
UniPlonK: PlonK with Universal Verifier

Shumo Chu, Brandon H. Gomes, Francisco Hernández Iglesias,
Todd Norton, Duncan Tebbs ∗

https://zug-zk.xyz

Abstract

We propose UniPlonK, a modification of the PlonK protocol that uniformizes the Verifier’s work
for families of circuits. Specifically, a single fixed-cost “Universal Verifier” can check proofs for
circuits of different: sizes, public input lengths, selector polynomials, copy constraints, and even
different custom gate sets. UniPlonK therefore extends the universality of PlonK beyond the SRS; it
enables a single “Universal Verifier Circuit” capable of verifying proofs from different PlonK circuits.

The Universal Verifier’s marginal cost over the ordinary Plonk verifier is small: for circuits using
only the vanilla Plonk gate, the Universal Verifier performs a number of additional field multiplica-
tions proportional to the logarithm of the maximum supported circuit size; it incurs no additional
elliptic curve operations. For circuits using custom gates, the Universal Verifier incurs additional
elliptic curve arithmetic only when verifying proofs from circuits that do not use all supported gate
types. For circuits that use all supported gates, the Universal Verifier’s additional cost consists only
of field multiplications proportional to the logarithm of the maximum supported circuit size, the
number of custom gate types, and the number of witness variables used by these gates. In both
settings (vanilla-only and custom gates) the marginal cost to the prover is a fixed-base MSM of size
ℓ, the length of the public input vector.
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1 Introduction

In this paper, we propose UniPlonK, which extends the universality of the family of PlonK SNARK
schemes by building a “Universal Verifier Circuit” capable of verifying proofs from different PlonK
circuits, i.e. circuits of different sizes, public input lengths, and different sets of custom gates used. An
important feature of our scheme is that it can be used in combination with recent efficient recursive proof
schemes such as Halo Infinite [6] or Nova [20], to build efficient non-uniform proof aggregation schemes:
aggregating proofs from different circuits into a single proof.

SNARKs [5], short for succinct non-interactive arguments of knowledge, have a long history in cryp-
tography research and industry [15, 2, 31, 13, 22, 32, 3, 28, 34, 33, 10]. At a high level, SNARKs are
constructed by compiling an Interactive Oracle Proof (IOP) [4] to a SNARK using a suitable cryp-
tographic commitment scheme. Among all Polynomial-IOP-based SNARKs, the Plonk system [13] is
most widely used in industry due to its short proof size and low concrete proof verification cost. In
Turbplonk[11], it was extended to support custom gates, and in [24, 12] to support lookup gates (Ultra-
Plonk being one implmentation of the combination of these). The Plonk system has also been used with
different cryptographic commitment schemes, with notable examples including KZG [17], Inner Product
Argument [7] (implemented in Halo2 [27]), and FRI (implemented in Plonky2 [26]).

1.1 Universal Verifier

UniPlonK starts from the simple observation that although two Plonk circuits C1, C2 may have unequal
sizes n1 ̸= n2, their proofs and verifying keys have the same size. Examining the Plonk verifier protocol,
we see that if their public input lengths are equal, the C1 and C2 verifiers perform nearly identical work.

This observation has practical significance in the context of proof recursion, where the Verifier of C is
replaced by a Verifier Circuit VC . Broadly speaking, ZK circuits are “rigid” in the sense that emulating
control flow is costly, and a circuit performs the work required for all execution paths regardless of its
inputs. Therefore, in general, the Plonk verifier circuits VC1

and VC2
will not be equal; they do not

perform identical work. UniPlonK modifies the PlonK protocol in such a way that VC1
= VC2

under
weak assumptions on C1 and C2. Importantly, no material change is required to the prover algorithm
(we require only that constants such as the srs match those used by UniPlonK, and that some small
calculation is performed with cost proportional to the number of public inputs).

Specifically, we demonstrate that the Plonk verifier’s work can be made uniform for all circuits
smaller than some fixed size using custom gates from a predefined set. Necessarily, when implemented
as a circuit, the “Universal Verifier” always performs the worst-case number of operations - those that
would be required to verify proofs from a circuit in this family. The challenge is to ensure that any extra
operations performed by the Universal Verifier do not affect the verification result.

The cost of the Universal Verifier is at least that of the most expensive verifier for any circuit in
the supported family. We therefore have a trade-off between the flexibility offered by supporting a large
family of circuits and the need to pay the worst-case verifier cost for any circuit in the family. However,
as we discuss, this overhead is extremely small in comparison to the underlying circuit-independent
verification cost and is justified by its utility in recursion-based proof aggregation.

Due to the rigidity of ZK circuits, practical approaches to proof aggregation assume some form of
homogeneity (namely, all proofs are for the same circuit or for one of a predefined set of circuits). A
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universal verifier for the class of all circuits up to some size represents a significant improvement in
flexibility.

1.2 Using UniPlonK in Proof Aggregation

Proof aggregation replaces multiple zero-knowledge proofs π1, π2, · · · , πk with a single aggregated proof
πagg which implies the validity of all statements otherwise demonstrated by the individual proofs πi.
Proof aggregation has already been used in zkEVMs [29, 25] to aggregate multiple EVM execution
proofs to obtain a better amortized verification cost.

The basic approach to proof aggregation is recursive proofs. One generates an “outer” proof πagg

that attests to successful verification of some batch π1, π2, · · · , πk of “inner” proofs. This approach works
well but has two problems: firstly, the cost of the prover of the outer proof is high due to the amount of
non-native arithmetic (in particular the pairing check when the inner proof scheme is Groth16 or Plonk).
Secondly, this technique can only aggregate a fixed number of the proofs belonging to the same circuit,
which limits its usefulness.

To solve the first problem, recent works such as aPlonk [1], SnarkPack [14], and Halo Infinite [6]
partially move some of the expensive non-native arithmetic, e.g. pairing, out of the outer circuit. They
replace individual pairing checks for each proof with a single pairing check for a random linear combi-
nation of the proofs. The verifier only needs to check the accumulated pairing, which they can do out
of circuit. This results in a more efficient aggregator. These are examples of atomic accumulation[9].
However, this form of aggregation applies only to instances from the same circuit.

Folding (or NIFS, non-interactive folding scheme) based Incremental Verifiable Computation (IVC)
schemes [30] such as Nova [20], SuperNova [18], HyperNova [19], Sangria [23], Protostar [8] further
improve the aggregator’s efficiency and, in some cases, allow non-uniform aggregation. Folding-based
IVC moves even more computation out of the recursive circuit: not only the pairing check, but the witness
checking as well. Moreover, IVC schemes allow streaming-based aggregation, incrementally aggregating
one proof at a time with no restriction on how many proofs can be aggregated. The Nova, Sangria, and
Hypernova schemes are limited to uniform IVC: each incremental step checks a proof of a single fixed
circuit. The Supernova and Protostar schemes enable non-uniform IVC (NIVC): each incremental step
checks a proof of one circuit from a predefined family {C1, . . . CI}.
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Figure 1: Comparing Universal ZK-ZK Aggreagtion using UniPlonk + NIFS (non-interactive folding
scheme) with Proof Aggregation in zkVM using NIFS

UniPlonk could be combined with either atomic accumulation-based aggregation or folding-based
aggregation to create Universal ZK-ZK Aggregation scheme with:

• Prover Separation: The inner prover and the outer prover (aggregator) are not the same party.

• Witness Privacy : The outer prover only has access to the inner proofs, not the witnesses. This is
very useful in privacy-preserving ZK primitives such as Semaphore.
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• Universality : The inner prover can support all circuits up to a certain size.

Combining UniPlonk with NIFS can improve the efficiency of the outer prover (aggregator) signif-
icantly. Fig. 1 demonstrates how a Universal ZK-ZK Aggregation scheme can be constructed using
UniPlonk and NIFS. The left-hand side shows a typical NIFS application scenario, generating an ag-
gregated proof for multiple steps of zkVM execution. The right-hand side shows the Universal ZK-ZK
Aggregation constructed from UniPlonk and NIFS. In this case, we do not have the luxury of directly
folding inner proof witnesses, due to the inner/outer prover separation. However, the outer prover uses
the universal verifier circuit (CUV in the figure) to generate a witness for the verification of each inner
proof, which can then be folded. Thereby this achieves both universality and efficiency for the ZK-ZK
Aggregation scheme. Compared with ZK-ZK aggregation based on atomic accumulation, using NIFS
to directly fold the CUV witness significantly reduces the outer prover workload. The universality of
UniPlonk’s verifier allows this ZK-ZK aggregation scheme to support a wide range of circuits, limited
only by circuit size.

2 Preliminaries

2.1 Notation

We use the following conventions (terms such as “configuration” and “global gate set” are defined later):

• n denotes the number of “rows” of a circuit, i.e. the length of the witness vector, padded up to a
next power of 2.

• k = log2(n)

• wi denotes a witness variable for some gate polynomial. When referring to the vanilla Plonk gate
we may use the notation a, b, c as in [13].

• m denotes the total number of witness variables used by some circuits.

• qi denotes a constant variable for some gate polynomial. When referring to the vanilla Plonk gate
we may use the notation qM , qL, qR, qO, qC as in [13].

• r denotes the total number of constant variables used by some circuits.

• GC denotes the set of custom gates used by a circuit (including the vanilla Plonk gate). G denotes
a “global gate set” of all gates used in a particular UniPlonk configuration.

• l denotes the length of a gate set GC . (The number of public inputs to a circuit shall be denoted
with the script ℓ.)

• b(g), b(w), and b(q) are bit vectors referring to the gates, witness variables, and constant variables.

For symbols that refer to integer values (n, k,m, r, l) we use uppercase letters to denote an upper
bound on the corresponding quantity:

• N denotes the maximum size of a circuit in a given UniPlonk configuration, K its logarithm.

• M denotes the maximum number of witness variables used by a circuit in a given UniPlonk con-
figuration.

• R denotes the maximum number of constant variables used by a circuit in a given UniPlonk
configuration.

• L denotes the length of the global gate set G .

We make use of a function select : {0, 1} × T × T → T which can dynamically select between
alternative instances of a type T based on the value of a bit. In all cases considered in this work, T
is a field or group element (namely a member of F, G1, G2) whereby select can be implemented as
select(b, A,B) = b ∗A+ (1− b) ∗B.
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2.2 PlonK Recap

For “vanilla” Plonk as described in [13], we adopt the original notation and conventions as used by the
authors. We recall some definitions here.

