Strict Linear Lookup Argument

Xiang Fu
Hofstra University

June 8, 2023

Keywords: Lookup Argument, Quasi-Adaptive NIZK

Abstract

Given a table $\mathfrak{t} \in \mathbb{F}^{N}$, and a commitment to a polynomial $f(X) \in$ $\mathbb{F}_{<n}[X]$ over a multiplicative subgroup $\mathbb{H} \subset \mathbb{F}$. The lookup argument asserts that $\left.f\right|_{\mathbb{H}} \subset \mathfrak{t}$. We present a new lookup argument protocol that achieves strict linear prover complexity, after a pre-processing step of $O(N \log (N))$.

1 Introduction

A lookup argument [GW20] proves that each element of a committed smaller table of size n belongs to a bigger table of size N. The past year has witnessed a rapid improvement of prover complexity from $O\left(n^{2}+n \log (N)\right)$ in Caulk $[\mathrm{ZBK}+22]$, to $O\left(n^{2}\right)$ in Caulk $+[\mathrm{PK} 22]$, to $O\left(n \log ^{2}(n)\right)$ in Baloo and Flookup [ZGK ${ }^{+} 22$, GK22], and to $O(n \log (n))$ in $\mathfrak{c q}$ [EFG22]. In this work, we further improve the state of the art to its theoretical optimal: $O(n)$ prover cost, $O(1)$ proof size and $O(1)$ verifier cost.

Our technique builds upon $\mathfrak{c q}$ [EFG22], which is based on the following observation made in [Hab22]. Let $f(X)=\sum_{i=1}^{n} f_{i} \tau_{i}(X)$ where $\tau_{i}(X)$ are the Lagrange bases for $\mathbb{H} .\left.f\right|_{\mathbb{H}} \subset \mathfrak{t}$ if and only if there exists $m \in \mathbb{F}^{N}$ such that $\sum_{i=1}^{N} \frac{m_{i}}{X+\mathfrak{t}_{i}}=\sum_{i=1}^{n} \frac{1}{X+f_{i}} . \mathfrak{c q}$ uses a Σ-protocol to reason about both sides of the equation and the $O(n \log (n))$ complexity arises in the processing of RHS. Our protocol retains the first half of $\mathfrak{c q}$ and improves the prover complexity of RHS to $O(n)$.

2 Preliminaries

2.1 Notations

Let \mathcal{G} be a generator of bilinear groups, i.e., $\left(p, \mathbf{g}_{1}, \mathbf{g}_{2}, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, e\right) \leftarrow \mathcal{G}\left(1^{\lambda}\right)$. Here $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{T} all have prime order p, with $\mathbf{g}_{1}\left(\mathbf{g}_{2}\right)$ as the generator of $\mathbb{G}_{1}\left(\mathbb{G}_{2}\right) . e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ is the bilinear map s.t. for any $a, b \in \mathbb{Z}_{p}$:
$e\left(\mathbf{g}_{1}{ }^{a}, \mathbf{g}_{2}{ }^{b}\right)=e\left(\mathbf{g}_{1}, \mathbf{g}_{2}\right)^{a b}$ and $e\left(\mathbf{g}_{1}, \mathbf{g}_{2}\right)$ is the generator of \mathbb{G}_{T}. Following the notations in Groth16 [Gro16], we write \mathbb{G}_{1} and \mathbb{G}_{2} as additive groups. That is: given $a \in \mathbb{Z}_{p}$, we denote $\mathbf{g}_{1}{ }^{a}$ as $[a]_{1}$, and similarly are group elements in \mathbb{G}_{2} and \mathbb{G}_{T} denoted. For instance, $\mathbf{g}_{1}{ }^{a} \mathbf{g}_{1}{ }^{b}$ is written as $[a]_{1}+[b]_{1}$ or $[a+b]_{1},\left(\mathbf{g}_{2}{ }^{a}\right)^{b}$ as $[a b]_{2}$, and $e\left(\mathbf{g}_{1}{ }^{a}, \mathbf{g}_{2}{ }^{b}\right)$ is denoted as $[a]_{1} \cdot[b]_{2}$ or $[a b]_{T}$.

