
Effective Pairings in
Isogeny-based Cryptography

Krijn Reijnders

Radboud University, Nijmegen, The Netherlands
krijn@cs.ru.nl

Abstract. Pairings are useful tools in isogeny-based cryptography and
have been used in SIDH/SIKE and other protocols. As a general tech-
nique, pairings can be used to move problems about points on curves
to elements in finite fields. However, until now, their applicability was
limited to curves over fields with primes of a specific shape and pair-
ings seemed too costly for the type of primes that are nowadays often
used in isogeny-based cryptography. We remove this roadblock by opti-
mizing pairings for highly-composite degrees such as those encountered
in CSIDH and SQISign. This makes the general technique viable again:
We apply our low-cost pairing to problems of general interest, such as
supersingularity verification and finding full-torsion points, and show
that we can outperform current methods, in some cases up to four times
faster than the state-of-the-art. Furthermore, we analyze how parings
can be used to improve deterministic and dummy-free CSIDH. Finally,
we provide a constant-time implementation (in Rust) that shows the
practicality of these algorithms.

Keywords: post-quantum cryptography, isogeny, pairings, CSIDH

1 Introduction

In the event that quantum computers break current cryptography, post-quantum
cryptography will provide the primitives required for digital security. Isogeny-
based cryptography is a field with promising quantum-secure schemes, offering
small public keys in key exchange (CSIDH [10]), and small signatures (SQISign
[19]). The main drawback of isogeny-based cryptography is speed, as it requires
heavy mathematical machinery in comparison to other areas of post-quantum
cryptography. In particular, to ensure security against real-world side-channel
analysis, the requirements for constant-time and leakage-free implementations

∗ This work was done in large while the author was on an internship at the Crypto-
graphic Research Centre of the Technology Innovation Institute, Abu Dhabi, UAE.
In particular, the author thanks Francisco Rodŕıguez-Henŕıquez and Michael Scott
for their warm support and excellent advice on the performance of these pairings.

Date of this document: 2023-06-07.

cause a significant slowdown. Trends in current research in isogenies are, there-
fore, looking at new ideas to improve constant-time performance [1, 2, 7, 11, 13,
14, 25, 33, 34, 36], and analyzing side-channel threats [3, 8, 9, 30].

Surprisingly, although pairings were initially considered in SIDH and SIKE
to improve the cost of key compression [16, 17], they have received little at-
tention for optimizing CSIDH or later isogeny-based protocols. There are clear
obstructions that heavily affect the performance of pairings: we have no control
over the Hamming weight of p for the base fields (in CSIDH or SQISign), we are
likely to compute pairings of highly-composite degree, and many optimizations
in the pairing-based literature require different curve models than the ones we
consider in isogeny-based cryptography. Nevertheless, the field of pairing-based
cryptography is rich in ideas and altogether many small improvements can make
pairings efficient even for unpractical curves. As a general technique, we can use
pairings to analyze certain properties of points on elliptic curves by a pairing
evaluation as elements of finite fields. In this way, a single pairing can be used
to solve a curve-theoretical problem with only field arithmetic, which is much
more efficient. Hence, even a relatively expensive pairing computation can be-
come cost-effective if the resulting problem is much faster to solve “in the field”
than “on the curve”.

Pairings have been used constructively since the 2000s [24, 26]. The literature
is rich, but the main focus has mostly been on pairings of prime degree. Although
proposals using composite degree pairigs have been analyzed, analysis such as
Guillevic [23] shows that prime degrees are favorable. Composite degree pairings
have thus received little attention compared to prime degree pairings.

Apart from the issues mentioned, CSIDH is well-suited for pairings, as it
mostly works with points of order N | p+1 on supersingular curves E/Fp whose
x-coordinate lives in Fp. This allows for fast x-only arithmetic on the Kummer
line P(Fp), but also implies an embedding degree of 2 for pairings of degree
N | p+ 1. The result ζ = eN (P,Q) of a pairing is thus a norm-1 element in Fp2 ,
and ζ contains useful information on P and Q, which is precisely the information
that CSIDH often requires to perform certain isogenies. Hence, pairings are a
natural tool to study properties of the pair (P,Q). Norm-1 elements in Fp2 allow
for very fast Fp-arithmetic (compared to Fp2 -arithmetic). A final advantage is
that for any supersingular curve EA we choose over Fp, the result of a pairing
always ends up in Fp2 . This allows for techniques that require fixing some public
value in Fp2 which would not generalize to curves; it would require fixing a value
for all supersingular curves EA, independent of A ∈ Fp.

Our contributions. Our main contribution is combining an optimized pairing
with highly-efficient arithmetic in µr ⊆ F∗p2 to solve isogeny problems faster. To
achieve this, we first optimize the pairing and then apply this low-cost pairing
to move specific problems from curves to finite fields. Specifically,

1. we optimize pairings on supersingular curves: in Miller’s Algorithm, we first
reduce the cost of subroutines Dbl and Add and then reduce the total number
of subroutines using non-adjacent forms and windowing techniques.

2

2. we analyze the asymptotic and concrete cost of single and multi-pairings, in
particular for supersingular curves over p512 (the prime used in CSIDH-512).

3. we apply these low-cost pairings to develop alternative algorithms for super-
singularity verification, verifying full-torsion points, and finding full-torsion
points, using highly-efficient arithmetic available for pairing evaluations.

4. we discuss the natural role these algorithms have when designing ‘real-world’
isogeny-based protocols, in particular, CSIDH-variants that are deterministic
and secure against side-channel attacks.

5. we provide a full implementation of most of these algorithms in Rust, fol-
lowing the “constant-time” paradigm, that shows such algorithms can im-
mediately be used in practice to speed up deterministic variants of CSIDH.
Our implementation is available at:

https://github.com/Krijn-math/EPIC

Related work. This work can partly be viewed as a natural follow-up to [7,
11, 13], works that analyze CSIDH as a real-world protocol, that is, remov-
ing randomness and dummy operations. During the final days of writing this
work, independent work by Lin, Wang, Xu, and Zhao [31] applies pairings to
improve the performance of SQISign [19]. This shows the potential of pairings
in isogeny-based cryptography and we believe this work can contribute to im-
proving performance even further.

Organization of the paper. Section 2 introduces the mathematical tools in
pairing-based and isogeny-based cryptography required in the rest of the paper.
Section 3 analyzes optimization of pairings to the setting used in isogeny-based
cryptography, which allows us to apply pairings to optimize general problems
in Section 4. In Section 5, we show that these pairing-based algorithms speed
up current variants of deterministic, dummy-free CSIDH and can be used to
construct ideas beyond those in use now.

2 Preliminaries

Notation. Throughout, p denotes a large prime used with the base field Fp, and
quadratic extension Fp2 , realized as Fp(i) with i2 = −1. Both ` and `i denote
a small odd prime that divides p + 1. A (supersingular) elliptic curve EA is
assumed to be in Montgomery form

EA : y2 = x3 +Ax2 + x, A ∈ Fp,

although our work also applies to other curve forms (most notably Edwards). µr
denotes the set of r-th roots in F∗p2 . In particular, µp+1 can be seen as F∗p2/F

∗
p,

the elements in Fp2 of norm 1, and µr for r | p+ 1 is a subgroup of µp+1.
Finite field operations are denoted as M for multiplications, S for squarings,

and A for additions. Inversions (I) and exponentiation (E) are expressed in M,
S and A as far as possible. We use a cost model of 1S = 0.8M and 1A = 0.01M
to compare performance in terms of finite field multiplications.

3

https://github.com/Krijn-math/EPIC

2.1 Isogeny-based cryptography

This work deals with specific problems in isogeny-based cryptography. We as-
sume a basic familiarity with elliptic curve arithmetic, e.g. Montgomery ladders
and addition chains. A great introduction is given by Costello and Smith [18].

The prime p. We specifically look at supersingular elliptic curves over Fp,
where p = h ·

∏n
i=1 `i − 1, with h is a suitable cofactor and the `i are small odd

primes. We refer to these `i as Elkies primes [10]. We denote the set of Elkies
primes as Lχ

1 and write `χ =
∏
`i∈Lχ `i. Hence, log p = log h + log `χ. If h is

large, the difference in bit-size between `χ and p+ 1 can be significant, and this
can impact performance whenever an algorithm takes either log `χ or log p steps.
For p512, h is only 4 and so we do not differentiate between the two.

Torsion points. Let E be a supersingular elliptic curve over Fp, then E has
p + 1 rational points. Such points P ∈ E(Fp) therefore have order N | p + 1.
When `i | N , we say P has `i-torsion. When P is of order p + 1, we say P is
a full-torsion point. The twist of E over Fp is denoted by Et, and Et is also
supersingular. Rational points of Et can also be seen as Fp2 -points in E[p + 1]
of the form (x, iy) for x, y ∈ Fp. Using x-only arithmetic, we can do arithmetic
on both E(Fp) and Et(Fp) using only these rational x-coordinates.

