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Abstract

Distributed broadcast encryption (DBE) [Boneh and Zhandry - CRYPTO 2014] improves on the
traditional notion of broadcast encryption by eliminating the key-escrow problem: In a DBE system,
users generate their own secret keys without the help of a trusted party. Then anyone can broadcast
a message for a subset S of the users, in such a way that the resulting ciphertext size is sublinear in
(and, ideally, independent of) |S|. Unfortunately, the only known construction of DBE requires heavy
cryptographic machinery, such as general-purpose indistinguishability obfuscation.

In this work, we show that obfuscation is not necessary for DBE, and we present two DBE schemes
from standard assumptions in prime-order bilinear groups. Our constructions are conceptually simple,
satisfy the strong notion of adaptive security, and are concretely efficient. In fact, their performance, in
terms of number of group elements and efficiency of the algorithms, is comparable with that of traditional
(non distributed) broadcast encryption schemes from bilinear groups.

Keywords: Pairing-based Cryptography, Broadcast Encryption, Key-Escrow

1 Introduction

In a broadcast encryption (BE) scheme [15] a broadcaster encrypts a message for some subset S of the users
who are listening on a broadcast channel. Any user that belongs to the set S can recover the message using
their own secret key. The security requirement stipulates that, even if all users not in S collude, they learn
nothing about the broadcasted message.

Broadcast encryption has been an active area of research since their introduction in the 1990s, where a
major goal is to obtain schemes with short parameters, notably ciphertext size that is sublinear in the total
number of users L, so as to minimize bandwidth consumption. In a celebrated work from 2005, Boneh,
Gentry and Waters (BGW) [5] presented a pairing-based broadcast encryption scheme with constant-size
ciphertext (ignoring the contribution from the set S). A series of follow-up works [6, 22, 12] showed
how to achieve constant-size ciphertext under the standard k-Lin assumption, improving upon the q-type
assumption used in BGW, while additionally strengthening the security guarantees from selective to adaptive

1



security. More recent works [2, 1, 11, 34], improving upon [7, 8], showed how to achieve poly(logL) total
parameter size under stronger, non-falsifiable assumptions.

All of the aforementioned broadcast encryption schemes suffer from the notorious key escrow problem:
the schemes require a central authority holding a master secret key, that generates and distributes keys for
all users of the system. Moreover, the central authority can decrypt any ciphertext ever encrypted using
this master secret key. Another security concern is that the central authority needs to remain online with a
long-term secret key, which constitutes a recurrent single point of failure.

Distributed Broadcast Encryption. To circumvent the key escrow problem, Boneh and Zhandry [8] in-
troduced the notion of distributed broadcast encryption (DBE), where users choose their own public/secret
key pairs, and replacing the central authority with (i) a one-time trusted sampling of a common reference
string (CRS), and (ii) a bulletin board of user public keys. We stress that the trust setup only needs to be
done once (e.g. MPC), that the same CRS can be reused across different systems, and that there is no need
to store any long-term secrets. Encryption to a set S only requires knowing the public keys for the users in
the set S, along with the CRS.

DBE captures many modern applications such as group messaging. Boneh and Zhandry also showed
how to construct DBE with poly(logL) ciphertext size assuming indistinguishability obfuscation [3], which
we regard mostly as a feasibility result, given the state of affairs for obfuscation [27, 28, 9, 35, 21, 10]. In
this work, we address the following question:

Can we construct simple and efficient distributed broadcast encryption with small ciphertexts?

In particular, we focus on pairing-based schemes, due to the increasing support (e.g., high-quality implemen-
tations with strong assurance and performance, on-going IETF standardization) and deployment of pairing-
based cryptography.

1.1 Our Results

We construct simple pairing-based distributed broadcast encryption (DBE) schemes where, for a bound of
L users:

• Ciphertexts comprise a constant number of group elements, like in BGW;

• Encryption to a set S only requires retrieving O(|S|) group elements from the bulletin board;

• Users only need to store O(L) group elements for decryption;

• Both encryption and decryption take time linear in |S|.

In particular, our schemes achieve similar efficiency as the state-of-the-art vanilla (non-distributed) pairing-
based broadcast encryption schemes (cf. Table 2).

Our schemes rely on standard assumptions in bilinear groups, such as the bilinear Diffie-Hellman Expo-
nent (BDHE) [5], or the k-Lin assumption
[4, 25, 31]. Both of our schemes satisfy strong security guarantees, which ensure that the message is hidden
even against an adversary that adaptively corrupts honest users and can register malformed public keys to
the bulletin board. For the case of the BDHE scheme, this is achieved by a generic transformation that turns
any scheme that satisfies a very weak notion of security (that we refer to as semi-selective) to an adaptively
secure scheme, following the approach of [22].

2



Assumption |pp| |uskj | |upkj | |ct| |BB| #Updates
Folklore PKE – 1 1 |S| L –
Folklore RBE logL logL 1 |S| L logL logL
Boneh-Zhandry iO and OWF L 1 1 1 L L

Scheme 1 BDHE L 1 L 1 L2 L
Scheme 1 (Log. Updates) BDHE L 1 L logL L2 logL
Scheme 2 k-Lin L2 1 L 1 L2 L
Scheme 2 (Log. Updates) k-Lin L2 1 L logL L2 logL

Table 1: Comparison with existing DBE schemes. The notation in the table ignores constants and factors
that depend only on the security parameters. |BB| denotes the size of the bulletin board, whereas L denotes
the maximum number of users allowed in the system. Encryption and decryption take time O(|S|) in all
cases. (First two rows are the ”naive” constructions with O(L) ciphertext where we encrypt to all public
keys in the set.)

Furthermore, we show how to achieve two strengthenings of DBE inspired by recent works on registration-
based encryption [17, 18, 23, 26, 13]:

• The first is that of dynamic joins, where users can register public keys and join the bulletin board
at any time, and secret keys may require to be updated once a new user joins. We show a generic
transformation (following [17, 23, 26, 13]) where users need to check the bulletin board for updates
at most poly(logL) times throughout the lifetime of the system, while increasing the ciphertext size
by a O(logL) factor.

• The second is that of malicious corruptions, where malicious users can register (possibly-malformed)
keys. We show that as long as public keys pass a simple validity check, then the presence of malicious
users do not comprise correctness or privacy of our schemes.

1.2 Discussion and Related Works

Prior works. Besides “trivial” schemes, where one simply encrypts the message in parallel for all users
in the subsets, the only DBE scheme proposed in the literature is from Boneh and Zhandry [8], that achieves
similar asymptotic efficiency as our approach, except that it is based on obfuscation. We present an explicit
comparison of known DBE schemes, along with their underlying assumptions in Table 1. We shall men-
tion here explicitly that Boneh and Zhandry did not explicitly consider the settings with dynamic joins, and
therefore their scheme also has a linear (in L) number of updates. However, we stress that a similar trans-
formation as the one that we present in this work can be applied also to their scheme to reduce the number
of updates to logL, while increasing the ciphertext size to logL.

Registration-based encryption. A related (but different) notion is that of registration-based encryption [17].
Also in registration-based encryption (RBE) users sample their own secret keys and there is no key authority
that knows a master secret key. However RBE assumes the existence of a semi-trusted key curator that ag-
gregates the public keys of the users and generates a short master public key that anyone can use to encrypt
with respect to identities. On the other hand, in DBE there is no key curator, but just an append-only bulletin
board (alternatively, one can think of the key curator as doing nothing). These settings entail two different
technical challenges:
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• In RBE, the non-triviality of the scheme comes from the size of the master public key, which is
required to be sublinear, ideally independent, of the number of users. (No requirement on the size of
the ciphertext)

• In DBE, the challenge stems from the size of the ciphertext, which is required to be sublinear, ideally
independent, of the size of the set. (No requirement on the size of the master public key)

Because of the above differences the two primitives are formally incomparable, i.e., RBE does not imply
DBE and vice-versa. We also point out that DBE (and in fact broadcast encryption) does not support the
functionality of encryption “with respect to identity” as in RBE, which is rather a property of identity-based
broadcast encryption.

Recently Hohenberger et al. introduced the relevant to RBE notion of Registered (ciphertext-policy)
attribute-based encryption [26] and, as Agrawal and Yamada [2] observed, CP-ABE implies broadcast en-
cryption. However, the same comparison with RBE applies; R-ABE’s objective is to have sublinear master
public key, which is orthogonal to sublinear ciphertexts. In fact, their ciphertext is linear in the size of policy,
therefore naively using the R-ABE as an DBE yields O(|S|)-sized ciphertexts.

User identifiers. We discuss possible choices for assigning user identifiers to participants. For the static
settings, where all users are fixed at the beginning of the system, one can simply identify users in the set
by their lexicographical ordering. This is what is done in traditional (non-distributed) broadcast encryption
systems. In the dynamic settings, where users can post public keys on the bulletin board at different times,
one can envision different mechanisms. The simplest one is to identify users by their time of arrival: The
bulletin board specifies a counter corresponding to how many users have joined the system so far as well
as the identifiers of all the users who have joined the system so far, in order. When a user joins, it checks
the counter first, increments it by 1 to j and runs keygen with j and submits her public key, upkj , with its
identifier that also gets appended to the bulletin board; the identifier is now associated with index/time j.
When a sender comes along, it looks up the bulletin board to check the identifiers and the corresponding
indices, and uses that to determine a set S ⊆ [L]. When we say that our scheme supports poly(logL)
updates, we mean that a decryptor will only need to look up the bulletin board at most poly(logL) times for
public key updates, even if L users join the system.