2.2 Summary of $\mathfrak{c q}$ [EFG22]

We recall the idea of $\mathfrak{c q}$. Let n and N be both power of two where $n \ll N$. Let $\mathbb{V}=\left\{\omega^{i}\right\}_{i=1}^{N}$ where $\omega^{N}=1 . \mathbb{V}$, as a multiplicative subgroup of \mathbb{F}, needs to have Fast Fourier Transform (FFT) applicable. For instance, BLS12-381 supports N up to 2^{32}. Similarly, define $\mathbb{H}=\left\{\nu^{i}\right\}_{i=1}^{n} \subset \mathbb{F}$ as a multiplicative subgroup of size n. Define vanishing polynomial $Z_{\mathbb{V}}(X)=\prod_{i=1}^{N}\left(X-\omega^{i}\right)$, and $Z_{\mathbb{H}}(X)=$ $\prod_{i=1}^{n}\left(X-\nu^{i}\right)$. Let $\left\{L_{i}(X)\right\}_{i=1}^{N}$ be the Lagrange bases of \mathbb{V} s.t. $L_{i}\left(\omega_{i}\right)=1$ and $L_{i}\left(\omega_{j}\right)=0$ for $j \neq i$. Similarly define Lagrange bases $\left\{\tau_{i}(X)\right\}_{i=1}^{n}$ for \mathbb{H}. Assume that a trusted set-up provides KZG commitment [KZG10] keys in the form of $\left\{\left[x^{i}\right]\right\}_{i=0}^{N}$ where x is the trapdoor of the setup. A commitment to a polynomial $p(X)$ is $[p(x)]_{1}$. Lookup Argument: Given a table $\mathfrak{t} \in \mathbb{F}^{N}$ and $\mathbf{C}_{f}=[f(x)]_{1}$ to a polynomial $f(X) \in \mathbb{F}_{<n}[X]$, the goal is to prove that $\left.f\right|_{\mathbb{H}} \subset \mathfrak{t}$.

The key to achieving prover complexity independent of table size N is that Lagrange bases and quotient polynomials can be pre-computed. First, \mathfrak{t} can be characterized by a polynomial $T(X)=\sum_{i=1}^{N} \mathfrak{t}_{i} L_{i}(X)$ s.t. for each $i \in[1, N]$ $T\left(\omega^{i}\right)=\mathfrak{t}_{i}$. If $\left\{\left[L_{i}(x)\right]_{1}\right\}_{i=1}^{N}$ can be pre-computed, then $[T(x)]_{1}$ can be computed in $O(N)$ time. Similarly, $[f(x)]_{1}$ can be computed in $O(n)$ time. Define quotient polynomial $Q_{i}(X)=\frac{T(X)-\mathfrak{t}_{i}}{Z_{\mathfrak{v}}^{\prime}\left(\omega^{i}\right)\left(X-\omega^{i}\right)}$. It is shown in [EFG22] that $\left\{\left[Q_{i}(x)\right]\right\}_{i=1}^{N}$ can be computed in $O(N \log (N))$ time.
$\mathfrak{c q}$ is based on the following observation made in [Hab22]. $\left.f\right|_{\mathbb{H}} \subset \mathfrak{t}$ if and only if there exists $m \in \mathbb{F}^{N}$ such that $\sum_{i=1}^{N} \frac{m_{i}}{X+\mathrm{t}_{i}}=\sum_{i=1}^{n} \frac{1}{X+f_{i}}$. Intuitively, let the elements in \mathfrak{t} be distinct. For each element \mathfrak{t}_{i}, the value of m_{i} is the number of times that \mathfrak{t}_{i} appears in table f. Apparently, there are up to n non-zero m_{i} entries. Let $\beta \in \mathbb{F}$ is a random challenge supplied by the verifier, the equation in [Hab22] can be checked by:

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{m_{i}}{\beta+\mathfrak{t}_{i}}=\sum_{i=1}^{n} \frac{1}{\beta+f_{i}} \tag{1}
\end{equation*}
$$

Let $A_{i}=\frac{m_{i}}{\beta+\mathrm{t}_{i}}$ and $A(X)=\sum_{i=1}^{N} A_{i} L_{i}(X)$. Similarly define $M(X)=$ $\sum_{i=1}^{N} m_{i} L_{i}(X)$. Note that the prover does not have to compute them, but can compute their commitment: $[A(x)]_{1}$ and $[M(x)]_{1}$ in $O(n)$ time, because up to n entries of m_{i} are non-zero. The prover sends these commitments to verifier, and proves that they are well-formed by establishing that there exists a polynomial $Q(X)$ s.t.

$$
\begin{equation*}
A(X)(T(X)+\beta)-M(X)=Q(X) Z_{\mathbb{V}}(X) \tag{2}
\end{equation*}
$$

Equation 2 can be verified by a pairing check and the key is to provide $[Q(x)]_{1}$, which can be computed in $O(n)$ from the pre-processed information: $\left\{\left[Q_{i}(x)\right]_{1}\right\}_{i=1}^{N}$.

