the decoding algorithm decodes correctly,
because the query answers that the encoding algorithm does not add in the list L1 can be recovered by the
decoding algorithm correctly using S, L2. Therefore, we have that

Pr r Decoding is correct s ¥ Pr roff-2-tri-k2 ^ pm� 1q-cols .

Observe that the encoding algorithm removes k2{2 answers of the random oracle from the encoding, and
all the removed answers are distinct because those were q1 queries for different salts. It instead adds an
unordered set T of k2{2 values in rT1s, and an ordered list of k2{2 elements where each value is at most
2mT1{k2. Using the compression lemma, we have that

Pr r Decoding is correct s ¤
p2mT1{k2qk2{2

�
T1

k2{2

�
2nk2{2

¤
�

4emT 2
1

k222n

k2{2
.

Therefore,

Pr roff-2-tri-k2 ^ pm� 1q-cols ¤
�

4emT 2
1

k222n

k2{2
.

We know from previous analyses that Pr rpm� 1q-cols ¤ 1{2n for m � max
�
n, 4eT1

2n

�
. Plugging this value of

m we have

Pr roff-2-tri-k2 ^ pm� 1q-cols ¤
�

16e2T 3
1

k2222n

k2{2
�
�

4enT 2
1

k222n

k2{2
.

Plugging this into (54), we get that

Pr roff-2-tri-k2s ¤
�

16e2T 3
1

k2222n

k2{2
�
�

4enT 2
1

k222n

k2{2
� 1

2n
. (55)

Upper bounding Pr roff-3-tri-k3s. Finally, we upper bound Pr roff-3-tri-k3s. One could hope for an analysis
similar to what we did for Pr roff-1-tri-k1s and Pr roff-1-tri-k2s– with the difference that in the compression
argument, the encoding algorithm omits the answer of the q2 queries and instead stores information like the

36

a

a1

Fig. 12: The zigzag structure for a salt pair pa, a1q in the query graph.

set S, L2 to recover its answers. However, this approach does not work! The main reason for this is if the
adversary finds triangles of category three for k3 different salts, it is not necessary that the q2 queries for the
triangle are unique for each of the salts.

However, notice that if A1 finds triangles of category three for two salts a, a1 that share the q2 query,
the following must have happened: It must have made queries hpa,Mq � y, hpa,M 1q � y1, hpa1,M2q � y,
hpa1,M3q � y1 for some y, y1,M,M 1,M2,M3 such that y � a, y1 � a, y � y1. If this happens, we say A1 has
found a zig-zag for the salt pair pa, a1q. We illustrate the structure of a zigzag in the query graph in Fig. 12.
We define the event off-zz-k as A1 finding a zig-zag for k different salt pairs tta1,i, a2,iuiPku where all the
salts aj,i’s are distinct. We have that for any k4

Pr roff-3-tri-k3s ¤ Pr roff-3-tri-k3 ^ off-zz-k4s � Pr roff-zz-k4s . (56)

We prove the following lemmas.

Lemma 12. For k P N¡0,

Pr roff-zz-ks ¤
�
e3T 4

1

k322n

k
.

Lemma 13. For any k, k1 P N¡0 such that k ¥ 2k1, k is a multiple of 2,

Pr
�
off-3-tri-k ^ off-zz-k1

� ¤ �
4eT 2

1

pk � 2k1q22n

pk�2k1q{2

.

Since k3 is a multiple of 6, k3{3 is an integer. By setting k4 � k3{3, putting together (57) with Lemmas 12
and 13, we have

Pr roff-3-tri-k3s ¤
�

12eT 2
1

k232n

k3{6
�
�

27e3T 4
1

k3322n

k3{3
. (57)

[\
We need to prove the Lemmas 12 and 13. We first prove Lemma 12.

Proof (Lemma 12). We upper bound Pr roff-zz-ks via a compression argument.
The encoding procedure encodes the random oracle h as follows.

1. It first runs Ah
1 , answering all its queries using h.

2. If off-zz-k does not happen, it outputs H
3. It finds a set of k salt pairs ttai,1, ai,2uiPrksu such that all the ai,j ’s are distinct and A1 found a zig-zag

for each of these pairs.
4. For each of the salt pairs ai,1, ai,2, it isolates the four queries hpai,1,Mq � y, hpai,1,M 1q � y1, hpai,2,M2q �
y, hpai,2,M3q � y1. It labels the query that was the last among these four as q4. It labels the query
which has the same answer as q4 but came earlier as q3. It labels the earlier of the remaining two queries
q1, and later as q2.

37

5. It initializes lists L1, L2 to empty lists, T2,T3,T4 to empty sets
6. It starts running A1 again
7. For every query hpa,Mq made by A1 it does the following:

(a) If the query is marked as a q2 query for some zigzag salt pair, it adds the index of the query to the
set T2, inserts the index of the corresponding q1 in front of the list L1

(b) If the query is marked as a q4 query for some zigzag salt pair, it adds the index of the query to the
set T4, adds the index of the corresponding q3 in the set T3

(c) Otherwise it adds hpa,Mq to L2.
8. It appends the evaluation of h on the points not queried by A1 to L2 in the lexicographical order of the

inputs.
9. It outputs L1, L2,T.

The decoding procedure works as follows.

1. If the encoding is H it aborts.
2. It runs Ah

1 .
3. For every query hpa,Mq made by A1 it does the following:

(a) If the index of the query is in T2, it removes the element i on the front of list L1, and locates the
query q which has index i among. It answers with the answer of q.

(b) Otherwise if the index of the query is in T4, it locates the query q that has its index in T2 or L1 that
had input salt a. If such q is not found or more than one such q is found it aborts.
– If q is in T2, it finds the query q1 in L1 which was located to answer q – it then finds a query q2

in the set T3 which has the same input salt as q1. If none or more than one q1 is found, it aborts.
Otherwise it answers with the answer of q1

– If q is in L1, it finds the query q1 in T2 which located q when being answered earlier in the
decoding – it then finds a query q2 in the set T3 which has the same input salt as q1. If none or
more than one q1 is found, it aborts. Otherwise it answers with the answer of q1

(c) Otherwise it removes the element in front of L2 and answers with that.
4. It populates h on the points not queried by A1 in the lexicographical order by the remaining entries of

L1

Correctness of decoding: First off, observe that for adversary A1 that causes the event off-zz-k to happen, the
encoding algorithm will never return H. Further, we argue that whenever the decoding algorithm receives
an output of the encoding algorithm that is not H, the decoding algorithm will decode correctly. This is
because the encoding algorithm removes the answer of two of the queries from the pair of zig-zag salts which
the decoding algorithm recovers using L1,T2,T3,T4. It is easy to see decoding answers the queries whose
answers were in L1 and the ones whose answers were not in L1 but indices were put in T2 correct. What
is left is verifying that the queries whose answers were not in L1 and whose indices were put in T4 were
answered correctly.

This can be verified by inspecting line 3b. For an output of the encoding algorithm that is not H, the
decoding algorithm will never abort here – this is because for the q4 queries removed, there is exactly one
other query among all the queries whose indices are in L1,T2 whose salt is same as q4, by the definition of
the event off-zz-k. And this step successfully recovers that value and returns the correct answer. Therefore,
whenever A1 causes off-zz-k, the encoding produces an outputs that decodes correctly.

Therefore, we have that

Pr r Decoding is correct s ¥ Pr roff-zz-ks .
Observe that the encoding algorithm removes 2 � k answers of the random oracle from the encoding, and all
the removed answers are distinct because those were queries for different salts. It instead adds an unordered
sets T2,T2,T4 of k values in rT1s, and an ordered list of k values in rT1s. Using the compression lemma, we
have that

Pr roff-zz-ks ¤ Pr r Decoding is correct s ¤

��
T1

k

�	3
T k1

2n2k
¤
�
e3T 4

1

k322n

k
.

[\

38

We next prove Lemma 13.

Proof (Lemma 12). We need to upper bound Pr roff-3-tri-k ^ off-zz-k1s. Note that if A1 does not cause
off-zz-k1 and finds triangles of category three for at least k salts, it means that there is a set of at least k�2k1

salts for which A1 finds triangles of category three such that no two triangles in the set share any query. We
use this to intuition to build a compression argument that upper bounds Pr roff-3-tri-k ^ off-zz-k1s.

The encoding procedure encodes the random oracle h as follows.

1. It first runs Ah
1 , answering all its queries using h.

2. If off-zz-k1 happens or off-3-tri-k does not happen, it outputs H
3. It finds a set of salts S of size pk � 2k1q{2 such that for each a P S

– A1 found a category 3 triangle for a
– The salt a has no more than 2T1{pk � 2k1q queries on it

4. If no such S is found, return H
5. It marks the q3, q2 queries corresponding to the triangle for each salt in S
6. It initializes lists L1, L2 to empty lists, T to empty set
7. It starts running A1 again
8. For every query hpa,Mq made by A1 it does the following:

(a) If the query is marked as a q2 query for a salt a P S, then it adds the index of this query in T, and
it adds the index of q3 in the list L2

(b) Otherwise it adds hpa,Mq to L1.

9. It appends the evaluation of h on the points not queried by A1 to L1 in the lexicographical order of the
inputs.

10. It outputs L1, L2,T.

The decoding procedure works as follows.

1. If the encoding is H it aborts.
2. It runs Ah

1 .
3. For every query hpa,Mq made by A1 it does the following:

(a) If the index of the query is in T, it removes the element i on the front of list L2, and locates the
query q which has index i. It answers with the answer of q

(b) Otherwise it removes the element in front of L1 and answers with that.