CSIDH. We briefly revisit CSIDH [10] to show where full-torsion points appear,
and refer to [10, 34, 36] for more details. CSIDH applies the class group action of
Cl(O) on supersingular elliptic curves EA over Fp whose rational endomorphism
ring Endp(EA) ∼= O to create a non-interactive key exchange. Given a starting
curve E0, Alice’s private key is an ideal class [a] ∈ Cl(O) and her public key
is EA := a ∗ E0, and equivalent for Bob with [b] and EB := b ∗ E0. Both can
derive the shared secret EAB := a ∗ EB = b ∗ EA, given only the other’s public
key. In reality, we cannot sample random ideal classes [a] ∈ Cl(O). Instead, we
generate a as a product of small ideals li = (`i, π − 1) and l−1i = (`i, π + 1) (the
decomposition of (`i) into prime ideals), e.g., a :=

∏
leii , where the ei are secret.

Evaluating a∗E is done by the factorization of a into li, where each l±1i can be
evaluated using Vélu’s formulas [45] if we have a point P ∈ ker(π±1)∩E[`i]. This
requirement comes down to P being a rational point of order `i, with πP = P ,
hence P ∈ E(Fp) and l+1

i ∗ E is evaluated as E → E/〈P 〉, or πP = −P , hence
P lives on the twist Et and l−1i ∗ E is evaluated as Et → Et/〈P 〉.

By sampling random points P ∈ E(Fp) and Q ∈ Et(Fp) of order `i, we can
use the right scalar multiple of either P or Q to compute the action of li resp. l−1i
whenever `i divides Ord(P) resp. Ord(Q). The original points P and Q can then
be pulled through the isogeny and used again as a new set of points on the co-
domain [10, 34, 36]. By repeating this procedure and sampling new points P,Q
when necessary, we compute the full action of a ∗ E. As P and Q are sampled
randomly, they have probability `i−1

`i
that `i divides their order.

1 pronounced “ell-kie”

4

Deterministic CSIDH. The probabilistic nature of the evaluation of a ∗ E,
stemming from the random sampling of points P,Q, causes several issues:

a) randomness makes constant-time implementations difficult, and solutions
cause a significant slowdown (see CTIDH [1], SQALE [13] and dCSIDH [7])

b) randomness leaks secret information through physical attacks [3], and
c) randomness requires a good source of entropy, which can be expensive or

difficult on certain devices.
One way to avoid this random nature of a ∗ E is to ensure that both P and

Q are full-torsion points, e.g., we have Ord(P) = Ord(Q) = p+ 1. For a point P
that is not a full-torsion point, we say P misses some torsion `i and we denote
the missing torsion for P by Miss(P). Note that Miss(P)·Ord(P) = p+1. CSIDH
strategies that require only two full-torsion points T+ ∈ E(Fp) and T− ∈ Et(Fp)
were discussed in [11] and implemented and improved by [7, 13]. These restrict
to coefficients ei ∈ {−1,+1} to remove randomness and dummy operations.

2.2 Building blocks in isogeny-based cryptography.

We list several general routines in isogeny-based cryptography that will be ana-
lyzed in more detail in later sections. These routines are posed as general prob-
lems, with their role in CSIDH specified afterward.

1. Finding the order of a point: Given P ∈ E(Fp), find the order Ord(P).
2. Verifying supersingularity: Given A ∈ Fp, verify EA is supersingular.
3. Verifying full-torsion points: Given two points P ∈ E(Fp), Q ∈ Et(Fp) verify
P and Q are full-torsion points.

4. Finding full-torsion points: Given a curve EA, find two full-torsion points
P ∈ E(Fp) and Q ∈ Et(Fp).

It is easy to see that these problems are related. For example, verifying su-
persingularity is usually done by verifying that EA has order p+ 1, by showing
that there is a Fp-rational point of order N ≥ 4

√
p. This implies N | #EA(Fp)

and hence we must have #E(Fp) = p+ 1 as p+ 1 is the only possible remaining
value in the Hasse interval.

All variants of CSIDH use a supersingularity verification in order to ensure
a public key EA is valid. dCSIDH [7] includes full-torsion points (P,Q) in the
public key to speed up the shared-secret computation. This requires finding full-
torsion points in key generation and, given the public key, verifying such points
(P,Q) are full-torsion before deriving the shared secret. Without this verification,
a user is vulnerable to side-channel attacks.

2.3 Pairing-based cryptography

One of the goals in pairing-based cryptography is to minimize the cost of com-
puting a Weil or Tate pairing. We assume a basic familiarity with pairings up to
the level of Costello’s tutorial [15]. Other great resources are Galbraith [21] and
Scott [40]. We focus only on the reduced Tate pairing, as it is more efficient for
our purposes. We build on top of the fundamental works [4, 5, 35, 46].

5

The reduced Tate pairing. In this work, we are specifically focused on the
reduced Tate pairing of degree r for supersingular elliptic curves with embedding
degree k = 2, which can be seen as a bilinear pairing

er : E[r]× E(Fp2)/rE(Fp2)→ F∗p2/(F
∗
p2)r.

In the reduced Tate pairing, the result ζ = er(P,Q) is raised to the power
k = (p2 − 1)/r, which ensures ζk is an r-th root of unity in µr. In this work,
we want to evaluate the Tate pairing on points P ∈ E(Fp) and Q ∈ Et(Fp) of
order r. For supersingular curves over Fp and r | p+ 1, such points generate all
of E[r]. From the point of view of pairings, E(Fp) is the base-field subgroup and
Et(Fp) is the trace-zero subgroup of E[p+1]. Using the bilinear properties of the
Tate pairing, we can compute er(P,Q) from its restriction to E(Fp)× Et(Fp).

Computing the Tate pairing. There are multiple ways to compute the Tate
pairing [35, 43]. Most implementations evaluate er in essentially three steps.

1. compute the Miller function frP , satisfying div(frP) = r(P)− r(O),

2. evaluate frP on an appropriate divisor DQ,

3. raise frP (DQ) to the appropriate power, p
2−1
r , i.e., er(P,Q) = frP (DQ)p−1.

In practice, frP is a function in x and y of degree r, where r is cryptograph-
ically large, and therefore infeasible to store or evaluate. Miller’s solution is a
bitwise computation and direct evaluation of frP on DQ to compute frP (DQ)
in log(r) steps. By the work of Barreto, Kim, Lynn, and Scott [4, Theorem 1],
we are in the fortunate situation that we can choose DQ = Q. The Hamming
weight of r is a large factor in the cost of computing frP (Q) as a single step in
Miller’s loop takes close to twice the computational cost if the bit is 1. For our
purposes, r = p+ 1 or r = `χ, and thus we have little control over the Hamming
weight of r. The last step is also known as the final exponentiation. Algorithm 1
describes Miller’s Algorithm before applying any optimizations, where lT,T and
lT,P denote the required line functions (see [15, § 5.3]). We refer to the specific
subroutines in Line 3 as Dbl and Line 5 as Add.

Algorithm 1 Miller’s Algorithm

Input: P ∈ E(Fp), Q ∈ Et(Fp), r of embedding degree k = 2, with r =
∑t

i=0 ti · 2
i

Output: The reduced Tate pairing er(P,Q) ∈ µr

1: T ← P , f ← 1
2: for i from t− 1 to 0 do
3: T ← 2T , f ← f2 · lT,T (Q) // Dbl
4: if ti = 1 then
5: T ← T + P , f ← f · lT,P (Q) // Add

6: return fp−1

6

More generally, the value f is updated according to the formula

f(n+m)P = fnP · fmP ·
l

v
(1)

where l and v are the lines that arise in the addition of nP and mP . Miller’s
Algorithm uses n = m to double T = nP , or m = 1 to add T = nP and P .

2.4 Field arithmetic

The result of the reduced Tate pairing is a value ζ ∈ µr ⊆ F∗p2 of norm 1, as
it is an r-th root of unity. We require two useful algorithms from finite field
arithmetic: Lucas exponentiation and Gauss’s Algorithm to find primitive roots.

Gauss’s algorithm. An algorithm attributed to Gauss [32, p. 38] to find prim-
itive roots of a certain order in a finite field is given in Algorithm 2, specialized
to the case of finding a generator α for a finite field Fq. It assumes a subroutine
Ord computing the order of any element in the finite field.

Algorithm 2 Gauss’s Algorithm.