Recall that we still need to argue for the LHS $=$ RHS for Equation 1. Its LHS is $\sum_{i=1}^{N} A_{i}$. Based on the result of Aurora [$\left.\mathrm{BSCR}^{+} 19\right], \sum_{i=1}^{N} A\left(\omega^{i}\right)=N \cdot A(0)$. Thus, the prover just needs to compute $A(0)$ and provide its KZG evaluation proof $\left[\frac{A(x)-A(0)}{x}\right]_{1}$, which can be computed in $O(n)$ from the pre-processed information.

For the RHS of Equation 1, a similar polynomial $B(X)$ can be defined such that:

$$
\begin{equation*}
B(X)(f(X)+\beta)-1=Q_{B}(X) Z_{\mathbb{H}}(X) \tag{3}
\end{equation*}
$$

Note that, however, it is different from Equation 2 in that the $T(X)$ in Equation 2 is replaced by $f(x)$. There is no pre-processed information for computing quotient polynomials for $f(x)$, as it is the secret witness of the prover. Then, the prover would have to compute $B(X)$ for the rest of the proof (round 3 in $\mathfrak{c q}$ [EFG22]), and this incurs $O(n \log (n))$ field operations due to polynomial interpolation via FFT.

Our scheme differs from $\mathfrak{c q}$ in the way how RHS is proved. We rely on the linear subspace argument [KW15] and its improved version in [CFQ19]. By applying a random combination scheme, we are able to prove the value of RHS with linear cost.

2.3 QA-NIZK for Linear Subspace

We recall the QA-NIZK presented in LegoSnark [CFQ19, Appendix D] which is adapted from [KW15] by removing its restriction on matrix dimension.

Given $[M]_{1} \in \mathbb{G}_{1}^{l \times t}$, and $w \in \mathbb{Z}_{q}^{t}$, and $[x]_{1} \in \mathbb{G}_{1}^{l}$, the Linear Subspace QANIZK proves the following statement: ${ }^{1}$

$$
[x]_{1}=[M]_{1} \cdot w
$$

The QA-NIZK consists of the following operations:

1. $\sigma_{l s} \leftarrow \operatorname{SetupLS}\left([M]_{1}\right)$ generates a prover/verifier key of size $O(l+t) .{ }^{2}$ Intuitively, $\sigma_{l s}$ encodes the public matrix $[M]_{1}$.
2. $\left([x]_{1}, \pi_{l s}\right) \leftarrow \operatorname{ProveLS}\left(\sigma_{l s}, w\right)$ computes the the $[x]_{1}$ and generates the proof for knowledge of w. The prover spends one multi-exponentiation of $O(t)$, and the proof size is $O(1)$.
3. and $0 / 1 \leftarrow \operatorname{VerifyLS}\left(\sigma_{l s}, \pi,[x]_{1}\right)$ verifies the claim that the prover knows a secret witness w s.t. $[x]_{1}=[M]_{1} \cdot w$. It costs $O(l)$ pairings.
[^0]```
1 Trusted Set-up: \(\sigma \leftarrow \operatorname{Setup}\left(1^{\lambda}, \mathfrak{t}, N, n\right)\)
 (S1-1) Compute \(\left(p, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \mathbf{g}_{1}, \mathbf{g}_{2}, e\right) \leftarrow \mathcal{G}\left(1^{\lambda}\right)\).
 (S1-2) Sample \(x\) from \(\mathbb{Z}_{p}^{*}\), and compute \(\left\{\left[x^{i}\right]_{1}\right\}_{i=1}^{N}\), and \(\left\{\left[x^{i}\right]_{2}\right\}_{i=1}^{N}\).
 (S1-3) Compute \(\left[Z_{\mathbb{V}}(x)\right]_{2},[T(x)]_{2},\left\{L_{i}(x)\right\}_{i=1}^{N},\left\{\frac{L_{i}(x)-L_{i}(0)}{x}\right\}_{i=1}^{N}\),
 \(\left\{\left[Q_{i}(x)\right]_{1}\right\}_{i=1}^{N}\) using the algorithm in [EFG22].
 (S2-1) Sample \(u \in \mathbb{Z}_{p}^{n}\) and \(\alpha \in \mathbb{Z}_{p}\), compute \(\mathbf{C}_{\overrightarrow{1}, \alpha}=\sum_{i=1}^{n}\left[u_{i} \alpha^{i-1}\right]_{1}\).
 (S2-2) Compute \(\left\{\left[\tau_{i}(x)\right]_{j}\right\}_{i=1}^{n}\) for \(j \in\{1,2\}\).
 (S2-3) Define \(M_{1} \in \mathbb{F}^{2 \times n}\) as \(M_{1}=\left[\begin{array}{l}\left.\left[u_{1}\right]_{1}, \ldots,\left[u_{n}\right]_{1}\right], \\ {\left[\left[\alpha^{0}\right]_{1}, \ldots,\left[\alpha^{n-1}\right]_{1}\right]}\end{array}\right]\). Define
 \(M_{2} \in \mathbb{F}^{2 \times n}\) as \(M_{2}=\left[\begin{array}{l}{\left[\left[u_{1}\right]_{1}, \ldots,\left[u_{n}\right]_{1}\right],} \\ {\left[[1]_{1}, \ldots,[1]_{1}\right]}\end{array}\right]\). Define \(M_{3} \in \mathbb{F}^{2 \times n}\) as
 \(M_{3}=\left[\begin{array}{l}{\left[\left[u_{1}\right]_{1}, \ldots,\left[u_{n}\right]_{1}\right]_{1},} \\ {\left[\left[\tau_{1}(x)\right]_{1}, \ldots,\left[\tau_{n}(x)\right]_{1}\right]}\end{array}\right]\). Compute \(\sigma_{M_{i}} \leftarrow \operatorname{SetupLS}\left(M_{i}\right)\) for
 \(i \in\{1,2,3\}\).
 (S2-4) Return
 \(\sigma=\left(\begin{array}{l}\left\{\left[x^{i}\right]_{1}\right\}_{i=1}^{N},\left\{\left[x^{i}\right]_{2}\right\}_{i=1}^{N},[T(x)]_{2},\left\{L_{i}(0)\right\}_{i=1}^{N},[1 / x]_{1}, \\ \left\{\left[L_{i}(x)\right]_{1}\right\}_{i=1}^{N},\left\{\left[\frac{L_{i}(x)-L i(0)}{x}\right]_{1}\right\}_{i=1}^{N},\left\{\left[Q_{i}(x)\right]_{1}\right\}_{i=1}^{N},\left[Z_{\mathbb{V}}(x)\right]_{2}, \\ \left\{\tau_{i}(x)\right\}_{i=1}^{n},\left\{\left[\tau_{i}(x)\right]_{j}\right\}_{i=1}^{n} \text { for } j \in\{1,2\}, \\ \left\{\left[u_{i}\right]_{1}\right\}_{i=1}^{n=\sigma_{M_{1}}, \sigma_{M_{2}}, \sigma_{M_{3}}, \mathbf{C}_{\overrightarrow{1}, \alpha}, \sum_{i=1}^{n}\left[u_{i}\right]_{1}} .\end{array}\right)\).
```

    Figure 1: Set-Up
    
## 3 Linear Lookup Argument Protocol

### 3.1 Insights

Recall that our goal is to prove RHS of Equation 1 with linear cost. We rely on the QA-NIZK for linear subspace. One can use it to prove the equivalence of two commitments and the sum of secrets behind a commitment. We elaborate the details below.