4. It populates h on the points not queried by A1 in the lexicographical order by the remaining entries of
L1

Correctness of decoding: First off, we argue that for adversary A1 that causes the event off-3-tri-k^ off-zz-k1

to happen, the encoding algorithm will never return H. To argue this it suffices to show that the encoding
algorithm never returns H from line 4. Note that the encoding algorithm reaches this line only if the event
off-2-tri-k^ off-zz-k1 was caused by running A1, which means there is a set of k salts S1 such that A1 found
category three triangles for them. Moreover there does not exist a set of k1 salt pairs for which A1 found a
zig-zag. Meaning one can find a set of at least k� 2k1 salts such that A1 found a category three triangle for
all of them but no two of these triangles share a q2 query. Now, since A1 makes at most T1 queries, at least
half of these salts are such that the adversary makes at most 2Tp{pk� 2k1q queries on them. Therefore, such
a set S of size pk � 2k1q{2 always exists.

If the encoding algorithm does not return H, it is easy to see the decoding algorithm decodes correctly,
because the query answers that the encoding algorithm does not add in the list L1 can be recovered by the
decoding algorithm correctly using S, L2. Therefore, we have that

Pr r Decoding is correct s ¥ Pr
�
off-3-tri-k ^ off-zz-k1

�
.

Observe that the encoding algorithm removes pk � 2k1q{2 answers of the random oracle from the encoding,
and all the removed answers are distinct because those were q1 queries for different salts. It instead adds an

39

(a) Category 1 diamonds.

(b) Category 2 diamonds.

Fig. 13: The different categories of diamonds. The edge colored red is the last of the four queries made.

unordered set T of pk � 2k1q{2 values in rT1s, and an ordered list of pk � 2k1q{2 values in rT1s. Using the
compression lemma, we have that

Pr r Decoding is correct s ¤
p2T1{pk � 2k1qqpk�2k1q{2

�
T1

pk�2k1q{2

�
2npk�2k1q{2

¤
�

4eT 2
1

pk � 2k1q22n

pk�2k1q{2

.

Therefore,

Pr
�
off-3-tri-k ^ off-zz-k1

� ¤ �
4eT 2

1

pk � 2k1q22n

pk�2k1q{2

. (58)

[\

5.10 Proof of Lemma 11

Proof (Lemma 11). We say that A1 has found a triangle for a salt a if it has made queries hpa,Mq � y,
hpy,M 1q � z, hpa,M2q � z for some M,M 1,M2, y, z. We define the event off-dia-k as A1 finding diamonds
for at least k salts. We have that for any k,

Pr rdiaoffs ¤ Pr
�
diaoff

�� off-dia-k
�� Pr roff-dia-ks . (59)

We claim that Pr
�
diaoff

�� off-dia-k
� ¤ k{2n – this is because if A1 finds diamonds for at most k different

salts, since a is sampled uniformly at random, diaoff happens with probability at most k{2n.
Towards upper bounding off-dia-k, we define a categorization of the diamonds. For a diamond on salt

a, let the four queries forming the triangle be q1 � hpa,Mq � y, q2 � hpy,M 1q � z, q3 � hpa,M2q � y1,
q4 � hpy1,M3q � z.

– We say that a diamond is of category 1, if the query q1 or q3 was the last among the three
– We say that a triangle is of category 2, if the query q2 or q4 was the last among the three

We illustrate the categories of diamonds in Fig. 13. We define the event off-1-dia-k1 as A1 find diamonds of
category 1 for k1 different salts. We define the event off-2-dia-k2 as A1 finds diamonds of category 2 for k2
different salts.

We would have that for any k1, k2,

Pr roff-dia-2 �maxpk1, k2qs ¤ Pr roff-1-dia-k1s � Pr roff-2-dia-k2s .
We prove the three following claims.

Claim. For any k1 P N¡0, such that k1 is a multiple of 2

Pr roff-1-dia-k1s ¤
�

64e3T 4
1

k2123n

k1{2
�
�

4en2T 2
1

k212n

k1{2
� 1

2n
.

40

Claim. For any k2 P N¡0, such that k2 is a multiple of 30

Pr roff-2-dia-k2s ¤
�

1600eT 4
1

pk2q223n

k2{10
�
�

100en2T 2
1

pk2q22n

k2{10
� 3

�
32ep60eq3T 6

1

k3224n

k2{30

� 3

�
256 � 53 � enT 3

1

k322n

k2{30
� 4

2n
.

We let k1 � max

��
128e3T 4

1

23n

	1{2
,
�

8en2T 2
1

2n

	1{2
, 2n

. Then we have that

Pr roff-1-dia-k1s ¤ 3

2n
.

We let

k2 � max

��
3200eT 4

1

23n

1{2

,

�
200en2T 2

1

2n

1{2

,

�
64ep60eq3T 6

1

24n

1{3

,

�
512 � 53 � enT 3

1

2n

1{3

, 30n

�
.

Then we have that

Pr roff-1-dia-k2s ¤ 12

2n
.

Also,

maxpk1, k2q ¤
�

128e3T 4
1

23n

1{2

�
�

8en2T 2
1

2n

1{2

�
�

3200eT 4
1

23n

1{2

�
�

200en2T 2
1

2n

1{2

�
�

64ep60eq3T 6
1

24n

1{3

�
�

512 � 53 � enT 3
1

2n

1{3

� 30n

�
�

8p2q1{2e3{2T 2
1

23n{2

�
� p8eq1{2nT1

2n{2

�
�

40p2eq1{2T 2
1

23n{2

�
�

10p2eq1{2nT1
2n{2

�
�

240e2{3T 2
1

24n{3

�
�

40penq1{3T1
2n{3

� 30n .

Let k � 2 maxpk1, k2q. We have that

Pr roff-dia-ks ¤ 15

2n
.

Plugging this into (59) we have that

Pr rdiaoffs ¤
�

8p2q1{2e3{2T 2
1

25n{2

�
� p8eq1{2nT1

23n{2

�
�

40p2eq1{2T 2
1

25n{2

�
�

10p2eq1{2nT1
23n{2

�
�

240e2{3T 2
1

27n{3

�
�

40penq1{3T1
24n{3

� 30n

2n
� 15

2n
.

� 30n� 15

2n
� 40penq1{3T1

24n{3
� p8eq

1{2nT1 � 10p2eq1{2nT1
23n{2

� 240e2{3T 2
1

27n{3
� 8p2q1{2e3{2T 2

1 � 40p2eq1{2T 2
1

25n{2
.

We now prove these claims one by one.

41

Upper bounding Pr roff-1-dia-k1s. We have that for any m,

Pr roff-1-dia-k1s ¤ Pr roff-1-dia-k1 ^ pm� 1q-cols � Pr rm� 1-cols . (60)

We upper bound Pr roff-1-dia-k1 ^ pm� 1q-cols using a compression argument. Before giving the compres-
sion argument, we recall the notion of successor-hitting queries we introduced earlier in the proof: we say
that a query q � hpy,Mq � z made by A1 is a successor-hitting query for a salt a if

– z � a, y � a, y � z
– there are queries q1 � hpa,M 1q � b, q2 � hpb,M2q � z with b � a, z � b made by A1, for some M 1,M2

Informally, a query q is a successor-hitting query to salt a if there query q1 � hpy1,M 1q � z such that q1 is a
successor query to a and q1 � q.

The encoding procedure encodes the random oracle h as follows.

1. It first runs Ah
1 , answering all its queries using h.

2. If m� 1-col happens or off-1-dia-k1 does not happen, it outputs H
3. It finds a set of salts S of size k1{2 such that for each a P S

– A1 found a category 1 triangle for a
– The salt a has no more than 2m2T1{k1 successor-hitting queries

4. If no such S is found, return H
5. It marks the q2, q3 queries corresponding to the triangle for each salt in S
6. It initializes lists L1, L2 to empty lists, T to empty set
7. It starts running A1 again
8. For every query hpa,Mq made by A1 it does the following:

(a) If the query is marked as a q3 query for a salt a P S, then it adds the index of this query in T, and
it adds the lexicographical index of q2 among all successor-hitting queries for the salt a in the list L2

(b) Otherwise it adds hpa,Mq to L1.
9. It appends the evaluation of h on the points not queried by A1 to L1 in the lexicographical order of the

inputs.
10. It outputs L1, L2,T.

The decoding procedure works as follows.

1. If the encoding is H it aborts.
2. It runs Ah

1 .
3. For every query hpa,Mq made by A1 it does the following:

(a) If the index of the query is in T, it removes the element i on the front of list L2, and locates the query
q which has lexicographic order i among all the successor-hitting queries of the salt a. It answers
with the answer of q

(b) Otherwise it removes the element in front of L1 and answers with that.
4. It populates h on the points not queried by A1 in the lexicographical order by the remaining entries of

L1

Correctness of decoding: First off, we argue that for adversary A1 that causes the event off-1-dia-k1 ^
 pm� 1q-col to happen, the encoding algorithm will never return H. To argue this it suffices to show that
the encoding algorithm never returnsH from line 4. Note that the encoding algorithm reaches this line only if
the event off-1-dia-k1^ pm� 1q-col was caused by running A1, which means there is a set of k1 salts S1 such
that A1 found category one diamonds for them. Now, since A1 makes at most T1 queries, and pm� 1q-col
happens, there are at most m2T1 salt-successor-hitting query pairs. This is because if there were more than
m2T1 salt-successor hitting query pairs, there would be at least one query which is a successor hitting query
to m2 � 1 salts. Given that there are no m� 1-multi-collisions, this would be contradiction.