Input: A prime power q = pk.
Output: A generator α for F∗

q .

1: α
$←−− F∗

q , t← Ord(α)
2: while t 6= q − 1 do

3: β
$←−− F∗

q , s← Ord(β)
4: if s = q − 1 then return β
5: else
6: Find d | t and e | s with gcd(d, e) = 1 and d · e = lcm(t, s)
7: Set α← αt/d · βs/e, t← d · e
8: return α

Gauss’s Algorithm is easy to implement and finds generators quickly. The
main cost is computing the orders. We can adapt Gauss’s Algorithm to elliptic
curves to find generators for E(Fp), simply by replacing the rôles of α, β by
rational points P, P ′ until P reaches Ord(P) = p + 1. Intuitively, one could say
we “add” the torsion that P is missing using the right multiple of P ′.

Lucas exponentiation. Lucas exponentiation provides fast exponentiation for
ζ ∈ Fq2 of norm 1. They are used in cryptography since 1996 [27, 28], and specif-
ically applied to pairings by Scott and Barreto [41]. We follow their notation.

Let ζ = a+ bi ∈ Fp2 be an element of norm 1, i.e. a2 + b2 = 1, then ζk can be
efficiently computed using only a ∈ Fp for every k ∈ N using Lucas sequences,

7

based on simple laddering algorithms. We denote these sequences by Vk(a) and
Uk(a) but often drop a for clarity. The central observation is

ζk = (a+ bi)k = Vk(2a)/2 + Uk(2a) · bi, for ζ ∈ µp+1,

where

V0 = 2, V1 = a, Vk+1 = a · Vk − Vk−1,
U0 = 0, U1 = 1, Uk+1 = a · Uk − Uk−1.

Given Vk, we can compute Uk by (a · Vk − 2 · Vk−1)/(a2 − 4). An algorithmic
description is given in [41, App. A]. For this work, we only require the value of
Vk(2a). As such, exponentiation of norm-1 elements is much more efficient than
general exponentiation in F∗p2 : the former requires 1S+1M per bit of k, whereas

the latter requires roughly 2S+ 5
2M per bit of k, assuming the Hamming weight

of k is log(k)/2. In our cost model, this is an almost 60% improvement. We
denote the cost of exponentiation per bit for norm-1 elements by CLucas.

This arithmetic speed-up is key to the applications in this work: as the re-
quired pairings have evaluations of norm 1, we can apply Lucas exponentiation
to the results to get very fast arithmetic. In comparison to x-only arithmetic on
the curve, we are between five and six times faster per bit. Hence, if the cost of
the pairing is low enough, the difference in cost between curve arithmetic and
Lucas exponentiation is so large that it makes up for the cost of the pairing.

3 Optimizing pairings for composite order

In this section, we apply several techniques to decrease the cost of Miller’s Al-
gorithm, specifically for pairings of degree r | p + 1, and points P ∈ E(Fp),
Q ∈ Et(Fp), with E supersingular and p = h · `χ − 1. This is a different sce-
nario than pairing-based literature usually considers: we have no control over
the Hamming weight of p+ 1, and we compute pairings of composite degree.

We first give an abstract view and then start optimizing Miller’s Algorithm.
In Section 3.2, we decrease the cost per subroutine Dbl/Add with known opti-
mizations that fit our scenario perfectly. In Section 3.3, we decrease the number of
subroutines Dbl/Add using non-adjacent forms and (sliding) window techniques,
inspired by finite field exponentiation and elliptic curves scalar multiplication.

3.1 An abstract view on pairings

Silverman [42], views the reduced Tate pairing as a threefold composition

E[r]→ Hom(E[r], µr)→ F∗p2/F
∗,r
p2

z 7→z(p
2−1)/r

−−−−−−−−→ µr(Fp2) (2)

similar to the one described in Section 2.3. Namely, for r = p+ 1, we can reduce
the first map to E(Fp)→ Hom(Et(Fp), µr) to get

Ψ : E(Fp)→ Hom(Et(Fp), µr), P 7→ er(P,−),

8

which can be made concrete as the Miller function P 7→ frP . By composing
with its evaluation on Q, we get frP (Q) = er(P,Q) (unreduced). To frP (Q), we

apply the final exponentiation z 7→ z(p
2−1)/r. In the case of r = p + 1, we thus

get the reduced Tate pairing ep+1(P,Q) as ζ = f(p+1)P (Q)p−1.
From this point of view, identifying full-torsion points P ∈ E(Fp) is equiva-

lent to finding points P that map to isomorphisms frP ∈ Hom(Et(Fp), µr). We
make this precise in the following lemma.

Lemma 1. Let E be a supersingular curve over Fp. Let P ∈ E(Fp) and r = p+1.
Then frP as a function Et(Fp)→ µr has kernel

ker frP = {Q ∈ Et(Fp) | Ord(P) divides Miss(Q)}.

Hence, | ker frP | = Miss(P). Thus, if P generates E(Fp), the kernel is trivial.

Proof. Recall that Ord(P) · Miss(P) = p + 1. The reduced Tate pairing maps
precisely to an exact p+ 1-th root of unity if and only if P and Q are a torsion
basis for E[p + 1] [42]. Note that if P ∈ E(Fp) does not have order p + 1, we
can write P = [Miss(P)]T+ for some specific point T+ ∈ E(Fp) oforder p + 1,
and similarly Q = [Miss(Q)]T− for some T− ∈ Et(Fp). Hence ep+1(T+, T−) is an
exact p+ 1-th root of unity, and

ζ = ep+1(P,Q) = ep+1(T+, T−)Miss(P)·Miss(Q)

is a p + 1-th root of unity with Miss(ζ) = lcm(Miss(P),Miss(Q)). Whenever
Ord(P) divides Miss(Q), we know that p + 1 divides Miss(P) · Miss(Q) and so
we must have lcm(Miss(P),Miss(Q)) = p + 1, i.e. ζ = 1. As Ord(P) | Miss(Q)
implies Ord(Q) | Miss(P), we can generate all such points Q by a single point R
of order Miss(P), giving us ker frP = 〈R〉 of order Miss(P). ut

Note that, given a full-torsion point P ∈ E(Fp), we can thus identify full-
torsion points Q ∈ Et(Fp) as points where er(P,Q) is a primitive root in µr. In
light of Lemma 1, we can try to tackle the routines sketched in Section 2.2 using
properties of frP , frP (Q) and ζ = frP (Q)p−1. For example, we can find ker frP
by evaluating frp on multiple points Qi, and finding the orders of the resulting
elements ζi. In the language of pairing-based cryptography, we compute multiple
pairings er(P,Qi) for the same point P . Hence, we need to minimize the cost of
several evaluations of the Tate pairing for fixed P but different points Qi.

3.2 Reducing the cost per subroutine of Miller’s loop

We now optimize the cost per Dbl and Add in Miller’s Algorithm. We assume
that P ∈ E(Fp) is given by Fp-coordinates xP , yP ∈ Fp, and Q ∈ Et(Fp) can be
given by Fp-coordinates xQ, yQ ∈ Fp (we implicitly think of Q as (xQ, i · yQ)).

Some of these techniques were used before in SIDH and SIKE [16, 17], in a
different situation: in SIDH and SIKE, these pairings were specifically applied
for p = 2e2 · 3e3 − 1, whereas we assume p = h · `χ− 1. Thus, we have much more
different `i | p+ 1 to work with, and we cannot apply most of their techniques.

9

Representations. For T , we use projective coordinates to avoid costly inver-
sions when doubling T , adding P and computing `T,T and `T,P . For Q, as we
only evaluate Q in `T,T and `T,P , we leave Q affine. f = a + bi is an Fp2-value
represented projecitevely as (a : b : c), with a, b, c ∈ Fp and c as the denominator.
Although x-only pairings exist [22], they seem unfit for this specific scenario.

The final exponentiation. As established before, after computing frP (Q) ∈
Fp2 we perform a final exponentiation by p−1. This is beneficial for two reasons:

1.) Raising to the power p is precisely applying Frobenius π : z 7→ zp in Fp2 ,

and so π : a + bi 7→ a − bi. Hence we can compute z 7→ zp−1 as z 7→ π(z)
z . The

Frobenius part is ‘free’ in terms of computational cost. In Fp2 , z 7→ z−1 is simply

(a + bi)−1 = (a−bi)
a2+b2 . Hence, the Fp-inversion of a2 + b2 is the dominating cost

of the final exponentiation. In constant-time, this costs about log p multiplica-
tions. When a and b are public, we use faster non-constant-time inversions. In
comparison to prime pairings, this final exponentiation is surprisingly efficient.