Fix an elliptic curve pairing e : G1 × G2 → GT and let F denote the scalar field of G1. Let
C = (n, ℓ, (qLi , qRi , qMi , qOi , qCi)

n
i=1, σ) denote a Plonk circuit with n = 2k rows, ℓ public input values,

constant values qLi
, qRi

, . . . ∈ F, and copy constraints encoded by a permutation σ : [3n] → [3n]. An
instance of C is defined by these data and a particular set of public input values PI = (PIi)

ℓ
i=1 ∈ Fℓ. A

witness to an instance of C will be denoted w = ({ai}ni=1, {bi}ni=1, {ci}ni=1) ∈ Fn × Fn × Fn.
The rows of C are indexed by a multiplicative subgroup H generated by a primitive nth root of

unity ω ∈ F. Constants k1, k2 ∈ F are fixed such that the cosets H, k1H, k2H are disjoint. The union
H ∪ k1H ∪ k2H is used to index the witness values: ai is indexed by ωi, bi is indexed by k1ω

i, ci is
indexed by k2ω

i. The polynomial ZH(X) = Xn − 1 vanishes at all points of H.
Vectors (fi)

n
i=1 of length n are mapped to polynomials of degree n − 1 as follows: let Li(X) denote

the degree n− 1 Lagrange interpolation polynomial which satisfies

Li(ω
j) =

{
1, if i = j

0, otherwise

Then the vector (fi)
n
i=1 corresponds to the interpolation polynomial

f(X) :=

n∑
i=1

fiLi(X)

KZG polynomial commitments are defined relative to a fixed structured reference string

srs =
(
[1]1, [x]1, [x

2]1, . . . , [x
n+5]1, [1]2, [x]2

)
where x ∈ F. This “trapdoor” element x is assumed to be fixed but unknown; it is also frequently
denoted by τ elsewhere in the literature. Here [1]1, [1]2 denote fixed generators of the groups G1,G2,
respectively. The commitment to a polynomial f(X) is denoted [f ]1.

2.2.1 PlonK Setup

The Plonk Setup function returns a set of proving and verifying keys for a circuit C, given a fixed KZG
structured reference string:

(pkP , vkP)← PlonK.Setup(C, srs)

A proving key consists of the data

pkP = (qM (X), qL(X), qR(X), qO(X), qC(X),

Sσ1(X), Sσ2(X), Sσ3(X))

where Sσ1, Sσ2, Sσ3 are as defined in [13]. A verifying key consists of the data

vkP = ([qM ]1, [qL]1, [qR]1, [qO]1, [qC ]1, [Sσ1]1, [Sσ2]1, [Sσ3]1, n)

2.2.2 PlonK Prove

We denote a Plonk proof by πP . It consists of the following elements:

πP =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmid]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω

)
(1)

where the first line consists of G1 elements and the second line of F elements.
Plonk proofs are produced by the Prove function, which takes as inputs a proving key pkP generated by
Setup and a witness w:

πP ← PlonK.Prove(pkP , w)

This function is defined in [13]. We recall some relevant quantities computed by the Plonk Prover:

Blinded Witness Polynomials
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The Prover blinds the witness polynomials by randomly sampling b1, . . . b6 ∈ F and defining

a(X) = (b1X + b2)ZH(X) +

n∑
i=1

aiLi(X)

b(X) = (b3X + b4)ZH(X) +

n∑
i=1

biLi(X)

c(X) = (b5X + b6)ZH(X) +

n∑
i=1

ciLi(X)

(2)

Note that these have degree n+ 1.

Permutation Polynomial

The copy constraints are enforced by proving the properties of the polynomial

z(X) =(b7X
2 + b8X + b9)ZH(X) + L1(X)

+

n−1∑
i=1

Li+1(X)

i∏
j=1

(aj + βωj + γ)(bj + βk1ω
j + γ)(cj + βk2ω

j + γ)

(aj + βSσ1(ωj) + γ)(bj + βSσ2(ωj) + γ)(cj + βSσ3(ωj) + γ)

 (3)

where b7, b8, b9 are blinding factors sampled by the prover. Note that deg z = n+ 2.

Quotient Polynomial

The quotient polynomial t(X) is defined as the polynomial which satisfies

t(X)ZH(X) =a(X)b(X)qM (X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X)

+ α [(a(X) + βX + γ)(b(X) + βk1X + γ)(c(X) + βk2X + γ)] z(X)

− α [(a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)] z(Xω)

+ α2 (z(X)− 1)L1(X)

(4)

where α is a challenge scalar.
The degree of t(X) is 3n+ 5 and it is represented in degree n− 1 chunks as

t(X) = tlo(X) +Xntmid(X) +X2nthi(X)

where deg tlo = deg tmid = n, deg thi = n+ 5.

Linearization Polynomial

Given a challenge point z and evaluations ā = a(z), b̄ = b(z), c̄ = c(z), s̄σ1 = Sσ1(z), s̄σ2 = Sσ2(z), z̄ω =
z(zω), the linearization polynomial is defined as

r(X) = āb̄ · qM (X) + ā · qL(X) + b̄ · qR(X) + c̄ · qO(X) + PI(z) + qC(X)

+ α[(ā+ βz+ γ)(b̄+ βk1z+ γ)(c̄+ βk2z+ γ) · z(X)

− (ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)(c̄+ βSσ3(X) + γ)z̄ω]

+ α2 [(z(X)− 1)L1(z)]

− ZH(z)
(
tlo(X) + zntmid(X) + z2nthi(X)

)
(5)

Showing r(z) = 0 implies that t(X) satisfies Eq. (4) (except with negligible probability).

Opening Proof Polynomials

The claims r(z) = 0, ā = a(z), b̄ = b(z), c̄ = c(z), s̄σ1 = Sσ1(z), s̄σ2 = Sσ2(z) are batched into a single KZG
proof whose opening proof polynomial is (given challenge scalar v)

Wz(X) =
1

X − z



r(X)

+ v(a(X)− ā)

+ v2(b(X)− b̄)

+ v3(c(X)− c̄)

+ v4(Sσ1(X)− s̄σ1)

+ v5(Sσ2(X)− s̄σ2)


(6)
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The claim z̄ω = z(zω) occurs at a different point and so requires a separate opening proof polynomial

Wzω(X) =
z(X)− z̄ω
X − z

(7)

2.2.3 PlonK Verify

Given a proof πP for a circuit C with public inputs PI, the Plonk Verifier decides whether the proof is
valid by evaluating a function PlonK.Verify(PI, πP) defined in [13]. At a high-level, the verifier computes
challenge points (Section 2.4), computes a commitment [r]1 to the linearization polynomial r(X), and
uses [Wz]1, [Wzω]1 to verify that r(z) = 0 and all evaluations supplied in the proof are correct. We recall
here some important quantities computed by the verifier:

Linearization Polynomial Constant Term

The verifier computes

r0 = PI(z)− α2L1(z)− α(ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)(c̄+ γ)z̄ω (8)

from the public input values and the evaluations supplied in πP .

Group-encoded Batch Evaluation

The previous term is grouped together with the other claimed evaluations in

[E]1 =

(
− r0 + vā+ v2b̄+ v3c̄

+ v4s̄σ1 + v5s̄σ2 + uz̄ω

)
[1]1 (9)

Batched Polynomial Commitment

The non-constant part of r(X) and other commitments supplied in πP are grouped together in

[F ]1 = [D]1 + v · [a]1 + v2 · [b]1 + v3 · [c]1 + v4 · [sσ1]1 + v5 · [sσ2]1 (10)

where

[D]1 = āb̄ · [qM ]1 + ā · [qL]1 + b̄ · [qR]1 + c̄ · [qO]1 + [qC ]1

+
(
α(ā+ βz+ γ)(b̄+ βk1z+ γ)(c̄+ βk2z+ γ) + α2L1(z) + u

)
[z]1

− α(ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)βz̄ω[sσ3]1

− ZH(ζ)
(
[tlo]1 + zn[tmid]1 + z2n[thi]1

) (11)

Final Pairing Check

PlonK.Verify returns the boolean value

e([Wz]1 + u · [Wzω]1, [x]2)
?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F ]1 − [E]1, [1]2) (12)

2.3 PlonK with Custom Gates

Custom gates were introduced in [11] to allow the proving system to handle arbitrary polynomial con-
straints on witness values. In this section, we recall the basic ideas and define some notation for custom
gates.

2.3.1 Constraint Equations

A custom gate is specified by a polynomial G(w1, . . . wm, q1, . . . , qr), defined on up to m witness variables,
and up to r constant variables. The Plonk protocol enforces the constraint

G(w1, . . . wm, q1, . . . , qr) = 0

For multiple gates, {Gi}li=1, each Gi has an associated selector polynomial Si(X) which takes the
value 1 at ωj for each row j in which the gate is enabled, and zero otherwise. Gates are considered to
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share the same set w1, . . . wm of witness columns and q1, . . . qr of constant columns. A random challenge
α is used to ensure that when multiple gates are activated on the same row, their constraint polynomials
are individually satisfied. The full arithmetic constraint polynomial is given by:

l∑
i=1

αi−1Si(X)Gi(w1(X), . . . , wm(X), q1(X), . . . , qr(X)) (13)

where wi(X) are blinded witness polynomials, as in Eq. (2). The custom gate constraints are satisfied
by the witness in each row if and only if this polynomial is divisible by ZH(X).

The degree of the polynomial in Eq. (13) can be computed from degSi = n − 1, degwi = n + 1,
deg qi = n−1 and the degrees of the polynomials Gi. An exact expression requires cumbersome notation,
but if we approximate the degrees of Si, wi, qi by n then the degree of Eq. (13) is approximately

max
i

(degGi + 1) · n

where degGi denotes the degree of Gi as a multivariate polynomial. This contributes a term of degree
approximately maxi(degGi) · n to the quotient polynomial, Eq. (17). Unless some Gi has high degree,
the copy constraints usually contribute a higher degree term to the quotient polynomial.

2.3.2 Example

The vanilla Plonk constraint corresponds to a gate with the polynomial

Gvanilla(w1, w2, w3, qM , qL, qR, qO, qC) = qMw1w2 + qLw1 + qRw2 + qOw3 + qC

A custom gate to enforce that w1 and w2 are the affine coordinates of an elliptic curve point is

Gcurve(w1, w2, qa, qb) = w2
2 − w3

1 − qaw1 − qb

The Plonk proving system with these two gates Gvanilla and Gcurve requires both polynomials to share
a common set of variables, so we would redefine Gcurve as

Gcurve(w1, w2, w3, qM , qL, qR, qO, qC) = w2
2 − w3

1 − qLw1 − qR

The choice to use qL, qR in place of qa, qb was arbitrary; any two constant variables could be used to
specify the constants of the elliptic curve equation.

Public Input Gate A useful convention for incorporating public inputs into circuits with custom gates
is to take G1 to be a “public input gate” with the constraint polynomial G1(w1, . . . wm, q1, . . . qr) = −w1.
We use this gate to incorporate public inputs as follows: the definition of the quotient polynomial
Eq. (17) includes a term α2PI(X), which is offset by α2S1(X)G1(w1(X), . . .) if and only if w1(ω

i) = PIi
and S1(ω

i) = 1 for i = 1, . . . ℓ. In practice, G1 may not need to be a separate gate, as it can be obtained
from the vanilla Plonk gate by setting qL = −1 and qR = qM = qO = qC = 0.

2.3.3 Copy Constraints

Witness variables are subject to copy constraints. The vanilla Plonk argument is modified to apply to
m witness variables as follows. We fix k1, . . . km ∈ F such that the cosets kiH are mutually disjoint; we
take k1 = 1. The witness variable wi has its values indexed by the points of the coset kiH. The copy
constraints are encoded by a permutation σ of the set ∪mi=1kiH. The generalization of the permutation
polynomial in Eq. (3) to the case of m witness columns is

z(X) =(b1 + b2X + b3X
2)ZH(X) + L1(X)

+

n−1∑
i=1

Li+1(X)

i∏
j=1

∏m
p=1(wp,j + βkpω

j + γ)∏m
p=1(wp,j + βSσp(ωj) + γ)

 (14)

Despite its apparent complexity, this is merely Eq. (3) with m witness columns instead of 3. We assume
for simplicity that all m witness variables are subject to copy constraints, though this assumption may
be relaxed to decrease the number of permutation polynomials, and the complexity of ZH .
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The copy constraints are satisfied if the following polynomials are divisible by ZH(X):(
m∏
i=1

(wi(X) + βkiX + γ)

)
z(X)−

(
m∏
i=1

(wi(X) + βsσi(X) + γ)

)
z(ωX) (15)

and
L1(X)(z(X)− 1) (16)

The degree of Eq. (15) in X is m · (n+ 1) + (n+ 2). Thus the quotient polynomial (Eq. (17)) will have
degree at least m · (n+ 1) + 2.