Common reference string. We point out explicitly that, similarly to recent works on RBE [23] and R-
ABE [26] and R-FE [16], our schemes are in the common reference string model, where a reference string
must be sampled in such a way that the underlying trapdoor is kept secret. We argue that this assumption is
still substantially better than having a trusted authority distributing secret keys for all parties. This is because
the common reference string is sampled once and for all and there is no long term secret that needs to be
stored. Additionally, availability-wise, no trusted authority must remain online to send secret keys and no
secure communication channels are needed.

One way to sample a common reference string is to have a one-time ceremony, where a group of non-
colluding parties run a multi-party computation protocol to compute the common reference string, each
supplying their own randomness. Furthermore, the common reference string can be reused across differ-
ent instances of the scheme. We also point out that our first scheme has an updatable common reference
string [24] of the form

[α], . . . , [αL], [αL+2], . . . , [α2L]

for a secret scalar α. This class of common reference strings can be easily updated using the techniques
in [24, 30], where each update can be verified via a simple proof of knowledge of discrete logarithm. This
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Assumption Dist. Security |Enc| |Dec| |ct| |BB| #Updates
BGW05 [5] BDHE No Selective L L 3 – N/A
Scheme 1a BDHE Yes Selective L L 3 L2 L

GW09 [22] BDHE No Adaptive L L 6 – N/A
GKW18 [20] SXDH No Adaptive L L 4 – N/A
Scheme 1b BDHE Yes Adaptive L L 6 L2 L
Scheme 2 SXDH Yes Adaptive L L 4 L2 L

Table 2: Comparison with existing BE schemes with O(1)-size ciphertexts from Bilinear Groups. The
notation in the table ignores constants and factors that depend only on the security parameters, except for
|ct| which is concrete in number group elements. |Enc| denotes the overall size of information needed to
encrypt a message (e.g. mpk or crs), and |Dec| the overall size of information to decrypt (e.g. uskj or sk).
|BB| denotes the size of the bulletin board (for DBE), whereas L denotes the maximum number of users
allowed in the system. We omit from the comparison schemes like [33] which achieves O(N1/3) parameters
but not O(1)-size ciphertexts. Recall SXDH = 1-Lin.

highly mitigates the trust in the common reference string since anyone can update it and even one honest
update (the underlying update trapdoor is destroyed) suffices.

We shall mention that prior work on distributed broadcast [8] also required a common reference string,
although using the techniques of [26] one can make the setup transparent, i.e., it can be sampled using
public random coins, but still relying on indistinguishability obfuscation.

Efficiency comparison with non-distributed BE. In Table 2 we provide a comparison of our DBE with
traditional BE from bilinear groups. Although we compare primitives with different objectives and func-
tionalities, our objective is to show the cost of getting rid of the trusted authority in broadcast encryption.
For fairness, we compare with the variant of our schemes in the static settings, i.e., where the set of users is
fixed, which is the same as traditional BE. The conclusion is that in comparison to [5] and [22] we achieve
essentially the same efficiency properties except for a logL overhead on the size of the ciphertext (for the
variant with efficient updates). [33] achieves the best tradeoff between parameters that we do not achieve.
We note that in the case of DBE, due to absence of the trusted authority, we have a quadratic-sized Bulletin
Board.

1.3 Open Problems

We view our work as opening a promising new line of research in pairing-based broadcast encryption. In
fact there is a number of problems that our work leaves open: For example, we ask what are the optimal
parameters for pairing-based DBE, and whether we can achieve similar tradeoffs as for the case of vanilla
broadcast encryption [33]. Furthermore, it would be interesting to construct a scheme with a transparent
setup, where the public parameters consist of some unstructured group elements that can be sampled with
public coin, e.g., as the output of a hash function. Finally, an outstanding open problem is whether we
can construct distributed broadcast encryption from other assumptions, such as lattice-based computational
problems.
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2 Technical Overview

2.1 High-level overview

Syntax for distributed broadcast encryption. We begin with the syntax for distributed broadcast en-
cryption in the simplest setting. There are L users in the system and a public parameter pp given to all
users.

• User j given pp, generates a public/private key pair (upkj , uskj) and posts upkj to a public bulletin
board.

• Encryption to a set S takes as input {upkj}j∈S and a message M and outputs a ciphertext ct.

• Decryption takes as input a set S, a ciphertext ct, the public keys {upkj}j∈S , and a secret key uski for
some i ∈ S.

The basic semantic security requirement says that given an encryption ct of M for any set S, along with
{upkj}j∈[N ] and {uskj}j /∈S , the message M remains hidden. The stronger notion of adaptive security
(where the adversary can choose S after seeing some of the public keys) can be achieved with a semi-generic
transformation due to [22], which we adapt to the distributed setting. However, to keep things simple, in
this overview we focus on selective security, where the set S is fixed in advance.

Looking ahead, we present two constructions of DBE satisfying these basic requirements, one based on
DBHE and the second based on k-Lin. These two schemes constitute the basic building blocks for our “full
fledged”–enhanced with additional requirements described below–DBE schemes. We defer an overview of
both constructions for now, and proceed instead to describe the additional requirements for DBE and how
we achieve them via a series of generic transformations.

Malicious corruptions. Next, we strengthen our security requirements to allow for malicious corruptions,
where a user j controlled by an adversary may post an arbitrary, malformed upk∗j to the bulletin board, as
long as upk∗j passes some validity check. We have two requirements: first, we want functionality to hold
even amidst malicious corruptions, namely an honest user i should correctly decrypt an honestly generated
encryption for a set S where i ∈ S, even if S contains malformed public keys. Next, we require that
semantic security holds even if all keys outside S (i.e., [L] \ S) are corrupted. We note that, as typically
in Broadcast Encryption, it’s meaningless to assume corruptions inside S; an adversary controlling a user
inside S can trivially decrypt.

We show that any scheme that is semantically secure without malicious corruptions is also semanti-
cally secure with malicious corruptions. The reduction is fairly straight-forward, crucially relying on the
fact that our syntax for encryption takes as input only the public keys of users in S, and since we do not
allow malicious corruptions inside S, malicious coruptions do not affect the distribution of the challenge
ciphertext.

Reducing the number of updates. It is typical in dynamic settings without a private key generator au-
thority that the users have to update their (decryption keys). Following similar settings, such as Registration-
based Encryption, we put forward a generic transformation to any DBE scheme that allows users to update
their decryption keys only logarithmic number—in the total number of users, L—times throughout the his-
tory of the system. We defer to section 4.3 for the technical details.
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2.2 Scheme from BDHE

We rely on an asymmetric bilinear group (G1,G2,GT , e) of prime order p where e : G1×G2 → GT . We use
[·]1, [·]2, [·]T to denote component-wise exponentiations in respective groups G1,G2,GT . For this overview
we implicitly assume that all algorithms take the description of the group (together with corresponding
random generators) as input, (p,G1,G2,GT , [1]1, [1]2, e).

BGW Broadcast Encryption. Our starting point is the BGW broadcast encryption scheme [5] which we
recap below:

pp =
(
[α]1, . . . , [α

L]1, [α]2, . . . , [α
L]2, [α

L+2]2, . . . , [α
2L]2

)
msk = t, t←$ Z∗

p

mpk = ([t]1)

ct =

[s]1, [s(t+
∑
j∈S

αj)]1, [sα
L+1]T ·M

 , s←$ Z∗
p

ski = [tαL+1−i]2

Decryption by a user i ∈ S is based on the following equation:

e

(
[s(t+

∑
i∈S

αj)]1, [α
L+1−i]2

)
=

= e

[s]1,

ski︷ ︸︸ ︷
[tαL+1−i]2 ·[

∑
j∈S,j ̸=i

αL+1+j−i]2

 [sαL+1]T

Observe that the secret keys of all users depend on the same secret value: the master secret key t. It is worth
noting that this is a technique that is common even among all subsequent broadcast encryption schemes.
The natural question when adapting BGW to the distributed setting is: who chooses t?

Our DBE. Our core technique is the following: let t be t =
∑

i∈S ti where ti is chosen by the i’th user.
This transforms the above decryption equation to:

e

(
[s
∑
i∈S

(tj + αj)]1, [α
L+1−i]2

)
=

= e

[tiα
L+1−i +

∑
j∈S,j ̸=i

(
tjα

L+1−i + αL+1+j−i
)
]1, [s]2

 [sαL+1]T =

= e


ski,i︷ ︸︸ ︷

[tiα
L+1−i]1

∏
j∈S,j ̸=i


ski,j︷ ︸︸ ︷

[tjα
L+1−i]1 ·[αL+1+j−i]1

 , [s]2

 [sαL+1]T
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Now, as it is evident, the cross-terms tjα
L+1−i appear in the decryption equation. Therefore, in order to

make decryption possible, it is inevitable that the decryptor i knows these terms.
This affects the efficiency of the scheme (making the user’s necessary information to decrypt linear

in L), but is very convenient for the distributed setting. The intuition is that each user i can be attached
to one distinct ti that she can sample locally. Then user i publishes the cross-terms of all the other users
ski,j = tiα

L+1−j , except of course for ski,i = tiα
L+1−i which is her secret key. In terms of correctness,

observe that ski,i is only used in the decryption equation of i, i.e. it never plays the role of a cross-term.
Additionally, publishing ski,j doesn’t affect security as long as ski,i remains secret.