Let $\left\{\left[g_{i}\right]_{1}\right\}_{i=1}^{n}$ be a Pedersen Vector Commitment key where the prover has no knowledge of $g_{i}$ and any linear relation of the key. let $\left\{\left[\alpha^{i-1}\right]_{1}\right\}_{i=1}^{n}$ be a KZG commitment key. Define $\mathbf{C}_{f}=\sum_{i=1}^{n} f_{i}\left[g_{i}\right]_{1}$ and $\mathbf{C}_{f, \alpha}=\sum_{i=1}^{n} f_{i}\left[\alpha^{i-1}\right]_{1}$. Let $[x]_{1}=\left[\mathbf{C}_{f}, \mathbf{C}_{f, \alpha}\right]$, and $w=\left\{f_{i}\right\}_{i=1}^{n}$ for the QA-NIZK for Linear Subspace. One can prove the equivalence of the two commitments (encoding the same vector $f$ ), using the following matrix:

$$
M_{1}=\left[\begin{array}{llll}
{\left[g_{1}\right]_{1}} & {\left[g_{2}\right]_{1}} & \ldots & {\left[g_{n}\right]_{1}}  \tag{4}\\
{\left[\alpha^{0}\right]} & {\left[\alpha^{1}\right]_{1}} & \ldots & {\left[\alpha^{n-1}\right]_{1}}
\end{array}\right]
$$

Clearly the prover cost is $O(n)$ and verifier cost is $O(1)$, because $M$ has 2 rows.

Using the following $M$, one can prove the sum of a Pedersen vector commitment, i.e., the $[x]_{1}$ in the QA-NIZK relation is: $\left[\mathbf{C}_{f},\left[\sum_{i=1}^{n} f_{i}\right]_{1}\right]$, and the witness is vector $f$.

$$
M_{2}=\left[\begin{array}{llll}
{\left[g_{1}\right]_{1}} & {\left[g_{2}\right]_{1}} & \ldots & {\left[g_{n}\right]_{1}}  \tag{5}\\
{[1]_{1}} & {[1]_{1}} & \cdots & {[1]_{1}}
\end{array}\right]
$$

We use the above gadgets to prove the correctness of polynomials for the RHS of Equation 2 and the value of RHS. We present the entire protocol in Figure 2.

### 3.2 Trusted Set Up

We show the set-up in Figure 1. It has two parts: (1) steps labeled with S1 are for round-1 of $\mathfrak{c q}$ [EFG22], and (2) steps S2 for the new RHS proof. ${ }^{3}$ The complexity is $O(N \log (N))$. We provide the detailed analysis in Appendix A.1. For convenience of presentation we do not distinguish prover and verifier key.

### 3.3 LHS: $\mathfrak{c q}$ Round-1

We now present the complete protocol in Figure 2. We apply Fiat-Shamir so that the protocol is converted to non-interactive. It provides the Prove() and Verify() operations. The Prove() takes $\mathfrak{t}, f$ as input and generates $\mathbf{C}_{f}=$ $\sum_{i=1}^{n} f_{i}\left[\tau_{i}(x)\right]_{1}$, and it produces a proof $\pi$ for $f$ being a sub-table of $\mathfrak{t}$.

The first part (labeled P1) in Prove() is essentially the round-1 of $\mathfrak{c q}$ [EFG22]. Its goal is to prove that the $A(X), Q(X), M(X)$ on the LHS of Equation 2 are well-formed, and it tries to convince the verifier that the value of LHS is $A(0) \cdot N$. This part is verified using two pairing checks in step (V1) of Verify ().

The prover cost is $O(n)$ field and group operations. The analysis is presented in in Appendix A.2.

### 3.4 RHS

We now show how to achieve $O(1)$ prover cost for RHS, using the linear subspace QA-NIZK. The prover has a secret table $f \in \mathbb{Z}_{p}^{n}$. Let $s=\sum_{i=1}^{n} \frac{1}{f_{i}+\beta}$. The goal is to prove that $s$ is indeed the value of RHS.

The prover prepares two arrays: $\left\{a_{i}=f_{i}+\beta\right\}_{i=1}^{n}$ and $\left\{b_{i}=\frac{1}{f_{i}+\beta}\right\}_{i=1}^{n}$. Basically, we need a protocol that certifies that (1) for all $i: a_{i} b_{i}=1,(2) a_{i}=f_{i}+\beta$, and (3) $s=\sum_{i=1}^{n} b_{i}$.

Claim (3) is addressed by P2-2 in Figure 2. Claim (2) needs two steps. First, we present $\mathbf{C}_{a-\beta}=\sum_{i=1}^{n}\left(a_{i}-\beta\right)\left[u_{i}\right]_{1}$ as a commitment to $f_{i}$ over bases $\left\{\left[u_{i}\right]_{1}\right\}_{i=1}^{n}$. We use Step P2-4, to show that it commits to the same vector (i.e.,

[^1]1 Prove: $\left(\mathbf{C}_{f}, \pi\right) \leftarrow \operatorname{Prove}(\sigma, \mathfrak{t}, f)$