2.) Raising z to the power p−1 for Fp2-values gives the same as α ·z for α ∈ F∗p,
as (α · z)p−1 = αp−1 · zp−1 = zp−1. Hence, when we compute frP (Q) ∈ Fp2 ,
we can ignore or multiply by Fp-values [4]. That is, we ignore the denominator
c in the representation (a : b : c) of f in the Miller loop, and similarly for in
evaluating lT,T (Q) and lT,P (Q), saving several Fp-operations in Dbl/Add [12, 38].

Reusing intermediate values. In Dbl, computing T ← 2T shares many values
with the computation of lT,T and in Add computing T ← T + P shares values
with lT,P . Reusing such values saves again several Fp-operations in Dbl/Add.

Improved doubling formulas. As shown in [17, §4.1], the subroutine Dbl in
Miller’s Algorithm is more efficient when using a projective representation of
T ∈ E(Fp) as (X2, XZ,Z2, Y Z), although this requires a slight adjustment of
the formulas used in Add. Overall, this reduces the cost for Dbl to 5S+15M and
the cost for Add becomes 4S + 20M, for an average of 7S + 25M per bit.

3.3 Reducing the number of subroutines in the Miller loop

Next to reducing the cost for a single Dbl/Add, we apply techniques to reduce
the total number of Adds. Usually in pairing-based cryptography, we do so by
using primes p of low Hamming weight. Here we do not have this freedom, thus
we resort to techniques inspired by exponentiation in finite fields.

Non-Adjacent Form. With no control over the Hamming weight of p+ 1, we
assume half of the bits are 1. However, in Miller’s Algorithm, it is as easy to
add T ← T + P as it is to subtract T ← T − P (which we denote Sub), with
the only difference being a negation of yP . Hence, we use non-adjacent forms

10

(NAFs [37]) to reduce the number of Add/Subs. A NAF representation of p+ 1
as

p+ 1 =

n∑
i=0

ti · 2i, ti ∈ {−1, 0, 1},

reduces the Hamming weight from log(p)/2 to log(p)/3, and thus decrease the
number of expensive Add/Subs in Miller’s Algorithm by log(p)/6. We get an
average cost of 61

3S + 21 2
3M per bit, a saving of about 10%.

Algorithm 3 gives a high-level overview of the Miller loop with the improve-
ments so far, for general p. Note that, as the output ζ ∈ Fp2 will have norm 1,
we only require the real part of ζ. See Appendix A for the specific algorithms
Dbl, Add and Sub, which are implemented in bignafmiller.rs.

Algorithm 3 Miller’s algorithm, using NAFs

Input: xP , yp, xQ, yQ ∈ Fp, p+ 1 =
∑t

i=0 ti · 2
i

Output: The real part of er(P,Q) ∈ µp+1

1: T = (X2, XZ,Z2, Y Z)← (x2P , xP , 1, yP)
2: f ← (1, 0)
3: for i from t− 1 to 0 do
4: (T, f)← Dbl(T, f, xQ, yQ)
5: if ti = 1 then
6: (T, f)← Add(T, f, xP , yP , xQ, yQ)

7: if ti = −1 then
8: (T, f)← Sub(T, f, xP , yP , xQ, yQ)

9: a← f [0], b← f [1]

10: ζ ← a2−b2

a2+b2
// The final exponentiation

11: return ζ

For specific primes. For specific primes p, such as p512, we can improve on
the NAF representation by using windowing techniques [29]. This allows us to
decrease even further the times we need to perform Add or Sub, at the cost of a
precomputation of several values.

In short, windowing techniques allow us to not only add or subtract P but
also multiples of P during the loop. To do so, we are required to precompute
several values, namely iP,−iP, fiP and f−iP . We need the multiples ±iP to
perform T ← T ± iP , and the line values fiP to set f ← f · f±iP · `T,iP (Q)
in Add/Sub. We first precompute the required iP in projective form, and we
keep track of fiP . We use Montgomery’s trick to return the points iP in affine
form at the cost of a single inversion and some multiplications. Using affine form
decreases the cost of T ← T ± iP during Add/Sub.

We note that iP gives −iP for free, simply by negating yiP . Furthermore,
from fiP = a+bi we can obtain f−iP as f−1iP = a−bi

a2+b2 . However, as a2+b2 ∈ F∗p, we
can ignore these (thanks to the final exponentiation) and simply set f−iP = a−bi.

11

Altogether, these sliding-window techniques reduce the number of Add/Subs
from log(p)/3 down to about log(p)/(w + 1). See bigwindowmiller.rs for the
implementation of this algorithm.

For the prime p512, we found the optimum at a window size w = 5. This
requires a precomputation of {P, 3P, . . . , 21P}. Beyond w = 5, the cost of addi-
tional computation does not outweigh the decrease in Add/Subs. Altogether this
gives another saving of close to 10% for this prime.

Remark 1. A reader who is familiar with curve arithmetic might be tempted
to suggest (differential) addition chains at this point, specialized for p + 1, to
decrease even further the number of Add/Subs. However, an addition chain re-
quires either keeping track of the different points in the chain in projective
form, hence performing projective additions/subtractions, or, converting them
to affine points and performing affine additions/subtractions. Both approaches
are not cost-effective; the amount of additions/subtractions hardly decreases,
and the cost per addition/subtraction increases significantly. The crucial differ-
ence is that the precomputed points can be mapped into affine form using a
single shared inversion and a few multiplications.

3.4 Multiple pairing evaluations.

The previous sections attempt to optimize a single pairing er(P,Q). However, in
many scenarios, including the ones in Section 4, it is beneficial to optimize the
cost of multiple pairings, in particular multiple pairings er(P,Q1), . . . er(P,Qk)
for the same point P . This is known as the “one more pairing” problem in
pairing literature. We quickly sketch two methods to do so. Firstly, assuming
the set {Q1, . . . , Qk} is known in advance and we minimize the overall cost of
these k pairings. Secondly, assuming we want to compute additional pairings
er(P,Qk+1) after having already computed er(P,Q1), . . . , er(P,Qk).

Evaluating a fixed set Q1, Q2, . . . , Qk. Optimizing k pairings er(P,Qi) for
an already known set Q1, . . . , Qk is easy: only f depends on Qi, hence we can
easily adapt Algorithm 3 for an array of points [Q1, . . . , Qk] to keep track of a
value f (i) per Qi, and we return an array ζ(1), . . . , ζ(k). All evaluations share
(per bit) the computations of T , lT,T and lT,P . Our additional cost per extra
point Qi thus comes down to the evaluations lT,T (Qi), lT,P (Qi) and updating
f (i). In total, this is 7M per Dbl, and 5M per Add/Sub, plus 2S + I to compute
ζ(i) given f (i) (the final exponentiation) per point Qi. See bigmultimiller.rs

for the implementation of this algorithm.

Evaluating additional points Q1, Q2, . . . It is more difficult when we want
to compute er(P,Q

′) after the computation of er(P,Q). I.e., in some applica-
tions we compute er(P,Q) first, and, based on this evaluation, compute another
er(P,Q

′). In practice, this seems to require another full pairing computation.

12

Scott [39] observed that one can achieve a time/memory trade-off, by dividing
Miller’s Algorithm into three distinct subalgorithms: one to compute frP , one
to evaluate frP (Qi) per Qi and one for the final exponentiation. Paradoxically,
this brings us back to the original three-step process from Section 2.3, where we
argued that the degree of frP is too large to store frP in full. However, Scott
notes, frP (Q) can be computed from the set of all line functions lT,T and lT,P
and Q. Up to Fp-invariance, all such line functions l can be written as

l(x, y) = λx · x+ λy · y + λ0, λi ∈ Fp,

and we get a line function per Dbl, Add, and Sub. Thus, at a memory cost of

(log(p) + 1/3 log(p))︸ ︷︷ ︸
subroutines

· 3 · log(p)︸ ︷︷ ︸
bits per l

= 4 · log(p)2

(the factor 1/3 can be decreased using windowing) we can store a representation
of frP as an array of line functions. Hence, we can split up Algorithm 3 into three
subroutines Construct, Evaluate, and Exponentiate, which coincide precisely with
the decomposition of the Tate pairing given in Equation (2). We refer to the
composition of these subalgorithms as Scott-Miller’s algorithm. See Appendix B
for an algorithmic description.

3.5 Summary of costs

We summarize Section 3 in terms of Fp-operations for pairings of degree r = p+1.