Therefore, for at least k1{2 salts (note that since k1 is a multiple of 2, k1{2 is an integer) in S1 such
that it has at most 2T1m

2{k1 successor queries (because otherwise there would be more than m2T1 salt,
successor-hitting query pairs). Therefore, such a set S � S1 of size k1{2 always exists.

42

If the encoding algorithm does not return H, it is easy to see the decoding algorithm decodes correctly,
because the query answers that the encoding algorithm does not add in the list L1 can be recovered by the
decoding algorithm correctly using S, L2. Therefore, we have that

Pr r Decoding is correct s ¥ Pr roff-1-dia-k1 ^ pm� 1q-cols .
Observe that the encoding algorithm removes k1{2 answers of the random oracle from the encoding, and
all the removed answers are distinct because those were q3 queries for different salts. It instead adds an
unordered set T of k1{2 values in rT1s, and an ordered list of k1{2 elements where each value is at most
2m2T1{k1. Using the compression lemma, we have that

Pr r Decoding is correct s ¤
p2m2T1{k1qk1{2

�
T1

k1{2

�
2nk1{2

¤
�

4em2T 2
1

k212n

k1{2
.

Therefore,

Pr roff-1-dia-k1 ^ pm� 1q-cols ¤
�

4em2T 2
1

k212n

k1{2
.

We know from previous analyses that Pr rpm� 1q-cols ¤ 1{2n for m � max
�
n, 4eT1

2n

�
. Plugging this value of

m we have

Pr roff-1-dia-k1 ^ pm� 1q-cols ¤
�

64e3T 4
1

k2123n

k1{2
�
�

4en2T 2
1

k212n

k1{2
.

Plugging this into (60), we get that

Pr roff-1-dia-k1s ¤
�

64e3T 4
1

k2123n

k1{2
�
�

4en2T 2
1

k212n

k1{2
� 1

2n
. (61)

We next upper bound Pr roff-2-dia-k2s. One could hope for an analysis similar to what we did for
Pr roff-dia-k1s– with the difference that in the compression argument, the encoding algorithm omits the
answer of the last query and instead stores information like the set S, L2 to recover its answers. However,
this approach does not work! The main reason for this is if the adversary finds diamonds of category two for
k2 different salts, it is not necessary that the last queries for the diamond are unique for each of the salts.
Therefore, we need to separately handle the case where a particular query is the last query for diamonds of
category two of multiple salts.

Now, consider how two salts with category two diamonds can share the last query. There are two possi-
bilities here: either the diamonds share both the queries q2, q4 queries or they share one of the queries q2, q4.
If they share both the queries q2, q4, we have that the pair of salts form a zig-zag, and we can re-use our
analysis from Lemma 8. The other possibility is both the category two diamonds share one query that was
the last query for both of them. For this to happen for salts a, a1, before the shared query is made, there
must have been queries

– q1 :� hpa,M1q � w for some w,M1 such that w � a, a1

– q2 :� hpa,M2q � y for some y,M2 such that y � w, a, a1

– q3 :� hpy,M3q � z for some z,M3 such that z � a, a1, w, y
– q4 :� hpa1,M4q � w for some M4

– q5 :� hpa1,M5q � y1 for some y1,M5 such that y1 � w, a, a1, y, z
– q6 :� hpy1,M6q � z for some M6

We refer to such a structure as a hexagon because this structure consists of a total of six queries and two
of these six collide. If for some salt pair ta, a1u, A1 has made the above queries, we say that it has found a
hexagon for the salt pair. We illustrate the structure of a hexagon in a query graph in Fig. 14.

We define the event off-hex-k as follows: there is a set of k salt pairs ttai,1, ai,2uiPrksu such that

43

a

a1

Fig. 14: The hexagon structure for a salt pair pa1, a1q in the query graph.

1. | YiPrks tai,1, ai,2u| � 2k
2. A1 has found a hexagon for each pair tai,1, ai,2u for all i P rks.

We have that for all k3, k4,m

Pr roff-2-dia-k2s ¤ Pr roff-2-dia-k2 ^ off-zz-k3 ^ off-hex-k4 ^ pm� 1q-cols (62)

� Pr roff-zz-k3s � Pr roff-hex-k4s � Pr rm� 1-cols . (63)

We prove the following lemmas.

Lemma 14. For k P N¡0 such that k is a multiple of 6

Pr roff-hex-ks ¤ 3

�
32ep12eq3T 6

1

k324n

k{6
� 3

�
256enT 3

1

k32n

k{6
� 3

2n
. (64)

Lemma 15. For any k, k1, k2,m P N¡0 such that k is a multiple of 2, k ¡ 2k1 � 2k2,

Pr
�
off-2-dia-k ^ off-zz-k1 ^ off-hex-k2 ^ pm� 1q-col

�
¤
�

4em2T 2
1

pk � 2k1 � 2k2q22n

pk�2k1�2k2q{2

.

From Lemma 12 we had that for k P N¡0,

Pr roff-zz-ks ¤
�
e3T 4

1

k322n

k
.

Plugging this into (62), we have that for any k2, k3, k4,m such that k4 is a multiple of 6, k2 is a multiple of
2, k ¡ 2k3 � k4

Pr roff-2-dia-k2s ¤
�

4em2T 2
1

pk2 � 2k3 � 2k4q22n

pk2�2k3�2k4q{2

� 3

�
32ep12eq3T 6

1

k3424n

k4{6
� 3

�
256enT 3

1

k342n

k4{6

� 3

2n
� Pr rpm� 1q-cols .

Setting k4 � k3 � k2{5, we have

Pr roff-2-dia-k2s ¤
�

100em2T 2
1

pk2q22n

k2{10
� 3

�
32ep60eq3T 6

1

k3224n

k2{30

� 3

�
256 � 53 � enT 3

1

k322n

k2{30
� 3

2n
� Pr rpm� 1q-cols .

44

a

a1

a

a1

(a) Category 1 hexagons.

a

a1

a

a1

(b) Category 2 hexagons.

a

a1

a

a1

(c) Category 3 hexagons.

Fig. 15: The different categories of hexagons. The edge colored red is the last of the six queries made.

Further, in the proof of Lemma 7 we had that for m � maxpn, 4eT1{2nq, Pr rpm� 1q-cols ¤ 1{2n. Setting m
to this value we have that for any k2 such that k2 is a multiple of 30,

Pr roff-2-dia-k2s ¤
�

1600eT 4
1

pk2q223n

k2{10
�
�

100en2T 2
1

pk2q22n

k2{10

� 3

�
32ep60eq3T 6

1

k3224n

k2{30
� 3

�
256 � 53 � enT 3

1

k322n

k2{30
� 4

2n
.

We prove Lemma 14.

Proof (Lemma 14). For the adversary to query a hexagon for salts a, a1, there must have been queries

– q1 :� hpa,M1q � w for some w,M1 such that w � a, a1

– q2 :� hpa,M2q � y for some y,M2 such that y � w, a, a1

– q3 :� hpy,M3q � z for some z,M3 such that z � a, a1, w, y
– q4 :� hpa1,M4q � w for some M4

– q5 :� hpa1,M5q � y1 for some y1,M5 such that y1 � w, a, a1, y, z
– q6 :� hpy1,M6q � z for some M6

We categorize hexagons into three categories based on the query that was the last one among the six

1. category 1 hexagons: q3 or q6 is the last query
2. category 2 hexagons: q2 or q5 is the last query
3. category 3 hexagons: q1 or q4 is the last query

We illustrate the different categories of hexagons in Figure 15.
We define these three events.

45

1. off-1-hex-k1: A1 has found hexagons of category 1 for a set of k1 salt pairs such that none of the two salt
pairs in the set share a salt

2. off-2-hex-k2: A1 has found hexagons of category 2 for a set of k1 salt pairs such that none of the two salt
pairs in the set share a salt

3. off-3-hex-k3: A1 has found hexagons of category 3 for a set of k1 salt pairs such that none of the two salt
pairs in the set share a salt

Since if A1 finds 3k hexagons, it must have found k hexagons of one of the categories, we have that for any
k

Pr roff-hex-3ks ¤ Pr roff-1-hex-ks � Pr roff-2-hex-ks � Pr roff-3-hex-ks .

We prove the three following claims.

Claim. For any k P N¡0 such that k is a multiple of 2

Pr roff-1-hex-ks ¤
�

32ep4eq3T 6
1

k324n

k{2
�
�

32enT 3
1

k32n

k{2
� 1

2n
.

Claim. For any k P N¡0 such that k is a multiple of 2

Pr roff-2-hex-ks ¤
�

32ep4eq3T 6
1

k324n

k{2
�
�

32enT 3
1

k32n

k{2
� 1

2n
.

Claim. For any k P N¡0 such that k is a multiple of 2

Pr roff-3-hex-ks ¤
�

32ep4eq3T 6
1

k324n

k{2
�
�

32enT 3
1

k32n

k{2
� 1

2n
.

Putting this all together we have for any k that is a multiple of 2

Pr roff-hex-3ks ¤ 3

�
32ep4eq3T 6

1

k324n

k{2
� 3

�
32enT 3

1

k32n

k{2
� 3

2n
.