(P1-1) Retrieve data in prover/verifier key $\sigma$ as shown in S2-4 in Figure

1. Compute $\mathbf{C}_{f}=\sum_{i=1}^{n} f_{i}\left[\tau_{i}(x)\right]_{1}$.
(P1-2) Compute $m \in \mathbb{F}^{N}$ s.t. $\sum_{i=1}^{N} \frac{m_{i}}{\beta+\mathrm{t}_{i}}=\sum_{i=1}^{n} \frac{1}{\beta+f_{i}}$.
(P1-3) Define $M(x)=\sum_{i=1}^{N} m_{i} L_{i}(X)$. Compute $[M(x)]_{1}$ using
$\left\{L_{i}(x)\right\}_{i=1}^{N}$. Note: prover does not compute $M(x)$. Apply Fiat-Shamir and compute $\beta=\operatorname{hash}\left(\mathbf{C}_{f},[M(x)]_{1}\right)$
(P1-4) For each $i \in[1, N]$ define $A_{i}=\frac{m_{i}}{\beta+\mathfrak{t}_{i}}$. Define
$A(X)=\sum_{i=1}^{N} A_{i} L_{i}(X)$. Compute $a_{0}=A(0)$, and $[A(x)]_{1}$.
(P1-5) Let $Q(X)$ be the polynomial s.t.
$A(X)(T(X)+\beta)-M(X)=Q(X) Z_{\mathbb{V}}(X)$. Compute $[Q(x)]_{1}$ using the the $\left\{\left[Q_{i}(x)\right]_{1}\right\}_{i=1}^{N}$ in $\sigma$ following algorithm in [EFG22].
(P1-6) Compute $\pi_{a_{0}}=\left[\frac{A(x)-a_{0}}{x}\right]_{1}$.
(P1-7) Let $\pi_{L}=\left(\left[A(x)_{1}\right],\left[Q(x)_{1}\right],[M(x)]_{1}, a_{0}, \pi_{a_{0}}\right)$.
(P2-1) Compute $a, b \in \mathbb{Z}_{p}^{n}$ s.t. for each $i \in[1, n]: a_{i}=f_{i}+\beta$ and
$b_{i}=\frac{1}{a_{i}}$. Compute $s=\sum_{i=1}^{n} b_{i}$.
(P2-2) Compute $\left(\left[\mathbf{C}_{a}, \mathbf{C}_{a, \alpha}\right], \pi_{a}\right) \leftarrow \operatorname{ProveLS}\left(\sigma_{\sigma_{M_{1}}}, a\right)$.
(P2-3) Compute $\left.\left(\left[\mathbf{C}_{b},[s]_{1}\right)\right], \pi_{b}\right) \leftarrow \operatorname{ProveLS}\left(\sigma_{M_{2}}, b\right)$. Compute
$\mathbf{C}_{b, 2}=\sum_{i=1}^{n} b_{i}\left[\tau_{i}(x)\right]_{2}$.
(P2-4) Compute $\left.\left(\left[\mathbf{C}_{a-\beta}, \mathbf{C}_{f}\right)\right], \pi_{f}\right) \leftarrow \operatorname{ProveLS}\left(\sigma_{M_{3}}, f\right)$.
(P2-4) Let $\pi_{R}=\left(s, \mathbf{C}_{a}, \mathbf{C}_{a, \alpha}, \mathbf{C}_{b}, \mathbf{C}_{b 2}, \mathbf{C}_{a-\beta}, \pi_{a}, \pi_{b}, \pi_{f}\right)$.
(P2-5) Let $\pi=\left(s, \pi_{L}, \pi_{R}\right)$. Return $\left(\mathbf{C}_{f}, \pi\right)$.
2 Verify: $0 / 1 \leftarrow \operatorname{VerifyAQ}(\sigma, \pi)$
Retrieve all elements from $\sigma$, and parse $\pi$ as shown in P1-7 and P2-4. Return 1 if and only if all of the following checks pass.
(V1) Proof related to LHS.
2. $e\left([A(x)]_{1},[T(x)]_{2}\right)=e\left([Q(x)]_{1},\left[Z_{V}(x)\right]_{2}\right) \cdot e\left([M(x)]_{1}-\beta[A(x)]_{1},[1]_{2}\right)$
3. $e\left([A(x)]_{1}-\left[a_{0}\right]_{1},[1]_{2}\right)=e\left(\pi_{a_{0}},[x]_{2}\right)$
(V2) Proof related to RHS.
4. VerifyLS $\left(\sigma_{M_{1}},\left[\mathbf{C}_{a}, \mathbf{C}_{a, \alpha}\right], \pi_{a}\right)$.
5. VerifyLS $\left.\left(\sigma_{M_{2}},\left[\mathbf{C}_{b},[s]_{1}\right], \pi_{b}\right)\right)$.
6. VerifyLS $\left.\left(\sigma_{M_{3}},\left[\mathbf{C}_{a-\beta}, \mathbf{C}_{f}\right], \pi_{f}\right)\right)$.
7. $\mathbf{C}_{a}=\mathbf{C}_{a-\beta}+\beta\left(\sum_{i=1}^{n}\left[u_{i}\right]_{1}\right)$.
8. $e\left(\mathbf{C}_{a, \alpha}, \mathbf{C}_{b, 2}\right)=e\left(\mathbf{C}_{\overrightarrow{1}, \alpha},[1]_{2}\right)$.
9. $e\left(\mathbf{C}_{b},[1]_{2}\right)=e\left([1]_{1}, \mathbf{C}_{b, 2}\right)$.
(V3) Verify Fiat-Shamir: $\beta=\operatorname{hash}\left(\mathbf{C}_{f},[M(x)]_{1}\right)$.
(V4) Verify $a_{0} \cdot N=s$.

Figure 2: Complete Linearlookup Protocol
$f)$ as $\mathbf{C}_{f}$ (albeit they are over two different commitment keys). Then it is easy to show the relation between $\mathbf{C}_{a-\beta}$ and $\mathbf{C}_{a}$ with:

$$
\mathbf{C}_{a-\beta}+\sum_{i=1}^{n}\left(\beta\left[u_{i}\right]_{1}\right)=\mathbf{C}_{a}