General primes. Miller’s Algorithm has log p steps and each step performs 1
Dbl. Using the techniques from Section 3.3 decreases the number of Add/Subs2:

1. each Dbl costs 15M + 5S + 7A, we always perform log p Dbls
2. each Add or Sub costs 20M + 4S + 9A,

(a) in a näıve approach, we perform 1
2 log p Adds and Subs

(b) using NAFs, we perform 1
3 log p Adds and Subs

(c) using windowing, we perform 1
w+1 log p Adds and Subs

For CSIDH-512. For p512, Table 1 gives the number of Fp-operations to
compute a pairing, and shows the effectiveness of the optimizations: a reduction
of 40% compared to unoptimized pairings.

For an additional pairing, if the points are known beforehand, we require only
slightly more memory cost for each additional pairing. If we need to compute a
multipairing for variable points, this takes 4 · log(p)2 bits of memory to store the
representation of frP , using Scott-Miller’s algorithm (Section 3.4).

2 These techniques are inspired by finite field exponentiation and scalar multiplication.
To our knowledge, they were not yet analyzed seriously for composite pairings.

13

M S A Total

Original Miller’s Algorithm 28 498 2621 39 207 30 987
Optimized step (Sec 3.2) 12 740 3569 12 230 15 717
Using NAFs (Alg. 3) 11 152 3254 11 125 13 866
Using windows (w = 5) 9963 2960 10 592 12 436

Additional pairing 4410 2 5704 4468

Table 1. Concrete cost of the Miller loop for p512 for a pairing of degree r = p + 1.
‘Total’ gives the number of Fp-operations, with cost model 1S=0.8M and 1A=0.01M.

Remark 2. In Table 1, we consider the cost for a pairing of degree r = p+ 1. An
alternative for primes p = h · `χ − 1 with large cofactor h is to consider pairings
of degree r = `χ on E[`χ]. In many applications, such as [7], this contains all the
necessary torsion information needed. The loop, then, has log `χ = log p− log h
steps. The cost of such a pairing can be deduced from the given estimates.

4 Applications of pairings to isogeny problems

In this section, we apply the optimized pairing from Section 3 to the isogeny
problems described in Section 2.1. The core design idea is clear: the pairing is
now cheap enough to move isogeny problems from curves to finite fields, where we
have highly efficient Lucas exponentiation. Lemma 1 captures what information
about the original points remains after the pairing.

4.1 Verification of full-torsion points.

We start with the following problem: Given P ∈ E(Fp) and Q ∈ Et(Fp), verify
both points have full-torsion, for a supersingular curve E over Fp 3.

Current methods. Current methods to verify full-torsion points compute
[p+1
`i

]P 6= O to conclude p has `i-torsion for every `i | p + 1 and hence is a
full-torsion point. In a näıve way, this can be done per `i for the cost of a scalar
multiplication of size log p, using either Montgomery ladders or differential ad-
dition chains, at a total complexity of O(n log p). Concretely, this comes down
to a cost of Ccurve · n log p where Ccurve is the cost of curve arithmetic per bit.

Using product trees this drops down toO(log n log p), although takingO(log n)
space. Product-tree-based order verification is currently the method used in
state-of-the-art deterministic and dummy-free implementations [7] to verify a
given basis (P,Q). Hence, doing this for both P and Q comes down to approxi-
mately 2 · Ccurve · log n log p operations in Fp.

3 We treat finding full-torsion points in Section 4.3.

14

Torsion bases. We can improve on the previous verification matter by two
easy observations. Firstly, whenever a pair of points P ∈ E(Fp) and Q ∈ Et(Fp)
generates all of E[p + 1] ⊆ E(Fp2), the pair (P,Q) is a torsion basis for the
(p+1)-torsion. As proposed in SIDH/SIKE [16, 17], we can verify such a torsion
basis using the result that ζ = ep+1(P,Q) ∈ µp+1 must be a (p+ 1)-th primitive
root in Fp2 . Secondly, this situation is ideal for our pairing: P has both rational
coordinates, and Q has rational x and purely imaginary y-coordinate. As noted
before, ζ is an element of norm 1 in Fp2 , which allows us to apply fast Lucas
exponentiation to compute ζk. The following lemma is our key building block.

Lemma 2. Let P ∈ E(Fp) and Q ∈ Et(Fp). Let ζ = ep+1(P,Q) ∈ µp+1. Then

ζ
p+1
`i 6= 1⇔ [

p+ 1

`i
]P 6= O and [

p+ 1

`i
]Q 6= O.

Proof. This is a direct application of Lemma 1. ut

Hence, instead of verifying that both P and Q have `i-torsion, we verify

that the powers ζ
p+1
`i do not vanish. Furthermore, as ζ and its powers have

norm 1, we simply verify that Re(ζk) 6= 1 which implies ζk 6= 1. In terms of
Lucas sequences, this is equal to Vk(2a) 6= 2 for ζ = a + bi. Per bit, Lucas
exponentiation is much more efficient than curve arithmetic, which allows us

to compute every ζ
p+1
`i (again using product trees) very efficiently at a similar

complexity O(log n log p), and a concrete cost of 1 · CLucas · log n log p 4.

Algorithm 4 summarizes this approach, where Order is a product-tree based
function that computes the order of ζ (equivalently, verifies for which `i we have

ζ
p+1
`i 6= 1) using Lucas exponentiation. Order is the field analogue of algorithms

such as OrderRec [2] and validate rec in CTIDH [1]. See bigpairingfo.rs for an
implementation of Algorithm 4.

Algorithm 4 Verification of torsion basis

Input: P ∈ E(Fp), Q ∈ Et(Fp)
Output: True or False
1: ζ ← Re(ep+1(P,Q))
2: m← Order(ζ)
3: if m = p+ 1 then
4: return True
5: else
6: return False

4 To compute using Lucas exponentiation we use a constant-time laddering approach.
Interesting future work would be to use (differential) addition chains to reduce costs.

15

Further improvements. As stated before, working in µp+1 has the added
benefit that we work in same subgroup of Fp2 , independent of the curve EA.
This can be used to speed up the cost of torsion basis verification even more, at
the cost of log p additional bits next to the pair (P,Q), as follows.

The scalars Λ := Z∗p+1 of invertible elements in Zp+1 act faithfully and free
on both the group of full-torsion points of EA, as well as on exact primitive roots
in µp+1 ⊆ Fp2 . This means that we can write any full-torsion point T relative
to another full-torsion point T ′ as T = [λ]T ′ with λ ∈ Λ. Similarly for primitive
roots, this implies we can pick a system parameter ζ0 as the “standard” primitive
root, and can find λ ∈ Λ such that for ζ = ep+1(P,Q) we get ζ = ζλ0 .

By including λ next to (P,Q), we do not have to verify the complete order of
ζ. Instead, we simply verify that λ ∈ Λ, compute ζ = ep+1(P,Q) and verify that
ζ = ζλ0 which implies that ζ is an exact (p + 1)-th root of unity. Compared to
the algorithm sketched before this means that instead of O(log n log p) to verify
the order of ζ, we use a single Lucas exponentiation O(log p) to verify ζ.

Remark 3. The addition of the discrete log λ such that ζ = ep+1(P,Q) = ζλ0
might be unnecessary depending on the specific application. Namely, for a pair
(P,Q), we get another pair (P, λ−1Q) that is a torsion basis, with

ep+1(P, λ−1Q) = ep+1(P,Q)λ
−1

= ζλ
−1

= ζ0.

As ζ0 is a public parameter, verification requires no extra λ. However, the choice
of P and Q might have been performed carefully, e.g. to make sure both have
small x-coordinates to reduce communication cost. It thus depends per applica-
tion if a modified torsion basis (P, λ−1Q) reduces communication cost.

Remark 4. The above algorithm not only verifies that P and Q are full-torsion
points, but includes the supersingularity verification of EA, as it shows EA has
points of order p+ 1. This can be useful for applications, e.g. those in [7].

4.2 Pairing-based supersingularity verification

Supersingularity verification asks us to verify that EA is a supersingular curve. A
sound analysis of the performance of different algorithms was made by Banegas,
Gilchrist, and Smith [2]. They examine

a. a product-tree based approach to find a point of order N ≥ 4
√
p,

b. Sutherland’s algorithm [44] based on isogeny volcanoes, and
c. Doliskani’s test [20] based on division polynomials.

They conclude that Doliskani’s test is best for Montgomery models over Fp, as
it requires only a single scalar multiplication over Fp2 of length log p followed
by log p squarings in Fp2 . The algorithms we propose resemble the product-tree
approach, but move the computation of the orders of points from the curve to
the field. There are two ways to apply the pairing approach here:

16

Aproach 1. Sample , using Elligator [6], random points P ∈ E(Fp) and Q ∈
Et(Fp), compute ζ = er(P,Q) for r = p+1, and compute Ord(ζ) using a product-
tree up until we have verified Ord(ζ) ≥ 4

√
p.