Quotient Polynomial

Divisibility of the polynomials Eqs. (13), (15) and (16) by ZH is proved by forming a random linear
combination of them and computing its quotient. For a given challenge scalar α ∈ F we define the
quotient polynomial t(X) to satisfy

t(X)ZH(X) =

(
m∏
i=1

(wi(X) + βkiX + γ)

)
z(X)

−

(
m∏
i=1

(wi(X) + βsσi(X) + γ)

)
z(ωX)

+ αL1(X) (z(x)− 1)

+ α2PI(X)

+

l∑
i=1

αi+1Si(X)Gi(w1(X), . . . , wm(X), q1(X), . . . , qr(X))

(17)

The degree of t(X) is determined by the term coming from Eq. (15) unless some custom gate polyno-
mial Gi has high degree (custom gates used “in the wild” tend to have low degree constraint polynomials).
Under this assumption, the degree of t(X) is m · (n+ 1) + 2.

This degree is generally too large to commit to t(X) as a single polynomial, so one decomposes t as

t(X) = t1(X) +Xnt2(X) + . . .+Xn(d−1)td(X)

with deg ti = n − 1 for i < d and deg td = n +m + 2. We call d the degree factor of the circuit C. In
order to compute [td]1 the srs must have length at least n+m+ 2.

Linearization Polynomial

Given a challenge evaluation point z, the linearization polynomial for C with custom gates G1, . . . Gl

using witness variables w1, . . . wm and constant variables q1, . . . qr is

r(X) =

(
m∏
i=1

(w̄i + βkiz+ γ)

)
z(X)

−

(
m∏
i=2

(w̄i + βs̄σi + γ)

)
z̄ω · ((w̄1 + γ) + βsσ1(X))

+ αL1(z) · (z(X)− 1)

+ α2PI(z)

+

l∑
i=1

αi+1Si(X)Gi(w̄1, . . . , w̄m, q̄1, . . . , q̄r)

− ZH(z)(t1(X) + znt2(X) + . . .+ zn(d−1)td(X))

(18)
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The verifier computes the commitment to r(X) from a proof and verification key, as

[r]1 =

(
m∏
i=1

(w̄i + βkiz+ γ)

)
[z]1

−

(
m∏
i=2

(w̄i + βs̄σi + γ)

)
z̄ω · ((w̄1 + γ) · [1]1 + β · [sσ1]1)

+ αL1(z) · ([z]1 − [1]1)

+ α2PI(z)[1]1

+

l∑
i=1

αi+1Gi(w̄1, . . . , w̄m, q̄1, . . . , q̄r) · [Si]

− ZH(z)([t1]1 + zn[t2]1 + · · ·+ z(d−1)n[td]1)

(19)

The linearization polynomial could be defined in several ways. For example, the commitment to
sσm(X) could be used in place of [sσ1]1. In this work, we use the expression above for convenience in
the universal verifier (since m is a circuit-dependent quantity and sσ1(X) is guaranteed to exist for all
circuits), however, we note that alternative forms are available, and indeed more optimal forms are likely
to exist for any given circuit.

Opening Proof Polynomial

The opening proof polynomial Wz(X) is modified to

Wz(X) =
1

X − z



r(X)

+

m∑
i=1

vi(wi(X)− w̄i)

+vm
r∑

i=1

vi(qi(X)− q̄i)

+vm+r−1
m∑
i=2

vi(sσi(X)− s̄σi)


(20)

The expression in Eq. (7) for Wzω(X) is unchanged.

2.3.4 Setup for Custom Gates

For a circuit C with custom gates G1, . . . Gl using witness variables w1, . . . wm and constant variables
q1, . . . qr which computes the prover and verifier keys pkP , vkP from the circuit description and srs. These
are

pkP =
(
S1(X), . . . Sl(X), q1(X), . . . qr(X), sσ1(X), . . . sσm(X)

)
vkP =

(
[S1]1, . . . , [Sl]1, [q1]1, . . . , [qr]1, [sσ1]1, . . . , [sσm]1

)
2.3.5 Prove for Custom Gates

For a circuit C with custom gates G1, . . . Gl using witness variables w1, . . . wm and constant variables
q1, . . . qr a proof consists of

πP =
(
[w1]1, . . . , [wm]1, [z]1, [t1]1, . . . , [td]1, [Wz]1, [Wzω]1,

w̄1, . . . , w̄m, q̄1, . . . , q̄r, s̄σ2, . . . s̄σm, z̄ω

) (21)

We note that, unlike vanilla Plonk proofs, Plonk proofs for circuits with custom gates must include
evaluations q̄i of the constant polynomials at the challenge point. This is because, in general, a gate
constraint may be non-linear in its constant variables. The verifier will need the evaluations q̄i to compute
the commitment [r]1, Eq. (19). The Prove algorithm follows similar steps to vanilla Plonk:
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1. Compute blinded witness polynomials wi(X) and their commitments [wi]1

2. Compute permutation challenges β, γ

3. Compute permutation polynomial z(X) and its commitment [z]1

4. Compute quotient challenge α

5. Compute quotient polynomial t(X) and commitments [t1]1, . . . [td]1

6. Compute evaluation challenge z

7. Compute opening evaluations w̄1, . . . w̄m, q̄1, . . . q̄r, s̄σ2, . . . s̄σm, z̄ω

8. Compute opening challenge v

9. Compute linearization polynomial r(X)

10. Compute opening proof polynomials Wz(X),Wzω(X) and their commitments [Wz]1, [Wzω]1

11. Return πP

2.3.6 Verify for Custom Gates

It is useful to break the verifier’s computation of [r]1 into a few intermediate quantities:

[r]1 = r0 · [1]1 + r1[z]1 + r2[sσ1]1 + [r3]1 − [r4]1

where

a := z̄ω

m∏
i=2

(w̄i + βs̄σi + γ)

r0 = −a(w̄1 + γ)− αL1(z) + α2PI(z)

r1 =

m∏
i=1

(w̄i + βkiz+ γ) + αL1(z)

r2 = aβ

[r3]1 =

l∑
i=1

αi+1Gi(w̄1, . . . w̄m, q̄1, . . . q̄r) · [Si]1

[r4]1 = ZH(z)
(
[t1]1 + zn[t2]1 + . . .+ zn(d−1)[td]1

)

In terms of these intermediate quantities, the custom gates verifier’s group-encoded batch evaluation
is

[E]1 :=


−r0 + uz̄ω+

vw̄1 + . . .+ vmw̄m+
vm+1q̄1 + . . .+ vm+r q̄r+

vm+r+1s̄σ2 + . . .+ v2m+r−1s̄σm

 · [1]1 (22)

and the batched polynomial commitment is

[F ]1 :=(r1 + u) · [z]1 + r2[sσ1]1 + [r3]1 − [r4]1

v[w1]1 + . . .+ vm[wm]1+

vm+1[q1] + . . .+ vm+r[qr]1+

vm+r+1[sσ2]1 + . . .+ v2m+r−1[sσm]1

(23)

In terms of these redefined [E]1, [F ]1, the verifier’s final pairing check is identical to Eq. (12).
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2.4 Transcript and Challenge Points

As part of the Fiat-Shamir transform used to make Plonk a non-interactive protocol, the Plonk Prove
function must compute challenge points, namely β, γ, α, z, v, u by applying a hash function to the tran-
script at several points. Here we specify the details of how transcript is processed and used.

Our model for the transcript is a permutation sponge S with state S. The sponge S has an Absorb
operation, which accepts (encodings of) G and F elements and returns the new sponge state S, and a
Squeeze operation which returns an F element and the new sponge state S. We fix an initial sponge
state S0.

The prover and verifier use the transcript to generate their challenges by absorbing messages sent
by the prover and subsequently squeezing challenge scalars. Because in UniPlonk we only provide the
verifier with a commitment [PI]1 to public inputs, we also seed the transcript with the commitment [PI]1
as opposed to the original public input vector PI.

The prover and verifier then generate challenges as follows:

1. Initiate transcript in default state S0.

2. Absorb all elements of circuit’s Plonk verifying key vkP

3. Absorb public input commitment [PI]1

4. Absorb witness polynomial commitments

• For vanilla Plonk: [a]1, [b]1, [c]1

• For Plonk with custom gates: [w1]1, . . . [wm]1

5. Squeeze β, γ challenges

6. Absorb permutation polynomial commitment [z]1

7. Squeeze α challenge

8. Absorb quotient polynomial commitments

• For vanilla Plonk: [tlo]1, [tmid]1, [thi]1

• For Plonk with custom gates: [t1]1, . . . [td]1

9. Squeeze z evaluation challenge

10. Absorb evaluation claims

• For vanilla Plonk: ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω

• For Plonk with custom gates: w̄1, . . . , w̄m, q̄1, . . . , q̄r, s̄σ2, . . . s̄σm, z̄ω

11. Squeeze v challenge

12. Absorb opening proof polynomial commitments [Wz]1, [Wzω]1

13. Squeeze u challenge

3 Technical Overview

The main innovation in UniPlonk is the Universal Verifier (UV), which verifies proofs for a class C of
circuits using a fixed set of operations. The UV relies on a small transformation being applied to Plonk
proofs but can verify these transformed proofs in constant-time with minimal overhead compared to the
original Plonk verifier. By virtue of this, the UV can itself be implemented as a circuit, whereby recursion
and proof aggregation techniques can be leveraged to achieve non-homogeneous proof aggregation.

For a given circuit C, the UniPlonk Setup process produces a verification key vk which is augmented
with metadata about C that facilitates constant-time verification. The proving key for UniPlonk is the
unchanged proving key pkP from Plonk and can be used with a standard Plonk prover (where the prover
follows the conventions we give here for seeding the transcript, and shares the srs and other constants
with the UV). Given a Plonk proof πP for a circuit C, with public inputs PI, a uniformization step
accepts πP , PI, and augmented vk and outputs a proof π of fixed size, compatible with the universal

12



verifier. The UV then takes as inputs the augmented verification key vk, the transformed proof π, and
a commitment [PI]1 to the public inputs.

A primary design objective is for the UniPlonk prover to match the Plonk prover [13] as far as
possible, so that UniPlonk can be easily used as a backend for existing circuit programming DSLs such
as Circom, PIL, and Noir. We also strive to keep the UV cost as close as possible to the original Plonk
verifier to avoid increasing proof recursion overhead.

3.1 Vanilla UniPlonK
We let C be the family of Plonk circuits defined over a common field F having at most N = 2K rows and
using some common set of public parameters (see Definition 1). Our goal is to construct a UV, a single
algorithm that uses a fixed sequence of operations to verify the proof of any circuit in the family C. This
UV may then be used to define a single recursive verifier circuit that applies to the entire family C.