To summarize, our DBE is given as follows:

pp =
(
[α]1, . . . , [α

L]1, [α]2, . . . , [α
L]2, [α

L+2]2, . . . , [α
2L]2

)
uskj = [tjα

L+1−j ]2, tj ←$ Z∗
p

upkj =
(
[tj ]1, [tjα]2, . . . , [tjα

L+1−j−1]2, [tjα
L+1−j+1]2, . . . , [tjα

L]2
)

ct =

[s]1, [s(
∑
j∈S

tj + αj)]1, [sα
L+1]T ·M

 , s←$ Z∗
p

It is worth noting that in terms of efficiency the public parameters and the ciphertext remain unaffected.
Futhermore, from the point of view of the encryptor the (asymptotic) storage overhead is the same as BGW:
In BGW (translated to asymmetric groups) an encryptor needs pp = ({[αi]1}i∈[L], {[αi]2}i∈[2L]\{L+1}) and
[t]1 while in our case the same pp and [t1]1, . . . , [tL]1, therefore both are O(L).

Security Proof Sketch. The decision Blinear Diffie-Hellman Exponent assumption [5] says that [sαL+1]T
is pseudorandom given ({[αi]1}i∈[L], {[αi]2}i∈[2L]\{L+1}) := pp and [s]1 := ct1. The security reduction for
selective security given S∗ proceeds as follows:

• for all j /∈ S∗, reduction samples tj “in the clear”;

• for all j ∈ S∗, reduction samples t̃j and implicitly sets tj := t̃j − αj .

Now, observe that

ct =

[s]1, [s
∑
j∈S

t̃j ]1, [sα
L+1]T ·M


the reduction can simulate:

• the public parameters using the input of the assumption;

• the challenge ct given [s] and the target of the assumption.

• terms [tjαL+1−i]2, j /∈ S∗ and any i, we can simulate using tj

• terms [tjαL+1−i]2, j ∈ S∗, i ̸= j: we can simulate using t̃j and [αL+1−i+j ]2

• terms [tjαL+1−j ]2, j ∈ S∗: appear only in skj , which the adversary is not allowed to query
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Interestingly, our modification described above allows us to prove our DBE scheme semi-statically se-
cure, something that is not possible for BGW. Semi-static security is a strengthening of static security in the
sense that the adversary still outputs the target set S∗ a-priori but at the challenge stage is allowed to ask a
ciphertext for any subset S∗∗ ⊆ S∗. This security notion is interesting since Gentry and Waters showed a
generic transformation (in the Random Oracle model) from a semi-statically secure scheme to fully adap-
tive [22]. We adapt this transformation in the distributed broadcast encryption setting in section 4.2.

2.3 Scheme from k-Lin

Our k-Lin Distributed Broadcast Encryption conceptually follows the framework of Gay et al. [20] that
construct (plain) Broadcast Encryption from k-Lin. The [20] scheme itself conceptually holds similarities
with the Broadcast Encryption scheme of Gentry and Waters (GW) [22]. In order to ease the presentation,
first we give some context to the reader on the GW construction.

GW Broadcast Encryption. The GW scheme works as follows:

pp = ([w1]1, . . . , [wL]1) , wi ← Z∗
p

msk = ([α]2, [w1]2, . . . , [wL]2) , α←$ Z∗
p

mpk = [α]T

ct =

[s]1, [s
∑
j∈S

wj ]1, [sα]T ·M

 , s← Z∗
p

ski =
(
[α+ wiri]2, [ri]2, {[riwj ]2}j∈[L]\{i}

)
, ri ← Z∗

p

Decryption uses the fact that if i ∈ S, then:

e

[s]1,

ski,i︷ ︸︸ ︷
[α+ riwi]2 ·

∏
j∈S,j ̸=i

ski,j︷ ︸︸ ︷
[riwj ]2

 = e

(
[s
∑
i∈S

wj ]1, [ri]2

)
[sα]T

GKW Broadcast Encryption. The observation of Gay et al. [20] is that one can ’push’ ski,j to the param-
eters (sampling a-priori all ri’s). This makes the public parameters quadratic, but achieves constant-sized
decryption keys. This gives us:

pp =
(
{[wi]1}i∈[L], {[ri]2}i∈[L], {[riwj ]2}i,j∈[L],i ̸=j

)
, wi, ri ← Z∗

p

msk = ([α]2, [w1]2, . . . , [wL]2, r1, . . . , rL)

mpk = [α]T

ct =

[s]1, [s
∑
j∈S

wj ]1, [sα]T ·M

 , s← Z∗
p

ski = [α+ wiri]2

Looking ahead, GKW (almost) generically transforms the scheme to the k-Lin setting to achieve adap-
tive security (without the use of random oracles). For presentational purposes we postpone this to the end
of the section and continue with the traditional setting, stated above.

9



Towards our DBE. In the distributed case we crucially rely on the fact that ski,j’s can be ’pushed’ to the
public parameters, since there is no private key generator authority to sample ri on-the-fly to extract the
decryption key of the user i.

However, we’re not done, there still remains the natural question: who samples α, or in more general,
how are the secret keys ski formed so that they do not depend on a (universal) master secret key? We resolve
this as follows: As in our previous DBE scheme, user i samples a fresh ti ← Z∗

p. Then, we replace wj in ct
with tj + wj , which yields

ct =

[s]1, [s
∑
j∈S

(tj + wj)]1, [sα]T ·M


Doing the same with ski and the corresponding entries of the public parameters (the GW parts of ski that
were ’pushed’ to the pp) yields:

ski = [α+ (wi + ti)ri]2

pp(3) = {[(tj + wj)ri]2}i,j∈[L],i ̸=j

This leads us naturally to the following DBE scheme:

pp =
(
[α]T , {[wi]1}i∈[L], {[ri]2}i∈[L], {[α+ riwi]2}i∈[L], {[riwj ]2}i,j∈[L],i ̸=j

)
uskj = [tjrj ]1, tj ← Z∗

p

upkj = ([tj ]1, [tjr1]2, . . . , [tjrj−1]2, [tjrj+1]2, . . . , [tjrL]2)

ct =

[s]1, [s
∑
j∈S

(tj + wj)]1, [sα]T ·M

 s← Z∗
p

Regarding efficiency, the above Distributed Broadcast Encryption Scheme preserves the decryption and
encryption key sizes, O(L), of the GW scheme, but at the cost of having quadratic public parameters instead
of linear.

Security Intuition. To gain some intuition about security, consider an adversary that tries to recover [sα]T
by computing e([s

∑
j∈S(tj + wj)]1, [ri]2) and e([s], [α+ wiri]). Then notice that:

• if i /∈ S, it can’t cancel out [swiri]T .

• if i ∈ S, it can’t cancel out [stiri]T without uski, which of course is not allowed to query in the
security game of a (distributed) broadcast encryption (otherwise it trivially recovers the message).

Final Scheme from k-Lin. To obtain a scheme under k-Lin following [12, 20], we sample A← Zk×(k+1)
p

and make the following substitutions:

s 7→ s⊤A ∈ Z1×(k+1)
p , α 7→ k ∈ Zk+1

p ,

wj 7→Wj ∈ Z(k+1)×k
q ,

tj 7→ Tj ∈ Z(k+1)×k
q ,

[wj ]1, [αT ] 7→ [AWj ]1, [Ak]T

We defer further details to Section 6.
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3 Preliminaries

Notation We write λ for the security parameter. By [N ] we denote the set of integers {1, . . . , N} and,
more generally, by [A,B] the set {A, . . . , B} for any A,B ∈ Z, A ≤ B. With x ←$ X we denote
the procedure of x being uniformly sampled from a finite set X . Throughout our work ”PPT” stands for
probabilistic polynomial-time algorithm.

3.1 Bilinear Groups

A generatorBG takes as input a security parameter 1λ and outputs a description G := (p,G1,G2,GT , g1, g2, e),
where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic groups of order p, and e : G1 × G2 → GT is a
non-degenerate bilinear map. We require that the group operations in G1, G2, GT and the bilinear map e are
computable in deterministic polynomial time in λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the
respective generators. We employ the implicit representation of group elements: for a matrix M over Zp,
we define [M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is carried out component-wise.
We denote [A]s · [B]s = [A+B]s for s = 0, 1, T . We further define, for any A ∈ Zn×m

p and B ∈ Zm×ℓ,

e([A]1, [B]2) := [AB]T ∈ Gn×ℓ
T .

We recall two standard assumptions over Bilinear Groups, that we will use in the following sections. First,
the (decision) Bilinear Diffie-Hellman Exponent assumption introduced by Boneh et. al. [5].