Aproach 2. Divide Lχ into two lists L1 and L2 such that `(1) :=
∏
`i∈L1

`i
is slightly larger than 4

√
p. Sample again two random points P ∈ E(Fp) and

Q ∈ Et(Fp), and multiply both by p+1
`(1)

= h · `(2) so that P,Q ∈ E[`(1)]. Then,

compute the pairing of degree r = `(1) and verify that ζ ∈ µr has Ord(ζ) ≥ 4
√
p.

Approach 1 is essentially Algorithm 4, where we cut off the computation of
Ord(ζ) early whenever we have enough torsion. Approach 2 uses the fact that
we do not have to work in all of µp+1 to verify supersingularity. This reduces
the number of steps in the Miller loop by half, 1

2 log p compared to log p, but

requires two Montgomery ladders of log(p)/2 bits to kill the `(2)-torsion of P
and Q. Note that we must take L1 a few bits larger than 4

√
p to ensure with

high probability that random points P,Q have enough torsion to verify or falsify
supersingularity. In practice, the fastest approach is highly dependent on the
prime p and the number of factors `i, as well as the size of the cofactor 2k.
Approach 2 is summarized in Algorithm 5. See the folder supersingularity for
the implementations of these algorithms.

Algorithm 5 Verification of supersingularity

Input: A ∈ Fp, where p = h · `(1) · `(2) − 1
Output: True or False

1: (P,Q)
$←−− E(Fp)× Et(Fp)

2: P ← [4 · `(2)]P , Q← [h · `(2)]Q
3: ζ ← Re(e`(1)(P,Q))
4: m← Order(ζ)
5: if m ≥ 4

√
p then

6: return True
7: else
8: else repeat

Remark 5. Line 4 of Algorithm 5 computes the order of ζ using a product-tree

approach to verify (a) ζ ′ := ζ
p+1
`i 6= 1 and (b) ζ ′`i = 1. If at any moment, (a)

holds but (b) does not, this implies the order of ζ does not divide p+ 1, which
implies the curve is ordinary. In such a case, as in the original algorithm [10,
Alg. 1], we return False as we know the curve is not supersingular.

Remark 6. Note that in an approach where torsion points (P,Q) are given, to-
gether with a discrete log λ, so that ep+1(P,Q) = ζλ0 , or even the variant where
(P, λ−1Q) is given as in Remark 3, the cost of supersingularity verification is es-
sentially that of a single pairing computation, or that of a pairing computation
together with a Lucas exponentiation of length log λ ≈ log p. For CSIDH-512,
this beats Doliskani’s test as we will see in Section 4.4

17

4.3 Finding full-torsion points.

Finding full-torsion points is more tricky. Current implementations [7, 13] simply
sample random points and compute their order until they find a full-torsion
point. Although the probability of finding a full-torsion point is not low, this
approach is inefficient as the cost of computing the order per point is similar to
the one sketched in Section 4.1. The curve-equivalent of Gauss’s Algorithmcan
be given as follows: Given a point P ∈ E(Fp) with Ord(P) 6= p + 1, sample a
random point P ′ ∈ E(Fp). Set P ′ ← [Ord(P)]P ′ and compute Ord(P ′). Set P ←
P + P ′ and Ord(P) ← Ord(P) · Ord(P ′). Repeat until P is a full-torsion point.
This already improves on the näıve approach, yet still requires a lot of curve
arithmetic. We apply pairings again to improve performance. We specifically
need Scott-Miller’s algorithm (Section 3.4) to compute a variable number of
pairings for a given P .

Abstract point-of-view. From the abstract point of view, sketched in Sec-
tion 3.1, we want to identify a full-torsion point P as an isomorphism frP :
Et(Fp) → µr, using Lemma 1. Scott-Miller’s algorithm allows us to compute a
representation of frP and to evaluate frP efficiently on points Q ∈ Et(Fp).

Starting from random points P1 ∈ E(Fp) and Q1 ∈ Et(Fp), we compute
ζ1 := frP1(P1, Q1)p−1 and Ord(ζ1). The missing torsion m1 = Miss(ζ1) is then
equal to lcm(Miss(P),Miss(Q))). If m1 = 1, then we know both P1 and Q1 are
full-torsion points. If m1 6= 1, we continue with a second point Q2. Compute
ζ2 and m2 = Miss(ζ2). Let d = gcd(m1,m2). If d = 1, that is, m1 and m2 are
co-prime, then P1 is a full-torsion point, and we can apply Gauss’s Algorithm
to compute a full-order point Q, given Q1 and Q2.

For d > 1, it is most likely that d = | ker frP1 | = Miss(P1), or, if unlucky,
both Q1 and Q2 miss d-torsion. The probability that both Q1 and Q2 miss d-
torsion is 1

d2 . Hence, if d is small, this is unlikely but possible. If d is a large
prime, we are almost certain P1 misses d-torsion. In the former case, we sample
a third point Q3 and repeat the same procedure. In the latter case, we use Q1

and Q2 to compute a full-torsion Q. Using Q, we compute frQ and apply the
same procedure to points Pi to create a full-torsion point P (reusing P1).

Distinguishing between these cases is highly dependent on the value of d,
which in turn depends on Lχ and p . We leave these case-dependent details to
the reader. See bigfastfinding.rs for the implementation of this algorithm.

Remark 7. To distinguish between the cases dependent on d, it is favorable to
have no small factors `i in p+1. This coincides with independent analysis [1, 13]
that small `i | p+ 1 might not be optimal for deterministic variants of CSIDH.

Remark 8. One can improve on randomly sampling P1 and Q1, as we can sample
points directly in E[2]E [16] by ensuring the x-coordinates are not quadratic
residues in Fp. Similar techniques from p-descent might also apply for `i > 2.

Remark 9. The above approach is very efficient to find a second full-torsion
point Q ∈ Et(Fp) given a first full-torsion point P ∈ E(Fp), which may be of
independent interest in other situations.

18

4.4 Concrete cost for CSIDH-512

We have implemented and evaluated the performance of the algorithms in Sec-
tion 4 for p512, the prime used in CSIDH-512. Table 2 shows the performance
in Fp-operations, compared to well-known or state-of-the-art algorithms.

Source M S A Total

Product-tree torsion verif. [7] 51 318 29 388 73 396 75 562
Pairing-based torsion verif. Alg. 4 13 693 6838 18 424 19 293
Pairing-based (given λ) Sec. 4.1 10 472 3471 11 616 13 364

CSIDH-Supersingularity verif. [10] 13 324 7628 19 052 19 617
Doliskani’s test [2, 20] 13 789 2 30 642 14 097
Approach 1 (pairing-based) Sec. 4.2 11 081 4112 12 914 14 500
Approach 2 (pairing-based) Alg. 5 9589 5801 10 434 14 334

Table 2. Concrete cost of the algorithms in this section using the prime in CSIDH-512.
‘Total’ gives the number of Fp-operations, with cost model 1S=0.8M and 1A=0.01M.

Verifying torsion points. We find that Algorithm 4 specifically for p512 takes
about 19293 operations, with 12426 operations taken up by the pairing, hence
order verification of ζ using Lucas exponentiation requires only 6867 opera-
tions, closely matching the predicted cost CLucas · log n · log p. In comparison, the
currently-used method [7] to verify full-torsion points requires 75562 operations,
hence we achieve a speed-up of 75%, due to the difference in cost per bit between
Ccurve and CLucas. If we include a system parameter ζ0 and a discrete log λ, our
cost drops down to 13364 operations, increasing the speedup from 75% to 82%.

Supersingularity verification. We find that Doliskani’s test is still slightly
faster, but our algorithms come within 2% of performance. Saving a single M or
S in Dbl or Add would push Algorithm 5 below Doliskani’s test for p512. When
we include λ, as mentioned above, we outperform Doliskani’s test by 6%.

Finding torsion points. Although the cost of this algorithm depends highly
on divisors `i of p + 1, heuristics for p512 show that we usually only require 2
points P1, P2 ∈ E(Fp) and two points Q1, Q2 ∈ Et(Fp), together with pairing
computations er(P1, Q1) and eR(P1, Q2) to find full-torsion points P and Q. We
leave out concrete performance numbers, as this varies too much per case.

5 Applications of pairing-based algorithms

The pairing-based algorithms from Section 4 are of independent interest, but
also find natural applications in (deterministic) variants of CSIDH.

19

Applying pairing-based algorithms. In all versions of CSIDH, supersingu-
larity verification is required on public keys. We estimate that, depending on the
shape and size of the prime p, either Doliskani’s test or one of the pairing-based
algorithms (Section 4.2) is optimal. For deterministic variants of CSIDH [7, 13],
including (an Elligator seed for) a torsion basis of EA in the public key is only
natural, and this is exactly what is proposed for the dCSIDH variant of [7].