Equivalently, we have that for any k that is a multiple of 6

Pr roff-hex-ks ¤ 3

�
32ep12eq3T 6

1

k324n

k{6
� 3

�
256enT 3

1

k32n

k{6
� 3

2n
.

Upper bounding Pr roff-1-hex-ks. We have that for any m,

Pr roff-1-hex-ks ¤ Pr roff-1-hex-k ^ pm� 1q-cols � Pr rpm� 1q-cols . (65)

We upper bound Pr roff-1-hex-k ^ pm� 1q-cols using a compression argument. The encoding procedure
encodes the random oracle h as follows.

1. It runs Ah
1 , answering all its queries using h.

2. If m� 1-col happens or off-1-hex-k does not happen, it outputs H
3. it finds a set of salt pairs S of size k{8 such that for each ta, a1u P S

(a) A1 found a hexagon for ta1, a2u
(b) A1 made no more than 4T1{k queries with salt a1

(c) A1 made no more than 4T1{k queries with salt a2

(d) The salt a has no more than 4mT1{k successor queries
(e) The salt a has no more than 4mT1{k successor queries

4. If no such S is found, it returns H

46

5. For every ta1, a2u pair in S it picks one type 1 hexagon formed by the queries of A1 (if there is more
than one, it picks one arbitrarily). It lets the queries forming the hexagon be q1 � hpa1,M1q � w, q2 �
hpa,M2q � y, q3 � hpy,M3q � z, q4 � hpa2,M4q � w, q5 � hpa1,M5q � y1, q6 � hpy1,M6q � z for some
M1,M2,M3,M4,M5,M6, w, y, y

1, z such that |ta1, a2, w, y, y1, zu| � 6 such that q6 was the last of the six
queries made by A1.

6. It initializes lists L1, L2, L3, L4, L5 to empty lists, T to empty set
7. It starts running A1 again
8. For every query hpa,Mq made by A1 it does the following:

(a) If the query is marked as a q6 query for a salt pair ta, a1u P S
i. it adds the index of this query in T
ii. it adds the lexicographical index of the corresponding q5 query among all queries with answer a

to the list L1

iii. Let the input salt of the corresponding q5 query be a2. It adds the lexicographical index of the
corresponding q4 query among all queries with input salt a2 to the list L2

iv. Let the answer of the corresponding q4 query be w. It adds the lexicographical index of the
corresponding q1 query among all queries with answer w to the list L3

v. Let the input salt of the corresponding q1 query be a1. It adds the lexicographical index of the
corresponding q3 query among all queries which are successor queries of the salt a1 to the list L4.

(b) Otherwise it adds hpa,Mq to L5.
9. It appends the evaluation of h on the points not queried by A1 to L5 in the lexicographical order of the

inputs.
10. It outputs L1, L2, L3, L4, L5,T.

The decoding procedure works as follows.

1. If the encoding is H it aborts.
2. It runs Ah

1 .
3. For every query hpa,Mq made by A1 it does the following:

(a) If the index of the query is in T,
i. it removes the element i on the front of list L1, and locates the query q5 which has lexicographic

order i among all queries with answer a.
ii. Let the input of q5 be a2. It removes the element i on the front of list L2, and locates the query

q4 which has lexicographic order i among all queries with input salt a2.
iii. Let the answer of q4 be w. It removes the element i on the front of list L3, and locates the query

q1 which has lexicographic order i among all queries with answer w.
iv. Let the input salt of q1 be a1. It removes the element i on the front of list L4, and locates the

query q3 which has lexicographic order i among all successor queries of the salt a1

It answers with the answer of query q3.
(b) Otherwise it removes the element in front of L5 and answers with that.

4. It populates h on the points not queried by A1 in the lexicographical order by the remaining entries of
L5

Correctness of decoding: First off, we argue that for an adversary A1 that causes the event off-1-hex-k ^
 pm� 1q-col to happen, the encoding algorithm will never return H. To argue this it suffices to show that
the encoding algorithm never returns H from line 4. Since off-1-hex-k happens, there is a set S1 of k salt
pair such that no two pairs share a salt and A1 has found a hexagon for each pair. We first claim that at
most k{4 of the pairs in S1 are such that A1 has made more than 4T1{k queries on one or both the salts in
the pair- this is because otherwise there would need to be more than T1 queries which is a contradiction.
Further, since pm� 1q-col happens, we have that there are at most mT1 salt-successor query pairs – this
was argued in the proof of 8. We next claim that at most k{4 of the pairs in S1 are such that for one or both
salts in the pair- there are more than 4mT1{k successor queries – this is because otherwise there would be
more than mT1 salt-successor query pairs.

Therefore, we have that

47

– The subset of S1 such that at least one of the salts is such that there are more than 4T1{k queries on the
salt is of size at most k{4

– The subset of S1 such that at least one of the salts is such that there are more than 4mT1{k successor
queries for the salt is of size at most k{4

Therefore, this implies the subset of S1 such that for at least one of the salts a) there are more 4T1{k queries
on the salt or, b) there are more than 4mT1{k queries that are successor query to the salt is of size at most
k{2. This in turn means the subset of S1 such that for both of the salts a) there are at most 4T1{k queries
on the salt and, b) there are at most 4mT1{k queries that are successor query to the salt is of size at least
k{2. Therefore, the encoding algorithm will always find such a set S, and never produce H in line 4.

Further, we argue that whenever the decoding algorithm receives an output of the encoding algorithm
that is not H, the decoding algorithm will decode correctly. It is easy to see decoding answers the queries
whose answers were in L5. What is left is verifying that the queries whose answers were not in L5 and whose
indices were put in T were answered correctly.

This can be verified by inspecting line 8a in the encoding algorithm and line 3a in the decoding algorithm.
It can be checked that the decoding algorithm always returns the same answer as the encoding algorithm.
Therefore, whenever A1 causes off-1-hex-k ^ pm� 1q-col, the encoding produces an outputs that decodes
correctly.

Therefore, we have that

Pr r Decoding is correct s ¥ Pr roff-1-hex-k ^ pm� 1q-cols .
Observe that the encoding algorithm removes k{2 answers of the random oracle from the encoding, and all
the removed answers are distinct because those were queries for different salts. It instead adds

1. T: a set of k{2 distinct values in rT1s
2. L1: a sequence of k{2 values that are each at most m
3. L2: a sequence of k{2 values that are each at most 4T1{k
4. L3: a sequence of k{2 values that are each at most m
5. L4: a sequence of k{2 values that are each at most 4mT1{k

Using the compression lemma, we have that

Pr roff-1-hex-k ^ pm� 1q-cols ¤Pr r Decoding is correct s

¤
�
T1

k{2

�
mk{2

�
4T1

k

�k{2
mk{2

�
4mT1

k

�k{2
2nk{2

¤
� p2eT1qp4mT1qp4T1qm2

k32n

k{2

�
�

32eT 3
1m

3

k32n

k{2
.

We know from proof of Lemma 7, that for m � maxp4eT1{2n, nq, Pr rpm� 1q-cols ¤ 1{2n. We set m to this
value and plug this into (65).

Pr roff-1-hex-ks ¤
�

32ep4eq3T 6
1

k324n

k{2
�
�

32enT 3
1

k32n

k{2
� 1

2n
.

Upper bounding Pr roff-2-hex-ks. The analysis for this is identical to that for Pr roff-1-hex-ks with a slightly
modified compression strategy (but one that gives identical amount of compression). For the sake of com-
pleteness, we just give the modified encoding and decoding algorithms here.

The encoding procedure encodes the random oracle h as follows.

1. It runs Ah
1 , answering all its queries using h.

48

2. If m� 1-col happens or off-hex-k does not happen, it outputs H
3. it finds a set of salt pairs S of size k{8 such that for each ta, a1u P S

– A1 found a hexagon for ta1, a2u
– A1 made no more than 4T1{k queries with salt a1

– A1 made no more than 4T1{k queries with salt a2

– The salt a has no more than 4mT1{k successor queries

– The salt a has no more than 4mT1{k successor queries

4. If no such S is found, it returns H
5. For every ta1, a2u pair in S it picks one type 1 hexagon formed by the queries of A1 (if there is more

than one, it picks one arbitrarily). It lets the queries forming the hexagon be q1 � hpa1,M1q � w, q2 �
hpa,M2q � y, q3 � hpy,M3q � z, q4 � hpa2,M4q � w, q5 � hpa1,M5q � y1, q6 � hpy1,M6q � z for some
M1,M2,M3,M4,M5,M6, w, y, y

1, z such that |ta1, a2, w, y, y1, zu| � 6 such that q5 was the last of the six
queries made by A1.

6. It initializes lists L1, L2, L3, L4, L5 to empty lists, T to empty set

7. It starts running A1 again

8. For every query hpa,Mq made by A1 it does the following:

(a) If the query is marked as a q5 query for a salt pair ta, a1u P S
i. it adds the index of this query in T
ii. it adds the lexicographical index of the corresponding q5 query among all queries with input a

to the list L1

iii. Let the answer of the corresponding q4 query be w. It adds the lexicographical index of the
corresponding q1 query among all queries with answer w to the list L2

iv. Let the input salt of the corresponding q1 query be a1. It adds the lexicographical index of the
corresponding q3 query among all successor queries of a1 to the list L3

v. Let the answer of the corresponding q3 query be z. It adds the lexicographical index of the
corresponding q6 query among all queries with answer z to the list L4.

(b) Otherwise it adds hpa,Mq to L5.