3.1.1 Public Input Sizes

The first problem we encounter is handling different public input sizes. The Plonk verifier computes
PI(z) =

∑ℓ
i=1 PIiLi(z). The number of operations required to perform this is proportional to ℓ. Further-

more, the degree of Li(X) depends on the size n of the circuit in question. This makes the computation
of PI(z) difficult to perform in a universal verifier circuit without imposing a limit on ℓ.

We instead require that the caller of Verify compute the commitment [PI]1 to the public input poly-

nomial PI(X) =
∑ℓ

i=1 PIiLi(X) and pass this to the verifier in place of the inputs themselves. This
commitment has a size independent of the number of public inputs and removes the need for circuit-
specific computation in the verifier. We compute the commitment [PI]1 and transform the proof πP in an
intermediate step, UniPlonK.Uniformize (Section 4.3). In Lemma 1 we show that the UniPlonk verifier,
working with [PI]1 and the transformed proof, will agree with the ordinary Plonk verifier.

When we encode the UniPlonk verifier as a Universal Verifier Circuit (UVC) for recursive ZKP, it is
important to note that the circuit does not check the correctness of the public input commitment. That
is, the “outer proof” of the UVC demonstrates the correctness of the “inner proof” under the assumption
that the public input commitment is correct. It is the responsibility of the UVC’s caller to provide the
correct public input commitment.

3.1.2 Circuit Sizes

With public inputs replaced by constant-size commitments, the remaining barriers to a fixed-cost uni-
versal verifier are related to the size (number of rows) of a circuit. Consider circuits C1, C2 ∈ C of sizes
n1 = 2k1 , n2 = 2k2 with k1 < k2. We walk through the steps of the Plonk verify protocol as presented
in [13] (where V1 and V2 are the respective verifiers for C1 and C2), examining how each step depends
on the circuit size. An explanation of how the UV performs the step in constant time is also given.

Steps 1 - 4: Validate the points, sample challenge scalars

Identical for V1 and V2.

Step 5: Compute zero polynomial evaluation ZH(z) = zn − 1

Given that n1 < n2, the V2 verifier must perform additional field arithmetic to compute zn2 compared
to that required to compute zn1 . The UV addresses this by computing zn for all1 n = 2, 4, . . . 2K , (by
squaring a total of K times), and uses a multiplexer to select the required value. The multiplexer can

be implemented as the scalar product ⟨b(n), (z2, . . . z2K )⟩ where b(n) is a boolean vector of length K with

b
(n)
k = 1 iff n = 2k.

Note that computing all these powers of z costs K − ki more field multiplications than would have
been required for Vi. The UV incurs this additional cost, as well as the cost of the multiplexer and the
bit decomposition.

Step 6: Compute Lagrange polynomial evaluation L1(z) =
ω(zn−1)
n(z−ω)

Armed with zn from the previous step, and the input value n, the computation of L1(z) is circuit-
independent, but relies on ω being the primitive n-th root of unity used by the prover. To compute
this, the UV computes 2-powers of ω (the global primitive N -th root of unity from U ) and again uses a

1In practice, one would start n at some minimum value higher than 2.
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multiplexer to select the required value. (As an optimization, all powers of ω can be precomputed and
the correct one selected using the above bit vector b(n).)

Step 7: Compute the public input polynomial PI(z) =
∑ℓ−1

i=0 wiLi(z)

As explained above, the UV accepts a commitment [PI]1 and therefore does not need to perform this
step.

Step 8: Compute constant term r0

The computation of r0 (Eq. (8)) uses only quantities known from above (proof elements, challenge
scalars, and L1(z)). The computation is therefore identical for V1 and V2. The UV omits the term PI(z)
from r0 and computes:

r0 = −α2L1(z)− α(ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)(c̄+ γ)z̄ω (24)

The omission of the PI(z) term from this step is compensated for in the next step; the original proof
must also be transformed to account for this change. The details and justification are in Lemma 1.

Step 9: Compute first part of batched polynomial commitment [D]1

The computation of [D]1 (Eq. (11)) uses values computed above as well as z2n. Since zn was already
computed above, V1 and V2 both simply square it to compute z2n. Therefore their work is identical for
this step.

The UV will include the public input commitment in this term, instead of computing [D]1 as

[D]1 = āb̄ · [qM ]1 + ā · [qL]1 + b̄ · [qR]1 + c̄ · [qO]1 + [qC ]1 + [PI]1

+
(
α(ā+ βz+ γ)(b̄+ βk1z+ γ)(c̄+ βk2z+ γ) + α2L1(z) + u

)
[z]1

− α(ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)βz̄ω[sσ3]1

− ZH(ζ)
(
[tlo]1 + zn[tmid]1 + z2n[thi]1

) (25)

Steps 10 - 12:

Identical for V1 and V2. The UV computes these as described in [13].

The above modifications result in a constant-work UV that can check proofs from any circuit of size
n ≤ N , given the correct verifying key for the circuit. The original Plonk prover protocol is unchanged.
The UV’s handling of public inputs requires a preprocessing phase in which we compute the commitment
[PI]1 and modify the original Plonk proof πP by a term [∆Wz]1 which is also computed from the public
inputs (see Lemma 1).

3.1.3 Universal Verifier Cost

The price we pay for this flexibility is that the UV’s work is at least as large as that of the ordinary
Plonk verifier for a circuit of size N . The key cost metric we are concerned with here is the marginal cost
of the UniPlonk Verifier compared to the cost of the ordinary Plonk Verifier for a circuit of size N . The
additional cost comes from using multiplexers to select values zn and ω in Steps 5 and 6. The cost of
adding this multiplexer to a UV circuit depends on the value of N but is small compared to the elliptic
curve arithmetic that dominates the circuit’s cost. So for circuits of size N the marginal cost of using
the UV is the cost of two multiplexers.

For circuits with n = 2k < 2K = N the marginal cost of this UV is higher. In addition to the
two multiplexers, the UV must compute extra powers of z in Step 5. The number of additional powers
compared to the ordinary Plonk verifier is K−k. So, in general, the marginal cost of using the Uniplonk
verifier for a circuit of size n is two multiplexers, one bit-decomposition, and K − k field multiplications.
We emphasize that no additional elliptic curve arithmetic is required beyond that performed by the
ordinary Plonk verifier.

Thus for circuits that use only the vanilla Plonk gate, the marginal cost of using a universal verifier
is negligible compared to other fixed costs for a Plonk verifier (such as EC arithmetic and pairing).
For UniPlonk with custom gates, we will see a more complex cost profile (Section 6) that does involve
additional EC arithmetic.
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3.2 Custom Gates

The above ideas can also be applied to Plonk with custom gates as described in Section 2.3. In order to
treat this setting, in addition to N = 2K we define a “global gate set” G = {G1, . . . GL}, and let C be
the family of all circuits of size at most N using gates belonging to G . Note that the gates used by C
can be any subset of G .

UniPlonk aims to introduce no additional overhead for a prover who uses only a subset of the gates
in G . Whereas the UV’s work will be proportional to |G |, the prover’s work will scale only with the
number (and complexity) of custom gates actually used in the circuit.

Custom gates present several obstacles to achieving a constant-work verifier algorithm. Firstly, since
a circuit of C may uses all the gates of G , the UV must evaluate the constraint polynomials of all gates
of G , and discard those for gates not used by the circuit. This is achieved by including a pre-processing
step that augments the verification key with a bit vector describing which of the gates in G are used by
the circuit. This Setup step also precomputes certain rearrangements of the standard vkP to aid in the
efficiency of the verifier.

The constraint polynomials of a custom gate may use an arbitrary number of witness variables and
constant variables, which presents another challenge. A circuit that uses only a subset of the gates in G
may require fewer columns than a circuit that uses all gates. This could be addressed by requiring the
prover of C to keep track of unused columns, however in view of our goal to avoid introducing complexity
to the prover, we use the setup phase of the protocol to again augment vk with bit vectors encoding
which variables were used in C.

We also define a uniformization step for proofs, to convert the original proof πP (with shape specific
to C) to a padded proof π that is compatible with the UV.

The following gives an outline of these steps. Further discussion and mathematical justification are
given in Section 5, and the full rolled-out protocol is given in Appendix A.

3.2.1 Missing witness/constant variables

Suppose circuit C using a subset of the gates of G requires only variables w1, . . . wm, q1, . . . qr. For
clarity in the following discussion, we assume that a gate requiring m witness columns uses the first m
of w1, . . . wM , and likewise for constant columns. This will be generalized in later sections.

Then a Plonk proof πP of C will include commitments [w1]1, . . . [wm]1, [q1]1, . . . [qr]1 and corre-
sponding openings w̄i, q̄i. However, the UV must evaluate constraint polynomials with M witness
and R constant variables. To this end, the uniformization phase will “pad” the proof by treating
wm+1, . . . wM , qr+1, . . . qR as zero polynomials. This alone is fine for the evaluation of gate constraints,
since any constraint equations that depend non-trivially on the missing variables wm+1, . . . wM , qr+1, . . . qR
will be evaluated and then discarded (see below).

However, the permutation argument would not succeed without further modification. For example,
the ordinary Plonk verifier for C computes terms like

r1 =

m∏
i=1

(w̄i + βkiz+ γ) + αL1(z)

which explicitly depend on the number m of witness variables used by C.
UniPlonk’s UV will instead compute this term with products from 1 to M , rather than 1 to m. To

ensure that the extra terms do not affect the value of the product, the preprocessing phase computes a

bit vector (b
(w)
1 , . . . b

(w)
M ) with b

(w)
i = 1 iff circuit C used witness variable wi. The uniformization step

will fill in unused witness entries with a default value, and this bit vector is used by the verifier to discard
these terms that were not present when the prover performed the corresponding computation. The Setup
step also fills in missing values s̄σi to ensure the well-formedness of the verification key.

3.2.2 Missing constraint polynomials

To compute the constraint polynomials for all gates, the UV must evaluate a term of the form

L∑
i=1

aiS̄ijGi(w̄1, . . . w̄M , q̄1, . . . q̄R)

where w̄j is the evaluation of the witness polynomial at a challenge point. The result of this evaluation
must match what an ordinary circuit-specific Plonk verifier would compute. This verifier, working only
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with gates Gi for i ∈ I ⊂ {1, . . . L}, computes the term as

|I|∑
j=1

αjS̄ijGij (w̄1, . . . w̄M , q̄1, . . . q̄R)

By appropriately assigning the coefficients ai, we can ensure that the UV computes this term correctly.

To do so, the preprocessing phase computes another bit vector (b
(g)
1 , . . . b

(g)
L ) with b

(g)
i = 1 iff gate Gi

is used by circuit C. We demonstrate in Appendix A how to compute the correct coefficients ai from
the bit vector in constant time. A necessary assumption to make this work is that UniPlonk prover and
verifier agree on an ordering of G .

4 UniPlonK construction

We first define the UniPlonk protocol for circuits that use only the “vanilla” Plonk gate. UniPlonk unifies
the prover and verifier protocol for all circuits belonging to a certain class C of all circuits compatible
with a given configuration.

Definition 1 (Configuration). A tuple U = (pp, srs, N, ω, k1, k2), where

• pp are protocol parameters specifying pairing curves G1, G2 and GT , with scalar field F.

• srs is the structured reference string for KZG commitments.

• N = 2K is an upper bound on the number of rows in a circuit.