Assumption 3.1 (Decision BDHE assumption) Let BG be a bilinear group generator, bg := (p, G1, G2,
GT , [1]1, [1]2, e)←$ BG(1λ), α, s←$ Z∗

p and define

D =
({

[αj ]1
}
j∈[q] ,

{
[αj ]2

}
j∈[2q],j ̸=q+1

, [s]1

)
and T ←$ GT . Then for any PPT adversary A and any positive integer q:

AdvdBDHE
BG,q,A(λ) :=

∣∣Pr[A (bg,D, [sαq+1]T
)
= 1]− Pr[A (bg,D, T ) = 1]

∣∣ = negl(λ)

where the above probabilities are taken over the choices of bg, α, s and T .

We also recall the k-Lin assumption [4, 25, 31] which belongs to the more general family of Matrix
Diffie-Hellman Assumptions [14]. Define the distribution Lk outputting a matrix A ∈ Z(k+1)×k

p as:

A =


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . ak
1 1 . . . 1


where a1, . . . , ak ←$ Zp. The k-Lin assumption is stated below.

Assumption 3.2 (k-Lin assumption) Let BG be a bilinear group generator, bg := (p, G1, G2, GT , [1]1,
[1]2, e) ←$ BG(1λ), k any positive integer, v ←$ Zk

p , u ←$ Zk+1
p and A ←$ Lk Then for any PPT

adversary A:

Advk-Lin
BG,q,A(λ) := |Pr[A (bg, [A]s, [Av]s) = 1]− Pr[A (bg, [A]s, [u]s) = 1]| = negl(λ)

where the above probabilities are taken over the choices of bg,A,v,u.

We note that if s = 1 we have the k-Lin assumption for group G1 and similarly s = 2 for G2.
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4 Definitions

We consider a model where the system is initialized with some public parameters, given an upper bound on
the number of users, L. Users are indexed by a unique identifier j ∈ [L] which can be, e.g., their time of
arrival. Upon each user joining the system, they append their public key on a bulletin board that we assume
all users in the system have access to. Importantly, the bulletin board is append-only, and we implicitly
assume that all parties involved scrutinize that the public keys of the other parties are well-formed. If not,
the public key is simply discarded. By looking at the public parameters and at the users public keys, it is then
possible to encrypt a message for a subset S ⊆ [L] of the public keys. What makes the scheme non-trivial
is the fact that the size of the ciphertext must be sublinear (and ideally independent) of the size of S.

4.1 Distributed Broadcast Encryption

We present the formal definitions in the following. The syntax is canonical for broadcast encryption, except
that each user samples locally a key pair (usk, upk) and, consequently, the encryption and decryption will
take as input the public keys corresponding to the users in the set S. For starters, we define a minimal notion
of security, where the adversary is allowed to choose a set S∗ for the challenge ciphertext at the beginning
of the experiment, but it is otherwise not allowed to corrupt honest users. Later in this Section, we will show
how to generically lift this definition to the more challenging settings with adaptive corruptions.

To prevent the adversary from registering public keys that would sabotage the decryption of honest
users, we define a validity-check predicate that ensures that the keys are well-formed. Then the correctness
guarantee is that, if the check succeeds, then correctness must hold unconditionally.

Definition 4.1 (Distributed Broadcast Encryption) Let λ be a security parameter and let M = {Mλ}λ∈N
be the message space. A distributed broadcast encryption scheme with message space M is a tuple of
efficient algorithms ΠDBE = (Setup,KeyGen,Enc,Dec) with the following properties:

• Setup(1λ, 1L) → pp: On input the security parameter λ and the number of slots L, the setup algo-
rithm returns some public parameters pp.

• KeyGen(pp, j) → (uskj , upkj): On input the public parameters and a slot index j ∈ [L], the key
generation algorithm generates a secret key uskj and a public key upkj for the j-th slot.

• Enc(pp, {upkj}j∈S , S,M) → ct: On input the public parameters pp, the public keys {upkj}j∈S , a
subset S ⊆ [L], and a message M ∈M, the encryption algorithm returns a ciphertext ct.

• Dec(pp, {upkj}j∈S , uski, ct, S, i)→M : On input the public parameters pp, the public keys {upkj}j∈S ,
a secret key uski a ciphertext ct, a subset S, and an index i, the decryption algorithm returns a mes-
sage M .

Moreover, the algorithms must satisfy the following properties.

• Correctness: For all λ ∈ N, L ∈ N, j ∈ [L], all pp in the support of Setup(1λ, 1L), all (uski, upki)
in the support of KeyGen(pp, i), all {upkj}j ̸=i such that isValid(pp, upkj , j) = 1, all M ∈ M, all
S ⊆ [L] such that i ∈ S, it holds that

Pr
[
Dec(pp, {upkj}j∈S , uski, ct, S, i) = M : Enc(pp, {upkj}j∈S , S,M)

]
= 1.
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• Verifiable Keys: There exists an efficient algorithm isValid such that for all λ ∈ N, L ∈ N, j ∈ [L],
all pp in the support of Setup(1λ, 1L), it holds that

(·, upkj) ∈ KeyGen(pp, j) =⇒ isValid(pp, upk∗j , j) = 1

• (Selective) Security: Define the following experiment between an adversary A and a challenger,
parameterized by a bit b.

– Setup Phase: The adversary A sends a set S∗ ⊆ [L] to the challenger, who samples pp ←
Setup(1λ, 1L) and gives pp to A.

– Key Generation Phase: For all j ∈ S∗, the challenger samples a key pair (uskj , upkj) ←
KeyGen(pp, j) and sends {upkj}j∈S∗ to A.

– Challenge Phase: The adversary sends a pair of messages M∗
0 ,M

∗
1 ∈ M. The challenger

computes
ct∗ ← Enc(pp, {upkj}j∈S∗ , S∗,M∗

b )

and sends it over to A.

– Output Phase: At the end of the experiment, algorithm A outputs a bit b′ ∈ {0, 1}, which is the
output of the experiment.

We say that a distributed broadcast encryption scheme ΠdRBE is selectively secure if for all polynomi-
als L = L(λ) and all efficient adversaries A, there exists a negligible function negl such that for all
λ ∈ N: ∣∣∣∣Pr [b = b′

]
− 1

2

∣∣∣∣ = negl(λ).

4.2 Semi-Selective to Adaptive

In the following we show a series of transformation that allow us to compile a scheme that satisfies a weak
notion of security into one that satisfies adaptive security. We proceed in three steps:

• First, we define a stronger notion of selective security, called semi-selective security.

• Second, we show how the transformation described in [22] allows us to build a scheme with adaptive
security, albeit only for honestly generated keys.

• Third we show how to handle maliciously generated keys.

Let us first define the notion of semi-selective security. The experiment is unchanged, except that the adver-
sary in the challenge phase can specify any S∗∗ ⊆ S∗ and the challenge ciphertext is defined as

ct∗ ← Enc(pp, {upkj}j∈S∗∗ , S∗∗,M∗
b ).

From Semi-Selective to Passive-Adaptive. Before showing the generic transformation, we provide the
formal definition of passive-adaptive security below.

Definition 4.2 (Passive-Adaptive Security) Define the following experiment between an adversary A and
a challenger, parameterized by a bit b.

13



• Setup Phase: The challenger samples pp← Setup(1λ, 1L) and gives pp to A.

• Key Query Phase: The adversary A is provided with access to the following oracles.

– Key Generation Oracle: On input an index j ∈ [L], check if this index was queried before to
this oracle, and return ⊥ if this is the case. Otherwise, sample (uskj , upkj) ← KeyGen(pp, j)
and sent upkj to A.

– Key Corrupt Oracle: On input an index j ∈ [L], check if upkj was sampled in the key gener-
ation oracle and return the corresponding uskj to A. In this case, we refer to the index j as
“corrupted”. Otherwise, return ⊥.

• Challenge Phase: The adversary sends a pair of messages M∗
0 ,M

∗
1 ∈M and a set S∗. If there exists

some index j ∈ S∗ such that j was corrupted, then the challenger aborts the experiment. Otherwise
it computes

ct∗ ← Enc(pp, {upkj}j∈S∗ , S∗,M∗
b )

and sends it over to A.

• Output Phase: At the end of the experiment, algorithmA outputs a bit b′ ∈ {0, 1}, which is the output
of the experiment.

We say that a distributed broadcast encryption scheme ΠdRBE is passive-adaptively secure if for all poly-
nomials L = L(λ) and all efficient adversaries A, there exists a negligible function negl such that for all
λ ∈ N: ∣∣∣∣Pr [b = b′

]
− 1

2

∣∣∣∣ = negl(λ).

We are now ready to state the intermediate result, which follows immediately by a transformation from [22].
Although this transformation was originally presented in the context of (non-distributed) broadcast encryp-
tion, we observe that the same proof strategy works here.

Lemma 4.3 (Semi-Selective to Passive-Adaptive) Let ΠDBE be a semi-selectively secure distributed broad-
cast encryption scheme. Then there exists a scheme Π′

DBE that is passive-adaptively secure.

[Proof Sketch] The transformation is identical to [22] and we sketch it here only for completeness.

• Setup: Run the setup of the original scheme except that we double the number of users 2L.

• Key Generation: On input an index j ∈ [L], the user generates two keys

(usk2j , upk2j)← KeyGen(pp, 2j) and (usk2j−1, upk2j−1)← KeyGen(pp, 2j − 1)

then it flips a coin and throws away one of the two secret keys.

• Encryption: For all j ∈ S, sample a random bit tj , then define two sets

S0 = {2j − tj}j∈S and S1 = {2j − (1− tj)}j∈S .