9. It appends the evaluation of h on the points not queried by A1 to L5 in the lexicographical order of the
inputs.

10. It outputs L1, L2, L3, L4, L5,T.

The decoding procedure works as follows.

1. If the encoding is H it aborts.

2. It runs Ah
1 .

3. For every query hpa,Mq made by A1 it does the following:

(a) If the index of the query is in T,

i. it removes the element i on the front of list L1, and locates the query q4 which has lexicographic
order i among all queries with input salt a.

ii. Let the answer of q4 be w. It removes the element i on the front of list L2, and locates the query
q1 which has lexicographic order i among all queries with answer w.

iii. Let the input salt of q1 be a1. It removes the element i on the front of list L3, and locates the
query q3 which has lexicographic order i among all successor queries of a1.

iv. Let the answer of q3 be z. It removes the element i on the front of list L4, and locates the query
q6 which has lexicographic order i among all queries with answer z.

It answers with the input of query q6.

(b) Otherwise, it removes the element in front of L5 and answers with that.

4. It populates h on the points not queried by A1 in the lexicographical order by the remaining entries of
L5

49

Upper bounding Pr roff-3-hex-ks. The analysis for this is identical to that for Pr roff-1-hex-ks with a slightly
modified compression strategy (but one that gives identical amount of compression). For the sake of com-
pleteness, we just give the modified encoding and decoding algorithms here.

The encoding procedure encodes the random oracle h as follows.

1. It runs Ah
1 , answering all its queries using h.

2. If m� 1-col happens or off-hex-k does not happen, it outputs H
3. it finds a set of salt pairs S of size k{8 such that for each ta, a1u P S

– A1 found a hexagon for ta1, a2u
– A1 made no more than 4T1{k queries with salt a1

– A1 made no more than 4T1{k queries with salt a2

– The salt a has no more than 4mT1{k successor queries
– The salt a has no more than 4mT1{k successor queries

4. If no such S is found, it returns H
5. For every ta1, a2u pair in S it picks one type 1 hexagon formed by the queries of A1 (if there is more

than one, it picks one arbitrarily). It lets the queries forming the hexagon be q1 � hpa1,M1q � w, q2 �
hpa,M2q � y, q3 � hpy,M3q � z, q4 � hpa2,M4q � w, q5 � hpa1,M5q � y1, q6 � hpy1,M6q � z for some
M1,M2,M3,M4,M5,M6, w, y, y

1, z such that |ta1, a2, w, y, y1, zu| � 6 such that q4 was the last of the six
queries made by A1.

6. It initializes lists L1, L2, L3, L4, L5 to empty lists, T to empty set
7. It starts running A1 again
8. For every query hpa,Mq made by A1 it does the following:

(a) If the query is marked as a q4 query for a salt pair ta, a1u P S
i. it adds the index of this query in T
ii. it adds the lexicographical index of the corresponding q6 query among all successor queries of a

to the list L1

iii. Let the answer of the corresponding q6 query be z. It adds the lexicographical index of the
corresponding q3 query among all queries with answer z the list L2

iv. Let the input salt of the corresponding q3 query be y1. It adds the lexicographical index of the
corresponding q2 query among all queries with answer y1 to the list L3

v. Let the input salt of the corresponding q2 query be a1. It adds the lexicographical index of the
corresponding q1 query among all queries with input salt a1 to the list L4.

(b) Otherwise, it adds hpa,Mq to L5.
9. It appends the evaluation of h on the points not queried by A1 to L5 in the lexicographical order of the

inputs.
10. It outputs L1, L2, L3, L4, L5,T.

The decoding procedure works as follows.

1. If the encoding is H it aborts.
2. It runs Ah

1 .
3. For every query hpa,Mq made by A1 it does the following:

(a) If the index of the query is in T,
i. it removes the element i on the front of list L1, and locates the query q6 which has lexicographic

order i among all successor queries to a.
ii. Let the answer q6 be z. It removes the element i on the front of list L2, and locates the query q3

which has lexicographic order i among all queries with answer z.
iii. Let the input salt of q3 be y. It removes the element i on the front of list L3, and locates the

query q2 which has lexicographic order i among all queries with answer y.
iv. Let the input salt of q2 be a1. It removes the element i on the front of list L4, and locates the

query q1 which has lexicographic order i among all queries with input salt a1

It answers with the answer of query q1.
(b) Otherwise, it removes the element in front of L5 and answers with that.

50

4. It populates h on the points not queried by A1 in the lexicographical order by the remaining entries of
L5

[\
We finally prove Lemma 15.

Proof. We want to upper bound

Pr
�
off-2-dia-k ^ off-zz-k1 ^ off-hex-k2 ^ pm� 1q-col

�
.

Note that if A1 does not cause off-zz-k1, off-hex-k2 and finds diamonds of category two for at least k salts,
it means that there is a set of at least k � 2k1 � 2k2 salts for which A1 finds diamonds of category two such
that no two diamonds in the set share the last query completing the diamond. We will use this to intuition
to build a compression argument that upper bounds this probability.

The encoding procedure encodes the random oracle h as follows.

1. It first runs Ah
1 , answering all its queries using h.

2. If off-zz-k1 happens or off-hex-k2 happens or pm� 1q-col happens or off-2-dia-k does not happen, it
outputs H

3. It finds a set of salts S of size pk � 2k1 � 2k2q{2 such that for each a P S
– A1 found a category 2 diamond for a
– The salt a has no more than 2T1m{pk � 2k1 � 2k2q successor queries
– The category 2 diamond for no two salts in the set share the last query of the diamond

4. If no such S is found, return H
5. For every a1 in S it picks the category 2 diamond that does not share the last query with the diamond

of any other salt in S found by A1 (if there is more than one, it picks one arbitrarily). It lets the queries
forming the diamond be q1 � hpa1,M1q � y, q2 � hpy,M2q � z, q3 � hpa1,M3q � y1, q4 � hpy1,M4q � z
for some M1,M2,M3,M4, y, y

1, z such that |ta1, y, y1, zu| � 4 such that q4 was the last of the four queries
made by A1.

6. It initializes lists L1, L2, L3 to empty lists, T to empty set
7. It starts running A1 again
8. For every query hpa,Mq made by A1 it does the following:

(a) If the query is marked as a q4 query for a salt a P S, then
i. it adds the index of this query in T
ii. it adds the lexicographical order of q3 among all the queries made by A1 with answer a in the

list L1

iii. Let the input salt of q3 be a1. It adds the lexicographical order of q2 among all the successor
queries of the salt a1 in the list L2

(b) Otherwise it adds hpa,Mq to L3.
9. It appends the evaluation of h on the points not queried by A1 to L3 in the lexicographical order of the

inputs.
10. It outputs L1, L2, L3,T.

The decoding procedure works as follows.

1. If the encoding is H it aborts.
2. It runs Ah

1 .
3. For every query hpa,Mq made by A1 it does the following:

(a) If the index of the query is in T,
i. it removes the element i on the front of list L1, and locates the query q3 which has lexicographical

order i among the queries with answer a
ii. Let a1 be the input salt of q3. It removes the element i on the front of list L2, and locates the

query q2 which has lexicographical order i among all the successor query of salt a1. It answers
with the answer of q2

51

(b) Otherwise it removes the element in front of L3 and answers with that.
4. It populates h on the points not queried by A1 in the lexicographical order by the remaining entries of

L3

Correctness of decoding: First off, we argue that for adversary A1 that causes the event off-2-dia-k ^
 off-zz-k1 ^ off-hex-k2 ^ pm� 1q-col to happen, the encoding algorithm will never return H. To ar-
gue this it suffices to show that the encoding algorithm never returns H from line 4. Note that the encoding
algorithm reaches this line only if the event off-2-dia-k^ off-zz-k1^ off-hex-k2^ pm� 1q-col was caused
by running A1, which means there is a set of k salts S1 such that A1 found category two diamonds for them.
Moreover, there does not exist a set of k1 salt pairs for which A1 found a zig-zag. Also, there does not exist
a set of k1 salt pairs for which A1 found a hexagon. Now let P be the maximally large set of salt pairs such
that

1. each salt in the salt pairs of P is in S1

2. no two salt pairs in P share a salt
3. A1 found a hexagon for each salt pair in P

Since off-hex-k2 happens we have that |P| k2. Let S2 be all the salts in the salt pairs in P. We have that
|S1zS2| � |S1| � 2|P| ¡ k � 2k2. Now let P 1 be the maximally large set of salt pairs such that

1. each salt in the salt pairs of P1 is in S1zS2
2. no two salt pairs in P1 share a salt
3. A1 found a zigzag for each salt pair in P1

Since off-zz-k1 happens we have that |P1| k1. Let S3 be all the salts in the salt pairs in P. We have that
|S1zS2zS3| � |S1zS1| � 2|P1|| ¡ k � 2k2 � 2k1. Let Notice that for every salt in a in S1zS2zS3, A1 found a
category 2 diamond for a and category 2 diamond for no two salts in the set share the last query of the
diamond by the maximality of S2,S3. Further, since pm� 1q-col happens, the total number of salt-successor
query pairs are at most mT1. Therefore, at least pk � 2k2 � 2k1q{2 of the salts (note that pk � 2k1 � 2k2q{2
is an integer because k is a multiple of 2) in S1zS2zS3 are such that there are at most 2mT1{pk � 2k1 � 2k2q
successor queries for the salt. Therefore, such a set S always exists.