This requires verification of such a torsion basis. For this verification, Algo-
rithm 4 clearly outperforms curve-based approaches. Furthermore, the verifica-
tion of such a torsion basis also verifies the supersingularity of EA, which would
otherwise have cost an additional O(log p) operations, using either Doliskani’s
test or one of our pairing-based algorithms.

Including torsion-point information in the public key also requires a party to
find such a torsion basis in key generation. The pairing-based approach described
in Section 4.3 heuristically beats current approaches based on random sampling.

Remark 10. One might think that including a torsion basis (P,Q) resulting from
the pairing-based approach in a public key would cost 2 log p bits, as it requires
a description of the x-coordinates of both points. However, it is possible to use
points Pi and Qi with very small x-coordinates, and to describe the construction
of P (resp. Q) as a combination of the Pi (resp. Qi) in a few bits.

Constant-time versions. Both Algorithms 4 and 5 are easy to implement in
constant-time, given constant-time curve and field arithmetic. However, constant-
time verification is usually not required, as both EA and (P,Q) should be public.

For a constant-time approach to finding full-torsion points, a major roadblock
is finding a constant-time version of Gauss’s Algorithm. This is both mathemati-
cally interesting as well as cryptographically useful, but seems to require a better
understanding of the distribution of the x-coordinates of full-torsion points for
curves, or the (p+ 1)-th primitive roots for fields.

Beyond current implementations. Current deterministic variants of CSIDH
[7, 11, 13] are limited to exponents ei ∈ {−1, 0,+1}. Going beyond such expo-
nents requires sampling new points during the class group action evaluation on
an intermediate curve E′. To not leak any information on E′ in a deterministic
implementation, therefore, requires a constant-time torsion-basis algorithm as
sketched above. This would allow approaches with ei ≥ 1 for multiple small `i
to reduce the number of `i-isogenies for large `i, which is deemed favorable in
constant-time probabilistic approaches [1, 14, 33].

For ordinary CSIDH and CTIDH, using full-torsion points in every round
would have the further improvement that the number of rounds is constant,
and we have no trial-and-error approaches in the group action computation,
providing a stronger defence against certain side-channel attacks [3].

20

References

[1] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja
Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková. “CTIDH:
faster constant-time CSIDH”. In: 2021.4 (2021). https://tches.iacr.
org/index.php/TCHES/article/view/9069, pp. 351–387. doi: 10.

46586/tches.v2021.i4.351-387.
[2] Gustavo Banegas, Valerie Gilchrist, and Benjamin Smith. “Efficient super-

singularity testing over Fp and CSIDH key validation”. In: Mathematical
Cryptology 2.1 (2022), pp. 21–35.

[3] Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz
Panny, Krijn Reijnders, Jana Sotáková, and Monika Trimoska. “Disorien-
tation faults in CSIDH”. In: Advances in Cryptology–EUROCRYPT 2023:
42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings,
Part V. Springer. 2023, pp. 310–342.

[4] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott.
“Efficient Algorithms for Pairing-Based Cryptosystems”. In: 2002, pp. 354–
368. doi: 10.1007/3-540-45708-9_23.

[5] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. “Efficient Implemen-
tation of Pairing-Based Cryptosystems”. In: 17.4 (Sept. 2004), pp. 321–
334. doi: 10.1007/s00145-004-0311-z.

[6] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.
“Elligator: elliptic-curve points indistinguishable from uniform random
strings”. In: 2013, pp. 967–980. doi: 10.1145/2508859.2516734.

[7] Fabio Campos, Jorge Chavez-Saab, Jesús-Javier Chi-Domı́nguez, Michael
Meyer, Krijn Reijnders, Francisco Rodŕıguez-Henŕıquez, Peter Schwabe,
and Thom Wiggers. On the Practicality of Post-Quantum TLS Using
Large-Parameter CSIDH. Cryptology ePrint Archive, Paper 2023/793.
2023. url: https://eprint.iacr.org/2023/793.

[8] Fabio Campos, Matthias J Kannwischer, Michael Meyer, Hiroshi Onuki,
and Marc Stöttinger. “Trouble at the CSIDH: protecting CSIDH with
dummy-operations against fault injection attacks”. In: 2020 Workshop
on Fault Detection and Tolerance in Cryptography (FDTC). IEEE. 2020,
pp. 57–65.

[9] Fabio Campos, Michael Meyer, Krijn Reijnders, and Marc Stöttinger. Pa-
tient Zero and Patient Six: Zero-Value and Correlation Attacks on CSIDH
and SIKE. IACR Cryptology ePrint Archive, Report 2022/904. To appear
in SAC 2022. 2022. url: https://eprint.iacr.org/2022/904.

[10] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. “CSIDH: An Efficient Post-Quantum Commutative Group
Action”. In: 2018, pp. 395–427. doi: 10.1007/978-3-030-03332-3_15.

[11] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́nguez,
Luca De Feo, Francisco Rodŕıguez-Henŕıquez, and Benjamin Smith.
“Stronger and faster side-channel protections for CSIDH”. In: Progress in
Cryptology–LATINCRYPT 2019: 6th International Conference on Cryp-

21

https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1007/3-540-45708-9_23
https://doi.org/10.1007/s00145-004-0311-z
https://doi.org/10.1145/2508859.2516734
https://eprint.iacr.org/2023/793
https://eprint.iacr.org/2022/904
https://doi.org/10.1007/978-3-030-03332-3_15

tology and Information Security in Latin America, Santiago de Chile,
Chile, October 2–4, 2019, Proceedings 6. Springer. 2019, pp. 173–193.

[12] Sanjit Chatterjee, Palash Sarkar, and Rana Barua. “Efficient Computa-
tion of Tate Pairing in Projective Coordinate over General Characteristic
Fields”. In: 2005, pp. 168–181.

[13] Jorge Chávez-Saab, Jesús-Javier Chi-Domı́nguez, Samuel Jaques, and
Francisco Rodŕıguez-Henŕıquez. “The SQALE of CSIDH: sublinear Vélu
quantum-resistant isogeny action with low exponents”. In: Journal of
Cryptographic Engineering 12.3 (2022), pp. 349–368.

[14] Jesús-Javier Chi-Domı́nguez and Francisco Rodŕıguez-Henŕıquez. “Opti-
mal strategies for CSIDH”. In: Adv. Math. Commun. 16.2 (2022), pp. 383–
411. doi: 10.3934/amc.2020116. url: https://doi.org/10.3934/amc.
2020116.

[15] Craig Costello. Pairings for beginners. 2015. url: https : / / www .

craigcostello.com.au/.
[16] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes,

and David Urbanik. “Efficient compression of SIDH public keys”. In:
Advances in Cryptology–EUROCRYPT 2017: 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30–May 4, 2017, Proceedings, Part I 36. Springer.
2017, pp. 679–706.

[17] Craig Costello, Patrick Longa, and Michael Naehrig. “Efficient Algorithms
for Supersingular Isogeny Diffie-Hellman”. In: 2016, pp. 572–601. doi: 10.
1007/978-3-662-53018-4_21.

[18] Craig Costello and Benjamin Smith. “Montgomery curves and their arith-
metic - The case of large characteristic fields”. In: 8.3 (Sept. 2018), pp. 227–
240. doi: 10.1007/s13389-017-0157-6.

[19] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Ben-
jamin Wesolowski. “SQISign: Compact Post-quantum Signatures from
Quaternions and Isogenies”. In: 2020, pp. 64–93. doi: 10 . 1007 / 978 -

3-030-64837-4_3.
[20] Javad Doliskani. “On division polynomial PIT and supersingularity”. In:

Applicable Algebra in Engineering, Communication and Computing 29.5
(2018), pp. 393–407.

[21] SD Galbraith. Pairings. London Mathematics Society Lecture Note Series,
vol. 317. 2005.

[22] Steven D Galbraith and Xibin Lin. “Computing pairings using x-
coordinates only”. In: Designs, Codes and Cryptography 50.3 (2009),
pp. 305–324.

[23] Aurore Guillevic. “Comparing the Pairing Efficiency over Composite-
Order and Prime-Order Elliptic Curves”. In: 2013, pp. 357–372. doi: 10.
1007/978-3-642-38980-1_22.

[24] Ryuichi Harasawa, Junji Shikata, Joe Suzuki, and Hideki Imai. “Compar-
ing the MOV and FR Reductions in Elliptic Curve Cryptography”. In:
1999, pp. 190–205. doi: 10.1007/3-540-48910-X_14.