Encrypt the message M with respect to both S0 and S1 and attach {tj}j∈S to the ciphertext.

• Decryption: Decrypt one of the two ciphertexts, depending on which secret key was kept.
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Remark 4.4 Observe that the compiled scheme has public parameters and ciphertext doubled, when com-
pared to the original scheme. Furthermore, the ciphertext is augmented with a string of |S| bits. As already
observed in [22], this can be reduced to λ bits in the random oracle model.

Next, we show that the scheme is passive-adaptively secure. The proof proceeds in two steps, first we
switch the encryption of under the set S0 to encrypt a random message and then the encryption under S1.
Since the argument is identical, we only outline the reduction for the first case.

• Sample a random string T = (t1, . . . , tL) ← {0, 1}L. Set S∗ = {2j − tj}j∈[L] as the initial set for
the semi-selective security.

• Receive pp from the challenger, along with the keys {upk∗j}j∈S∗ .

• Activate the passive-adaptive adversary on input pp.

• Answer the queries of the adversary on index j as follows:

– Key Generation Oracle: On input an index j, set upk2j−tj = upk∗j and sample upk2j−(1−tj) with
the knowledge of the secret key.

– Key Corrupt Oracle: On input an index j, check if a key was created for this index and return
usk2j−(1−tj) in case.

• In the challenge phase, the adaptive adversary specifies a set S∗∗ ⊆ [L], which must be a subset of the
S∗ and furthermore must not include any corrupted index. The reduction sets Set S0 = {2i− ti}i∈S∗∗

and send S0 to the challenger, who responds with ct∗. Then it samples the other ciphertext honestly
for the set S1 = {2i− (1− ti)}i∈S∗∗ and sends both to the adversary.

• In the output phase, return whatever the adversary returns.

Observe that the reduction perfectly simulates the view of the adversary and therefore they have the same
advantage.

From Passive to Active Security. Next, we show that any scheme that satisfies passive-adaptive security
also satisfies active-adaptive security, which we define below. The difference with respect to the previous
notion, is that we now allow the adversary to register malicious keys, captured by an additional “Malicious
Corrupt Oracle”.

Definition 4.5 (Active-Adaptive Security) Define the following experiment between an adversary A and
a challenger, parameterized by a bit b.

• Setup Phase: The challenger samples pp← Setup(1λ, 1L) and gives pp to A.

• Key Query Phase: The adversary A is provided with access to the following oracles.

– Key Generation Oracle: On input an index j ∈ [L], check if this index was queried before to
this oracle or to the malicious corrupt oracle, and return ⊥ if this is the case. Otherwise sample
(uskj , upkj)← KeyGen(pp, j) and send upkj to A.

– Key Corrupt Oracle: On input an index j ∈ [L], check if upkj was sampled in the key gener-
ation oracle and return the corresponding uskj to A. In this case, we refer to the index j as
“corrupted”. Otherwise, return ⊥.
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– Malicious Corrupt Oracle: On input (j, upk∗j ) check if this index j ∈ [L] was queried before to
this oracle or to the key generation oracle, and return⊥ if this is the case. Otherwise Store upk∗j
and label the index j as “corrupted”.

• Challenge Phase: The adversary sends a pair of messages M∗
0 ,M

∗
1 ∈M and a set S∗. If there exists

some index j ∈ S∗ such that j was corrupted, then the challenger aborts the experiment. Otherwise
it computes

ct∗ ← Enc(pp, {upkj}j∈S∗ , S∗,M∗
b )

and sends it over to A.

• Output Phase: At the end of the experiment, algorithmA outputs a bit b′ ∈ {0, 1}, which is the output
of the experiment.

We say that a distributed broadcast encryption scheme ΠdRBE is adaptively secure if for all polynomials
L = L(λ) and all efficient adversaries A, there exists a negligible function negl such that for all λ ∈ N:∣∣∣∣Pr [b = b′

]
− 1

2

∣∣∣∣ = negl(λ).

We now show that any scheme that is passive-adaptively secure is also active-adaptively secure. The intuition
here is that the challenge ciphertext cannot depend on public keys for which the attacker knows the secret
(since otherwise the scheme would be trivially broken), so the queries to the malicious-corrupt oracles have
no effect on the distribution of the challenge ciphertext.

Lemma 4.6 (Passive-Adaptive to Active-Adaptive) Let ΠdRBE be a passive-adaptively secure distributed
broadcast encryption scheme. Then ΠdRBE is also active-adaptively secure.

[Proof Sketch] The reduction only forwards the messages of the adversary to the challenger, except for the
queries to the malicious corrupt oracle, which the reduction simply discards. Since the challenge ciphertext
is computed as

ct∗ ← Enc(pp, {upkj}j∈S∗ , S∗,M∗
b ).

and the set S∗ does not contain any corrupted index, the distribution simulated by the reduction is identical
to the view that the adversary is expecting. Thus any advantage of the active-adaptive adversary immediately
carries over to the (passive-adaptive) reduction.

4.3 Logarithmic Updates

One drawback of the current syntax for distributed broadcast encryption is that the decrypter has to con-
stantly check the public bulletin board for public keys, since every time a new user joins a new public key is
added to the system. It is desirable to minimize the number of updates that each user must receive, without
affecting the functionality. More precisely, in the current model, all users need to know {upki : i ∈ [S]}
in order to decrypt a ciphertext encrypted with respect to S. In the following we show that we can get
away with checking the bulletin board logL times, with a modest increase in ciphertext size. Before dis-
cussing how to turn a scheme into one with logarithmic updates, let us make the notion of update somewhat
more formal: We now define the notion of U -updates and we say that a scheme has logarithmic updates if
U = O(logL). The following definition implicitly assumes that users are indexed by their time of arrival.
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Definition 4.7 (U -updates) A DBE scheme with parameter L has U -updates if, for all i ∈ [L] there exists
a series of subsets

S1 ⊆ · · · ⊆ SU ⊆ [L]

such that for any T ∈ [L] and for any S∗ ⊆ [T ] it holds that

Pr
[
Dec(pp, {upkj}j∈Si , uski, ct, S

∗, i) = M : Enc(pp, {upkj}j∈S∗ , S∗,M)
]
= 1.

where i is the largest index such that |Si| ≤ T .

The Transformation. In the following we describe a simple transformation that achieves exactly this.
This transformation has been used many times in the literature [17, 23, 26, 13] and we report it here for
completeness. For convenience, we are going to assume that the total number of users in the system is

L = 1 + 2 + 4 + · · ·+ 2ℓ

which is without loss of generality, since we can always pad the number of users to that L is of this form.
Let us describe the algorithms of the scheme.

• Setup: Sample the public parameter pp for a distributed broadcast encryption scheme with parameter
L, and initialize k = ℓ+ 1 “master public keys” {mpkk = ∅}k∈[ℓ+1].

• Key Generation: When the user indexed by j joins the system, it runs the key generation algorithm
KeyGen(pp, j) as prescribed by the scheme.

• Update: Upon each user joining the system, we will assign a k such that their public key is added to
mpkk. Let k be the smallest integer such that mpkk = ∅, the update algorithm proceeds as follows:

– If k = 1, then we are simply going to assign mpk1 = {upkj}.
– Else, we are going to set

mpkk = mpkk−1 ∪ · · · ∪mpk1 ∪ {upkj}

and reset mpkk−1 = · · · = mpk1 = ∅.

Note that, by construction, the cardinality of mpkk is either 0 or 2k−1. Therefore, each user will only
have to keep track of the master public key he currently resides into, along with its secret key.

• Encryption: Let S be the encryption subset and let us define {Sk = ∅}k∈[ℓ+1]. For each j ∈ S, based
on the current number of users, we can derive the master public key where upkj currently resides,
which we denote by mpkkj . We then add Skj ∪ {j}. The encrypter computes ℓ+ 1 ciphertexts as{

ctk ← Enc(pp, {upkj}j∈Sk
, Sk,M)

}
k∈[ℓ+1]

.

• Decryption: The j-th user decrypts the ciphertext corresponding to the mpkk where their key currently
resides.

It is important to observe that each user only has to keep track of the keys inside of her master public key
(i.e., the bundle), so it will only have to update their keys whenever the public key is moved up to the
next bundle. Since there are at most ℓ + 1 ≈ log(L) bundles, it follows that each user receives at most
logarithmically many updates throughout the lifetime of the system.

As for the correctness of the scheme, it suffices to observe that, by construction S = S1∪· · ·∪Sℓ+1 and
therefore correctness follow from the correctness of the underlying distributed broadcast encryption scheme.
Security also follows from a standard hybrid argument.
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5 Distributed Broadcast Encryption from decision Bilinear Diffie-Hellman
Exponent

In this section we present our first Distributed Broadcast Encryption scheme from the decision Bilinear
Diffie-Hellman Exponent assumption. For a more intuitive overview we refer to section 2.2.

5.1 Our Distributed Broadcast Encryption scheme

Below we describe our Distributed Broadcast Encryption scheme ΠDBE,1.

• Setup(1λ, 1L): On input the security parameter λ and the number of slots L, generate a bilinear group
bg := (p,G1,G2,GT , [1]1, [1]2, e)← BG(1λ), sample α←$ Z∗

p and output the public parameters as:

pp =
(
bg, [α]1, . . . , [α

L]1, [α]2, . . . , [α
L]2, [α

L+2]2, . . . , [α
2L]2

)
We denote pp := (pp0, pp1, . . . , pp3L) (defining pp2L+1 = [0]2).