If the encoding algorithm does not return H, it is easy to see the decoding algorithm decodes correctly,
because the query answers that the encoding algorithm does not add in the list L3 can be recovered by the
decoding algorithm correctly using S, L1, L2. This can be verified by inspection. Therefore, we have that

Pr r Decoding is correct s
¥ Pr

�
off-2-dia-k ^ off-zz-k1 ^ off-hex-k2 ^ pm� 1q-col

�
.

Observe that the encoding algorithm removes pk � 2k1 � 2k2q{2 answers of the random oracle from the
encoding, and all the removed answers are distinct because those were q1 queries for different salts. It
instead adds an set T of pk� 2k1 � 2k2q{2 distinct values in rT1s, and sequence L1 of pk� 2k1 � 2kq{2 values
that are at most m, and sequence L2 of pk� 2k1� 2kq{2 values that are at most 2mT1{pk� 2k1� 2k2q. Using
the compression lemma, we have that

Pr r Decoding is correct s

¤
�

T1

pk�2k1�2k2q{2

�
mpk�2k1�2k2q{2p2mT1{pk � 2k1 � 2k2qqpk�2k1�2k2q{2

2npk�2k1�2k2q{2

¤
�

4em2T 2
1

pk � 2k1 � 2k2q22n

pk�2k1�2k2q{2

.

Therefore,

Pr
�
off-2-dia-k ^ off-zz-k1 ^ off-hex-k2 ^ pm� 1q-col

�
¤
�

4em2T 2
1

pk � 2k1 � 2k2q22n

pk�2k1�2k2q{2

.

[\

52

Acknowledgements

This research was partially supported by NSF grants CNS-2026774, CNS-2154174, a JP Morgan Faculty
Award, a CISCO Faculty Award, and a gift from Microsoft.

References

ABD�15. David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Hal-
derman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric
Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann. Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015,
pages 5–17. ACM Press, October 2015. 1

ACDW20. Akshima, David Cash, Andrew Drucker, and Hoeteck Wee. Time-space tradeoffs and short collisions in
merkle-damg̊ard hash functions. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 157–186. Springer, Heidelberg, August 2020. 1, 2, 3

AGL22. Akshima, Siyao Guo, and Qipeng Liu. Time-space lower bounds for finding collisions in merkle-Damg̊ard
hash functions. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 192–221. Springer, Heidelberg, August 2022. 1, 2, 3

BL13. Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete: The power of free precompu-
tation. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 321–340. Springer, Heidelberg, December 2013. 1

CDG18. Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-permutation, ideal-
cipher, and generic-group models. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 693–721. Springer, Heidelberg, August 2018. 1

CDGS18. Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John P. Steinberger. Random oracles and non-uniformity.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 227–258. Springer, Heidelberg, April / May 2018. 1, 2

CK18. Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with preprocessing. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS,
pages 415–447. Springer, Heidelberg, April / May 2018. 1, 4, 6, 61

Dam90. Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor, CRYPTO’89, volume
435 of LNCS, pages 416–427. Springer, Heidelberg, August 1990. 3

DGK17. Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random oracles with
auxiliary input, revisited. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 473–495. Springer, Heidelberg, April / May 2017. 1

DTT10. Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against one-way
functions and PRGs. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 649–665. Springer,
Heidelberg, August 2010. 1, 4

GK22. Ashrujit Ghoshal and Ilan Komargodski. On time-space tradeoffs for bounded-length collisions in merkle-
Damg̊ard hashing. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 161–191. Springer, Heidelberg, August 2022. 1, 2, 3

GPR14. Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. The exact PRF-security of NMAC and HMAC. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages
113–130. Springer, Heidelberg, August 2014. 1

Hel80. Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory, 26(4):401–406,
1980. 1

JT20. Joseph Jaeger and Stefano Tessaro. Expected-time cryptography: Generic techniques and applications to
concrete soundness. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552
of LNCS, pages 414–443. Springer, Heidelberg, November 2020. 2, 3, 8, 9

KM12. Neal Koblitz and Alfred Menezes. Another look at HMAC. Cryptology ePrint Archive, Report 2012/074,
2012. https://eprint.iacr.org/2012/074. 1

Mer90. Ralph C. Merkle. A fast software one-way hash function. Journal of Cryptology, 3(1):43–58, January
1990. 3

Oec03. Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 617–630. Springer, Heidelberg, August 2003. 2

53

https://eprint.iacr.org/2012/074

Rog06. Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor, Progress in Cryptology -
VIETCRYPT 06, volume 4341 of LNCS, pages 211–228. Springer, Heidelberg, September 2006. 1

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997. 5, 6

Unr07. Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 205–223. Springer, Heidelberg, August 2007. 1

A Attacks

In this section we add the proof of the various theorems that show the tightness of the bounds we obtained
for security against offline-online adversaries.

A.1 Attacks for pre-2-CR-MDh
n (Proofs of Theorems 8 and 9)

We first prove Theorem 9.

Proof (Theorem 9). Let T1{2n{2�2 � k. We start by describing A. Its offline phase A1 does the following.

1. Let S be a set of k distinct salts.
2. For each salt a in S, it makes 2n{2�2 distinct queries with the salt
3. For each salt in t0, 1unzS, it makes T1{2n�1 distinct queries

Its online phase A2 does the following: on getting input salt a, it checks if A1 had made queries that led to
a two-block MD-collision for a. If so it outputs the collision.

Clearly A1 makes T1{2n{2�2 �2n{2�1�T1{2n�1 �p2n�T1{2n{2� 2q T1 queries, and A2 makes no queries.
So A is a pT1, 0q-adversary.

Now, we analyze the advantage of A. We say that a salt a1 in S is good if the A1 made two queries for a1

that collided. For each a1 P S, we have that

Pr
�
a1 is good

� � 1� Pr
�
a1 is not good

�
.

Observe that a1 is not good if and only if all the 2n{2�1 queries made on it produce distinct answers

Pr
�
a1 is not good

� � 2n{2�1¹
i�1

�
1� i� 1

2n

¤
2n{2�1¹
i�1

e�
pi�1q
2n

� e�
p2n{2�1qp2n{2�1�1q

2n ¤ 1{e .
Let X be the random variable that denotes the number of salts in S that are not good. We have that
E rXs ¤ k{e. Using Markov’s equality we have that

Pr rX ¥ 2k{es ¤ E rXs
2k{e ¤

1

2
.

Therefore,

Pr rX ¤ 2k{es ¥ 1

2
.

Let Qa be the event that for a salt a, A1 made a query on a in line 3 such that one of the queries had an
answer a1 such that a1 is a good salt in S. Let winA be the event that the a that was sampled before the
online phase was such that

54

1. a R S
2. Qa happens

We have that

Pr rwinAs � Pr ra R S^Qas
¥ Pr ra R S^Qa ^X ¤ 2k{es
Pr ra R S^X ¤ 2k{esPr

�
Qa

�� a R S^X ¤ 2k{e� .
Since a is sampled independent of A1 we have that

Pr ra R S^X ¤ 2k{es � Pr ra R Ss � Pr rX ¤ 2k{es .

Pr ra R Ss 1 � k{2n since a is sampled uniformly at random. Since T1 ¤ 25n{4, and n ¥ 2, Pr ra R Ss ¥ 1{2.
Further we have Pr rX ¤ 2k{es ¥ 1{2. Therefore,

Pr ra R S^X ¤ 2k{es ¥ 1{4 .
If a R S, Qa does not happen only if none queries made on A1 have answers that are not among the good
salts in S. Therefore, we have that

Pr
�
Qa

�� a R S^X ¤ 2k{e� ¥ 1�
�

2n � kp1� 2{eq
2n

T1{2
n�1

.

We have that �
2n � kp1� 2{eq

2n

T1{2
n�1

�
�

1� kp1� 2{eq
2n

T1{2
n�1

¤ e�
kp1�2{eq

2n �
T1

2n�1 .

Note that

kp1� 2{eq
2n

� T1
2n�1

� p1� 2{eqT 2
1

25n{2�3
¤ 1 .

Above we used the fact that T1 ¤ 25n{4. We have that e�x ¤ 1� x{2 for 0 ¤ x ¤ 1.5, therefore,

�
2n � kp1� 2{eq

2n

T1{2
n�1

¤ 1� p1� 2{eqT 2
1

25n{2�4
.

This implies

Pr
�
Qa

�� a R S^X ¤ 2k{e� ¥ p1� 2{eqT 2
1

25n{2�4
.

Therefore,

Pr rwinAs ¥ p1{4q � p1� 2{eqT 2
1

25n{2�4
� p1� 2{eqT 2

1

25n{2�6
.

Clearly if winA happens, A has won. Hence

Advpre-2-CR-MD
Hn,`,n

¥ p1� 2{eqT 2
1

25n{2�6
.

[\

55

We next prove Theorem 8.

Proof (Theorem 8). Let T1{2n{2�1 � k. We start by describing A. Its offline phase A1 does the following.

1. Let S be a set of k distinct salts.
2. For each salt a in S, it makes 2n{2�1 distinct queries with the salt

Its online phase A2 does the following:

1. Let T be the set of salts for which A1 found a collision.
2. On getting salt a input it makes T2 distinct queries with salt a. If any of the answers are in T – say

the query hpa,Mq produced a1 such that A1 had made queries hpa1,M 1q � z and hpa1,M2q � z for
M 1 �M2. It outputs pM,M 1q and pM,M2q as the two-block collision.