• ω is a primitive N -th root of unity in F which generates a multiplicative subgroup H.

• k1, k2 ∈ F values chosen for use by the permutation argument, as described in Section 2.2, such
that H and cosets k1H and k2H are pairwise disjoint.

Definition 2 (U -compatible circuit). We say that a circuit C is compatible with a UniPlonk configura-
tion U if:

• C requires a domain of size n = 2k with k ≤ K.

• C uses the parameters pp, srs, ωn := ωN/n, and the constants k1 and k2 specified in U .

4.1 Setup

Let C be U -compatible for some configuration U . The UniPlonk setup function simply performs the
Plonk setup

UniPlonK.Setup(C, srs) = (pkP , vkP)

as defined in Section 2.2.1.

4.2 Prove

The original Plonk prover algorithm is used:

UniPlonK.Prove(pk,PI, w) = PlonK.Prove(pk,PI, w)

The only modification is the transcript conventions of Section 2.4.

4.3 Uniformize

This step computes the commitment to public inputs [PI]1 and transforms a Plonk proof to account for
differences between PlonK.Verify and UniPlonK.Verify described below. Let πP be the proof output by
PlonK.Prove(pk,PI, w) for a U -compatible circuit C of size n = 2k.

Then
π = UniPlonK.Uniformize(n, πP ,PI)

is computed as follows:
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1. Compute PI(X) =
∑ℓ

i=1 PIiLi(X), where Li is the degree n− 1 Lagrange interpolation polynomial

defined by Li(ω
j
n) = δji .

2. Compute [PI]1

3. Compute the verifier challenge point z.

4. Compute ∆Wz(X) = PI(X)−PI(z)
X−z

5. Compute [∆Wz(X)]1

6. Let π be πP with the term [Wz]1 is replaced by [Wz]1 + [∆Wz(X)]1

7. Return π.

4.4 Verify

UniPlonK.Verify(vk, [PI]1, π) performs the following steps:

1. Parse (
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmid]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω

)
← π

2. Check that proof consists of valid G1 and F points.

3. Compute the bit representation b(n) of n.

4. Compute the challenge points β, γ, α, z, v, u according to Section 2.4.

5. Compute all powers of z: z⃗ = (z, z2, . . . z2
K

) and the scalar product zn = ⟨b(n), z⃗⟩. Compute
ZHk

(z) = zn − 1.

6. Compute ωk = ⟨ω⃗, b(n)⟩ where ω⃗ = (ωN/2, ωN/4, . . . ω). (Note that the vector ω⃗ can be pre-
computed.)

7. Compute L1(z) =
ωkZHk

(z)

n(z−ωk)
.

8. Compute r0 according to Eq. (24).

9. Compute [D]1 according to Eq. (25). The value z2n is computed by squaring z as computed in Step
5.

10. Compute [F ]1 according to Eq. (10).

11. Compute [E]1 according to Eq. (9).

12. Return the result of the final pairing check Eq. (12).

Note that Steps 5, 6 and 7 are constant work because there is a fixed K for UniPlonk.

4.5 Verifier Circuit

All steps of UniPlonK.Verify involve the same number of arithmetic operations for all circuits compatible
with a given configuration U . This makes the UniPlonk verifier ideally suited for implementation as a
Universal Verifier Circuit (UVC), using recursion to wrap one or more “inner” proofs of U -compatible
in an “outer” proof of the UVC.

Let UV C denote a description of UniPlonK.Verify as a circuit (Plonk, R1CS, or any other arithme-
tization). The witness to UV C is a UniPlonk proof π as computed by UniPlonK.Uniformize. The public
inputs to UV C are [PI]1 and vk for some U -compatible C. An outer proof πUV C is generated according
to some ZK proving schemes. Verifying πUV C against the public inputs ([PI]1, vk) implies the existence
of some proof π such that UniPlonK.Verify(vk, [PI]1, π) = 1. If [PI]1 was computed from public inputs
PI, this verification implies that there exists some πP such that PlonK.Verify(vkP ,PI, πP) = 1 (by the
equivalence of UniPlonk and Plonk, Lemma 1).
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We emphasize that the UVC takes as input the commitment [PI]1. Therefore the statement being
proven by the UVC is “there exists a valid proof π for a circuit C with verifying key vk and public inputs
whose commitment is [PI]1.” Any application that uses the outer proof as a proxy for the validity of
the inner proof must therefore check that [PI]1 is indeed the correct commitment to the expected public
inputs PI.

In practice, it is expensive for a circuit to have a large public input set. Rather than passing in the
entire verifying key as a public input to the circuit, one might instead include the verifying key as part of
the private witness and use only a commitment to it in the circuit’s public inputs. Then the UVC must
include a check that the verifying key contained in the witness indeed corresponds to the commitment
in the public inputs.

4.6 PlonK Equivalence

We begin with a lemma that justifies UniPlonk’s handling of public input values, then conclude with
a corollary that UniPlonk is equivalent to Plonk in the sense that UniPlonk’s verifier will always agree
with the Plonk verifier when given a correctly transformed proof and commitment to public inputs.

Lemma 1. The Plonk verifier for a circuit C accepts a proof πP with public inputs PI if and only if the
UniPlonk verifier accepts the proof π = fPI(π

P) with the public input commitment [PI]1. Here fPI is the

function that replaces the term [Wz]1 of πP by [Wz]1 +
[

1
X−z (PI(X)− PI(z))

]
1
.

Therefore UniPlonK is equivalent to PlonK in the sense that for any U -compatible circuit Cπ ← UniPlonK.Uniformize(vk, πP ,PI)

[PI]1 ← KZG.Commit(srs,PI)

1 = UniPlonK.Verify(vk, π, [PI]1)

 ⇐⇒ (
1 = PlonK.Verify(vkP , πP ,PI)

)
(26)

Proof. (We denote the ordinary Plonk verifier’s quantities with the superscript P.)
The proof πP has the form

πP =
(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmid]1, [thi]1, [W

P
z ]1, [Wzω]1, ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω

)
We will demonstrate that the pairing check performed by the Plonk verifier on πP agrees with the pairing
check performed by the UniPlonk verifier on

π = fPI(π
P) =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmid]1, [thi]1, [Wz]1, [Wzω]1, ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω

)
where [Wz]1 = [WP

z ]1 +
[

1
X−z (PI(X)− PI(z))

]
1

Referring to Eqs. (8) and (24), we see that the two verifiers will compute the constant term r0
differently. The difference in their computations is

∆r0 := rP0 − r0 = PI(z)

implying that the difference in their computation of [E]1, Eq. (9) is

∆[E]1 := [EP ]1 − [E]1 = −PI(z) · [1]1

Referring to Eqs. (11) and (25), we see that the two verifiers will also compute the term [D]1 differently:

∆[D]1 := [DP ]1 − [D]1 = −[PI]1

Their computation of the [F ]1 term, Eq. (10), will differ by the same amount: ∆[F ]1 = −[PI]1. The
quantity [F ]1 − [E]1 used in the final pairing check therefore differs by

∆ ([F ]1 − [E]1) = PI(z) · [1]1 − [PI]1

Denoting the final pairing check, Eq. (12), as

e(LHS, [x]2)
?
= e(RHS, [1]2)
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we have

∆LHS :=LHSP − LHS

=[WP
z ]1 − [Wz]1

=

[
1

X − z
(PI(z)− PI(X))

]
1

∆RHS :=RHSP −RHS

=z ·
(
[WP

z ]1 − [Wz]1
)
+∆([F ]1 − [E]1)

=z ·
[

1

X − z
(PI(z)− PI(X))

]
1

+
(
PI(z) · [1]1 − [PI]1

)
Observe that

(
PI(z) · [1]1 − [PI]1

)
is the KZG commitment to the polynomial PI(z) − PI(X) and that[

1
X−z (PI(z)− PI(X))

]
1
is a KZG proof that this polynomial vanishes at z. Therefore

e(∆LHS, [x]2) = e(∆RHS, [1]2)

By linearity of the pairing, this equality implies that the two verifiers will both either accept or reject
the final pairing check.

5 Custom Gates

In this section, we outline how UniPlonk can be extended to handle custom gates. For clarity, we focus on
the simple setting of Section 2.3, and later describe how the protocol can be modified to support common
extensions such as reduced selectors and references to witness elements in other rows. We expect that
the ideas here can be readily applied to other settings with minimal modification.

5.1 UniPlonK circuit definition with custom gates

In order to construct a universal verifier over custom gates, we define a global gate set of supported
gates, along with other parameters that make up a UniPlonk configuration. Circuits using a subset of
the global gate set (along with some basic settings similar to those defined in Definition 1) are compatible
with the UniPlonk configuration, and their proofs can be verified by a fixed-cost universal verifier. In
Section 6 we analyze the cost of the universal verifier in terms of the parameters in the configuration.

Definition 3 (UniPlonK configuration for custom gates). A tuple U = (pp, srs, N, ω,G , {ki}Mi=1), where

• pp are protocol parameters specifying pairing curves G1, G2 and GT , with scalar field F.

• srs is the structured reference string for KZG.

• N = 2K is an upper bound on the number of rows in a circuit.

• ω is a primitive N -th root of unity in F which generates a multiplicative subgroup H.

• G is the “global gate set” {G∗
i }Li=1 of L polynomials over M witness and constant columns.

• {ki}Mi=1 values chosen for use by the permutation argument, as described in Section 2.3, such that
k1 = 1 and cosets kiH are distinct.

The following configuration variables are implicitly defined by the elements of U and are denoted as
follows:

• the number L of gates in G .

• witness columns w∗
1 , . . . , w

∗
M and constant columns q∗1 , . . . , q

∗
R.

• M the number of witness columns used by gates in G .

• R the number of constant columns used by gates in G .
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• D the maximum number of polynomials t1, . . . tD required to represent the quotient polynomial in
chunks of degree N − 1.

By convention G∗
1(w

∗
1 , . . .) = −w∗

1, and is referred to as the public input gate.

We now define the conditions under which a circuit may be used with a configuration U .

Definition 4 (U -compatible circuit). We say that a circuit C is compatible with a UniPlonK configu-
ration U if:

• C requires a domain of size n < N ,

• C uses gates G1, . . . , Gl ⊂ {G∗
i }Li=1, where the {Gi}li=1 is ordered by {G∗

i }Li=1. (Namely, for any
i, i′ ∈ [l] with i < i′, where j, j′ ∈ [L] are the corresponding indices such that Gi = G∗

j and
Gi′ = G∗

j′ , we have j < j′.)

• G1 = G∗
1 (that is, C includes the public input gate).

Let w1, . . . , wm be the subset of witness columns used by gates in C, and q1, . . . , qr be the constant
columns, where m ≤M and r ≤ R. These are assumed to be ordered by {w∗

i }Mi=1 and {q∗i }Ri=1 respectively.

Given a configuration U and U -compatible circuit C, we can assign injective maps from the indices
for gates, witness columns, and constant columns in C, to indices in the global configuration U . We
denote these maps ηg : [l]→ [L], ηw : [m]→ [M ] and ηq : [r]→ [R] respectively, and note that they are
uniquely defined for a specific U and C pair. (For example, where C uses gates G1 = G∗

1 and G2 = G∗
4,

we define ηg : [2]→ [L] such that ηg(1) = 1 and ηg(2) = 4.)