• KeyGen(pp, j): on input the public parameters pp :=
(
bg,
{
[αj ]1

}
j∈[L] ,

{
[αj ]2

}
j∈[2L],j ̸=L+1

)
and

a slot j , sample the secret κj ←$ Z∗
p and output:

uskj = [tjα
L+1−j ]2

upkj =
(
[tj ]1, [tjα]2, . . . , [tjα

L+1−j−1]2, [tjα
L+1−j+1]2, . . . , [tjα

L]2
)

• Enc(pp, {upkj}j∈S , S,M): on input the public parameters pp :=
(
bg,
{
[αj ]1

}
j∈[L] ,

{
[αj ]2

}
j∈[2L],j ̸=L+1

)
,

a set S ⊆ [L], the corresponding users’ public keys upkj :=
(
[tj ]1, [tjα

ℓ]2
)
ℓ∈[L],ℓ̸=L+1−j

for each

j ∈ S and a message M ∈ GT , sample s←$ Z∗
p, compute [sαL+1]T = e

(
[sα]1, [α

L]2
)

and output:

ct =

[s]1, [s
∑
j∈S

(tj + αj)]1, [sα
L+1]T ·M


where [s

∑
j∈S(tj + αj)]1 is computed as

∏
j∈S([stj ]1 · [αj ]1) using upkj and pp.

• Dec(pp, {upkj}j∈S , uski, ct, S, i) → M : on input the public parameters pp :=
(
bg,
{
[αj ]1

}
j∈[L] ,{

[αj ]2
}
j∈[2L],j ̸=L+1

)
, a set S ⊆ [L], the corresponding users’ public keys upkj :=

(
[tj ]1, [tjα

ℓ]2
)
ℓ∈[L],ℓ ̸=L+1−j

for each j ∈ S, a slot index i ∈ S, the user’s corresponding secret key uski := [tiα
L+1−i]2 and a

ciphertext ct = (ct1, ct2, ct3) output:

M ′ = ct3 · e
(
ct−1

2 , pp2L+1−i

)
· e

ct1, uski ·
∏

j∈S,j ̸=i

(upkj,L+1−i · pp2L+1+j−i)


where pp2L+1−i := [−αL+1−i]2, uski := [tiα

L+1−i]2, upkj,L+1−i := [tjα
L+1−i]2, pp2L+1+j−i :=

[αL+1+j−i]2
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Remark 5.1 (Storage requirements for the encryptor and decryptor) Syntactically speaking, in DBE to
be able to encrypt and decrypt with respect to any arbitrary set S ⊆ [L] one needs to store all public keys
{upkj}j∈[L], of size O(L2) in the above scheme. However, concretely in our scheme it suffices to have linear
size of information from {upkj}j∈[L]:

Encryptor: [t1]1, . . . , [tL]1

Decryptor i: [t1αL+1+1−i]2, . . . , [ti−1α
L]2, [ti+1α

L+2]2, . . . , [tLα
L+1+L−i]2.

To ease the presentation of the definition of DBE we do not formalize this aspect of our concrete scheme,
letting {upkj}j∈S to be the inputs of Enc and Dec in the formal description of the construction.

5.2 Correctness

As noted in the definition of DBE correctness, in section 4.1, to prove correctness we first need to prove
that there exists an isValid algorithm. We prove existence of such an algorithm for our scheme above by
concretely constructing it.

Verifiable Keys. We define isValid(pp, upk∗j , j) as follows:

• Parse upk∗j := (upk∗j,0, . . . , upk
∗
j,L+1−j−1, upk

∗
j,L+1−j+1, . . . , upk

∗
j,L).

• Then if the following holds output 1.

e
(
upk∗j,0, [α

L]2
)
= e

(
[αL−1]1, upk

∗
j,1

)
= . . . = e

(
[αj ]1, upk

∗
j,L+1−j−1

)
=

= e
(
[αj−2]1, upk

∗
j,L+1−j+1

)
= . . . = e

(
[1]1, upk

∗
j,L

)
otherwise output 0.

Since upk∗j,k ∈ G2 (upk∗j,0 ∈ G1 resp.) and G2 (G1 resp.) has prime order, p, there exist uk ∈ Z∗
p such that

upk∗j,k = [uk]2 for all k ∈ [L] (upk∗j,0 = [u0]1 resp.). From this and the above paring checks we get that:

[u0α
L]T = [u1α

L−1]T = . . . = [uj−1α
j ]T = [uj+1α

j−2]T = . . . = [uL]T

Which gives us that:

upk∗j =
(
[u0]1, [u0α]2, . . . , [u0α

L−j ]2, [u0α
L−j+2]2, . . . , [u0α

L]2
)
.

Therefore if isValid(pp, upk∗j , j) = 1 then upk∗j is in the support of KeyGen: (·, upk∗j )← KeyGen(pp, j)

for tj := u0 ∈ Z∗
p and uskj = [u0α

L+1−j ]2.

Correctness Let arbitrary λ ∈ N, L ∈ N, pp :=
(
bg,
{
[αj ]1

}
j∈[L] ,

{
[αj ]2

}
j∈[2L],j ̸=L+1

)
for some

α ∈ Z∗
p, uski = [tiα

L+1−i]2, upki :=
(
[ti]1[tiα

k]2
)
k∈[L],k ̸=L+1−i

for some ti ∈ Z∗
p, upkj such that

isValid(pp, upkj , j) = 1 and for all j ∈ [L]. Furthermore, let S ⊆ [L] such that i ∈ S and M ∈ M. Then
Enc(pp, {upkj}j∈S , S,M) gives:

ct =

[s]1, [s
∑
j∈S

(tj + αj)]1, [sα
L+1]T ·M
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and Dec(pp{upkj}j∈S , uski, ct, S, i) gives:

M ′ = ct3 · e
(
ct−1

2 , pp2L+1−i

)
· e

ct1, uski ·
∏

j∈S,j ̸=i

(upkj,L+1−i · pp2L+1+j−i)


= ct3 · e

(
ct2, [−αL+1−i]2

)
·

· e

ct1, [tiα
L+1−i]2 · [

∑
j∈S,j ̸=i

(tjα
L+1−i + αL+1+j−i)]2

 =

= M · [sαL+1]T · e

[s
∑
j∈S

(tj + αj)]1, [−αL+1−i]2

 ·
· e

[s]1, [tiα
L+1−i +

∑
j∈S,j ̸=i

(tjα
L+1−i + αN+1+j−i)]2

 =

= M · [sαL+1]T · [s
∑
j∈S

(tj + αj)(−αL+1−i)]T ·

· [s(tiαL+1−i +
∑

j∈S,j ̸=i

(tjα
L+1−i + αN+1+j−i))]T =

= M · [sαL+1 − s
∑
j∈S

(tjα
L+1−i + αL+1+j−i) + stiα

L+1−i+

+ s
∑

j∈S,j ̸=i

(tjα
L+1−i + αN+1+j−i)]T =

= M · [sαL+1 − sαL+1]T =

= M · [1]T =

= M

In the above equations we used the fact that since isValid(pp, upkj , j) = 1 the key upkj is in the support of
KeyGen (for some tj).

5.3 Security

For the security of our scheme we rely on the (decisional) Bilinear Diffie Hellman Exponent assumption [5]
(see section 3.1).

We prove our scheme semi-selectively secure (see section 4.2). Looking ahead, we can transform our
semi-selective DBE scheme to a fully adaptive using the generic transformation of 4.2 (which extends the
standard transformation of Gentry and Waters [22] to the distributed setting).

A more intuitive description of the security proof can be found in section 2.2. Below we formally state
our main security theorem together with its proof.

Theorem 5.2 If the decisional Bilinear Diffie-Hellman Exponent assumption holds, then ΠDBE,1 is a semi-
selectively secure Distributed Broadcast Encryption scheme. More specifically for every PPT adversary A
against the semi-selective security of the above DBE construction, ΠDBE,1, there exists a PPT adversary B
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against the decisional Bilinear Diffie-Hellman Exponent assumption such that:

Adv
ΠDBE,1

L,A (λ) ≤ AdvdBDHE
BG,L,B(λ).

Assume a PPT adversary A that wins the semi-selective security of the above Distributed Broadcast
Encryption scheme with a non-negligible probability ϵ > 1/poly(λ). Moreover let B be an adversary to
the dBHE assumption. B plays the role of the challenger in the DBE semi-selective security game with A
in order to win the game of the assumption (parametrized by q = L).
B takes as input bg,

{
[αj ]1

}
j∈[q],j ̸=q+1

,
{
[αj ]2

}
j∈[2q],j ̸=q+1

, [s]1 and T . The adversaryA sends to B the

target set S∗ and then B responds with pp =
(
bg,
{
[αj ]1

}
j∈[L] ,

{
[αj ]2

}
j∈[2L],j ̸=L+1

)
, which is identically

distributed to an honestly generated pp.
Key Generation Phase: Recall that in our security definition (Definition 4.1) we are only concerned

about keys for j ∈ S∗, thus it is sufficient for B to simulate those keys. For each j ∈ S∗, B samples
t̃j ←$ Z∗

p and implicitly sets tj = t̃j −αj (without knowing α). That is, using the assumption’s inputs [αj ]1
and {[αj ]2}j∈[2L],j ̸=L+1, it computes:

upkj =
(
[t̃j − αj ]1, {[t̃jαℓ − αℓ+j ]2}ℓ∈[L],ℓ̸=L+1−j

)
:=

:=
(
[t̃j − αj ]1, {[(t̃j − αj)αℓ]2}ℓ∈[L],ℓ̸=L+1−j

)
:=

:=
(
[tj ]1, {[tjαℓ]2}ℓ∈[L],ℓ ̸=L+1−j

)
and sends upkj to A. Since t̃j is uniformly random so is tj := t̃j − αj , therefore upkj is identically
distributed to an honestly generated one.