$$

Note that as $\sum_{i=1}^{n}\left[u_{i}\right]_{1}$ is included in the verifier key, the check of the above is $O(1)$.

Lastly, claim (1) is addressed by step P2-1 and verifier step V2.5. Essentially V2.5 asserts the following:

$$
\sum_{i=1}^{n} \alpha^{i-1}\left(a_{i} b_{i}\left[u_{i}\right]_{1}\right)=\sum_{i=1}^{n} \alpha^{i-1}\left[u_{i}\right]_{1}
$$

This is a randomized combination of all equations of $a_{i} b_{i}=1$ for $i \in[1, n]$. We present a detailed analysis of complexity in Appendix A.3.

### 3.5 Discussion

It is possible to take advantage of the data parallelism of circuit if we feed the RHS of Equation 1 to a general purpose proof system, to accomplish $O(1)$ prover complexity. Most work exploiting data parallel circuits exist in GKR or Sum-check protocol based zk-proof systems [Tha13, WJB ${ }^{+}$17, LYH ${ }^{+}$21]. The basic idea is to encode layers of circuit via multi-linear extension polynomials. The prover complexity can be linear, however, for either or both of the proof size and verifier work, the cost is at least $O(\log (n))$ where $n$ is the circuit width (already taking into the account that depth of circuit is a constant).

## 4 Conclusion

Let $N$ and $n$ be the size of bigger and smaller tables in the lookup argument. By improving the $\mathfrak{c q}$ protocol we show that after a pre-processing step of $O(N \log (N))$, the prover cost is $O(n)$, and the verifier cost and proof size are both $O(1)$.

## A Complexity Analysis

## A. 1 Set Up

We recall the analysis of the complexity of $\mathfrak{c q}$ set-up [EFG22]. Given secret $x$, the complexity to compute $\left\{\left[x^{i}\right]_{1}\right\}_{i=1}^{N}$ and $\left\{\left[x^{i}\right]_{2}\right\}_{i=1}^{N}$ is $O(N)$. Since FFT is applicable to $\mathbb{V}, Z_{\mathbb{V}}(X)=X^{N}-1$. Hence computing $\left[Z_{\mathbb{V}}(x)\right]_{1}$ is $O(1)$.

Consider Lagrange polynomial $L_{i}(X)=\prod_{1 \leq j \leq N \wedge j \neq i} \frac{X-\omega^{j}}{\omega^{2}-\omega^{j}}$, it can be represented as: $L_{i}(X)=\frac{Z_{\mathrm{v}}(X)}{\left(X-\omega^{2}\right) \prod_{j \in[1, N] \wedge j \neq i}\left(\omega^{i}-\omega^{j}\right)}$. It is shown in Baloo
$\left[\mathrm{ZGK}^{+} 22\right]$ that to compute $\left\{\prod_{j \in[1, N] \wedge j \neq i}\left(\omega^{i}-\omega^{j}\right)\right\}_{i=1}^{N}$ via FFT the cost is $O(N \log (N))$ field operations. Then $\left\{\left[L_{i}(x)\right]_{1}\right\}_{i=1}^{N}$ and $\left\{\left[\frac{L_{i}(x)-L_{i}(0)}{x}\right]_{1}\right\}_{i=1}^{N}$ costs $O(N \log (N))$.

Finally the set-up can compute $\left\{\left[Q_{i}(x)\right]_{1}\right\}_{i=1}^{N}$ following the algorithm presented in $\mathfrak{c q}$ [EFG22], which uses Toeplitz matrix [FK23]. $T(X)$ can be computed through interpolation over FFT domain which takes $O(N \log (N))$. Thus, the steps S1-1 to S1-3 in Figure 1 up takes $O(N \log (N))$ field and group operations. Similarly the complexity for S 2 steps is $O(n \log (n))$.

## A. 2 LHS Complexity

We briefly show that the complexity of the first part (round-1 of $\mathfrak{c q}$ ) in Figure 2. The prover does not have to compute $M(x), A(x)$. However, $[M(x)]_{1}$ can be computed in linear time because there are up to $n$ entries of $m_{i}$ being nonzero. Similarly $[A(x)]_{1}$ is computed in $O(n)$. In [EFG22], $[Q(x)]_{1}$ is computed in $O(n)$ using the prover key $\left[Q_{i}(x)\right]_{1} . A(0)$ can be computed as $\sum_{i=1}^{N} A_{i} L_{i}(0)$, which is $O(n)$ given the $\left\{L_{i}(0)\right\}$ in prover key. Similarly, $\pi_{a_{0}}$ can be computed as $\left[\frac{\sum_{i=1}^{N} A_{i} L_{i}(x)-a_{0}}{x}\right]_{1}$, which can be computed as as $\left[\frac{\sum_{i=1}^{N} A_{i}\left(L_{i}(x)-L_{i}(0)\right)}{x}\right]_{1}+$ $\sum_{i=1}^{N}\left(A_{i} \cdot L_{i}(0)-a_{0} / N\right)\left[\frac{1}{x}\right]_{1}$, which is linear given the pre-processed information in prover key.