Remark 1. We write Gi(w1, . . . , wm, q1, . . . , qr), whereas strictly speaking Gi = G∗
j for some j, which

is a polynomial in M variables (not m). Since C is defined such that columns w1, . . . , wm and q1, . . . , qr
contain all used by the gates in C, we can define Gi(w1, . . . , wm, q1, . . . , qr) to mean the evaluation of
G∗

j using w1, . . . , wm as arguments w∗
ηw(1), . . . w

∗
ηw(m), and q1, . . . , qr as arguments q∗ηq(1)

, . . . q∗ηq(r)
, with

0 passed for all other (unused) arguments.

5.2 Proof Uniformization with custom gates

We first note that for a Plonk proof πP of the form given in Eq. (21), a transformation can be defined
(analogous to that of Section 4.3) such that the modified proof can be verified using a commitment [PI]1
to the public input polynomial, rather than the (circuit-specific) public inputs themselves.

The primary source of complexity for the verifier is that it must be able to compute the commitment
to the linearization polynomial and batched evaluation commitment that matches that used by the
circuit-specific prover. Therefore the universal verifier must be supplied with a proof of fixed size (i.e.
independent of C), and the uniformization step and verifier require metadata about C (stored in the
UniPlonk verification key), in order to reformat π and produce a fixed-size proof π′ for the universal
verifier.

Let C be a U -compatible circuit, and πP be a Plonk proof for C, with public inputs (wi)
ℓ
i=1. The

proof πP has the form:

πP =
(
[w1]1, . . . , [wm]1, [z]1, [t1]1, . . . , [td]1, [W

P
z ]1, [Wzω]1,

w̄1, . . . , w̄m, q̄1, . . . , q̄r, s̄σ2, . . . s̄σm, z̄ω

)
Analogous to the transformation applied in Section 4.3, the transformation required to allow the

verifier to accept a commitment to the public input polynomial is as follows:

[Wz]1 = [WP
z ]1 + α2[∆Wz]1 (27)

where α and z are the challenges computed from [w1]1, . . . , [wm]1, [z]1 and [t1]1, . . . , [td]1, and ∆Wz is
the polynomial ∆Wz(X) = (PI(X) − PI(z))/(X − z). The commitment [r]1 computed by the universal
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verifier takes the form:

[r]1 =

(
m∏
i=1

(w̄i + βkiz+ γ)

)
[z]1

−

(
m∏
i=2

(w̄i + βs̄σi + γ)

)
z̄ω · ((w̄1 + γ) · [1]1 + β · [sσ1]1)

+ αL1(z) · ([z]1 − [1]1)

+ α2[PI]1

+

l∑
k=1

αk+1Gk(w̄1, . . . , w̄M , q̄1, . . . , q̄Q) · [Sk]

− ZH(z)([t1]1 + zn[t2]1 + · · ·+ z(d−1)n[td]1)

(28)

(where PI(z) in Eq. (19) has been replaced by the commitment [PI]1). Further, the universal verifier
does not add the term PI(z) (evaluation of the public input polynomial at the challenge point) when
performing the calculation equivalent to Eq. (8).

The universal verifier must compute Eq. (28) in terms of the global gate set {G∗
k}, and must ensure

that terms such as ki, s̄σi and αk+1 appear alongside the correct ŵ∗
i and G∗

k elements. To facilitate this,
the verification key is augmented with bit vectors describing which gates, and thereby which witness and
constant columns, are used by the circuit.

During Setup, commitments to selector polynomials, constant columns, and permutation polynomials
are also rearranged in the augmented verification key, so that they appear at the appropriate places
according to the configuration U (where “gaps” are filled with default values). Let the augmented
verification key for a circuit C be given by:

vk = ([S′
1]1, . . . , [S

′
L]1, [q

′
1]1, . . . , [q

′
R]1,

[s′σ1]1, . . . , [s
′
σM ]1, k

′
1, . . . , k

′
M ,

(b
(g)
1 , . . . , b

(g)
L ), (b

(w)
1 , . . . , b

(w)
M ), (b

(q)
1 , . . . , b

(q)
R ), (b

(t)
1 , . . . , b

(t)
D ), n)

Similarly, Plonk proofs πP for C (whose size and shape depend on C) must be transformed into a
proof π of fixed-size and well-defined format, before they can be processed by the universal verifier. This
(along with the transformation described above) is performed by the UniPlonK.Uniformize algorithm,
which uses the augmented verification key to arrange the proof elements appropriately, and again fill
in any elements required to transform it into a uniform shape. This process is described in detail in
Appendix A.

Let the output of the proof uniformization step be denoted:

π = ([w′
1]1, . . . , [w

′
M ]1, [z]1, [t

′
1]1, . . . , [t

′
D]1, [Wz]1, [Wzω]1,

w̄′
1, . . . , w̄

′
M , q̄′1, . . . , q̄

′
R, s̄

′
σ2, . . . s̄

′
σM , z̄ω)

where elements [w′
i]1, [t

′
i]1, w̄

′
i, q̄

′
i, s̄

′
σi represent the sequences [wi]1, [ti]1, w̄i, q̄i, s̄σi from πP , but with

elements rearranged and gaps filled with default values.
By arranging elements in vk and π appropriately, most terms in Eq. (28) can be computed in a

straightforward way:(
M∏
i=1

select
(
b
(w)
i , (w̄′

i + βk′iz+ γ), 1
))

[z]1

−

(
M∏
i=2

select
(
b
(w)
i , w̄′

i + βs̄′σi + γ, 1
))

z̄ω · ((w̄′
1 + γ) · [1]1 + β · [s′σ1]1)

+αL1(z) · ([z]1 − [1]1)

+α2[PI]1

−ZH(z)

(
D∑
i=1

select(b
(t)
i , zn(i−1), 0)[t′i]1

)
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We note also that the extra elements in vk and π, used to “pad” to the correct format, cannot be used to
compromise the soundness of the underlying scheme since they are discarded using the select function.

It remains for the universal verifier to compute the commitment to the gate constraint polynomial
Appendix A.4:

l∑
k=1

αk+1Gk(w̄1, . . . , w̄M , q̄1, . . . , q̄Q) · [Sk]

in terms of the elements of vk and π. This involves slightly more complexity in order to match up αi

terms with the correct gate equations but is achieved with a relatively simple algorithm using the variable

α′ to maintain a current αi term, where bits (b
(g)
1 , . . . , b

(g)
L ) is used to sum only the equation for gates

that are used in C and to update α′ ← α′ × α only for each used gate:

[r3]1 ← [0]1 ;
α′ ← α ;
for i← 1 to L do

α′ ← α′ × select
(
b
(g)
i , α, 1

)
;

[r3]1 ← [r3]1 + select
(
b
(g)
i , α′G∗

i (w̄
′
1, . . . , w̄

′
M , q̄′1, . . . q̄

′
R) · [S′

i]1, [0]1

)
;

end
return [r3]1

All details are given in Appendix A.

5.3 Equivalence of Plonk and UniPlonk proofs

We show the analog of Lemma 1 for UniPlonk with custom gates.
For a given circuit C, let (pk, vk) represent the proving and verification keys from PlonK.Setup, and

let vk′ be the augmented verification key from UniPlonK.Setup. Given a proof π for C with public inputs
(wi)

l
i=1, where PI represents the public input polynomials for (wi)

l
i=1, we show that:π′ ← UniPlonK.Uniformize(vk′, π,PI)

[PI]1 ← KZG.Commit(srs,PI)

1 = UniPlonK.Verify(vk′, π′, [PI]1)

 ⇐⇒ (1 = PlonK.Verify(vk, π,PI))

The standard PlonK verification accepts iff

e([Wz]1 + u[Wzω]1, [x]2) = e(z[Wz]1 + uzω[Wzω]1 + [F ]1 − [E]1, [1]2)

for [F ]1 and [E]1 computed as described in Section 2.3.6. Let [F ′]1 and [E′]1 be the equivalent terms
computed by UniPlonK.Verify, and observe from Eqs. (19) and (28) that:

[F ′]1 = [F ]1 + α2[PI]1

[E′]1 = [E]1 + α2PI(z)[1]1

Using these equations along with Eq. (27), and noting that [∆Wz]1 satisfies:

e([∆Wz]1, [x]2) = e(z[∆Wz]1 + [PI]1 − PI(z)[1]1, [1]2) (29)

the pairing check for UniPlonK.Verify has the form:

e
([

W ′
z

]
1
+ u[Wzω]1, [x]2

)
?
= e

(
z[W ′

z]1 + uzω[Wzω]1 + [F ′]1 − [E′]1, [1]2
)

from which the equivalence of the pairing checks then follows:

e
([

W ′
z

]
1
+ u[Wzω]1, [x]2

)
= e

(
[Wz]1 + α2[hz]1 + u[Wzω]1, [x]2

)
= e

(
[Wz]1 + u[Wzω]1, [x]2) · e(α2[hz]1, [x]2

)
= e (z[Wz]1 + uzω[Wzω]1 + [F ]1 − [E]1, [1]2) · e

(
α2z[hz]1 + [PI]1 − PI(z)[1]1, [x]2

)
= e

(
z
(
[Wz]1 + α2[hz]1

)
+ uzω[Wzω]1 + [F ]1 + α2[PI]1 − ([E]1 + α2PI(z)[1]1), [1]2

)
= e

(
z[W ′

z]1 + uzω[Wzω]1 + [F ′]1 − [E′]1, [1]2
)
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5.4 Transcript handling by prover and verifier

The Prover and Verifier must share a common view of the transcript in order to generate the same
challenge points. In Section 2.4, both seed the transcript with the expression vk ∥ [PI]1, however in
the context of custom gates, the UniPlonk verifier’s vk contains additional data compared to verifying
key vkP used by the prover. Moreover, π (as produced by the Uniformize step and passed to Prove)
will, in general, contain more elements than πP (as produced by the Prove algorithm), and will contain
“padding” elements from Uniformize over which the prover does not have control.

One possible approach to this is the use of a cryptographic sponge construction in the transcript
generation, whereby the select function is used to dynamically filter out elements that were introduced
by the Uniformize step using the bit vector embedded in vk. We assume a sponge as in Section 2.4.
Consider the example of commitments to witness columns being added to the transcript. The verifier
may perform the following constant-time operations to update the sponge state in a way that matches
the prover:

for i← 1 to M do

S ← select
(
b
(w)
i ,S .Absorb(S, [wi]1),S

)
;

end

5.5 Optimizing selector polynomials

In the setting of Section 2.3 the selector polynomials Si are assumed to be binary selectors, meaning
that there is one Si per gate Gi where at each ωj , Si takes the value 1 if the gate is enabled on row j,
and 0 otherwise.

In an alternative approach, described in [16] and used by [26, 27], gates can be grouped, and non-
binary selector polynomials used. In this way, only one selector polynomial per gate group is required,
rather than one per gate. Let Ij be the set of indices of gates in the j-th group for some circuit. For Gi

with i ∈ Ij , the gate expression Si(X)Gi(w1, . . . , wm, q1, . . . , qr) becomes fi(X)Gi(w1, . . . , wm, q1, . . . , qr),
where

fi(X) = Sj(X)
∏

k∈Ij ,k ̸=i

(k − Sj(X)) (30)

In this way, fi evaluates to some non-zero value when Sj = i, and zero otherwise. For rows in which
Sj evaluates to 0, all gates in group j are deactivated.