Challenge phase: A sends M∗
0 ,M

∗
1 ∈ GT and a new target set S∗∗ ⊆ S∗. B samples a bit b←$ {0, 1}

and sets

ct∗ =

[s]1, [s
∑
j∈S∗∗

t̃j ]1, T ·M∗
b


using the assumption’s input and the previously sampled t̃j’s. Note that since S∗∗ ⊆ S∗ all the corresponding
upkj are simulated by B. Thus [s

∑
j∈S∗∗ t̃j ]1 := [s

∑
j∈S∗∗(tj + αj)]1 which means that ct∗ is identically

distributed to an honestly generated ciphertext. Finally, B sends ct∗ to A.
At the end A sends her guess b′.
Note that if T = [sαL+1]T then the ciphertext ct∗ is perfectly indistinguishable from a real one so

Pr[b = b′] = ϵ. On the other hand if T is uniformly random then the ciphertext leaks nothing about Mb, so
Pr[b = b′] = 1/2. It follows directly that B has advantage ϵ in distinguishing between T = [sαL+1]T and a
random T . In conclusion:

AdvdBDHE
BG,L,B(λ) = ϵ

which contradicts the dBDHE assumption.
After that, from lemmata 4.3 and 4.6 of section 4.2 we get a distributed broadcast encryption construction

with adaptive security. We summarize this result in corollary 5.3 stated below:

Corollary 5.3 Let Π′
DBE,1 be the Distributed Broadcast Encryption (DBE) scheme after applying the trans-

formation of lemma 4.3 to the ΠDBE,1 DBE scheme described above. Then Π′
DBE,1 is an adaptively secure

DBE scheme in the random oracle model, assuming that the decisional Bilinear Diffie-Hellman Exponent
assumption holds.
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Remark 5.4 As stated in Remark 4.4 we can instead achieve an adaptively secure DBE in the standard
model, at the cost of an |S|-bit overhead on the size of the ciphertext.

5.4 Efficiency

Here we describe the efficiency and the possible trade-offs of our scheme after the transformations of sec-
tion 4.2 (Lemma 4.3) to achieve adaptive security. Also we assume a random oracle is used to output the
S-sized bit-string and is given in the ciphertext.

The public parameters consist of 2LG1 and 4LG2-elements: |pp| = O(L). The secret key of a user is 2
G2-element: |uskj | = O(1). The public key of each user is 2G1 and 2(L−2)G2-elements: |upkj | = O(L).
The ciphertext size is 4 G1 and 2 GT -elements, independently of the size of the set of users S that encrypts
the message for: |ct| = O(1). Finally both Enc and Dec run in time O(|S|).

The overall information that has to be stored in the bulletin board has size O(L2), dominated by the L
public keys {uskj}j∈[L] each of size O(L). The storage overhead of an encryptor and any decryptor i ∈ [L]
is O(L) (see remark 5.1).

Concretely: |pp| = 6L · |G1|, |uski| = 2 · |G2|, |upkj | = 2 · |G1|+(2L−2) · |G2|, |ct| = 4|G1|+2|GT |,
|Encryptor| = 2L|G1|, |Decryptor| = (2L− 2)|G2|, |BB| = 2L|G1|+ L(2L− 2)|G2|.

Logarithmic Updates. As discussed in section 4.3, without further care, each decryptor needs to update
her view after each new public key is entering the system, which trivially results in O(L) updates. In
order to reduce the maximum necessary number of these updates to O(logL) we need to apply a standard
transformation [17], which gives an O(logL) overhead to the size of the ciphertext.

Concretely: |ct| = 4 logL|G1|+2 logL|GT |, |Decryptor| ∈ {0, 2, 6, . . . , 2 ·2k−2, . . . , 2L/2−2}|G2|
(worst case (L− 2)|G2|) and the rest of the values remain as above.

Square-root trade-off. Another, standard in Broadcast Encryption, transformation [5, 19] that provides
a trade-off between ciphertext size and storage requirements (i.e. pp and upkj size) is to consider Lϵ,
0 ≤ ϵ < 1 number of sets of users. That is ’divide’ [L] = 1, . . . , L in B = Lϵ (assume wlog that B divides
L) sets

A1 = {1, . . . ,
L

B
}, A2 = {

L

B
+ 1, . . . ,

2L

B
}, . . . , AB = {(B − 1)L

B
+ 1, . . . , L}.

This results in O(Lϵ)-sized ciphertexts but smaller parameters and public keys, O(L1−ϵ). We note that,
interestingly for the case of Distributed Broadcast Encryption, this additionally results in O(L1−ϵ) num-
ber of updates for the decryptor. One can also consider a combination of both the above transformations
to reduce the number of decryptor’s updates to log(L1−ϵ) at the cost of increasing the ciphertext size to
O(Lϵ log(L1−ϵ)).

Concrete numbers. For the sake of concreteness, we consider an example use case where we have a
relatively small number of users L = 1024 and the BLS12-381 curve instantiating the bilinear group. Then
our (logarithmic updates) variant has:

• |pp| = 288KB

• |uski| = 0.19KB

• |upkj | = 191.9KB
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• |BB| = 191.9MB

• |Encryptor| = 96KB

• |Decryptor| = 95.1KB (worst case)

• |ct| = 13KB

• Number of decryptor updates: 10

6 Distributed Broadcast Encryption from k-Lin

Now we present our second Distributed Broadcast Encryption scheme from a static assumption, k-Lin.
We prove this scheme adaptively secure in the standard model using the standard ”dual-system” methodol-
ogy [32, 29]. For a more intuitive overview we refer to section 2.3.

6.1 Our Construction

Below we provide the description of our second Distributed Broadcast Encryption scheme ΠDBE,2.

• Setup(1λ, 1L): On input the security parameter λ and the number of slots L, generate a bilinear
group bg := (p,G1,G2,GT , [1]1, [1]2, e) ← BG(1λ), sample A⊤ ←$ Lk, k ←$ Zk+1

p and W ←$

Z(k+1)×k
p , rj ←$ Zk

p for each j ∈ [L] and output the public parameters as:

pp =
(
bg, [A]1, {[AWj ]1}j∈[L], {[rj ]2}j∈[L],
{[Wℓrj ]2}ℓ,j∈[L],ℓ ̸=j , {[k+Wjrj ]2}j∈[L], [Ak]T

)
We denote pp =

(
pp(0), pp(1), pp(2), pp(3), pp(4), pp(5), pp(6)

)
• KeyGen(pp, j): on input the public parameters pp and a slot j , sample the secret Tj ←$ Z(k+1)×k

p

and output:
uskj = [Tjrj ]2

upkj = ([ATj ]1[Tjr1]2, . . . , [Tjrj−1]2, [Tjrj+1]2, . . . , [TjrL]2)

• Enc(pp, {upkj}j∈S , S,M): on input the public parameters pp, a set S ⊆ [L], the corresponding users’
public keys upkj for each j ∈ S and a message M ∈ GT , sample s←$ Zk

p and output:

ct =

[s⊤A]1, [s
⊤A

∑
j∈S

(Tj +Wj)]1, [s
⊤Ak]T ·M


where [s

∑
j∈S(Tj +Aj)]1 is computed as =

∏
j∈S([s

⊤ATj ]1 · [s⊤AWj ]1) using upkj,0 and pp.

• Dec(pp, {upkj}j∈S , uski, ct, S, i): on input the public parameters pp, a set S ⊆ [L], the corresponding
users’ public keys upkj for each j ∈ S, a slot index i ∈ S, the user’s corresponding secret key
uski := [Tiri]2 and a ciphertext ct = (ct1, ct2, ct3) output:

M ′ = ct3 · e

ct−1
1 , pp

(5)
i · uski ·

∏
j∈S,j ̸=i

(upkj,i · pp
(5)
j,i )

 · e(ct2, pp(3)i

)
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where pp
(5)
i := [k+Wiri]2, uski := [Tiri]2, upkj,i := [Tjri]2, pp(5)j,i = [Wjri], pp

(3)
i := [ri]2

6.2 Correctness

Verifiable Keys We define isValid(pp, upk∗j , j) as follows:

• Parse upk∗j := (upk∗j,0, . . . , upk
∗
j,j−1, upk

∗
j,j+1, . . . , upk

∗
j,L).

• Then if the following holds output 1.

e
(
upk∗j,0, [r1]2

)
= e

(
[A]1, upk

∗
j,1

)
...

e
(
upk∗j,0, [rj−1]2

)
= e

(
[A]1, upk

∗
j,j−1

)
e
(
upk∗j,0, [rj+1]2

)
= e

(
[A]1, upk

∗
j,j+1

)
...

e
(
upk∗j,0, [rL]2

)
= e

(
[A]1, upk

∗
j,L

)
otherwise output 0.