Clearly A1 makes T1{2n{2�1 � 2n{2�1 � T1 queries, and A2 makes T2 queries. So A is a pT1, T2q-adversary.
Now, we analyze the advantage of A. We say that a salt a1 in S is good if the A1 made two queries for a1

that collided. Let X be the random variable that denotes the number of salts in S that are not good.
In our analysis in 9, we showed that

Pr rX ¤ 2k{es ¥ 1

2
.

Let winA be the event that for a salt a, A2 made a query on a such that one of the queries had an answer
a1 such that a1 is a good salt in S. We have that

Pr rwinAs ¥ Pr rwinA ^X ¤ p2k{es
Pr rX ¤ 2k{esPr

�
winA

��X ¤ 2k{e� .
Note that winA does not happen only if none queries made on A2 have answers that are not among the good
salts in S. Therefore, we have that

Pr
�
winA

��X ¤ 2k{e� ¥ 1�
�

2n � kp1� 2{eq
2n

T2

.

We have that �
2n � kp1� 2{eq

2n

T2

�
�

1� kp1� 2{eq
2n

T2

¤ e�
kp1�2{eq

2n �T2 .

Note that

kp1� 2{eq
2n

� T2 � p1� 2{eqT1T2
23n{2�1

¤ 1 .

Above we used the fact that T1T2 ¤ 23n{2. We have that e�x ¤ 1� x{2 for 0 ¤ x ¤ 1.5. Therefore,�
2n � kp1� 2{eq

2n

T2

¤ 1� p1� 2{eqT1T2
23n{2�2

.

This implies

Pr
�
winA

��X ¤ 2k{e� ¥ p1� 2{eqT1T2
23n{2�2

.

Therefore,

Pr rwinAs ¥ p1{2q � p1� 2{eqT1T2
23n{2�2

� p1� 2{eqT1T2
23n{2�3

.

Clearly if winA happens, A has won. Hence

Advpre-2-CR-MD
Hn,`,n

¥ p1� 2{eqT1T2
23n{2�3

.

[\

56

A.2 Attacks on pre-2-PR-MDh
n (Proofs of Theorems 5 and 6)

We first prove Theorem 5.

Proof (Theorem 5). Let k � T1{2n. The offline phase of the adversary A does the following:

1. It chooses a set of k distinct salts S
2. For each salt a P S, it makes 2n�2 distinct queries

Its online phase A2 does the following: on getting input salt a, it makes T2 distinct queries with salt a. If
some query hpa,M 1q � a1 such that a1 P S and for A1 had made a query hpa1,M2q � y then A2 outputs the
pM 1,M2q.

Clearly A1 makes T1{2n � 2n � T1 queries, and A2 makes T2 queries. So A is a pT1, T2q-adversary.
Now, we analyze the advantage of A. We say that a salt a1 in S is good if the A1 made a query for a1

that had answer y. For each a1 P S, we have that

Pr
�
a1 is good

� � 1� Pr
�
a1 is not good

�
.

Observe that a1 is not good if and only if all the 2n queries made on it produce answers other than y

Pr
�
a1 is not good

� � �
1� 1

2n

2n

¤ 1{e .
Let X be the random variable that denotes the number of salts in S that are not good. We have that
E rXs ¤ k{e. Using Markov’s equality we have that

Pr rX ¥ 2k{es ¤ E rXs
2k{e ¤

1

2
.

Therefore,

Pr rX ¤ 2k{es ¥ 1

2
.

Let winA be the event that for a salt a, A2 made a query on a such that one of the query had an answer a1

such that a1 is a good salt in S. We have that

Pr rwinAs ¥Pr rwinA ^X ¤ 2k{es
�Pr rX ¤ 2k{esPr

�
winA

��X ¤ 2k{e� .
Note that winA does not happen only if none queries made on A1 have answers that are not among the good
salts in S. Therefore, we have that

Pr
�
winA

��X ¤ 2k{e� ¥ 1�
�

2n � kp1� 2{eq
2n

T2

.

We have that �
2n � kp1� 2{eq

2n

T1{2
n�1

�
�

1� kp1� 2{eq
2n

T2

¤ e�
kp1�2{eq

2n �T2 .

Note that

kp1� 2{eq
2n

� T2 � p1� 2{eqT1T2
22n

¤ 1 .

57

Above we used the fact that T1T2 ¤ 22n. We have that e�x ¤ 1� x{2 for 0 ¤ x ¤ 1.5, therefore,�
2n � kp1� 2{eq

2n

T2

¤ 1� p1� 2{eqT1T2
22n

.

This implies

Pr
�
winA

��X ¤ 2k{e� ¥ p1� 2{eqT1T2
22n

.

Therefore,

Pr rwinAs ¥ p1{2q � p1� 2{eqT1T2
22n

� p1� 2{eqT1T2
22n�1

.

Clearly if winA happens, A has won. Hence,

Advpre-2-PR-MD
Hn,`,n

¥ p1� 2{eqT1T2
22n�1

.

[\
We next prove Theorem 6.

Proof (Theorem 6). Let k � T1{2n�1. The offline phase of the adversary A does the following:

1. It chooses a set of k distinct salts S
2. For each salt a P S, it makes 2n�2 distinct queries
3. For every salt in t0, 1unzS it makes T1{2n�1 distinct queries

Its online phase A2 does the following: on getting input salt a, it checks the queries made by A1 to find a
message M , at most two blocks long such that the MDhpa,Mq � y. If so it outputs M .

Clearly A1 makes T1{2n�1 � 2n� T1{2n�1 � p2n� T1{2n{2� 2q T1 queries, and A2 makes no queries. So
A is a pT1, 0q-adversary.

Now, we analyze the advantage of A. We say that a salt a1 in S is good if the A1 made a query for a1

that had answer y. For each a1 P S, we have that

Pr
�
a1 is good

� � 1� Pr
�
a1 is not good

�
.

Observe that a1 is not good if and only if all the 2n queries made on it produce answers other than y

Pr
�
a1 is not good

� � �
1� 1

2n

2n

¤ 1{e .
Let X be the random variable that denotes the number of salts in S that are not good. We have that
E rXs ¤ k{e. Using Markov’s equality we have that

Pr rX ¥ 2k{es ¤ E rXs
2k{e ¤

1

2
.

Therefore,

Pr rX ¤ 2k{es ¥ 1

2
.

Let Qa be the event that for a salt a, A1 made a query on a in line 3 such that one of the queries had an
answer a1 such that a1 is a good salt in S. Let winA be the event that the a that was sampled before the
online phase was such that

58

1. a R S
2. Qa happens

We have that

Pr rwinAs � Pr ra R S^Qas
¥ Pr ra R S^Qa ^X ¤ 2k{es
Pr ra R S^X ¤ 2k{esPr

�
Qa

�� a R S^X ¤ 2k{e� .
Since a is sampled independent of A1 we have that

Pr ra R S^X ¤ 2k{es � Pr ra R Ss � Pr rX ¤ 2k{es .

We have that Pr ra R Ss � 1 � k{2n since a is sampled uniformly at random. Since T1 ¤ 23n{2, and n ¥ 2,
Pr ra R Ss ¥ 1{2. Further we have Pr rX ¤ 2k{es ¥ 1{2. Therefore,

Pr ra R S^X ¤ 2k{es ¥ 1{4 .
If a R S, Qa does not happen only if none queries made on A1 have answers that are not among the good
salts in S. Therefore, we have that

Pr
�
Qa

�� a R S^X ¤ 2k{e� ¥ 1�
�

2n � kp1� 2{eq
2n

T1{2
n�1

.

We have that �
2n � kp1� 2{eq

2n

T1{2
n�1

�
�

1� kp1� 2{eq
2n

T1{2
n�1

¤ e�
kp1�2{eq

2n �
T1

2n�1

Note that

kp1� 2{eq
2n

� T1
2n�1

� p1� 2{eqT 2
1

23n�2
¤ 1 .

Above we used the fact that T1 ¤ 23n. We have that e�x ¤ 1� x{2 for 0 ¤ x ¤ 1.5, therefore,

�
2n � kp1� 2{eq

2n

T1{2
n�1

¤ 1� p1� 2{eqT 2
1

23n�2
.

This implies

Pr
�
Qa

�� a R S^X ¤ 2k{e� ¥ p1� 2{eqT 2
1

23n�2
.

Therefore,

Pr rwinAs ¥ p1{4q � p1� 2{eqT 2
1

23n�2
� p1� 2{eqT 2

1

23n�4
.

Clearly if winA happens, A has won. Hence

Advpre-2-PR-MD
Hn,`,n

¥ p1� 2{eqT 2
1

23n�4
.

[\

59

A.3 Offline-only attack for s-pre-CRh (Proof of Theorem 3)

In this section we prove Theorem 3.

Proof (Theorem 3). Let k � T1{2n{2�1. We describe the adversary A � pA1,A2q. Its offline phase A1 works
as follows:

1. It picks a set S of k distinct salts
2. For each salt in S it makes 2n{2�1 distinct queries

The online phase on getting salt a as input simply checks whether A1 queried a collision for A. If so it
outputs the collision.

We say that a salt a1 in S is good if the A1 made two queries for a1 that collided. For each a1 P S, we have
that

Pr
�
a1 is good

� � 1� Pr
�
a1 is not good

�
.

Observe that a1 is not good if and only if all the 2n{2�1 queries made on it produce distinct answers

Pr
�
a1 is not good

� � 2n{2�1¹
i�1

�
1� i� 1

2n

¤

2n{2�1¹
i�1

e�
pi�1q
2n

� e�
p2n{2�1qp2n{2�1�1q

2n ¤ 1{e .