In computing the commitment to the linearization polynomial, the verifier must evaluate each fi(z)
or [fi(z)]1. Where the degree of fi in Sj is greater than 1 (for any non-trivial group), the proof π must
be modified to contain Sj(z) and a proof of this evaluation.

In general, a circuit may define circuit groups from 1 up to L gates and therefore may define up to L
groups. In order to evaluate the filter polynomials in constant time, the vk′ for the circuit is augmented
with L bit vector, each of size L, where each bit vector specifies the gates used in each group.

The verifier must evaluate fi(z). In UniPlonk, the UV must perform a constant-work computation.
The product in Eq. (30) has as many terms as the size of the group to which gate Gi belongs. This
grouping depends on which gates are present in circuit C, and so the UVmust use a worst-case assumption
on the size of the product. The UV, therefore, supposes that the product contains up to |G | terms and
computes

fi(z) =

|G |∏
j=1

sj (31)

where

sj =


η(j)− S(z), if gate Gj has index η(j) in circuit C

S(z), if j = i

1, otherwise

Eq. (31) always computes a product of |G | terms and agrees with Eq. (30) because the added terms in
this product are equal to 1.

In order to use the UV as an in-circuit verifier, the values sj must be computed in-circuit using a
constant work algorithm. This can be done by computing bit vector b(i) during the setup phase, where

b(i) encodes which gates belong to the same group as gate Gi. That is, b
(i)
j = 1 iff gate Gj belongs to

the same group as gate Gi. These bit vectors are considered to be part of the augmented verifying key.

23



5.6 Referencing cells in other rows

In some implementations (notably [27]), custom gates can refer to witness values in other rows, frequently
those in neighboring rows. UniPlonk can be extended as described here to support such gates.

As an example, let (w1,i)
n
i=1 and (w2,i)

n
i=1 represent 2 witness columns, and consider a simple gate

G defined by:
G(w1,i, w2,i, w1,i+1) = w1,i × w2,i − w1,i+1

For any row i where G is activates, G(w1,i, w2,i, w1,i+1) = 0 enforces the condition: w1,i+1 = w1,i×w2,i.
In the arithmetic constraint polynomial, where (w1,i)

n
i=1 and (w2,i)

n
i=1 are given as polynomials, this

is expressed as
G(w1(X), w2(X), w1(ωX))

since w1(ωX) = w1(ω
i+1) at each value ωi in the domain.

By extending the proof π to include the evaluation w̄1,ω = w1(ωz) and requiring the prover to include
this evaluation in the batched group evaluation witness [Wzω]1, the verifier can confirm this evaluation
and use it as input to G when reconstructing the commitment to the linearization polynomial.

Note that the batch opening proof already contains evaluations at zω, so references to elements in the
next row can be handled relatively easily by modifying the elements [Wzω]1. References to other rows
may require more elements to be passed in the proof.

6 Cost Analysis

We compare the cost of UniPlonk’s Universal Verifier (UV) to the cost of a circuit-specific verifier. This
cost analysis is particularly interesting in the context of proof recursion since it determines how much
larger a Universal Verifier Circuit (UVC) would be than a circuit-specific verifier circuit. This difference
represents the cost of universality. In this section, we simplify the analysis by assuming that only binary
selector polynomials are used (as opposed to Section 5.5) and gates do not refer to adjacent rows (as
opposed to Section 5.6).

The main factors that determine the UV’s cost for a given configuration U are

• Size of global gate set: L = |U .G |
The computation of [r3]1 in Step 8 consists of L additions and scalar multiplications in G1, as well
as L conditional select statements.

• Number of field operations to evaluate constraint polynomials: NF

Step 8 also requires some number of field operations to evaluate the constraint polynomials,
which depends on the specific form of each gate’s polynomial. We denote by nF(Gi) the num-
ber of field multiplications to evaluate the constraint(s) imposed by gate Gi. We have then
NF =

∑
Gi∈G nF(Gi) field multiplications as well. (We omit counting field additions for the sake of

brevity.)

• Maximum number M of witness variables required by any gate G ∈ U .G

The computations of a and r1 in Step 7 require M and M + 1 field multiplications, respectively.
Each requires M conditional select statements.

The computation of [F ]1 in Step 9 requires 2M − 1 additions and scalar multiplications in G1,
2M − 1 field multiplications, and 4M − 2 conditional select statements.

The computation of [E]1 in Step 22 requires 2M − 1 field multiplications and additions, as well as
4M − 2 conditional select statements.

• Maximum number R of constant variables required by any gate G ∈ U .G

The computation of [F ]1 in Step 9 requires R additions and scalar multiplications in G1 and field
multiplications, as well as R conditional select statements.

The computation of [E]1 in Step 22 requires R field multiplications and additions, as well as R
conditional select statements.

• Degree factor D of the quotient polynomial

The computation of r4 in Step 7 requires D − 1 additions and scalar multiplications in G1, D − 1
field multiplications, and D − 1 conditional select statements.
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• Maximum number of constraints: U .N = 2K

As in the cost analysis of vanilla UniPlonk (Section 3.1.3) the UV requires K field multiplications
and two multiplexers to compute the correct values of zn and ωN/n.

Letting G denote the number of constraints required to represent scalar multiplication plus addition
in G1, F denote the number of constraints for field multiplication, and S the number of constraints for a
conditional select statement, the cost of the UV is

costUV(L,M,R,D,K,NF) = constant + (L+ 2M +R+D)G (32)

+ (6M +R+D +K +NF)F
+ (L+ 10M + 2R+D − 5)S
+ 2 multiplex

where the constant term represents costs that are independent of the configuration and would also be
present for a circuit-specific verifier (challenge hashes, pairing, and miscellaneous arithmetic). This term
is irrelevant for the sake of computing the marginal cost of UniPlonk.

The circuit-specific verifier’s cost can is similar to the expression in Eq. (32) with (L,M,R,D,K,NF)
equal to the corresponding values used by the circuit: (l,m, r, d, k, nF). The difference is that the circuit-
specific verifier would not use any conditional select statements or multiplexing.

Therefore the marginal cost of using the UniPlonk verifier with configuration U for compatible circuit
C is

marginal costUV(C,U ) =(∆L+ 2∆M +∆R+∆D)G
+ (6∆M +∆R+∆D +∆k +∆nF)F
+ (L+ 10M + 2R+D − 5)S
+ 2 multiplex

where L,M,R,D,K are set by U and ∆L denotes the difference between L and the number of custom
gates used by C, ∆M is the difference between M and the number of witness polynomials used by C,
etc.

Observe that for a circuit C which uses all gates of the global gate set U .G we have ∆L = ∆M =
∆R = ∆D = ∆nF = 0. Therefore these circuits pay a marginal cost of only

∆kF+ (L+ 10M + 2R+D − 5)S+ 2multiplex

The cost S of a binary selector is only a single constraint in common arithmetizations, since select(b, A,B) =
b ∗ A + (1 − b) ∗ B. The number of constraints to express the multiplexer which selects from among K
values is also low, since this may be expressed as a dot product of vectors of length K. This marginal
cost is therefore small compared to the overall verifier cost for circuits that make use of all custom gates
supported by U .

For “simpler” circuits, meaning those which do not use all gates of U .G , the marginal cost of using
UniPlonk becomes more significant. Firstly, the amount of extra elliptic curve scalar multiplication is
proportional to ∆L. Moreover, if this simple circuit can be expressed using m < M witness variables and
r < R constant variables, then we again incur an extra 2∆M +∆R elliptic curve scalar multiplications.
Similarly, if the simpler circuit has a lower degree factor than D. Additional field multiplications are
also incurred proportional to ∆M,∆R,∆D,∆nF.

Therefore the UVC will be of greatest practical use in a context where the circuits of interest use a
similar set of custom gates. Thinking of the UVC as a tool for proof aggregation, a critical design choice
will be the global gate set G to use for the configuration. Having many gates in G increases the diversity
of circuits which can be verified by the same UVC, but increases the UVC’s size linearly with the size of
G and the number of variables used by these gates.

7 Knowledge Soundness

UniPlonk inherits its knowledge soundness from the Plonk protocol. Informally, this is because a Uni-
Plonk proof contains within it a Plonk proof and the UniPlonk verifier accepts a proof if and only if
the Plonk verifier does. Formally, we can transform a knowledge extractor for the Plonk protocol into a
knowledge extractor for UniPlonk with identical knowledge soundness errors.
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Based on the definition of Knowledge Soundness given in [13], we define the knowledge soundness
game for UniPlonk as: For a fixed U -compatible circuit C representing a relation R ⊂ Fℓ × Fn−ℓ

1. An algebraic adversary A chooses input PI = (wi)
ℓ
i=1 and produces a UniPlonk proof π of C. A

returns π and PI.

2. The knowledge extractor E with access to all of A’s messages during the protocol outputs a witness
w.

3. A wins if

(a) UniPlonK.Verify(vk, π, [PI]1) = true, where vk is the augmented verifying key for C and [PI]1
is the commitment to PI.

(b) (PI, w) /∈ R

A protocol has knowledge soundness error of ϵ if there exists an extractor E such that for any algebraic
adversary, the probability of winning the above game is at most ϵ.

Lemma 2. Let R be a relation represented by Plonk circuit C. Let U be a configuration such that C is
U -compatible. Then the UniPlonk protocol for configuration U applied to C has knowledge soundness
with error equal to that of the Plonk protocol.

Proof. We construct an extractor E for the UniPlonk protocol for the relation R in the obvious way
from the extractor EP for Plonk with the same relation. E operates as follows:

• Given a UniPlonk proof π and public inputs PI from an adversary A, use the inverse of the mapping
in Lemma 1 to compute a Plonk proof πP .

• Playing the role of the adversary in the Plonk protocol knowledge soundness game send πP and PI
to EP ( where EP has access to all messages generated by E and thereby A). Note that, by the
form of the mapping, E is an algebraic adversary, and let w be the witness returned by EP .

• Return w.

Let ε be the knowledge soundness error of Plonk for R. The probability that A wins the above game
against E, namely that(

UniPlonK.Verify(vk, π, [PI]1) = true
)
∧
(
(PI, w) /∈ R

)
By Lemma 1, this holds iff (

PlonK.Verify(PI, πP) = true
)
∧
(
(PI, w) /∈ R

)
which, by assumption, has probability ε.

The above shows that the soundness error for UniPlonK is at most ε. The equality follows by
repeating this argument with Plonk and UniPlonk reversed to show that the knowledge soundness error
of Plonk is bounded above by that of UniPlonk (because any extractor for UniPlonk can be used to
construct an extractor for Plonk). Thus the two protocols have equal knowledge soundness error.

8 Future Works

We plan to add the support of lookup arguments to UniPlonk, notably, this could combined with effort
of supporting lookup argument in NIFS [8, 35, 21] to add lookup argument support to Universal ZK-ZK
Aggregation.
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A.1 UniPlonK.Setup(U , C)

For the circuit C using gates G1, . . . , Gl ⊂ G , define bit vectors:

• Gate bits (b
(g)
1 , . . . , b

(g)
L ), where b

(g)
i = 1 if and only if the gate G∗

i is used by C.

• Witness column bits (b
(w)
1 , . . . , b

(w)
M ) where b

(w)
i = 1 iff w∗

i is used by one of the gates in C.