It is easy to see that of (·, upk∗j ) ∈ KeyGen(pp, j) then isValid(pp, upk∗j , j) = 1.
On the other hand, if isValid(pp, upk∗j , j) = 1 then we get the following: Since upk∗j,k ∈ Gk+1

2 (upk∗j,0 ∈
Gk×k

1 resp.) and G2 (G1 resp.) has prime order, p, there exist uj,ℓ ∈ Zk+1
p such that upk∗j,ℓ = [uj,ℓ]2 for all

ℓ ∈ [L], ℓ ̸= j (upk∗j,0 = [Uj ]1 resp.). From this and the above paring checks we get that:

[Ujr1]T = [Auj,1]T
...

[Ujrj−1]T = [Auj,j−1]T

[Ujrj+1]T = [Auj,j+1]T
...

[UjrL]T = [Auj,L]T

Correctness Let arbitrary λ ∈ N, L ∈ N,

pp =
(
bg, [A]1, {[AWj ]1}j∈[L], {[rj ]2}j∈[L],
{[Wℓrj ]2}ℓ,j∈[L],ℓ ̸=j , {[k+Wjrj ]2}j∈[L], [Ak]T

)
for some A ∈ Zk×(k+1)

p , k ∈ Zk+1
p and W ∈ Z(k+1)×k

p , rj ∈ Zk
p for each j ∈ [L], uski = [Tjrj ]2

and upki := ([ATi]1, [Tirℓ])ℓ∈[L],ℓ ̸=i for some Ti ∈ Z(k+1)×k
p . Moreover, let {upkj}j∈[L],j ̸=i such that

isValid(pp, upkj , j) = 1, S ⊆ [L] such that i ∈ S and M ∈M. Then Enc(pp, {upkj}j∈S , S,M) gives:

ct =

[s⊤A]1, [
∑
j∈S

(s⊤Uj + s⊤AWj)]1, [s
⊤Ak]T ·M
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where [Uj ]1 = upkj,0, and Dec(pp{upkj}j∈S , uski, ct, S, i) gives:

M ′ = ct3 · e
(
ct2, pp

(3)
i

)
· e

ct−1
1 , pp

(5)
i · uski ·

∏
j∈S,j ̸=i

(upkj,i · pp
(5)
j,i )

 =

= M · [s⊤Ak]T · e

[
∑
j∈S

(s⊤Uj + s⊤AWj)]1, [ri]2

 ·
· e

[−s⊤A]1, [k+Wiri]2 · [Tiri]2 ·
∏

j∈S,j ̸=i

([uj,i]2 · [Wjri])

 =

= M · [s⊤Ak]T · [
∑
j∈S

(s⊤Auj,i + s⊤AWjri)]T ·

· [−s⊤Ak− s⊤AWiri − s⊤ATiri −
∑

j∈S,j ̸=i

(s⊤Auj,i +−s⊤AWjri)]T =

= M · [s⊤Ak]T · [−s⊤Ak]T =

= M

where in the above we used that Ujri = Auj,i, since isValid(pp, upkj , j) = 1

6.3 Security

We base the security of our scheme to the k-Lin assumption [4, 25, 31], the statement of which is given in
section 3.1.

We prove adaptive security, following the techniques of [20, Section 6]. Interestingly, we achieve adap-
tive security without the need of the [22] transformation, therefore our scheme is adaptively secure (while
maintaining constant-sized ciphertexts) in the standard model.

Theorem 6.1 If the k-Lin assumption holds, then ΠDBE,2 is an adaptively secure Distributed Broadcast
Encryption scheme. More specifically for every PPT adversaryA against the active-adaptive security of the
above DBE construction, ΠDBE,2, there exists a PPT adversary B against the k-Lin assumption such that:

Adv
ΠDBE,2

BG,L,A(λ) ≤ (2L+ 1) ·Advk-Lin
BG,k,B(λ) +

1

p
.

We prove the theorem using a sequence of Hybrids: Game0, Game1, . . ., GameL. In Game0 we switch
to a “semi-functional” ciphertext. In Gamei (1 ≤ i ≤ L) we switch to “semi-functional” keys usk1, . . . , uski
while maintaining the rest of the keys functional. In GameL we have both the ciphertext and all the keys
being semi-functional and it follows Mb is information-theoretically masked (unless with a negligible prob-
ability 1/p).

Hybrid 0. The Game0 is the same as the (adaptive) security game of definition 4.2 except we switch the
ciphertext to “semi-functional”. That is

ct =

[c⊤]1, [c
⊤
∑
j∈S

(Tj +Wj)]1, [c
⊤k]T ·M
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where c←$ Zk+1
p .

It is straightforward to show that Game0 is negligibly close to the original game: Then there is an PPT
adversary B0 such that

|Adv
ΠDBE,2

BG,L,A(λ)−AdvGame0
BG,L,A(λ)| ≤ Advk-Lin

BG,L,B0
(λ).

Let B0 be an adversary to k-Lin, receiving (bg, [A⊤]1, [c]1), where [c]1 is either [A⊤s] (for some random
s ∈ Zk

p) or random. B0 will use an adversary A′ that can distinguish with probability ϵ > 1/ poly(λ)
between Game0 and the original game. B0 samples Wj , rj ,k,Tj and computes the public parameters and
all the keys of the system according to ΠDBE,2 honestly. Now if c = A⊤s then B0 perfectly simulates the
original game otherwise of c is random perfectly simulates Game0, which means that by answering the same
bit as A′, B0 gains advantage ϵ against the k-Lin game.

It will be useful for the next Hybrids to state that with probability 1− 1/p over c: c lies outside the row
span of A, so there exists a non-zero a⊥ ∈ Zk+1

p such that A · a⊥ = 0 and c · a⊥ ̸= 0. Moreover, we can
efficiently compute a⊥ given A, c.

Hybrid i Gamei is the same as Gamei−1 except we replace [k+Wiri]2 with [k+Wiri + δia
⊥]2, where

δi ← Zp. We claim that hybrids i − 1 and i are computationally indistinguishable assuming k-Lin in G2,
which tells us(

A,AWi, [Wiri]2, [ri]2, [WiB]2, [B]2
)
≈c

(
A,AWi, [Wiri + δia

⊥]2, [ri]2, [WiB]2, [B]2
)

where B← Zk×k
p .1 Then, as in the previous case, we build a reduction that reduces distinguishing between

Hybrid i− 1 and Hybrid i to k-Lin. In particular:

|Adv
Gamei−1

BG,L,Bi−1
(λ)−AdvGamei

BG,L,Bi
(λ)| ≤ 2 ·Advk-Lin

BG,L,B0
(λ).

We proceed via a case analysis:

• i /∈ S: the reduction samples c,k,T1, . . . ,TL at random, and for all j ̸= i: samples Wj , r̃j ← Zk
p

and implicitly sets rj := Br̃j . In particular, it can

1. simulate the challenge ciphertext without knowing Wi since i /∈ S;
2. compute [rj ]2, [Tirj ]2 for all i, j using [B]2, r̃j ,Ti

3. compute [Wjri]2, j ̸= i using [ri]2,Wj

4. compute [Wirj ]2, j ̸= i using [WiB], r̃j

5. compute pp, upk1, . . . , upkL, usk1, . . . , uskL.

• i ∈ S: the reduction proceeds as in the previous case, with the following changes:

1. samples T̃i ← Z(k+1)×k
p (instead of Ti at random) and implicitly sets Ti := T̃i −Wi;

2. simulates c(Ti +Wi) in the challenge ciphertext using cT̃i;
3. simulates [Tirj ]2 = [T̃iBr̃j −WiBr̃j ]2, j ̸= i using [WiB]2, [B]2 along with T̃i, r̃j .

In particular, we do not need to simulate uski = [Tiri]2 since the query is not allowed.

Formally, the reduction guesses at random which case we will fall into, and abort if the guess is wrong,
incuring a factor 2 security loss. This step is essentially the same as [20, Lemma 6.3].

1k-Lin tells us that
[B]2, [ri]2, [t

⊤B]2, [t
⊤ri] ≈c [B]2, [ri]2, [t

⊤B]2, [t
⊤ri + δi]

Now, the reduction samples a random W̃i and programs Wi = W̃i + a⊥t.
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Hybrid 3. We complete the proof using an information-theoretic argument, which states that ck is uni-
formly random (and in turn perfectly masks Mb) given

A,Ak, c,k+ δia
⊥, i = 1, . . . , L

This comes directly from [20, Lemma 6.4].

6.4 Efficiency

We compute the efficiency of our scheme for k = 1. As can be seen by the construction’s description, the
public parameters of our scheme are dominated by O(L2) vectors in (G2)

2, upkj consists of O(L) elements
(1 in G1 and L − 1 in (G2)

2) and uskj is one vector of groups elements in (G2)
2. The cipertext has size

O(1) independently of the size of the set S. The remark 5.1 of the BDHE construction applies here as well
giving O(L)-size storage for both the Encryptor and the Decryptor. Finally the overall information that has
to be stored in the bulletin board is O(L2), which is the L upkj’s.
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