Now, notice that A wins whenever a is sampled from the set of good salts in S. Therefore,

AdvCR
Hs,m,n

pAq ¥ Pr ra P S^ a is a good salt in Ss
� Pr ra P Ss � Pr

�
a is a good salt in

�� a P S
�

¥ p1� 1{eqk{2n � p1� 1{eqT1
2s�n{2�1

.

The second inequality above follows since a is sampled at random and for all a1 P S, Pr ra1 is goods ¥ 1�1{e.
[\

We note that there is a dual of this strategy for an offline-only adversary compared to the one we presented
in this proof – instead of making 2n{2 queries for T1{2n{2 salts, it could make T1{2s for all 2s salts – in this
case its advantage of be of the order T 2

1 {22s�n. Note that if we care about constant advantage, then both
the attack strategies need the same amount of queries. However, this latter attack is worse than the one we
give in Theorem 3 since T 2

1 {22s�n ¤ T1{2s�n{2 when both the terms are at most one. In Appendix B, we
formalize this difference between the two attack strategies for a general class of games.

B Strategies for offline-only attacks

In this section we present the qualitative difference between two strategies behind offline only attacks.
Suppose game G is compatible with ideal distribution I. Suppose there exists d,N, T0 P N, c P r0, 1s that

depend on G, I and satisfy the following.

– T0 ¥ N1{d

– for all T ¤ T0, there exists a T -query adversary AT such that AdvG
IpAT q ¥ c � Td

N

AdvG
IpAq ¥ c � T

d

N
.

60

This property hold for several random oracle based games, e.g., for collision-resistance of random oracles
with n bit outputs, c � 1{2, d � 2, T0 � 2n{2.

Let T1, s P N¡0. Assume T1 is a multiple of 2s, and N1{d, and T1 ¤ N1{d � 2s. Consider the two following
T1-query offline-only adversaries B, C against s-pre-Gπ.

– B1: It chooses a set S of T1{N1{d salts. For each salt a in the set, it runs AT for T � N1{d and simulates
Gπa to it.

– C1: For each salt a P t0, 1us, it runs AT 1 for T 1 � T1{2s, simulating Gπa to it.

The online phases of both adversaries do not make any queries themselves, and decide their output based
on the queries made by their offline phase.

First we analyze the success probability of B. We have that B wins if the sampled salt a was in S and
GπapAT q (where T � N1{d) returns true. Therefore,

Advs-pre-G
Is

pBq � Pr rts a P SuPr
�
GπapAT q

�� a P S
�

¥ T1
N1{d2s

� c � cT1
N1{d2s

.

The inequality follows because a is sampled independently of A, and for any salt a, AdvG
IpAT q ¥ c � Td

N � c.
Next we analyze the success probability of C. We have that C wins if GπapAT 1q (where T 1 � T1{2s) returns

true. Therefore,

Advs-pre-G
Is

pBq � Pr rGπapAT 1qs

¥ c � T d1
2sdN

.

Note that since T1 ¤ N1{d � 2s, cT1

N1{d2s
¥ Td

1

2sdN
. So for d ¥ 1, the better offline only strategy is to trying to

win on T1{N1{d salts instead of distributing queries across all 2s salts.

C Upper Bounding Offline-Online advantage via the Multi-Instance Approach

In [CK18], the authors remark that in personal communication with them, Dan Bernstein noted that a
lower bound against multiple-discrete-log algorithms also yields lower bounds on the preprocessing time for
discrete-log algorithms with preprocessing. In this section, we explore an example of using this approach to
prove guarantees against offline-online adversaries against collision-resistance of a salted random oracle.

This approach upper bounds the advantage of a pT1, T2q-adversary A against the collision-resistance of
a salted random oracle in terms of the advantage of an adversary B against a multi-instance version of the
game that makes T1�kT2 queries. The oracle game s-mi-k-CRh in Fig 16 is the multi-instance version of the
salted collision-resistance game: the adversary gets k distinct salts as input, and wins if it finds a collision
for each of them. (Note that k ¤ 2s since there are at most 2s salts).

We prove the following theorem.

Theorem 10. Let s, `, n P N¡0. Let Hs,`,n be the uniform distribution over Fcspt0, 1us�t0, 1u`, t0, 1unq. Let
A be a pT1, T2q adversary such that

Advs-pre-CR
Hs,`,n

pAq � ε .

Then for any δ ¤ ε, and any k ¤ δ � 2s, there exists an adversary B such that

Advs-mi-k-CR
Hs,`,n

pBq ¥ pε� δq
�
δ�2s

k

�
�
2s

k

� .

Moreover B makes T1 � kT2 queries to h.

61

Game s-mi-k-CRhpAq
a1, . . . , ak Ð$

�
t0,1us

k

�

For i P k:
tpMi,M

1
iqiPku Ð Ahpa1, . . . , akq

If for all i P k, Mi �M 1
i and hpai,Miq � hpai,M

1
iq

Return true
Return false

Fig. 16: Oracle Game s-mi-k-CRh capturing multi-instance salted collision-resistance of oracle h

Proof. We construct the following T1 � k � T2-adversary B against s-mi-k-CRh where:

– B first runs Ah
1 .

– It then runs Ah
2 paiq for i P rks, and outputs all the values A2 outputs.

We next compute a lower bound on Advs-mi-k-CR
Hs,`,n

pBq. Let 0 ¤ δ ¤ ε. Say h is “good” for A if A succeeds
on finding collisions for at least δ � 2s salts for h. We claim that ε� δ fraction of the h are good. This is true
because if α fraction of h are good, we have that

AdvCR
Hs,`,n

pAq ¤ Pr rh is goods � δ .
Therefore, α ¥ ε � δ, i.e., ε � δ fraction of h are good. Observe that B always wins if h is good for A, and
a1, . . . , ak are sampled from the δ � 2s salts on which A wins. Therefore, for k ¤ δ � 2s, we have that

Advs-mi-k-CR
Hs,`,n

pBq ¥Pr rh is good for AsPr
�
A win on a1, . . . , ak

��h is good for A
�

¥ pε� δq
�
δ�2s

k

�
�
2s

k

�
[\

The hope is to then use the upper-bound on the advantage of any pT1�kT2q-adversary against s-mi-k-CR to
give an upper bound on the advantage of A against CR. We show an example where the left hand side and
the right hand side of the advantage inequality in Theorem 10 are very far away, meaning we cannot hope
for tight-bounds for collision-resistance of salted random oracles using this approach.

Consider a p2n{2, 0q-adversary A that makes 2n{2 distinct queries for one salt in the offline phase. Let ε
be the advantage of A. It is east to see that ε is at most 1{2s.

Theorem 10 requires k ¤ δ�2s ¤ ε �2s. Since ε ¤ 1{2s, we have that k ¤ 1. Now note that there exists an
adversary 2n{2 against s-mi-1-CR that succeeds with constant probability. On the other hand, for any choice
of δ, the right hand side of the inequality is much smaller than 1. So, we cannot hope for tight bounds from
this approach.

However, if we were only interested in adversaries that succeed with probability 1, we would have that
the advantage of B would be 1 (since A wins on all inputs/random oracles). Then we could upper bound
the advantage of A with the advantage of any pT1 � kT2q adversary B against s-mi-k-CR. We can simply
use our analysis in Theorem 2 of the event off-oneblk-k to upper bound this advantage. Namely off-oneblk-k
was the probability that the adversary finds one-block collisions for k different salts using T1 queries, and

we showed that Pr roff-oneblk-ks ¤ pT1
2kq
2kn . Clearly the probability that any adversary finds collisions for salts

a1, . . . , ak using T1 � kT2 queries is at least the probability that the adversary finds collisions for k different

salts. Therefore, the advantage of such B is at most
pT1�kT2

2k q
2nk which is at most

�
epT1�kT2q

2n{2k

	2k
. Since we know

B has advantage 1,we would have that

1 ¤
�
epT1 � kT2q

2n{2k

2k

.

62

Setting k � 2s and simplifying we get,

T1
2s�1

� T2 ¥ 2n{2

e
.

Therefore, for advantage 1 adversaries, we get the right guarantee using this approach.

63

	The Query-Complexity of Preprocessing Attacks
	Introduction
	Preliminaries
	Offline-Online Trade-offs and the Role of Salting
	A general framework for offline-online attacks
	The power of salting

	Offline-Online Security of Salted Random oracles
	Pre-image-resistance of a salted random oracle
	Collision-resistance of a salted random oracle

	Offline-Online Security of Two-Block Merkle-Damgård
	Pre-image-resistance of two-block Merkle-Damgård
	Collision-resistance of two-block Merkle-Damgård
	Proof of Lemma lem:sl
	Proof of Lemma lem:sos
	Proof of Lemma lem:bulb
	Proof of Lemma lem:bos
	Proof of Lemma lem:tri
	Proof of Lemma lem:dia
	Proof of Lemma lem:trioff
	Proof of Lemma lem:diaoff

	Attacks
	Attacks for pre-2-CR-MDnh (Proofs of Theorems thm:mdcoloff,thm:mdcolonoff)
	Attacks on pre-2-PR-MDhn (Proofs of Theorems thm:tightowmdone,thm:tightowmdtwo)
	Offline-only attack for s-pre-CRh (Proof of Theorem thm:attmonocol)

	Strategies for offline-only attacks
	Upper Bounding Offline-Online advantage via the Multi-Instance Approach