22

https://doi.org/10.3934/amc.2020116
https://doi.org/10.3934/amc.2020116
https://doi.org/10.3934/amc.2020116
https://www.craigcostello.com.au/
https://www.craigcostello.com.au/
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-642-38980-1_22
https://doi.org/10.1007/978-3-642-38980-1_22
https://doi.org/10.1007/3-540-48910-X_14

[25] Aaron Hutchinson, Jason LeGrow, Brian Koziel, and Reza Azarderakhsh.
“Further optimizations of CSIDH: a systematic approach to efficient strate-
gies, permutations, and bound vectors”. In: Applied Cryptography and Net-
work Security: 18th International Conference, ACNS 2020, Rome, Italy,
October 19–22, 2020, Proceedings, Part I 18. Springer. 2020, pp. 481–501.

[26] Antoine Joux. “A One Round Protocol for Tripartite Diffie-Hellman”. In:
17.4 (Sept. 2004), pp. 263–276. doi: 10.1007/s00145-004-0312-y.

[27] Marc Joye and Jean-Jacques Quisquater. “On the Importance of Securing
Your Bins: The Garbage-man-in-the-middle Attack”. In: 1997, pp. 135–
141. doi: 10.1145/266420.266449.

[28] Marc Joye and Sung-Ming Yen. “The Montgomery Powering Ladder”. In:
2003, pp. 291–302. doi: 10.1007/3-540-36400-5_22.

[29] Donald Ervin Knuth. The art of computer programming. Vol. 3. Pearson
Education, 1997.

[30] Jason T LeGrow and Aaron Hutchinson. “(Short Paper) Analysis of a
Strong Fault Attack on Static/Ephemeral CSIDH”. In: Advances in Infor-
mation and Computer Security: 16th International Workshop on Security,
IWSEC 2021, Virtual Event, September 8–10, 2021, Proceedings. Springer.
2021, pp. 216–226.

[31] Kaizhan Lin, Weize Wang, Zheng Xu, and Chang-An Zhao. A Faster
Software Implementation of SQISign. Cryptology ePrint Archive, Paper
2023/753. https://eprint.iacr.org/2023/753. 2023. url: https:

//eprint.iacr.org/2023/753.
[32] Robert J McEliece. Finite fields for computer scientists and engineers.

Vol. 23. Springer Science & Business Media, 2012.
[33] Michael Meyer, Fabio Campos, and Steffen Reith. “On lions and elli-

gators: An efficient constant-time implementation of CSIDH”. In: Post-
Quantum Cryptography: 10th International Conference, PQCrypto 2019,
Chongqing, China, May 8–10, 2019 Revised Selected Papers 10. Springer.
2019, pp. 307–325.

[34] Michael Meyer and Steffen Reith. “A faster way to the CSIDH”. In:
Progress in Cryptology–INDOCRYPT 2018: 19th International Conference
on Cryptology in India, New Delhi, India, December 9–12, 2018, Proceed-
ings 19. Springer. 2018, pp. 137–152.

[35] Victor S. Miller. “The Weil Pairing, and Its Efficient Calculation”. In: 17.4
(Sept. 2004), pp. 235–261. doi: 10.1007/s00145-004-0315-8.

[36] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi.
“(Short Paper) A Faster Constant-Time Algorithm of CSIDH Keeping
Two Points”. In: 2019, pp. 23–33. doi: 10.1007/978-3-030-26834-3_2.

[37] George W Reitwiesner. “Binary arithmetic”. In: Advances in computers.
Vol. 1. Elsevier, 1960, pp. 231–308.

[38] Michael Scott. “Computing the Tate Pairing”. In: 2005, pp. 293–304. doi:
10.1007/978-3-540-30574-3_20.

[39] Michael Scott. “Pairing implementation revisited”. In: Cryptology ePrint
Archive (2019).

23

https://doi.org/10.1007/s00145-004-0312-y
https://doi.org/10.1145/266420.266449
https://doi.org/10.1007/3-540-36400-5_22
https://eprint.iacr.org/2023/753
https://eprint.iacr.org/2023/753
https://eprint.iacr.org/2023/753
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-540-30574-3_20

[40] Michael Scott. Understanding the Tate pairing. 2004. url: http://www.
computing.dcu.ie/~mike/tate.html.

[41] Michael Scott and Paulo S. L. M. Barreto. “Compressed Pairings”. In:
2004, pp. 140–156. doi: 10.1007/978-3-540-28628-8_9.

[42] Joseph H Silverman. “A survey of local and global pairings on ellip-
tic curves and abelian varieties”. In: Pairing-Based Cryptography-Pairing
2010: 4th International Conference, Yamanaka Hot Spring, Japan, Decem-
ber 2010. Proceedings 4. Springer. 2010, pp. 377–396.

[43] Katherine E Stange. “The Tate pairing via elliptic nets”. In: Pairing Based
Cryptography. Springer. 2007, pp. 329–348.

[44] Andrew V Sutherland. “Identifying supersingular elliptic curves”. In: LMS
Journal of Computation and Mathematics 15 (2012), pp. 317–325.

[45] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes Rendus
de l’Académie des Sciences de Paris, Séries A 273 (1971), pp. 238–241.

[46] Frederik Vercauteren. “Optimal pairings”. In: IEEE transactions on infor-
mation theory 56.1 (2009), pp. 455–461.

24

http://www.computing.dcu.ie/~mike/tate.html
http://www.computing.dcu.ie/~mike/tate.html
https://doi.org/10.1007/978-3-540-28628-8_9

A Subalgorithms of Miller’s algorithm

The following algorithms give an algorithmic description of the subroutines Dbl,
Add and Sub as used in the optimizations of the Miller loop.

Algorithm 6 Subroutine Dbl in the Miller loop

Input: T ∈ F4
p, f ∈ F2

p, xQ, yQ ∈ Fp, A ∈ Fp

Output: (T, f) corresponding to the doubling T ← T + T , f ← f2 · `T,T (Q)
1: (T, `)← DblAndLine(T,A) // Doubles T and computes `T,T

2: (α, β)← Eval(`, xQ, yQ) // Evaluates `T,T (Q)
3: f ← FP2SQR(f)
4: f ← FP2MUL(f, (α, β))
5: return T, f

Algorithm 7 Subroutine Add in the Miller loop

Input: T ∈ F4
p, f ∈ F2

p, xP , yP , xQ, yQ ∈ Fp, A ∈ Fp

Output: (T, f) corresponding to the addition T ← T + P , f ← f · `T,P (Q)
1: (T, `)← AddAndLine(T, xP , yP , A) // Adds T + P and computes `T,P

2: (α, β)← Eval(`, xQ, yQ) // Evaluates `T,P (Q)
3: f ← FP2MUL(f, (α, β))
4: return T, f

Algorithm 8 Subroutine Sub in the Miller loop

Input: T ∈ F4
p, f ∈ F2

p, xP , yP , xQ, yQ ∈ Fp, A ∈ Fp

Output: (T, f) corresponding to the substraction T ← T − P , f ← f · `T,−P (Q)
1: (T, f)← Add(T, f, xP , yP , xQ, yQ, A)
2: return T, f

25

B Subalgorithms of Scott-Miller’s algorithm

We describe here Scott-Miller’s subalgorithms Construct, Evaluate and Exponentiate.

Algorithm 9 Scott-Miller’s subalgorithm Construct

Input: xP , yp ∈ Fp, p+ 1 =
∑t

i=0 ti · 2
i

Output: A representation of frP as an array of line functions
1: T = (X2, XZ,Z2, Y Z)← (x2P , xP , 1, yP)
2: f ←[]
3: for i from t− 1 to 0 do
4: T, l← Dbl(T)
5: Append l to f
6: if ti = 1 then
7: T, l← Add(T, f, xP , yP)
8: Append l to f

9: if ti = −1 then
10: T, l← Sub(T, f, xP , yP)
11: Append l to f

12: return f

Algorithm 10 Scott-Miller’s subalgorithm Evaluate
Input: A representation of frP as an array of line functions, and a point xQ, yQ ∈ Fp

Output: The unreduced Tate evaluation frP (Q) ∈ Fp2

1: f0 ← (1, 0)
2: for l in f do
3: if l is a doubling then f0 ← f2

0

4: f0 ← f0 · Eval(l, xQ, yQ)

5: return f0

26

Algorithm 11 Scott-Miller’s subalgorithm Exponentiate

Input: The unreduced Tate pairing f0 = a+ bi as a pair f = (a, b)
Output: The reduced Tate pairing ζ ∈ µr

1: a← f [0], b← f [1]

2: ζ ← a2−b2

a2+b2

3: return ζ

The composition of these three algorithms is referred to as Scott-Miller’s
algorithm.

27

	 Effective Pairings in Isogeny-based Cryptography