• Constant column bits (b
(q)
1 , . . . , b

(q)
R ) where b

(q)
i = 1 iff q∗i is used by one of the gates in C.

Let (pkP , vkP) be the proving and verifier keys generated for C in the standard way, using pp, srs,
ω, k1, . . . , km etc from U to obtain

pkP = (S1, . . . , Sl, q1, . . . , qr, sσ1, . . . , sσm)

and
vkP = ([S1]1, . . . , [Sl]1, [q1]1, . . . , [qr]1, [sσ1]1, . . . , [sσm]1)

To facilitate the universal verifier, we append the following data to vkP to create and augmented vk:

• Bit fields (b
(g)
i )Li=1, (b

(w)
i )Mi=1 and (b

(q)
i )Ri=1.

• “Padded” constant column commitments ([q′1]1, . . . , [q
′
R]1) where, for each i = 1, . . . , r with j =

ηq(i), we set [q′j ]1 = [qi]1, and set [q′j ]1 = [0]1 for all other j:

([q′1]1, . . . , [q
′
R]1) ∈ GM

1 ← ([0]1, . . . , [0]1);
for i← 1 to r do

j ← ηq(i) ;
[q′j ]1 ← [qi]1 ;

end

• “Padded” permutation polynomial commitments ([s′σ1]1, . . . , [s
′
σM ]) where, for each i = 1, . . . ,m

with j = ηw(i), we set [s′σj ]1 ← [sσi]1 and [s′σj ]1 ← [0]1 for all other j:

([s′1]1, . . . , [s
′
M ]1) ∈ GM

1 ← ([0]1, . . . , [0]1);
for i← 1 to m do

j ← ηw(i) ;
[s′j ]1 ← [si]1 ;

end

• “Padded” selector polynomial commitment set ([S′
1], . . . , [S

′
L]) where, for each i = 1, . . . , l with

j = ηg(i), we set [S′
j ]1 ← [Si]1 and [S′

j ]1 ← [0]1 for all other j:

([S′
1]1, . . . , [S

′
L]1) ∈ GL

1 ← ([0]1, . . . , [0]1);
for i← 1 to l do

j ← ηg(i) ;
[S′

j ]1 ← [Si]1 ;

end

The augmented verification key vk then has the following form, with size and format dependent only
on U , and independent of the specific circuit C:

vk = ([S′
1]1, . . . , [S

′
L]1, [q

′
1]1, . . . , [q

′
R]1,

[s′σ1]1, . . . , [s
′
σM ]1, k

′
1, . . . , k

′
M ,

(b
(g)
1 , . . . , b

(g)
L ), (b

(w)
1 , . . . , b

(w)
M ), (b

(q)
1 , . . . , b

(q)
R ), (b

(t)
1 , . . . , b

(t)
D ), n)

and the final output of Setup is the pair (pk = pkP , vk).
Note that the mappings ηg, ηw and ηq, from indices in C to indices in U can be derived from vk in

a deterministic way.

A.2 UniPlonK.Prove((wi)
n
i=1)

The Plonk prover for the C can be used, as described in Section 2.3, where srs and all constants (as well
as column and gate orderings) are compatible with U .
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A.3 UniPlonK.Uniformize(vk, πP ,PI)

1. Parse πP as

([w1]1, . . . , [wm]1, [z]1, [t1]1, . . . , [td]1, [W
P
z ]1, [Wzω]1, w̄1, . . . , w̄m, q̄1, . . . , q̄r, s̄σ2, . . . s̄σm, z̄ω)

2. Derive the mappings ηg : [l]→ [L], ηw : [m]→ [M ] and ηq : [r]→ [R] from the bit vectors in vk′.

3. Create padded witness commitments and evaluations:

([w′
1]1, . . . , [w

′
M ]1) ∈ GM

1 ← ([0]1, . . . , [0]1);

(w̄′
1, . . . , w̄

′
M ) ∈ FM ← (0, . . . , 0) ∈ FM ;

for i← 1 to m do
j ← ηw(i) ;
[w′

j ]1 ← [wi]1 ;

w̄′
j ← w̄i ;

end

4. Create padded permutation polynomial evaluations:

(̄s′σ2, . . . , s̄
′
σM ) ∈ FM−1 ← (0, . . . , 0);

for i← 2 to m do
j ← ηw(i) ;
s̄′σj ← s̄σi ;

end

5. Create padded constant polynomial evaluations:

(q̄′1, . . . , q̄
′
R) ∈ FR ← (0, . . . , 0) ∈ FR ;

for i← 1 to r do
j ← ηq(i) ;
q̄′j ← q̄i ;

end

6. Pad [t1]1, . . . , [td]1 with entries [0]1 with entries until it is of the length D required by U . Let
{t′i}Di=1 be the resulting vector.

7. Compute the polynomial
∆Wz(X) = (PI(X)− PI(z))/(X − z)

where PI(X) =
∑ℓ

i=1 wiLi(X) and its commitment [∆Wz]1. The new opening proof commitment
is then computed as

[Wz]1 = [WP
z ]1 + α2[∆Wz]1

(See Section 5.2 for a full explanation).

8. Return:
π = ([w′

1]1, . . . , [w
′
M ]1, [z]1, [t

′
1]1, . . . , [t

′
D]1, [Wz]1, [Wzω]1,

w̄′
1, . . . , w̄

′
M , q̄′1, . . . , q̄

′
R, s̄

′
σ2, . . . s̄

′
σM , z̄ω)

A.4 UniPlonK.Verify(vk, π, [PI]1)
Note that [PI]1 is computed by the caller using the public inputs (wi)

ℓ
i=1.

The verifier parses the uniformized proof:

π = ([w′
1]1, . . . , [w

′
M ]1, [z]1, [t

′
1]1, . . . , [t

′
D]1, [Wz]1, [Wzω]1,

w̄′
1, . . . , w̄

′
M , q̄′1, . . . , q̄

′
R, s̄

′
σ2, . . . s̄

′
σM , z̄ω)

and verifier key:

vk = ([S′
1]1, . . . , [S

′
L]1, [q

′
1]1, . . . , [q

′
R]1,

[s′σ1]1, . . . , [s
′
σM ]1, k

′
1, . . . , k

′
M ,

(b
(g)
1 , . . . , b

(g)
L ), (b

(w)
1 , . . . , b

(w)
M ), (b

(q)
1 , . . . , b

(q)
R ), (b

(t)
1 , . . . , b

(t)
D ), n = (b

(n)
1 , . . . , b

(n)
K ), )
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1. Verify the well-formedness of [t′1]1, . . . , [t
′
d]1, [Wz]1, [Wzω]1. Validate all [w′

i]1 and [q′i]1 values. For

i with b
(w)
i = 0, check that [w′

i]1, w̄
′
i and s̄′σi are equal to the expected default values from Ap-

pendix A.3. Similarly, for all [t′i]1 with b
(t)
i = 0.

2. Validate (w̄′
1, . . . , w̄

′
M , q̄′1, . . . , q̄

′
Q, s̄

′
σ2, . . . s̄

′
σM ) ∈ F2M+Q.

3. Check that [PI]1 is a G1 element. Let transcript0 = vkP ∥ [PI]1, ensuring that only elements of πP

are added to the transcript as described in Section 5.4.

4. Compute challenges β, γ, α, z, v, u ∈ F.

5. Compute zn as ⟨(b(n)1 , . . . , b
(n)
K ), (z, z2, . . . z2

K

)⟩, and ZH(z) = zn − 1.

6. Compute ωk = ⟨(b(n)1 , . . . , b
(n)
K ), (1, ω2K , ω2K−1

, . . . , ω2, ω)⟩, and the evaluation of the first Lagrange

polynomial L1(z) =
ωk(z

n−1)
n(z−ωk)

.

7. Split the calculation of [r]1 (see Eq. (18), (19)) as follows:

[r]1 = r0 · [1]1 + r1[z]1 + r2[sσ1]1 + [r3]1 − [r4]1

and compute the terms:

a := z̄ω

M∏
i=2

select
(
b
(w)
i , (w̄′

i + βs̄σi + γ), 1
)

r0 := −a(w̄′
1 + γ)− αL1(z)

r1 :=

M∏
i=1

select
(
b
(w)
i , (w̄′

i + βk′iz+ γ), 1
)
+ αL1(z)

r2 := aβ

8. Compute [r3]1:

[r3]1 ← [0]1 ;
α′ ← α ;
for i← 1 to L do

α′ ← α′ × select
(
b
(g)
i , α, 1

)
;

[r3]1 ← [r3]1 + select
(
b
(g)
i , α′G∗

i (w̄
′
1, . . . , w̄

′
M , q̄′1, . . . q̄

′
R) · [S′

i]1, [0]1

)
;

end
return [r3]1

and [r4]1:

[r4]1 ← [t′1]1 ;
z′ ← 1 ;
for i← 2 to D do

z′ ← z′ × zn ;

[r4]1 ← [r4]1 + select
(
b
(t)
i , z′ · [t′i]1, [0]1

)
;

end
[r4]1 ← ZH(z) · [t′1]1 ;
return [r4]1

9. Compute the full batched polynomial commitment, Eq. (23):

[F ]1 :=(r1 + u) · [z]1 + r2[sσ1]1 + [r3]1 − [r4]1 + α2[PI]1

v[w1]1 + . . .+ vm[wm]1+

vm+1[q1] + . . .+ vm+r[qr]1+

vm+r+1[sσ2]1 + . . .+ v2m+r−1[sσm]1
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as follows:
[F ]1 ← (r1 + u) · [z]1 + r2[sσ1]1 + [r3]1 − [r4]1 ;
v′ ← 1 ;
for i← 1 to M do

v′ ← v′ × select
(
b
(w)
i , v, 1

)
;

[F ]1 ← [F ]1 + select
(
b
(w)
i , v′ · [w′

i]1, [0]1

)
end
for i← 1 to R do

v′ ← v′ × select
(
b
(q)
i , v, 1

)
;

[F ]1 ← [F ]1 + select
(
b
(q)
i , v′ · [q′i]1, [0]1

)
end
for i← 2 to M do

v′ ← v′ × select
(
b
(w)
i , v, 1

)
;

[F ]1 ← [F ]1 + select
(
b
(w)
i , v′ · [s′σi]1, [0]1

)
end

10. Compute group-encoded batch evaluation, Eq. (22):

[E]1 :=


−r0 + uz̄ω+

vw̄1 + . . .+ vmw̄m+
vm+1q̄1 + . . .+ vm+r q̄r+

vm+r+1s̄σ2 + . . .+ v2m+r−1s̄σm

 · [1]1
as follows:

E ← uz̄ω − r0 ;
v′ ← 1 ;
for i← 1 to M do

v′ ← v′ × select
(
b
(w)
i , v, 1

)
;

E ← E + select
(
b
(w)
i , v′w̄′

i, 0
)

end
for i← 1 to R do

v′ ← v′ × select
(
b
(q)
i , v, 1

)
;

E ← E + select
(
b
(q)
i , v′q̄′i, 0

)
end
for i← 2 to M do

v′ ← v′ × select
(
b
(w)
i , v, 1

)
;

E ← E + select
(
b
(w)
i , v′s̄′σi, 0

)
end

11. Batch validate all evaluations:

e([Wz]1 + u · [Wzω]1, [x]2)
?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F ]1 − [E]1, [1]2)
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