## A. 3 RHS Complexity

We now discuss the complexity of the second part of Figure 2. Apparently, the cost of P2-2 to P2-4 are both $O(n)$ because the matrix involved for the linear subspace argument have 2 rows. P2-1 costs $O(n)$ field operations.

For the V2 checks in the Verify() operation. All VerifyLS() operations costs $O(1)$ given the row number of matrices. Step (4) of V2 has constant cost because $\sum_{i=1}^{n}\left[u_{i}\right]_{1}$ is given in verifier key.

In summary, the proof size is $O(1)$ and the verifier cost is $O(1)$.

## References

[ $\left.\mathrm{BSCR}^{+} 19\right]$ E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent succinct arguments for r1cs. In EUROCRYPT, pages 103-128, 2019.
[CFQ19] M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: Modular Design and Composition of Succinct Zero-Knowledge Proofs. IACR Cryptol. ePrint Arch. 2019:142, 2019.
[EFG22] L. Eagen, D. Fiore, and A. Gabizon. cq: Cached quotients for fast lookups. IACR Cryptol. ePrint Arch., 2022.
[FK23] D. Feist and D. Khovratovich. Fast Amortized KZG Proofs. IACR Cryptol. ePrint Arch., 2023.
[GK22] A. Gabizon and D. Khovratovich. Flookup: Fractional decomposition-based lookups in quasi-linear time independent of table size. IACR Cryptol. ePrint Arch., 2022.
[Gro16] J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, pages 305-326, 2016.
[GW20] A. Gabizon and Z. J. Williamson. Plookup: A simplified polynomial protocol for lookup tables. IACR Cryptol. ePrint Arch., 2020.
[Hab22] U. Habock. Multivariate lookups based on logarithmic derivatives. IACR Cryptol. ePrint Arch., 2022.
[KW15] E. Kiltz and H. Wee. Quasi-adaptive NIZK for Linear Subspaces Revisited. In EUROCRYPT, pages 101-128, 2015.
[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their applications. In $A S I A C R Y P T$, pages 177-194, 2010.
[LYH $\left.{ }^{+} 21\right]$ Y. Li, C. Ye, Y. Hu, I. Morpheus, Y. Guo, C. Zhang, Y. Zheng, Z. Sun, Y. Lu, and H. Wang. ZKCPlus: Optimized Fair-exchange Protocol Supporting Practical and Flexible Data Exchange. In CCS, pages 3002-3021, 2021.
[PK22] J. Posen and A. Kattis. CaulkPlus: Table-independent lookup arguments. IACR Cryptol. ePrint Arch., 2022.
[Tha13] J. Thaler. Time-optimal interactive proofs for circuit evaluation. IACR Cryptol. ePrint Arch., 2013.
$\left[W^{+}{ }^{+} 17\right]$ R. Wahby, Y. Ji, A. Blumberg, J. Thaler, M. Walfish, and T. Wies. Full Accounting for Verifiable Outsourcing. In CCS, pages 20712086, 2017.
[ZBK $\left.{ }^{+} 22\right]$ A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin. Caulk: Lookup Arguments in Sublinear Time. In $C C S$, pages 3121-3134, 2022.
[ZGK $\left.{ }^{+} 22\right]$ A. Zapico, A. Gabizon, D. Khovratovich, M. Maller, and C. Ràfols. Baloo: Nearly Optimal Lookup Arguments. IACR Cryptol. ePrint Arch., 2022.


[^0]:    ${ }^{1}$ To verifier, $[x]_{1}$ and $[M]_{1}$ are public and $w$ is the secret witness of the prover.
    ${ }^{2}$ For convenience, we do not distinguish prover and verifier keys but verifier key is shorter.

[^1]:    ${ }^{3}$ We note that the the process could be actually split into two parts: one trusted set-up which does not take $\mathfrak{t}$, and a pre-processing step prepared by the prover that processes $\left[Q_{i}(x)\right]_{1}$ using the prover key. They are combined in this way for convenience of presentation.

